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Abstract

The exploration of the spatial relationship between gene expression profiles and task-

evoked response patterns known to be altered in neuropsychiatric disorders, for

example depression, can guide the development of more targeted therapies. Here, we

estimated the correlation between human transcriptome data and two different brain

activation maps measured with functional magnetic resonance imaging (fMRI) in healthy

subjects. Whole-brain activation patterns evoked during an emotional face recognition

task were associated with topological mRNA expression of genes involved in cellular

transport. In contrast, fMRI activation patterns related to the acceptance of monetary

rewards were associated with genes implicated in cellular localization processes, metab-

olism, translation, and synapse regulation. An overlap of these genes with risk genes

from major depressive disorder genome-wide association studies revealed the involve-

ment of the master regulators TCF4 and PAX6 in emotion and reward processing. Over-

all, the identification of stable relationships between spatial gene expression profiles

and fMRI data may reshape the prospects for imaging transcriptomics studies.
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1 | INTRODUCTION

Over the last decades, genetic and neuroimaging studies have signifi-

cantly contributed to current knowledge about human neural func-

tions. While individual neuroscientific methods facilitated the

comprehension of physiological processes, as well as pathological

alterations in psychiatric disorders, a multimodal integration of large-

scale data has proven to be even more conducive for in-depth under-

standing (Kitchen et al., 2014; Medland et al., 2014). In general, neural

correlates of common psychological processes can be quantified by

functional magnetic resonance imaging (fMRI) with high spatial resolu-

tion. The fact that dynamic in vivo signal patterns are to some extent

susceptible to genotype variations (Rose & Donohoe, 2013; Wolf

et al., 2015) justifies the conceptualization of studies linking data

across disparate scales of biological resolution. Albeit investigating the

influence of the genome on quantitative traits at a cognition-relevant

timescale, imaging genetics studies mostly ignore transcriptional regu-

lation. In the light of the complexity of the human brain, however, it

appears beneficial to integrate the transcriptome within the realms of

neuroimaging studies. For instance, post-mortem gene expression

data from the Allen Human Brain Atlas (AHBA) can be applied to

investigate the relationship between the transcriptome and protein

distribution (Komorowski et al., 2017), brain morphology (Shin

et al., 2018), or functional connectivity (Richiardi et al., 2015). Focus-

ing on single genes, previous studies also integrated characteristic

imaging findings to assess the influence of static gene expression pro-

files on neurological and psychiatric disorders (Freeze et al., 2018;

Romme et al., 2017). It can be argued that various differentially

expressed genes impact on regional fMRI activation due to their

underlying biological functions that affect resulting neuronal signaling.

In this line, a promising approach to contrast in vivo regional blood

oxygenation level dependent (BOLD) signaling and the transcriptome

was presented by Fox et al. (2014), but limitations such as a low spa-

tial resolution and absence of potential disease-related master regula-

tors prevented clinical translation.

From all psychiatric disorders, major depressive disorder (MDD) is

now the leading cause of disability worldwide (James et al., 2018).

MDD strongly contributes to the overall global burden of disease with

an increasing prevalence over the years, whereby additive genetic

effects attribute to approximately 9% of the variation in liability of this

disorder (Wray et al., 2018). Notably, the differential expression of

genes between depressed individuals and the general population high-

lights the relevance of specific transcriptomic signatures for human

brain function (Ciobanu et al., 2016; Mehta et al., 2010). Paradigms

examining prominent behavioral elements such as impaired affect

modulation or loss of interest and pleasure in common experiences

are amongst the best-established in neuroimaging studies, which jus-

tifies their application to investigate core depressive symptoms

(Foland-Ross & Gotlib, 2012). Alterations of BOLD reactivity during

processing of negatively valenced information or incentive-based

learning thereby drive the conceptualization of major domains of

functioning within the realms of the Research Domain Criteria (RDoC)

framework (Sanislow et al., 2019), spanning from a physiological to a

more critical pathological state. Consequently, spatial gene expression

patterns of disease-related risk genes may affect different types of

psychological processes and corresponding neuronal activation. In

addition, a modulatory role of disease-related master regulators is fur-

ther assumed due to the notion that BOLD signaling elicited by emo-

tion and reward processing can be altered in depressive patients.

The goal of this study was to explore the spatial relationship

between whole-transcriptome expression maps and specific brain

activation patterns measured in healthy human subjects during emo-

tion and reward processing, in order to evaluate associations of task-

based fMRI data with biological processes according to the Gene

Ontology (GO) database. In addition, static gene expression profiles of

risk genes implicated in MDD were analyzed to assess potential

effects of disease-related genes in imaging transcriptomics studies.

2 | MATERIALS AND METHODS

2.1 | Participants

Healthy subjects were recruited from the university environment and

gave written informed consent to the study procedures previously

approved by the Ethics Committee of the University Medical Center

Göttingen. Included participants (aged between 22 and 52 years;

M = 40.5, SD = 14.37) were of Caucasian European ethnicity and flu-

ent in German language. Exclusion criteria comprised contraindica-

tions to MRI, past or present psychiatric, neurological, or medical

disorders, consumption of psychotropic drugs, and a positive family

history of psychiatric disorders. In total, 26 men and 22 women com-

pleted two fMRI paradigms related to emotional face recognition and

reward processing. Excessive movement in any of the three transla-

tion (>2 mm) or rotation (>2�) planes resulted in exclusion of four

participants.

2.2 | Functional brain imaging

Functional imaging data was acquired using a 3 T scanner (Siemens

Magnetom TRIO, Siemens Healthcare, Erlangen, Germany) and a

32-channel head coil with a 2 � 2 � 2 mm voxel size, TR 2500 ms, TE

33 ms, 70� flip angle, 10% distance factor, FOV 256 mm and 60 slices

with multiband factor of 3 for the acquisition of T2*-weighted images.

Imaging data analysis was performed using Statistical Parameter Map-

ping (SPM12; Wellcome Department of Imaging Neuroscience, Insti-

tute of Neurology, London, UK) and Matlab R2015b (The Mathworks

Inc., Natick, MA). First, echo planar imaging (EPI) images were stan-

dardly preprocessed with slice time correction, realignment, and nor-

malization into the Montreal Neurological Institute (MNI) space, as

well as smoothing with an 8 � 8 � 8 mm FWHM Gaussian kernel.

