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Abstract

We consider the problem of interaction of a solitary wave with
a moving external source within the framework of Korteweg–
de Vries (KdV) equation. We show that for certain profiles
of external source the problem has exact solutions in the form
of a stationary solitary waves coupled with the force. For the
solitary waves which are not trapped by the external force of
a small amplitude we obtain approximate solutions by means
of the asymptotic method and analyse solutions with the arbi-
trary relationship between the widths of forcing function and
solitary wave. Results obtained agree well with the results of
previous works where only the limiting cases of very narrow
or infinitely wide forcing as compared with the width of soli-
tary wave were studied. Several new regimes of soliton interac-
tion with width the forcing have been revealed. The theoretical
results have been validated by the direct numerical modelling
within the framework of forced KdV equation.

Introduction

The forced Korteweg–de Vries (fKdV) equation is the canoni-
cal model for the description of resonant excitation of weakly
nonlinear waves by moving perturbations. Such equation was
derived by many authors for internal waves over a local topo-
graphy in the atmosphere, in a water flow over bottom obstacles,
surface and internal water waves generated by moving atmo-
spheric perturbations, etc. The number of publications on these
topic is so huge that it is impossible to mention all of them in
this short article, therefore we only refer to the review [5] and
relatively recent publication [6] where a reader can find more
references on this topic.

In the papers [2, 3, 4] it was developed an effective method of
asymptotic analysis of fKdV equation when the amplitude of
external force acting on a KdV soliton is relatively small. Two
limiting cases were analysed in those papers: (i) when the width
of external force is very small in comparison with the width
of a soliton and can be approximated by Dirac delta-function,
and when (ii) the width of soliton is very small in comparison
with the width of external perturbation. In the meantime, in the
natural conditions the relationship between the widths of these
entities can be arbitrary, therefore it is of interest to generalise
the results of those papers for such cases. This is the main aim
of the current study. In addition to that we show that for some
special external forces exact solutions of fKdV equation can be
obtained even when the amplitude of external force is not small.

1. The basic model equation and perturbation scheme

In this paper we follow the asymptotic method developed in
[2, 3, 4] and apply it to the fKdV equation in the form:
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, (1)

where c, α and β are constant coefficients, and f (x, t) describes
the external perturbation of amplitude ε moving with the con-
stant speed V .

By introduction of new variables x′= x−Vt, t ′= t we can trans-

form Eq. (1) to the following form (the symbol ′ is omitted):
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This form corresponds to the moving coordinate frame where
the external force is stationary and depends only on the spatial
coordinate x,

In the absence of external force ( f (x)≡ 0) Eq. (2) reduces to the
well-known KdV equation which has stationary solutions in the
form of periodic and solitary waves. We study here the dynam-
ics of a solitary wave under the action of an external force of
small amplitude ε� 1 assuming that in the zero approximation
(when ε =V = 0) the solution is

u0 = A0 sech2(γ0Φ), (3)

where γ0 =
√

αA0/12β is the inverse half-width of a soliton,
Φ = x− x0−υ0t is the soliton “phase”, υ0 = c+αA0/3 is the
soliton speed, and x0 is an arbitrary constant determining an
initial position of the soliton at t = 0.

In the presence of external force of a small amplitude the soli-
tary wave solution (3) is no longer valid, but one can assume
that under the action of an external perturbation it will gradu-
ally vary so that its amplitude can be considered as a function
of “slow time”, A(T ), where T = εt; correspondingly γ(T ) be-
comes also a function of time, and Φ = x−Ψ(T ), where

Ψ(T ) = x0 +
1
ε

T∫
0

υ(τ)dτ, (4)

υ = c−V +αA(T )/3. (5)

Now we need to define functions A(T ) and υ(T ). This can be
done by means of the asymptotic method developed, in partic-
ular, in Refs. [1, 2]. Following these papers, we seek for a
solution of the perturbed KdV equation (2) in the form of the
expansion series:

u = u0 + εu1 + ε2u2 + . . .
υ = υ0 + ευ1 + ε2υ2 + . . .

(6)

In the leading order of the perturbation method (in the zero ap-
proximation), when ε = 0, we obtain the solitary wave solution
(3) for u0 and υ0. In the next approximation we obtain the same
solution but with slowly varying parameters in time. The de-
pendence of soliton amplitude A and phase Ψ on T can be found
from the equation of energy balance [2]:
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After substitution in Eq. (7) solution (3) we derive the set of
equations for A(T ) and Ψ(T ):

dA
dT

= γ

∞∫
−∞

sech2 (γΦ)
d f (Φ+Ψ)

dΦ
dΦ, (8)
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3

, (9)

where ∆V = c−V . Note that in this approximation the rate of
phase change is simply equal to the local speed of a soliton with
the amplitude A(T ) which corresponds to the adiabatic theory.

