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To survive and reproduce, acellmust process information from its environment
and its own internal state and respond accordingly, in terms of metabolic
activity, gene expression, movement, growth, division and differentiation.
These signal–response decisions are made by complex networks of interacting
genes and proteins, which function as biochemical switches and clocks, and
other recognizable information-processing circuitry. This theme issue of
Interface Focus (in two parts) brings together articles on time-keeping and
decision-making in living cells—work that uses precise mathematical model-
ling of underlying molecular regulatory networks to understand important
features of cell physiology. Part I focuses on time-keeping: mechanisms
and dynamics of biological oscillators and modes of synchronization and
entrainment of oscillators, with special attention to circadian clocks.

1. Introduction
Living cells are remarkably effective and adaptable information-processing sys-
tems (IPSs) that receive information from the cell’s external environment and
internal conditions, integrate concurring and conflicting signals, figure out
appropriate responses and induce their implementation (figure 1). As in a digi-
tal computer, cellular IPSs rely on the dynamics of molecular ‘switches’ and
biological ‘clocks’, but rather than solid-state electronic devices, these biochemi-
cal switches and clocks are made up of genes, proteins and metabolites
interacting by reaction, diffusion and transport in a tiny volume (approx.
10−12 l) of gel-like cytoplasm [1–5]. Cellular IPSs are autonomous, analogue
and massively parallel and often knocked about by stochastic fluctuations
among the limited numbers of molecules in such small volumes. Nonetheless,
their responses are remarkably successful in supporting the survival, growth,
repair and reproduction of cells. A grand challenge of molecular systems
biology is to understand how cellular IPSs work (basic science), how to fix
them when they malfunction (health science) and how we might re-engineer
them to our specifications (biotechnology).

The theoretical foundation for understanding time-keeping and decision-
making in molecular regulatory networks was crafted in the 1960s and early
1970s by the pioneering work of Goodwin [6], Higgins [7], Griffith [8,9], Roess-
ler [10], Thomas [11] and others. Over the next 30 years, much progress was
made in uncovering design principles of cellular control systems and carrying
out novel experimental tests of theoretical ideas. This history has been docu-
mented in great detail in research monographs by Segel [12], Goldbeter [13],
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Figure 1. Some components of the information-processing system (IPS) in a mammalian cell. External signals (e.g. growth factors, death factors, cytokines, etc.) and
internal signals (e.g. DNA damage, unreplicated DNA, mitochondrial outer membrane permeability—MOMP) are decoded through a cell’s IPS—a complex network of
interacting genes and proteins—to determine the best course of action for the cell given this information. Appropriate cellular responses include cell growth and
division, cell differentiation, phase resetting of the circadian clock, cell cycle arrest, damage repair or cell death. The signals along the top provide input to cell
growth (ribosome synthesis and protein synthesis) and division (DNA synthesis, mitosis). To the left, we see the DNA-damage response, mediated by p53, culminating
(if it cannot be repaired) in cell death (apoptosis). Bottom left is the extrinsic cell death response through Caspase 8. Bottom middle is cytokine activation of the master
transcription factor NFκB. Bottom right is one example of T-helper cell differentiation, mediated by the transcription factors T-bet and Gata-3. On the lower right is the
core circadian clock (Per/Bmal1/Rev-erb/Ror), and the upper right is a schematic of the epithelial/mesenchymal differentiation decision pathway.
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Alon [14], Keener & Sneyd [15] and Ferrell [16] and briefly by
Tyson et al. [17] in a supplemental issue of Journal of the Royal
Society Interface on ‘biological switches and clocks’. As a
follow-up to that issue, Interface Focus is presenting a two-
part collection of articles on the theme of ‘time-keeping and
decision-making in living cells’.