Null hypotheses relating to random fMRI activation were tested

for both imaging paradigms. First, specific activation maps reflected

brain activation during performance of the tasks. In contrast, corre-

sponding control conditions represented non-specific hemodynamic
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activity inherent to any task performance during fMRI measurement,

caused by unspecific physiological activation, for example, related to

visual, auditory, attentional or motor functions. Estimates of task-

evoked response patterns were initially computed with a general lin-

ear model (GLM) for each subject individually (first-level analysis) with

nuisance movement parameters regressed as covariates-of-no-inter-

est. Later, experimental and control conditions were evaluated at

group level (second-level analysis) and resulting activation maps that

represented task-specific brain activation were used for further

analyses.

2.3 | Emotional face recognition

The paradigm of implicit emotional face recognition contained two

different contexts: human faces and geometric objects. Pictures of

males and females with negative face expressions obtained from the

Radboud database (Langner et al., 2010) were presented for 17 s, dur-

ing which participants responded to the gender of the presented per-

son with a button press. Thereby, perception of emotions was rather

implicit, which has been shown to enhance the activation of emotional

correlates (Keightley et al., 2003). For the control condition, partici-

pants were instructed to respond analogously to the shape of an

object, either an ellipse or a rectangle, positioned in the face area and

made from scrambling original face trials. All trials were controlled for

brightness, contrast, and presented in a very similar composition. The

activation patterns representing the experimental and control condi-

tions were computed using first-level (single-subject) contrasts of the

trials from emotional faces and object blocks, respectively. Resulting

data were then used for second-level (group) analysis, as standardly

performed for random effects models.

2.4 | Reward processing

For this study, a previously established fMRI paradigm was imple-

mented, which has been broadly used to investigate physiological

and pathological reward mechanisms (Diekhof & Gruber, 2010;

Goya-Maldonado et al., 2015). Briefly, participants performed a

modified delayed match to sample task, including two contexts

involving previously conditioned stimuli to monetary rewards: accep-

tance or rejection of rewards, that is, pressing a button when squares

are shown. Subjects were instructed they would receive 30€ for their

participation and that they were able to double this amount accord-

ing to their task performance. During the control trials, subjects

responded with a button press to stimuli that required motor perfor-

mance as well as attentional and memory resources, but were not

conditioned to monetary reward. To compute the control condition,

first-level (single-subject) contrasts of correctly matched sample tri-

als within the same experimental block of reward trials were used.

For experimental conditions, first-level experimental contrasts were

calculated from brain activation elicited during acceptance of previ-

ously conditioned stimuli. At group-level, activations related to

experimental and control trials were contrasted to obtain functional

activation patterns.

2.5 | Meta-analytic functional brain activation

Besides fMRI data obtained from participants performing two differ-

ent tasks at our institution, we evaluated large-scale meta-analytic

imaging data from the Neurosynth platform (https://neurosynth.org/),

which provides probabilistic brain activation maps computed from an

automated meta-analysis based on published fMRI studies. This online

database combines text-mining and machine-learning techniques to

generate statistical inference maps of currently 1335 imaging terms

from 14,371 fMRI studies including male and female participants

(Yarkoni et al., 2011). Within the framework of the Neurosynth data-

base, particular psychological processes are labeled with terms of

interest and represented by uniformity test maps. For this study,

whole-brain activation maps were downloaded in MNI152 space with

2 mm resolution to validate fMRI data obtained at our institution. The

Neurosynth maps depicted specific brain areas that were consistently

reported in studies investigating fMRI activation for emotion (“fearful
faces”) and reward (“rewards”) processing, respectively.

In a first step, activation maps, with z-scores representing the

results from studies that related to the chosen term, were generated

from the Neurosynth online database. Since the online user interface

only provides thresholded maps, we used the Neurosynth toolbox

(https://github.com/neurosynth/neurosynth) for python to download

unthresholded maps that were further smoothed using 8 � 8 � 8 mm

FWHM to match the kernel size of single-site data. Assessment of

conformity between meta-analytic data and measured fMRI maps was

performed qualitatively (Figures 1a, b and S1a,b). The Neurosynth

maps matched well with task-evoked response patterns related to

recognition of negative faces and acceptance of monetary rewards,

respectively. In contrast to single-site fMRI data, meta-analytic infor-

mation comprised rather positive values due to the sparse reporting

of brain regions showing negative activation in most neuroimaging

studies. Hence, when processing unthresholded data from the unifor-

mity test maps, mainly positive values determined the association

analysis between single-site and Neurosynth data (Figure S1a,b).

2.6 | Whole-brain gene expression

The AHBA (human.brain-map.org) consists of microarray assessments

from 3702 brain tissue samples collected across six human donors

(one female, mean age = 42.5, SD = 13.4) derived from diverse

regions of the brain, extensively described in the original publications

(Hawrylycz et al., 2012; Shen et al., 2012). While normalization for

inter-individual differences between donor brains was applied, sex-

specific differences were not considered due to the limited availability

of female transcriptome data. Interpolated high-resolution transcrip-

tome maps were obtained from a publicly accessible database for all

analyses (available for download at www.meduniwien.ac.at/
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neuroimaging/mRNA.html). The methodology regarding the creation

of these maps was described extensively by Gryglewski et al. (2018).

Briefly, seamless gene expression values (log2) were predicted by the

authors across the whole brain to compensate for the sparse anatomi-

cal sampling of the AHBA. Using Gaussian process regression, missing

expression values were inferred at cortical, subcortical, and cerebellar

structures for all available genes. Compliant with data processing

steps recommended by Arnatkevi�ci�utė et al. (2019), probe selection

and sample assignment were performed to enable correlation analyses

between gene expression and neuroimaging data. Probes with a mean

signal indistinguishable from the background noise were excluded and

representative probes for each gene were selected based on their

autocorrelation as well as relative structured variability assessed with

variogram modelling. Signal intensity normalization of gene expression

was performed for each donor brain of the AHBA to correct for

batch-effects and inter-individual variation. Additionally, expression

values from both hemispheres were mirrored to generate bilaterally

symmetric data, which attenuated sampling bias. The interpolated

expression maps were associated with Entrez Gene IDs and registered

to MNI space. In contrast to the original data including 18,686 genes

(Gryglewski et al., 2018), multiple genes were excluded in this study

as their annotations were removed from the NCBI database in the

meantime, which resulted in a reduced number of 18,179

transcriptome maps.

