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Amino acids (AAs) are well known to be involved in the regulation of glucose

metabolism and, in particular, of insulin secretion. However, the effects of

different AAs on insulin release and kinetics have not been completely

elucidated. The aim of this study was to propose a mathematical model that

includes the effect of AAs on insulin kinetics during a mixedmeal tolerance test.

To this aim, five different models were proposed and compared. Validation was

performed using average data, derived from the scientific literature, regarding

subjects with normal glucose tolerance (CNT) and with type 2 diabetes (T2D).

From the average data of the CNT and T2D people, data for two virtual

populations (100 for each group) were generated for further model

validation. Among the five proposed models, a simple model including one

first-order differential equation showed the best results in terms of model

performance (best compromise between model structure parsimony,

estimated parameters plausibility, and data fit accuracy). With regard to the

contribution of AAs to insulin appearance/disappearance (kAA model

parameter), model analysis of the average data from the literature yielded

0.0247 (confidence interval, CI: 0.0168 – 0.0325) and -0.0048 (CI: -0.0281 –

0.0185) mU·ml-1/(mmol·l-1·min), for CNT and T2D, respectively. This suggests a

positive effect of AAs on insulin secretion in CNT, and negligible effect in T2D. In

conclusion, a simple model, including single first-order differential equation,

may help to describe the possible AAs effects on insulin kinetics during a

physiological metabolic test, and provide parameters that can be assessed in

the single individuals.

KEYWORDS

branched-chain amino acids, insulin secretion, type 2 diabetes, minimal model,
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1 Introduction

Amino acids (AAs) are well known to be involved in the

regulation of glucose metabolism and especially insulin secretion

(1). Different AAs may exert distinct effects on postprandial

glucose and insulin concentrations, which can be affected by

their co-ingestion with glucose (2). Recently, much attention has

been devoted to the branched-chain amino acids (BCAAs),

comprising leucine, isoleucine, and valine. They are essential

AAs that can be taken only with diet, meat and dairy products

being the main sources (3). Whole-body disposal of BCAAs

mainly results from their catabolism in the skeletal muscle and

altered BCAAs catabolism has been associated with several

disorders, such as obesity and type 2 diabetes (4). Moreover,

fasting and postprandial plasma levels of BCAAs have been

found associated with greater insulin secretion and reduced

insulin clearance in healthy humans (5). Also, short-term

dietary reduction of BCAAs reduced meal-induced insulin

secretion (6). On the other hand, in recent-onset diabetes,

BCAAs were associated negatively with meal-induced insulin

secretion (7). Thus, understanding the effects of different AAs on

insulin release and kinetics under different metabolic conditions

may help to gain further insight on the development of several

diseases, including type 2 diabetes, and to develop therapeutic

strategies based on appropriate dietary regimen.

Mathematical models may help to analyze these effects.

However, to the best of our knowledge, only one attempt has

been done in this direction, considering the effects of AAs on the

electrical activity leading to insulin granule exocytosis, based on

in-vitro experiments (8). A model describing the AAs effect on

the insulin kinetics at whole body level during a physiological

metabolic test, such as a mixed-meal tolerance test (MMTT), is

still lacking. Thus, our aim is to propose a new mathematical

model, describing insulin kinetics in plasma during a MMTT,

which includes the effect of AAs. To this end, a series of

mathematical models was developed, analyzed and compared,

on the basis of previously published data (7). The resulting

chosen model may help in characterizing the different role of

AAs (or specific categories of them, such as BCAAs) on

insulin secretion.
2 Materials and methods

2.1 Model formulation

We developed five different mathematical models. All

models were based on the hypothesis that plasma insulin

concentration during the metabolic test (MMTT) depends on

the following contributions: (i) insulin appearance due to

pancreatic secretion triggered by plasma glucose (main

contribution); (ii) insulin appearance (or disappearance) due
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to the effect of AAs on pancreatic secretion (smaller

contribution); (iii) basal insulin appearance rate due to factors

other than MMTT glucose and AAs; (iv) insulin disappearance,

mainly due to insulin utilization, insulin clearance from plasma,

hepatic insulin extraction. Four out of five models are based on a

single-compartment description (Model 1, 2, 3 and 4), whereas

the remaining one (Model 5) comprises two compartments. In

the single-compartment models, the compartment represents

the plasma body space. In the two-compartment model, one

compartment is again plasma, whereas the other one represents

a different body space (not precisely identified from an

anatomical point of view), which is remote from plasma. In all

proposed models, plasma glucose and plasma AAs

concentrations were used as inputs to the model; moreover,

insulin disappearance was fixed to a constant value [0.14 min-1

(9)]. Compartmental structures for the four single-compartment

models and the two-compartment model are reported in

Figures 1, 2, respectively.

