
 DOI: http://dx.doi.org/10.18180/tecciencia.2017.23.5

*Corresponding Author.

E-mail: laramosm@correo.udistrital.edu.co
How to cite: Ramos, L., Bustos, A., Melgarejo, M., Vargas, S.,

Tuning up Fuzzy Inference Systems by using optimization

algorithms for the classification of solar flares, TECCIENCIA, Vol.

12 No. 23., 35-46, 2017

DOI: http://dx.doi.org/10.18180/tecciencia.2017.23.5

87

Tuning up Fuzzy Inference Systems by using optimization algorithms for

the classification of solar flares

Sintonización de Sistemas de Inferencia Difusa mediante

Algoritmos de optimización para Clasificación de Fulguraciones Solares

Liz Angélica Ramos 1*, Alex Francisco Bustos Pinzón1

Miguel A. Melgarejo R 1, Santiago Vargas Domínguez 2

1Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

2Universidad Nacional de Colombia,, Bogotá, Colombia

Received: 7 May 2017 Accepted: 06 Jun 2017 Available Online: 20 Jun 2017

Abstract

In this work we describe the implementation and analysis of different optimization algorithms used for finding the best set of

parameters for a Fuzzy Inference System intended to classify solar flares. The parameters will be identified among a universe

of possible solutions for the algorithms, and the system will be tested in the particular case of dealing with the aim of

classifying the solar flares.

Keywords: ANFIS, EBDF, Fuzzy Sets, Solar Flares.

Resumen

Se describe la implementación y análisis de diferentes algoritmos de optimización usados para encontrar el mejor conjunto

de parámetros de un Sistema de Inferencia Difusa destinado a la clasificación de fulguraciones solares. Los parámetros serán

identificados entre un universo de posibles soluciones para los algoritmos y el sistema será probado en el caso particular de

tratar con el objetivo de clasificar las fulguraciones solares.

Palabras clave: ANFIS, EBDF, Fulguraciones Solares, Sistemas Difusos.

1. Introduction

The Sun is the main responsible for the varying conditions

of the interplanetary medium, particularly, in the space

surrounding our planet, in what is commonly known as

space weather. Multiple solar phenomena show up at many

spatial and temporal scales, and are studied through

observations, theoretical models and simulations. Among

the most energetic phenomena in the solar system are the

solar flares. These are transient events associated to the

activity of the star in which certain regions of the solar

atmosphere can emit a vast amount of energy up to

1025 Joules. These zones in the solar atmosphere are

associated with the presence of dark spots in the solar

surface (photosphere) called sunspots.

Sunspots are the manifestation of intense magnetic fields

emerging from the solar interior and crossing the

photosphere, inhibiting the normal convection of solar

plasma and thus reducing the radiation emission. For this

reason the temperature values in sunspots drops

approximately 2000 K compared to the temperature in the

non-active photosphere, known as quiet sun. Sunspots are

proxies of solar activity and their number on the solar disk

was used to discover the solar cycle in 1843 [1] and are the

main constituents of the so-called solar active regions.

doi:%20http://dx.doi.org/10.18180/tecciencia.2017.23.5
file:///C:/Users/ESTACION/Contacts/Downloads/laramosm@correo.udistrital.edu.co
http://dx.doi.org/10.18180/tecciencia.2017.23.5

39

Solar activity has become a very important research topic

due to its connection with space weather and the possible

impact of energetic phenomena on the normal development

of the current technological society, based on satellites,

which could be affected by intense solar emissions [2].

Depending on the amount of energy released (flux

in 𝑊𝑚−2) during the intensity peak of flaring events, solar

flares are classified in A, B, C, M or X, as listed in Table 1.

The effect of the different types of flares is also different

depending on the flare type [3].

Table 1 Classification of Solar Flares. Source: Based on [3].

Flare class Peak Flux Range / 𝑊𝑚−2

A < 10−7

B 10−7 to 10−6

C 10−6 to 10−5

M 10−5 to 10−4

X > 10−4

The main goal of this work is to choose the best Fuzzy

Inference System (FIS), from among several FIS tuning

methods used, through a validation index Starting from the

solar flares characteristics and quantity of them in the solar

disk (as inputs of the FIS), each FIS allows to obtain a

classification of the solar flares (as output of the FIS). The

parameters of each system were tuned using five methods:

Manual Tuning, Adaptive Neuro-Fuzzy Inference System

(ANFIS) with random initialization [4], Compact Genetic

Algorithm (CGA) [5], Differential Evolution (DE) [6] and

Stochastic Hill Climbing (SHC) with random initialization

[7].