2.7 | Spatial correlation between gene expression
and brain activity

All available transcriptome maps were aligned with fMRI activation

maps in order to conduct region-wise association analyses for each

paradigm and Neurosynth term, respectively. Since conventional para-

metric tests fail to account for the autocorrelated properties of struc-

tural and functional brain maps, spatially constrained null models were

applied according to current standards (Markello & Misic, 2021). Com-

piled gene lists included Spearman's correlation coefficients to

account for partly non-symmetrical distribution of mRNA data and

existence of outliers, whereby the ranking of each gene depended on

its correlation strength with task-specific BOLD signaling. Comple-

mentary, voxel-wise analyses were performed (total number of voxels

was 129,817 in the cortex and 10,863 in subcortex; zero values out-

side of the investigated area were excluded).

F IGURE 1 Comparison of task-specific functional brain activation and mRNA expression in cortical regions. (a) Single-site functional magnetic
resonance imaging data (t-value) during emotion processing is visualized in MNI space (activation maps are thresholded above 0 for visualization
purposes only). (b) FOXN4 gene expression is based on cortical transcriptome maps (log2) by Gryglewski et al. (2018). (c) The scatter plots depict
correlations between cortical mRNA levels of FOXN4 and imaging data (emotional face recognition) for voxel-wise (rho = 0.286; 129,817 voxels)

and region-wise (rho = 0.429; 210 regions; pcor <.001) analyses. Each dot represents expression values and corresponding imaging parameters at
target coordinates or within anatomical regions, respectively
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On the basis of known differences in gene expression between

broad anatomical areas (Chen et al., 2016; Hawrylycz et al., 2012),

correlations were evaluated within cortical and subcortical regions,

separately (Figure S2a,b). After initial inspection, the cerebellum was

excluded from further analysis due to marginal activation during both

fMRI paradigms. Each statistical map was parcellated according to the

Brainnetome atlas, because it labels a sufficient number of subcortical

(n = 36) and cortical (n = 210) regions-of-interest (ROIs; Fan

et al., 2016). An additional analysis with fewer brain regions (12 sub-

cortical and 78 cortical ROIs) was done using the automated anatomi-

cal labeling (AAL) brain atlas (Tzourio-Mazoyer et al., 2002) to

evaluate influences of different parcellation methods. Both atlases

were aligned with fMRI and transcriptome data in MNI space using

SPM12, while extraction of ROIs and correlation analyses were per-

formed in MATLAB2018a (www.mathworks.com). Region-wise corre-

lations were assessed using the generative null modeling framework

presented by Burt et al. (2020), because it can be applied to cortical

and subcortical data. For each gene, 1000 parcellated spatial

autocorrelation-preserving surrogate transcriptome maps were gener-

ated in the cortex (keeping 20 nearest neighbors) and subcortex

(keeping 5 nearest neighbors). Two-sided p values were defined as

the proportion of surrogate maps, where the absolute value of corre-

lation was greater than the true correlation coefficient (empirical

mRNA data).

2.8 | Identification of overlap between analyzed
datasets

To compare various sets of mRNA–fMRI correlations we used Rank–

Rank Hypergeometric Overlap (RRHO) package (version 1.26.0) in R

(https://www.bioconductor.org/packages/release/bioc/html/RRHO.

html), which allows statistical testing of the extent of overlap between

two ranked lists. RRHO determines the degree of differential expres-

sion observed in profiling experiments using the hypergeometric distri-

bution. While originally applied for the comparison of expression

profiles between different microarray platforms, we used RRHO to

compare gene lists ranked according to relevant measures of differen-

tial information (in this case the correlation strength with fMRI data).

The similarity of two datasets was assessed by means of a matrix where

the indices related to the ranks in each list. We provide both a graphical

representation of the characteristics of analyzed data as well as a statis-

tical measure of overlap (rhoRRHO). The color scale depicts the degree

of statistically significant overlap (log10-transformed p values) between

two gene lists from that point on the graphical map to the bottom left

corner. Applying this method offered the advantage of using the whole

continuum of previously ranked genes for data visualization.

2.9 | Analysis of biological processes

Making use of the GO knowledgebase (Ashburner et al., 2000; The

Gene Ontology Consortium, 2018), we explored associations of

functional gene categories with single-site imaging data. Given that

only larger biological programs generally reflect selected effect func-

tionality, categories referring to biological processes were included in

this study. Enriched GO terms including annotated genes were identi-

fied by means of gene-category enrichment analysis (GCEA). Gene

expression patterns that were strongly correlated (region-wise) with

fMRI maps yielded high gene scores according to gene-score resam-

pling (Gillis et al., 2010). To minimize non-specific spatial effects related

to gene expression differences between broad anatomical areas, GCEA

was performed separately in cortical and subcortical regions. The

Matlab toolbox presented by Fulcher et al. (2021) (available at https://

github.com/benfulcher/GeneCategoryEnrichmentAnalysis) was used to

compute ensemble-based nulls (default parameters). GCEA comprised

spatial autocorrelation-preserving brain maps and all GO terms that

were available at the time of analysis (28,428 biological process terms;

February 2, 2022). Values of p were estimated for categories with 5–

200 gene annotations according to a permutation-based approach and

adjusted for multiple testing by applying the Benjamini–Hochberg pro-

cedure (pcor).

2.10 | Association of Risk Genes Implicated in
major depression with functional imaging data

Regarding genetic risks for depressive disorders, recently 42 functional

and 27 non-functional risk genes implicated in major depression were

identified in a genome-wide association meta-analysis, which included

135,458 cases and 344,901 controls (Wray et al., 2018). The role of mas-

ter regulators among the 42 functional risk genes (Table S1) was evaluated

for each measured fMRI paradigm and uniformity test map. The analysis

was performed by means of the R package RcisTarget that identifies mas-

ter regulators over-represented on diverse types of gene lists (Aibar

et al., 2017). Applying a normalized enrichment score (NES) above 3, mas-

ter regulatory genes and their direct transcriptional targets were identified

using motif discovery within each set of correlated genes based on previ-

ously ranked lists. We used the cisTarget function with default parameters

and the motif annotation “hg19_500bpUpstream_motifRanking_cisp-

bOnly” that contains motifs with a distance up to 500 bp from TSS. Corre-

sponding master regulators for each predicted regulon of the input gene

sets were compared with the risk genes implicated in major depression

(Wray et al., 2018). All computations were performed separately for posi-

tive and negative region-wise mRNA–fMRI associations above rho = 0.5

and below rho = �0.5, respectively. These thresholds were set to retain

solely correlations with a large effect size (Cohen, 1992).