2.1.1 Model 1
Model 1 assumes that changes in plasma insulin

concentration during a MMTT (I(t), mU·ml-1) are determined

by plasma glucose (G(t), mg/dl) through a linear flux with

transfer coefficient equal to kGL (mU·ml-1/(mg·dl-1·min)), and

by a second contribution, expected to be smaller than

the first, due to the plasma AAs (AA(t), mmol·l-1), again

supposed to be linear, with transfer coefficient equal to kAA
(mU·ml-1/(mmol·l-1·min)). Insulin clearance is assumed linear,

with fractional transfer coefficient named kI (min-1) equal to the

fixed value indicated in the above paragraph. The constant

contribution BRI represents the basal insulin appearance rate

due to factors other than glucose and AAs, and can be computed

from steady-state conditions. Model 1 is described by the

following differential equation:

dI tð Þ
dt

=kGL·G tð Þ+kAA·AA tð Þ−kI·I tð Þ+BRI

Ið0Þ=Ib (1)

Plasma glucose and plasma AAs concentrations were used as

inputs to the model; by imposing steady-state condition BRI was

assessed as follows:

BRI=−kGL·Gb−kAA·AAb+kI·Ib (2)

In the above equations, as well as in the following ones, the

“b” subscript indicates the basal (fasting) value of one variable

or parameter.

2.1.2 Model 2
Model 2 assumes that changes in plasma insulin

concentrations during a MMTT are determined by both plasma

glucose G(t) and its rate of change dG(t)/dt, through kGL1 (mU·ml-
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1/(mg·dl-1·min)) and kGL2 (mU·ml-1/(mg·dl-1)), respectively.

Assumptions on contributions of AAs and insulin clearance are

the same as in Model 1. Since in steady-state conditions all

derivatives are equal to zero, BRI is the same computed for

Model 1 and described in eq. (2). The model equation is:
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dI tð Þ
dt

=kGL1·G tð Þ+kGL2·
dG(t)
dt

+kAA·AA tð Þ−kI·I tð Þ+BRI

Ið0Þ=Ib (3)
FIGURE 2

Compartmental representation of the double-compartment model. The model is composed by a compartment representing plasma insulin I(t)
and a compartment representing glucose (suprabasal concentration) remote from plasma Grem(t). The input to the remote compartment is
represented by suprabasal plasma glucose (G(t)-Gb), through the kGLrem parameter. Grem(t) acts as input through the kGL parameter; similarly,
amino acids act as input through the kAA parameter; kI represents the insulin elimination rate from plasma and BRI is the basal insulin
appearance rate due to factors other than glucose and amino acids.
FIGURE 1

Compartmental representation of the four single-compartment model. All models are composed by a single compartment representing plasma
insulin I(t). Plasma glucose G acts as input for all models through the kGL parameter for Model 1 and 4 and kGL1 for Model 2 and 3; similarly,
amino acids act as input for all models through kAA parameter for Model 1, 2 and 3 and through the time-varying parameter kAA(t) for Model 4.
In all models, kI represents the insulin elimination rate from plasma and BRI is the basal insulin appearance rate due to factors other than
glucose and amino acids. In Model 2, a further dependence on glucose rise is included through the kGL2 parameter; in Model 2 this rise is
accounted for by glucose derivative G˙ hereas in Model 3 by glucose exponentiation G(t)kGL2 .
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2.1.3 Model 3
Model 3 is based on the same hypotheses of Model 2, but

exponentiation (G(t)kGL2, with kGL2 dimensionless) was used to

account for the contribution provided to plasma insulin by

glucose fast onset, as similarly done in other studies (10):

dI tð Þ
dt

=kGL1·G tð ÞkGL2+kAA·AA tð Þ−kI·I tð Þ+BRI

I(0)=Ib (4)

BRI was equal to:

BRI=−kGL1·G
kGL2
b −kAA·AAb+kI·Ib (5)
2.1.4 Model 4
Model 4 is based on the same hypothesis of Model 1, but it

assumes that the transfer coefficient kAA (mU·ml-1/(mmol·l-

1·min)) may vary during the MMTT, thus providing a time-

varying contribution:

dI tð Þ
dt

=kGL·G tð Þ+kAA(t)·AA tð Þ−kI·I tð Þ+BRI

Ið0Þ=Ib (6)

