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Abstract  

The UK government has set a target to achieve net-zero carbon emissions by 2050. 

Major countries in the world have set similar targets to achieve net-zero carbon 

emissions. The electrification of transport is essential for achieving this target. According 

to a report published by the EU, transforming petrol or diesel vehicle into electric vehicles 

(EVs) will account for 80% of the carbon emission reductions until 2050. However, the 

increase of EVs bring about several challenges: 1) increasing EVs causes grid problems 

such as network overloads and low voltages. Uncoordinated EV charging, in particular, 

causes those acute problems, resulting in potentially significant network reinforcement 

costs for distribution network operators (DNOs) and the need for urgent solutions. 2) the 

handling of retired batteries from EVs will eventually become a mass-scale problem, 

which requires environmentally friendly, low-cost solutions. At present, retired batteries 

are directly broken down, with valuable materials recycled. However, considering the 

remaining potential of the retired batteries, direct recycling of retired EV batteries 

compromises the batteries’ life-cycle economy and is not environmentally friendly. 

This thesis aims to tackle the above two problems: network congestions caused by EVs 

and the handling of retired EV batteries. In light of this, this thesis makes the following 

original contributions:  

1) For the use case of airport service electric vehicles (ASEVs), a new dynamic ASEV 

behaviour model is developed, alongside an optimal control method based on a 

customised rollout approach to optimally control the ASEVs, with the aim to minimise 

energy costs whilst meeting airport business needs (luggage transport).  

2) A novel business model is developed that controls second-life batteries (SLBs) retired 

from EVs to both perform energy arbitrage and provide flexibility services, where any 

profit is shared among the battery processer and EV customers who sent in the SLBs. 



 

 

VI 

 

The profit sharing is performed through monthly payments from the battery processer to 

the EV customers, thus circumventing the difficulty in forecasting SLB remaining life and 

performance at the beginning of their second life.  

3) A novel electric bus charging station model with the SLB energy storage system is 

proposed. The SLB energy storage system can reduce the charge demand during the 

peak time, which reduces the energy purchased cost for EB charging station and help 

support the network during peak time. Furthermore, the SLB energy storage system will 

provide flexibility services for DNOs. It will significantly reduce the network congestions 

and the reinforcement investments of the network. 

The above work facilitates the EV connections to the grid by making the EV charging 

behaviour friendly to the grid, improves the application of SLBs by proposing a potential 

beneficial business model, and increases both the energy and economic efficiency by 

adopting SLBs to support EV charging and the grid. Ultimately, these innovations will 

contribute to achieving the net zero carbon emissions target by 2050. 

 

 

 

 

 

 

 

 



 

 

VII 

 

Publications 

R. Wei, K. Ma, " Energy Management of Airport Service Electric Vehicles to Match 

Renewable Generation through Rollout Approach" in IEEE Transactions on 

Transportation Electrification (Submitted) 

R. Wei, K. Ma, and L. Fang, " Monthly-Payment-based Business Model for Second-Life 

Batteries to Provide Flexibility Services" in Energy Power System Research (Submitted) 

R. Wei, K. Ma, Z. Zhang and C. Gu, " Energy Management for Electric Bus Charging 

Station with Second-Life Batteries " in IEEE Transactions on Smart Grid (Submitted) 

W. Kong, K. Ma, L. Fang, R. Wei and F. Li, "Cost-Benefit Analysis of Phase Balancing 

Solution for Data-Scarce LV Networks by Cluster-Wise Gaussian Process Regression," 

in IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 3170-3180, July 2020, doi: 

10.1109/TPWRS.2020.2966601   



 

 

VIII 

 

Acknowledgement 

Firstly, I would particularly like to express my deepest gratitude to my esteemed 

supervisor team, Dr Kang Ma, Dr Chenghong Gu and Prof. Furong Li for their invaluable 

support and guidance throughout my studies. Your insightful feedback improved me to 

sharpen my thinking and brought my work to a high level. 