Additionally, distributions of rankings for risk genes implicated in

major depression were assessed for each fMRI paradigm by means of

gene set enrichment analysis (GSEA; Mootha et al., 2003). Corre-

sponding to a weighted Kolmogorov–Smirnov-like statistic, the GSEA

enrichment score (ES) was calculated by a stepwise increase or

decrease of the total sum statistic of a ranked list as described by Sub-

ramanian et al. (2005). Here, the implementation in R available in the

package clusterProfiler was utilized for the analysis (Yu et al., 2012).

Based on initially compiled gene lists ranked by correlation strengths
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with fMRI data, the position of each MDD risk gene was compared to

the position of all other genes. We tested, whether the risk genes

were randomly distributed throughout each ranked list or primarily

found at the top (showing positive correlations with fMRI data) and

bottom (showing negative correlations). Ranked correlation coeffi-

cients and their corresponding p values were defined as input factors

for the GSEA, which required a summarized biological value for each

included gene. Risk genes ranked in higher positions contributed more

to the resulting significance of the ES than lower ranked genes. The

maximum ES (with positive or negative values) represented the maxi-

mum deviation from zero, whereby statistical significance was tested

against an ES referring to a null distribution of permuted data. Since

distribution of rankings was evaluated for only one gene set, adjust-

ment of the estimated significance level (p < .05) for multiple hypothe-

sis testing was dispensable.

3 | RESULTS

3.1 | Topological specificity of emotion and reward
processing

In conjunction with known abnormalities in social interaction and

reward responsiveness of patients with depressive disorders, fMRI

activation within the social processes and positive valence systems

domains of the RDoC framework was evaluated. Unspecific signal var-

iations related to visual, auditory, attentional, and executive proces-

sing were minimized by contrasting brain activation elicited by the

experimental condition with task control conditions in each partici-

pant. Second level analyses provided specific activation patterns eli-

cited by emotion and reward processing (full acquisition and analysis

pipeline described in Methods section). Resulting signal clusters above

statistical threshold were similar to those identified in fMRI literature

(Figure S1 and Table S2). The spatial activation clusters detected at

our institution were validated using matching uniformity maps derived

from 91 and 246 studies associated with the terms “fearful faces” and
“rewards”, respectively. Both meta-analytic maps were representative

of the expected neural correlates elicited by emotion recognition and

reward tasks and can be obtained online (https://neurosynth.org).

3.2 | Associations between the transcriptome and
functional brain activation

For each paradigm, correlation analyses yielded spatial associations

between functional brain activation and mRNA expression for 18,179

individual genes (rankings of genes as well as corresponding Spearman's

correlation coefficients for both datasets are reported in Table S3). Cor-

relation analyses were performed separately for cortical and subcortical

regions to prevent bias arising from expression differences between

broad anatomical areas. Resulting correlations were highly specific for

each paradigm, accounted for by the weak overlap of compiled correla-

tion lists between the two psychological processes, that is, emotion and

reward processing (subcortex: rhoRRHO = �0.267, p < .001; cortex:

rhoRRHO = 0.063, p < .001; Figure S2a,b). Notably, high agreement of

ranked mRNA–fMRI correlations between both applied brain parcella-

tion atlases was observed for emotional face recognition (subcortex:

rhoRRHO = 0.710, p < .001; cortex: rhoRRHO = 0.830, p < .001) and

acceptance of monetary rewards (subcortex: rhoRRHO = 0.746,

p < .001; cortex: rhoRRHO = 0.914, p < .001; Figure S4a–c).

Regarding emotion processing, single-site brain activity patterns

correlated positively as well as negatively with whole-brain transcrip-

tome maps (Figure 1a,b). Significant region-wise correlations yielded

similar results compared to voxel-wise analyses, ranging from

rho = �0.74 to rho = 0.865 for subcortical and from rho = �0.449 to

rho = 0.429 for cortical regions (Figure S5a,b). Due to statistical

dependence of spatially autocorrelated data points, p values were

markedly lower applying the voxel-wise approach. Out of 18,179 spa-

tial associations between gene expression and brain function the

15 highest positive correlating genes are listed in Table 1 (p ≤ .001,

corrected for spatial autocorrelation). In subcortical regions, MALL

showed the strongest voxel-wise correlation (rho = 0.635), while

C10orf125 showed the highest region-wise correlation (rho = 0.865).

In the cortex, SPDYA yielded strongest voxel-wise (rho = 0.328) and

FOXN4 strongest region-wise (rho = 0.429) correlation (Figure 1c).

Analogous to the emotion task, ranked lists with gene expression

patterns spatially associated with measured imaging data were com-

piled for the reward system, whereby the 15 highest positive correlat-

ing genes are listed in Table 2 (p < .001, corrected for spatial

autocorrelation). Region-wise analyses yielded higher correlation coeffi-

cients than the voxel-wise approach with less prominent associations in

the cortex (rho = �0.639 to rho = 0.698) compared to subcortical

regions (rho = �0.793 to rho = 0.811). In the subcortex, MDK showed

the strongest voxel-wise correlation (rho = 0.49) of all 18,179 genes

and also a high region-wise correlation coefficient (rho = 0.803;

Figure 2a–c). Comparing strongest voxel-wise versus region-wise corre-

lations in the cortex, 11 out of 15 genes were congruent (DUSP3,

PIK3CD, CA10, HDAC9, LASS6, GRB14, OLFM3, SHC1, NT5DC2,

ASS1, and SPRN), indicating high agreement between both approaches

(Figure S6a,b). Notably, gene expression of DUSP3 yielded strongest

cortical correlations with reward processing both in the voxel-wise

(rho = 0.549) and region-wise analysis (rho = 0.698; Figure S7).

3.3 | Ontological analysis of task-specific biological
processes

GCEA of previously compiled mRNA-fMRI correlations revealed multi-

ple associations with gene categories listed in the GO knowledgebase.

Several task-specific biological process terms were enriched in subcorti-

cal regions after correction for multiple testing (Figure 3). In contrast,

significance levels and associations with imaging data were markedly

lower in the cortex. All enriched categories including mean gene scores

and p values (raw as well as corrected) are listed in Table S4.

Regarding task-evoked responses during emotional face recognition

in subcortical regions, enriched biological programs were related to
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cellular transport processes and included genes positively correlated with

imaging data. Highest gene scores were observed for the GO terms

“NLS-bearing protein import into nucleus” (GO:0006607; 0.55, pcor

<.001) and “interleukin-35-mediated signaling pathway” (GO:0070757;

0.52, pcor <.001). In the cortex, GCEA yielded no meaningful associations.

