Estudio Morfométrico y estimación de caudal por medio del método racional para la creciente de la quebrada Canauchita hasta la desembocadura en el rio Chirche del municipio de Otanche en el departamento de Boyacá.

Michael Jeffrey Ospina García

Juan Sebastian Mancipe Gironza

Universidad Distrital Francisco José de Caldas Facultad Tecnológica Tecnología en Construcciones Civiles Bogotá 2016 Estudio Morfometrico y Estimación de caudal de creciente de la quebrada Canauchita del municipio de Otanche-Boyacá utilizando el método racional.

Michael Jeffrey Ospina García 20112079070

Juan Sebastian Mancipe Gironza 20092079065

Trabajo de Grado Tecnología en Construcciones Civiles

Tutor: Ing. Fernando Gonzalez Casas

Universidad Distrital Francisco José de Caldas Facultad Tecnológica Tecnología en Construcciones Civiles Bogotá 2016

Nota de aceptación
Jurado

Dedicatoria

A mi madre Claudia Andrea García, quien apoyo mi decisión profesional al cien por ciento; a mi hijo Martin Daniel Ospina Mora quien desde el primer día motivo mi camino y lo guio hacia un futuro mejor; a mis hermanos quienes con sus concejos y apoyo fueron de gran ayuda en mi carrera profesional.

Michael Jeffrey Ospina García

A mis padres julio Hernando Mancipe Díaz, Adriana Gironza, quienes fueron parte fundamental para mi desarrollo profesional, a mi esposa Lina Paola Ruiz y a mi hija Samantha Mancipe que fueron el motivo de lucha para culminar esta etapa, mis hermanos y familiares que siempre me apoyaron desde un principio pese a las dificultades.

Juan Sebastian Mancipe Gironza

Agradecimientos

A Dios que nos permitió cumplir esta meta, a los docentes, quienes por medio de sus enseñanzas hicieron que cada día nos enamoráramos más de mi profesión; a la universidad Distrital Francisco José de Caldas la que nos acogió en sus instalaciones haciéndonos integrantes de familia; al Ing. Fernando Gonzales Casas, quien fue de gran ayuda en la realización de esta monografía.

TABLA DE CONTENIDO

Lista de tablas	8
Lista de Ilustraciones	10
Lista de ecuaciones	11
INTRODUCCIÓN	13
1. MARCOS DE REFERENCIA	16
1.1. Marco Geográfico	16
1.1.1. Ubicación de la quebrada	16
1.1.2. Limites	16
1.2. Marco conceptual	17
1.2.1. Caudal	17
1.2.2. Coeficiente de escorrentía	17
1.2.3. Tiempo de concentración	17
1.2.4. Suelo	17
1.2.5. Precipitación	18
1.2.6. Clasificación de las corrientes de agua	18
1.2.7. Cuenca Hidrográfica	18
1.2.8. Elementos de una cuenca hidrográfica	21
1.2.9. Características físicas de una hoya de drenaje	22
1.2.10. Sistema de drenaje	25
1.2.11. Características morfometricas de la cuenta hidrográfica (del relieve superficial y de los sistemas de cause)	27
1.2.12. Aspectos altitudinales de las cuencas u hoyas hidráulicas	29
1.2.13. Método Racional	30
2. DESARROLLO DE LA MONOGRAFIA	31
2.1. Estudio morfometrico de la hoya o cuenca hidráulica	31
2.1.1. Clasificación de las corrientes de agua	31
2.1.2. Área de la cuenca hidráulica (A)	31
2.1.3. Perímetro de la cuenca (P)	34
2.1.4. Índice de Gravelius o coeficiente de compacidad (KC)	34
2.1.5. Longitud de la cuenca (L)	36
2.1.6. Ancho de la cuenca (B)	37
2.1.7. Factor de forma (Kf)	37

2.1.8. Orden de la cuenca	38
2.1.9. Densidad de drenaje (Dd)	39
2.1.10. Extensión media de la escorrentía superficial (E)	41
2.1.11. Sinuosidad de las corrientes de agua (S)	42
2.1.12. Perfil Longitudinal Del Cauce	43
2.1.13. Pendiente de la hoya	44
2.1.14. Pendiente Media del cauce principal	48
2.1.15. Curva Hipsométrica	53
2.2. Estudio del Periodo de retorno	57
2.3. Uso del suelo adyacente a la quebrada	58
2.3.1. Coeficiente de Escorrentía superficial	58
2.3.2. Usos del suelo de Boyacá	59
2.4. Obtención y análisis de datos pluviométricos del sector	52
2.4.1. Tiempo de concentración	52
2.4.2. Métodos de estimación	52
2.4.3. Aplicación de las fórmulas de tiempo de concentración	54
2.4.4. Curvas Intensidad-Duración-Frecuencia (IDF)	56
2.5. Aplicación del Método racional	59
2.5.1. Cálculo de caudal máximo de creciente	59
2.6 Hidrología En Cuencas Pequeñas Con Información Escasa	60
Conclusiones	63
Bibliografía	75

Lista de tablas

Tabla 1 : Coordenadas de la divisoria	33
Tabla 2 : Interpretación Valores de Índice de Gavelius	35
Tabla 3: Coordenadas para el cálculo de la longitud de la cuenca	37
Tabla 4 : Valores interpretativos del factor de forma	
Tabla 5: distancia de los tramos para el cálculo de la densidad de drenaje	
Tabla 6 : interpretación valores de Dd	41
Tabla 7 : valores perfil longitudinal de la cuenca	43
Tabla 8: Método de la cuadricula para el cálculo de pendiente de la hoya	
Tabla 9: Numero de ocurrencias	
Tabla 10: Pendiente de cada tramo del cauce principal, método de Taylor	52
Tabla 11: Datos para él la gráfica de la curva hipsométrica	
Tabla 12: Área * cota (curva hipsométrica)	
Tabla 13: Ejemplos de periodo de retorno en obras civiles	57
Tabla 14: clasificación y descripción del suelo	
Tabla 15: Coeficientes de escorrentía	
Tabla 16: Coeficientes escorrentía para la cuenca hidrográfica de la quebrada Canauchita	51
Tabla 17: Tiempo de concentración según diferentes autores	
Tabla 18: Intensidad de Precipitación	
Tabla 19: Calculo del caudal máximo de creciente (METODO RACIONAL)	
Tabla 20: Calculo del volumen de agua de lluvia (METODO SCS)	
Tabla 21: Calculo del caudal (METODO SCS)	
1	

Lista de llustraciones

Ilustración 1: delimitación de una cuenca hidrográfica	21
Ilustración 2 : Longitud de la Cuenca	
Ilustración 3: ejemplo de clasificación de orden de una cuenca	25
Ilustración 4: interpretación Sinuosidad de las corrientes de agua (S)	27
Ilustración 5: Ejemplo de perfil longitudinal de una quebrada	
Ilustración 6: Imagen satelital y demarcación del rio Chirche y la quebrada Canauchita	32
Ilustración 7 : Determinación del área mediante el software AutoCAD	
Ilustración 8: Interpretación Índice de Gravelius	35
Ilustración 9 : Longitud de cuenta (L)	
Ilustración 10: Sinuosidad de las corrientes de agua (S)	
Ilustración 11 : perfil longitudinal cuenca de la quebrada Canauchita	44
Ilustración 12 : Distribución de pendientes en el porcentaje total	
Ilustración 13 : Pendiente por el método de los extremos y perfil longitudinal	
Ilustración 14 : Referencia para cálculo de pendiente ponderada	
Ilustración 15 : Relación de pendientes	
Ilustración 16: Faces o etapas de las cuencas hidrográficas (curva hipsométrica)	
Ilustración 17: Curva Hipsométrica de la hoya que contiene la quebrada Canauchita	

Lista de ecuaciones

Ecuación 1: Indice de Gravelius (Kc)	24
Ecuación 2: Ancho de la cuenca (B)	24
Ecuación 3: Coeficiente de Forma (Kf)	24
Ecuación 4: Densidad de drenaje (Dd)	26
Ecuación 5: Extensión media de escorrentía (E)	26
Ecuación 6: Sinuosidad de las corrientes de agua (S)	26
Ecuación 7: pendiente media Método de los valores extremos	28
Ecuación 8 : Pendiente ponderada	29
Ecuación 9: pendiente media Método de Taylor y Schwartz	29
Ecuación 10: Ecuación del método racional (Qmax)	30
Ecuación 11: Ecuación caudal máximo calibrada	30
Ecuación 12: ecuación de sturges	46
Ecuación 13 : intervalo de pendiente	46
Ecuación 14 : pendiente de la hoya; método de las cuadriculas	48
Ecuación 15 : Método del trapecio para área bajo la curva	49
Ecuación 16: Ecuación para la altura de la pendiente ponderada	49
Ecuación 17: Elevación media de la cuenca	56
Ecuación 18: Ecuación de Bransby-Williams	52
Ecuación 19: Ecuación de SCS - Ranser	53
Ecuación 20 : Ecuación de Kirpich	53
Ecuación 21: Ecuación de Temez	53
Ecuación 22 : Ecuación de V.T.Chow	54
Ecuación 23: Ecuación de la Dirección general de Carreteras (España)	54
Ecuación 24: Ecuación experimental caudal máximo de creciente cuenca que contiene la quebrada	
Canauchita	60
Ecuación 25: Ecuación de caudal según el método triangular SCS	61
Ecuación 26: Ecuación del volumen de agua de lluvia según el método triangular SCS	61

Lista de anexos.

Anexo 1: Cause principal y tributarias que se conectan a la quebrada Canauchita	65
Anexo 2: Divisorias de agua	66
Anexo 3: Longitud de la cuenca	
Anexo 4: Orden de la cuenca hidráulica	
Anexo 5: Valores alfa numéricos tramos de la cuenca	69
Anexo 6: Método de la cuadricula	70
Anexo 7: División por tramos método de Taylor	71
Anexo 8: áreas para curva hipsométrica	72
Anexo 9: Perfil longitudinal	
Anexo 10: Grafica periodo de retorno vs. Caudal máximo de creciente	

INTRODUCCIÓN

En hidrología las crecientes son eventos extraordinarios que se presentan en los cauces de las corrientes naturales durante las cuales las magnitudes de los caudales superan notablemente los valores medios normales en dichas corrientes.

Las nombradas crecientes se evidencian en los lechos de los ríos o cualquier área fluvial y son producto de procesos naturales, como la lluvia. El no tener en cuenta el impacto que producen estos procesos en la hidráulica del rio, pueden retrasar o afectar el proceso constructivo de cualquier tipo de obra civil o peor, provocar catástrofes que vulneran la integridad de los habitantes del sector y el patrimonio material.

El Método Racional se aplica en cuencas homogéneas pequeñas, menores de 10 hectáreas (valor igual a $10Km^2$), principalmente para drenajes de carreteras, patios, áreas rurales.

Este proyecto estudia tipologías correspondientes a la quebrada Canauchita la cual desemboca en el rio Chirche ubicado en el departamento de Boyacá, estos estudios se basan principal mente en las características del terreno.

El fin de este estudio, es emplear el método racional al evaluar los diferentes factores morfológicos de la cuenca para así estimar el caudal de creciente podemos conocer el comportamiento hídrico del afluente.

Mediante el estudio de este documento se puede tener una base para la implementación de obras futuras; su aprovechamiento según las características hídricas de este quebrada, para así lograr obtener el mayor aprovechamiento fluvial.

Esta monografía hace parte de una serie de tesis realizadas con ayuda y seguimiento del semillero de investigación UDENS.

El desarrollo de esta monografía está dada por:

Las consecuencias perjudiciales para la infraestructura, inherentes a las crecidas de caudal de los ríos, son acontecimientos que no son precisamente naturales, puesto que proceden de la intervención antrópica por omisión de estudios hídricos.

Al llevar a cabo la construcción y la operación de cualquier estructura con la insuficiencia de estos estudios, se promueven nocivas conductas hidráulicas, que estropean el propósito por el cual la estructura fue preconcebida. Esto sucede, ya que no se optimiza el recurso hídrico y posiblemente ocurre desperdicio de los recursos, la obsolencia estructural o en su defecto el colapso de las construcciones. Cual sea el caso, hay pérdida de dinero considerable en la población de referencia.

Los eventos que se mencionaron anteriormente, generan inocultables efectos negativos, atrofiando numerosos sectores de gran relevancia, entre los que se encuentran la integridad de la población, la economía o la infraestructura que es el motor del progreso de las regiones.

Las superficies hídricas de la tierra como los ríos o lagunas, están influenciadas enormemente por factores biológicos, que contribuyen a la modificación de los patrones hidráulicos de las cuencas. Por tanto, es de suma incumbencia para la hidráulica, conocer tales parámetros que proporcionan información del caudal de creciente, para ejecutar adecuadamente y sin perjuicios cualquier plan de tipo estructural como, puentes, acueductos, presas, bocatomas entre otros.

Es por lo anterior que se elabora el presente documento donde se evidencia todo el estudio morfológico de la cuenca de la quebrada Canauchita del municipio de Otanche, cuyo objetivo principal es la estimación del caudal de creciente, que garantice seguridad para ejecutar cualquier obra civil.

Este proyecto de investigación tiene como objetivo principal elaborar el estudio morfometrico y de caudal de la quebrada Canauchita hasta le desembocadura en el rio Chirche en el municipio de Otanche en el departamento de Boyacá con el fin de encontrar y evaluar sus características morfométricas.

De la misma manera presenta los siguiente objetivos específicos; Determinar los parámetros morfometricos, pluviométricas, topográficos y de uso del suelo de la cuenca de la quebrada Canauchita; Estimar el caudal máximo de creciente de la quebrada Canauchita hasta le desembocadura en el rio Chirche en el municipio de Otanche en el departamento de Boyacá; Obtener la intensidad de precipitación de la zona (i) mediante la utilización de las curvas "Intensidad-Duración-Frecuencia"; Obtener en coeficiente de escorrentía (c).

1. MARCOS DE REFERENCIA

1.1. Marco Geográfico

1.1.1. Ubicación de la quebrada

El municipio de Otanche se encuentra en las estribaciones de la cordillera oriental hacia el Valle del Magdalena a aproximadamente 96 Km de Chiquinquirá, en el Departamento de Boyacá; cuenta con una extensión territorial de 512 Km^2 de los cuales el área urbana es apenas 1 Km^2 , se encuentra ubicado a una altura de 1040 msnm, su temperatura promedio es de 23°C y cuenta con una población promedio de 10244 habitantes. También el departamento se subdivide en sub regiones dentro de las cuales Otanche se ubica en el occidente de Boyacá. Las cuencas hidrográficas son estructuras naturales en las cuales se desarrolla flora, fauna, suelo, clima propio, que limitan con otras cuencas a través de las divisorias de aguas; es por ello que constituyen regiones geográficas.

La quebrada Canauchita, pertenece a un grupo de quebradas que unen su cauce para así desembocar en el rio Chirche; el cauce de orden mayor inicia a los 1600 m.s.n.m con su desembocadura en el rio Chirche a los 790 m.s.n.m

El municipio de Otanche se encuentra en zona de las cuencas de los ríos Minero, Moraz o Chirche o Guaguaquí, el que más adelante desemboca en el Magdalena como Rio Negro, todos ellos pertenecientes a la cuenca del río Magdalena.