The flow chart that describes the problem is shown in Figure

1, in which the “Problem in Nature” is the unknown way that

makes the input values to be related with the output values,

observed from Sun behavior. This behavior should be

emulated by the FIS. The validation index is a function of

the expected output, generated by the Problem in Nature,

and from the output obtained by the FIS.

The sunspot features and their associated flares were

obtained by generating a database according to [2], through

a cross search in the sunspots and solar flares catalogs from

the National Geophysical Data Center (NGDC). The

parameters for the cross search allowed to obtain a total of

1391 individual values, using a time span of 6 hours, in the

records from 1999 to 2002, to cover the activity peak of the

Solar Cycle 23. The quantities for each class with these

parameters are recorded in the Table 2. Note that the

generated data presents an imbalance: the number of type C

(common) flares are big compared to the M (moderate)

flares, data class. Similarly, the M class has more data than

X (extreme) flares, as expected from displaying activity of

the Sun during its cycle of approximately 11 years.

Table 2 Data used by class. Source: Authors.

Flare Class Quantity

C 1194

M 179

X 18

Aiming to abbreviate, the inputs of the database were

numerated as follows:

1. Modified Zurich Class

2. Penumbra: Largest Spot

3. Sunspot Distribution

4. Normalized number of Sunspots

Creating scatter plots from pairs of inputs like in Figure 2,

shows that it is not possible to plot a linear function that

separates the classes. Also, it is quite clear from the Figure

2 that class M seems to be “absorbed” by class C.

Furthermore, class X, having the lower amount of data, is

almost not recognizable from class M. Thereby, the attention

is focused on classify the class X solar flares.

Figure 1 Flow chart of the Global description for the Artificial Intelligence problem. Source: Authors.

36

39

Figure 2 Scatter plots of possible combinations from pairs of the inputs. Source: Authors

2. Methodological Consideration

2.1 Fuzzy Inference System

A FIS consists of five components: a base of fuzzy rules, a

data base that defines the membership functions of the fuzzy

sets used in fuzzy rules, the fuzzy inference engine, the

fuzzifier and defuzzifier [4]. The FIS can be represented

with a fuzzy basis function expansion in which an input

vector x is related with a punctual y output, such that y=f(x).

Thus, it is possible to represent in a compact manner the

inference process of a FIS and the resulting function is a

universal estimator [5]

𝑓(𝑥) =
∑ 𝑦𝑙 ∏ 𝜇

𝐴𝑖
𝑙(𝑥𝑖)𝑁

𝑖=1
𝑀
𝑙=1

∑ ∏ 𝜇
𝐴𝑖

𝑙(𝑥𝑖)𝑁
𝑖=1

𝑀
𝑙=1

 (1)

The FIS represented by (1) has the following characteristics:

• Fuzzification: Singleton

• Membership Functions: Gaussian.

• Implication: Product

• Defuzzification: Average of centers.

The 𝑙 index refers to the 𝑙-th rule, being 𝑀 the total number

of rules. By its part, the 𝑖 index refers to the 𝑖-th input and 𝑁

are the total of them. The 𝜇
𝐴𝑖

𝑙(𝑥𝑖) membership function (MF)

is then unique for each input in every rule. Similarly, the

center of the consequent set 𝑦𝑙 is unique in every rule [5].

The MFs 𝜇
𝐴𝑖

𝑙(𝑥𝑖) are of Gaussian type, and can be written as

(2).

𝜇
𝐴𝑖

𝑙(𝑥𝑖) = 𝑒
[−

(𝑥𝑖−𝑐𝑖
𝑙)

2

2(𝜎𝑖
𝑙)

2]

 (2)

Every MF in (2) has their 𝑐 mean value and a 𝜎 standard

deviation.

The total quantity of parameters that defines a FIS in the

form (1) are given by (3), having in mind that, for each input

and every rule there are two parameters due to the antecedent

set (𝑐 and 𝜎), and an additional parameter being the center

of the consequent.

𝐶𝑇𝑝 = (2 ∗ 𝑀 ∗ 𝑁) + 𝑀 (3)

2.2 Manual Tuning Method

Starting from the authors perceptions about the data and the

possible relations that may be present in it, it is possible to

37

39

create an initial FIS with their fuzzy sets for each of the

inputs, their punctual output values, and the rule base

allowing to link the fuzzy sets of the inputs to the punctual

outputs. The purpose of this method is to deepen into the

problem recognizing possible relationships among features

as well as revealing preliminary classification rules.

Although a valid solution can be found, the most important

result of this method is the knowledge derived from

approaching the problem.