Biological programs associated with subcortical brain activation during

TABLE 1 Ranking of Spearman's correlation coefficients for genes with expression patterns showing highest positive associations with single-
site imaging data (emotion processing)

Subcortex Cortex

Voxel-wise correlations Region-wise correlations Voxel-wise correlations Region-wise correlations

rho Gene name rho Gene name rho Gene name rho Gene name

0.635 MALL 0.865 C10orf125 0.328 SPDYA 0.429 FOXN4

0.619 HRASLS5 0.841 PTRH1 0.299 CCDC62 0.393 PIK3R6

0.618 FAT4 0.818 AC022098.3 0.296 PYGO2 0.390 RYBP

0.614 SCARA5 0.817 GHRLOS 0.290 CPZ 0.388 STC1

0.613 LINC00260 0.817 ZNF280C 0.286 FOXN4 0.384 CCDC62

0.613 MESP1 0.816 SLC24A4 0.283 FRMD3 0.379 FUBP1

0.605 SCPEP1 0.807 NLE1 0.282 PHOX2B 0.378 SMYD1

0.604 SKAP2 0.806 FUT1 0.281 ATXN10 0.355 TMPRSS4

0.599 RAB3GAP1 0.803 FBP1 0.276 XAGE3 0.349 DLG3

0.598 CRHBP 0.803 C16orf55 0.273 KIAA1328 0.346 HSPA1A

0.597 POLB 0.800 MALL 0.273 EGFL6 0.346 CSTA

0.593 LOC642852 0.797 CELSR1 0.273 RNF215 0.343 NR4A2

0.591 SNAP29 0.795 B4GALT5 0.272 ATP6V1D 0.341 ATXN10

0.591 KIAA0947 0.795 PDK1 0.272 LINC00158 0.339 AC008026.2

0.589 AC022098.3 0.792 RASGEF1C 0.272 ERC2-IT1 0.334 C7

Note: All listed region-wise correlation coefficients were significant (p values ≤ .001, corrected for spatial autocorrelation). Genes marked in bold ranked

within the 15 highest positively correlating genes in both voxel-wise and region-wise analyses.

TABLE 2 Ranking of Spearman's correlation coefficients for genes with expression patterns showing highest positive associations with single-
site imaging data (reward processing)

Subcortex Cortex

Voxel-wise correlations Region-wise correlations Voxel-wise correlations Region-wise correlations

rho Gene name rho Gene name rho Gene name rho Gene name

0.490 MDK 0.811 VMO1 0.549 DUSP3 0.698 DUSP3

0.484 HELLS 0.807 OSTM1 0.548 CA10 0.681 PIK3CD

0.480 RBBP8 0.803 MDK 0.543 PIK3CD 0.681 CA10

0.457 ATF1 0.795 KRT18P19 0.534 GRB14 0.653 HDAC9

0.455 KRT18P19 0.788 NEK1 0.518 ASS1 0.640 LASS6

0.453 CD274 0.785 CD99 0.517 LASS6 0.639 CCNYL1

0.449 C8orf22 0.784 USP24 0.506 HDAC9 0.636 GRB14

0.446 SALL4 0.784 RCBTB2 0.505 FBXL2 0.626 OLFM

0.444 SFRP5 0.780 PCBD2 0.497 OLFM3 0.608 SHC1

0.443 PMCH 0.777 IMPACT 0.493 TMEM150C 0.607 NT5DC2

0.442 USP24 0.773 TRIM34 0.478 SHC1 0.606 ASS1

0.440 CD99 0.764 WRB 0.475 SPRN 0.605 GOLPH3L

0.436 C12ORF75 0.760 ATF1 0.474 NT5DC2 0.602 MYBPC2

0.433 TRIM42 0.760 ADAL 0.470 MUM1L1 0.594 MPO

0.433 ELAC1 0.759 ARF4 0.464 ARHGAP8 0.592 SPRN

Note: All listed region-wise correlation coefficients were significant (p values < .001, corrected for spatial autocorrelation). Genes marked in bold ranked

within the 15 highest positively correlating genes in both voxel-wise and region-wise analyses.
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acceptance of monetary rewards primary affected the regulation of cellu-

lar components, metabolism, and translation. Genes positively correlated

with imaging data were annotated to the categories “tetrahydrobiopterin
biosynthetic process” (GO:0006729, mean gene score: 0.54, pcor < .001),

“tetrahydrobiopterin metabolic process” (GO:0046146, 0.54, pcor <

.001), “ribosomal subunit export from nucleus” (GO:0000054, 0.52, pcor

< .001), “ribosome localization” (GO:0033750, 0.52, pcor < .001), “estab-
lishment of ribosome localization” (GO:0033753, 0.52, pcor < .001), “sele-
nocysteine incorporation” (GO:0001514, 0.51, pcor <.001), and

“translational readthrough” (GO:0006451, 0.51, pcor < .001). GO terms

associated with genes negatively correlated with the acceptance of mon-

etary rewards mainly related to synaptic processes, that is, “regulation of

synapse structural plasticity” (GO:0051823, 0.54, pcor < .001). In cortical

regions, no gene category exceeded a mean gene score of 0.5 after cor-

rection for multiple testing.

3.4 | The role of risk genes implicated in major
depression

The relationship between task-evoked response patterns and 42 func-

tional genes associated with MDD obtained from a pre-defined gene

set was investigated to evaluate the superordinate role of these risk

genes on BOLD activation. The analysis of transcription factor binding

motifs yielded individual candidates regulating genes correlated spa-

tially with imaging data (NES >3; Table 3). Regarding the cortex, two

regulators, TCF4 and PAX6, were revealed for reward processing in

the single-site dataset. TCF4 was associated with 12 positively corre-

lated genes (out of 158 correlations with a large effect size) and PAX6

was associated with seven negatively correlated genes (34 possible

targets). In the subcortex, TCF4 further regulated positive gene corre-

lations in emotional face recognition (24/707 targets). The fact that

TCF4 was associated with both imaging paradigms indicated a rather

superordinate role of this master regulator in MDD, regardless of cog-

nitive system (Table S5). While multiple master regulators were also

identified in the meta-analytic dataset, only SOX5 matched with the

MDD risk genes presented by Wray et al. (2018). Although single-site

analysis did not yield SOX5, it was associated with genes positively

correlated with the Neurosynth term “rewards” (20/332 targets;

Table S6).

