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Abstract

Use of administrative data for research and for planning services has increased over recent decades
due to the value of the large, rich information available. However, concerns about the release of
sensitive or personal data and the associated disclosure risk can lead to lengthy approval processes
and restricted data access. This can delay or prevent the production of timely evidence. A promising
solution to facilitate more efficient data access is to create synthetic versions of the original datasets
which are less likely to hold confidential information and can minimise disclosure risk. Such data may
be used as an interim solution, allowing researchers to develop their analysis plans on non-disclosive
data, whilst waiting for access to the real data. We aim to provide an overview of the background and
uses of synthetic data and describe common methods used to generate synthetic data in the context
of UK administrative research. We propose a simplified terminology for categories of synthetic data
(univariate, multivariate, and complex modality synthetic data) as well as a more comprehensive
description of the terminology used in the existing literature and illustrate challenges and future
directions for research.
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Introduction and background

Data collected during the administration of public services
e.g., health (such as by the National Health Service in the
UK), education, or employment (by the courts or the benefits
system) are increasingly being used, especially in the UK, by
researchers and policymakers to conduct meaningful research,
make informed decisions and deliver impact. In addition,
administrative data offer a long-term perspective particularly
relevant and useful for policymaking that might otherwise
be difficult to examine using small-scale (and shorter-term)
data [1]. These administrations keep records of the interactions
with the public in order to provide services in an effective way,
but they could be more extensively exploited, for example,
to provide a representative picture of public service uses and
needs within the UK. For example, de-identified data shared
with researchers via Administrative Data Research UK (ADR
UK) are used for this purpose, with several safeguards put in
place to prevent re-identification [2]. These safeguards can
prevent disclosure risk to some extent by removing crucial
information that could be traced back to individuals (i.e.,
names, contact details or any unique identifiers), thus allowing
researchers to conduct safer research.

One of the greatest benefits of using administrative data
for research is when datasets created by one government
department or public service are linked with other datasets
with the potential to provide a rich dataset to researchers [3].
Linkage between administrative datasets can add further value
by bringing together data across multiple sources and thus
providing a comprehensive database relevant for researchers
from a range of different disciplines including, but not limited
to, social science, public policy, finance, and medicine as
well as facilitating cross-disciplinary research questions. Access
to linked administrative data, which often contain sensitive
and/or personal data, is carefully scrutinised. Despite several
safeguards that are put into place to ensure data privacy,
linked datasets hold the additional risk of a potential “linkage
attack” which refers to the attempt of an adversary to re-
identify individuals in the linked data by using side information
owned by the adversary. This information could be obtained
by directly observing target individuals, mining suitable open
data or gaining access to the original data through data
breaches [4]. Hence, in the UK and elsewhere, measures to
protect the confidentiality of data fall under the “Five safes”
framework: safe data, safe people, safe projects, safe outputs,
and safe settings [5]. Whilst important, these measures can
pose a number of challenges for researchers in practice.

The application and approval processes put in place to
ensure safe access to administrative data are often lengthy
and complicated, taking months and years of research time.
As very well documented in a recent paper describing
the experiences of applying for linked national data for
research, there are several challenges related to process delays,
bureaucracy and a lack of clarity between data holders, data
controllers/processors, and researchers [6]. These can lead to
serious delays in accessing data, jeopardising the timelines
of funded research studies and limiting timelines of analyses
based on administrative data [7, 8]. Safe settings are highly
restrictive, e.g., preventing access to the internet (which can
provide useful reference material). Not all secure settings can
be accessed remotely, which has been particularly problematic

during the COVID-19 pandemic and for researchers needing
to travel to access safe settings outside of their usual areas
of work. Additionally, there is a further burden in terms of
resources required to ensure any outputs leaving the safe
setting are not disclosive, which can involve a lengthy checking
process before and after using secure lab settings. Finally, data
collected in clinical settings can pose additional challenges
due to their high dimensionality. Common de-identification
methods used to preserve the privacy of individuals while
allowing something of value to be extracted from personal
information have been useful. However, there is usually at
least some risk that those individuals might still be re-identified
from de-identified datasets [9]. This could be achieved through
auxiliary data an adversary (or intruder) might have available
and which they could use to match and re-identify individuals
within a dataset.

A promising solution to the challenges faced by users of
administrative data is to create ‘synthetic’ versions of the data.
Synthetic data are artificial data that look like the original
data sources without containing information on any ‘real’
individuals, but that attempt to preserve some of the statistical
properties of the original data sources. Similar methods
of statistical disclosure control (SDC), such as differential
privacy, have traditionally been applied to rule out the risk
of meaningful information being released [10]. Consequently,
privacy-preserving techniques and synthetic data can share
similar features; however, the aim of this article is to improve
researchers’ understanding of some common approaches to
generating synthetic data, which might support access to
administrative data in the UK. We provide an overview of
important considerations and options for generating synthetic
data with a focus on UK administrative datasets since this
is a field in which synthetic data has a clear potential to
support more timely and efficient research in the social and
health sciences. In addition, the rationale to focus on UK
administrative datasets derives from our experience, and the
experience of many researchers in the UK, of the challenges
of working with these data [6]. Similar issues might also arise
in other countries collecting routine data from government
departments (e.g., Australia, Canada, Brazil, and the U.S) [3].
There has been substantial investment in the UK to bridge the
gaps between government departments and policy bodies and
to make these data more easily available to enable vital and
cost-effective research to inform policy.