BRI was equal to:

BRI=−kGL·Gb−kAAb·AAb+kI·Ib (7)
2.1.5 Model 5
Model 5 assumes that glucose contributes to plasma insulin

through a compartment remote from plasma, with Grem(t)

representing suprabasal concentration in the remote

compartment; this assumption was borrowed from another

model describing the kinetics of non-esterified fatty acids (11):

dI tð Þ
dt

=kGL·Grem(t)+kAA·AA tð Þ−kI·I tð Þ+BRI

Ið0Þ=Ib (8)

dGrem

dt
=−kGL·Grem(tÞ+kGLrem·(G tð Þ−Gb)

Grem(0)=0 (9)

where kGLrem (min-1) is the glucose elimination rate from the

remote compartment.

BRI was equal to:

BRI=−kAA·AAb+kI·Ib (10)
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2.1.6 Analysis of a priori identifiability
A priori identifiability of the five competing models was

tested by using DAISY (Differential Algebra for Identifiability of

Systems), a software tool for structural identifiability analysis of

linear and nonlinear dynamic models described by polynomial

or rational ordinary differential equations with either known or

unknown initial conditions (12).
2.2 Model implementation and
parameter estimation

All models were implemented in MATLAB® R2019b as

ordinary differential equations (ODEs) or system of ODEs (in

case of Model 5). Model solution was obtained using ode15s, a

method for the solution of stiff differential equations. Model-

parameter vector was p = [kGL kAA], p = [kGL1 kGL2 kAA], p =

[kGL1 kGL2 kAA], p = [kGL kAA(t)], p = [kGL kGLrem kAA] for

Model 1, 2, 3, 4 and 5, respectively. For each model, parameters

were estimated by solving a nonlinear least-squares curve fitting

problem using the lsqnonlin solver. Fitted data were those of

insulin concentrations as described in the following section. The

trust-region-reflective algorithm was specifically used, with the

following lower and upper bounds set for the parameters:

(0; +∞) for kGL, kGL1, kGL2 and kGLrem, and (-∞; +∞) for kAA
and kAA(t). Function and step-size tolerances were set to 10-20

and 10-12, respectively. For all models, the percent Coefficient of

Variation (CV%) of the parameters estimate was computed

(standard deviation (SD) of parameters estimate divided by

parameters value, multiplied by 100). In addition, for the

parameters with (-∞ ; +∞) bounds (i .e . , practically

unbounded), the 95% Confidence Interval (CI) was also

computed. To assure convergence to a global minimum, a set

of initial values for the model-parameter vector was generated

and related local solutions were computed; ten different initial

values for each parameter were considered (leading to 10npar

attempts, where npar is the number of model parameters).
2.3 Model validation

The five models were initially validated using average data

previously reported by Karusheva et al. (7). These data refer to

glucose-tolerant (CNT, n=10) and type 2 diabetes (T2D, n=10)

participants, the latter having known disease duration of less

than 1 year. All participants underwent a MMTT at high

protein content, thus adequate for studying AAs levels and

kinetics, consisting of 378 g of the standardized commercial

liquid meal Boost High Protein (Nestlé S.A., Vevey,

Switzerland) for a total of 365.8 kcal (of which 9.1 g fat,
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50.1 g carbohydrates, and 22.8 g protein). During the MMTT,

blood sampling was performed at −10, −1, 10, 20, 30, 60, 90,

120, and 180 minutes for measurements of glucose, insulin and

BCAA concentrations (7). Related temporal patterns during

the MMTT are reported in Figure 3.

After applying all five models to the indicated average data,

we selected the model that showed: (i) global a priori

identifiability, (ii) best value in terms of corrected Akaike’s

information criterion (AICc) (13), and (iii) estimated

parameter plausibility. The considered AIC value was the

mean of the two AIC values obtained over the CNT and T2D

average data (7). For comparison purposes, the relative

likelihood of each model was also considered (14).