Complementing the findings from gene ontology and master reg-

ulator analyses, GSEA assessed the distribution of rankings for genes

associated with MDD. For both imaging paradigms, aggregation of the

risk genes within positively or negatively correlated genes were

F IGURE 2 Comparison of task-specific functional brain activation and mRNA expression in subcortical regions. (a) Single-site functional
magnetic resonance imaging data (t-value) during reward processing is visualized in MNI space (activation maps are thresholded above 0 for
visualization purposes only). (b) MDK gene expression is based on subcortical transcriptome maps (log2) by Gryglewski et al. (2018). (c) The
scatter plots depict correlations between subcortical mRNA levels of MDK and imaging data (acceptance of monetary rewards) for voxel-wise
(rho = 0.49; 10,863 voxels) and region-wise (rho = 0.803; 36 regions, pcor <.001) analyses. Each dot represents expression values and
corresponding imaging parameters at target coordinates or within anatomical regions, respectively
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insignificant. Regarding emotion processing in the cortex, a larger por-

tion of the genes showed positive correlations (maximum ES: 0.284,

p = .159). In contrast, more risk genes were negatively correlated with

reward processing (maximum ES: �0.253, p = .247; Figure S8). Simi-

larly, the maximum ES yielded 0.285 (p = .464) for emotion and

�0.201 for reward processing (p = .466) in subcortical regions.

4 | DISCUSSION

4.1 | Integration of human gene expression and
functional imaging data

Here, we applied a comprehensive and integrative methodological

approach to investigate the relationship between regional gene

expression patterns and macroscopic BOLD responses elicited by

emotional face recognition and the acceptance of monetary rewards,

under the assumption that strongly correlated genes would coincide

with distinct biological programs. Large-scale screening for spatial

associations between mRNA expression and functional brain activa-

tion resulted in ranked lists of 18,179 genes positively and negatively

correlated with BOLD signaling in healthy subjects. Similar distribu-

tions of region-wise Spearman's correlation coefficients were present

for emotion (ranging from rho = �0.74 to rho = 0.865 in subcortical

and from rho = �0.449 to rho = 0.429 in cortical areas) and reward

processing (from rho = �0.793 to rho = 0.811 in the subcortex and

from rho = �0.639 to rho = 0.698 in the cortex). Control conditions

were implemented for each paradigm to minimize fMRI activation eli-

cited by superimposed executive functions and to ensure specificity

of the performed tasks. Since fMRI contrasts (experimental > control

conditions) were positive, negative correlations implied lower gene

expression in strongly activated brain regions. A validation sample

including over 90 fMRI studies was obtained from the Neurosynth

framework, which corroborated the findings originating from single-

site fMRI measurements.

Exploring the GO knowledgebase, we detected a task-specific

enrichment of gene categories related to cellular transport and cellular

localization processes, metabolism, as well as translation for emotion

and reward processing, respectively. Regarding genes with lower

expression values in regions with stronger brain activation during the

acceptance of monetary rewards, GCEA yielded an association with

synapse regulation. Given the relevance of imaging paradigms examin-

ing subthreshold depressive symptoms within the general population

(Lewinsohn et al., 2000), MDD risk genes were also analyzed with

regard to physiological brain activation. We identified two master reg-

ulators associated with MDD and task-specific functional brain activa-

tion, TCF4 and PAX6. While TCF4 emerged as a regulator for genes

showing positive correlations with both paradigms, PAX6 was associ-

ated solely with reward processing. Given that both genes were previ-

ously implicated in MDD highlights their potential relevance for

targeted pharmacotherapy in psychiatry.

4.2 | Implications for imaging Transcriptomics and
major depressive disorder

Regarding imaging genetics studies, common candidate genes may

exert distinct effects on brain structure or function (Rose &

F IGURE 3 Enriched gene categories for emotion and reward
processing based on ontological structure. In the subcortex, multiple
specific biological processes (y-axis) were associated with imaging
data. Regarding genes with expression patterns positively correlated
with emotion processing (blue circles), two biological programs
yielded significance (pcor <.001). Focusing on the reward system (red
circles), altogether seven categories were associated with genes that
correlated positively with imaging data (pcor <.001). Further, one
category was associated with negatively correlated genes (pcor <.001).
For illustrative purposes, the depicted terms are limited to categories
with a mean gene score >0.5

TABLE 3 Master regulators associated with major depression and functional brain imaging

Emotion processing Reward processing

Negative gene associations Positive gene associations Negative gene associations Positive gene associations

Cortex – – PAX6 (7/34) TCF4 (12/158)

Subcortex – TCF4 (24/707) – –

Note: Master regulators were evaluated by means of transcription factor binding motifs identified with RcisTarget (Aibar et al., 2017). Ranked genes that

were associated with single-site activation maps and 42 functional risk genes implicated in major depression were used as input data. Values in parenthesis

represent the number of targets of each regulatory gene and the total number of possible targets.
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Donohoe, 2013). Since numerous individual and environmental fac-

tors interact with potential genotype effects, sufficiently powered

sample sizes are required to detect a significant impact on neuroimag-

ing correlates. However, imaging genetics studies commonly neglect

transcriptional and post-transcriptional mechanisms that impact on

the actual expression of disorder-related genes (Mariči�c et al., 2020).

Genetic influences on emotional face recognition or adaptive reward-

based decision-making are usually evaluated for the mere presence of

single gene variants of functional proteins, irrespective of their topo-

logical distribution across the brain (Rose & Donohoe, 2013; Wolf

et al., 2015). By including whole-brain gene expression patterns, our

approach can be discriminated from previous imaging genetics studies

investigating effects of individual disease-related single-nucleotide

polymorphisms or environmental factors. This study adds up to the

wide-ranging research findings combining topological mRNA expres-

sion with neuroimaging properties (Richiardi et al., 2015; Shin

et al., 2018), partially offering toolboxes for an integrative data analy-

sis (Fulcher et al., 2021; Rizzo et al., 2016; Unterholzner et al., 2020).

We show associations between functional imaging data and biological

processes listed within the hierarchically structured GO database,

which implies a prominent role of individual gene categories for

regional fMRI activation (Ashburner et al., 2000).

Additive genetic effects may attribute to individual imaging phe-

notypes, which highlights the importance of large-scale data in sys-

tems medicine to resolve unsettled genetic influences on fMRI

paradigms (Fabbri et al., 2017). The differentiation between short-

and long-term signal variations during emotion and reward processing

appears particularly relevant for personalized treatment of depressed

patients. Still, topological expression patterns of MDD risk genes and

their impact on imaging properties have not yet been investigated.

