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The paradigm of evidence-based precision medicine has 
evolved toward a more comprehensive analysis of disease phe-
notypes. This requires seamless integration of diverse data, 

such as clinical, laboratory, imaging and multiomics data (genom-
ics, transcriptomics, proteomics or metabolomics)1. Recently, we 
found that a more fine-grained definition of disease that combines 
clinical and molecular data can provide a deeper understanding 
of individuals’ disease phenotypes and reveal candidate markers 
of prognosis and/or treatment2–4. Moreover, multiomics data can 
generate new hypotheses that ultimately translate into clinically 
actionable results5. The biomedical research community has long 
recognized the need to collect, organize and structure the relevant 
data, resulting in community-wide adoption of multiple biomedical 
databases (Supplementary Table 1). However, harmonization and 
integration is still challenging because it is often diverse, heteroge-
neous and distributed across multiple platforms. Moreover, much 
scientific data and knowledge are only ‘stored’ within millions of 
unstandardized journal publications.

Over the last decade, mass spectrometry (MS)-based proteomics 
has advanced greatly and now provides an increasingly compre-
hensive view of biological processes, cellular signaling events and 
protein interplay6. However, currently used MS-based proteomics 
workflows were conceptualized more than a decade ago, and rap-
idly increasing data volumes are posing new challenges for the field. 
An even larger and growing bottleneck in high-throughput pro-
teomics is the difficulty of interpreting the quantitative results to 
formulate biological or clinical hypotheses. Only a handful of tools 
have been aimed at alleviating this problem7,8 There is a need for 
solutions that integrate multiple data types while capturing the rela-
tionships between the molecular entities and the resulting disease 
phenotype. Moreover, we see an increasing need for more inclu-
sive solutions that provide those with little expertise with tools for 

extracting high-quality information from proteomics data in a more 
user-friendly manner. Therefore, a knowledge-based platform that 
integrates a range of databases and scientific literature information 
with omics data into an easy-to-use workflow would empower dis-
covery science and clinical practice.

Networks and graphs have emerged as natural ways of repre-
senting connected data, including also in biology9–11. Efforts during 
the last decade have organized large amounts of diverse informa-
tion as collections of nodes (entities) and edges (relationships)12–16. 
The resulting flexible structure, called a knowledge graph, quickly 
adapts to complex data with their relationships and enables the effi-
cient use of network analysis techniques to identify hidden patterns 
and knowledge13,17–19.

Here we take this concept into a new direction and describe 
a knowledge graph framework that facilitates harmonization of 
proteomics with other omics data while integrating the relevant 
biomedical databases and text extracted from scientific publica-
tions. Termed the CKG, it constitutes a graph database of millions 
of nodes and relationships. It allows clinically meaningful queries 
and advanced statistical analyses, enabling automated data analy-
sis, knowledge mining and visualization. The CKG incorporates 
community efforts by building on scientific Python libraries20, 
which also makes the platform reliable, maintainable and continu-
ously improving. The entire system is open source and permissively 
licensed (by the MIT license). It enables repeatable, reproducible 
and transparent analysis in both standard workflows and interactive 
exploration based on Jupyter notebooks.

Results
Overview of CKG architecture. The CKG includes several inde-
pendent functional modules that (1) format and analyze pro-
teomics data (analytics_core); (2) construct a graph database  
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by integrating available data from a range of publicly accessible 
databases, user-conducted experiments, existing ontologies and sci-
entific publications (graphdb_builder); (3) connect and query this 
graph database (graphdb_connector); and (4) facilitate data visual-
ization, repository and analysis via online reports (report_manager) 
and Jupyter notebooks (Fig. 1a,b). This architecture seamlessly 
harmonizes and integrates data as well as user-supplied analysis. It 
also facilitates data sharing and visualization as well as interpreta-
tion based on detailed statistical reports annotated with biomedical 
knowledge, generating clinically relevant results. In the next several 
sections, we describe individual modules and the knowledge graph 
construction process.

The analytics core as an open proteomics analysis framework. 
The first step in downstream analysis of proteomics data requires a 
comprehensive and versatile collection of statistical, machine learn-
ing and visualization methods. MSstats and Perseus have advanced 
proteomics by providing multi-purpose statistical and bioinfor-
matics tools for the analysis of quantitative MS-based proteomics 
data7,8. Taking these and other efforts as a reference, we developed 
the analytics core of CKG that encompasses the desired functional-
ity in a transparent and efficient manner. We chose Python and its 
associated scientific stack because this allows us to adopt well-tested 
and up-to-date algorithms while avoiding reimplementing already 
existing methods. The functionality implemented in the analytics 
core centers on statistical and visual data representation and covers 
all main computational areas, such as expression, interaction and 
post-translational, modification-based proteomics (Fig. 1b).

We designed the analytics core to comprise the main steps in 
a data science pipeline: data preparation (filtering, normalization, 
imputation and data formating), data exploration (summary sta-
tistics, ranking and distributions), data analysis (dimensionality 
reduction, hypothesis testing and correlations) and visualization. 
The analytics core goes beyond previous efforts by integrating 
the analysis of other data types in addition to proteomics (that is, 
clinical data, multi-omics, biological context and text mining). 
Furthermore, to complement the extensive Python portfolio, we 
incorporated functions optimized in the R language (that is, SAMR 
and WGCNA21–23) (Supplementary Table 2).

We included a visualization module (viz) that covers both 
basic plots (for example, bar plot or scatter plot) and more com-
plex ones (for example, network, Sankey or polar plots) using the 
graphing library Plot.ly (https://plot.ly/), a graphing library com-
patible with Python and R. This way, visualizations created by the  
CKG framework can be easily exported and used from other lan-
guages (Methods).

Owing to its modular design, the analytics core can be used 
within the CKG framework but also independently by importing 
it from Python. Similarly, the analysis and visualization function-
alities are not limited to proteomics data but can handle any type 
of data in matrix format. The open design promotes easy integra-
tion of new analysis methods and visualizations. Our integration 
of Jupyter notebooks, an open-source tool that allows mixing of 
text, graphics, code and data in a single document24–27, enables 
standard or bespoke analysis pipelines, including addition of 

existing or user-implemented functionality from the Python or R 
ecosystems (Methods).