In the second order of asymptotic theory the correction to the
wave speed υ1 can be taken into account. Leaving aside the
derivation of corrected equation (9) (the details can be found in
Ref. [2]), we present the final equation:

dΨ
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αA(T )
3

+

εα

48βγ2

∞∫
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sinh2γΦ+2(γΦ−1)
cosh2

γΦ

∂ f (Φ+Ψ)

∂Φ
dΦ. (10)

Thus, the set of equations in the first approximation consists of
Eqs. (8) and (9), whereas in the second approximation it con-
sists of Eqs. (8) and (10). However, as has been shown in Ref.
[2], the last term in Eq. (10) containing a small parameter ε

dramatically changes the qualitative character of solutions and
makes the results realistic, whereas Eq. (9) provides unrealistic
behaviour of a solitary wave in the vicinity of a forcing. This
can be explained, apparently, by a structural instability of so-
lutions with respect to small perturbations of the original set
of equations. The difference between the solutions in the first
and second approximations will be illustrated in the next Sec-
tion, and then we will analyse only solutions corresponding to
the second approximation as described by Eqs. (8) and (10) for
different kinds of external force f (x).

2. Forced KdV equation reducible to the KdV equation

Let us consider first the case when

f (x) = sech2 x
∆ f

, V = c+
4β

∆2
f
−

εα∆2
f

12β
, (11)

where ∆ f is a free parameter – the half-width of the external
force, and such choice of velocity V provides an exact solution
to fKdV equation. In particular, with this external force one can
find the exact solution to Eq. (2) in the form of a soliton (3)
synchronously moving with the external perturbation with the
same speed υs = V and having the amplitude As = 12β/α∆2

f
and γs = 1/∆ f . This solution represents a particular case of
a family of exact solutions to the forced KdV equation con-
structed in Ref. [7]. Note that here the parameters ε and ∆ f are
arbitrary, and the amplitude As of a soliton is determined only
by the width of external force ∆ f , whereas the soliton speed V
is determined both by the width ∆ f and amplitude ε of external
force.

Let us assume now that the parameter ε is small, and we have
the initial condition for Eq. (2) in the form of KdV soliton as
per Eq. (3) with the initial amplitude A0 6= As. By substitution
of function f (x) from Eq. (11) in Eq. (8) we obtain for the pa-
rameter γ the following equation:

dγ

dT
=−2αεe2θ

3β

∞∫
0

qK(
e2θ +qK

)2
q−1

(q+1)3 dq, (12)

where q = exp
(
2Φ/∆ f

)
, θ = γΨ, and K = γ0∆ f is the ratio of

half-widths of external force and initial soliton. The parameter
K can be also presented in terms of the half-distance D f be-
tween the extrema of the force term: K = 2γ0D f / ln(2+

√
3)

(see the distance between the maximum and minimum of f ′x in
Fig. 1).

Equation (12) should be augmented by the equation for the
wave speed, which follows from Eq. (9) in the first approxi-
mation (cf. [2]):

dθ

dT
= ∆V γ+4βγ

3, (13)

where ∆V = c−V . According to the asymptotic theory, soli-
ton velocity should be approximately equal to the velocity of a
forcing. If we assume that at the initial instant of time they are
equal, then we obtain that the forcing amplitude ε is linked with
the initial soliton amplitude A0 through the formula:

ε =
αA2

0
(
1−K2)

3K4 . (14)

This formula shows that the polarity of the forcing depends on
the sign of its amplitude ε and is determined by the parameter
K: it is positive if K < 1 and negative otherwise.

Dividing Eq. (12) by Eq. (13), we obtain:

dγ

dθ
=− 2αεe2θ

3β
(
∆V γ+4βγ3

) ∞∫
0

qK(
e2θ +qK

)2
q−1

(q+1)3 dq. (15)

This is the first-order separable equation whose general solution
can be presented in the form:

Γ
2 +2Γ =

32
(
K2−1

)
K4

∫ ∞∫
0

q−1

(q+1)3
qKdq(

e2θ +qK
)2 e2θdθ+C,

(16)
where Γ = A/A0 is the dimensionless amplitude of a solitary
wave, and C is a constant of integration.

The integral in the right-hand side of Eq. (16) can be evaluated
analytically for the particular values of K (we do not present
here the results of integration as they are very long and cumber-
some), in other cases the integral can be calculated numerically.
After evaluation of the integrals in Eq. (16), the phase portrait of
the dynamical system (8)–(9) in terms of the dependence Γ(θ)
can be plotted for any value of the parameter K in the first ap-
proximation on the small parameter ε.