Given the wide-ranging terminology currently used by
researchers for describing the different categories of synthetic
data, we propose a simple and consistent terminology that
could be used across research teams working in this area.
In order to assemble all the information presented in this
overview, we first identified the available synthetic datasets
and relevant projects on synthetic data in the UK context.
Then we expanded our search into the associated concepts of
evaluating the utility of the synthetic data as well as disclosure
risk. Following that process, we identified available software
that has been used for these projects.

We begin by describing different specifications of synthetic
data, the different settings in which they might be used, and
terminology for different categories of synthetic data. We then
explore different synthetic data generation methods, drawing
examples from the literature and current research practice.
Finally, we consider ongoing challenges and future directions
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for synthetic data. We focus on the use of administrative
data in the UK, but the implications will be generalisable to
different contexts including large population-based surveys or
longitudinal cohort studies.

A spectrum for synthetic data

The idea of creating synthetic data was introduced in 1993 by
Rubin [11] who proposed the development of a technology for
releasing, for users of public-use data, synthetic datasets of
the U.S Census using generation methods based on multiple
imputation. This means that all data points in the original data
observations would be used to create fully synthetic datasets
of artificial units. Although generating synthetic values for all
data points holds many benefits, this is not always necessary
and so Little [12] proposed the idea of partially synthetic
data, in which only the sensitive to public disclosure variables
of the original data are synthesised. However, producing
accurate imputation models based on parametric approaches
proved rather difficult [13] and thus, non-parametric machine-
learning approaches started becoming more popular, such
as Classification and Regression Trees [14], support vector
machines [15], bagging [16] and random forests [17] for data
synthesis [18]. More recently and with the developments in
deep learning, there has been an increasing interest in the
use of generative adversarial networks (GANs) to generate
synthetic data [19, 20].

Synthetic data are artificially generated data designed to
mimic real data as closely as possible, but without containing
data directly collected from real individuals and hence without
personally identifiable information. There is a balance between
the extent to which the statistical properties of the original
data are retained and the risk of disclosure. We can therefore
think of synthetic data as a spectrum, whereby the lower end
of the spectrum includes very basic representations of the
original data that have no disclosure risk (e.g., by preserving
only the data type, format and structure and univariate
characteristics). We refer to this end of the spectrum as
“low fidelity” synthetic data. The higher end of the spectrum
includes very detailed and accurate representations of the
original data for which disclosure control will be critical (e.g.,
by also preserving complex interrelationships between the
variables, joint distributions, biological relationships etc.) [21].
We refer to this end of the spectrum as “high fidelity” synthetic
data. In the following section, we first propose a simplified
terminology that could be consistently used by researchers in
this area (see Table 1) and then we also bring together existing
terms for categories of synthetic data (Supplementary Table 1)
for a more comprehensive presentation of the existing methods
commonly used for the generation of synthetic data.

Uses of synthetic data

Synthetic data can be used both alone and in advance of
accessing the real data. For example, a sole purpose might
be to create a synthetic dataset that can be used for training
purposes: a training course on Hospital Episode Statistics
(HES; the administrative hospital dataset in England) might
use a dataset that has some of the same variables and
structure as HES, without including any real data. This would
allow a variety of course participants to attend and assess a

non-disclosive dataset for practical training sessions, without
needing any approvals. Similarly, synthetic data could be used
for the evaluation and development of different methodological
approaches (including “benchmarking”) [22], or as training
data for machine learning methods [20, 23, 24]. If the synthetic
data were similar enough to the real data, access to the real
data may not be required for these purposes.

Alternatively, researchers may want to use synthetic data
to develop code before deployment in real datasets, or to
conduct preliminary hypothesis generation and testing. These
activities could be conducted while approvals to access the real
data are being considered, thereby making more efficient use of
time. Whilst some suggest that synthetic datasets could also
be used in more complex settings such as clinical trials, either
as a proxy for real clinical trial data, to make data more broadly
available for secondary analysis [25], most agree that making
decisions that affect the service or care that an individual
receives should not be based solely on synthetic data, given
that there is a lack of consensus on how to measure the
quality of the synthetic data. For example, a recent summary of
synthetic data in the pharmaceutical industry lists a number of
uses but excludes decision making or statistical inference and
concludes that medical and scientific acceptance is required
before results based on synthetic data can be published [26].

Consequently, final analyses are rarely (if ever) conducted
on synthetic data and access to the real data (by the researcher
themselves or by a data holder) would usually be required.
For example, OpenSAFELY1 (software to support analysis
of electronic health records) produces simulated, randomly
generated “dummy data” that have the same structure as
the real data without disclosing any personal information
and allows external researchers to submit code, which is
then deployed on NHS health records that are only accessed
by a small number of approved analysts within a Trusted
Research Environment [27]. This code can be tested against
dummy patient data minimising the interactions with real
patient data and allowing data users with technical skills
to check and apply their methods. In the same vein, low
fidelity synthetic data could facilitate data sharing across
different government departments, avoiding any potential legal
risks and uncertainty about governance requirements [28]. To
increase trust in the results obtained from synthetic data,
the idea of validation and verification servers has also been
proposed. This allows for validating how well the synthetic data
generators reproduce the estimates and other characteristics of
the original data. The use of validation servers also allows the
execution of statistical programmes developed and debugged
on synthetic data to run on confidential data with noise added
to the estimates to preserve privacy [29]. One example is
Synthea, a leading synthetic data generator, method, and
software mechanism that examines and validates the quality of
healthcare synthetic data [30]; however, it is noted that further
research is needed as its capability to model heterogeneous
health outcomes is still limited. Ultimately, the appropriateness
of using synthetic data in place of original data will depend on
the importance of the decisions to be informed.