Initially the software used was GNU’s Octave, loading the

packages “io” and “fuzzy-logic-toolkit”. The first allows

that Octave reads the generated CSV dataset, and the second

to design, test and verify the manual tuned FIS.

Despite the fact that in the following algorithms the software

used was MATLAB, the final FIS created with Octave was

migrated to MATLAB through the Fuzzy Logic Designer, a

graphical tool part of the Fuzzy Logic Toolbox; with the

mere purpose to use the same software tool at the final

validation stage.

2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) with

random initialization

ANFIS, a FIS based on adaptive networks, is a method based

on a supervised learning model that, given a set of

input/output pairs (x,y), related by an unknown function f,

there is an apprentice and a supervisor of the learning

process from f, with the use of a validation metric to evaluate

the results of the apprentice and able to correct it. The

algorithm uses a hybrid model that combines least squares

method and the decreasing gradient or back-propagation

method.

 In this case the apprentice is a fuzzy system that can be

written as the expansion of fuzzy based functions for a

Sugeno type system shown in (1). The parameters to be

determined correspond to 𝑦
𝑙
, 𝑥𝑙

𝑖 and 𝜎𝑙
𝑖 [4]. The validation

metrics represents the root mean square error (RMSE)

between the output value for the fuzzy apprentice system

and the output value y of the data pairs [5]. The process aims

at minimizing the error for the input values in a set

comprising part of the complete available data, which is

generally about 70% of them. Searching for an apprentice

generalization, it is validated with the remaining 30% of the

database.

Additional to the individual (apprentice system with its

parameters and rules) to be adjusted, ANFIS requires initial

conditions such as the number of rules, number of inputs and

the rate of initial learning. For the case mentioned above, the

inputs stay constant and the other two parameters are tuned

up. Because ANFIS fits the parameters of an existing

individual, thus implying a local search, it executes several

times and, prior to this, it generates the individual with

initialized parameters in random values, aiming at

(depending on randomization) perform a global search in a

whole universe of possible solutions.

Algorithm 1. Pseudo code for the MATLAB implementation

using the ANFIS function. (Source: Authors)

 1: Training = 70% of Base

 2: Validation = 30% of Base

 3: Vector of rules to be tested 𝑅𝑇

 4: Vector of Initial Learning Rates to be tested 𝑇𝐴𝑇

 5: 𝑛 = number of tests

 6: 𝐸𝑝 = number of epochs

 7: for 𝑖 ∈ 𝑇𝐴𝑇 do

 8: for 𝑗 ∈ 𝑅𝑇 do

 9: for 𝑙 = 1: 𝑛 do

 10: Generate random FIS with 4 inputs and 𝑅 = 𝑗

 11: Evaluate ANFIS function with 𝑇𝐴 = 𝑖, 𝐸𝑝, Training,

Validation and random generated FIS

 12: Save the FIS with lowest validation error, the training error

and the output vector validation 𝑘.

 13: end for

 14: end for

 15: end for

 16: Lowest validation error = 𝑀𝑖𝑛𝑉, associated FIS = 𝐶ℎ𝑒𝑐𝑘𝐹𝑖𝑠

2.4 Compact Genetic Algorithm (CGA)

This belongs to a series of algorithms known as Probabilistic

Model Building Genetic Algorithm (PMBGA) [8], which

are characterized by discriminating the significant

contribution attributes in the construction of an optimal

individual. The validation indexes for determining the

performance of an individual is the “Fitness” function,

which in turn depends on the problem to be solved. The

implementation considers an individual with the best

performance when the value of this function is minimized.

Because in this work we are dealing with a classification

problem, besides using the RMSE, we decided to also

consider the use of classification error and correlation. With

that in mind, we can assemble an initial brief of a fitness

function (4).

𝐹 = (𝐸𝐶𝐶 + 𝐸𝐶𝑀 + 𝐸𝐶𝑋)2 × 𝐸𝑅𝑚𝑠𝑒 × (1 − 𝜌)2 (4)

And

𝐸𝐶𝑥 =
ℎ𝑥

𝐶𝑥
𝑤𝑥 (5)

Where:

 𝐸𝐶𝑥 : Classification error for the class 𝑥

 ℎ𝑥 : Number of bad classified data for class 𝑥

 𝐶𝑥 : Total number of data for class 𝑥

38

39

 𝑤𝑥 : Weight assigned to the classification error of class

𝑥

𝐸𝑅𝑚𝑠𝑒 : Root Mean Square Error

 𝜌 : Correlation

Every 𝐸𝐶𝑥 classification error has its respective w_x

weight. As the database is inherently imbalanced, every

weight w_x was assigne to be greater than the proportion of

data belonging to class C, to the quantity of data from the

other classes:

𝑤𝑀 >
1194

179
~6.7 → 𝑤𝑀 = 10

𝑤𝑋 >
1194

18
~66 → 𝑤𝑋 = 100

Therefore, the weight associated to the class X of solar

flares, for which the number of data is lower, has the highest

value. By doing this, a badly classified data that belongs to

this class produces a more significant increase in the first

factor of (4) that one not incorrectly classified in class C, in

the final fitness function factors (6)

𝐸𝐶𝐶 =
ℎ𝐶

𝐶𝐶
, 𝐸𝐶𝑀 =

ℎ𝑀

𝐶𝑀
× 10, 𝐸𝐶𝑋 =

ℎ𝑋

𝐶𝑋
× 100 (6)

To explain the 𝐸𝑅𝑚𝑠𝑒 Root Mean Square Error in (4),

suppose that the problem is not a classification problem, but

a prediction problem instead. For a conceptual brief, the

𝐸𝑅𝑚𝑠𝑒 gives an idea on how the individual are not

“following” the expected sequence from the training data

[5]. Then, a bad predictor will have a greater 𝐸𝑅𝑚𝑠𝑒 value,

than other that gets closer to the output values of the

database, and considering that the data also depends on some

time unit. The root mean square error is mathematically

described as:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1 (7)

𝑒 = (𝑣𝑜 − 𝑣𝑒) (8)

Where

 𝑣𝑜 is the value obtained

 𝑣𝑒 is the expected value

The number of rules was taken from the obtained result with

the ANFIS algorithm, R=8 rules. For developing the

algorithm, the parameter for adjusting the converging speed

of the probability vector n is tuned. Since the optimal value

is unknown, it is randomly designated based on [5], and

implemented in MATLAB. The process of randomly

varying n and developing the algorithm, is repeated several

times (w = number of experiments). Finally, among the best

solutions the value generating the lowest number in (4) with

(6) is found.

The parameters describing every FIS (individual) are then

converted from real to binary data, due to the method

adjusting every bit.

Algorithm 2. Pseudo code for CGA (Based on [5])

 1: Training = 70% of Base

 2: Validation = 30% of Base

 3: 𝑤 = number of tests

 4: 𝑁𝑝= number of parameters

 5: 𝑏𝑝= number of bits per parameter

 6: 𝑎 = 𝑁𝑝 ∗ 𝑏𝑝

 7: 𝑛 = probability adjustment parameter

 8: 𝑝 = probability vector

 9: 𝑁𝑖 = number of individuals

 10: 𝐼𝑎𝑙𝑒𝑎 = vector of 𝑁𝑖 individuals

 11: for 𝑖 = 1 𝑡𝑜 𝑤 do

 12: 𝑛 = Random value

 13: for 𝑙 = 1: 𝑁𝑖 do

 14: 𝐼𝑎𝑙𝑒𝑎(𝑙) = Random FIS

 15: Evaluate and order individuals so that the best is in position

𝐼𝑎𝑙𝑒𝑎(1)

 16: end for

 17: for j= 2: 𝑁𝑖 do

 18: Winner, Loser = competition (𝐼𝑎𝑙𝑒𝑎(1), 𝐼𝑎𝑙𝑒𝑎(𝑗))

 19: for g = 1: 𝑎 do

 20: if Winner(g) ~ Loser(g) then

 21: if Winner(g) = 1 then 𝑝(𝑔) = 𝑝(𝑔) + 1/𝑛

 22: else 𝑝(𝑔) = 𝑝(𝑔) − 1/𝑛

 23: end if

 24: end if

 25: end for

 26: end for

 27: for g = 1: 𝑎 do

 28: if 𝑝(𝑔) > 0 𝑎𝑛𝑑 𝑝(𝑖) < 1 then

 29: go to step 13

 30: end if

 31: end for

 32: end for

2.5 Differential Evolution

This is an algorithm based on the evolution of a population

of vectors (individuals) with real parameters, which

represent solutions in the searching space.

The algorithm of differential evolution is basically

composed by 4 steps, as follows:

 Initialization: Every vector (individual) of the

population is randomly initialized.

 Mutation: A mutation is applied in order to create a

testing population of individual.

 Crossing: Every vector is used as a mutant vector.

39

39

 Selection: The testing vector previously obtained is

used to do the crossing procedure, which compete

with the target vector by the evaluation of the

Fitness function. [6]

Algorithm 3. Pseudo code for DE (Source: Based on [6]).