Building and populating a graph database. To achieve seamless 
annotation and integration of proteomics data with other omics 
experiments and/or literature information, we constructed a graph 
database that naturally connects large and heterogeneous data 
(Supplementary Fig. 1a). We chose the open-source Neo4J database 
platform as our current backend because of its performance, indus-
try acceptance and associated Cypher query language (https://neo4j.
com/) (Supplementary Fig. 1b). To build the knowledge graph, we 
first wrote a library of parsers (graphdb_builder) with associated 
configurations for each ontology, database and type of experiment. 
These parsers download the data from online resources, extract 
information and generate entities (nodes) and relationships, both of 
which can have attributes, such as name or description, in protein 
nodes. The parsers use paired configuration files that specify how 
ontologies, databases or experiments need to be interpreted. This 
design allows unrestricted integration of new resources or process-
ing tools. Their output formats tend to change from time to time, but 
this only affects one parser/configuration that can be easily adapted. 
For example, the current CKG’s proteomics parser accepts output 
data from data-dependent or data-independent acquisition modes 
from commonly used programs, such as MaxQuant, Spectronaut, 
FragPipe or DIA-NN28–31, or the community standard format mzTab 
for MS-based proteomics and metabolomics data32. The CKG can 
be easily extended to accept additional data outputs as new process-
ing programs emerge.

Once the ontology, database and experiment files are stan-
dardized, formatted and imported, the graphdb_builder module 
loads them into the graph database with a set of Cypher queries 
that create the corresponding nodes and relationships (Methods). 
Our data model connects 36 different node labels with 47 differ-
ent relationship types (Fig. 1c). To make experimental proteomics 
data33, we designed a data model capable of supporting storage 
of standardized metadata (such as studied disease and interven-
tions) around each research project, defining unique identifiers for  
enrolled individuals, collected biological samples and analyzed 
samples (Supplementary Fig. 2a). It enables predefined queries 
about experimentally determined protein hits, regarding their 
association to the diseases studied (ontological associations), drugs 
or annotated Gene Ontology terms and pathways. These types of 
queries provide insights into altered functions, suggesting drugs for 
regulated proteins and connections to metabolites to reveal possible 
confounding factors.

CKG includes millions of nodes and relationships. The CKG 
database is continuosly growing and currently collects annotations 
from 26 biomedical databases using ten ontologies and organizes 
this information into almost 20 million nodes connected by 220 
million relationships (Supplementary Fig. 1a). More than 50 mil-
lion of these relationships involve ‘Publication’ nodes linking sci-
entific publications about studies in the human system, coded 
with PubMed identifiers, to proteins, drugs, diseases, functional 
regions and tissues (Supplementary Fig. 3a). They were derived 

Fig. 1 | The clinical knowledge graph architecture. a, The CKG architecture is implemented in Python and contains several independent modules 
responsible for connecting to the graph database (graphdb_connector), building the graph (graphdb_builder), analyzing and visualizing experimental 
data (analytics_core), displaying and launching multiple applications (report_manager); it also contains a repository of Jupyter notebooks with analysis 
examples (notebooks). The code is accessible at https://github.com/MannLabs/CKG or as a complete Docker container. b, The CKG analytics core 
implements multiple up-to-date data science algorithms for statistical analysis and visualization of proteomics data: data preparation, exploration, analysis 
and visualization. This library can also be used directly within Jupyter notebooks, independently of the other CKG modules, and to analyze other omics 
types. c, The CKG graph database data model was designed to integrate multi-level clinical proteomics experiments and to annotate them with biomedical 
data. It defines different nodes (for example, Protein, Metabolite and Disease) and the types of relationship connecting them (for example, HAS_PARENT 
and HAS_QUANTIFIED_PROTEIN). FC, fold change; Src, source code.
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from named-entity recognition on almost 7 million abstracts and 
full-text articles (8.5% of overall publications based on full text but 
20.4% from the past 10 years)34,35, thus encapsulating aspects of the 
accumulated biomedical knowledge in peer-reviewed publications.

We found the graph structure to be easily scalable, facilitat-
ing the integration of new ontologies, databases and experiments. 
Furthermore, this inherent flexibility allows nodes and relation-
ships originally designed to provide biomedical context primarily for 
large-scale proteomics data interpretation to be readily remodeled to 
integrate other omics datasets. For instance, to integrate metabolo-
mics data, we can link metabolite nodes already present in the data-
base to analytical samples. The existing relationships connecting 
metabolites to nodes, such as pathways, proteins, tissue or disease, 
aid interpretation and seamless integration with proteomics results.

The CKG framework provides an infrastructure that facilitates 
exploiting the existing connections in the graph and the already 
implemented and optimized graph algorithms in Neo4j and 
Python libraries, such as NetworkX36. For example, when a new 
project is integrated, the default analysis can identify similar proj-
ects in the graph, and the results of these comparisons are shown in 
the project report. This functionality compares projects based on 
the overlap of identified proteins (Jaccard and overlap similarity) 
or similar protein profiles (Pearson correlation). In addition, the 
CKG provides a framework for the application of network analysis 
and machine learning algorithms. Learning on the graph structure 
using graph representation learning37,38 can enhance the prediction 
of new links, a strategy known as link prediction or graph comple-
tion39,40 (Methods).

A framework to extract actionable knowledge. A main goal of 
the CKG is to combine the power of the analytics module with the 

massive prior information integrated into the graph database to 
best interpret MS-based proteomics or other omics experiments. 
Harmonization of these heterogeneous but connected data sources 
enables standard analysis pipelines that report results automaticaly, 
replacing weeks of manual work in a more consistent format. These 
standard reports provide an initial evaluation of the quality of the 
generated data, highlight relevant hits and contextualize these hits 
in relation to different biomedical components in the graph. The 
report manager component (report_manager) orchestrates the cre-
ation and updates experimental projects and the automatic analysis, 
visualization and knowledge extraction (Fig. 2).

The report manager was implemented as a collection of dash-
board applications that interface with the database for an overview 
of the knowledge graph (Home), to create and upload new clini-
cal proteomics projects (Project Creation and Data Upload) and 
to run automated analysis pipelines (ProjectApp). This defines a 
workflow from project idea to knowledge-based analysis report 
(Supplementary Fig. 2b). The Project Creation and Data Upload steps 
generate the nodes and unique identifiers in the CKG for the project, 
the enrolled cohort individuals (if applicable), biological samples col-
lected and analytical samples analyzed by MS-based proteomics. This 
also includes connections to diseases, tissues and clinical interven-
tions (Supplementary Fig. 2c), which provide prior knowledge, such 
as known proteins associated with these diseases and tissues or lit-
erature related to them. Once the clinical and/or proteomics data are 
ready and processed, they are integrated into the graph by the ‘Data 
Upload’ dashboard app (Supplementary Fig. 2d).

