

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Multiple Cell Lines

Generation of four iPSC lines from four patients with Leigh syndrome carrying homoplasmic mutations m.8993T > G or m.8993T > C in the mitochondrial gene *MT-ATP6*

Carmen Lorenz^{a,1}, Annika Zink^{b,1}, Marie-Therese Henke^c, Selma Staege^a, Barbara Mlody^{a,2}, Miriam Bünning^b, Erich Wanker^a, Sebastian Diecke^{a,d}, Markus Schuelke^c, Alessandro Prigione^{a,b,*}

^a Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany

^b Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany

^c Charité Universitätsmedizin, Berlin, Germany

^d Berlin Institute of Health (BIH), Berlin, Germany

ABSTRACT

We report the generation of four human iPSC lines (8993-A12, 8993-B12, 8993-C11, and 8993-D7) from fibroblasts of four patients affected by maternally inherited Leigh syndrome (MILS) carrying homoplasmic mutations m.8993T > G or m.8993T > C in the mitochondrial gene *MT-ATP6*. We used Sendai viruses to deliver reprogramming factors OCT4, SOX2, KLF4, and c-MYC. The established iPSC lines expressed pluripotency markers, exhibited a normal karyotype, were capable to form cells of the three germ layers *in vitro*, and retained the *MT-ATP6* mutations at the same homoplasmic level of the parental fibroblasts.

Resource table

		Clonality	Clonal
Unique stem cell lines	MDCi007-A	Method of reprogramming	Transgene free (CytoTune-iPS 2.0 Sendai
identifier	MDCi008-A		Reprogramming Kit, Thermo Fisher Scientific)
	MDCi009-A	Multiline rationale	Same disease non-isogenic cell lines
	MDCi010-A	Gene modification	yes
Alternative names of stem	8993-A12 (MDCi007-A)	Type of modification	Maternally inherited
cell lines	8993-B12 (MDCi008-A)	Associated disease	Maternally inherited Leigh syndrome (MILS)
	8993-C11 (MDCi009-A)	Gene/locus	Mutations in the mitochondrial DNA gene MT-ATP6:
	8993-D7 (MDCi10-A)		mutation m.8993T > G: iPSC lines 8993-A12, 8993-
Institution	Max Delbrueck Center for Molecular Medicine (MDC),		C11, and 8993-D7
	Berlin, Germany; Heinrich Heine University,		mutation m.8993T > C: iPSC line 8993-B12
	Düsseldorf, Germany	Method of modification	N/A
Contact information of	Alessandro Prigione, M.D. Ph.D.	Name of transgene or	N/A
distributor	Department of General Pediatrics, Neonatology, and	resistance	
	Pediatric Cardiology at University Clinic Düsseldorf	Inducible/constitutive	N/A
	(UKD), Heinrich Heine University (HHU); Moorenstr. 5,	system	
	40,225 Düsseldorf, Germany. Phone: +49 (0)211 81	Date archived/stock date	N/A
	18705. E-mail: alessandro.prigione@hhu.de	Cell line repository/bank	https://hpscreg.eu/cell-line/MDCi007-A
Type of cell lines	iPSCs		https://hpscreg.eu/cell-line/MDCi008-A
Origin	Human		https://hpscreg.eu/cell-line/MDCi009-A
Cell Source	Human dermal fibroblasts cells		https://hpscreg.eu/cell-line/MDCi010-A
	(continued on next column)		(continued on next page)

* Corresponding author at: Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University (HHU), Düsseldorf, Germany. Tel.: +49 (0)211-81-18705.

E-mail address: alessandro.prigione@hhu.de (A. Prigione).

² Present address: CENTOGENE GmbH, 18055 Rostock, Germany.

https://doi.org/10.1016/j.scr.2022.102742

Received 6 February 2022; Received in revised form 3 March 2022; Accepted 4 March 2022 Available online 8 March 2022 1873-5061/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Resource table (continued)

¹ Co-first authors.

Resource table (continued)

Ethical approval	The original study was approved by the IRB of the
	Charité (EA2/131/13 and EA2/107/14). The work was
	then approved by the Ethic Committee of the Medical
	Faculty of Heinrich Heine University (study number:
	2020-967_2).
	The lines cannot be freely shared under the current
	ethical approval. In case of interest, in addition to an
	appropriate MTA, a modified ethical approval and
	updated patient consent forms will be required.