Thereafter, a second validation step was performed for the

selected model considering two virtual populations,

comprising 100 virtual subjects with normal glucose
Frontiers in Endocrinology 05
tolerance and 100 with T2D. Each virtual population was

generated starting from the average data and SD reported by

Karusheva et al. (7). The generation of the two virtual

populations was accomplished by exploiting an approach

already used in previous studies (15). According to this

approach, in response to the MMTT each virtual subject was

characterized by a curve for glucose, insulin and BCAA,

respectively. Each sample of the glucose, insulin and BCAA

curves was randomly generated from a normal distribution

(considering all samples within the 95% CI) with mean and SD

equal to those reported by Karusheva et al. (7) for the related

average curve. Furthermore, in order to obtain curves that

mimic the same trend of the original ones, constraints have

been added during the random generation of the samples (in

particular, sign of the variation between two time samples

equal to that of the related average curve (7)).
A

B

C

FIGURE 3

Glucose, insulin and BCAA curves from the reference mean experimental data by Karusheva et al. (7) (panels A–C, respectively), for glucose-
tolerant participants (CNT, n=10, solid line) and patients affected by type 2 diabetes (T2D, n=10, dashed line). Closed and open circles (for CNT
and T2D, respectively) indicate the time instants when the experimental samples were collected. Data are reported as mean ± SD.
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2.4 Statistical analysis

Person’s correlation analysis was performed to analyze the

relationship between kGL and kAA in CNT and T2D virtual

populations. Regression analysis was also performed between

kGL and kAA in the two groups pooled, with the virtual subjects’

type (CNT or T2D) as factor. By unpaired t-test, we also tested

difference between CNT and T2D in both kGL and kAA. Chi-

square test was used to test differences between CNT and T2D in

kAA percentages of positive, negative and negligible values.

In case of skewed distributions, parameter values were loge-

transformed before testing. Data are reported as mean ± SD

unless otherwise specified. Two-sided p values less than 0.05

were considered statistically significant.
3 Results

The top model resulted Model 1, which was the best

compromise between model parsimony and performance.

Indeed, Model 1 showed global identifiability and the better

AICc (20.53), as compared to other models with similar global

identifiability (25.36, 25.86 and 27.07 for Model 5, 2, 3,

respectively. Model 4 showed the best AICc, with very low

value (-135.51) due to extremely accurate model fit, but it

showed only local rather than global identifiability.

Considering the relative likelihood, Model 4 would be again

the best one, but for the previously mentioned identifiability

issues Model 1 was preferable. When computing the relative

likelihood of Model 1 vs. Model 2, 3 and 5, we found values

remarkably higher than 1 (relative likelihood equal to 11.19,

14.39, 26.35, vs. Model 5, 2 and 3, respectively), this providing

further support in considering Model 1 as the best model. For

these reasons, we assumed that the model to be selected and

hence analyzed further over the virtual populations was in fact

Model 1. In any case, some results from the other models are

reported in the Appendix A.

Results of model validation on the experimental average data

of the study (7) provided the best fit reported in Figure 4. In

terms of the model parameters, for kGL the estimated value was

0.0974 in CNT and 0.2087 in T2D (units: mU·ml-1/

(mg·dl-1·min)); for kAA, the estimated value was 0.0247 in

CNT and -0.0048 in T2D (units: mU·ml-1/(mmol·l-1·min)). It is

worth noting that, differently from kGL, which has been

constrained to be positive, kAA was free to get possible

negative values, since we could not a priori exclude a

negligible or even deleterious effect of BCAAs on insulin

secretion. Interestingly, in CNT the kAA value was estimated

positive (95% CI: 0.0168 – 0.0325), whereas based on the 95% CI,

in T2D we obtained kAA not significantly different from zero

(95% CI: -0.0281 – 0.0185), suggesting a negligible contribution

to insulin secretion from BCAAs.
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Insulin, glucose and BCAA curves for the two virtual

populations are shown in Figures 5, 6. Model validation on

the two virtual populations provided the mean best fit and

related residuals shown in Figures 7, 8. Distributions of kGL and

kAA over the virtual CNT and T2D subjects are reported in

Figure 9. In terms of mean and SD, the values for kGL were

0.3480 ± 0.1778 and 0.1134 ± 0.0654 mU·ml-1/(mg·dl-1·min), in

CNT and T2D, respectively. In CNT, kAA was 0.0134 ± 0.0112

mU·ml-1/(mmol·l-1·min), and according to the individual 95%

CIs it was positive in the 53% of cases, negative in the 2%, and

negligible in the 45% (i.e., CI crossing the zero value). In T2D,

kAA was 0.0075 ± 0.0142 mU·ml-1/(mmol·l-1·min), and it was

positive in only 25% of cases, negative in the 65%, and

negligible in the 10%. An inverse correlation was detected

between kGL and kAA in CNT (r = -0.63, p<0.001) and T2D (r =

-0.92, p<0.001). The inverse relationship between kGL and kAA
was confirmed in CNT and T2D pooled (p<0.0001), with

subjects’ type (CNT and T2D) being significant factor in the

relationship (p<0.0001).