The purposes for which synthetic data are intended will
determine the type of synthetic data that are required (i.e.,

1https://www.opensafely.org/about/#:̃:text=In%20OpenSAFELY
%2C%20the%20data%20management,none%20of%20the%20disclosive
%20risks
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at which point along the spectrum data will be generated).
Synthetic data at the lower end of the spectrum could
be used for training purposes as mentioned above as no
identical structure and statistical resemblance of the original
data is needed. On the other hand, synthetic data at the
higher end of the spectrum that resemble the original data
could be used for training in data analysis and for exploring
and comparing populations or subgroups of populations for
clinical trials/interventions. In the context of administrative
data, synthetic data can be useful as an interim solution to
data access whilst approvals for access to the real data are
sought.

There are many different terms in the literature used by
researchers, government analysts, and industry stakeholders to
describe different categories of synthetic data (Supplementary
Table 1). Some are used interchangeably (e.g., dummy
data [31] with Synthetic valid or structural [32] as well as
the different categories for synthetically-augmented data under
the ONS spectrum), which creates confusion around which
terms to use (and whether there are any subtle differences
among them). Therefore, a need to agree on a consistent
simplified terminology has emerged. In Supplementary Table 1,
we provide a comprehensive overview and description of the
terminology for synthetic data currently used in the literature.
In Table 1, we then propose a simplified categorisation of
the terminology used in Supplementary Table 1, creating
three broad categories for synthetic data based on the
characteristics of the data generated: univariate, multivariate,
and complex modality synthetic data. In both tables (Table 1
and Supplementary Table 1) we describe how data at the
lower end of the spectrum, for example, will retain the
structure of the original data (e.g., the number and type
of variables) but do not attempt to mirror their statistical
properties. Data at this end of the spectrum will have a
very low risk of disclosure. In contrast, synthetic data at the
higher end of the spectrum will retain statistical relationships
between the variables (including any multilevel structure) and
allow researchers to test out various analytical strategies and
generate preliminary synthetic results. However, there may be
a higher risk of disclosure. Both types of data (depending on
the level of analysis conducted) could be useful for researchers
who want to appreciate the overall layout of the data with
the latter helpful for identifying any potential analytical
complications before applying for access.

Synthetic data generation methods

Synthetic data generation methods have been previously
categorised into two distinct classes: data-driven and process-
driven methods [44]. Data-driven methods derive synthetic
data from generative models that use original (or observed)
data. Some of the most frequently used data-driven methods
are i) imputation-based methods [11, 12, 45], ii) full
joint probability distribution methods [46], and iii) function
approximation method [47]. However, it is noted that
some of these techniques might overlap, e.g., multiple
imputation methods using Bayesian networks that estimate
joint probability distributions [48]. Process-driven methods
derive synthetic data from computation or mathematical
models of an underlying real-world process and include

techniques such as i) numerical simulation [49], ii) Monte
Carlo simulations [50], iii) agent-based modelling [51] or
iv) discrete-event simulations [52]. Although the above
classification of data- and process-driven methods is
meaningful, we now present a simplified classification of
synthetic data generation methods which could be grouped
into three general classes: 1) Generative models, 2) Sampling,
and 3) Prediction. Table 2 gives an overview of existing
synthetic data generation methods based on those three
general classes with examples of current use in the context
of UK administrative data (see also the Glossary in
Supplementary Table 2 in the Appendix for further explanation
of some terms). Many of these approaches have the flexibility
to generate data at both ends of the synthetic data spectrum,
depending on how the models are specified.

The choice of synthetic data generation methods depends
on the field of research and the type of data researchers aim to
synthesise. For example, the most frequently used techniques
to generate synthetic administrative datasets draw from the
statistical methods of sampling and prediction. Specifically,
prediction builds on multiple imputation methods, in which
values for missing data are imputed based on relationships
with original variables and is also the de facto method
for generating synthetic data in the context of Statistical
Disclosure Control [44]. Prediction approaches effectively treat
all values as missing; synthesised variables are generated
through imputation based on relationships observed in the real
data. Synthetic data are generated by sequentially predicting
the value of each variable depending on the value of other
variables. On the other hand, with sampling, synthetic data
are generated by sampling from distributions estimated from
the original data (e.g., as described in the Bayesian Network
technique in Table 2).

Evaluating synthetic data

Although synthetic datasets may never produce exactly the
same results as the original datasets, it is still important
to evaluate how well the synthetic data resemble the real
data [68], i.e., whether the structure/type/format of the data
and their statistical properties have been preserved. It is
generally recommended that the validity of the data should
be measured including how well the datatypes and the format
of the data have been preserved, followed by a range of
more comprehensive evaluation methods to assess whether
the synthetic dataset has preserved any of the statistical
properties of the original data by comparing important
statistical estimates [21].

To evaluate and measure the quality of the synthetic data,
different measures of utility are used. Utility of the data
refers to the extent to which results from the synthetic data
agree with those from the original data and is grouped into
two categories, general utility and specific utility [69]. To
determine the type of evaluation, it is first worth mentioning
that this is linked to the purpose of the data that were
synthesised, i.e., how the data will be used. For example,
simple validity checks might be sufficient for low fidelity
univariate synthetic data generated for training and education
purposes only. On the other hand, specific utility might need
to be assessed for high fidelity multivariate synthetic data
which could be used for extended code testing, data analysis,
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Table 1: Proposed simplified categorisation of synthetic data (a more comprehensive summary of existing terminology for synthetic
data can be found in Supplementary Table 1)

Data utility
Category of
synthetic
data

Description Expectations Uses

Minimally
disclosive,
minimal
analytic
value,low
fidelityy

Univariate
synthetic
data

-Preserves the type, structure and
format
-Does not contain any original data
-Impossible to identify any single
entity

-Variables in the synthetic dataset
should have similar fundamental
aggregated statistics to the ground
truth (original data) for both
continuous and categorical variables.
These include:

• Population/cohort-based
distribution data (e.g., age,
income distributions etc.)