1. Resource utility

There is a lack of animal and cellular models for mitochondrial DNA (mtDNA)- associated Leigh syndrome (MILS) because of the difficulty to engineer mtDNA. Patient-derived iPSCs allow the development of effective cellular models of MILS to study disease mechanisms and perform drug discovery (Lorenz et al., 2017).

2. Resource details

Leigh syndrome (OMIM #256000) is an incurable neurodevelopmental disorder and the most severe pediatric manifestation of mitochondrial disease (Baertling et al., 2014). mtDNA-associated Leigh syndrome also known as maternally inherited Leigh syndrome (MILS) is typically caused by mutations in the mtDNA gene *MT-ATP6* encoding for a subunit of the ATP synthase, complex V of the mitochondrial respiratory chain (Ganetzky et al., 2019). Cells contain numerous mtDNA copies. A high percentage of copies must be mutated before clinical MILS symptoms occur. Hence, either the great majority of mtDNA copies are mutated (heteroplasmy), or virtually all mtDNA copies are mutated (homoplasmy).

We obtained somatic skin fibroblasts from four individuals affected by MILS: patient A (male, 2 months old), patient B (male, 9 years old), patient C (female, 2 years old), and patient D (male, 3 years old) (Table 1). Three patients carried the *MT-ATP6* mutation m.8993T > G (patient A, C, and D). This is the most frequent mutation associated with MILS (Ganetzky et al., 2019; Holt et al., 1990). One patient (patient B) carried the mutation m.8993T > C, which is also linked to MILS (de Vries et al., 1993; Ganetzky et al., 2019). All patient fibroblasts carried the mutations at homoplasmic level.

We used non-integrative Sendai viruses containing the reprogramming factors OCT3/4, SOX2, c-MYC, and KLF4 to generate induced pluripotent stem cells (iPSCs) (Table 2). From each fibroblast, we generated one iPSC line: 8993-A12 from patient A, 8993-B12 from patient B, 8993-C11 from patient C, and 8993-D7 from patient D (Table 2). The four iPSC lines showed a typical human embryonic stem cell-like colony morphology and growth behaviour, and expressed pluripotency-associated protein markers OCT4, NANOG, and TRA-1–60 at passage 16 (Fig. 1A scale bars 200 µm for colonies, and 50 µm for others). Clearance of vectors and exogenous reprogramming factor genes was confirmed by RT-PCR after nine culture passages (Fig. S1A). The endogenous expression of the pluripotency-associated transcription

Table 1

Summary of lines.	ummary of lines.					
iPSC line names	Abbreviation in figures	Gender	Age	Ethnicity	Genotype of locus	Disease
8993-A12 8993-B12	iPSC_8993-A12, iPSC_A12 iPSC_8993-B12, iPSC B12	Male Male	2 months 9 years	Caucasian Caucasian	<i>MT-ATP6</i> m.8993T > G <i>MT-ATP6</i> m.8993T > C	Leigh syndrome Leigh syndrome
8993-C11	iPSC_8993-C11, iPSC C11	Female	2 years	Caucasian	<i>MT-ATP6</i> m.8993T > G	Leigh syndrome
8993-D7	iPSC_8993-D7, iPSC_D7	Male	3 years	Caucasian	<i>MT-ATP6</i> m.8993T > G	Leigh syndrome

Table 2

Classification	Test	Result	Data
Morphology Phenotype	Microscopy Qualitative analysis:	Normal Positive for OCT4,	Fig. 1A Fig. 1A
	Immunocytochemistry	NANOG, TRA-1-60	0
	Quantitative analysis:	Positive for OCT4,	Fig. 1B
	RT-qPCR	NANOG, SOX2, GDF3, DPPA4, DNMT3B	
Genotype	SNP array	46XY, 46XY, 46XX, 46XY Resolution: 0.5 megabases	Fig. 1E
Identity	STR analysis andmicrosatellite PCR (mPCR)	STR analysis	Not showr but available with author
Mutation	PCR-restriction	All iPSC lines	Fig. 1C
analysis (IF	fragment length	contained MT-ATP6	, in the second s
APPLICABLE)	polymorphism (PCR-	mutations at	
	RFLP)	homoplasmic level	
	Southern Blot OR WGS	N/A	
Microbiology and virology	Mycoplasma	Mycoplasma testing by PCR: Negative	Fig. S1B
Differentiation	Embryoid body	Immunostaining	Fig. 1D
potential	formation	positive for SMA and fibronectin (mesoderm), AFP and SOX17 (endoderm), and PAX6 and TUJ1	
		(ectoderm)	
Donor screening	HIV $1 + 2$ Hepatitis B,	Negative	Not shown
(OPTIONAL)	Hepatitis C	~	but available with author
Genotype	Blood group genotyping	N/A	N/A
additional info (OPTIONAL)	HLA tissue typing	N/A	N/A