1.1.2. Limites

Por el Norte: Limita con Departamento de Santander (Municipios de Florián, La Belleza y Bolívar del Departamento de Santander).

Por el oriente: Limita con los Municipios de Ráquira, Tinjacá, Sutamarchán y Santa Sofía.

Por el sur: Limita con el Departamento de Cundinamarca (Municipio de Yacopi).

Por el occidente: le sirve de límite natural al Río Magdalena, que lo separa de los Departamentos de Caldas y Antioquia.

1.2. Marco conceptual

1.2.1. Caudal

El caudal se define como el volumen del líquido que pasa por una sección normal de una corriente de agua en una unidad de tiempo.

1.2.2. Coeficiente de escorrentía

El coeficiente de escorrentía, es la fracción de la precipitación que se transforma en caudal, es decir, la relación que existe entre el volumen de escorrentía superficial y la precipitación total.

El Coeficiente de Escorrentía no es un factor constante, pues varía de acuerdo a la magnitud de la lluvia y particularmente con las condiciones fisiográficas de la Cuenca Hidrográfica (Cobertura vegetal, pendientes, tipo de suelo), debido a esto su determinación es un valor aproximado.

1.2.3. Tiempo de concentración

El tiempo de concentración se define como el tiempo mínimo necesario para que todos los puntos de una cuenca estén aportando agua de escorrentía (agua que cae y se transporta por el lecho del rio) de forma simultánea al punto de salida, punto de desagüe o punto de cierre. Está determinado por el tiempo que tarda en llegar el agua que procede del punto hidrológicamente más alejado a la salida de la cuenca, y representa el momento a partir del cual el caudal de escorrentía es constante.

Este valor ha sido tocado por varios autores, por lo que su cálculo es alejado dependiendo del autor que sea consultado; por lo tanto este cálculo es atributo del investigador.

1.2.4. Suelo

Es el producto de la desintegración mecánica o la descomposición química de rocas. El suelo dependiendo de su origen y composición se clasifica para su uso apropiado, es de gran importancia tener presente la clasificación y estratificación del suelo en cualquier obra ingenieril debido a que de este depende el futuro funcionamiento, duración y seguridad de la misma.

1.2.5. Precipitación

La precipitación es la fase del ciclo hidrológico que origina todas las corrientes superficiales y sub-superficiales de una cuenca, por lo que su evaluación y conocimiento de su intensidad tanto en el tiempo como en el espacio son problemas básicos en la hidráulica.

La precipitación es un componente principal de dicho ciclo hidrológico, y es responsable de depositar la mayor parte del agua dulce en el planeta. Aproximadamente 505000 km³ de agua caen como precipitación cada año, y de ellos 398000 km³ caen sobre los océanos. Dada el área superficial de la Tierra, eso significa que la precipitación anual promediada globalmente es más o menos de 1 m, y la precipitación anual media sobre los océanos de 1.1 m.

1.2.6. Clasificación de las corrientes de agua

Basados en la constancia de la escorrentía las corrientes de aguas se pueden dividir en:

- **Perennes:** Son aquellas corrientes que tienen en su cauce agua todo el tiempo. El agua subterránea, mantiene el nivel freático alimentándolo todo el tiempo, por tanto, el nivel de agua no desciende nunca debajo del lecho del rio.
- Intermitentes: Son aquellas corrientes que escurren únicamente en épocas de lluvia y se secan durante el verano. La elevación del agua se conserva por encima del nivel del lecho del rio únicamente en la estación lluviosa, en verano el escurrimiento cesa.
- **Efímeros:** Son aquellas corrientes de agua que existen apenas durante o Inmediatamente después de la precipitación y solo transportan escurrimiento superficial.

La cuenca hidrográfica también llamada hoya hidrográfica o cuenca de drenaje, es un área de la superficie terrestre bañada por un sistema de drenaje natural lo que significa que drena el agua del mar a través de ríos o lagos. La cuenca se delimita por medio de una línea de cumbres llamada divisoria de aguas, estas líneas permite el trabajo independiente de distintos tipos de hoyas para encontrar su explotación o mejor manejo.

Las principales características de una cuenca hidrográfica son:

- Curva de la cota superficie: esta característica es una indicación del potencial hídrico de la cuenca.
- Coeficiente de forma: da indicaciones preliminares de la onda de avenida (elevación del nivel de un curso de agua significativamente mayor que el flujo medio de éste) que es capaz de generar.
- **Coeficiente de ramificación:** al igual que el anterior este brinda indicaciones preliminares acerca del tipo de onda de avenida.

Las cuencas hidrografías poseen tres partes las cuales son:

- **Cuenca alta:** Corresponde a la zona donde nace el río, el cual se desplaza por una gran pendiente hacia su desembocadura.
- **Cuenca media:** Es la parte de la cuenca en la cual hay un equilibrio entre el material sólido que llega traído por la corriente y el material que sale. Visiblemente no hay erosión.
- Cuenca baja: Es la parte de la cuenca en la cual el material extraído de la parte alta se deposita en lo que se llama cono de deyección.

Las cuencas hidrográficas están clasificadas en cinco (5) grupos:

A. Por su tamaño:

- Grandes
- Medianas
- Pequeñas

B. Por su ecosistema:

- Áridas
- Tropicales
- Húmedas
- Frías

C. Por su vocación:

- Hidroenergeticas
- Para provisión de agua potable
- Para riego
- Para navegación
- Para ganadería
- Para uso múltiple

D. Por su relieve:

- Plantas
- De alta montaña
- Accidentadas o quebradas

E. Por la dirección de la evacuación de las aguas:

- Cuenca Endorreica: Se define como cuenca endorreica, aquel sistema hídrico natural cuya desembocadura se hace dentro de la plataforma continental como lagos, lagunas u otros ríos.
- Cuenca Exorreica: Se define como cuenca exorreica aquel sistema hídrico natural cuya desembocadura se hace en el océano es decir fuera de la plataforma continental.
- **Cuenca Arreica:** Se define como cuenca arreica aquella que no desemboca en ningún cuerpo de agua, ya que se infiltra en el subsuelo o se evapora.

1.2.8. Elementos de una cuenca hidrográfica

• Divisoria de aguas o Divortium Aquarum:

Es una línea imaginaria que delimita la cuenca hidrografía, marcando así el límite de una cuenca hidrográfica con otras cuencas vecinas. El agua que precipita a cada lado de la línea divisoria generalmente desemboca en ríos distintos, de ahí la importancia de marcar correctamente dicha línea.

Es costumbre realizar la delimitación de la hoya mediante la interpretación de los mapas topográficos o la cartografía. Aunque es normal también seguir tres reglas sencillas y prácticas para la delimitación de la cuenta hidrográfica:

- **A.** Identificar la red de drenaje, o corrientes superficiales, y realizar un esbozo muy general de su posible delimitación.
- **B.** Invariablemente, la línea divisoria debe cortar perpendicularmente a las curvas de nivel y pasar por los puntos de mayor elevación topográfica.
- **C.** Cuando la divisoria va incrementando su elevación, corta a las curvas de nivel por su parte convexa.



Ilustración 1: delimitación de una cuenca hidrográfica

Fuente 1 : Cuenca hidrográfica; Rommel jumbo

• Rio principal:

El curso con mayor caudal líquido (medio o máximo) o bien con la mayor longitud o la mayor área de drenaje. Tanto el concepto de rio principal como el de nacimiento del rio son arbitrarios, así como también la distinción entre rio principal y afluente. Sin embargo, la mayoría de cuentas tiene un rio principal bien definido desde la desembocadura hasta cerca de la línea divisoria de aguas. El rio principal tiene un curso, que es la distancia entre la cabecera y su desembocadura.

1.2.9. Características físicas de una hoya de drenaje

Una cuenta hidrográfica relaciona distintos grupos de característica; tal como lo son:

- Características morfológicas: estas inciden sobre el escurrimiento superficial, la erosión de las laderas, el transporte de sedimentos y la infiltración.
- Características geológicas: tipología del substrato sobre el que corre el agua está condicionada por la erosión, el transporte de sedimentos y la infiltración.
- Características de la vegetación: influyen sobre las pérdidas en la cuenca (intersección, evapotranspiración, infiltración) y también sobre la escorrentía superficial y la erosión.

Las características geomorfológicas de una cuenca hidrográfica proporcionan una idea sobre sus propiedades particulares. Facilitando el empleo de fórmulas hidrológicas, generalmente empíricas, que sirven para evaluar la respuesta, por ejemplo las curvas de avenida en cuencas con características geomorfológicas análogas, etc.

- Área de drenaje de la cuenca (A): El área de una cuenca hidrográfica se define como el total de la superficie delimitada por la divisoria proyectada sobre un plano horizontal, que contribuye con el flujo superficial a un segmento de cauce de orden dado. La medición del área de una cuenca, en una sección considerada, se hace utilizando el planímetro, o la malla de puntos.
 - El área de la cuenca tiene gran importancia, por constituir el criterio de la magnitud del caudal. En condiciones normales, los caudales promedios, promedios mínimos y máximos instantáneos, crecen a medida que crece el área de la cuenca.
- Perímetro (P): Es la longitud sobre el plano horizontal, que recorre la divisoria de aguas. Se expresa normalmente en metros o kilómetros, depende de la superficie y forma de la cuenca.

 Longitud de la cuenca (L): Se define como la distancia horizontal desde la desembocadura de la cuenca (límite de la cuenca) hasta el punto aguas arriba donde la línea de tendencia del cauce principal corte con la divisoria de aguas. ilustración 2

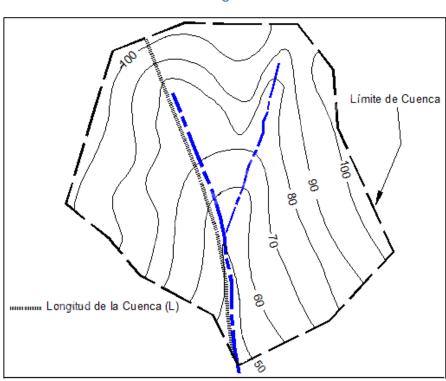


Ilustración 2: Longitud de la Cuenca

Fuente 2: www.ingenieriacivil.tutorialesaldia.com

• Índice de Gravelius (Kc): Es la relación existente entre el perímetro de la cuenca y la longitud de un círculo de área igual ala de la hoya.

$$Kc = 0.28 \frac{P}{\sqrt{A}}$$

Ecuación 1: Índice de Gravelius (Kc)

Dónde:

P: Perímetro de la hoya

A: Área de la hoya

 Ancho de la cuenca (B): Esta definida como la relación entre el área y la longitud de la cuenca.

$$B = \frac{A}{L}$$

Ecuación 2: Ancho de la cuenca (B)

Dónde:

A: Área de la cuenca

L: Longitud de la cuenca

• Factor Forma (Kf): Los factores geológicos, principalmente, son los encargados de moldear la fisiografía de una región y, particularmente, la forma que tienen las cuencas hidrográficas.

El coeficiente de forma, es la relación que hay entre el ancho medio de la cuenca y la longitud a lo largo del eje del curso de agua desde la desembocadura hasta la cabecera más distante en la hoya.

Una hoya con factor de forma bajo es menos susceptible a crecientes que otra hoya con la misma área pero con mayor factor de forma.

$$Kf = \frac{B}{Lc} = \frac{A}{Lc^2}$$

Ecuación 3: Coeficiente de Forma (Kf)

Dónde:

A: Área de la hoya

B: Ancho de la cuenca

L: Longitud axial de la hoya

1.2.10. Sistema de drenaje

El sistema de drenaje de una cuenca hidrográfica es el que constituye el cauce principal y sus atributos o afluentes. La forma en que estén conectados estos cauces en una cuenca determinada, influye en la respuesta de esta a un evento de precipitación.

Se han desarrollado una serie de parámetros que tratan de cuantificar la influencia de la forma de Sistema de Drenaje en la escorrentía superficial directa. Entre ellos se tiene:

- Orden de la cuenca: es un número que refleja el grado de ramificación del Sistema de Drenaje. Existen varios métodos para realizar tal clasificación. En este caso se optó por la siguiente clasificación:
 - **A.** Los causes de primer orden son los que no tienen tributarios.
 - **B.** Los causes de segundo orden se forman en la unión de dos causes de primer orden y, en general, los causes de orden n se forman cuando dos causes de orden n-1 se unen.
 - **C.** cuando un cauce se une con un cauce de orden mayor, el canal resultante hacia aguas abajo retiene el mayor de los órdenes.
 - **D.** El orden de la cuenca es el mismo que el de su cauce principal a la salida.

La siguiente ilustración presenta un ejemplo de la anterior clasificación, para una cuenca hidrográfica de orden 4:

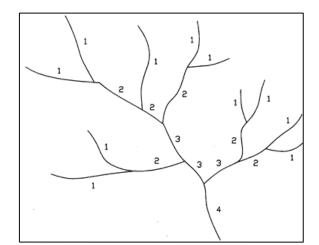


Ilustración 3: ejemplo de clasificación de orden de una cuenca

Fuente 3: www.ingenieriacivil.tutorialesaldia.com

 Densidad de drenaje (Dd): Es la relación total entre la longitud total de los cursos de agua dentro de la cuenca y su área total.

$$Dd = \frac{\sum Lci}{A}$$

Ecuación 4: Densidad de drenaje (Dd)

Dónde:

A: Área de la hoya

Lci: longitud total de los cursos

Extensión media de la escorrentía superficial (E): Se define como la
distancia media en que el agua de lluvia tendría que escurrir sobre los terrenos
de una hoya, en caso de que la escorrentía se diese en línea recta desde donde
la lluvia cayó hasta el punto más próximo al lecho de una corriente cualquiera de
la hoya.

$$E = \frac{A}{4L}$$

Ecuación 5: Extensión media de escorrentía (E)

Donde

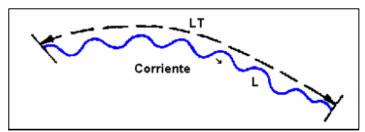
E: Extensión media de la escorrentía superficial,

en Km L: Longitud total de los cursos

A: Área total de la hoya

 Sinuosidad de las corrientes de agua (S): Es la relación que existe entre la longitud del rio principal medido a lo largo de su cauce y la longitud del valle del rio principal medida en línea curva o recta. Este parámetro da una medida de velocidad de la escorrentía del agua a lo largo de la corriente.

$$S = \frac{L}{Lt}$$


Ecuación 6: Sinuosidad de las corrientes de agua (S)

Dónde:

L: Longitud a lo largo del eje del cauce (rio principal)

Lt: Longitud del valle bañado por el cauce (longitud del valle rio principal)

Ilustración 4: interpretación Sinuosidad de las corrientes de agua (S)

Fuente 4 : libro cuencas hidráulicas; universidad del Tolima; 2001

Este parámetro da una medida de la velocidad de la escorrentía del agua a lo largo de la corriente.

Un valor de S menor o igual a 1.25 indica una baja sinuosidad. Se define entonces como un cauce con alineamiento recto (Monsalve).

1.2.11. Características morfometricas de la cuenta hidrográfica (del relieve superficial y de los sistemas de cause)

El estudio del relieve superficial de una cuenca hidrográfica se debe hacer por separado del relieve de los cauces, pero su análisis e interpretación están estrechamente relacionados, en razón de que estos dos parámetros son factores determinantes de la torrencialidad de las cuencas. De otra parte, la determinación del relieve superficial, no como un índice promedio sino como una distribución sobre un plano horizontal, es un elemento fundamental en el proceso de planificación de una cuenca hidrográfica y, en general, de cualquier territorio.