Part I focuses on time-keeping, in particular on
mechanisms of biological oscillators, on synchronization of
intercommunicating oscillators and on entrainment to exter-
nal driving rhythms, with particular emphasis on circadian
rhythms. Jiménez et al. [18] lead off the collection with a
valuable survey of entrainment among biological oscillators,
focusing on six representative examples: the circadian clock,
the cell cycle, mitotic exit (Cdc14 endocycles), cardiac
pacemaker cells (Ca2+/cyclic AMP (cAMP) oscillations), gly-
colytic oscillations and inflammatory responses (nuclear
factor-κB (NFκB) oscillations). Next, Goldbeter & Yan [19]
present a masterly review of multi-rhythmicity (two or
more simultaneously stable oscillatory states in models of
biochemical reaction networks) and multi-synchronization
(two or more simultaneously stable modes of synchronization
of coupled biological oscillators). Examples are drawn from
cAMP signalling, circadian rhythms and cell cycle oscillations.
Burckard et al. [20] provide new results on the synchronization
of peripheral circadian clocks by intercellular communication
between two cells or in small clusters of cells. In the final con-
tribution, Jeong et al. [21] investigate the role ofmultiplemodes
of transcriptional repression in generating many of these
rhythms. By modelling three mechanisms of transcriptional
repression—repressor R may bind to activator A on promoter
P to block transcription (R:A:P is transcriptionally inactive), R
binding to A may displace A from the promoter (R +A:P→R:
A:P→R:A + P) and R binding to Amay sequester A from P (R:
A prevents A from binding to P)—they show that synergistic
interactions of the three modes generate ultrasensitive
transcriptional responses and robust oscillations.

Part II will focus on decision-making in cell differentiation,
development and cell cycle progression.
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2. Other recent developments in time-keeping
Because this theme issue presents only a few snapshots of the
immense progress that has been made on biological clocks
since the 2008 collection, we review here some other recent
developments.

As might be expected, considerable progress has been
made in understanding the molecular mechanisms under-
lying circadian rhythms. Firstly, some new models of
mammalian clock, taking into account interactions among
the principal clock genes (Per1, Per2, Cry1, Cry2, Clock,
Bmal1, Rev-erbα and Rorα), have been remarkably successful
in accounting for the physiological properties of circadian
rhythms in wild-type and mutant cell lines [22–24]. These
mathematical models have proven their usefulness in appli-
cations to chronotherapy [25–28], wearable devices [29,30]
and diagnostic tools [31,32]. The development of multi-scale
circadian models, linking intra- and intercellular dynamics,
has been pursued by DeWoskin et al. [33,34]. Other theoreti-
cal studies have revealed some general features of the
molecular architecture of circadian clocks. Maeda & Kurata
[35] showed that the dual-feedback structure found in
living organisms supports a robust and entrainable oscillator.
The roles of feedback and other design principles in
the robustness of oscillations were analysed in many
studies (e.g. Kim & Forger [24], Tsai et al. [36], Hafner et al.
[37], Ananthasubramaniam [38] and Baum et al. [39]). By fit-
ting models to experimental data, Herzel and co-workers
[40,41] identified the important control loops at play in the
suprachiasmatic nucleus (SCN) and peripheral organs. In
particular, they have identified a three-component negative
feedback loop (Cry1 −| Per2 −| Rev-erbα −| Cry1) as a domi-
nant source of oscillations in their models [42]. Ko et al. [43]
have highlighted the possible role of noise in generating
self-sustained circadian rhythms. Notably, the mystery of
temperature compensation of the circadian clock has been
cleared up by a recognition of the temperature-dependent
properties of the phospho-switch that regulates PERIOD-2
(PER2) protein phosphorylation by casein kinase-1 and
its subsequent degradation, after polyubiquitination by
beta-transducin repeats-containing protein (βTrCP) [44–46].

Intercellular coupling and synchronization of circadian
clocks have also been the subject of many publications. Bernard
et al. [47] showed that robust, self-sustained circadian oscillations
canemerge fromaheterogeneousnetworkofdampedoscillators
through intercellular coupling. Hafner et al. [37] suggested that
heterogeneity of circadian clocks in the SCN decreases the
sensitivity of the network to brief perturbations while simul-
taneously improving its adaptation to long-term entrainment
signals. Recent studies found that the heterogeneous responses
ofmasterandslave clockneuronsto entrainment signals are criti-
cal for strong, adjustable circadian rhythms [48]. Studies by
Vasalou et al. [49,50] and by Ananthasubramaniam et al. [51]
have focused on the roles of neurotransmitters in synchronizing
circadian oscillators in the SCN. Meanwhile, Webb et al. [52]
further investigated the synchronizationofweak, heterogeneous
oscillators to produce robust circadian rhythms.