Uploading the data triggers the builder’s import and load process 
and generates all the necessary relationships within the new proj-
ect, including the links to proteins, peptides and protein modifica-
tions quantified in the project. The new links are used by the report 
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manager module to analyze the different data types relevant for 
the project. These analyses are predefined using configuration files 
that break down the steps of the complete analysis workflow in a 
standardized, flexible and scalable manner. They describe the input 
data, the analysis to be performed and the parameters to be used as 
well as how the results are visualized. The final report is then the 
sequence of created visualizations for each data type divided into 
different tabs in the dashboard (plots and tables).

Apart from being viewable in the browser, all reports, analy-
sis results and visualizations can be downloaded as a single com-
pressed file containing tables and figures in ready-to-publish 
format. Moreover, they are also available in hierarchical data for-
mat (HDF5), a standard and scalable file format supported by many 
programming languages, enabling interoperability. This design 
facilitates continuous integration of newly developed analyses and 
visualizations (Supplementary Fig. 4). Furthermore, configuration 
files can be shared, which fosters transparency and facilitates repli-
cability and reproducibility.

Automated CKG analysis for liver disease biomarker discovery. 
To show how CKG accelerates and extends both the analysis and 
interpretation of the data, we use its default pipeline on a proteomics 
study of nonalcoholic fatty liver disease (NAFLD)41 (Fig. 3).

For the clinical data, the CKG default analysis pipeline automati-
cally summarized clinical characteristics of the cohort and high-
lighted variables with significant variances between the studied 
groups (healthy and normal glucose tolerance (NGT), type 2 dia-
betes (T2D), NGT with NAFLD and T2D with NAFLD and cirrho-
sis). This confirmed significant differences in the levels of the liver 
enzymes alanine aminotransferase, aspartate aminotransferase and 
alkaline phosphatase measurement or hemoglobin A1c (HbA1c), 
among others.

The proteomics default analysis started with an overview of the 
identified peptides and proteins as well as a detailed summary of 
descriptive statistics of the proteomics data matrix. The CKG con-
tinued with a visualization of proteome coverage, dynamic range, 
protein coefficients of variation (CVs) among samples and sample 
quality control based on known tissue quality markers42. These 
rankings were automatically annotated with curated information  
mined from the knowledge graph, in this case highlighting mark-
ers already used in the clinic linked to NAFLD or cirrhosis 
(Supplementary Fig. 5).

The default data analysis uses principal component analysis to 
reduce the dimensionality of features for an overview of the data. 
ANOVA with post hoc tests then determines statistically signifi-
cant differences across all studied groups and between particular 
pairs of groups (post hoc analysis). Post hoc tests are presented as 
interactive volcano plots, with information about upregulated and 
downregulated proteins with a predefined significance threshold 
(that is, fold change > 2 and false discovery rate (FDR) < 0.05) (Fig. 
3a). The CKG automatically reproduced our previous results show-
ing dysregulation of proteins involved in immune system regulation 
and inflammation, such as C7, JCHAIN, PIGR and A2M, a known 
marker of liver fibrosis for which CKG reported 14 publications, 
confirming this connection. In addition, the CKG highlighted the 
TTR-RBP complex (TTR and RBP4) as downregulated in patients 
with cirrhosis compared to healthy individuals. This complex is 
involved in retinoid metabolism, whose dysregulation is linked to 
hepatic diseases and alteration of the extracellular matrix deposi-
tion, leading to fibrosis43. Furthermore, the report revealed litera-
ture and database associations among the regulatory role of CD5L 
and cirrhosis, hepatocellular carcinoma and other liver diseases44. 
These metabolically interesting findings were missed in our man-
ual analyses but were prioritized by the CKG’s automated pipeline, 
which extracted significantly regulated proteins in the different 
conditions. To visualize correlated protein changes as a network, 

the default analysis connected proteins with significant associations 
(Pearson correlation coefficient > 0.5 and FDR < 0.05). Using the 
Louvain algorithm to detect clusters of highly correlating proteins45 
revealed potentially clinically relevant connections, such as an asso-
ciation of a cluster composed by PIGR, and DPP4 and TGFBI with 
liver fibrosis. The background knowledge of millions of protein 
interactions enabled the CKG to identify six main clusters grouping 
extracellular matrix remodelers, complementary components and 
inflammation markers, which connected two of the candidate bio-
markers (PIGR and JCHAIN).

Associating the differentially regulated proteins to drugs, dis-
eases and publications and to enriched biological processes and 
pathways identified additional dysregulated pathways in NAFLD 
that were overlooked in our previous analysis. These included ‘reg-
ulation of insulin-like growth factor (IGF-1) transport’ and ‘uptake 
by insulin-like growth factor binding proteins (IGFBPs)’, which 
were linked to changes in IGFBP3 acid-labile subunit (IGFALS). 
Notably, such associations have recently been investigated for 
causal relationships and therapeutic potential in NAFLD46,47. 
The CKG also reported protein–disease associations, indicating  
possible shared disease mechanisms with liver cancer, hepatitis and 
pancreas disease.

The presence of various data types in the project triggered the 
default multi-omics analysis pipeline. In a global clinical proteomics 
correlation analysis48, clinical liver enzyme values clustered with 
HbA1c, fasting glucose levels and several candidate biomarkers 
of liver fibrosis and cirrhosis (such as PIGR, TGFBI, ANPEP and 
C7) (Fig. 3b). The CKG also used WGCNA to obtain modules of 
co-expressed proteins instead of individual proteins that are related 
to clinical variables (Fig. 3c).

Finally, the automated analysis pipeline summarized all clinical, 
proteomics and multi-omics analyses as a graph with all the regu-
lated proteins and the relationships extracted from the knowledge 
graph (such as diseases, drugs, interactions and pathways) using 
betweenness centrality to prioritize and reduce the number of nodes 
presented (Fig. 3d).

The entire default pipeline took less than 5 min but captured 
basically all insights gleaned from our previous manual analysis, 
which had taken weeks. The interpretation of the differentially 
abundant proteins had comprised time-consuming literature and 
database searches for known/published protein–disease associa-
tions and knowledge gathering41, but the CKG revealed them to be 
to be incomplete.

CKG enables multi-proteomics data integration for cancer bio-
marker discovery and validation. To explore the multi-analysis 
capabilities of the CKG, we reanalyzed a recent study in which we 
identified cancer/testis antigen family 45 (CT45) as a biomarker for 
long-term survival in ovarian serus adenocarcinoma and described 
its mode of action3. Multi-dimensional proteomics, phosphopro-
teomics and interactomics were modeled as different connected 
projects in the CKG and analyzed independently using the default 
analysis adapted to each data type (proteomics, interactomics and 
phosphoproteomics). The CKG reproduced CT45 as significantly 
higher expressed in patients with long-term remission after chemo-
therapy (Fig. 4a,b). The CKG also confirmed that there was virtually 
no previous knowledge about cellular roles and functions of CT45 
but produced 24 potential interactors of CT45, four of them belong-
ing to the PP4 complex and contributed by a human interaction 
map49 (Fig. 4c).