 Perfil longitudinal del cauce: Este perfil se puede mostrar mediante la gráfica de las alturas en un sistema de ordenadas; teniendo en la vertical la altura de las cotas representadas en las curvas de nivel que cortan la quebrada, y en la horizontal la distancia recorrida por la quebrada desde su nacimiento hasta su desembocadura. Ilustración 5.

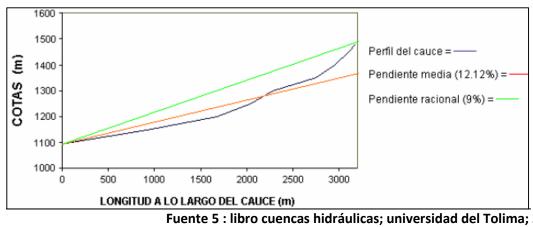


Ilustración 5: Ejemplo de perfil longitudinal de una quebrada

Fuente 5 : libro cuencas hidráulicas; universidad del Tolima; 2001

- Pendiente de la hoya: Esta característica controla la concentración del agua en los lechos fluviales que conforman el sistema de drenaje de la cuenca mediante la aplicación de una velocidad constante con la que se efectúa la escorrentía superficial.
- Pendiente media del cauce: La pendiente media total del cauce es una característica fundamental en la velocidad del flujo y la duración de subida por lo tanto juega un roll importante en la forma del hidrógrama.

La pendiente media del cauce puede ser calculada por cualquiera de los siguientes métodos:

A. Método de los valores extremos (pendiente racional): Este método consiste en determinar la diferencia de nivel entre el punto más alto y el punto más bajo del cauce, para así dividir este valor entre la longitud del mismo.

$$Pm = \frac{\Delta h}{L} * 100$$

Ecuación 7: pendiente media Método de los valores extremos

Dónde:

Pm: Promedio de la pendiente del cauce

Δh: Diferencia de nivel entre la cabecera del cauce y su desembocadura

L: Longitud del cauce

El método de los valores extremos equivale a calcular la pendiente de la *ilustración 5* que une el punto más bajo con el más alto, es utilizada en cauces de poca longitud y poca variación de altura.

B. Pendiente media ponderada: Es un valor más razonable. Para calcularlo se traza una línea, tal que el área comprendida entre esa línea y los ejes coordenados sea igual a la comprendida entre la curva del perfil del rio y dichos ejes.

C. Método de Taylor y Schwartz: se basa en la suposición de que el canal estuviese dividido en n partes iguales, de esta manera la pendiente media estaría dada por :

$$Pm = \left[\frac{\sum_{i=1}^{n} \sqrt{S_i}}{n}\right]^2 = \left[\frac{n}{\frac{1}{\sqrt{S_1}} + \frac{1}{\sqrt{S_2}} + \dots + \frac{1}{\sqrt{S_n}}}\right]^2 = \left[\frac{L}{\frac{l_1}{\sqrt{S_1}} + \frac{l_2}{\sqrt{S_2}} + \dots + \frac{l_n}{\sqrt{S_n}}}\right]^2$$

Ecuación 9: pendiente media Método de Taylor y Schwartz

Dónde:

S: Pendiente media del cauce

Sn: Pendiente media del tramo "n"

n: Número de tramos de igual Longitud

L: longitud total cauce I: longitud del tramo

1.2.12. Aspectos altitudinales de las cuencas u hoyas hidráulicas

- Curva hipsométrica: Es la representación gráfica del relieve de una hoya. Representa el estudio de la variación de la elevación de los terrenos de la hoya con referencia al nivel medio del mar. Esta variación puede ser representada por medio de un gráfico que muestre el porcentaje de área de drenaje que existe por encima o por debajo de varias elevaciones.
- Elevación media de la hoya: Es de tener en cuenta la altitud y la elevación media de una hoya debido a que son también importantes por la influencia que ejercen sobre la precipitación sobre las pérdidas de agua por evaporación y transpiración y consecuentemente sobre el caudal medio.

1.2.13. Método Racional

Este método, que la literatura inglesa atribuye a Lloyd-George en 1906, si bien los principios del mismo fueron establecidos por Mulvaney en 1850, permite determinar el caudal máximo que escurrirá por una determinada sección, bajo el supuesto que éste acontecerá para una lluvia de intensidad máxima constante y uniforme en la cuenca correspondiente a una duración D igual al tiempo de concentración de la sección.

Para estimar el caudal de creciente de la cuenca de estudio, se implementara el método racional debido a que el área de dicha cuenca se cataloga como pequeña.

El método racional tiene como variables el coeficiente de escorrentía superficial, la intensidad de precipitación y el área de influencia de la cuenca.

$$Qmax = C * i * A$$

Ecuación 10: Ecuación del método racional (Qmax)

Donde

Qmax: caudal máximo de creciente

C: coeficiente de escorrentía superficial medio ponderado en la cuenca

i: Intensidad de precipitación

A: Área de la cuenca

Para facilidad de los investigadores se calculará el caudal máximo de descargue mediante la *ecuación 10*, ya que esta esta calibrada para aplicar inmediatamente los datos suministrados mediante la ejecución de esta monografía de manera inmediata y con un menor margen de error.

$$Qmax = 0.278 * C * i * A$$

Ecuación 11: Ecuación caudal máximo calibrada

Donde

Qmax: caudal máximo de creciente (m^3/seg)

C: coeficiente de escorrentía superficial medio ponderado en la cuenca

I: Intensidad de precipitación (mm/hora)

A: Área de la cuenca (km²)

2. DESARROLLO DE LA MONOGRAFIA

2.1. Estudio morfometrico de la hoya o cuenca hidráulica

La caracterización morfométrica de cuencas hidrográficas es una de las herramientas más importantes en el análisis hídrico, y consiste en un estudio cuantitativo cuyo fin es modelar matemáticamente las características más relevantes de la cuenca y asociarlos con índices y parámetros que permiten conocer la respuesta hidrológica de la cuenca.

El objetivo primordial de este estudio consiste en inferir posibles picos de crecidas o avenidas en caso de tormentas extraordinarias, cuyas repercusiones de tipo socioeconómico motivan especial atención tanto a la hora de utilizar y ocupar territorio como para definir planes de tipo estructural que beneficien la sociedad o controlen las crecidas extraordinarias.

La forma de la cuenca actúa de manera significativa en las características del hidrograma de descarga de una determinada corriente, especialmente en los eventos de avenidas máximas. En particular, las cuencas de igual área pero de diferente forma, generan hidrogramas diferentes.

2.1.1. Clasificación de las corrientes de agua

La quebrada Canauchita es una corriente de agua que se genera por causa de una fuente hídrica natural, la cual transmite sus aguas subterráneas por el suelo de la montaña para luego depositarlas en dicha quebrada, por lo tanto su escorrentía es natural y aumenta en épocas de lluvia.

Por lo anterior es correcto afirmar que la quebrada Canauchita se encuentra en el grupo de corrientes perennes (ver página 17 de este documento).

2.1.2. Área de la cuenca hidráulica (A)

El área de la cuenca es quizás el parámetro más importante en el cálculo del caudal de creciente máximo; debido a que esta es proporcional a la cantidad de agua que puede aposarse en la quebrada y por ende de ser mayor manejar un caudal de creciente mucho mayor al caso contrario.

Los Coordes Sabána

Pedro Amin

Sardina

Guadualito

Guadualito

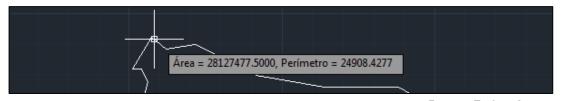
Ilustración 6: Imagen satelital y demarcación del rio Chirche y la quebrada Canauchita

Fuente 6: Google Earth

Rio Chirche
Quebrada Canauchita
Cauce De la cuenca hidrográfica

Mediante la cartografía del Rio Principal y los cauces que conforman la cuenca hidráulica es posible delimitar la divisoria de aguas (Ver página 20), de tal manera que mediante un polígono que corte las cotas más altas que rodean el cauce y las tributarias quede establecida dicha divisoria para la cuenca hidráulica que contiene la quebrada Canauchita, para que así esta cuenca quede dividida de cuencas hidráulicas vecinas.

Mediante la delimitación de la divisoria de aguas de la cuenca que contiene la quebrada Canauchita (ver anexo 2) es posible generar una tabla de coordenadas en cada intersección de dicha delimitación con cada curva de nivel tal como se muestra a continuación:


Tabla 1 : Coordenadas de la divisoria

coordenadas divisoria		
este norte		
973700	1113300	
973775	1113300	
973930	1113560	
974050	1113460	
974290	1113500	
974655	1113320	
974790	1113245	
975345	1113150	
975955	1113150	
976340	1112925	
976450	1112765	
976810	1112500	
976525	1111450	
976560	1111300	
976525	1110650	
976445	1110540	
976450	1110445	
976540	1110100	
976540	1109850	
976690	1109000	
977320	1108100	
977500	1107950	
977615	1107940	
977825	1107650	
978160	1107380	
978325	1107300	
978500	1107150	
978915	1106950	
978912	1106340	
978550	1106065	
978250	1105710	
978000	1105703	
977550	1105712	
977410	1105711	
977250	1105712	
977150	1105655	
975425	1105080	

975225 1105100 975160 1105150 974935 1105640 974580 1105850 974460 1106040 974250 1106100 974155 1106490 973855 1106650 973705 1107090 973700 1107720 973760 1107950 973750 1108300 973608 1108600 973850 1109090 973280 111045 972985 1110425 972703 1110615 972725 1111080 973140 111225 973400 1112150 973850 1113000 973850 1113300 973850 1113300 973700 1113300		1
974935 1105640 974580 1105850 974460 1106040 974250 1106100 974155 1106190 974050 1106400 973855 1106650 973705 1107090 973700 1107720 973760 1107950 973755 1108335 973750 1108300 973608 1108600 973850 1109090 973280 111045 972703 111045 972703 1110615 972725 1111080 973400 111225 973500 1112480 973850 1113000 973850 1113300	975225	1105100
974580 1105850 974460 1106040 974250 1106100 974155 1106190 974050 1106400 973855 1106650 973705 1107090 973700 1107720 973760 1107950 973795 1108135 973750 1108300 973608 1109090 973280 111045 972985 1110425 972700 1110455 972725 1111080 973140 1111225 973400 1112150 973500 1112480 973850 1113000 973905 1113300	975160	1105150
974460 1106040 974250 1106100 974155 1106190 974050 1106400 973855 1106650 973705 1107090 973700 1107720 973760 1107950 973795 1108135 973750 1108300 973608 1109090 973280 111045 972985 1110425 972700 1110455 972703 1110615 972725 1111080 973140 111225 973400 1112150 973500 1112480 973850 1113000 973905 1113300	974935	1105640
974250 1106100 974155 1106190 974050 1106400 973855 1106650 973705 1107090 973700 1107720 973760 1107950 973755 1108135 973750 1108300 973608 1108600 973850 110145 972985 1110425 972700 1110455 972703 1110615 973140 1111225 973400 1112150 973500 1112480 973850 1113195 973850 1113300	974580	1105850
974155 1106190 974050 1106400 973855 1106650 973705 1107090 973700 1107720 973760 1107950 973795 1108135 973750 1108300 973608 1108600 973850 1109090 973280 111045 972985 1110425 972700 1110455 972725 1111080 973140 1111225 973400 1112150 973500 1112480 973850 1113000 973850 1113300 973850 1113300	974460	1106040
974050 1106400 973855 1106650 973705 1107090 973700 1107720 973760 1107950 973795 1108135 973750 1108300 973608 1109090 973280 1110145 972985 1110425 972700 1110455 972725 1111080 973140 111225 973400 1112150 973500 1113000 973905 1113195 973850 1113300	974250	1106100
973855 1106650 973705 1107090 973700 1107720 973760 1107950 973795 1108135 973750 1108300 973608 1108600 973850 1109090 973280 111045 972985 1110425 972700 1110455 972725 1111080 973140 1111225 973260 111760 973500 1112480 973850 1113000 973850 1113300 973850 1113300	974155	1106190
973705 1107090 973700 1107720 973760 1107950 973795 1108135 973750 1108300 973608 1109090 973280 1110145 972985 1110425 972700 1110455 972725 1111080 973140 111225 973400 1112150 973850 1113000 973850 1113300	974050	1106400
973700 1107720 973760 1107950 973795 1108135 973750 1108300 973608 1108600 973850 1109090 973280 1110145 972985 1110425 972700 1110455 972703 1110615 972725 1111080 973140 1111225 973400 1112150 973500 1112480 973850 1113000 973850 1113300	973855	1106650
973760 1107950 973795 1108135 973750 1108300 973608 1108600 973850 1109090 973280 1110145 972985 1110425 972700 1110455 972725 1111080 973140 1111225 973400 1112150 973500 1112480 973850 1113195 973850 1113300	973705	1107090
973795 1108135 973750 1108300 973608 1108600 973850 1109090 973280 1110145 972985 1110425 972700 1110455 972703 1110615 972725 1111080 973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113195 973850 1113300	973700	1107720
973750 1108300 973608 1108600 973850 1109090 973280 1110145 972985 1110425 972700 1110455 972703 1110615 972725 1111080 973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113195 973850 1113300	973760	1107950
973608 1108600 973850 1109090 973280 1110145 972985 1110425 972700 1110455 972703 1110615 972725 1111080 973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113195 973850 1113300	973795	1108135
973850 1109090 973280 1110145 972985 1110425 972700 1110455 972703 1110615 972725 1111080 973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113195 973850 1113300	973750	1108300
973280 1110145 972985 1110425 972700 1110455 972703 1110615 972725 1111080 973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113000 973850 1113300	973608	1108600
972985 1110425 972700 1110455 972703 1110615 972725 1111080 973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113000 973850 1113300	973850	1109090
972700 1110455 972703 1110615 972725 1111080 973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113000 973850 1113195 973850 1113300	973280	1110145
972703 1110615 972725 1111080 973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113000 973850 1113195 973850 1113300	972985	1110425
972725 1111080 973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113000 973850 1113195 973850 1113300	972700	1110455
973140 1111225 973260 1111760 973400 1112150 973500 1112480 973850 1113000 973850 1113195 973850 1113300	972703	1110615
973260 1111760 973400 1112150 973500 1112480 973850 1113000 973850 1113195 973850 1113300	972725	1111080
973400 1112150 973500 1112480 973850 1113000 973905 1113195 973850 1113300	973140	1111225
973500 1112480 973850 1113000 973905 1113195 973850 1113300	973260	1111760
973850 1113000 973905 1113195 973850 1113300	973400	1112150
973905 1113195 973850 1113300	973500	1112480
973850 1113300	973850	1113000
	973905	1113195
973700 1113300	973850	1113300
3/3/00 1113300	973700	1113300

Gracias a la digitalización es posible medir el área en programa para computadores AUTOCAD; aunque también es posible calcular dicha área por medio de matrices para un polígono irregular, en este caso preferimos hallarla por medio del software ya que esta herramienta la tenemos a nuestra disposición:

Ilustración 7: Determinación del área mediante el software AutoCAD

Fuente 7: Los Autores

El área expresada por el software esta expresada en m^2 , por ende mediante una conversión simple se convierte dicho valor a km^2 para facilidad de cálculos:

$$A = 28,13 \text{ km}^2$$

2.1.3. Perímetro de la cuenca (P)

El Perímetro hace referencia a la longitud del polígono que define las líneas divisorias o límites de la cuenca, dependiendo directamente de la forma de la cuenca.

$$P = 24.91 \, Km$$

2.1.4. Índice de Gravelius o coeficiente de compacidad (KC)

El índice de Gravelius o coeficiente de compacidad, es la relación existente entre el perímetro (*medido en km*) y el área (*medida en km*2) de la hoya o cuenca; este índice nos da una indicación de la forma de la hoya ya sea alargada o circular. *Para el cálculo de este valor se aplica la ecuación N*° 1.

$$Kc = 0.289 * \frac{24.91 \ Km}{\sqrt{28.13 \ Km^2}}$$
 : $Kc = 1.36$

El valor del índice de Gravelius según el autor Monsalve S. puede interpretar de ser la siguiente manera:

Kc≈1

Kc≈2

Ilustración 8: Interpretación Índice de Gravelius

Fuente 8 : www. Ingenieríacivil.tutorialesaldia.com

En la cuenca de la izquierda el tener un índice cercano a 2 indica que tiene un tiempo de concentración mayor, esto indica que la magnitud de escorrentía generada por una precipitación será menor a la que poseería la cuenca con índice cercano a 1.