• Categorical proportion data
(e.g., % of ethnic groups)

-Requires none or light disclosure
processes

i) Basic code or advanced
code testing including data
management or cleaning
ii) Education and training for data
analysis
iii) Sharing (allows easier sharing
of data within or between
government departments)

Multivariate
synthetic
data

-Preserves complex
inter-relationships between variables
-Close representation of values in real
individuals in a specific population is
expected
- Can preserve multivariate
distribution for higher-level or
low-level geographies and household
structure
-Can preserve real/logical
relationships (joint distributions, e.g.,
marital status and age)
-Can preserve biological relationships
(e.g., excessive thirst due to
diabetes)

-Preserves statistical distributions of
variables and at least some
relationships (e.g., correlations)
between them
-Preserves the original confounding
structure of the data

• These datasets should be
informed by subject-matter
expertise or familiarity with
real-world distributions.

• The more relationships are
preserved, the more realistic
they can be

-Requires stringent disclosure
processes

i) Extended code testing
ii) Extended education and
training for data analysis
iii) Testing experimental methods
iv) Exploring and comparing
populations
v) Understanding and examining
specific subgroups of populations
for study or trial/intervention
planning

More
disclosure
risk; more
analytic
value, high
fidelity

Complex
modality
synthetic
data

-Data created from perturbations
using accurate forward models (i.e.,
models that simulate outcomes given
specific inputs), physical simulation
or AI-driven generative models [33].
-This includes specific modalities
such as cardiac and radiology
images, physiological longitudinal
data (e.g., from wearables),
genomes, longitudinal data on
interactions with public services,
prescriptions data etc.

-Quality, effectiveness, and
robustness of the synthetic data rely
on the quality of the ground truth
data supplied to train algorithms
-Careful consideration is required
around the appropriate generation of
high-volume data modalities (e.g.,
issues such as geometric distortions
of body parts inherent to MRIs).
-Requires stringent disclosure
processes

i) Producing high-dimensional
data distributions in image
synthesis [34, 35] (e.g., image-to-
image translation) [36, 37] and
speech synthesis
i) Increasing robustness and
adaptability of AI models and
testing stability of machine
learning for medicine and
healthcare (e.g., predicting
early Alzheimer’s disease from
brain imaging data or medical
imaging such as skin lesions [38],
pathology slides [39] and other
imaging modalities) [40–43].
ii) Hypothesis generation by
facilitating the use of data in
understanding social and human
behaviour (e.g., diagnosing
mental health conditions from a
smartphone mood diary app or
audio recordings without using
personally identifiable data)
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Table 2: Methods and examples of synthetic data generation (further explanations are provided in the Glossary in Supplementary
Table 2)

Techniques Description Examples

Prediction

Multiple
Imputation

Data are generated by simulating multiple copies of the
population from which respondents have been selected. All
data with missing values are filled in by multiple imputations.
A random sample from each of these synthetic populations is
then released [53].

US Census Bureau’s Small Area
Income and Poverty Estimates
https://www.census.gov/library/
fact-sheets/2021/what-are-synthetic-
data.html

Classification
and Regression
Tree (CART)

CART works by using a series of conditional models to
sequentially predict and impute the value of each variable,
depending on the value of other variables, some of which have
already been synthesised.
Synthetic data are generated by sequentially predicting the
value of each variable, depending on the value of other
variables. This approach builds on multiple imputations, in
which values for missing data are imputed based on the
relationships with original variables. Prediction approaches
effectively treat all values as missing and synthesised variables
are generated through imputation based on relationships
observed in the real data [18]

Synthetic versions of the Scottish
Longitudinal Study (SLS)
https://sls.lscs.ac.uk/guides-
resources/synthetic-data/

R package
synthpop2 [54]

Autoregressive
models

An autoregressive (AR) model predicts future behaviour based
on past behaviour. It is used for forecasting when there is
some correlation between values in a time series and the
values that precede and succeed them. The process is a linear
regression of the data in the current series against one or
more past values in the same series. The AR process is an
example of a stochastic process, which has degrees of
uncertainty or randomness built-in. Randomness means that
while future trends can be predicted based on past data,
predictions will never be 100% accurate. Usually, the process
gets “close enough” for it to be useful for generating synthetic
data. AR models are also called conditional models, Markov
models, or transition models [55].

Sampling

Bayesian
Network

In this approach, the relationships between the variables are
specified within a graphical structure (e.g., directed acyclic
graph) and joint probability distributions (or contingency
tables if categorical) for all the variables are derived from the
original data [17]. Synthetic data are generated by sampling
from these distributions.

The National Cancer Registry
(‘Simulacrum’), generated by Health
Data Insight and Public Health
England
https://healthdatainsight.org.
uk/project_category/synthetic-data/

“Simulacrum
codebase” in
MATLAB

Bayesian
models using
MCMC

MCMC chains are used to sample from the joint posterior
distribution of the variables to be synthesised. A mixture of
variable types can be handled by transforming the observed
joint distribution into a multivariate normal distribution.
Multi-level data can be synthesised (i.e., to preserve
hierarchical structures such as pupils within schools or
patients within hospitals) [56, 57].