While over 322 million people worldwide suffer from depressive dis-

orders, a number that increased by 18.4% between 2005 and 2015

(James et al., 2018), a significant part of the population is also affected

by subthreshold depressive symptoms, potentially originating from

different levels of genetic susceptibility in relevant neuronal systems.

Our findings endorse the characterization of neuropsychiatric disor-

ders in terms of functions rather than diagnoses, which was recently

highlighted within the much-noticed RDoC framework (Sanislow

et al., 2019). In line with the debilitating symptoms of depressive dis-

orders, we investigated paradigms reflecting principal functions of the

reward responsiveness construct within the positive valence systems

domain and the social communication construct that is part of the sys-

tems for social processes domain. Hyper- as well as hypoactivations

of brain regions involved in the integration of social information

together with a reduced reward sensitivity suggest a polygenic nature

of depressive symptoms with distinct imaging features (Ghaemi &

Vohringer, 2011; Knutson et al., 2008; Luijten et al., 2017).

Generally, identifying a core set of risk genes implicated in sub-

threshold neuropsychiatric disorders is complicated due to wide-

spread and disease-specific network interactions. A potential solution

to this key challenge in systems biology might be the analysis of

master regulatory genes as well as their corresponding regulons (Aibar

et al., 2017). Hereof, we present two transcription factors that regu-

late downstream networks formed by genes strongly correlated with

imaging data for two major domains of brain functioning.

4.3 | Molecular mechanisms associated with
neuroimaging properties

Emotion and reward processes have been linked to core symptoms of

depression, which provides the basis for studies investigating disease-

related traits in the healthy population. The results from this study

support findings in neural tissue, suggesting altered cellular localiza-

tion processes in anxiety pathways (Panayotis et al., 2018) and molec-

ular associations between synapse regulation and the reward system

(Calabresi et al., 2007; Iino et al., 2020). Since enriched biological pro-

grams reflect selected effect functions, the identification of associated

genes may facilitate a more targeted drug development in the future.

However, interpretation of enriched GO categories in both circuits

appears complex due to gene–gene interactions and interconnected

signaling pathways. Up to now, clinical applications of imaging tran-

scriptomic findings have not been established in psychiatry. In line

with recent recommendations for enrichment analyses (Fulcher

et al., 2021), we therefore provide the full output of the GCEA as Sup-

porting Information.

Findings from the master regulator analyses affirm previously

reported relationships between neuropsychiatric disorders and muta-

tions of TCF4 that have been implicated not only in depression, but

also in schizophrenia and autism (Amare et al., 2019; Li et al., 2019).

This transcription factor is mainly characterized by its regulatory role

for the proliferation and differentiation of neuronal and glial progeni-

tor cells (Ross et al., 2003). Besides impaired emotion processing,

mutations in TCF4 may lead to Pitt-Hopkins syndrome, characterized

by intellectual disabilities as well as altered brain morphology (Kirikae

et al., 2021; Liu et al., 2018). The regulatory role of TCF4 was further

demonstrated in schizophrenia by Torshizi et al. (2019) in two inde-

pendent datasets by means of transcriptional network analysis. In

contrast, literature is sparse for the other master regulatory genes

identified in this study. While PAX6 was previously associated with

functional brain alterations and deficits in cognitive processing

(Berntsson et al., 2020; Grant et al., 2020), SOX5 was not linked with

imaging findings yet.

Since the master regulators reported in this study exhibit their

effects by numerous molecular mechanisms, a closer investigation of

the genes strongly associated with imaging parameters will prospec-

tively allow elaborated statements about regional protein biosynthesis

and the allocation of resulting proteins to cellular compartments. For

example, DNA-binding transcription factor FOXN4 (Forkhead Box

N4), belonging to the Forkhead Box (FOX) superfamily, showed high-

est correlation with the emotional face recognition paradigm in the

cortex. FOX transcription factors are involved in regulatory biological
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processes and mutations in forkhead genes have been linked to devel-

opmental disorders in humans due to substitutions or frameshifts that

disable or remove the DNA binding domain (Carlsson &

Mahlapuu, 2002). The subtype FOXN4 thereby expresses develop-

mental functions in neural and non-neural tissues, particularly during

spinal neurogenesis by modulating a specific expression mosaic of

other proneural factors (Misra et al., 2014). Further relevance for neu-

ral development was shown by Chen et al. (2014), who demonstrated

the location of FOXN4 on neurons and astrocytes as well as an

increased expression after spinal cord injury lesions. Although associa-

tions with depressive or other neuropsychiatric disorders have not

been published, the role of FOXN4 as a key transcriptional regulator

during developmental processes demands further research, especially

since the full set of its targets in the CNS are not known yet. Accord-

ingly, the C10orf125 gene (Fucose Mutarotase, FUOM), expressed in

the brain and other tissues, showed highest correlation with emo-

tional face recognition in the subcortex. The corresponding gene tran-

script, fucose mutarotase, is an enzyme of the fucose-utilization

pathway performing the interconversion between α-L-fucose and β-L-

fucose on human cell surfaces. Hereof, besides one animal study dem-

onstrating male-like sexual behavior in FUOM knock-out mice, pre-

sumably resulting from reduced fucosylation during

neurodevelopment (Park et al., 2010), further associations with patho-

logical states in mammals have not been published for this gene.

Regarding reward processing, the protein coding DUSP3 (Dual-

specificity phosphatase 3) gene, member of the dual-specificity pro-

tein phosphatase subfamily, showed strongest correlation with mea-

sured fMRI data in the cortex. Members of these protein tyrosine

phosphatases (PTPs) regulate the phosphorylation of the mitogen-

activated protein (MAP) kinase signaling pathway and control cell sig-

naling, especially in regard to cytoskeleton reorganization, apoptosis

and RNA metabolism (Tonks, 2013). DUSP3 shows a wide expression

in different tissues as an opposing factor of protein tyrosine kinases

(PTKs) and acts as a central mediator of cellular proliferation and dif-

ferentiation. Whereas a role in neoplastic disorders, pathologies

related to immunology, angiogenesis as well as Parkinson's disease

(PD) have been related to anomalous tyrosine phosphorylation

(Cohen & Alessi, 2013; Russo et al., 2018), associations with psychiat-

ric disorders have not been described. In subcortical regions, MDK

(midkine) was among the highest correlating genes for the reward par-

adigm. MDK transcribes one of two growth factors from the heparin-

binding cytokine family and plays a role during differentiation of neu-

rons, especially within dopaminergic pathways (Alguacil &

Herrad�on, 2015). Notably, it facilitates neuroprotective effects in neu-

rodegenerative disorders, drug-induced neurotoxicity in the striatum,

or after neural injury (Yoshida et al., 2014). Disease-related publica-

tions suggest accumulation of midkine in senile plaques and increased

serum levels in patients with Alzheimer's disease (Salama et al., 2005),

genetic variations associated with PD (Prediger et al., 2011), and an

influence on addictive behaviors (Gramage et al., 2013). In line with

proposed deficits in emotion recognition in autism, elevated serum

levels of this neurotrophic factor were also associated with autism

spectrum disorder (Esnafoglu & Cirrik, 2018).