The interplay of circadian clocks and metabolism has
received much attention. Using a combination of mathematical
modelling and experiments in Neurospora crassa, Dovzhenok
et al. [53] found an additional negative feedback loop that
maintains circadian period over a wide range of glucose con-
ditions. Woller et al. [54] introduced metabolic sensors into a
mathematical model of the mammalian circadian clock to
study the effects of diet (normal, high-fat, fasting) on clock func-
tion. Woller & Gonze [55] used a clock model to show how
conflicting zeitgebers (light and food intake) disrupt the
phase relations of core clock genes, leading tometabolic compli-
cations such as hyperglycaemia. Bae & Androulakis [56,57]
developed models to study the impact of the circadian clock
on insulin secretion and gluconeogenesis, showing how exter-
nal signals (light/dark cycles and feeding/fasting cycles)
affect metabolism over the course of a day. In a different vein,
Rao et al. [58] used a model of the hypothalamus–-pituitary–
adrenal axis and the sleep/wake cycle to explore the influence
of sleep deficiency on daily rhythms of cortisol release.

We also draw your attention to some additional studies of
interactions between the circadian clock and the cell division
cycle, based on the unexpected discovery by Matsuo et al.
[59] that transcription of the cell cycle geneWee1 is upregulated
by an E-box, which binds to the master transcription factor
BMAL1 : CLOCK. Zamborszky et al. [60] used mathematical
modelling to show how the circadian clock, by gating Wee1
expression, would generate quantized cell cycle times and
cell division sizes. Later, Gerard & Goldbeter [61] found
entrainment bands (at 24 h and 48 h) for a cell cycle model
(without size control) driven by a 24 h rhythm of BMAL1 :
CLOCK. On the experimental side, Feillet et al. [62] foundmul-
tiple modes of entrainment and phase locking between cell
divisions and the circadian rhythms in mouse fibroblasts
whose clock phases were synchronized by a pulse of dexa-
methasone, which can be observed and modelled also on the
single cell level [63]. And, Matsu-Ura et al. [64], using dual luci-
ferase reporters for cell cycle and circadian oscillators, observed
2 : 1 entrainment (i.e. 12 h cell division cycles) in mouse intes-
tinal organoids. In a different vein, Gotoh et al. [65] used
mathematical models to gain insight into the coupling of
the circadian clock to the DNA damage checkpoint (i.e. the
interactions between PER2 and p53 proteins).

Finally, we review recent proposals that the cell division
cycle is a ‘clock-shop’ of autonomous (independent) oscil-
lators entrained to one another. It is commonly thought
that cell cycle events (DNA replication, mitosis, cell division)
are controlled by a ‘master programme’ based on fluctuations
of cyclin-dependent kinases (Cdks) and their immediate reg-
ulators [66,67]. However, it is now established that many cell
cycle events continue in a repetitive fashion even when the
Cdk programme is blocked by mutations. For example, peri-
odic processes that continue more-or-less on schedule in
mutant (non-dividing) strains of budding yeast include bud-
ding and mating projections [68], DNA endoreplication [69],
spindle pole body re-duplication [70], gene transcription [71],
Cdc14 release from the nucleolus (a marker of mitotic exit)
[72,73] and metabolic oscillations (NADPH fluctuations)
[74]. Also, periodic centriole biogenesis (Polo kinase-4 oscil-
lations) has been observed in mutant fruit fly embryos [75].
Furthermore, chromosome endoreduplication [76] and basal
body (centriole) amplification [77] are characteristics of cer-
tain terminally differentiated (non-dividing) cells. These
observations support the ‘clock-shop’ hypothesis [71,72,78],
although there are opposing opinions [73,79,80]. In the
future, we may expect continued debate on the possible
roles of ‘autonomous clocks’ in cell cycle progression.

Altogether, these recent studies and many others have
contributed greatly to our understanding of the molecular
regulatory mechanisms underlying biological oscillations
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and of their advantageous properties, such as robustness,
tunability, entrainment and temperature compensation.
Also, we now have a better appreciation of the—often non-
intuitive—dynamics resulting from the interplay between
clocks and clock-controlled processes. This progress has
revolutionized our interpretation of experimental obser-
vations and our vision of future progress in health science
and biotechnology.
 .org/journal/rsfs
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3. In memoriam
The theoretical foundations of time-keeping and decision-
making by the molecular regulatory networks in living cells
were laid out in the 1970s and 1980s by a small band of physical
chemists, biochemists, chemical engineers and mathematical
biologists. Unfortunately, many of these pioneering scientists
have passed away and are sorely missed. In conclusion, we
would like to recognize their contributions to the field.