factors NANOG, SOX2, DNMT3B, and DPPA4 was confirmed by RTqPCR at passage 20 and compared to healthy control iPSC line TFBJ (Lorenz et al., 2017) (Fig. 1B). The presence of mtDNA mutations in the MT-ATP6 gene was monitored using PCR-restriction fragment length polymorphism (PCR-RFLP) analyses. Similar to parental fibroblasts, all iPSCs contained the MT-ATP6 mutations at homoplasmic level at passage 20 (Fig. 1C). Using in vitro embryoid body (EB)-based differentiation, we confirmed the capacity of the four iPSC lines to give rise to cells belonging to the three germ layers showing the expression of protein markers indicative of mesoderm (alpha-smooth muscle actin SMA and fibronectin FN), endoderm (alpha-fetoprotein AFP and SOX17), and ectoderm (PAX6 and TUJ1) (Fig. 1D, scale bars 100 µm). The four iPSC lines (8993-A12, 8993-B12, 8993-C11, and 8993-D7) have been adapted to feeder-free culture conditions and displayed normal karyotypes at passage 30 (Fig. 1E). STR analysis confirmed that the iPSC lines were derived from the relative patient fibroblasts.

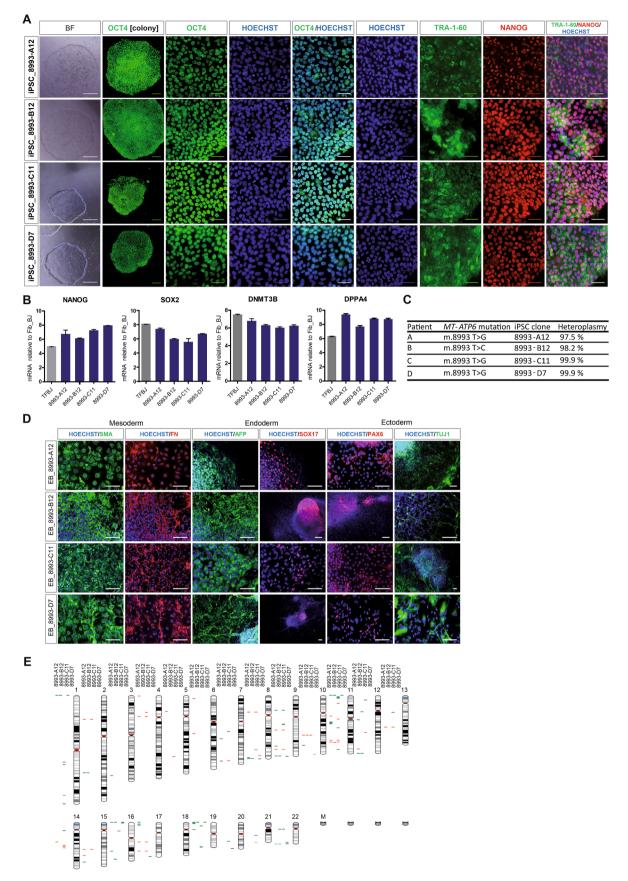


Fig. 1. The four iPSC lines (8993-A12, 8993-B12, 8993-C11, and 8993-D7) expressed pluripotency-associated markers, differentiated into the three germ layers, were karyotypically normal, and carried homoplasmic *MT-ATP6* mutations.

Table 3

Reagents details.