4.4 | Limitations of the study

In general, imaging transcriptomics findings reflect rather subtle

genetic influences on psychological processes, disregarding the

dynamic nature of short-term regulatory mechanisms, environmental

factors, and individual variations due to genetic ancestry. Human gene

expression levels do not necessarily reflect in vivo protein densities

(Komorowski et al., 2020) and BOLD signaling can be impaired by

confounding variables related to structural and functional imaging

measures. Inclusion of meta-analytic maps may outweigh potential

biases originating from small population sizes, however, the Neuro-

synth framework lacks specificity due to rather broadly defined terms

of interest. Lower mRNA-fMRI correlations in the cortex compared to

the subcortex may be ascribed to data analysis in volume space, which

is a less precise representation of the cortical sheet than the surface

space (Coalson et al., 2018). However, considering strongest activa-

tion in ventral striatum, amygdala, ventral tegmental area, fusiform

gyri, insula, and medial prefrontal cortex, in that order, it seems plausi-

ble that higher correlation levels were observed in subcortical regions.

When testing reward responsiveness after acceptance of prior condi-

tioned stimuli, functional activation was likewise more prominent in

the subcortex, particularly in the mesolimbic reward system (Goya-

Maldonado et al., 2015).

Further limitations pertain to locally regulated epigenetic and epi-

transcriptomic modifications that affect actual protein distribution

(Maier et al., 2009). Inter-individual differences related to age, gender,

or genotype are disregarded, when performing integrative analyses on

the basis of the AHBA that derives expression values from one female

and five male post-mortem brains (Hawrylycz et al., 2012; Shen

et al., 2012). The distance-dependent structure of gene expression

data based on only 3702 mRNA samples further complicates associa-

tion analyses with functional imaging maps. Additionally, outdated

annotation information, inaccurate sample assignment, and ubiquitous

noise due to expression of genes with a low spatial dependence limit

data analysis. These issues were thoroughly addressed by Gryglewski

et al. (2018) prior to the creation of interpolated transcriptome maps

that allow for voxel- and region-wise integration with other neuroim-

aging modalities. In contrast to a previous study that identified gene–

cognition associations based on the Neurosynth framework (Fox

et al., 2014), we increased spatial resolution and advanced probe

selection of gene expression data. To correct for potentially inflated

p values in parcellated brain maps, the open-access software platform

provided by Burt et al. (2020) was utilized. Spatial autocorrelation was

reintroduced in randomized gene expression data for all region-wise

analyses to generate surrogate brain maps.

Likewise, associations between imaging data and biological pro-

cesses are affected by false-positive rates, limiting overall explanatory

power of GCEA. Although Fulcher et al. (2021) acknowledge that the

majority of significantly enriched GO terms could be plausibly linked

to human brain activation, the authors delineate potential statistical

biases due to gene–gene coexpression within certain categories refer-

ring to metabolic, neuronal, or generic biological processes. Therefore,

p values were assessed by means of adjusted null models that
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randomize imaging rather than gene expression data. Separate ana-

lyses in cortical and subcortical brain regions further minimized poten-

tial false-positive rates (Fulcher et al., 2021). In contrast, insignificant

results of the GSEA were partly hampered by the small number of

included risk genes and the occurrence of master regulators modulat-

ing upregulation and downregulation. In line with core symptoms of

depression, TCF4 affected subordinate genes positively and nega-

tively correlated with emotional face recognition and PAX6 mainly

affected those genes that were negatively correlated with reward pro-

cessing. Presumably, these master regulators were not present in the

Neurosynth dataset due to differing correlation strengths of the ana-

lyzed mRNA–fMRI associations. While cortical correlation coefficients

for emotion processing were below 0.5 in both datasets, the total

number of subcortical above-threshold correlations varied between

single-site and meta-analytic data. However, given the exploratory

nature of this study, thresholds were kept consistent in all analyses to

exclude correlations with low effect sizes (Cohen, 1992). Overall, the

GWAS performed by Wray et al. (2018) is among the largest ever con-

ducted in psychiatric genetics and provides a solid basis for research

about the genetic architecture of MDD.

Within the framework of future studies, the vast potential of the

AHBA might even be increased by re-assigning available mRNA

probes to corresponding genes on the basis of the latest sequencing

information to increase the number of specifically annotated genes.

Harmonized data processing pipelines and methodological guidelines

instead of rather unique approaches to data integration and corre-

sponding statistical measures could further enhance comparability

between studies (Arnatkevi�ci�utė et al., 2019; Fornito et al., 2019; Keil

et al., 2018; Kim et al., 2014; Markello & Misic, 2021).

5 | CONCLUSION

This multimodal investigation highlights the advantages of a compre-

hensive approach to reveal genetic influences on functional brain

imaging by integrating imaging and large-scale transcriptome data

with sufficient power. Despite advances and decreased costs of high-

throughput gene expression profiling, the necessity for large cohorts

in genetic studies calls for collaborative approaches. In line with

recent insights from the RDoC framework, this study highlights the

relevance of functional brain activation related to social interaction

and the experience of reward for systems medicine. Both, the emo-

tion and the reward system seem to be associated with specific bio-

logical programs like cellular transport, cellular localization processes,

metabolism, translation, and synapse regulation. The identification of

regulatory genes TCF4 and PAX6 thereby implies a potential role of

master regulators for functional brain imaging in major depression.

Moreover, the analysis of the whole transcriptome provides superior

information that are needed for the understanding of neuropsychiatric

disorders and targeted pharmacotherapy. This work exemplifies an

integrative approach including complementary information from mul-

tiscale data, which becomes increasingly relevant in the big data era.
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