Furthermore, the unpaired t-test showed for both kGL and

kAA a significant difference between virtual CNT and T2D

(p<0.0001 for both parameters). In addition, we found that the

percentages of positive, negative and negligible kAA values (see

percentage values reported above) were different between the

two groups (p=0.0015 or lower). Consistently, in CNT the

percentage of positive kAA values was higher than that of

negative values, whereas in T2D it held the opposite condition

(p<0.0001 for both tests).
4 Discussion

In this study, we propose a modelling approach to determine

effects of AAs on insulin secretion in humans with normal glucose

tolerance and T2D. The importance of our model strategy lies in

the opportunity to estimate in single individuals the possible

effects of AAs on insulin secretion, in addition to the known

role of glucose. Specifically, the model assesses AAs effects on

insulin secretion under dynamic (stimulated) conditions, but on

the other hand physiologically consistent, as determined by food

ingestion. The model includes glucose as the major determinant of

insulin secretion, but also AAs during the mixed-meal ingestion.

The kAAmodel parameter in the single personmay then be seen as

the individual sensitivity of the beta cell to AAs stimulation (in

short, beta-cell AAs sensitivity).

Based on the experimental data in the glucose tolerant

people that we exploited for our model development (7), we

found a significant contribution of AAs in explaining insulin

secretion (i.e., positive kAA, with positive 95% CI). Instead, in

T2D, the model essentially indicated a negligible kAA (CI

including zero), and hence negligible contribution of AAs to

insulin secretion. This result is consistent with that of the study
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by Karusheva et al. (7) in T2D (based on the analysis of the

patients’ experimental data without model support). With

regard to the virtual population, we found that in the control

participants kAA was positive in more than half of cases, whereas

in T2D kAA was positive only in 1/4 of cases. Accordingly, we

found that kAA was higher in virtual CNT than T2D. We also

found that the relationship between kAA and kGL was

significant, but different between the two virtual groups. These

results need further confirmation in future studies on real data,

but they appear reasonable and physiologically plausible, thus

further suggesting appropriateness and reliability of our

modelling approach.

One aspect of our results that, in contrast, appears somehow

questionable relates to the kGL values in the experimental data.

Indeed, kGL was lower in the CNT than in T2D. However, it has

to be considered that the average data in each of the two

participants’ group represent kind of further single subject,

different from the real ones. On the other hand, the virtual

populations analysis showed that parameters value distributions

in the two groups partially overlap, thus meaning that there are
Frontiers in Endocrinology 07
in fact some virtual CNT subjects with kGL lower than in some

virtual T2D subjects. This aspect emphasizes the relevance of the

virtual analysis as well. Thus, the indicated result, found in the

experimental-based average data analysis, is not unaccountable.

It is also worth noting that the lower kGL in CNT than in T2D

appears compensated by the higher kAA, which is significant in

CNT while negligible in T2D.

The remarkable importance of studying the stimulatory

effect of AAs on insulin secretion has been recognized already

decades ago (1, 16–18). Among the AAs, arginine has been

clearly shown as a potent insulin secretagogue (18, 19). Notably,

the insulinotropic effect of arginine was shown in both normal

glucose tolerance (20) and T2D (21). On the other hand, apart

for arginine, the possible insulinotropic effect of specific AAs has

been investigated in several studies. Already in one of the earlier

studies, it was reported that in healthy people intravenous

administration of leucine was able to induce a robust release

of insulin that conversely was not observed when injecting a

solution of eight amino acids not containing leucine (22). Those

findings were confirmed and corroborated some years later in an
A

B

FIGURE 4

Best-fit results for model validation on reference mean experimental data by Karusheva et al. (7) for glucose-tolerant participants (CNT, n=10,
panel A) and patients affected by type 2 diabetes (T2D, n=10, panel B). Red circles are the reference experimental values (mean ± SD); black
lines are the model predictions.
frontiersin.org

https://doi.org/10.3389/fendo.2022.966305
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Morettini et al. 10.3389/fendo.2022.966305
animal model by another study, which analyzed the effects of

intravenous infusion of 17 amino acids. It was found that leucine

was the most effective amino acid in stimulating insulin

secretion, followed by alanine, glycine, and serine (23).