De la misma manera no solo es posible obtener con el valor del coeficiente de compacidad una aproximación al comportamiento de la precipitación sino también una clasificación de forma de la cuenca.

Tabla 2 : Interpretación Valores de Índice de Gavelius

Valores de Kc	Forma	Características
1,00 – 1,25	Compacta o redonda a oval redonda.	Cuenca torrencial peligrosa.
1,25 – 1,50	Oval redonda a oval oblonga.	Presenta peligros torrenciales, pero no iguales a la anterior.
1,50 – 1,75	Oval oblonga a rectangular oblonga.	Son las cuencas que tienen menos torrencialidad.

Fuente 9: libro cuencas hidráulicas; universidad del Tolima; 2001

La cuenca de la quebrada Canauchita arroja un índice de Gravelius o coeficiente de compacidad de 1.36 lo que indica según la anterior clasificación que su forma es ovalada y alargada; esto nos da una idea de que la tiempo de concentración de la cuenca es un valor mayor por lo tanto la precipitación es de pequeña magnitud.

2.1.5. Longitud de la cuenca (L)

La longitud de cuenca (L) está definida como la distancia horizontal, medida a lo largo del cauce principal (cauce de mayor orden) y el límite de las divisorias definida para la cuenca.

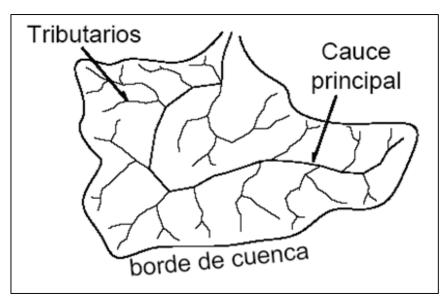


Ilustración 9 : Longitud de cuenta (L)

Fuente 10: www. Ingenieríacivil.tutorialesaldia.com

Dado que el cauce principal no toca la línea divisoria es necesario suponer una trayectoria del trazado siguiendo el camino más probable recorrido por el agua precipitada desde la cabecera del cauce a la línea divisoria.

Por consiguiente la manera en la cual se medirá la longitud de la hoya es representando la cuenca con líneas coordenadas que representen significativamente el comportamiento de la misma; para así mediante la aplicación de la aritmética calcular tanto la longitud de la cuenca como la de su cabecera con el límite de la divisoria. (Ver anexo 3)

Tabla 3: Coordenadas para el cálculo de la longitud de la cuenca

COORDENADAS		Distancia (m)
ESTE	NORTE	Distancia (III)
973700	1113300	
		154,03
973790	1113425	
		531,06
974210	1113100	
		4896,8
975400	1108350	
		694.62
976000	1108000	

Fuente 11: Los Autores

Teniendo en cuenta la distancia desde la cabecera del cauce principal y el límite de la hoya la cual es de 2060 m; la longitud de la cuenca estará dada por la suma de todas las distancias.

$$L = 6.28 \ Km + 2.06 \ Km$$
 $\therefore L = 8.34 \ Km$

2.1.6. Ancho de la cuenca (B)

Es la relación que existe entre el área y la longitud de la cuenca. Este parámetro al igual que la longitud y el perímetro nos da una idea de la geometría de la cuenca, para así poder inferir un comportamiento del cuerpo hídrico. *Para el cálculo de este valor hacemos uso de la ecuación N° 2*

$$B = \frac{28,13 \ Km^2}{24.91 \ Km} \qquad \therefore \qquad B = 1,13 \ Km$$

2.1.7. Factor de forma (Kf)

Las cuencas pueden presentar igual área, sin embargo el factor de forma puede cambiar debido a que este es inversamente proporcional a la longitud de la cuenca. Una cuenca con factor de forma más bajo es menos susceptible a crecidas extraordinarias. *Para el cálculo de este valor hacemos uso de la ecuación N°3*

$$Kf = \frac{28,13 \ Km^2}{(24,91 \ Km)^2} \qquad \therefore \qquad Kf = 0,045$$

En la siguiente tabla se pueden observar los factores de forma en función de la geometría de la misma.

Tabla 4 : Valores interpretativos del factor de forma

VALORES	FORMA
< 0.22	Muy alargada
0,22 – 0,30	Alargada
0,30 - 0,37	Ligeramente alargada
0,37 – 0,45	Ni alargada ni
0,45 – 0,60	Ligeramente
0,60 - 0,80	Ensanchada
0,80 – 1,20	Muy Ensanchada
> 1.20	Rodeando el desagüe

Fuente 12: www.unas.edu.pe

Según la clasificación descrita en la tabla anterior la cuenca de la quebrada Canauchita pertenece al grupo de las cuencas muy alargadas.

2.1.8. Orden de la cuenca

El estudio de esta cuenca hace referencia a un cauce que es interceptado por varias quebradas, entre ellas la quebrada la quebrada Canauchita; por ende es evidente que esta cuenca no es de Orden 1 sino que depende del orden y la cantidad de tributarios.

Gracias al ordenamiento de los tributarios teniendo en cuenta los paso a seguir para esta clasificación se logró llegar a la conclusión que esta cuenca es de un Orden 4. (Ver anexo 4)

2.1.9. Densidad de drenaje (Dd)

Este es un índice importante, ya que refleja la influencia de la geología, la topografía, los suelos y la vegetación, en la cuenca u hoya hidrográfica, y está relacionado con el tiempo de salida del escurrimiento superficial de la cuenca.

Las cuencas con una densidad de drenaje alta se supone son muy bien drenadas y por ende responden más rápido a la precipitación; por consiguiente una cuenca con una baja densidad de drenaje tiene una respuesta hidrológica muy lenta.

Al ser la cuenca hídrica de la quebrada Canauchita un cauce interceptado por varias tributarias es necesario sumar todas las tributarias y el cauce principal para así poder utilizar la formula necesaria; por consiguiente en esta monografía se optó por tabular los valores de cada tributaria y así lograr obtener la densidad de drenaje. Para el cálculo de este valor usamos la ecuación N°4

Mediante la otorgación de valores alfabéticos (*Ver anexo 5*) a cada tramo es posible mediante una tabulación y un cálculo de longitudes darles valores numéricos a dichos valores alfabéticos, para así poder calcular la densidad de drenaje.

Tabla 5: distancia de los tramos para el cálculo de la densidad de drenaje

TRAMO DISTANCIA

1 _	l
Α	850
В	450
С	750
D	1750
Е	2450
F	375
G	1000
Н	400
1	795
J	500
K	1000
L	950
М	650
N	250
Ñ	850
0	850
Р	450
Q	200
R	600
S	500
	175
T U	730
V	410
W	625
Х	212
Υ	950
Z	775
AA	500
AB	290
AC	650
AD	600
AE	625
AF	600
AG	675
AH	895
Al	50
AJ	825
AK	550
ΛI	330

AL	250
AM	600
AN	675
ΑÑ	500
AO	150
AP	850
AQ	675
AR	550
AS	450
AT	375
AU	450
AV	685
AW	175
AX	350
AY	850
ΑZ	525
BA	250
BB	250
ВС	400
BD	150
BE	325
BF	325
BG	325
ВН	600
BI	750
BJ	300
BK	300
BL	100
SUMA	37942 m

Fuente 13: Los Autores

$$Dd = \frac{37,942 \text{ Km}}{2813 \text{ Km}^2}$$
 \therefore $Dd = 1.35 \text{ Km/Km}^2$

Tabla 6: interpretación valores de Dd

DENSIDAD DE DRENAJE	SISTEMA DE DRENAJE
< 1.5	Baja
1.5 a 3.0	Media
> 3.0	Alta

Fuente 14: Universidad del Tolima

Según la clasificación anterior, la cuenca hídrica de la quebrada Canauchita se encuentra en un grupo de sistema de drenaje bajo, lo que indica que su drenaje es lento; y por lo tanto su tiempo de concentración es mayor. Esto se debe en gran parte al tipo de suelo ya que al ser permeable este absorbe el agua de la cuenca drenándola subterráneamente.

2.1.10. Extensión media de la escorrentía superficial (E)

Es la distancia media que hay entre una gota de agua que cae en cualquier parte de la hoya hasta el lecho del cuerpo de agua más cercano. *Para el cálculo de este valor hacemos uso de la ecuación N*° 5

$$E = \frac{28,13 \, Km^2}{4 \, (24,91 \, Km)} \qquad \therefore \qquad E = 0,282 \, Km$$

Si la extensión media de la hoya es un número grande, el tiempo de concentración será mayor puesto que toma más tiempo recorrer longitudes más largas de terreno.

2.1.11. Sinuosidad de las corrientes de agua (S)

Este parámetro indica que tan recto es el alineamiento que toma la corriente al circular por la cuenca aguas abajo. Según *(Monsalve S. 1995)* un valor de sinuosidad menor a 1.25 infiere que el curso del rio tiende a ser un alineamiento recto. *Para calcular este valor hacemos uso de la Ecuación N° 6*

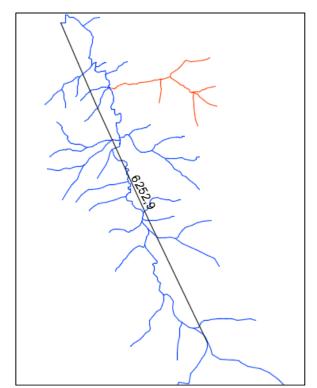


Ilustración 10: Sinuosidad de las corrientes de agua (S)

Fuente 15: Los Autores

$$S = \frac{6.28 \, km}{6.253 \, km} \qquad \therefore \qquad S = 1.004$$

El valor obtenido referente a la sinuosidad de las corrientes de agua es menor a 1,25, lo que nos indica que el cauce principal de la cuenca tiende a tener un alineamiento recto.

2.1.12. Perfil Longitudinal Del Cauce

El desarrollo del perfil longitudinal (Ver anexo 9) está dado por el mayor orden, independientemente de los tributarios que se presentan.

Ya que este perfil es tomado de cartografías topográficas la elevación del cauce se estima de las intersecciones con las curvas de nivel. Mediante la conversión de escala en la cartografía se logró establecer una distancia para medir las cotas de altura y poder graficar el perfil; dicha distancia es 250 m recorridos a lo largo del cauce principal.

Tabla 7: valores perfil longitudinal de la cuenca

distancia (m)	cota (m)
0	850
250	850
500	800
750	800
1000	800
1250	750
1500	740
1750	730
2000	720
2250	700
2500	700
2750	680
3000	650
3250	645
3500	638
3750	630
4000	618
4250	600
4500	600
4750	600
5000	590
5250	588
5500	580
5750	575
6000	570
6250	570
6500	550

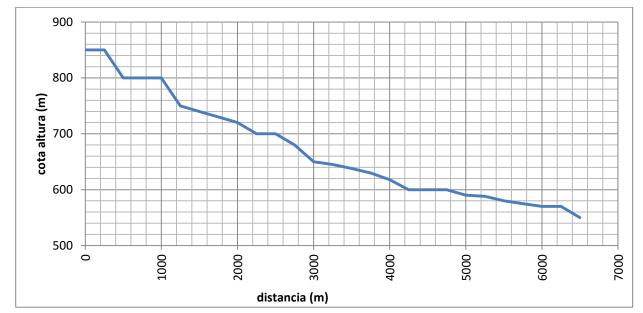


Ilustración 11: perfil longitudinal cuenca de la quebrada Canauchita

Fuente 17 : Los Autores

2.1.13. Pendiente de la hoya

La determinación de la Pendiente Media de una Cuenca Hidrográfica, es una de las tareas no sólo más laboriosas, sino también más importantes en la realización de cualquier estudio hidrológico, pues está Pendiente Media controla la velocidad con que se dará la escorrentía superficial en dicha cuenca.

Entre los métodos existentes en la Hidrología Superficial para la determinación de la Pendiente Media de una Cuenca Hidrográfica, está el de las Cuadrículas asociadas a un vector el cual consiste en realizar un "muestreo" de las pendientes en una serie de puntos dentro de los límites de la Cuenca en estudio y, a partir del estudio de distribución de estas pendientes, obtener el valor de Pendiente Media de nuestra Cuenca. Por medio del método descrito anteriormente calcularemos la pendiente media de la hoya siguiendo los pasos establecidos por el mismo.

- Generar una cuadricula que tenga la mayor cantidad de intersecciones en la cuenca u hoya. (Ver anexo 6)
- Para cada intersección identificar la cota más alta y baja que rodean el punto, y calcular la distancia entre cotas mediante una línea perpendicular a la cota menor que llegue hasta la cota mayor.