The PP4 complex has been linked to DNA damage repair50, which, 
together with the fact that patients had undergone chemotherapy 
inducing DNA interstrand crosslinks, prompted us to investigate 
the phosphoproteome in cell line models3. The CKG’s default analyis 
of the signaling response of CT45-expressing cells versus controls 
indeed revealed activation of the relevant DNA damage pathways. 
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Fig. 3 | Default analysis of the nonalcoholic fatty liver disease study. The CKG’s automated analysis pipeline reproduced previous results (Niu et al.41). 
Visualizations were generated automatically by the report manager and downloaded from the dashboard app. a, Differential regulation. The volcano plot is 
part of the analysis performed on the proteomics data (Proteomics tab) and shows the dysregulation of proteins involved in immune system regulation and 
inflammation (for example, C7, JCHAIN, PIGR and A2M) (two-sided t-test comparison of cirrhosis versus healthy—BH FDR < 0.05) (upregulated: orange/
red (fold change (FC) > 2); downregulated: light blue/blue (FC > 2)). b, Global clinical proteomics correlation analysis. The network finds correlations 
between proteins and quantitative clinical variables (Spearman correlation) and shows that clinical liver enzyme values cluster together with HbA1c, PIGR, 
TGFBI, ANPEP, C7 and other candidate biomarkers of liver fibrosis and cirrhosis (nodes colored by cluster—Louvain clustering). c, WGCNA. This analysis 
generates a heat map showing the association of co-expression modules with clinical variables (correlation and P value). This plot shows a higher positive 
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each node type). VLDL, very-low-density lipoprotein. ME, module eigengenes.
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The CKG pinpointed several known DNA damage kinases (that is, 
ATM/ATR) and their correponding regulated substrates (SMC1A_
S966/S957, NBN_S615 and PBRM1_S948), providing deeper insights 
into the mechanisms of action of carboplatin and its negative regula-
tion of proliferation through DNA damage repair. Additionally, the 
CKG exposed several other relevant kinases and associations that 
had eluded manual analysis, such as site-specific activation of MAPK 
activity as well as differences in CDC7 and CDK7 substrate regula-
tion (Fig. 4d). Although not used in this example, the CKG includes 
similar capabilities for genomic and transcriptomics data, as well as 
other omics data types, for further integration.

Using CKG to prioritize treatment options for chemorefractory 
cases. After standard treatment options have been exhausted in 

end-stage cancer, molecular profiling might still reveal druggable 
targets and opportunities for drug repurposing51,52, and we previ-
ously used proteomics profiling of cancer tissue to identify alter-
native targeted strategies2,4. To similar ends, CKG currently mines 
more than 350,000 connections between proteins and approved or 
investigational drugs targeting them (Supplementary Table 4).

In our previous proteomic study of a chemorefractory meta-
static case of urachal carcinoma, we proposed lysine‐specific 
histone demethylase 1 (LSD1/KDM1A) as a possible druggable 
target2. Here, we extended that study with a broadened default 
analysis, supplemented with Jupyter notebooks that implement 
repurposing based on prior knowledge in a reusable pipeline that 
can be applied to other studies (Fig. 5). Comparing lung tumor to 
non-cancerous-appearing tissue revealed hundreds of significantly  
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Fig. 4 | CKG analysis of multi-level clinical proteomics. a, The CKG highlights CT45 as the only protein significantly regulated when comparing ovarian tumor 
tissue from chemo-resistant and chemo-sensitive patients (n = 25; SAMR s0 = 2; BH FDR < 0.05) (data from Coscia et al.3). b, The CKG’s analysis pipeline 
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regulated proteins; thus, a strategy for knowledge-derived pri-
oritization, such as text mining and disease and drug associations, 
became necessary51,53,54. The CKG mined the graph to identify 
drug–target–disease triplets co-mentioned in the literature (3.3 
million publications mentioning triplets); to enumerate side effects 
associated with drugs (72,000 associations); to find similar drugs 
based on side effects, indications and targets; and to connect drugs 
with functional pathways.

Among 328 differentially regulated proteins, 188 were upreg-
ulated (paired t-test; Supplementary Table 2), and 69 had a 
known association to lung cancer. The CKG not only automati-
cally connected LSD1/KDM1A to tranylcypromine, the drug 
approved by the tumor board for our patient, but also indicated 
trans-2-phenylcyclopropylamine, a known potent inhibitor of 
the demethylase, as another treatment option55. We identified 
60 potential drugs targeting 19 of the prioritized proteins. After 
retrieving reported side effects associated with the chemothera-
peutic regimens used and the identified inhibitors, the CKG 
re-ranked the remaining drugs according to dissimilar side effects 
(Jaccard index). A cutoff of less than 0.2 resulted in six drugs (cho-
lic acid, dATP, resveratrol, calcitriol, vorinostat and trichostatin A) 
targeting six proteins (HDAC1, THBS1, CDH1, CDH17, PTGES 
and TXN).

Additionally, the CKG suggested publications that co-mention 
these drugs with their protein targets and the disease and affected 
tissue, which highlighted the combination of vorinostat and tricho-
statin A in more than 30 publications. These drugs inhibit HDAC1, 
a histone deacetylase that induces epigenetic repression linked to 
tumor progression. Combinations of such inhibitors can inhibit 
epigenetic silencing and its malignant effects56–58. Primed by the 
involvement of both HDAC1 and LSD1/KDM1A in histone modi-
fications, we extended the analysis to find possible connections 
between these proteins, which revealed that they are subunits of the 
CoREST complex, which has recently attracted therapeutic interest 
and for which the CKG retrieved a paper describing the inhibition 
of both HDAC1 and LSD1 (ref. 59).