I would like to thank all the tutors in our CSPD Group at the University of Bath, Dr Kang 

Ma, Dr Chenghong Gu, Prof. Furong Li, Dr Xiaoze Pei, Dr Yunjie Gu, whose expertise 

was helpful and provided me with useful resources. I would like to acknowledge my 

colleagues and group members, Dr Heng Shi, Dr Xiaohe Yan, Dr Ran Li, Dr Lurui Fang, 

Dr Yuankai Bian, Dr Minghao Xu, Dr Heng Shi, Dr Zhong Zhang, Dr Wangwei Kong, Dr 

Chi Zhang, Dr Qiuyang Ma, Dr Yichen Shen, Dr PengFei Zhao, Dr Yajun Zhang, Mr Peilin 

Liu, Mr Xin Gao, Mr Han Wang, Mr Haiwen Qin, Ms Yunting Liu, Ms Jianwei Li, , Mr 

Junlong Li, Mr Shuangqi Li, Mr Xinyuan He, Ms Lanqing Shan, Mr Yuanbin Zhu, Mr Can 

Tang and Ms Shuang Cheng, for their wonderful collaboration and patient support. 

I would also like to express my heartfelt gratitude to Prof. Minxiao Han at North China 

Electric Power University, Prof. Guanjun Zhang at Xi’an Jiaotong University and Prof. 

Xinzhou Dong at Tsinghua University. I appreciate their guidance at the beginning of my 

PhD study. 

Additionally, I could not have completed this research without the support of my friends, 

Mr Boyuan Yin, Mr Xuyang Wang, Ms Tian Gan, Mr Qiliang Xu and Mr Pengkun Yuan, 

who provided stimulating discussion as well as happy distractions to rest my mind 

outside of my research. 

Finally, I would like to take this opportunity to express my greatest thanks to my family, 

especially to my parents who support me in every step of my study period. Thanks to 

their endless encouragement and support, I was able to touch on world-leading studies.  



 

 

IX 

 

List of Figures 

Fig. 3-1 Flowchart of the models and the optimal control approach ...................... 36 

Fig. 3-2 Overview of the ASEV dynamics model. ................................................. 39 

Fig. 3-3 State transition graph for the ith ASEV. ................................................... 44 

Fig. 3-4 Pseudo-code for heuristic i), i.e. the “renewable matching” heuristic. ...... 47 

Fig. 3-5 Pseudo-code for heuristic ii), i.e. the “greedy charging” heuristic. ............ 48 

Fig. 3-6 The time of use tariffs in the summer and winter month. ......................... 50 

Fig. 3-7 The PV generation power of the summer and winter month. ................... 51 

Fig. 3-8 The SoC of the ASEVs in the summer month under rollout algorithm. ..... 52 

Fig. 3-9 The SoC of the ASEVs in the summer month under ‘greedy charging’ 

algorithm. ............................................................................................................. 52 

Fig. 3-10 The cost of Bristol Airport under ‘greedy charging’ and rollout algorithm in 

the summer month. .............................................................................................. 53 

Fig. 3-11 The SoC of the ASEVs in the winter month under rollout algorithm. ...... 55 

Fig. 3-12 The SoC of the ASEVs in the winter month under ‘greedy charging’ 

algorithm. ............................................................................................................. 56 

Fig. 3-13 The cost of Bristol Airport under ‘greedy charging’ and rollout algorithm in 

the winter month. ................................................................................................. 56 

Fig. 4-1 Procedure for battery processing ............................................................ 66 

Fig. 4-2 Equivalent Circuit for Battery Pack .......................................................... 67 

Fig. 4-3 Battery matrix structure ........................................................................... 71 

Fig. 4-4 Monte Carlo simulation incorporating heuristic control to assess profitability 

of the monthly-payment-based business model. .................................................. 80 

Fig. 4-5 The number of dying batteries each year in scenario 1. .......................... 84 



 

 

X 

 

Fig. 4-6 The ‘cumulative function’ of dying batteries in scenario 1. ....................... 85 

Fig. 4-7 The revenue of the battery matrix for the three services. ......................... 85 

Fig. 4-8 The total revenue and the net benefit of the battery matrix. ..................... 86 

Fig. 4-9 The SLB energy throughput per year in scenario 1. ................................ 86 