Tabla 8: Método de la cuadricula para el cálculo de pendiente de la hoya

		СОТА	DISTANCIA	PENDIENTE
	MAYOR	MENOR	(m)	(%)
D2	650	600	171 OF	20.22
D2 E2	650	600	171,05	29,23
	850	800	738,08	6,77
F2	900	850	104,52	47,84
C3	750	700	97,82	51,11
D3	700	650	203,82	24,53
E3	650	600	640,52	7,81
F3	750	700	119,91	41,70
G3	950	900	182,22	27,44
C4	800	750	193,65	25,82
D4	750	700	122,89	40,69
E4	750	700	125,87	39,72
F4	900	850	73,18	68,32
B5	850	800	83,91	59,59
C5	950	900	132,82	37,64
D5	750	700	414,1	12,07
E5	750	700	116,43	42,94
F5	900	850	378,35	13,22
C6	900	850	192,9	25,92
D6	800	750	223,19	22,40
E6	700	650	211,52	23,64
F6	950	900	74,23	67,36
D7	800	740	76,22	78,72
E7	800	750	69,51	71,93
F7	900	850	137,79	36,29
G7	1150	1100	112,96	44,26
D8	950	900	206,55	24,21
E8	900	850	291,96	17,13
F8	850	800	77,21	64,76
G8	1150	1100	170,31	29,36
D9	1100	1050	577,76	8,65
E9	950	900	128,35	38,96
F9	900	850	108,74	45,98
G9	1000	950	136,05	36,75
H9	1300	1250	113,21	44,17
D10	1100	1050	341,86	14,63
E10	1250	1200	181,73	27,51
F10	1050	1000	174,78	28,61

G10	1100	1050	163,85	30,52
H10	1200	1150	331,93	15,06
110	1500	1450	99,3	50,35
J10	1700	1650	123,64	40,44
D11	1150	1100	243,79	20,51
E11	1250	1200	68,77	72,71
F11	1200	1150	173,29	28,85
G11	1200	1150	178,25	28,05
H11	1450	1400	176,51	28,33
l11	1550	1500	88,88	56,26
J11	1750	1700	71,99	69,45
E12	1350	1300	138,28	36,16
F12	1300	1250	241,56	20,70
G12	1550	1500	189,18	26,43

Fuente 18: Los Autores

Para determinar la pendiente de la hoya es necesario hallar el valor de los intervalos de clase (K) definido por la ley de sturges.

$$K = 1 + 3.3 \log(n)$$

Ecuación 12: ecuación de sturges

Dónde:

K: intervalo de clase

n : número de puntos de pendiente

$$K = 1 + 3.3 \log(51)$$
 \therefore $K = 7 (redondeando)$

Para determinar el tamaño de los intervalos utilizaremos la pendiente más alta y la más baja así:

$$C = \frac{Pendiente\ Mayor - Pendiente\ Menor}{K}$$
 Ecuación 13 : intervalo de pendiente

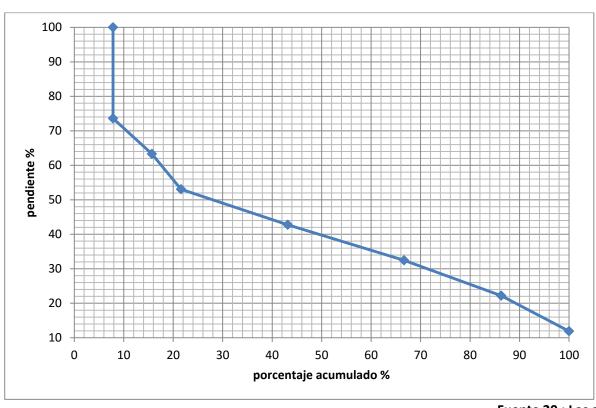

$$C = \frac{78.72 \% - 6.77\%}{7} \qquad \qquad \therefore \qquad C = 10.28\%$$

Tabla 9: Numero de ocurrencias

Intervalos de pendientes (%)	Núm. Ocurrencias (N)	Pendiente Media en el intervalo (Sm)(%)	N * Sm (%)
6,77 - 17,05	7	11,91	83,37
17,05 - 27,33	10	22,19	221,9
27,33 - 37,61	12	32,47	389,64
37,61 - 47,89	11	42,75	470,25
47,89 - 58,17	3	53,03	159,09
58,17 - 68,45	4	63,31	253,24
68,45 - 78,73	4	73,59	294,36
TOTALES	51		1871,85

Fuente 19: Los Autores

Ilustración 12 : Distribución de pendientes en el porcentaje total

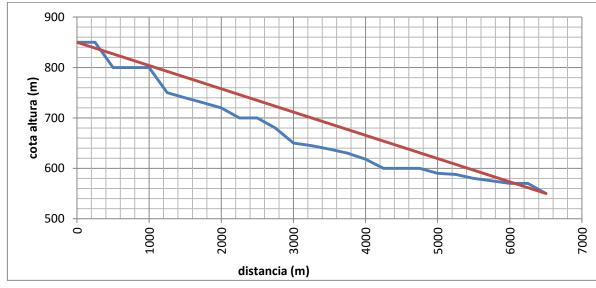
Fuente 20 : Los autores

De esta manera mediante el empleo de la fórmula de Pendiente de la hoya por el método de las cuadriculas dicho valor se obtiene así:

$$Pendiente \ de \ la \ hoya = \frac{\sum_{i=1}^{K} (numero \ de \ ocurrencias_i * S \ media_i)}{\sum_{i=1}^{K} (numero \ de \ ocurrencias_i)}$$
 Ecuación 14 : pendiente de la hoya; método de las cuadriculas

Pendiente de la hoya =
$$\frac{1871,85 \%}{51}$$
 = 36.703 %

2.1.14. Pendiente Media del cauce principal


Método de los extremos (pendiente racional)

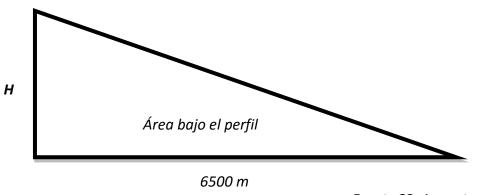
Para realizar el cálculo de este valor haremos uso de la ecuación N° 7

$$Pm = \frac{850 - 550}{6500} * 100 \qquad \therefore \qquad Pm = 4,62\%$$

Este valor es poco acertada, debido a que este método se emplea en cuencas hidráulicas de una corta longitud y poco cambio de alturas.

Ilustración 13: Pendiente por el método de los extremos y perfil longitudinal

Fuente 21: Los autores


Perfil longitudinal del cauce
Pendiente racional

• Pendiente media ponderada

Este método es más exacto que el de los extremos; ya que este tiene en cuenta el área sobre la curva del perfil longitudinal (*ilustración 11*). Para conocer el área sobre la curva se usara el método de los trapecios, con el cual conoceremos el área, y ya que la distancia es conocida solamente nos quedara como variable la altura (*ilustración 13*); conociendo todas las variables es posible graficar la pendiente ponderada.

Area bajo el perfil =
$$\frac{(\sum absisa \ x \ cota\) - (\sum absisa \ * \ cota\)}{2}$$
Ecuación 15 : Método del trapecio para área bajo la curva

Ilustración 14: Referencia para cálculo de pendiente ponderada

Fuente 22 : Los autores

Mediante la deducción desde el área del triángulo podemos calcular la altura de la pendiente ponderada de nuestro perfil.

$$A\Delta = \frac{BASE * ALTURA(H)}{2}$$

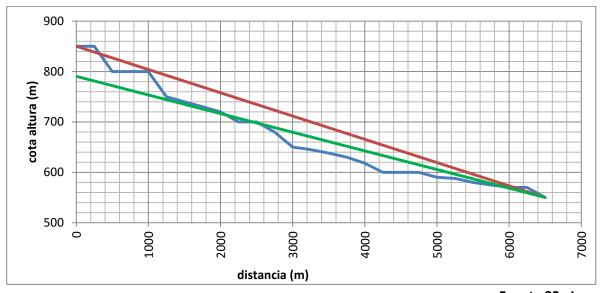
$$H = \frac{A\Delta * 2}{BASE}$$

Ecuación 16: Ecuación para la altura de la pendiente ponderada

abscisa (m)	cota (m)	abscisa x cota	abscisa * cota	
0	850	0	212500	
250	850	200000	425000	
500	800	400000	600000	
750	800	600000	800000	
1000	800	750000	1000000	
1250	750	925000	1125000	
1500	740	1095000	1295000	
1750	730	1260000	1460000	
2000	720	1400000	1620000	
2250	700	1575000	1750000	
2500	700	1700000	1925000	
2750	680	1787500	2040000	
3000	650	1935000	2112500	
3250	645	2073500	2257500	
3500	638	2205000	2392500	
3750	630	2317500	2520000	
4000	618	2400000	2626500	
4250	600	2550000	2700000	
4500	600	2700000	2850000	
4750	600	2802500	3000000	
5000	590	2940000	3097500	
5250	588	3045000	3234000	
5500	580	3162500	3335000	
5750	575	3277500	3450000	
6000	570	3420000	3562500	
6250	570	3437500	3705000	
6500	550	3575000	0	
0	550	0	0	
0	850	53533500	55095500	

Utilizando la ecuación 15 para el cálculo del área bajo el perfil.

Area bajo el perfil (m2) =
$$\frac{53533500 - 55095500}{2}$$
Area bajo el perfil = 0,781 km2


Utilizando la ecuación 16 para el cálculo de la altura (H) de la pendiente ponderada.

$$H = \frac{0.781*2}{6500}$$
 \therefore $H = 0.24 \, Km = 240.31 \, m$

La anterior altura sumada a la cota más baja del perfil longitudinal de la quebrada Canauchita para así hallar la nueva altura y por consiguiente la pendiente ponderada. *Utilizando la ecuación 8 para este cálculo.*

$$Pm = \frac{790.31 - 550}{6500} * 100 \qquad \therefore \qquad 3.697 \%$$

Ilustración 15: Relación de pendientes

Fuente 23: Los autores

Perfil longitudinal del cauce
Pendiente racional
Pendiente ponderada

Método de Taylor y Schwartz

El método de Taylor indica que es necesario dividir la cuenca en tramos horizontales de la misma longitud; en este caso se dividió en 12 tramos de 745 m cada uno. (Ver anexo 7)

Luego mediante la organización de los datos adquiridos de la división de la cuenca y la cartografía se puede tabular el método de Taylor. *Para hallar este valor haremos uso de la ecuación N°8*

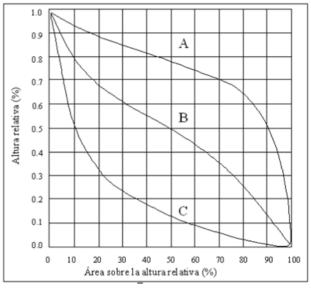
Tabla 10: Pendiente de cada tramo del cauce principal, método de Taylor

numero de intervalo	Longitud del tramo (m)	Cota mayor	Cota menor	Pendiente tramo (%)	\sqrt{S}	
n	1			(S)	V3	
1	250	850	850	0,0	0,0000	0,000
2	250	850	800	20,0	4,4721	55,902
3	500	800	800	0,0	0,0000	0,000
4	250	800	750	20,0	4,4721	55,902
5	750	750	720	4,0	2,0000	375,000
6	250	720	700	8,0	2,8284	88,388
7	250	700	700	0,0	0,0000	0,000
8	250	700	680	8,0	2,8284	88,388
9	250	680	650	12,0	3,4641	72,169
10	250	650	645	2,0	1,4142	176,777
11	500	645	630	3,0	1,7321	288,675
12	250	630	618	4,8	2,1909	114,109
13	250	618	600	7,2	2,6833	93,169
14	500	600	600	0,0	0,0000	0,000
15	250	600	590	4,0	2,0000	125,000
16	250	590	588	0,8	0,8944	279,508
17	250	588	580	3,2	1,7889	139,754
18	500	580	570	2,0	1,4142	353,553
19	250	570	570	0,0	0,0000	0,000
20	250	570	550	8,0	2,8284	88,388
	6500					2394,684

Fuente 24: Los Autores

$$Pm = \left[\frac{6500}{2394.684}\right]^2 \qquad \therefore \qquad Pm = 7.37\%$$

2.1.15. Curva Hipsométrica


Cuando uno o más factores de interés en la cuenca hidrográfica dependen de la elevación, es útil saber cómo es la distribución altitudinal de su territorio. Esta distribución se puede mostrar por medio del histograma de las áreas comprendidas en los distintos rangos de altura. Sin embargo, como el devenir de los caudales en una sección fluvial depende, en forma acumulativa, de todo lo que ocurre aguas arriba de ella, se prefiere representar la distribución altitudinal mediante una curva de área-elevación o curva hipsométrica, la cual permite establecer, para cada altura, el área comprendida en la cuenca, y situada a una altura mayor que la que es dada.

La curva hipsométrica, o curva hipsográfica, es la representación gráfica del relieve de una cuenca. Representa el estudio de la variación de la elevación de los varios terrenos de la cuenca, con referencia al nivel medio del mar. Esta variación puede ser indicada por medio de un gráfico que muestre el porcentaje de área de drenaje que existe por encima, o por debajo de varias elevaciones.

Para construir la curva hipsométrica, se debe medir el área comprendida entre los límites de la cuenca y bajo cada isohipsa, y ordenar esta información. Para trazar la curva hipsométrica, se representan, en un sistema de coordenadas, las alturas en la ordenada, en función del área acumulada, por encima o por debajo de una cierta elevación, en la abscisa. Es conveniente utilizar las áreas acumuladas en porcentaje, en lugar de su valor absoluto, particularmente cuando se desea realizar comparaciones entre varias cuencas hidrográficas.

Las curvas hipsométricas revelan si la cuenca se encuentra en fase de juventud, fase de madurez o fase de vejez A, B y C.

Ilustración 16: Faces o etapas de las cuencas hidrográficas (curva hipsométrica)

Fuente 25: Strahler

A: Cuenca con alto potencial erosivo

B: Cuenca en equilibrio

C: Cuenca sedimentaria

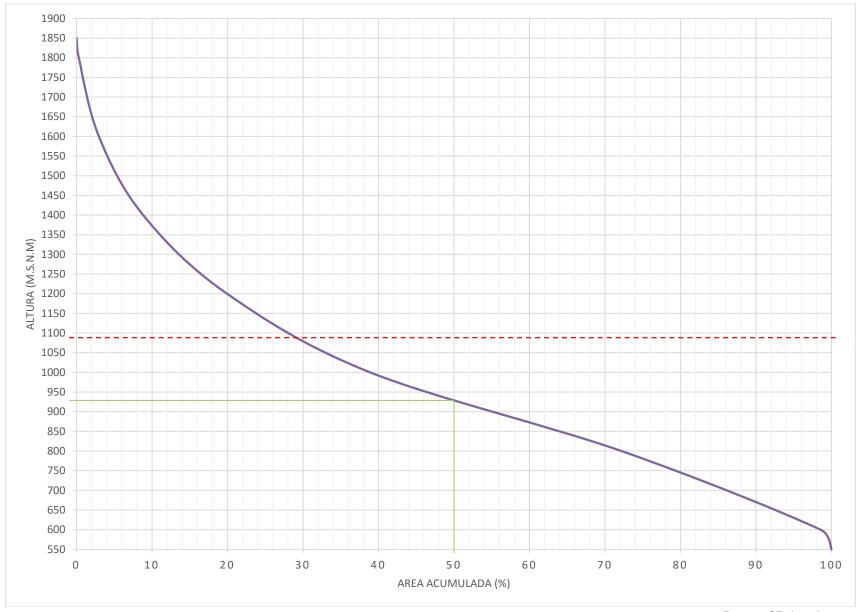

Para el cálculo de la curva hipsométrica de la cuenca hidrográfica que contiene la quebrada Canauchita es necesario tabular el área entre las cotas de nivel principales de la hoya; actuando cada área independiente de la anterior. (Ver anexo 8)

Tabla 11: Datos para él la gráfica de la curva hipsométrica

cot	as	altitud media entre cotas	áreas parciales (km2)	áreas acumuladas (km2)	áreas que quedan sobre las altitudes (km2)	% total	% que queda sobre las altitudes
mayor	menor	(m.s.n.m)	, ,	,	, ,		
400	550	475	0	0	28.13	0	100
550	600	575	0.041	0.41	27.72	0.15	98.54
800	600	700	7.785	7.826	20.304	27.68	72.18
1000	800	900	9.364	17.19	10.94	33.29	38.89
1200	1000	1100	5.332	22.522	5.608	18.96	19.93
1400	1200	1300	3.126	25.648	2.482	11.11	8.82
1600	1400	1500	1.651	27.299	0.831	5.87	2.96
1800	1850	1825	0.748	28.046	0.084	2.66	0.3
1850	2000	1925	0.084	28.13	0	0.3	0
			28.13			100	

Fuente 26: Los Autores

Ilustración 17: Curva Hipsométrica de la hoya que contiene la quebrada Canauchita

Fuente 27: Los Autores

Para el cálculo de la elevación media de la cuenca se aplicara la siguiente ecuación:

$$Elevacion \ media = \frac{\sum Area*cota}{\sum Areas}$$
 Ecuación 17: Elevación media de la cuenca

Tabla 12: Área * cota (curva hipsométrica)

AREA (km2)	COTA (m.s.n.m)	AREA*COTA (km2 * m.s.n.m)
0	550	0
0.041	600	24.600
7.785	800	6228.122
9.364	1000	9364.214
5.332	1200	6398.544
3.126	1400	4375.749
1.651	1600	2641.152
0.748	1800	1345.935
0.084	1850	154.507
28.13		30532.823

Fuente 28: Los Autores

Elevacion media =
$$\frac{30532.823}{28.13}$$
 \therefore Elevacion media = $1085,5 \text{ m. s. n. m}$

El valor de la elevación media se presenta en la *ilustración 12* mediante una línea punteada de color rojo; mientras que la elevación mediana está dada por una línea color verde.