Case studies exemplifiying the capabilities of CKG in sharable 
notebooks. Our reports directory (Supplementary Fig. 6) includes 
the sequence of analyses to reproduce the NAFLD and the urachal 
carcinoma studies described above as well as reanalysis of four 
additional datasets exemplifying the CKG’s functionality in differ-
ent contexts. First, we reanalyzed our proteomics investigation of 
the differences between brown and white adipocytes60, prioritizing 
and annotating significantly regulated proteins known to be asso-
ciated with metabolic diseases. The resulting knowledge subgraph 
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highlights several inflammation processes and connections to amy-
loidosis that had previously escaped our attention (Supplementary 
Fig. 7). Next, the CKG analyzed three studies external to our 
group, starting with a longitudinal COVID-19 Olink dataset where 
we reproduced the results comparing COVID-19-positive and 
COVID-19-negative61 and also investigated proteomic differences 
between the severity groups within the cohort. This analysis high-
lighted upregulation in proteins such as IL-6, IL-17C, CXCL10 
and CCL7, among others, that generally increased with severity 
and shows that CKG is not limited to MS-based proteomics data. 
A medulloblastoma multi-level proteomics dataset reanalyzed a 
tandem mass tag proteomics dataset and employed similarity net-
work fusion to integrate proteomics, PTMs and RNA sequencing 
data to reveal medulloblastoma subgroups as well as the features 
that drive these subgroups (Supplementary Table 5)62. Finally, in 
our reanalysis of the CPTAC glioblastoma discovery study (https://
cptac-data-portal.georgetown.edu/study-summary/S048), we used 
the knowledge graph to explore possible drug inhibitors for the list 
of significantly upregulated proteins found when comparing tumor 
and normal brain tissue (Supplementary Table 6). This exploratory 
analysis connected many of the upregulated proteins in tumors to 
pirfenidone, a drug generally used for idiopathic pulmonary fibrosis 
known to inhibit TGF-β signaling, a pathway de-regulated in malig-
nant gliomas, and also to reduce the tumor extracellular matrix63,64. 
All these notebooks are part of the CKG’s code repository and docu-
mentation and can be visualized at https://CKG.readthedocs.io/en/
latest/advanced_features/ckg-notebooks.html.

Discussion
The CKG represents prior knowledge, experimental data and 
de-identified clinical patient information in a large network. It har-
monizes proteomics data with all this information using a graph 
structure that naturally provides immediate connections to the 
identified proteins. We found that its automated, instantaneous 
and iterative nature helps in revealing pertinent biological con-
text for better understanding and generation of new hypotheses. 
Furthermore, the graph structure provides a flexible data model 
that is easily extendable to new nodes and relationships. Although 
the CKG was particularly designed for answering clinically relevant 
questions, it is equally applicable to other organisms and to any bio-
logical study65.

The CKG’s analytics core has an open modular design fully 
implemented in Python, exploiting open-source libraries that are 
widely employed and well maintained and that cover a broad data 
science ecosystem: statistics, network analysis, machine learning 
and visualization. Using these libraries ensures the quality, robust-
ness and efficiency of the underlying algorithms and methods.  

It also enables incorporation of new developments in data science, 
which can quickly be adapted to specifically support proteomics 
data analysis. Increasing concerns about reproducibility of scien-
tific results66,67 are also addressed by the CKG. We employ Jupyter 
notebooks to generate shareable analysis pipelines that make results 
reproducible and replicable and envision widespread adoption of 
this framework by the proteomic community and beyond.

To stimulate the adoption of the CKG, we integrated 
community-developed standards, such as mzTab and the Sample 
and Data Relationship Format (SDRF)68, for metadata, as well as 
multiple proteomics data formats generated by commercial or 
open-source software. Furthermore, the CKG’s modular design 
facilitates changing these formats and the incorporation of new 
ones. This flexibility ensures that the CKG will be able to follow 
an ever-expanding and active MS-based proteomics community as 
well as other omics initiatives.

The different components of the CKG allow individual research 
groups to analyze, integrate and build a database of their proteomics 
and other omics projects. Reports and notebooks can readily be 
shared to replicate the analyses, thereby contributing to reproduc-
ible science (Fig. 6a). Beyond this, the open nature and free availabil-
ity of the CKG could allow the aggregation of data and knowledge in 
what we term a community graph (Fig. 6b). This would ensure that 
the community benefits from similar proteomics or omics projects 
performed elsewhere. For biomarker discovery, this constitutes an 
extension of the ‘rectangular strategy’69, allowing direct and deep 
project comparison and leading to increasingly more robust and 
powerful analysis and knowledge generation.

We envision that different groups and institutions will have their 
own local version of the CKG, protecting the sensitive nature of 
healthcare data, but in a way that still enables cross-platform analy-
ses. New approaches, such as differential privacy and federated 
learning70,71, would allow researchers to use the CKG to train models 
iteratively across institutions without direct access to the sensitive 
data (Fig. 6c). Artificial intelligence is set to play an increasing role 
in MS-based proteomics and biomarker discovery72, and we look 
forward to integrating the CKG with these capabilities as well as 
taking advantage of novel graph deep learning capabilities.

In conclusion, we describe the CKG, an open, robust framework 
for transparent, automated and integrated analysis of proteomics 
and multi-level omics data, designed to incorporate all the prereq-
uisites for reproducible science. The CKG thus directly addresses 
some of the major bottlenecks toward personalized medicine and 
the rigorous, data-driven, clinical decision-making process. We 
expect that others in the biomedical and clinical research com-
munity will be encouraged to contribute to and further develop  
this platform.
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Methods
Graph database. Graph databases are NoSQL databases that represent and store 
data using graph structures. The graph structure is a collection of nodes and edges 
that represent relationships between the nodes and properties. Storage of data in 
such a structure facilitates access to densely connected data by providing graph 
traversal linear times. The CKG implements a graph database that contains close to 
20 million nodes (36 labels) and more than 200 million relationships (47 different 
types). The database is built using Neo4j Community Edition (https://neo4j.com/), 
a scalable native graph database that allows storage, management and analysis of 
interconnected data. Neo4j provides a query language specific for graph structures, 
Cypher, and an extensive library of procedures and functions (APOC library and 
the Data Science library) that can be used for data integration, data conversion 
or graph analysis. Furthermore, Neo4j makes the database available via several 
protocols (bolt, http or https) and provides a mission control center that interfaces 
with the database and helps manage it.

Data integration. Ontologies. To build the CKG database, we selected the different 
node labels (36 labels) and relationship types (47 types) between them to design 
the graph data model (Fig. 1c). These nodes and relationships were defined based 
on the type of biological or clinical questions or the problems set out to respond to 
or solve. For each node label, we defined the identifiers by using commonly used 
biomedical ontologies or standard terminologies. Ontologies denote concepts, 
in this case nodes (for example, diseases), and provide an acyclic graph structure 
that describes how these concepts are related. We benefited from this underlying 
structure to integrate these concepts and relationships (‘is_a’ relationships) directly 
into the knowledge graph. Likewise, we integrated the terms and relationships 
standardized in terminologies such as SNOMED-CT, which defines clinical terms 
and their associative relationships.

Some of the nodes in our graph data model could not be described using 
ontologies or existing terminologies, and they needed to be standardized using 
identifiers from the selected biomedical databases (for example, UniProt for 
proteins, HMDB for metabolites and DrugBank for drugs) (Supplementary Table 1).