Generally, it was shown that neutral straight-chain amino

acids stimulated both insulin and glucagon secretion, with
Frontiers in Endocrinology 08
greater secretory response than shorter C-chain amino acids,

whereas branched-chain amino acids tended to enhance insulin

and suppress glucagon secretion (23). Another study showed in

a perfused rat pancreas model that, in the presence of glucose,

first-phase insulin secretion was potentiated by both cationic

AAs (arginine and lysine) and BCAAs (leucine). Conversely,
A

B

C

FIGURE 5

Branched-chain amino acids (BCAA), insulin and glucose curves for the virtual population composed by 100 glucose-tolerant individuals (CNT,
“spaghetti plot” in panels A, B, C); BCAA, insulin and glucose mean (± SD) computed over the 100 curves (black lines in the inset plots).
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arginine and lysine determined inhibition of second-phase

insulin secretion, whereas leucine had no significant inhibitory

effect, this suggesting that those amino acids mediate their effects

on first- and second-phase insulin release via different

mechanisms of action, which may reflect differences in charge
Frontiers in Endocrinology 09
and/or metabolic fates within the beta cell (24). The strong

insulinotropic characteristics of leucine were also reported in

other studies, as outlined in a review report (25). Some studies

also analyzed the increase in insulin response following AAs

ingestion (with special focus on leucine) in both healthy control
A

B

C

FIGURE 6

Branched-chain amino acids (BCAA), insulin and glucose curves for the virtual population composed by 100 individuals with type 2 diabetes
(T2D, “spaghetti plot” in panels A–C); BCAA, insulin and glucose mean (± SD) computed over the 100 curves (black lines in the inset plots).
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and T2D subjects (26, 27). The increase in insulin response was

observed in both control and T2D groups, but, interestingly, in

T2D such increase was typically more robust, with insulin

release nearly tripled following the AAs ingestion (26).

The indicated review (25) also emphasized that, beyond the

insulinotropic action, leucine may increase AAs availability for

muscle protein synthesis and reduce muscle protein breakdown,

this being important for prevention of muscle-related

syndromes, such as sarcopenia (25). This may be of special

relevance in T2D, in relation to the bidirectional relationship

between T2D and sarcopenia (28, 29), remarkably linked to

nutritional aspects including AAs supplementation (30, 31). It

should also be observed that AAs may potentiate insulin

secretion through indirect mechanisms involving incretin

hormones. In fact, the effect of incretins in promoting insulin

secretion has been clearly established (32, 33), and accurately

quantified by appropriate methodology (34, 35). Interestingly,

one study investigated the effects of combined AAs and incretin

hormones administration by performing experiments in healthy

humans with intravenous infusion of an AA mixture, and of

human GIP or GLP-1-(7–36) amide, and found that AAs

affected insulin secretion indirectly, by improving the

potentiation of insulin secretion determined by GIP and GLP-

1 (36).

The wide set of studies on the possible effect of AAs on

insulin secretion and kinetics emphasizes the heterogeneity of

the AAs action on insulin, which may involve several different
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mechanisms (direct and indirect), may be different for the

different AAs, and may depend on the phenotypic

characteristics of the studied subjects (for instance, their

glucose tolerance category). This may explain the different

findings of some studies, which at first sight may appear

contradictory. In fact, one study in Chinese healthy subjects

showed that, following a MMTT, fasting and postprandial

plasma BCAA levels were consistently associated with greater

fasting and postprandial insulin secretion (5). Instead, in the

study from our research group, similarly based on a MMTT (7),

in T2D we found postprandial isoleucine higher than in controls,

but neither isoleucine nor the other BCAAs correlated with C-

peptide levels (assumed as marker of insulin secretion). On the

other hand, it should be noted that in another study in T2D, we

found that short-term dietary reduction of BCAAs decreased

postprandial insulin secretion (6). In addition, in the study (7),

we also investigated a group of type 1 diabetic patients, and

found increased BCAA levels that were associated with lower C-

peptide (i.e., lower insulin secretion). Nonetheless, as stated

above, we hypothesize no contradiction between those studies

(5–7), as the observed differences in the association between

BCAAs and insulin secretion among those studies are likely

mainly due to the different categories of the subjects under

investigation (healthy, type 1 and type 2 diabetes), and partly to

the different experimental conditions and study purposes. Since

our proposed model may be applied to data related to different

AAs and different categories of patients (ranging from normal
A

B

FIGURE 7

Best-fit results for model validation on the 100 virtual CNT
individuals. Red circles represent the mean (± SD) over the 100
individuals, whereas black continuous line represents the mean
predicted insulin curve (panel A); mean residuals over the 100
curves are also reported (panel B).
A