In the case when the width of initial solitary wave is the same as
the width of external force, i.e., K = 1, we obtain Γ = 1 and C =
3. When K varies in the range 0 < K < 1, function ε f (x) > 0
(see Fig. 1a), and the right-hand side of Eq. (16) is positive, and
the equilibrium state with Γ = 1 and θ = 0 is of the centre-type
in the phase plane. Therefore, if a solitary wave at the initial
instant of time has the amplitude A0 6= As, then it will oscillate
around the centre as shown in the phase plane of the system
(8)–(9) in Fig. 2a). This formally corresponds to the trapping
regime when a solitary wave is trapped in the neighbourhood of
the centre of external force.

If the amplitude and speed of a soliton at the initial instant of
time are big enough, then the soliton simply passes through the
external perturbation and moves away. Such a regime of mo-
tion corresponds to the transient trajectories shown in the phase
plane of Fig. 2a) above the separatrix (the line dividing trapped
and transient trajectories).

There are also trajectories in the lower part of the phase plane
which either bury into the horizontal axes with A = 0, or origi-
nate from this axis. Such trajectories correspond to the decay or
birth of solitons from small perturbations, respectively. Some
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Figure 1: The shape and polarity of the forcing f (x) (green
lines) as per Eqs. (11) and (14) for K = 0.75 (a) and K = 2 (b),
red lines represent the derivatives f ′x(x), and blue lines show the
initial KdV solitons of unit amplitudes.
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Figure 2: The phase portraits of the dynamical system (8)–(9)
as per Eq. (16) in the first approximation on the parameter ε for
K = 0.75 (a) and K = 2 (b).
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Figure 3: The phase portraits of the dynamical system (12), (17)
in the second approximation on the parameter ε for K = 0.75 (a)
and K = 2 (b).

of these types of trajectories, which appear within the separa-
trix, correspond to the “virtual solitons”; they are generated in
the neighbourhood of external perturbation, then increase, but
after a while completely disappear.

When K > 1, then function ε f (x) < 0 (see Fig. 1b), the right-
hand side of Eq. (16) is negative, and the equilibrium state with
Γ = 1 and θ = 0 is of the saddle-type as shown in Fig. 2b).
In this case there are repulsive regimes, where solitary waves
approach the external force and bounce back, and transient
regimes, where solitons of big amplitudes and speeds simply
pass through the external perturbation. There are also trajecto-
ries on phase plane which either bury into the horizontal axes
with A = 0, or originate from this axis; this corresponds to the
birth and decay of virtual solitons from small perturbations.

In this approximation our results are qualitatively similar to
those obtained in Ref. [2], but in contrast to that paper and
subsequent papers [3, 4], we do not use here the Dirac delta-
function to approximate a soliton or an external force.

In the second approximation the dynamical system for Γ and θ

becomes more realistic, but much more complex for the analy-
sis, because Eq. (10) in terms of θ now becomes very long:

dθ

dT
= ∆V γ+4βγ

3 +

(
K2−1

)
∆V 2

2K4βγ
×

∞∫
0

q2K −4e2θqK (1+θ−K lnq/2)− e4θ(
e2θ +qK

)2
q−1

(1+q)3 dq. (17)

The integral in the right-hand side of this equation can be calcu-
lated analytically and then, combining Eq. (17) with Eq. (12),
we can plot the improved phase portrait of the system (see Fig.
3a). The phase portrait in the second approximation dramati-
cally differs from the phase portrait of the first approximation.
First of all, the equilibrium state of the centre-type in Fig. 2a)
maps into the unstable focus (see Fig. 3a), as has been noticed
earlier in Ref. [2]. Secondly, the equilibrium amplitude Γ in the
second approximation is greater than in the first approximation.
Thirdly, on transient trajectories of Fig. 3a) soliton amplitudes
do not return back to their initial values (cf. asymptotics of
transient trajectories above the focus when θ→±∞). There are
some other important features which were missed in Ref. [2].
In particular, when K < 1, there is a repulsive regime clearly
visible in the right lower corner in Fig. 3a).

Similarly, there is a difference in the phase portraits of first and
second approximation when K > 1. In particular, a new equilib-
rium state of a stable focus appears below the saddle as shown in
Fig. 3b) (in Ref. [2] it was mistakenly identified with the centre-
type equilibrium state). This equilibrium state corresponds to
small-amplitude solitons generated by the external force with
the negative potential shown in 1b). The external force corre-
sponding to the positive potential as in Fig. 1a) cannot trap and
confine a soliton. Therefore, we can conclude that in the case of
wide forcing, when K > 1, a small amplitude KdV soliton can
be trapped by external force in its minimum.