Elevacion mediana =
$$930.8 \text{ m.s.n.m}$$

Según la clasificación de la *ilustración* 11 se puede concluir que la cuenca de la quebrada Canauchita es una cuenca en estado de madurez lo que indica que es una cuenca en equilibrio.

2.2. Estudio del Periodo de retorno

Es uno de los parámetros más significativos generalmente expresado en años y puede definirse como el número de años en que se espera se repita o se supere un cierto caudal ya conocido.

Esto significa que se presume un tiempo estimado en que el caudal aumente significativamente; pero este vuelve y disminuye hasta normalizarse.

Una de las finalidades de esta monografía es el estudio hídrico de la cuenca que contiene a la quebrada Canauchita, debido a que este sector es viable para la mayoría de construcciones, por ende es necesario mostrar algunos periodos de retorno ya conocidos para estas obras civiles.

Tabla 13: Ejemplos de periodo de retorno en obras civiles

Tipo de obra	Periodo de retorno (años)
Puentes(Luz mayor o igual a 50 m)	100
Disipador	100
Bocatoma	50
Puentes(Luz mayores a 10 m y menores a 50 m)	50
Puentes(Luz menores a 10 m)	25
Presas pequeñas	25
Alcantarillas de 90 cm de diámetro	20
Drenaje sub-superficial	20
Cunetas	10
Estructuras de caída	10

Fuente 29: Página de Internet Invias

2.3. Uso del suelo adyacente a la quebrada.

2.3.1. Coeficiente de Escorrentía superficial

Del agua que cae sobre la cuenca, una parte se evapora, otra escurre superficialmente y otra se infiltra a estratos subterráneos. La escorrentía superficial describe el flujo del agua por la cuenca hidrográfica siendo uno de los parámetros fundamentales de la hidrología pues representa la porción de la precipitación que se convierte en caudal.

El coeficiente de escorrentía depende de varios valores como el tipo de suelo, la cobertura vegetal, inclinación, factores granulométricos, litológicos entre otros.

Una forma de visualizar el significado del coeficiente de escorrentía es asociarlo y tratarlo como términos de porcentaje. Por ejemplo, un coeficiente de escorrentía de 0.8 quiere decir que únicamente el 80% de la precipitación escurrirá por la superficie de la hoya el 20% restante se evaporará o se infiltrará. Con lo mencionado anteriormente un coeficiente de escorrentía cercano a uno evidenciara un mayor flujo de agua, mostrando un alto índice de impermeabilidad, En general los coeficientes de escorrentía se encuentran por fortuna tabulados y provienen de estudios empíricos y experiencias previas.

Tabla 14: clasificación y descripción del suelo

Clasificación	Característica	Descripción
Α	Bajo potencial deescorrentía	Son suelos que tienen alta transmisión de infiltración, aun cuando son muy húmedos.
В	Moderadamente bajo potencia de escorrentía	Suelos con transmisión de infiltración moderada, Suelos moderadamente profundos a profundos.
С	moderadamente alto potencial de escorrentía	Suelos con infiltración lenta, con un estrato que impide el movimiento del agua hacia abajo; de texturas moderadamente finas a finas, suelos con infiltración lenta debido a la presencia de sales o álcali o con masas de agua moderadas.
D	Alto potencial deescorrentía	Suelos con infiltración muy lenta cuando son muy húmedos. Son suelos arcillosos con un alto potencial de expansión; con nivel freático alto; con estrato arcilloso superficial; con infiltración muy lenta debido a sales.

Fuente 30: Monsalve

2.3.2. Usos del suelo de Boyacá

Boyacá tiene por encima de los 3000 M.S.N.M extensas áreas de clima muy frio los cuales alcanzan su máxima altitud en la Sierra Nevada del Cocuy. En estos nevados hay un mosaico de suelos, cuyo manejo está limitado por características tales como la alta susceptibilidad al deterioro, altas temperaturas las cuales no dejan que se descomponga la materia orgánica y por tanto no haya una buena fertilidad, suelo extremadamente acido con un PH < a 4.5 debido a la presencia de aluminio de la ceniza volcánica, muy alta retención de la humedad, sumándose a características climáticas muy agresivas con vientos fuertes, nevadas continuas y poca iluminación.

Al hablar del suelo que rodea a la quebrada Canauchita, este está dado para la agricultura, ganadería y/o construcción; debido a que es un suelo estable y con bastantes afluentes de agua a su alrededor.

Para concluir el valor de los coeficientes de escorrentía en un periodo de retorno se hace uso de la siguiente tabla, ingresamos por condición buena y valores promedio a la tabla debido a que este es un terreno inmerso en una zona baja de montaña y rodeado de bosque:

Tabla 15: Coeficientes de escorrentía

AREA DESARROLLADA							
condicion buena (cubierta de pasto > 75 % del area)							
CARACTERISTICA DE LA	COEFICIENTES DE ESCORRENTIA						
SUPERFICIE	COEFICIENTES DE ESCORRENTIA						
periodo de retorno (años)	2	5	10	25	50	100	500
PLANO	0.21	0.23	0.25	0.29	0.32	0.36	0.49
PROMEDIO	0.29	0.32	0.35	0.39	0.42	0.6	0.56
ESCARPADO	0.34	0.37	0.4	0.44	0.47	0.51	0.58

Fuente 31: Hidrología aplicada; Ven Te Chow

El coeficiente de escorrentía de la cuenca que contiene a la quebrada Canauchita son:

Tabla 16: Coeficientes escorrentía para la cuenca hidrográfica de la quebrada Canauchita

periodo de retorno	coeficiente escorrentía
2 años	0,29
5 años	0,32
10 años	0,35
25 años	0,39
50 años	0,42
100 años	0,60
500 años	0,56

Fuente 32: tabla N° 16

2.4. Obtención y análisis de datos pluviométricos del sector

Estos datos fueron suministrados por el IDEAM basados en la estación número 13285070 de Otanche.

2.4.1. Tiempo de concentración

Se define como tiempo de concentración al lapso necesario para que todos los puntos de la cuenca estén drenando agua de escorrentía de forma simultánea en este caso a la desembocadura.

El tiempo de concentración es proporcional al tiempo que tarda en drenar el agua desde el punto más alejado de la cuenca al punto de salida o desembocadura.

El cálculo del tiempo de concentración de una cuenca hidrográfico es uno de los aspectos básicos a determinar a la hora de gestionar los recursos agua y suelo, ya sea para su mejor aprovechamiento como para mejorar su manejo y conservación.

2.4.2. Métodos de estimación

La determinación del tiempo de concentración se realiza con ayuda de tablas o ecuaciones empíricas. Destacando las ecuaciones de Bransby-Williams, SCS-Ranser, Temez, Kirpich, V.T.Chow, y la Dirección General de Carreteras (España).

• Ecuación de Bransby-Williams

$$T = \frac{L}{1,5*D} \sqrt[5]{\frac{M^2}{F}}$$

Ecuación 18: Ecuación de Bransby-Williams

Dónde:

T= tiempo de concentración (horas)

L= distancia máxima a la salida (km)

D= diámetro del círculo de área equivalente a la superficie de la cuenca (km2)

M= área de la cuenca (km2)

F= pendiente media del cauce principal (%)

• Ecuación de SCS - Ranser.

$$Tc = 0.947 * \frac{(L^3)^{0.385}}{H}$$

Ecuación 19: Ecuación de SCS - Ranser

Dónde:

Tc= tiempo de concentración (horas)

L= longitud del cauce principal (km)

H=diferencia de cotas entre los puntos extremos del cauce principal (m)

• Ecuación de Kirpich

$$Tc = 0.06628 * \left(\frac{L}{\sqrt{S}}\right)^{0.77}$$

Ecuación 20: Ecuación de Kirpich

Dónde:

Tc= tiempo de concentración (horas)

L= longitud del cauce principal (km)

S=pendiente media del cauce principal

• Ecuación de Temez

$$Tc = 0.30 * \left(\frac{L}{\sqrt[4]{S}}\right)^{0.76}$$

Ecuación 21: Ecuación de Temez

Dónde:

Tc= tiempo de concentración (horas)

L= longitud del cauce principal (km)

S=pendiente media del cauce principal (%)

• Ecuación de V.T Chow

$$Tc = 0.213 \left(\frac{L}{\sqrt{S}}\right)^{0.64}$$

Ecuación 22: Ecuación de V.T.Chow

Dónde:

Tc= tiempo de concentración (horas) L= longitud del cauce principal (km)

S=pendiente media del cauce principal

• Ecuación de la Dirección general de Carreteras (España)

$$Tc = 0.3 \left(\frac{L}{J^{1/4}}\right)^{0.76}$$

Ecuación 23: Ecuación de la Dirección general de Carreteras (España)

Dónde:

Tc= tiempo de concentración (horas)

L= longitud del cauce principal (km)

J=pendiente media del cauce principal

2.4.3. Aplicación de las fórmulas de tiempo de concentración

• Ecuación de Bransby-Williams

$$Tc = \frac{6,28}{1,5*5,98} \sqrt[5]{\frac{28,13^2}{4,62}}$$
 \therefore $T = 1.96 horas$

• Ecuación de SCS - Ranser.

$$Tc = 0.947 * \frac{(6.28^3)^{0.385}}{300}$$
 : $Tc = 0.87 horas$

• Ecuación de Kirpich

$$Tc = 0.06628 * \left(\frac{6.28}{\sqrt{0.0462}}\right)^{0.77}$$
 \therefore $Tc = 0.37 \ horas$

• Ecuación de Temez

$$Tc = 0.30 * \left(\frac{6.28}{\sqrt[4]{4.62}}\right)^{0.76}$$
 \therefore $Tc = 0.91 \ horas$

Ecuación de V.T Chow

$$Tc = 0.213 \left(\frac{6.28}{\sqrt{0.0462}} \right)^{0.64}$$
 \therefore $Tc = 0.88 \ horas$

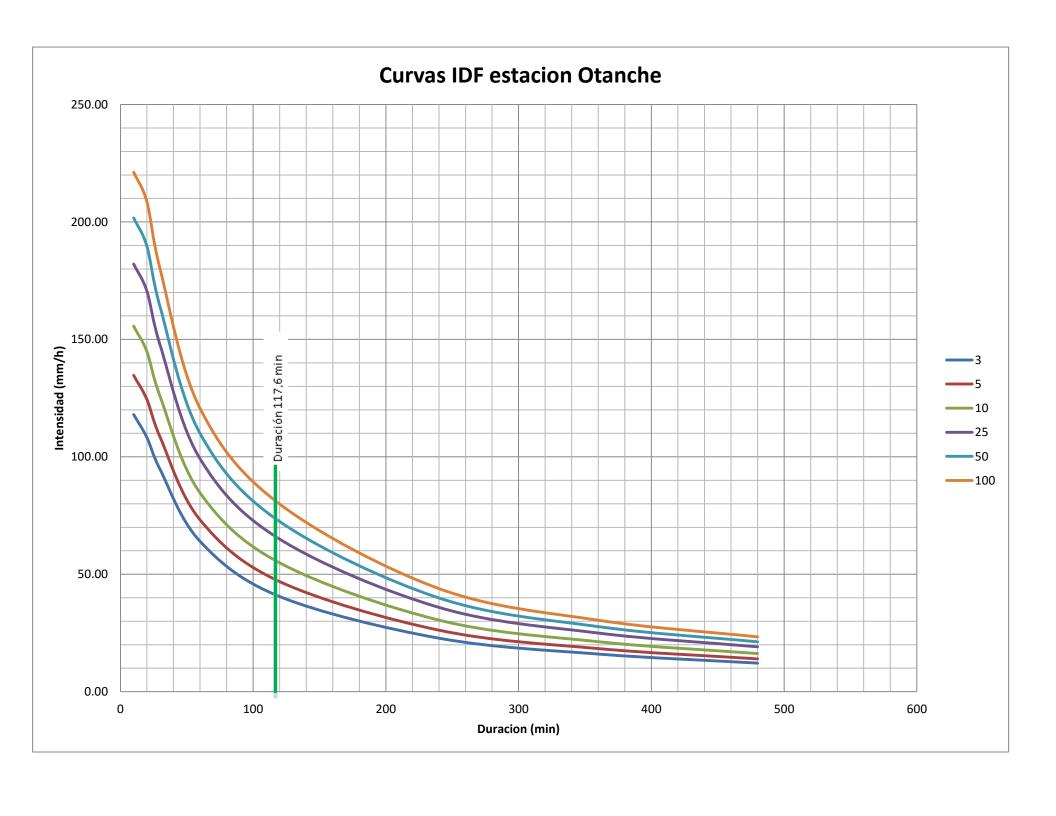
• Ecuación de la Dirección general de Carreteras (Estaña)

$$Tc = 0.3 \left(\frac{6.28}{0.042^{1/4}} \right)^{0.76}$$
 : $Tc = 2.21 \ horas$

Mediante la tabulación de los datos obtenidos anteriormente y la opinión del director del proyecto, decidimos usar como tiempo de concentración para esta monografía el dado por la ecuación de Bransby – Williams.

Tabla 17: Tiempo de concentración según diferentes autores

Autor de la ecuación	Tiempo de concentración
Bransby-Williams	<u> 1.96 horas</u>
SCS-Ranser	0.87 horas
Kirpich	0.37 horas
Temez	0.91 horas
V.T.Chow	0.88 horas
D.G.C	2,21 horas


2.4.4. Curvas Intensidad-Duración-Frecuencia (IDF)

Unos de los primeros pasos que debe seguirse en muchos de los proyectos hidrológicos, es la determinación del evento o los eventos de lluvia que deben usarse. La forma más común de hacerlo es utilizar una tormenta de diseño o un evento que involucre una relación entre intensidad de lluvia, la duración y las frecuencias apropiados para la obra y el sitio. Usualmente se presentan graficas con la duración de la lluvia en el eje X y la intensidad en el eje Y, mostrando una serie de curvas para cada uno de los periodos de retorno de diseño.