UK Primary care data for public health
research
i) CPRD cardiovascular disease
dataset3 [46, 58]
ii) CPRD COVID-19 symptoms and
risk factors synthetic dataset4 [46, 58]

R package
bnlearn5

R package
jomo [59]

Synthetic
minority
over-sampling
(SMOTE)

SMOTE is essentially performing resampling (creating new
data points for the minority class) and instead of duplicating
observations, it creates new observations along the lines of a
randomly chosen point and its nearest neighbours, i.e., it
synthesises new data examples between existing (real)
examples. SMOTE was initially developed to help address the
problems with applying classification algorithms to unbalanced
datasets and thus, it does not replicate data in the general
region of the minority samples, but on exact locations. This
method was proposed in 2002 [60] and could be used to train
neural network classifiers for medical decision making [61].

Continued
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Table 2: Continued

Techniques Description Examples

Static spatial
microsimulation

This technique generates synthetic populations by combining
individual-level samples (i.e., microdata or seed) and
aggregated census data (i.e., macro data or target). Its
intended use is for cases where spatial microsimulation is
desirable, i.e., where the individuals belong to household and
regional hierarchical structures. The main method used for
synthetic reconstruction is called Iterative Proportional
Fit [62, 63] which builds up a synthetic dataset for a small
area using Census tables leading to an entirely synthetic
dataset that is created by a joint probability distribution
specified using attributes conditional on existing (known)
attributes.

Generative models

General
Adversarial
Networks
(GANs)

GANs generate two competing neural network models. One
takes noise as input and generates samples (the generator or
forger). The other model (the discriminator) receives samples
from both the generator and the training data and attempts
to distinguish between the two sources. There is a continuous
game between the two networks where the generator is
learning to produce more and more realistic samples while the
discriminator is learning to get better and better at
distinguishing generated data from real data. GAN is
successful if these two networks co-operate well, and both
learn at the expense of one another and attain equilibrium
over time [64].

Quantifying utility and preserving
privacy in synthetic datasets (QUIPP)
– The Alan Turing Institute
[Conditional GAN for Tabular data
(CTGAN)]
https://www.turing.ac.uk/research/research-
projects/quipp-quantifying-utility-and-
preserving-privacy-synthetic-data-sets
Synthetic data in Machine learning for
healthcare
https://www.vanderschaar-
lab.com/synthetic-data-breaking-the-
data-logjam-in-machine-learning-for-
healthcare/
(PATE-GAN6, ADS-GAN7, and
TimeGAN techniques8)

Autoencoders
and Variational
autoencoders
(VAEs)

The autoencoder’s deep network consists of two individual
deep neural networks. The first of these networks is called the
encoder and compresses the input (original) data into a
shortcode. The second deep network is called the decoder and
it is a mirror image of the encoder and its purpose is to
decompress the shortcode generated by the encoder into a
representation that closely resembles the original data [65].
The variational autoencoders (VAEs) are a more modern
version of autoencoders. VAEs use the same architecture as
autoencoders but impose added constraints on the learned
encoded representation. Those two techniques use the
sampling method to produce new samples which are similar
to those in the original dataset but not exactly the same [66].

Recurrent
Neural
Networks
(RNNs)

RNNs are networks with loops in them, allowing information
to persist, i.e., they remember things from prior inputs while
generating outputs. This architecture equips RNNs with a
form of internal state (memory) enabling them to exhibit
temporal dynamic behaviours and to process sequences of
inputs. In RNNs the aim is to build a generative model which
captures the joint probability, p(x, y), of the inputs x and the
output y. This probability can be used to sample data or to
make predictions by using Bayes rules to calculate the
posterior probability p(y|x) and then estimating the most
likely output [67].

2For access to code for the synthpop package: https://github.com/cran/synthpop.
3https://www.cprd.com/content/synthetic-data#CPRD%20cardiovascular%20disease%20synthetic%20dataset.
4https://www.cprd.com/content/synthetic-data#CPRD%20COVID-19%20symptoms%20and%20risk%20factors%20synthetic%20dataset.
5For access to code and details about the R package bnlearn: https://cran.r-project.org/web/packages/bnlearn/index.html.
6http://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html.
7https://ieeexplore.ieee.org/document/9034117.
8https://papers.nips.cc/paper/2019/hash/c9efe5f26cd17ba6216bbe2a7d26d490-Abstract.html.
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exploring specific populations or as proxies for real patient data
in clinical trials to inform intervention planning and accelerate
research.

The general utility of the data should summarise the utility
of the dataset overall and can be assessed by inspecting
the marginal distributions of key variables [68] against the
original data and then estimating the standardised propensity
mean square error (pMSE) [69, 70] or distances between
distributions (e.g., Kullback-Leibler or Hellinger distance).
Other simple methods for evaluating synthetic data against the
original data may include 1) visual comparisons of univariate
distributions (e.g., inspecting cell counts or the frequency
of the distributions (for categorical data) or comparing
histograms and box plots (for continuous variables). Specific
utility can be evaluated according to how the data will be used,
for example by comparing estimated coefficients from selected
models between the real and the artificial datasets [71].
Other ways of evaluating specific utility are calculating the
relative or absolute differences in mean scores of standardized
values or examining whether point estimates from synthetic
data fall within the 95% confidence interval of the point
estimates obtained from the real data (larger overlap= higher
similarity) [72]. Otherwise, z-scores can be used to measure
the difference in statistics (e.g. the Chi-squared coefficient)
that are used to analyse associations within the original
and synthetic data [21]. More complex comparisons can be
done among multivariate distributions that would involve
comparing the model parameters estimated from each
dataset.

To measure the extent to which the statistical properties
of the real data have been retained in synthetic multivariate
structures, correlations between variables in the synthetic
datasets can be inspected. For example, pairwise Pearson
correlations between the synthetic and the original data (if
continuous and symmetrically distributed) could be used
to visualise the differences in the correlation matrices and
calculate an overall mean of the correlation differences [73].
Also, other model-based approaches such as logistic
regressions for binary variables and multiple linear regressions
for continuous variables can be applied to examine multivariate
structures and compare confidence intervals for the estimated
parameters.