3. Forced KdV equation reducible to the KdVB equation

In this section we consider Eq. (2) with the different and non-
symmetric potential function of the form:

f (x) =±
(

1∓ tanh
x

∆ f

)
sech2 x

∆ f
. (18)

Equation (1) with this potential function is reducible to the
KdV–Burgers equation and has exact solution for any param-
eters ε and ∆ f in the form of a kink [8]:

u(x) = ε∆ f

(
1± tanh

x
∆ f

+
1
2

sech2 x
∆ f

)
(19)

provided that the parameters ε and ∆ f are linked with the coef-
ficients α and β by the formula ε = 24β/α∆3

f ; then the speed of
a stationary solution is V = c+24β2/∆2

f .

In Fig. 4 we show the potential function (18) (lines 1) and its
derivative f ′x (lines 2), as well as the exact solutions (19) (lines
3). As follows from the exact solutions (19), a localised exter-
nal force can produce a non-localised perturbation for u(x) in
the fKdV equation (1). Two different forcing functions corre-
sponding to upper and lower signs in Eq. (18) are mirror sym-
metric with respect to the vertical axis, therefore we illustrate
below the solutions generated by only one of them shown in
Fig. 4a), but for the sake of generality, we present solutions
for both signs in Eq. (18). Note that the forcing function (18)



-10 -5 5 10
x

-0.5

0.5

1.0

Γ

1

2
3

4

-10 -5 5 10
x

-0.5

0.5

1.0

Γ

1

2

3

4

a) b)

Figure 4: The potential function for the relatively wide external
force with K = 2. Frame (a) pertains to upper sign of the po-
tential functions in Eq. (18), and frame (b) – to the lower sign.
Green lines (1) pertain to function f (x), red lines (2) pertain to
the derivatives f ′(x), blue lines 3 represent the KdV solitons at
the initial instant of time, and black lines 4 are exact solutions
of KdV-Burgers equation (19).

of any sign always represents only a negative potential shifted
from the centre either to the right or to the left (see green lines
1 in the figure).

If the initial perturbation is chosen in the form of a KdV soliton
(3) and the amplitude of external force is small, ε� 1, then
we can apply the asymptotic theory presented in Sect. 1 to
describe the evolution of a soliton under the influence of ex-
ternal force (18). Introducing the parameters q = e2Φ/∆ f and
K = 2γ0D f / ln [(7+

√
33)/4], where D f as above, is the half-

distance between the extrema of function f ′x (see Fig. 4) and
skipping Eq. (9) of the first approximation, we present the set
of equations (8) and (10) in the second approximation on the
parameter ε:

dγ

dT
=∓320β

∆ f
4

∞∫
0

qK+1e2θ(
e2θ +qK

)2
q±1−2

(q+1)4 dq, (20)

dθ

dT
= ∆V γ+4βγ

3± 5∆V 2

27βK4γ
×

∞∫
0

q2K −4e2θqK (1+θ−K lnq/2)− e4θ(
e2θ +qK

)2
q±1−2

(q+1)4 qdq. (21)

The set of equations (20) and (21) does not have equilibrium
states for the relatively narrow forcing with K ≤ 3 as shown in
Fig. 5a). In the phase plane there are either transient trajecto-
ries or bouncing trajectories in this case. If the forcing width
increases, so that the parameter K becomes greater than three,
then the equilibrium state of a stable focus appears. This corre-
sponds to the trapped KdV soliton of a small amplitude within
the potential well as shown in Fig. 5b). But when the forc-
ing width further increases, so that the parameter K becomes
greater than five, the equilibrium state disappears again, and the
phase portrait of the system (20) and (21) becomes qualitatively
similar to that shown in Fig. 2b).

Conclusion

We have revised the asymptotic theory developed in the papers
[2, 3, 4] to describe the interaction of a solitary wave with exter-
nal sources. In those papers only limiting cases were studied, ei-
ther when the forcing is infinitely narrow in comparison with the
initial KdV soliton, or when the initial KdV soliton is very nar-
row in comparison with the forcing. Here we have considered
an arbitrary relationship between the width of initial KdV soli-
ton and external forcing. We have presented two examples of
forced KdV equation which admit exact analytical solutions. In
the case of small-amplitude forcing we have shown that in many
cases solutions of approximate equations can be solved analyti-
cally, albeit the solutions look very cumbersome. In the limiting

-10 -5 0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

Θ

Γ

-10 -5 0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

Θ

Γ

a) b)

Figure 5: The phase portraits of the system (20) and (21) with
K = 2 (frame a) and K = 3.5 (frame b).

cases of very narrow or very wide forcing our results converge
to those obtained in the papers cited above. In the meantime,
it has been shown in this paper that there are some physically
interesting regimes which were missed in those papers. The
most important among them represent trapped solitons of small
amplitudes by external potentials. The detail paper with many
examples including a periodic firing will be published in the
journal Chaos.
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