B

FIGURE 8

Best-fit results for model validation on the 100 virtual T2D
individuals. Red circles represent the mean (± SD) over the 100
individuals, whereas black continuous line represents the mean
predicted insulin curve (panel A); mean residuals over the 100
curves are also reported (panel B).
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glucose tolerance to type 2 diabetes), we are confident that it will

contribute to clarify the possible specific effects of various AAs

on insulin secretion, also likely depending on the studied

population. Notably, single AA may be also analyzed, in the

hypothesis that the study providing the AA data has appropriate

design. As an example, the model can be applied to the analysis

of data derived from experiments consisting in administration of

a glucose-leucine mixture (37). In Appendix B we reported some

results related to the analysis of the glucose-leucine data of that

study (37).

Several mathematical models describing the effects of

different compounds on insulin secretion and beta-cell

function have been proposed (38). Surprisingly, in contrast to

other compounds carefully studied with mathematical models

(especially the incretin hormones), for AAs we found only one

model pertinent to our scientific literature analysis (8), despite

the wide cluster of experimental studies showing effects of AAs

on insulin secretion, as outlined above. This further motivated us

to develop the models presented in this study. Of note, in the

indicated previous model (8), the main aim was to gain insights

into the role played by alanine in both amino acid-stimulated

insulin secretion and in glucose stimulated insulin secretion. The

model described the kinetics of core metabolic processes leading

to ATP production and Ca2+ handling in the pancreatic b-cells,
and related these processes to insulin secretion. Experimental

data were collected over a rat insulin-secreting cell line and used

for validating the model and for fine-tuning of the parameters.

The model simulations suggested that alanine produces a potent

insulinotropic effect via both a stimulatory impact on beta-cell

metabolism, and as a result of the membrane depolarization due
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to Ca2+ influx triggered by alanine and Na+ co-transport. In

summary, the model (8) was developed for simulation purposes

aimed at the investigation of the mechanisms responsible for the

AAs effects on the beta cell, in an in-vitro context. Our model

aim, instead, is the assessment of the possible effects of AAs in

single individuals, in an in-vivo context, with no expectation to

get insight into cellular mechanisms. Thus, given the major

differences in terms of approach and purposes, no real

comparison is possible between the model (8) and our model.

In this study, we analyzed the performance of different

models, and eventually selected the specific model showing the

best balance between accuracy in model fit, parsimony in the

number of model parameters, and plausibility of the model

parameter values. Of note, in some cases only the equations

describing glucose behavior were changing among models, but

nonetheless we were expecting effects on both glucose and AAs

parameters. Indeed, each model somehow “distributes” to

glucose and AAs part of the effect on the output variable

(insulin). Thus, changing the formulation of the glucose model

section would affect the assessment of both glucose and AAs

effect on insulin, and vice-versa.

We finally selected the model that showed the best corrected

Akaike’s information criterion (AICc) value (13) except for

the model with time variant kAA parameter. In fact, the time

variant model yielded the best AICc (very low value), but our

analysis of model identifiability indicated the model as locally

and not globally (i.e., univocally) identifiable. This means that

the model parameters can assume a limited set of values, which

may still be acceptable under certain circumstances, but it

represents a potential weakness of the model. Thus, since
FIGURE 9

Distributions of kGL and kAA over the 100 virtual CNT and T2D individuals.
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Model 1 showed the best AICc compared to all remaining

models, it was globally identifiable, and provided reasonable

estimated parameter values, we selected it as the most

appropriate and convenient for our applications. Nonetheless,

we reported in Appendix A the formulation of the excluded

models, since they may be useful for possible future studies in

other populations or in different experimental conditions.

Notably, the time-variant model may be improved by possible

application of regularization strategies, as done in some of our

previous studies (15, 34). It is also worth noting that we tested

both a two-step and a single-step modelling approach. In the

two-steps approach, we first run the model without AAs

contribution, thus determining the effect of glucose on insulin

secretion. In the second step, AAs was introduced, thus allowing

AAs to yield the residual contribution for the full explanation of

insulin secretion, if needed. Instead, in the one-step approach

both glucose and AAs role are estimated concomitantly. In terms

of modelling strategy both approaches have potential advantages

and pitfalls, but we eventually selected the one-step approach

being more consistent with the considered physiological

processes, because both glucose and AAs are expected to act

concomitantly on insulin release and kinetics.