In addition, dimension reduction techniques can also
explore whether statistical properties of the real data are
appropriately reflected in the synthetic data (e.g., whether
certain factors that can be derived from the original data
can also be derived in the synthetic datasets). These
methods include Principal Component Analysis (PCA) [74],
t-Distribution Stochastic Neighbor Embedding (t-SNE) [75]
and Multiple Correspondence Analysis (MCA) [76]. Finally,
with the rise of synthetic data in the field of data
science and machine learning another measure of utility
has been developed – that is measuring the difference
in the performance of supervised machine learning models
trained on synthetic and on original data. Although a
recent study suggested that the majority of the models
trained on synthetic data had lower accuracy compared to
the models trained on original data, these deviations are
expected and manageable and highlight the potential of
synthetic data and how we could further evaluate their
robustness [77].

Evaluating disclosure risk

In addition to data utility, information disclosure risk should
also be taken into consideration as these two metrics relate
to equally important, and typically complementary but also
competing, objectives, and thus should be considered jointly.
Traditionally, one solution to deal with disclosure risk and
the associated challenges is to allow the release of data
with reduced confidentiality risk to an acceptable level under
the differential privacy concept [10, 78], using statistical
disclosure control (SDC) methods. Early SDC approaches
involved recoding data, data swapping, or adding noise, and
k-anonymity (performed via suppression and generalization of
the data). However, methods used to prevent re-identification
of individuals or attribute disclosure risk could degrade the
data to such an extent that they are no longer fit for purpose.
Concerns around disclosure risk may also remain, particularly
when increasing numbers of variables are brought together
from different sources through linkage.

Although the purpose of the synthetic data is to control
confidentiality risk in place of the traditional SDC, this
does not mean that the synthetic datasets do not pose any
disclosure risks. Specifically, information disclosure is about
the extent to which the real data may be revealed, directly
or indirectly, by the synthetic data [44]. There are two
classes of privacy disclosure risk, identity disclosure and
attribute disclosure, where the former refers to the risk
of an attacker identifying an individual within a confidential
and sensitive dataset and the latter is about the risk of an
attacker identifying sensitive information about an individual
in a dataset from a set of attributes known to the attacker,
e.g., by matching relevant variables. For example, there is
the possibility of identification disclosure in partially synthetic
data, as discussed by Reiter and Mitra [79], as the probabilities
of identification in the released data could be computed. On
the other hand, it is less likely that personal records will be
identified in fully synthetic data, as these do not contain any
personal information on any individual. Thus, one way to
minimize disclosure risk would be to ensure that the synthetic
data depend as little as possible on the original data, so that an
intruder who has partial knowledge of a particular population
would not be able to make inferences based on values of
sensitive variables for that population.

Disclosure risk in synthetic data depends on the methods
used to generate the data, and the original data themselves;
there is a lack of evidence on which generation methods are
“safest” for which purposes [80]. How to measure disclosure
risk in synthetic data is an ongoing and active field of research.
Recent work in this area includes a method called Targeted
Correct Attribution Probability by Elliot and Taub [80], Correct
Relative Attribution Probability [68], and a Generalized
Method [81] of Taub’s initial approach of Correct Attribution
Probability which is about assigning a risk probability for the
exposure of the real value of the corresponding individual in
the original dataset instead of ignoring those non-matches
or assigning probability 0. Privacy mechanisms have been
added to some software that implements the synthetic data
generation methods, in order to handle disclosure risk post
synthetic data generation. For instance, synthpop in R includes
tools for statistical disclosure control that label and remove
unique replicates of unique actual individuals in the original
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data (e.g., bottom and/or top coding, smoothing, and
excluding variables from being identified as unique).

Challenges and future directions for
synthetic data

Challenges of using synthetic data

Generation of synthetic data is an important development
for research using administrative data and other longitudinal
population-based studies as it makes data accessible for
exploration that can benefit the research community before
applying for and gaining access to the datasets. However, there
are a number of challenges that have to date prevented the
wider use of synthetic data for administrative data research.
For one, disclosure risk can remain a concern, as there is still
the possibility of unintentionally identifying individuals and
disclosing private information, especially when synthetic data
are too accurate or resemble the original data too closely. This
means that even when the data are fully synthetic, specific
outliers that occur in patient populations with rare diseases,
for example, could be identified when the data generated
have preserved the same statistical properties. Therefore, if
synthetic data are to be made widely available (outside of
safe settings, for example), or involve sensitive topics such as
sexual behaviour, then some level of SDC (e.g., low number
suppression) may still need to be considered to minimize the
residual risk of re-identification. This may involve removing
or editing outliers or unique records, or in some cases,
applying SDC methods to an entire dataset. Alternatively,
we could make more use of hide-and-seek challenges, where
trusted users are invited to try to re-identify individuals
(to provide additional confidence that the data are not
disclosive) [82].