Antibodies used for immunocytochemis	uy/now-citometry		
	Antibody	Dilution	Company Cat # and RRID
Pluripotency Marker	Mouse monoclonal anti-OCT-3/4 (C-10)	1:300	Santa Cruz Cat# sc-5279
Pluripotency Marker	Mouse monoclonal anti-TRA-1-60	1:200	Millipore Cat# MAB4360
Pluripotency Marker	Goat polyclonal anti-NANOG	1:200	R&D Systems Cat# AF1997
Differentiation Marker	Mouse monoclonal anti-SMA, clone 1A4	1:200	DakoCytomation Cat# M0851
Differentiation Marker	Rabbit polyclonal anti-PAX6	1:200	BioLegend Cat# 901301
Differentiation Marker	Rabbit polyclonal anti-Fibronectin	1:300	Sigma Cat# F3648
Differentiation Marker	Mouse monoclonal anti-AFP (1G7)	1:100	Sigma Cat# WH0000174M1
Differentiation Marker	Goat polyclonal anti-SOX17	1:50	R&D Systems Cat# AF1924
Differentiation Marker	Mouse monoclonal anti- B-Tubulin III (TUJ1)	1:2000	Sigma Cat# T8578
Secondary antibody	Cy5-conjugated AffiniPure Goat anti-Rabbit IgG (H + L)	1:300	Jackson Immuno Research Cat# 111–175-144
Secondary antibody	Cy3-conjugated Donkey anti-Mouse	1:300	Merck Millipore Cat# AP192C
Secondary antibody	Cy5-conjugated AffiniPure Donkey anti-Goat IgG (H $+$ L)	1:300	Jackson Immuno Research Cat# 705-175-147
Primers			
	Target	Forward/	Reverse primer (5'-3')
Pluripotency Markers (qPCR)	NANOG	F: CCTGTC	GATTTGTGGGCCTG and R: GACAGTCTCCGTGTGAGGCAT
Pluripotency Markers (qPCR)	SOX2	F: GTATCA	AGGAGTTGTCAAGGCAGAG and R:
		TCCTAGT	CTTAAAGAGGCAGCAAAC
Pluripotency Markers (qPCR)	DPPA4	F: TGGTG	ICAGGTGGTGTGTGG and R: CCAGGCTTGACCAGCATGAA
Pluripotency Markers (qPCR)	DNMT3B	F: GCTCAG	CAGGGCCCGATACTT and R: GCAGTCCTGCAGCTCGAGTTTA
House-Keeping Genes (qPCR)	ACTB	F: TCAAG	ATCATTGCTCCTCCTGAG and R:
		ACATCTG	CTGGAAGGTGGACA
House-Keeping Genes (qPCR)	GAPDH	F: CTGGT	AAAGTGGATATTGTTGCCAT and R:
10 11		TGGAATC	ATATTGGAACATGTAAACC
Sendai virus genome detection (RT-PCR)	SeV	F: GGATC	ACTAGGTGATATCGAGC and R:
0		ACCAGAC	AAGAGTTTAAGAGATATGTATC
Transgene detection (RT-PCR)	KOS	F: ATGCA	CCGCTACGACGTGAGCGC and R:
0		ACCTTGA	CAATCCTGATGTGG
Transgene detection (RT-PCR)	Klf4	F: TTCCTC	GCATGCCAGAGGAGCCC and R: AATGTATCGAAGGTGCTCAA
Transgene detection (RT-PCR)	c-Myc	F: TAACTO	GACTAGCAGGCTTGTCG and R: TCCACATAC
0		AGTCCTG	GATGATGATG
Mycoplasma test	Myco-f1		GAGTAGTACGTTCGC
Mycoplasma test	Myco-f2	F: CGCCTC	GAGTAGTACGTACGC
Mycoplasma test	Myco-f3		GAGTAGTCACTTCGC
Mycoplasma test	Myco-f4		GGGTAGTACATTCGC
Mycoplasma test	Myco-f5		GAGTAGTAGTCTCGC
Mycoplasma test	Myco-f6		GGGTAGTACATTCGC
Mycoplasma test	Myco-r1		GTGTACAAGACCCGA
Mycoplasma test	Myco-r2		GTGTACAAAACCCGA
Mycoplasma test	Myco-r3		GTGTACAAACCCCGA
mtDNA mutation analysis	m.8993T > G/C		ACTCATTCAACCAATAGCCC
mtDNA mutation analysis	m.8993T > G/C		GCGACAGCGATTTCTAGGA

3. Materials and methods

3.1. iPSC reprogramming

Human fibroblasts were reprogrammed using CytoTune-iPS 2.0 Sendai kit (Thermo Fisher). Silencing of exogenous factor genes and Sendai virus genome was confirmed by RT-PCR (Fig. S1A). All iPSC lines were maintained in feeder-free conditions with StemMACS iPS-Brew XF (Miltenyi Biotec) and MycoZap. iPSCs were kept in humidified atmosphere of 5% CO₂ at 37 °C and 5% oxygen. Pluripotency was confirmed using embryoid bodies (EBs) grown in suspension for 1 week and adherent for 10 days using KO-DMEM medium (GIBCO), 20% knock-out serum replacement (GIBCO), MycoZap, non-essential amino acids, and Pen/Strep (Lorenz et al., 2017). For detection of mycoplasmal DNA, PCR analysis of supernatant from cell culture (Fig. S1B) was performed using a set of primers (Table 3).