Our study has some limitations. First, the model is currently

not applicable in people with type 1 diabetes, because it has not

been yet validated using type 1 diabetes data. Indeed, the

different findings of the study (7) with regard to type 2 and

type 1 diabetes indicated that the two types of diabetes may

require somehow customized modelling approach. Thus, we

agreed that for the moment it was convenient to focus only on

T2D. As a matter of fact, the model should not be used in data

from populations with metabolic abnormalities different from

simple impaired glucose regulation (prediabetes) or overt T2D.

Another limitation may be seen in the fact that the experimental

data used for modelling validation was restricted to average

rather than individual AAs data. However, this was counteracted

by the extensive analysis in virtual subjects (generated with wide

variations around the experimental reference AA values of study

(7)), this amending for the possible limitation. Of note, we have

been permissive in the generation of the virtual patients (to avoid

possible unphysiological constraints), but on the other hand this

provided some cases with particularly high sample values (i.e.,

hardly observable in real subjects). This may explain the

imperfect fit in those cases, as also observable in the average fit

at the high insulin values in the virtual subjects with normal

glucose tolerance. Furthermore, another limitation of the study

is that the selected model, as conceived, determines the AAs

effect on insulin kinetics rather than on insulin secretion and

insulin clearance separately. On the other hand, the scientific

literature on the AAs contribution to insulin kinetics rarely

showed AAs effects on insulin clearance, and hence we are

confident that the insulin kinetics effects described by our model

are mainly attributable to insulin secretion, rather than to

insulin clearance.
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Furthermore, in the present model we did not consider the

potentiating effect of incretin hormones on insulin secretion,

which was instead analyzed in several previous models from

both our research group and others, as recently reviewed (38).

This is a limitation, but it was necessary to avoid excessive

model complexity, which would prevent applicability in the

clinical context. In fact, currently it is not extremely common

that metabolic datasets include glucose, insulin and amino

acids measures, though we expect that more datasets will be

available in the future for clarification of still unsolved aspects

of individual amino acids actions, in the light of the general

recommendations for precision medicine in metabolism and

diabetes (39). Thus, metabolic datasets including incretin

hormones measure in addition to that of glucose, insulin and

amino acids are even rarer. Developing a model requiring

incretin hormones in addition to glucose, insulin and amino

acids would render a model hardly usable in the clinical

practice. Since potential clinical applicability of our model

was a pivotal goal of the study, we did not explicitly model

the incretin effect. It has also to be noted that the model is not

overfitted (model residual has shown to be not high but not

negligible either). Thus, we expected that the effect of incretin

hormones, and possible other variables not explicitly modelled

that may affect insulin secretion, is likely captured (i.e.,

included) in the model residuals. On the other hand, we

acknowledge that we cannot exclude a bias in the

determination of the model parameters, though we

hypothesize it modest for the reasons explained. This is

especially true in the case of experiments with robust

administration of proteins (including amino acids), as in the

MMTT originating the data that we have first analyzed (7).

It should also be acknowledged that such MMTT (Boost

High Protein, Nestlé S.A., Vevey, Switzerland) included several

amino acids (i.e., not only BCAAs). Since we analyzed BCAAs

only, the possible effect of the other AAs was not taken into

account. However, similarly to the incretin effect, as reported

above we expect the possible effect of other AAs being likely

captured in model residuals.

Finally, some caveats are necessary to prevent misuse of the

model. In fact, when exploiting our model to analyze the possible

effect of one AA (or a pool of AAs, as in this study), it is

necessary to ensure that the study design is adequate for our

purposes. The studied AA/AAs must be appropriately

stimulated by the experimental procedure, thus determining

sufficient variation from the basal, unstimulated value. In

addition, it should be already established from previous

knowledge that the AA/AAs under investigation can affect

insulin secretion. Furthermore, the experiments should ensure

that the effect of the AA/AAs of interest is not much lower than

that of other AAs or different compounds. Indeed, in such

conditions the model would hardly be able to reliable “extract”

from the data the specific small effect of the AA/AAs

under analysis.
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In conclusion, this study proposes a model to determine the

effects of amino acids on insulin secretion in people with or

without type 2 diabetes. The model provides the opportunity to

estimate amino acids-induced insulin secretion in single

individuals, possibly contributing to setting up patient’s

tailored dietary prescriptions to delay the onset of diabetes or

prevent further metabolic derangement in patients already

suffering from diabetes.
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