Para emplear las curvas I-D-F es imprescindible conocer la duración de la lluvia y los periodos de retorno que varían en función de la estructura futura. Sin embargo, la duración de la precipitación a ciencia cierta se desconoce. Por ende, el método racional supone que esta duración es equivalente al tiempo de concentración.

En base a la información suministrada por la curca IDF es posible tabular el periodo de retorno vs la intensidad de lluvia, datos que hacen falta para proceder con la aplicación del método racional.

Es de resaltar que la curva Intensidad - Duración – Frecuencia de la estación de Otanche usada en esta monografía es tomada de la tesis para optar al título de tecnólogo en Construcciones del estudiante CESAR OSWALDO BOHORQUEZ SALGADO titulada "Construcción y análisis de curvas intensidad – duración – frecuencia (IDF) para las estaciones de Otanche y villa luisa en el departamento de Boyacá"; año 2014.

Entrando en la curva IDF del municipio de Otanche con el tiempo de concentración determinado en la tabla el cual es 117,6 min obtenemos los siguientes datos:

Tabla 18: Intensidad de Precipitación

periodo de retorno (años)	intensidad de precipitación (mm/h)	intensidad de precipitación (m/s)
3	41,1	1,14167e-5
5	47,2	1,31111e-5
10	53,1	1,475e-5
25	63,3	1,75833e-5
50	72,1	2,00278e-5
100	80,8	2,225e-5

Fuente 34: Los Autores

Debido a que la curva IDF presenta 3 años como el periodo de retorno menor, y la tabla de coeficiente de escorrentía tiene como unidad menor 2 años y la siguiente 5 años, entonces es necesaria una interpolación entre los coeficientes de escorrentía 0,29 y 0,32 para 2 años y 5 años respectivamente, y de esta manera determinar el coeficiente de escorrentía para 3 años.

De esta manera se especifica 0,30 como coeficiente de escorrentía para un periodo de retorno de 3 años.

2.5. Aplicación del Método racional

El método racional, es una modelación matemática a la relación existente entre la

precipitación y el escurrimiento de una hoya hidrográfica.

Este método, utiliza fórmulas empíricas y semi-empiricas las cuales se fundamentan

en las siguientes suposiciones:

• El coeficiente de escorrentía es un valor empírico el cual se obtiene de manera

experimental.

• No se tiene en cuenta la evaporación ni la transpiración del agua en la

vegetación de la cuenca.

• Se asume que la lluvia es constante y uniforme en toda la superficie de la hoya.

• Este método es más eficaz en cuencas de área pequeña.

2.5.1. Cálculo de caudal máximo de creciente

El método racional tiene como variables el coeficiente de escorrentía superficial, la

intensidad de precipitación y el área de influencia de la cuenca.

Qmax = C * i * A

Por facilidades de manejo de unidades *usaremos la ecuación N°10 para el cálculo*

de estos valores

Qmax = 0.278 * C * i * A

Dónde:

Qmax: caudal máximo de creciente (m³/seg)

C: coeficiente de escorrentía superficial medio ponderado en la cuenca

i: Intensidad de precipitación (mm/hora)

A: Área de la cuenca (km^2)

59

Con base a la anterior fórmula y cada uno de sus valores, es posible tabular la información tanto de los datos como del cálculo para valores de periodo de retorno establecidos, para que mediante la tabulación se pueda graficar el caudal máximo de creciente vs el periodo de retorno, ya que esta grafica es de mucha ayuda para la planificación de estructuras futuras.

Tabla 19: Calculo del caudal máximo de creciente (METODO RACIONAL)

periodo de retorno (años)	tiempo de concentración (min)	coeficiente de escorrentía	intensidad de precipitación (mm/h)	área de la cuenca (Km2)	caudal máximo calculado (m3/s)
3	117,6	0,29	41,1	28,13	93,208
5	117,6	0,32	47,2	28,13	118,115
10	117,6	0,35	53,1	28,13	145,337
25	117,6	0,39	63,3	28,13	192,056
50	117,6	0,42	72,1	28,13	236,809
100	117,6	0,6	80,8	28,13	379,120

Fuente 35: Los Autores

Mediante la gráfica del periodo de retorno Vs caudal de creciente máximo (Ver anexo 10) podemos inferir una formula tendencial para el valor del caudal de creciente máximo en cualquier periodo de retorno en la cuenca hidrográfica que contiene a la quebrada Canauchita.

$$y = 62.121x^{0.3687}$$

Ecuación 24: Ecuación experimental caudal máximo de creciente cuenca que contiene la quebrada Canauchita

AUTOR: GUSTAVO SILVA MEDINA

Docente universidad nacional de Colombia.

(Tomado de la revista ingeniería e investigación u. nacional de Colombia.)

Tratándose de estudios hidrológicos en cuencas con Información escasa no se Justifica hacer deducciones demasiado complicadas en el cálculo de hidrogramas unitarios sintéticos para estimativos de crecientes. Por esta razón, se recomiendan los más sencillos. Como son, los de Snyder y Taylor y el triangular del SCS (Soil conservation service). Los dos primeros Snyder y Taylor, dan resultados aceptables cuando se utilizan con coeficientes apropiados, deducidos para la región donde se efectúa el estudio; en caso contrario, cuando no es posible deducir los coeficientes propios de la región, es mejor no utilizarlos. El hidrograma unitario triangular del SCS es bastante bueno en cuencas pequeñas, menores de 100 km², y su aplicación es muy sencilla. El caudal pico de creciente resulta de la ecuación:

$$Q = \frac{P * A}{5, 4 * tc}$$

Ecuación 25: Ecuación de caudal según el método triangular SCS.

Donde:

Q: es el caudal pico en metros cúbicos por segundo

P: volumen de agua de lluvia en mm

A: área de la cuenca en km²

Tc: tiempo de concentración en horas

Siguiendo el mismo procedimiento indicado en el numeral anterior para calcular la intensidad de la lluvia a partir del análisis de frecuencias de las lluvias máximas diarias, se determina la intensidad correspondiente a una duración Igual al tiempo de concentración de la cuenca, en mm/hora. Sea i la intensidad, el volumen P resulta:

$$P = i * tc * C$$

Ecuación 26: Ecuación del volumen de agua de lluvia según el método triangular SCS.

Donde:

P: volumen de agua de lluvia en mm

i: es la intensidad calculada en mm/hora

tc: es el tiempo de concentración en horas.

C: coeficiente de reducción

Este coeficiente c depende de la magnitud de la cuenca y de la pendiente media de la ladera. En cuencas de pendiente muy fuerte y de área menor de 25 krn², el coeficiente es próximo a 1; en cambio, en cuencas planas de gran área, es del orden de 0.15.

Desarrollo del método triangular SCS:

Tc=1.96 horas según la ecuación que utilizamos (bransby-williams)
C=0.15 ya que la pendiente promedio del terreno es 7,37% se puede decir que es baja y su área es mayor a 25 km²

Tabla 20: Calculo del volumen de agua de Iluvia (METODO SCS)

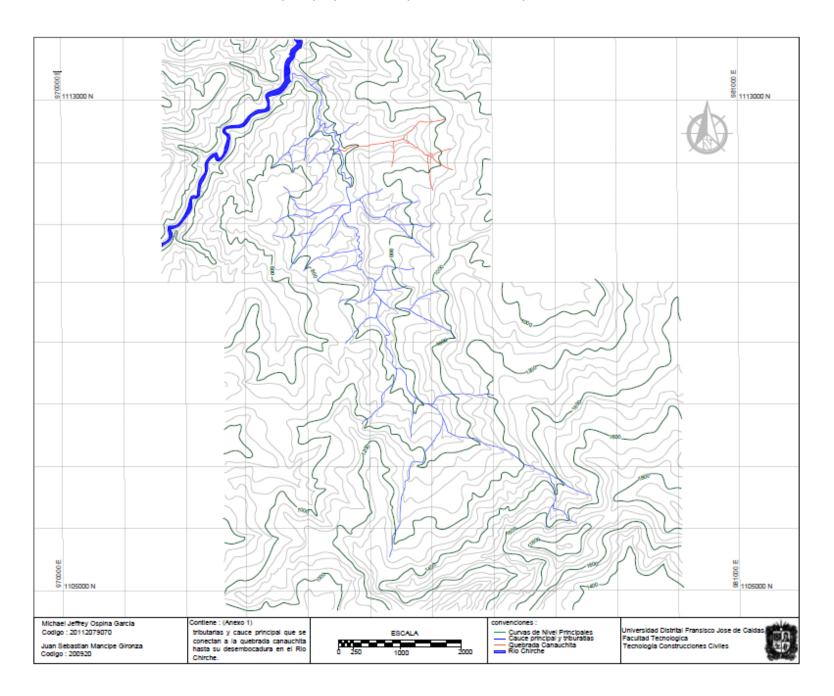
Periodo de retorno	1	Р
(años)	(mm/h)	(mm)
3	41,1	12,08
5	47,2	13,88
10	53,1	15,61
25	63,3	18,61
50	72,1	21,20
100	80,8	23,76

Obteniendo los valores de P se puede continuar calculando los valores e los caudales para cada periodo de retorno.

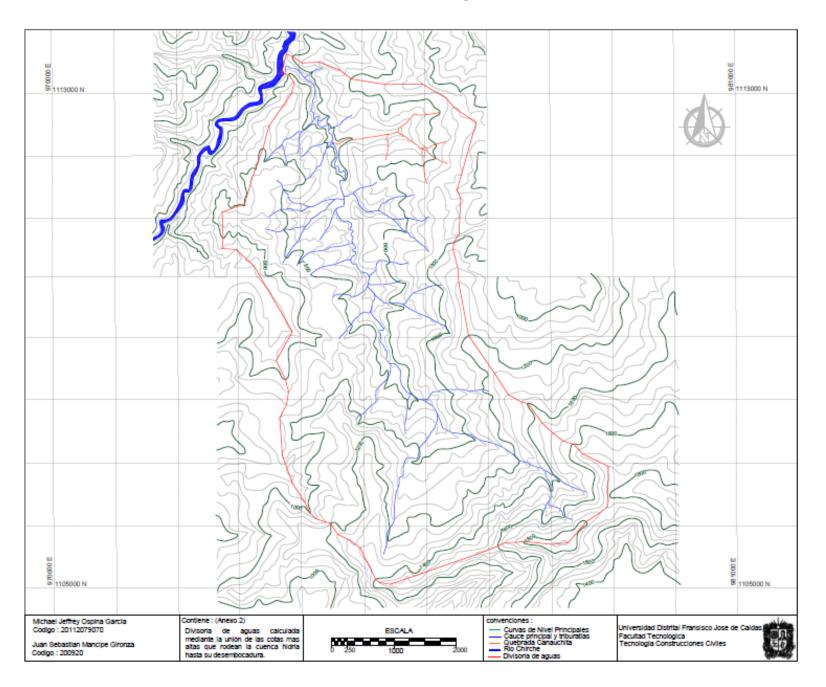
Tabla 21: Calculo del caudal (METODO SCS)

Periodo de retorno	Р	Q
(años)	(mm)	(m³/s)
3	12,08	32,11
5	13,88	36,89
10	15,61	41,49
25	18,61	49,46
50	21,20	56,34
100	23,76	63,15

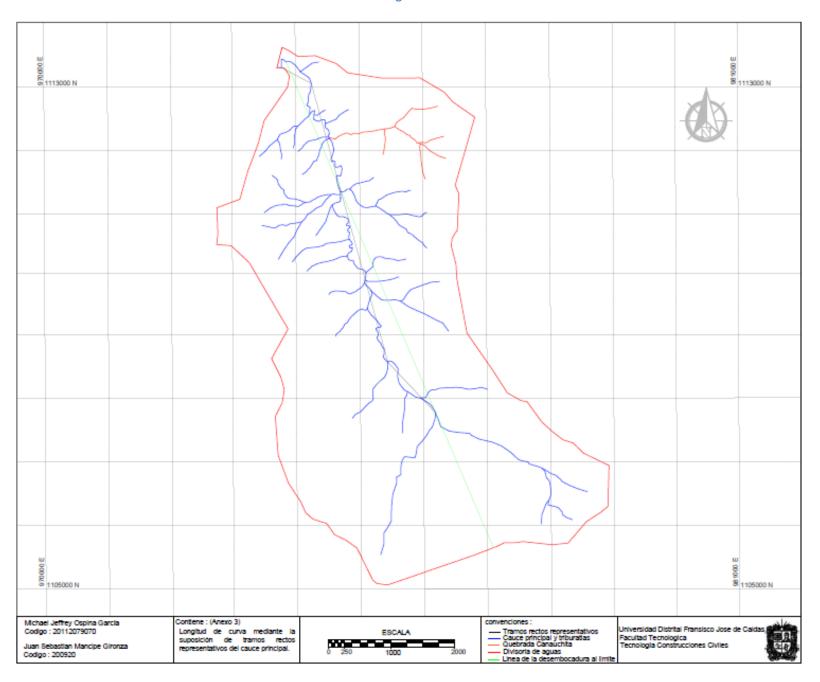
Con esto se demuestra que las diferencias entre los dos métodos son muy grandes y es recomendable utilizar este método para cuencas pequeñas.