Second, comparisons of synthetic data generation methods
can be difficult. While a variety of synthetic data generation
methods exist, evaluation metrics are not consistently applied
across different approaches. According to Walonoski and
colleagues [83] who developed Synthea, an open-source
software package that simulates the lifespans of synthetic
patients, validation of claims of success and methodologies in
synthetic data generation methods are often superficial and
focus only on the overall structural appearance or general
statistical comparison under the concept of evaluating the
general utility of the synthetic data. Apart from that, there are
several challenges present when measuring the utility of both
low- and high-fidelity synthetic data. For example, although
low-fidelity synthetic data do not hold any disclosure risk,
there is the likely accusation of poor-quality data because of
undesirable combinations of variables from different data fields
(e.g., age and marital status with children being shown as
married) if data have not been through checks. On the other
hand, these types of utility challenges would not be present
with high-fidelity data, but it is important to highlight that,
as we attempt to produce complex, high-quality synthetic data
and as the accuracy increases, the disclosure risk also increases
and differential privacy methods, such as adding noise, might
be applied to ensure that disclosure risk remains at an
acceptable level [31]. Consequently, the modelling performance

of those data may be compromised making them invalid9.
Thus, a consistent and appropriate evaluation of the utility
of synthetic data (alongside an assessment of disclosure risk)
is needed [44].

A third challenge is how to enable repeatability and
reuse of different methodologies, which requires comprehensive
and detailed documentation of the synthetic data generation
methods [24]. The quality of synthetic data depends on the
quality of the input data and the data generation model, as
far as data-driven methods are concerned. Creating synthetic
datasets that are fit for purpose requires time, effort, and
output controls to ensure accuracy when comparing the
synthetic with the original datasets. Having a well-defined
purpose for the data can make the generation and evaluation
easier. Therefore, being clear about the purpose will provide
a more complete assessment of the quality of the synthetic
data [44].

Fourth, administrative data often contain very large
numbers of variables and can include complex data types
when linked to other sources such as clinical data that
include imaging, free-text, and genomics. Thus far, researchers
have attempted to generate synthetic data from a small
number of variables with certain data types (e.g., numerical)
(see [84]) due to the complexity of the synthetic data
generation. However, in order to generate synthetic versions
of administrative datasets, there is a need to synthesise
datasets with hundreds of thousands or millions of records and
several hundreds of variables with different data types (e.g.,
categorical or string). The most effective ways of synthesising
these different variable types are not yet known. Furthermore,
additional considerations required for synthesising linked data
may need to be taken into account (e.g., whether to synthesise
data before or after they are linked, and whether relationships
between variables in different datasets can be retained) and
specific algorithms to deal with large-scale data should be
applied. As discussed by Raghunathan and colleagues [85],
further research needs to be conducted on the synthetic data
generation methods for longitudinal studies as those pose
additional challenges. Those challenges can include difficulties
in adding new information to the already synthesised data that
has changed across waves and increased disclosure risk when
linking longitudinal data across waves as more information is
being released about the individuals or households than if the
data were not linked [86].

Future directions for synthetic data

Finally, the lack of consensus on the appropriate use of
synthetic data has created scepticism about the benefits of
synthetic data. While some argue that it is better to create
multivariate synthetic datasets that preserve not only the data
format, and types but also the complex statistical relationships
between variables [85], others recognise the potential of
univariate synthetic data for planning and training [31].
Additionally, acceptability to the public has not yet been
assessed and it is important for data holders to effectively
communicate the benefits of synthetic data for research and
to develop trust with data users and the public. This may

9Beatty, R. (2020) ‘Synthetic Data’, Report for NISRA, paras 35-37
and 46-48.
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be done most easily by starting with low fidelity data, which
may help to build acceptance of synthetic data. Recently, our
research team engaged with a panel of patients, data users
and advisers who are part of the “use MY data” team10 that
supports and promotes the protection of patient data, in order
to get feedback on public perceptions of the acceptability of
releasing synthetic versions of data or making these publicly
available. The general feedback from the discussion was that
the group found synthetic data an interesting idea, however,
they were unfamiliar with the term and its potential uses.
One of the main issues that came up was the extent to
which an individual’s private information would be protected
in a synthetic dataset, and whether the use of synthetic
data could be a cost-effective way of accessing data in the
future. Further public engagement is needed to communicate
and promote the potential benefits arising from the uses of
synthetic data as well as to understand public misconceptions
and perceptions around creating synthetic versions of
administrative
datasets.

Conclusions

We provide an overview of synthetic data generation methods
in the context of UK administrative data research and propose
a simplified categorisation of synthetic data: univariate,
multivariate, and complex modality synthetic data. We discuss
benefits, potential challenges and future directions in the
field. While access to administrative datasets can facilitate
meaningful and impactful research, it is also important to
retain the privacy and confidentiality of personal and sensitive
data collected using public funds and services. Generating
synthetic datasets can minimise some of the main challenges
related to information disclosure risk as they can be used
in place of the real data either for training reasons or to
accelerate research [44]. Further understanding is needed from
the research community on the uses of synthetic data and
how those are generated as well as public engagement and
collaboration between data producers and researchers/data
users.
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Supplementary Table 1: Existing categorisations of synthetic data currently used in the literature. A simplified categorisation is
proposed in Table 1 of the main text

Data utility Fully/partially
synthetic

Common terms for
synthetic data type

Description Exemplar data case

Minimally
disclosive,
minimal
analytic value,
low fidelityy

Fully
synthetic
data11

- Dummy data [31] -Preserves the type, structure and format
of real data but not the statistical
properties of the variables
-Do not contain any original data
- Almost impossible to identify any single
entity

i) Basic code or advanced
code testing including data
management or cleaning
ii) Technical development (API,
tool or pipeline testing)
iii) Education and training (for
data analysis)- Synthetic datasets12 [32]

• Valid

- Preserves only the structure, format, and
data types of the variables
- Constructed based only on available
metadata; values are generated from
ad-hoc distributions and open sources
- Contains only values present in the
original (univariate) data.
-No disclosure risk