1:Training = 70% of Base

 2: Validation = 30% of Base

 3: 𝑓𝑚 = mutation constant

 4: 𝑐𝑟 = crossover constant

 5: 𝑁𝑖 = number of individuals

 6: 𝑁𝑔 = number of generations

 7: 𝑤 = number of tests

 8: 𝑉𝑖= individuals vector

 9: 𝑁𝑝= number of parameters

 10: 𝑉𝑜= target vector

 11: 𝑉𝑚= mutation vector

 12: 𝑉𝑐= crossover vector

 13: 𝑏𝑖= vector of the best individual

 14: for 𝑖 = 1 𝑡𝑜 𝑤 do

 15: for 𝑙 = 1: 𝑁𝑖 do

 16: 𝑉𝑖(𝑙) = Random FIS

 17: Evaluate individuals with the fitness function (4)

 18: end for

 19: for j= 1: 𝑁𝑔 do

 20: for g = 1: 𝑁𝑖 do

 21: 𝑉𝑜 = 𝑉𝑖(𝑔)
 22: Sort the individuals from best to worst according to (4)

 23: 𝑏𝑖 = 𝑉𝑖(1)

 24: 𝑉𝑚= mutation(𝑏𝑖 , 𝑓𝑚)

 25: for 𝑘 = 1: 𝑁𝑝 do

 26: 𝑉𝑐 = cross(𝑉𝑜, 𝑉𝑚, 𝑐𝑟)

 27: end for

 28: if 𝑉𝑐 is better than 𝑉𝑜 then

 29: replace 𝑉𝑜 with 𝑉𝑐

 30: else keep 𝑉𝑜

 31: end if

 32: end for

 33: end for

 34: end for

2.6 Stochastic Hill Climbing (SHC) with random

initialization.

The Stochastic Hill Climbing, consist on taking a FIS (1) and

keep evaluating the solutions in the vicinity of it [7, 9] in a

maximum number of iterations. The parameters of the input

FIS are randomly initialized.

Algorithm 4. Pseudo code for Stochastic Hill Climbing. [10]

 1: Require: 𝐼𝑚𝑎𝑥, Dimensions

 2: Ensure: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡

 3: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ← RandomSolution(Dimensions)

 4: for 𝑖𝑡𝑒𝑟𝑖 ∈ 𝐼𝑚𝑎𝑥 do

 5: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← RandomNeighbor(𝐶𝑢𝑟𝑟𝑒𝑛𝑡)

 6: if Cost(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) ≤ Cost(𝐶𝑢𝑟𝑟𝑒𝑛𝑡) then

 7: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
 14: end if

 15: end for

Where:

 𝐼𝑚𝑎𝑥 : Maximum number of iterations

 𝑆𝑜𝑙 : Some particular solution (like 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 or

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

 Cost(𝑆𝑜𝑙) : Fitness function, obeys (2)

RandomNeighbor(𝐶𝑢𝑟𝑟𝑒𝑛𝑡) need also the center and

deviation variations, that refers to the allowed absolute value

variations of the related parameters when searching for a

neighbor. As example, if some of the parameters has the

value 0.6, and the specified variation of this parameter is 0.1,

then the neighbor will have some uniformly distributed

random value between 0.5 and 0.7.

Every separate experiment consist on a single run of a

program that implements the algorithm 4, to obtain a final

single individual, but 𝑛 individuals can be obtained by

running 𝑛 experiments. Afterwards, the individuals can be

evaluated with (4) and the validation base, in order to choose

the best individual of the 𝑛 individuals.

2.7 Confusion Matrixes

The classifier output consists on C values, corresponding to

the 𝜔1, 𝜔2, … , 𝜔𝑐 classes. Due to the erroneous

classifications occasionally occurring, the multiclass sorter

is evaluated through a (𝐶 × 𝐶) – dimensional confusion

rate matrix showing the respective classification errors

between classes (off diagonal) and correct classifications

(diagonal elements). [11]

40

39

Table 3 Confusion Matrix for a three class sorting

problem. Source: Based on [11].

Predicted Class

𝝎𝟏 𝜔2 𝜔3

A
c
tu

a
l

C
la

ss
 𝝎𝟏 𝐶𝜔1,1

 𝐶𝜔1,2
 𝐶𝜔1,3

𝝎𝟐 𝐶𝜔2,1
 𝐶𝜔2,2

 𝐶𝜔2,3

𝝎𝟑 𝐶𝜔3,1
 𝐶𝜔3,2

 𝐶𝜔3,3

Table 3 shows an example of a confusion matrix for a total

of 𝐶 = 3 classes. The 𝐶𝜔𝑖,𝑗
 elements correspond to the data

quantity from the 𝜔𝑖 class that was classified as elements of

the 𝜔𝑗 class.