During the update of the knowledge graph database (graphdb_builder), the 
reference ontologies, terminologies and databases are updated first and generate 
dynamically mapping files that are used to standardize the rest of the data. These 
mapping files are basically dictionaries built using external references (xref 
attributes) or synonyms provided in the reference ontologies and databases. 
This system automatically standardizes the different data sources and facillitates 
updates.

Databases. Once the graph data model and the node label identifiers were defined, 
we selected multiple well-known and used biomedical databases (25 databases) 
(Supplementary Table 1) to feed the CKG. The selection of databases to be 
integrated responded to the type of nodes and relationships in the model and 
was also based on criteria such as access, usability, stability and acceptance by the 
research community. However, the flexible design of the graph database and the 
CKG platform allows quick integration of new databases, ontologies, terminologies 
or even modifications in the original data model (new nodes or relationships) (see 
Methods, ‘graphdb_builder’ section).

We purposely built in some redundancy by including biomedical databases 
(for example, DISEASES73 and DisGeNET74) that provide the same type of 
relationships, which we used to assess overlap and disagreement of sources 
(Supplementary Fig. 3b).

Experiments. The CKG database models multiple node types, which, in principle, 
allows integration of different data types: genomics, transcriptomics, proteomics 
or metabolomics. However, the focus of the graph is initially the integration of 
quantitative MS-based proteomics data. This might have influenced the structure 
of the data model specifically on how experimental projects are defined and stored. 
Similarly, the clinical context in which the database was built limits the data to 
human, whereas other species are not covered by the graph yet.

Proteomics data can be integrated by creating a new project, which requires 
defining new nodes in the database: enrolled individuals, biological samples 
collected from these individuals and analytical samples extracted from those 
biological samples. Analytical samples correspond to the actual sample analyzed 
in the mass spectrometer. All these nodes will have external identifiers, and they 
will be mapped to unique internal identifiers in the knowledge graph. Internal 
identifiers will then be used to integrate experimental and clinical data seamlessly.

The relationship between analyzed samples and proteins ((Analytical_sample)-
[:HAS_QUANTIFIED]-(protein)) will have the quantification (that is, label-free 
quantification (LFQ) intensity) stored as a property/attribute of the relationship 
(value). Currently, MaxQuant, Spectronaut, FragPipe, DIA-NN output files and 
mzTab format or tabular files can be automatically loaded into the database using a 
specific configuration (YAML file) for each format.

Similarly, clinical data—clinical variables collected for each individual or 
biological sample (in case of longitudinal studies or multi-specimen studies)—can 
also be automatically loaded into the database using SDRF68 or in tabular format. 
When the data are provided in tabular format, all clinical variables need to follow 
the SNOMED-CT standard.

CKG platform. Software architecture. The CKG platform was designed using a 
modular architecture that divides the platform into functional compartments: 
graphdb_connector, graphdb_builder, report_manager and analytics_core 
(Fig. 1a). Each module can be used independently, which provides a flexible 
environment to cover different scenarios and different needs: direct programmatic 
interaction with the database, deployment of a local knowledge graph database, 
visualization of automatically analyzed data from the database or just data analysis 
and visualization through Jupyter notebooks.

In combination, all modules provide a full workflow from project ideation 
and creation to analysis and visualization of results (Supplementary Fig. 2). 
Additionally, we included Jupyter notebooks as another layer of functionality, 
which allow further and specific analyses and serve as a playground for continuous 
improvement of the analysis and visualization functionality. Furthermore, 
notebooks will support replicability, reproducibility and reusability of analysis in 
the CKG.

All modules were developed in Python 3.7.9. Some of the analyses are 
performed using R packages (for example, SAMR and WGCNA) called from 
Python using the Rpy2 library. The library version used in the CKG (rpy2 == 
3.0.5) is not compatible with Windows, and these analyses are not available in 
installations on this operating system. Alternatively, we created a Dockerfile, 
which holds all the necessary instructions to generate a complete container with 
all the requirements. In this setup, Windows users have all analyses available. 
When running the Docker container, four ports will be available: (1) Neo4j HTTP 
port (7474); (2) Neo4j bolt port (7687); (3) CKG Dash server (8050); and (4) 
JupyterHub server (8090) (Supplementary Fig. 8). The entry point to the container 
(docker_entrypoint.sh) defines all the steps needed: start the required services 
(Neo4j, JupyterHub, redis and celery) and run the report manager dash app. This 
installation is the easiest and can be used to quickly set up a server version of the 
CKG with all its components (Python, Neo4j and JupyterHub). Admin users can 
still customize these services by modifying how the container is built.

All the code can be accessed at https://github.com/MannLabs/CKG, and the 
documentation is available at https://CKG.readthedocs.io.

graphdb_connector. The graphdb_connector provides functionality to connect 
and query the CKG database. This module is Neo4j dependent. It uses the Python 
library py2neo, but it is independent from the other functionality in the platform, 
which allows an agnostic interaction with the database and facilitates adaptation 
and scalability. Likewise, queries to the database in Cypher language across the 
platform have been defined as YAML objects with a structure that makes them 
findable (name, involved nodes and relationships), understandable (description) 
and easily replaceable.

graphdb_builder. This functional module can be used to generate the CKG 
database. It is divided into two steps: importing and loading. The import (importer.
py) downloads the ontologies, terminologies and biomedical databases into the 
data directory (Supplementary Fig. 6) and formats the data into tabular files (nodes 
and relationships). The tabular files created by the importer are also stored in the 
data directory under the Imports folder and organized into ontologies, databases 
and experiments. Furthermore, the import step generates some statistics (HDF) 
regarding the number of nodes and relationships formatted as well as file sizes 
for each ontology, database or experiment. These statistics can be used to track 
possible errors in the import process (Data/Imports/Stats).

Once the import process finishes, data can be loaded into the graph database 
by the loader (loader.py), which runs several Cypher queries defined as YAML 
objects (cypher.yml) and loads the tabular files located in the import folder into 
the running database. To facilitate this two-step process, we implemented a module 
called builder (builder.py), which can be used to perform either both steps or one 
or the other. This module also allows importing or loading of specific ontologies, 
databases or experiments. After running the two steps, the running database 
should contain all the nodes and relationships harmonized from the different 
sources of data.