Joel E. Keizer (1942–1999). As a physical chemist, Joel Keizer
made fundamental contributions to the theory of non-equi-
librium thermodynamics before turning his attention to the
application of dynamical systems theory to problems in
cell physiology, most notably complex bursting oscillations
in pancreatic β-cells and Ca2+ waves in fertilized eggs
[81,82].

Benno Hess (1922–2002). As director of a Max-Planck-Insti-
tute in Dortmund, Germany, Benno Hess directed a large
group of biochemists and mathematical modellers explor-
ing the molecular mechanisms of glycolytic oscillations
in yeast cells [83].

Arthur T. Winfree (1942–2002). An engineer by training, Art
Winfree turned his creative mind to the dynamics of oscil-
lations and wave propagation in living organisms. His
predictions of ‘phase singularities’ in circadian rhythms
and cardiac physiology revolutionized our understanding
of these fields [84,85].

Rene Thom (1923–2002). The purest of pure mathematicians,
Rene Thom was among the first persons to recognize the
relevance of bifurcations of vector fields to temporal and
spatial organization in living organisms [86,87].

Ilya Prigogine (1917–2003). The 1977 Nobel Prize in Chem-
istry was awarded to Ilya Prigogine for his fundamental
insights on far-from-equilibrium thermodynamics, most
notably on ‘dissipative structures’ (temporal oscillations
and spatial patterns) in living organisms [88].

Lee A. Segel (1932–2005). A world-renowned applied mathe-
matician, Lee Segel made major contributions to the theory
oscillations, pattern formation and wave propagation in
living cells [89,90].

Reinhart Heinrich (1946–2006). A physicist who moved into
biochemistry, Reinhart Heinrich combined modelling of
specific cellular systems with a search for general prin-
ciples. As one of the founding intellects behind metabolic
control theory, he upset the paradigm of ‘rate-limiting’
steps in biochemistry by showing, in quantitative detail,
how flux control is distributed across all enzymes in a
metabolic network [91].

Brian Goodwin (1931–2009). A Canadian émigré who got
his PhD at the University of Edinburgh under Conrad
Waddington, Brian Goodwin had a lifelong interest in
development and evolution and was a leading figure in
the renaissance of mathematical biology in the 1960s. His
pioneering work on biochemical oscillators is reverberating
to this day [92].

Christopher Zeeman (1925–2016). A leading English
mathematician and early convert to Thom’s theory of
singularities of vector fields, Christopher Zeeman applied
‘catastrophe theory’ in creative ways to a wide variety of
phenomena in biology, as well as other fields [93,94].

Rene Thomas (1928–2017). The Belgian biochemist Rene
Thomas was an early proponent of ‘logical modelling’ of
biochemical reaction networks (i.e. modelling by Boolean
functions). Early on he recognized the importance of nega-
tive feedback in generating biochemical oscillations and
positive feedback in creating biological switches [95].

Gregoire Nicolis (1939–2018). A chemical physicist at the Free
University of Brussels, Gregoire Nicolis led a team of
talented and creative younger scientists in the application
of Prigogine’s abstract ideas about non-equilibrium ther-
modynamics and ‘dissipative structures’ to real-world
problems in chemistry, physics and biology [96,97].

George F. Oster (1940–2018). After an unusual start in the mer-
chant marines and nuclear physics, George Oster studied
biophysics and applied his massive intellect to a theoretical
understanding of some of the toughest problems in
molecular cell biology, including morphogenesis, pattern
formation and molecular motors [98,99].

Garrett M. Odell (1943–2018). Trained in applied mathe-
matics and theoretical mechanics, Garry Odell took an
abrupt turn to mathematical biology, where he made
many remarkable contributions to our understanding of
chemotaxis, embryogenesis, molecular motors, gene
regulatory networks and cytoskeletal mechanics [100].
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