3. Parameters for the algorithms.

Excluding the manual tuned FIS, and in order to allow the

replicability of similar results, we expose briefly the

parameters used for the algorithms. For the CGA, DE and

SHC algorithms, the number of rules was taken from the best

ANFIS result, as shown in Table 3.

3.1 Manual Tuning

Table 4. Classification of Solar Flares. Source: Authors.

Parameter Value

MFs for Input 1 7

MFs for Input 2 6

MFs for Input 3 4

MFs for Input 4 3

MFs for the Output 3

Rules 8

As the parameters for this method obey to human

perceptions of the problem, only the main features are shown

in Table 4, for this reason this method was applied only as

an exercise of comparison between the human performance

and machine performance, in building a FIS that solves the

classification problem. These values are not normative by

the same fact that the parameters were based from human

perceptions of the authors, are then allowed to test other

values, but the manual tuning method takes too much time

to get a single FIS.

3.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) with

random initialization.

Table 5 Initialization Parameters for the implementation of

ANFIS with random initialization. Source: Authors.

Parameter Value

Epochs 500

Number of experiments 200

Tested learning rates

(TA)

0.01, 0.1, 1

Tested number of rules 8, 14, 16, 32

Performance Function Root Mean Square Error

(7)

3.3 Compact Genetic Algorithm (CGA).

Table 6. Initialization Parameters for the CGA

implementation. Source: Authors.

Parameter Value

Number of rules 8

Number of parameters to
optimize

72

Number of bits per parameter 8

Binary coding method Sign-magnitude

Population size 30

Number of experiments 500
Maximum number of generations 10000

Stop criterion

Convergence of probability

vector
and error repetition

Performance Function Fitness function (4)

3.4 Differential Evolution (DE)

Table 7. Initialization Parameters for the DE Algorithm

implementation. Source: Authors.

Parameter Value

Number of rules 8

Number of parameters to

optimize
72

Population size 30

Number of generations 50

Mutation constant 0.5

Crossover constant 0.9

Number of experiments 500

Variant DE/best/1/bin

Stop criterion

Number of generations

and

number of experiments

Performance Function Fitness function (4)

41

39

3.5 Stochastic Hill Climbing (SHC) with random

initialization

Once the base individual for the Hill Climbing was

randomly initialized, the SHC algorithm used the parameters

listed in Table 8.

Table 8 Parameters for the implementation of the SHC

with random initialization algorithm. Source: Authors.

Parameter Value

Number of rules 8

Number of parameters to

optimize
72

Number of experiments 10

Number of iterations by

experiment
8000

Center variation 0.1

Deviation variation 0.5

Stop criterion
Number of

iterations

Performance Function Fitness function (4)

4 Results

In this section are firstly shown the best results for every

method and their analysis. This analysis includes a

comparison of their performance.

4.1 Confusion Matrices

The best FIS obtained by each algorithm was evaluated

using the whole database. With the evaluated output values

and the expected output values a confusion matrix can be

filled as shown in Table 3 to obtain the matrices shown in

Tables 9, 11, 12, 13 and 14.

Table 9. Confusion Matrix for the manual tuned FIS.

Source: Authors.

Predicted Class

𝑪 𝑀 𝑋

A
ct

u
a

l
C

la
ss

 𝑪 0 815 198

𝑴 0 100 44

𝑿 0 12 6

In the case of ANFIS, the individual with the lowest

validation error was selected for each of the different

combinations of number of rules and initial learning rate

(LR) as shown in Table 10.

Table 10. List of the lowest validation error (RMSE) for

every 𝑛 test. Source: Authors

 Number of Rules

LR 8 14 16 32

0,01 0.3681 0.3688 0.3708 0.3747

0,1 0.3667 0.3682 0.3705 0.3735

1 0.3658 0.3661 0.3667 0.3687

From Table 10 the best individual are chosen to make the

confusion matrix shown in Table 11. In order to compare the

results with the same metric, this individual was evaluated

with (4) and its results are part of Table 15. The chosen

individual was obtained with the following parameters:

 𝑅𝑢𝑙𝑒𝑠 = 8

 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (𝐿𝑅) = 1

Table 11. Confusion Matrix for the best ANFIS individual

chosen. Source: Authors.