3.2. Immunostaining

Cells grown on Matrigel-coated coverslips were fixed with 4% paraformaldehyde (Science Services) for 20 min at room temperature (RT) and washed three times with PBS. Cells were incubated with blocking solution containing 10% normal donkey serum (Abcam) and 1% Triton X-100 (Sigma-Aldrich) in PBS with 0.05% Tween 20 (Sigma-

Aldrich) for 1 hr at RT. Primary antibodies (Table 3) were incubated overnight at 4 °C. Cells were then washed three times and incubated with secondary antibodies (Table 3) for 1 hr at RT. Nuclei were counterstained with 1:10,000 Hoechst (Thermo Fisher). Images were acquired with LSM510 Meta (Zeiss) and AxioVision V4.6.3.0 software (Zeiss), and processed with AxioVision software and ImageJ.

3.3. RT-qPCR

Total RNA was isolated using RNeasy Mini Kit (QIAGEN, Valencia, CA). cDNA samples were measured in triplicates using 384-Well Optical Reaction Plates (Applied Biosystems). Gene expression analysis was performed with a set of primers (Table 3) using SYBR Green PCR Master Mix and ViiA 7 Real-Time PCR (Applied Biosystems), using the $2 - \Delta\Delta$ CT method. Data were normalized to the housekeeping genes ACTB and GAPDH and presented as mean log2 ratios in relation to the control fibroblasts BJ (from ATCC) from which the control iPSC line TFBJ was previously derived (Lorenz et al., 2017).

3.4. STR analysis

STR analysis was performend at the Institut für Rechtsmedizin at Universitätsklinikum Düsseldorf (UKD). DNA was isolated with FlexiGene DNA Kit (QIAGEN). 21 microsatellite loci were amplified via PCR

C. Lorenz et al.

3.5. mtDNA mutation analysis

Total genomic DNA was isolated from patient fibroblasts and iPSCs using FlexiGene DNA kit (QIAGEN).

To quantify the level of *MT-ATP6* mutations in iPSCs, we carried out PCR–restriction fragment length polymorphism (PCR-RFLP) analyses with restriction enzyme *HpaII* (10,000 units/ml). In wild-type samples without *MT-ATP6* mutations, the restriction enzyme cuts the products into two fragments (25 bp + 155 bp). In samples containing *MT-ATP6* mutations, the products remain uncut (180 bp). The percentage of mutation was quantified by real-time PCR with a set of primers (Table 3).

3.6. Karyotyping

DNA was isolated using the DNeasy blood and tissue kit (QIAGEN). SNP karyotyping was assessed using the Infinium OmniExpressExome-8 Kit and the iScan system from Illumina. CNV and SNP visualization were performed using KaryoStudio v1.4 (Illumina).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the support from the German Federal Ministry of Education and Research (BMBF) (#01GM2002A) and the United Mitochondrial Disease Foundation (UMDF).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2022.102742.

References

- Baertling, F., Rodenburg, R.J., Schaper, J., Smeitink, J.A., Koopman, W.J.H., Mayatepek, E., Morava, E., Distelmaier, F., 2014. A guide to diagnosis and treatment of Leigh syndrome. J. Neurol. Neurosurg. Psychiatry 85 (3), 257–265.
- de Vries, D.D., van Engelen, B.G.M., Gabreëls, F.J.M., Ruitenbeek, W., van Oost, B.A., 1993. A second missense mutation in the mitochondrial ATPase 6 gene in Leigh's syndrome. Ann. Neurol. 34 (3), 410–412.
- Ganetzky, R.D., Stendel, C., McCormick, E.M., Zolkipli-Cunningham, Z., Goldstein, A.C., Klopstock, T., Falk, M.J., 2019. MT-ATP6 mitochondrial disease variants: Phenotypic and biochemical features analysis in 218 published cases and cohort of 14 new cases. Hum. Mutat. 40 (5), 499–515.
- Holt, I.J., Harding, A.E., Petty, R.K., Morgan-Hughes, J.A., 1990. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433.
- Lorenz, C., Lesimple, P., Bukowiecki, R., Zink, A., Inak, G., Mlody, B., Singh, M., Semtner, M., Mah, N., Aure, K., et al., 2017. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders. Cell Stem Cell 20, 659–674 e659.