• Structural

-Preserves the format and record-level
plausibility (i.e., values use plausible
distributions) and replicates marginal
(univariate) distributions where possible
-Produced dataset passes the sanity check
(validation condition or edit rules) the real
dataset would need to go through.
- Missing value codes, errors and
inconsistencies of the original data are
present
-Minimal disclosure risk

Fully &
Partially
synthetic
data

- Population level synthetic
data [87]
- Patient level synthetic
data [46]

- Key characteristics of variables in the
original data (e.g., distributions) are
preserved
-Complex inter-relationships between
variables are not considered
-Preserved complex inter-relationships
between variables (for each individual)
-Close representation of values in real
people in a specific population

i) Explore and compare
populations
ii) Education and training (for
data analysis)
iii) Testing experimental
methods
iv) Extended code testing
v) Understanding and
examining specific groups
or populations for study or trial
planning
vi) Develop analysis plans
vii) Produce preliminary results
prior to accessing the real data

- Synthetically-augmented
datasets [32]

• Synthetically-
augmented plausible

-Preserves the format and record-level
plausibility and replicate marginal
(univariate) distributions where possible
-Constructed based on real dataset, values
are generated based on original
distributions (with added fuzziness and
smoothing)
-Does not preserve relationships

• Synthetically-
augmented
multivariate plausible

-Preserves the format and record-level
plausibility and replicate multivariate
distribution loosely for higher level
geographies
-Constructed based on real dataset, values
are generated based on original
distributions (with added fuzziness and
smoothing)
-Some key relationships are retained

Continued
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Supplementary Table 1: Continued

Data utility Fully/partially
synthetic

Common terms for
synthetic data type

Description Exemplar data casey

• Synthetically-
augmented
multivariate detailed

-Similar to previous but more effort to
match the real relationships (joint
distributions), e.g., in smaller geographies
and household structure

• Synthetically-
augmented replica

-Preserves format, structure, joint
distributions, missingness patterns, low
level geographies.
-Constructed based on the real dataset,
values are generated based on observed
joint or conditional distributions, while
de-identification methods are applied.

-In all types of synthetically-augmented
datasets, missingness is to be preserved
and disclosure control is necessary case by
case

More
disclosure risk;
more analytic
value, high
fidelity

-Complex modality
synthetic data

-This includes specific modalities such as
radiology images, ECG time series data

i) Machine learning for e.g.,
medicine and healthcare
ii) Facilitating the use of data
in understanding social and
human behaviour

11The term “Fully synthetic data” refers to datasets in which all variables are generated, and original values are included. The term
“Partially synthetic data” refer to datasets in which only some variables, typically those with sensitive information, are generated
while some of the original variables are still present. Also, for the terms assigned in the “Fully and Partially synthetic data”
category, datasets can either contain fully synthesized data or partially synthesized data based on the purpose of the research and
the statistical modelling applied.
12The terms “Synthetic datasets” and “Synthetically-augmented datasets” refer to a high-level scale to evaluate the synthetic data
based on how closely they resemble the original data, their purpose and disclosure risk and is proposed by the Office of National
Statistics (ONS). More details can be found here:
https://www.ons.gov.uk/methodology/methodologicalpublications/generalmethodology/onsworkingpaperseries/onsmethodology
workingpaperseriesnumber16syntheticdatapilot
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Supplementary Table 2: Glossary of synthetic data generation techniques

Terms Definition

Deep Neural
Networks

Deep learning is part of the machine learning methods based on artificial neural networks (a
technology built to simulate the activity of the human brain) with representation learning. As
such, deep neural networks are networks with a certain level of complexity and consist of an
input layer, an output layer and at least one hidden layer in between. Each layer performs specific
types of sorting and ordering (‘feature hierarchy process’). These networks use sophisticated
mathematical modelling to process data in complex ways [88].

General
Adversarial
Networks (GANs)

GANs belong to a class of generative models within the artificial intelligence (AI) and machine
learning field and represent a powerful way of learning any kind of data distribution based on
unsupervised learning. GANs aim to learn the true data distribution of the training (input)
dataset and attempt to generate new data points from this distribution with some variations
and not just reproducing the old data the model has been trained on. GANs try to use the
power of neural networks (as described above) to learn a function to approximate the approach
to model a distribution as close as possible to the real data [80].

Autoencoders Autoencoders were originally introduced as a method for learning meaningful representations
from data in an unsupervised manner and the concept of autoencoders in the context of artificial
neural networks was first presented by Ballard.....[89]. An autoencoder is a feed-forward deep
neural network that first compresses the input data into a more compact representation and
then attempt to reconstruct the original input by using an in-between layer which restricts the
amount of information that travels within the network. Autoencoders have been frequently used
for data compression and dimensionality reduction and can learn nonlinear relationships [84].

Minority class This term refers to classification predictive modelling in machine learning (ML) and involves
predicting a class label for a given observation. Most of the ML algorithms used for classification
in predictive modelling were designed with the assumption of an equal number of examples for
each class. However, imbalanced classification problems might occur (i.e., where the distribution
of examples across the known classes is bias or skewed) and one of the target classes can contain
a much smaller number of instances than the other classes (minority class) [90].

Bayesian Network Bayesian networks represent systems as a network of interactions between variables from primary
cause to final outcome, with all cause-effect assumptions made explicit....[91]. They are a type of
probabilistic graphical model that uses Bayesian inference for probability computations. Bayesian
networks aim to model conditional dependence, and therefore causation, by representing
conditional dependence by edges in a directed graph. Through these relationships, one can
efficiently conduct inference on the random variables in the graph through the use of factors [92].

Function
approximation

Function approximation is a technique for estimating an unknown underlying function using
historical or available observations from the domain. Artificial neural networks learn to
approximate a function [93].
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