Predicted Class

𝑪 𝑀 𝑋

A
ct

u
a

l
C

la
ss

𝑪 1133 0 0

𝑴 155 0 0

𝑿 15 0 0

The best FIS obtained by the CGA occurred on experiment

𝑤 = 175 and for a value 𝑛 = 41 of the probability

adjustment parameter.

42

39

Table 12. Confusion Matrix for the best individual

obtained by CGA. Source: Authors.

Predicted Class

𝑪 𝑀 𝑋

A
ct

u
a

l
C

la
ss

𝑪 1194 0 0

𝑴 179 0 0

𝑿 18 0 0

Table 13. Confusion Matrix for the best individual

obtained by the DE Algorithm. Source: Authors.

Predicted Class

𝑪 𝑀 𝑋

A
ct

u
a

l
C

la
ss

𝑪 0 552 552

𝑴 0 57 113

𝑿 0 0 18

Table 14. Confusion Matrix for the best individual

obtained by the SHC Algorithm. Source: Authors.

Predicted Class

𝑪 𝑀 𝑋

A
ct

u
a

l
C

la
ss

𝑪 0 0 1194

𝑴 0 0 179

𝑿 0 0 18

4.2. Final Result by the validation Metric

Table 15 lists the more relevant metrics for the individuals

in every scheme. The final individual was the one with the

lowest value of the Fitness function (4), using the validation

database.

Table 15. Validation Errors for the best functions obtained.

Source: Authors.

Method Fitness 𝐸𝐶𝐶 𝐸𝐶𝑀 𝐸𝐶𝑋

Manual 13282 1 3,7736 61,111

ANFIS 4487.2 0.0446 10 100

CGA 3895.1 0 10 100

DE 33.2454 1 4.9057 0

SHC 96.712 1 10 0

4.3 Statistical Analysis

To perform a statistical analysis of the algorithms

implemented, the Welch's t-test was used for two-samples,

assuming unequal variances to confirm or reject the null

hypothesis whether both methods provide similar analytical

results or not. [12]

Table 16. Results for the Welch's t-test between DE and

CGA. Source: Authors.

 DE CGA
Mean 2074.216694 15808.9081

Variance 30477597.49 45636475.15

Observations 500 500

Hypothetical difference of means 0
Degrees of freedom 960

Statistic t -35.20233147

P (T ≤ t) one tail 2.7328E-175

Critical value of t (one tail) 1.646442429

P (T ≤ t) two tails 5.4656E-175

Critical value of t (two tails) 1.962438166

Table 17. Results for the Welch's t-test between DE and

ANFIS with Random Initialization. Source: Authors

.
 DE ANFIS with Random

Initialization

Mean 2074.216694 5737.628906

Variance 30477597.49 184874.1979

Observations 500 2400

Hypothetical difference
of means

0

Degrees of freedom 500

Statistic t -14.82880602

P (T ≤ t) one tail 8.5552E-42

Critical value of t (one

tail)

1.647906854

P (T ≤ t) two tails 1.71104E-41

Critical value of t (two

tails)

1.964719837

43

39

Table 18. Results for the Welch's t-test between DE and

SHC. Source: Authors.

 DE SHC

Mean 2074.216694 2001.247664

Variance 30477597.49 19996528.91

Observations 500 500

Hypothetical difference

of means

0

Degrees of freedom 957

Statistic t 0.229662015

P (T ≤ t) one tail 0.409201745

Critical value of t (one

tail)

1.646447414

P (T ≤ t) two tails 0.818403489

Critical value of t (two

tails)

1.962445932

Comparing the results of the test between DE with the CGA

and ANFIS algorithms as shown in Tables 16 and 17

respectively, it is possible to reject the null hypothesis and

conclude that the methods provide different analytical

results with a 99% confidence level.

On the other hand, from Table 18 it can be evidenced that,

although the best solution was achieved with the DE

algorithm, the average and the variance of the fitness of the

individuals obtained with SHC are better than those obtained

with DE. This result makes sense in the light of the non free

lunch theorems [13], which state that optimization methods

perform similarly in average over the entire set of possible

optimization problems. The result of the Welch's t-test

shows that the null hypothesis should not be rejected

because in the case of two tails the confidence level to reject

is less than 20% and in the case of one tail it is less than 60%.

Therefore, both methods provide the same average results

and the observed differences are purely due to random

errors.

5. Conclusions.

In this section we summarize the obtained results and

discuss on the different aspects of their performance.

• Due to the imbalance in the database, systems and

algorithms used in the present work have limited options to

learn from class M, and much lower ones from class X.