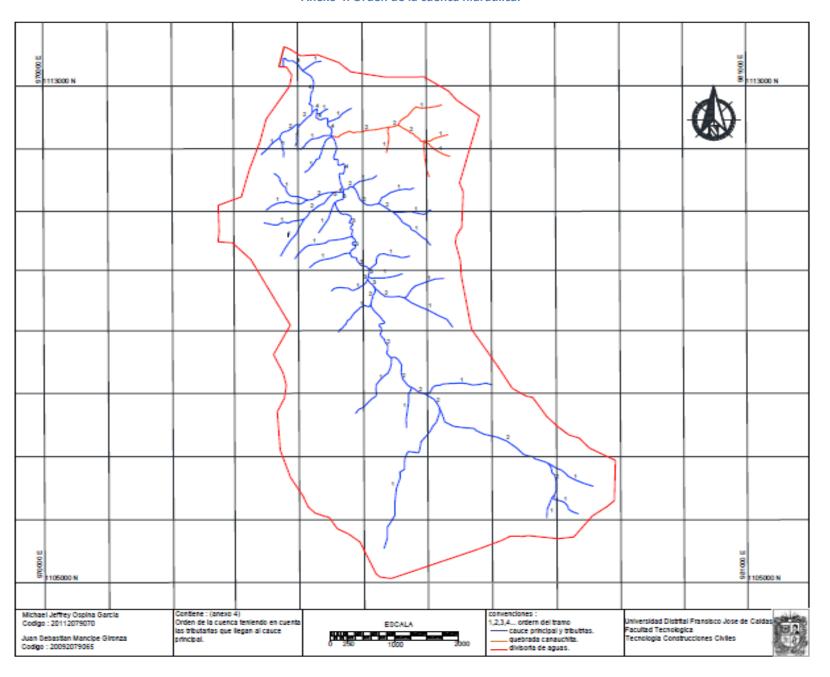

Conclusiones

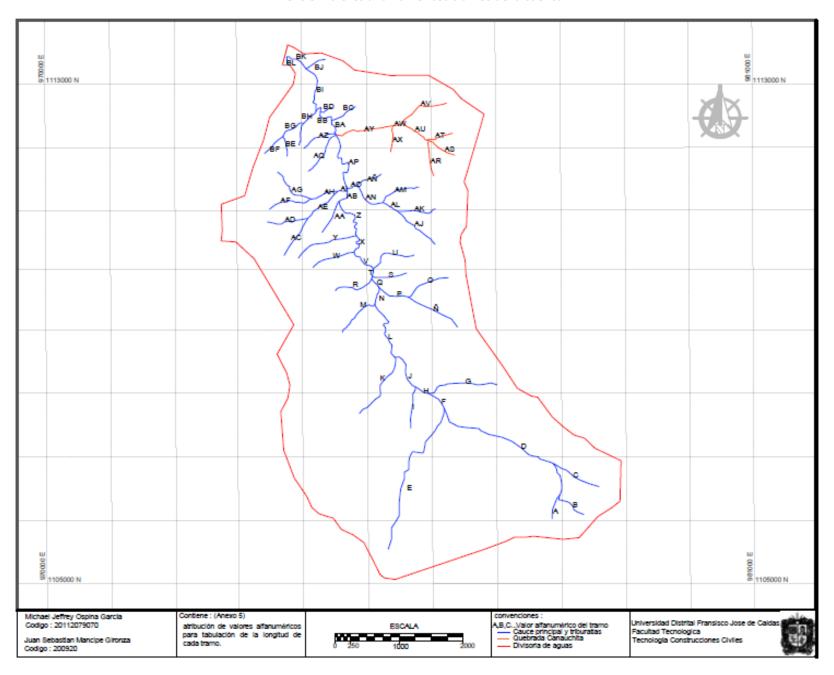
- Gracias al análisis de esta monografía se logró determinar los caudales máximos de creciente en periodos de retorno que puede alcanzar la cuenca hidráulica que contiene la quebrada Canauchita, ya que es de suma importancia conocerlos para cualquier actividad de construcción en este sector; aunque es de resaltar que el método racional es aconsejado para áreas menores a 10 hectáreas.
- En casos como este que superan dicha área es aconsejable realizar cálculos con otro
 método como el de la triangulación SCS obtenido del libro "Hidrología En Cuencas
 Pequeñas Con Información Escasa" AUTOR: GUSTAVO SILVA MEDINA, con el cual se
 obtuvieron datos más coherentes a este tipo de cauces lo cual es más recomendable para
 este tipo de cuenca
- Los caudales evaluados en el método racional, tienen mejor tendencia a estimar los valores de las crecientes, cuando las cuencas son pequeñas, porque se asume que el tiempo de concentración es aproximadamente igual al tiempo de duración de la lluvia en la cuenca.
- Se identificó que el valor del coeficiente de escorrentía es variable y depende de la selección del autor; debido a que esta esta tabulada por muchos autores y calculada con distintas fórmulas, las cuales desprecian directamente la infiltración y evaporación del agua en la cuenca.
- El hecho de que la cuenca hidrografía de la quebrada Canauchita maneje tributarias que se unen al cauce principal indica que la densidad de drenaje es alta, debido a que posee una gran cantidad de drenaje de aguas causadas por las tributarias.
- El factor de Forma de la cuenca de la quebrada Canauchita indica que esta es de forma muy alargada y la pendiente del cauce principal es baja, lo que indica que la respuesta hidrológica de la cuenca hidráulica es más lenta.
- La cuenca de la quebrada Canauchita da un índice de Gravelius o coeficiente de compacidad de 1.36 que al ser cercano a 2 indica que su forma es ovalada y alargada; esto señala que el tiempo de concentración de la cuenta es de gran magnitud, por lo tanto la precipitación de la cuenca es un valor pequeño.
- La forma de la cuenca hidrológica de la quebrada Canauchita es alargada, por tanto según el autor Monsalve esta tiende a ser menos susceptible a crecidas extraordinarias.
- La pendiente de la cuenca hidrográfica de la quebrada Canauchita es de 7,37%, es un porcentaje bajo, debido a que es una escorrentía de baja montaña.
- La pendiente media del cauce es de 4,62%, el cauce tiene un bajo potencial erosivo y es

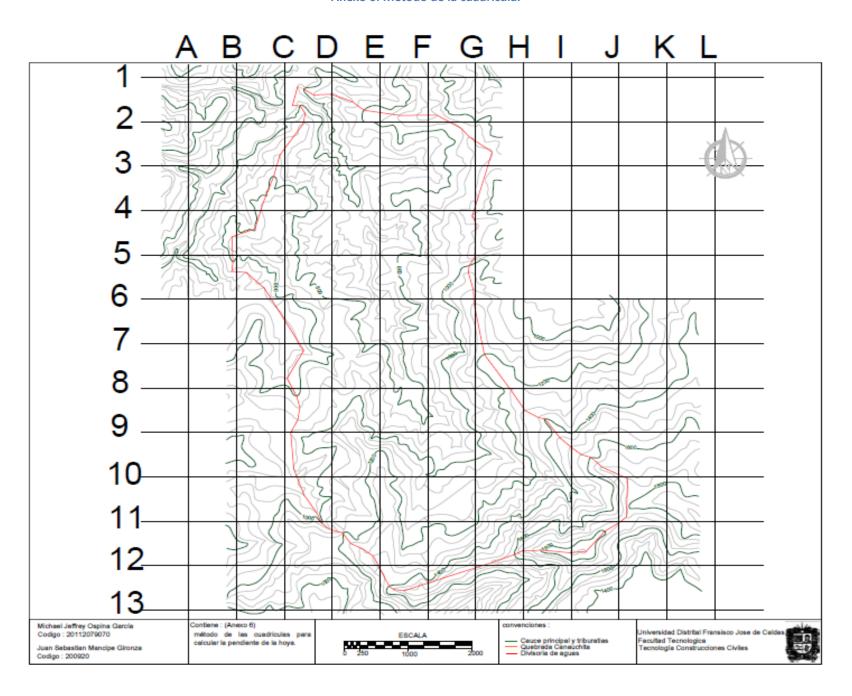

poco susceptible a deslizamientos de tierra.

• La cuenca de la quebrada Canauchita es una cuenca en estado de madurez lo que indica que es una cuenca en equilibrio.

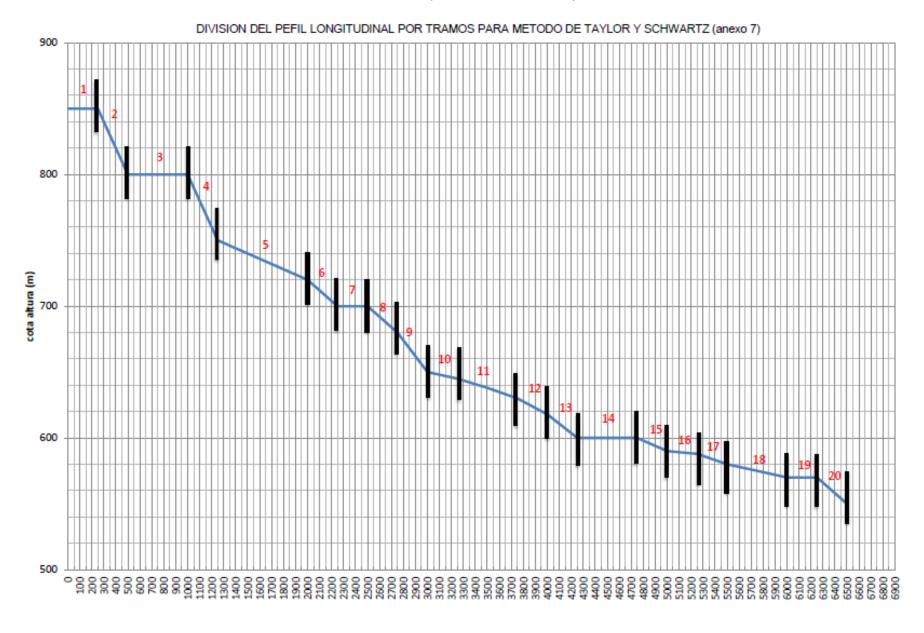

Anexo 1: Cause principal y tributarias que se conectan a la quebrada Canauchita.


Anexo 2: Divisorias de agua.

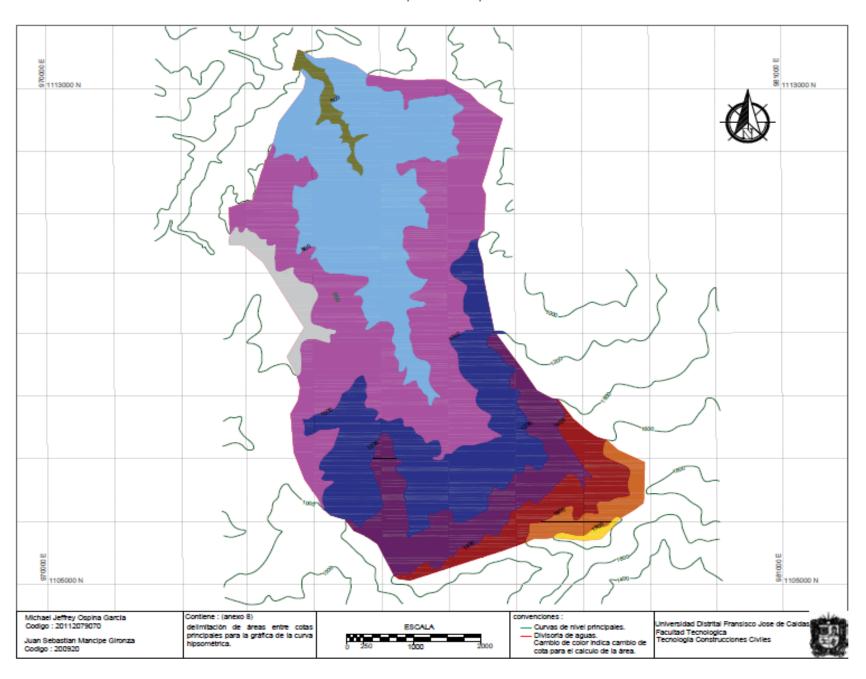

Anexo 3: Longitud de la cuenca



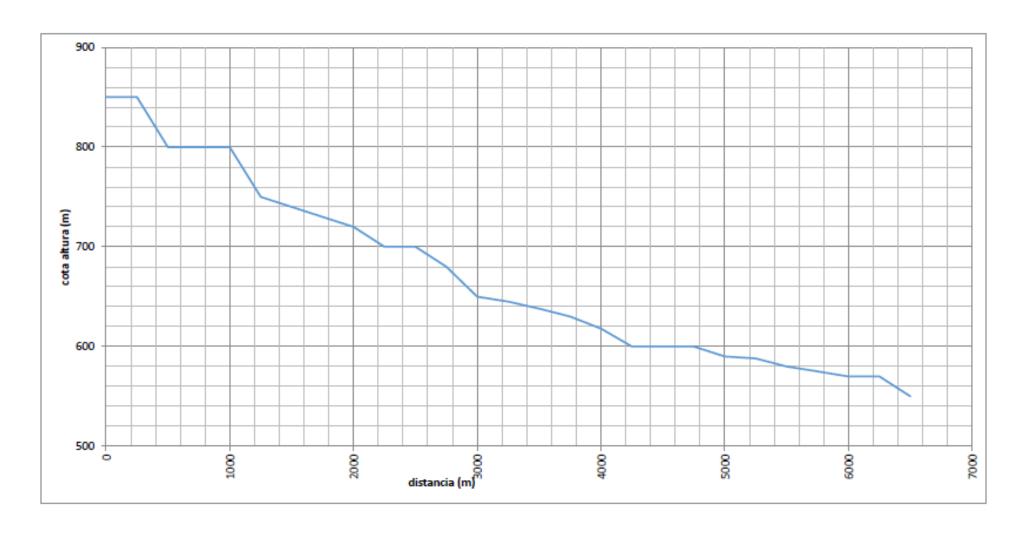
Anexo 4: Orden de la cuenca hidráulica.



Anexo 5: Valores alfa numéricos tramos de la cuenca

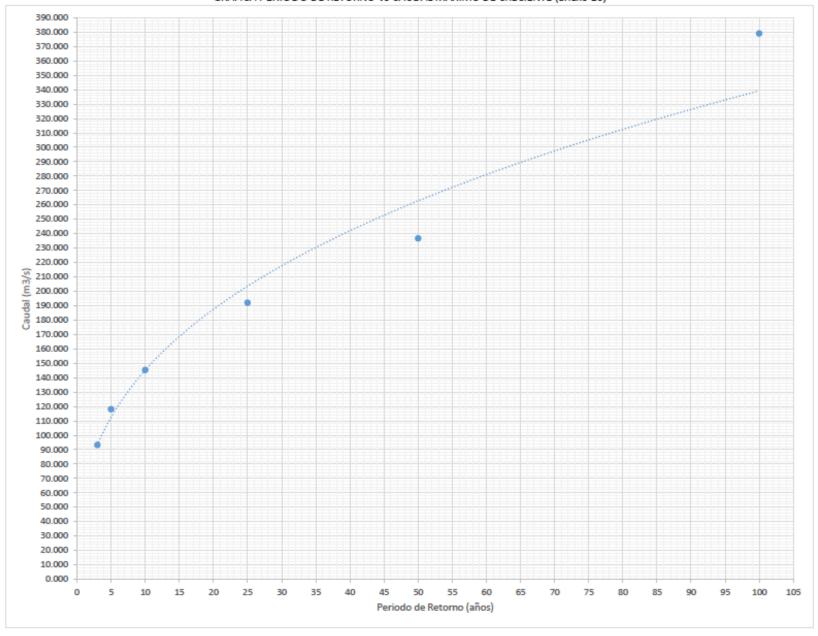


Anexo 7: División por tramos método de Taylor



distancia (m)

Anexo 8: áreas para curva hipsométrica.



PERFIL LONGITUDINAL CAUCE PRINCIPAL CUENCA QUE CONTIENE A LA QUEBRADA CANAUCHITA (anexo 9)

Anexo 10: Grafica periodo de retorno vs. Caudal máximo de creciente.

GRAFICA PERIODO DE RETORNO Vs CAUDAL MAXIMO DE CRECIENTE (anexo 10)

Bibliografía

- Monsalve S German. 1995 Hidrología en la ingeniería. Escuela colombiana de ingenieros Bogotá D.C Colombia Primera edición.
- Instituto Geográfico Agustín Codazzi
- Manual de drenaje para carreteras (2009) Bogotá Colombia Instituto Nacional de vías.
- Chow V.T Hidrología aplicada University of Illinois.
- Carlos Londoño Arango. 2001 Cuencas Hidrográficas. Universidad Del Tolima
- Parámetros de forma y drenaje de la cuenca hidrográfica y su relación con el tiempo de concentración; http://ingenieriacivil.tutorialesaldia.com/algunos-parametros-de-forma-y-drenaje-de-la-cuenca-hidrografica-y-su-relacion-con-el-tiempo-de-concentracion/
- El coeficiente de escorrentía; http://ingenieriacivil.tutorialesaldia.com/todo-lo-que-necesitas-saber-sobre-el-coeficiente-de-escorrentia/
- Página Oficial Municipio De Otanche; http://www.otanche-boyaca.gov.co/
- Hidrología En Cuencas Pequeñas Con Información Escasa. Revista de ingeniería e investigación U. Nacional de Colombia. Gustavo silva medina.