Fig. 4-10 The number of dying batteries each year in scenario 2. ........................ 87 

Fig. 4-11 The ‘cumulative function’ of the dying batteries ..................................... 88 

Fig. 4-12 The revenue of the battery matrix for the three services. ....................... 88 

Fig. 4-13 The total revenue and the net benefit of the battery matrix. ................... 89 

Fig. 4-14 The SLB energy throughput per year. .................................................... 89 

Fig. 4-15 The degradation curve of SLB energy capacity. .................................... 90 

Fig. 4-16 The degradation curve of SLB terminal voltage. .................................... 90 

Fig. 4-17 The obtained profits for one example EV owner throughout the SLB’s 

second-life. .......................................................................................................... 91 

Fig. 5-1 The control system of the EB charging station with SLB energy 

storage………. ................................................................................................. 104 

Fig. 5-2 The overview of the EB charging station control methodology. .............. 106 

Fig. 5-3 The equivalent circuit of the SLB. .......................................................... 108 

Fig. 5-4 The different time intervals of one day. .................................................. 119 

Fig. 5-5 The base load power consumption of the charging station. ................... 120 

Fig. 5-6. The electricity price in one day. ............................................................ 121 

Fig. 5-7 The power of the EB charging station for charging services under ‘greedy 

charging’ algorithm. ............................................................................................ 123 

Fig. 5-8. The number of charging EBs on the day with ‘greedy charging’ algorith123 

Fig. 5-9 The SoC of the EBs on the day under ‘greedy charging’ algorithm. ....... 123 



 

 

XI 

 

Fig. 5-10. The EB charging power under ‘day-ahead scheduling’ without SLB energy 

storage  ............................................................................................................. 125 

Fig. 5-11 The number of charging EBs under day-ahead scheduling without SLB 

energy storage. .................................................................................................. 125 

Fig. 5-12 The SoC of the EBs under day-ahead scheduling without SLB energy 

storage  ............................................................................................................. 126 

Fig. 5-13 The EB charging power from the network under ‘day-ahead scheduling’ 

with SLB energy storage. ................................................................................... 127 

Fig. 5-14. The number of charging EBs under day-ahead scheduling with SLB 

energy storage. .................................................................................................. 127 

Fig. 5-15. The SoC of the EBs under day-ahead scheduling with SLB energy 

storage.. ............................................................................................................. 128 

Fig. 5-16. The EB charging power from the SLB energy storage under ‘day-ahead 

scheduling’. ........................................................................................................ 128 

Fig. 5-17. The comparison of the operational cost in the three scenarios of 5 

continuous days. ................................................................................................ 129 

  



 

 

XII 

 

List of Tables 

Table 4-1 THE ELECTRICITY PRICE OF ONE DAY ............................................ 82 

Table 4-2 FIXED PRICE OF FLEXIBILITY SERVICES ......................................... 82 

Table 4-3 STATES OF SLBS AFTER 10-YEAR OPERATION IN SCENARIO 1.... 84 

Table 4-4 STATES OF SLBS AFTER 10-YEARS OPERATION ............................ 87 

Table 4-5 FINAL PROFIT RESULTS OF SCENARIO 1) AND SCENARIO 2) ....... 89 

 

 

 

  



 

 

XIII 

 

List of Abbreviations 

ASEV Airport Service Electric Vehicle 

CBSMS Centralized Battery Swapping Management System 

CDF Cumulative Density Function 

DAS Day-ahead Scheduling 

DNO Distribution Network Operator 

DP Dynamic Programming 

EB Electric Bus 

EMS Energy Management System 

EV Electric vehicle 

ICTs Information& control technologies 

MCS Monte-Carlo Simulation 

NPV Net Present Value 

PEB Plug-in Electric Bus 

PF Power Factor 

PV Photovoltaic 

SAA Sample Average Approximation 

SHS Stochastic Hybrid System 

SLB Second-Life Battery 

SoC State of Charge 

SOH State of Health 

TOU Time of Use 

V2G Vehicle-to-Grid 

WPD Western Power Distribution 

 

 

 

 

  



 

 

XIV 

 