• Additionally for ANFIS, because of the fact

mentioned before, the validation metrics for RMSE is not

adequate for solving the problem since it ignores the

classification error, from which it is evidenced that the best

individual obtained in this method is an optimal class C

classifier, but not so for the rest of classes.

• Despite the Compact Genetic Algorithm has a

simple description with little memory, it sufficiently restricts

the space of solutions since it works with parameters

represented in fixed point, having a more reduced universe

as compared to the representation in floating points.

From the items listed above, and from Table 4, it cannot be

discarded different problems in which either class C are

distinguished from being or not solar flares (modifying the

generation parameters of the database), or type M or X solar

flares are distinguished. As a future work, the problem can

be addressed by using neural network algorithms, e.g.

Cascade-Correlation Neural Networks (CCNNs), Support

Vector Machines (SVMs) and Radial Basis Function

Networks (RBFNs) [2] instead of FISs, in order to determine

if it is feasible to obtain a best classifier and therefore extend

the problem of estimating the occurrence of solar flares.

References

[1] Heinrich Schwabe and Hofrath Schwabe. “Sonnenbeobachtungen im

Jahre 1843. (German) [Observation of the Sun in the year 1843]”. In:

Astronomische Nachrichten 21 (1843), pp. 233–236. DOI:
10.1002/asna.18440211505.

[2] R. Qahwaji and Colak. “Automatic Short-Term Solar Flare

Prediction Using Machine Learning and Sunspot Associations. [On
the electrodynamics of moving bodies]”. In: T. Sol Phys 241 (2005),

pp. 195–211. DOI: 10.1007/s11207-006-0272-5.

[3] T. Bai and P. A. Sturrock. “Classification of solar flares”. In: Annual
review of astronomy and astrophysics 27 (1989), pp. 421–467. DOI:

10.1146/annurev.aa.27.090189.002225.

[4] Jyh-Shing Roger Jang. “ANFIS: adaptive-network-based fuzzy
inference system”. In: IEEE Transactions on Systems, Man, and

Cybernetics 23 (1993), pp. 665–685. DOI: 10.1109/21.256541.

[5] Miguel Melgarejo, Alvaro Prieto, and Carlos Ruiz. “Modelado de
sistemas difusos basado en el algoritmo genético compacto”.

(Spanish) [Modeling of fuzzy systems based on the compact genetic

algorithm]. In: Proceedings of ASAI 2011, Argentine Symposium on
Artificial Intelligence. Universidad de Palermo, Buenos Aires,

Argentina (2011), pp. 180–191.
[6] Andrea Villate, David Rincón, and Miguel Melgarejo . “Evolución

diferencial aplicada a la sintonización de clasificadores difusos para

el reconocimiento del lenguaje de señas”. (Spanish) [Applying
Differential Evolution to Tune Fuzzy Classifiers Intended for Sign-

Language recognition] In: Ingeniería y Universidad: Engineering for

Development 16 (2012), pp. 397–413.
[7] Stephan Rudlof and Mario Köppen. “Stochastic Hill Climbing with

Learning by Vectors of Normal Distributions”. In: Proceedings for

Nagoya 1996, Online Workshop on Soft Computing (WSC) no. 1
(1996), pp. 60–70.

[8] Kumara Sastry and David E. Goldberg. “Probabilistic Model

Building and Competent Genetic Programming”. In: Genetic
Programming Series vol 6. (2003), pp. 205–220. DOI: 10.1007/978-

1-4419-8983-3_13.

[9] Stuart J. Russell and Peter Norvig. “Artificial Intelligence: A modern
approach”. Pearson Education, 2003. ISBN: 01379039523.

44

39

[10] Jason Brownlee. “Clever Algorithms: Nature-Inspired Programming
Recipes”. Jason Brownlee, 2011. ISBN: 9781446785065.

[11] Thomas C.W. Landgrebe, and Robert P.W. Duin. “Efficient
Multiclass ROC Approximation by Decomposition via Confusion

Matrix Perturbation Analysis” In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 30 (2008), pp. 810-822. DOI:
10.1109/TPAMI.2007.70740.

[12] Fagerland M.W. and Sandvik L. “Performance of five two-sample

location tests for skewed distributions with unequal variances”. In:
Contemp Clin Trials, vol. 30, no. 5 (2009), pp. 490–496. DOI:

10.1016/j.cct.2009.06.007.

[13] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization”. In IEEE Transactions on Evolutionary Computation,

vol. 1, no. 1 (Apr 1997), pp. 67-82. DOI: 10.1109/4235.585893

45