Analytics core. The analytics core is divided into two main functionalities: analytics 
and visualization. Both modules are independent of the CKG database and can 
be used to analyze and/or visualize data. The analytics functionality uses Python 
statistics and Data Science libraries to implement the state-of-the-art analyses of 
proteomics data (Supplementary Table 2) and incorporates some recent relevant 
methods, such as WGCNA or Similarity Network Fusion analysis. Moreover, 
to ensure the correct use of these functions, they are designed to identify the 
experimental design automatically and, consequently, define the appropriate 
statistical analysis to perform. The visualization library (viz) uses Plot.ly, an 
interactive graphing library for Python and R, which opens the possibility to save 
plots in a format compatible with both programming languages (JSON format).

Report manager. The report manager is a tool to interface with the existing projects 
in the CKG database. This functional module makes use of the analytics core to 
analyze the project data and generate interactive graphs and then to create detailed 
reports with these analyses. These reports can be accessed through dashboard apps 
implemented in Plot.ly Dash (https://plot.ly/dash/). The Dash server can be started 
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by running the index module (index.py) and accessed at http://localhost:5000. 
The initial app (Home) redirects to the login page, and, once logged in, it shows 
the current data model and statistics about the database, such as the number of 
nodes and relationships of each type. Furthermore, this app also links to the other 
existing pages—Admin, Project Creation, Data Upload and Imports—and lists all 
the existing projects in the database. The Admin page helps to create new users  
and update the database by running the importing and loading steps 
(Supplementary Fig. 9).

When a link to an existing project is accessed for the first time, the report 
manager runs the automated analyses for each data type in the project using the 
default configuration. Reports for each data type are shown in tabs in the Project 
app, and two extra tabs are also present: the multiomics tab, if there is more than 
one data type (for example, clinical and proteomics data), and the knowledge graph 
tab, which shows a summarization figure of all the other tabs.

New report pipelines can be defined using configuration files (YAML format) 
describing the arguments to be used in the data processing, as well as the sequence 
of analyses to be performed. The structure requires the user, for each analysis’ 
configuration, to specify which data to use (name of the dataframe(s)), a list of 
analyses and plots to visualize results (functions in the analytics core: analytics and 
viz, respectively), whether to store the results as dataframes and the arguments 
needed for analysis and visualization.

Once generated, project reports are stored in HDF5 format so that they can be 
quickly shown when accessed again. Project reports can be regenerated either with 
default configuration or by providing specific configuration files using the ‘Change 
Analysis’ Configuration’ option in the Project app. The saved reports can also be 
easily accessed programmatically with functionality within the report manager 
(project.load_project_report()) or using the R library rhdf5 (see ‘Notebooks’ 
section).

Reports can be downloaded in a compressed file (zip), which contains one 
folder for each generated tab, and, inside, all the dataframes created during the 
analyses (tab separated format, tsv), all the plots as vector and png format and all 
networks in Graph Modeling Language compatible with Cytoscape and JSON75, 
JSON or the nodes and edges tables.

Notebooks. We included Jupyter notebooks as another component of the CKG 
platform. This component serves three purposes: (1) a playground to test and 
develop new analyses and visualizations; (2) a collection of recipes that explain 
how to use CKG’s Python library; and (3) a repository of reanalyses of already 
published case studies that can be shared, reproduced and reused. The structure 
of the notebook directory (Supplementary Fig. 6) distinguishes these purposes 
defining three folders: development, recipes and reports. In the recipes folder, you 
can find several Jupyter notebooks showing simple functionality and analyses using 
CKG’s library: how to work with reports in R; how to build a project and generate 
and visualize a report; how to download and analyze data from PRIDE; how to run 
power analyses; how to perform batch correction; or how to extract data from the 
graph database. In the reports directory (Supplementary Fig. 6), we included the 
sequence of analyses to reproduce the NAFLD and the urachal carcinoma study 
studies described in the Results.

Default analytical pipeline. The initial data preparation step structures the 
quantified measurements (filtering, imputation, formatting, and normalization), 
starting with filtering out proteins identified in only a few of the samples 
(Supplementary Table 2). This filtering step can be specified as a maximum 
percentage of missing values (default) or as a minimum number of values present 
per condition (group) or in the entire dataset. For imputation, we implemented 
several methods that account for missing values of different nature, including the 
k-nearest neighbors (KNN) imputation method, which assumes that the values 
are missing completely at random (MCAR), and the probabilistic minimum 
imputation (MinProb) approach for missing values that are considered missing 
not at random (MNAR) (default)76. These two methods can also be combined in 
a mixed imputation method that considers the percentage of missing values to 
assume missingness due to MCAR (that is, missingnes <50%) or MNAR otherwise 
and applies KNN or MinProb, respectively. This step results in a complete matrix 
called the ‘processed data frame’ and forms the basis for downstream analysis.

Next, we implemented the data exploration step into the workflow to collect 
summary statistics from the original data (such as number of proteins and 
peptides). Additionally, it ranks identified proteins according to their average 
quantified intensity (LFQ77) and calculates protein CVs, which can serve as a 
quality metric.

The subsequent data analysis part includes a dimensionality reduction step 
and enables visualization of the high-dimensional proteomic datasets using two- 
or three-dimensional representations. We implemented linear dimensionality 
reduction (principal component analysis (default)) and nonlinear approaches 
(t-distributed stochastic neighbor embedding (t-SNE)) and uniform manifold 
approximation and projection.

The analytics core enables hypothesis testing, particularly methods for 
identifying proteins changing significantly between conditions (groups). The 
default method is ANOVA, but others, such as ANOVA for repeated measurements 
(ANOVA-rm), t-test (independent or paired) or significance analysis of 

microarrays (SAM), are also available21. By default, the analytics core identifies 
the appropriate test based on the experimental design (for example, independent 
versus paired and ANOVA versus ANOVA-rm). We also implemented several 
methods to correct for multiple hypothesis testing, such as Benjamini–Hochberg 
(BH) FDR (default) or permutation-based FDR, which is used only if the 
number of permutations specified (default set to 250) is sufficiently large to avoid 
overestimating false positives.

Strategies for global protein–protein correlation analysis include as default 
Pearson correlation analysis corrected for multiple testing, which returns a network 
with identified clusters of correlating proteins (Louvain clustering method). 
Furthermore, functional enrichment analysis (Gene Ontology and Pathways) 
enables extraction of potential hypothesis-generating information regarding the 
functional consequences of proteomics perturbation as an ultimate step in the 
proteomics analysis (Supplementary Table 2).

Machine learning on graphs. The CKG provides functionality to apply machine 
learning algorithms based on the relationships existing in the knowledge graph. 
On the one hand, the CKG provides a library of optimized graph algorithms 
that run within the database framework (using the NetworkX Python library). 
These algorithms efficiently implement graph analysis tools such as path finding, 
centrality measurements, community detection and similarity functions, among 
others. All these algorithms are either directly available in the CKG or through the 
Graph Data Science library in Neo4j and can be used to effectively identify hidden 
patterns and generate predictions based on the connected data. Graph-based 
predictions have been used in multiple scenarios, including drug repurposing, 
protein–protein interaction (PPI) prediction, disease comorbidity risks or 
diet-based cancer therapy associations78–80. All the types of relationships mined 
in those studies are part of the CKG and can repeatedly be modeled in the same 
manner every time new data are integrated. For instance, we used this functionality 
to map Gene Ontology biological processes to metabolic pathways (Supplementary 
Table 3). This helps to better interpret functional enrichment results or to 
connect currently disconnected nodes and extend their annotations—that is, 
(Biological_processes-[:ASSOCIATED_WITH]-(Metabolite)).

Additionally, application of machine learning algorithms directly on CKG’s 
graph structure can improve prediction and classification tasks, for instance by 
using Graph Representation Learning algorithms37. To provide an example of 
the potential of these methods on the CKG’s structure, we used the embedding 
algorithm Node2Vec (dimensions = 100, walk length = 30, number of walks = 
200, P = 1, Q = 2.0, weight key = score) to represent disease nodes81. For that, 
we first obtained disease-specific subgraphs connecting disease nodes to their 
associated proteins, modified proteins, metabolites and genomic variants and 
their relationships (that is, PPIs) from the CKG. We then applied the embedding 
algorithm to obtain high-dimensional vectors, preserving the properties of 
these subgraphs for each disease node. When visualizing these embedding 
representations using t-SNE, diseases cluster according to the Disease Ontology 
anatomical entities that they are annotated to, showing that biological meaning is 
preserved in these representations (Supplementary Fig. 10). These representations 
could be used in a variety of machine learning problems, such as node and link 
prediction, graph classification or graph similarity. When applied to biomedicine, 
these learning techniques can help stratify patients, build comorbidity networks or 
repurpose drugs.

Case studies. NAFLD study. We use a previously published internal proteomics 
dataset41 (PXD011839) as a showcase of the capabilities of the CKG. In this 
publication, Niu et al. studied the plasma proteome profiles of 48 patients with and 
without cirrhosis or NAFLD and identified several statistically significantly changing 
proteins, some of which were already linked to liver disease. We aimed to reproduce 
the results obtained using the automated default analysis pipeline of the CKG.

Downstream rapid proteomics analysis. We used a previously published internal 
proteomics dataset2 (PXD008713). This study presents a rapid proteomics analysis 
that identified a possible alternative treatment for a patient with end-stage cancer. 
We built a downstream analysis pipeline to accelerate and prioritize alternative 
candidate drug treatments using the CKG. We provide a Jupyter notebook to show 
how functionality implemented in the graphdb_connector module (query_utils.py) 
can be used to single out queries that can help find known links between identified 
upregulated proteins and inhibitory drugs and between those drugs and known 
side effects and publications as well as how to use this knowledge to prioritize drug 
candidates.

Multi-level proteomics analysis. We reanalyzed and extended a multi-level 
proteomics study, including interactomics and phosphoproteomics, that provides 
insights into the mechanisms of resistance to platinum-based chemotherapy in 
high-grade ovarian serus adenocarcinoma3 (PXD010372). The CKG reproduces 
the findings and extends them with deeper analysis of the protein complexes 
identified82 and substrate and PhosphoSite-specific annotations83,84.

CKG update. Databases and ontologies integrated in the CKG can be updated 
using the graphdb_builder. There are two options: full update or partial update. A 
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full update, which will regenerate the entire database with newly downloaded data 
from the sources, the number of nodes and relationships, will vary from version to 
version according to changes in these data. On a partial update, the sources to be 
imported and loaded into the graph need to be specified. The partial update can 
also be used to extend the graph when a new database or ontology is added. When 
running a full update, it is recommended to create a different graph database, 
confirm that the generated graph is correct and then switch to the new database.

Experiments can be updated using the ‘Data Upload’ functionality in the 
dashboard app by indicating the project identifier and uploading the new data. 
When a full update is performed in the CKG’s graph, which involves upgrading 
the version of essential databases, such as UniProt85, it is highly recommended to 
process the raw proteomics data, searching with the new version of the proteome, 
and to generate again all the project reports with the new data. When this is not 
possible, we provide a Jupyter notebook to generate a mapping between UniProt 
versions based on sequence alignment (CKG mapping from fasta.ipynb).

The CKG is an open-source project, and its code will continue to grow and 
improve through version control in the GitHub repository (https://github.com/
MannLabs/CKG). Currently, version 1.0.0 is available, and new releases will 
be made available in a controlled manner and named following the PEP 440 
specification (https://www.python.org/dev/peps/pep-0440/). Because the CKG 
is an open-source project, contributions can help the framework grow with 
additional ontology, database or experimental parsers, improved documentation, 
increased testing and feedback. Specific details on how to contribute can be found 
in the CKG’s documentation.

Installation and hardware requirements. The CKG’s purpose and architecture 
define it as a multi-user platform that requires installation in a server-like setup 
and with systems administration knowledge. However, individual users can 
have a local installation, making sure hardware and software requirements are 
fullfiled. The simplest installation is by using the Docker container and running 
the ‘minimal’ update in the Admin app (https://ckg.readthedocs.io/en/latest/intro/
getting-started-with-docker.html). This installation requires getting access to the 
licensed databases (SNOMED-CT, DrugBank and PhosphoSitePlus). For specific 
requirements and installation steps, consult the CKG’s documentation at https://
ckg.readthedocs.io/en/latest/intro/getting-started-with-requirements.html.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The MS-based proteomics data analyzed in this study were downloaded from 
the PRIDE database: PXD011839, PXD008713, PXD010372 and PXD008541 
(PRIDE database identifiers). Data used in the glioblastoma study were provided 
by the Clinical Proteomic Tumor Analysis Consortium (NCI/NIH) (https://
cptac-data-portal.georgetown.edu/study-summary/S048). The Olink proteomics 
data were provided by the Massachusetts General Hospital at https://www.olink.
com/mgh-covid-study/. A version of our Clinical Knowledge Graph database 
is at Mendeley Data (https://data.mendeley.com/datasets/mrcf7f4tc2/3) and 
the Max Planck Institute of Biochemistry (https://datashare.biochem.mpg.de/s/
kCW7uKZYTfN8mwg).
The databases and ontologies used in the Clinical Knowledge Graph are listed in 
Supplementary Table 1.

Code availability
All code is accessible at https://github.com/MannLabs/CKG, and detailed 
documentation can be found at https://CKG.readthedocs.io.
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