List of Symbols 

𝐸𝑚
𝑔

 Transmission electricity consumption 

𝐸𝑛,𝑚,𝑡
𝑐  Obtained electricity 

𝐶𝑚𝑎𝑥 Capacity of the EBs 

𝑞𝑡 Bus departure frequency in time slot t 

𝑓𝑡,(𝑚,𝑚+1) Passenger flow between bus stations 

𝑉𝑢𝑠𝑒𝑑 Buying price of the SLB in the nth year 

𝑉𝑛𝑒𝑤 Price of the new battery with the similar value in the nth year 

𝑓ℎ𝑒𝑎𝑙𝑡ℎ State of health of the battery 

𝑓𝑟𝑒𝑢𝑠𝑒 SLB re-proposing cost 

𝑓𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 Discount factor to encourage the use of SLB 

𝑄𝑚 Measured capacity 

𝑄𝑛 Nominal capacity 

�̃�𝑗𝑡 Time required for an ASEV to serve flight j at time t 

∅(𝜇, 𝜎2;  𝑥) Probability density function 

Φ(𝜇, 𝜎2; 𝑥) Cumulative distribution function 

𝜌𝑢 Upper bounds of �̃�𝑗𝑡 

𝜌𝑙 Lower bounds of �̃�𝑗𝑡 

𝑤𝑗𝑡 Discretized random workload 

𝑆𝑖𝑡 State of an ith ASEV at Stage t 

𝑞𝑖𝑡 Discrete state 

𝑆𝑜𝐶𝑖𝑡 State of charge (SoC) of the ith ASEV’s battery at Stage t 

𝑓𝑅𝑖𝑡 Battery cycles to failure for the ith ASEV at Stage t 

𝐶𝑖𝑡 Energy cost for the ith ASEV at Stage t 

𝐶𝑅 Energy price per kWh from renewable generation 

𝐸𝑐 Energy consumption during each stage 

𝐶𝐺𝑡 Price per kWh of the grid-supplied energy at Stage t 

𝐸𝑅𝑡 Available energy generated by renewable generation at Stage t 

𝐵𝑖𝑡 Battery degradation cost for the ith ASEV at Stage t 

𝑔𝑡 Total cost for all ASEVs at Stage t 

𝑁𝐸𝑉 Total number of ASEVs 

𝑔𝑁 Terminal stage cost for all ASEVs 



 

 

XV 

 

𝐶𝐺𝑁 Price per kWh of the grid-supplied energy at Stage N 

𝑆𝑜𝐶𝑚𝑎𝑥 Upper bound of the SoC 

𝑆𝑜𝐶𝑖𝑁 SoC of the ith ASEV at Stage N 

𝑁𝑑𝑒𝑙𝑎𝑦 Total number of times of ASEV delay on the day 

𝑇𝑑𝑒𝑙𝑎𝑦,𝑖 Duration of the ith ASEV delay 

𝐶𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 Punishment cost per time slot 

𝑆𝑜𝐶𝑚𝑖𝑛 Lower bound of the SoC 

𝑢𝑖𝑡 Control decision for ASEV i at Stage t 

𝑑𝑗 Stages of delay 

𝑑𝑡ℎ𝑟𝑒 Threshold of delay 

𝑈𝑡 Constraint set for 𝑢𝑡 at Stage t 

𝐸𝐶𝑗0 SLB starting energy capacity 

𝐸𝐶𝑚𝑖𝑛 Lower bounds of 𝐸𝐶𝑗0 

𝐸𝐶𝑚𝑎𝑥 Upper bounds of 𝐸𝐶𝑗0 

𝐸𝐶𝑑𝑗 Energy capacity decrease (kWh) per kWh of energy discharged 

𝐸𝐶𝑛𝑜𝑚 Nominal energy capacity 

𝐸𝐶𝐸𝑜𝐿 End-of-second-life energy capacity 

𝑁𝐿𝐶 Battery life cycles 

𝜔 Parameter that is fitted with respect to the type of battery 

𝑘𝑟 Threshold percentage 

Δ𝑅 Resistance increase 

𝑉𝑜𝑐_𝑟 Rated open-circuit voltage 

𝑉𝐸𝑜𝐿 End-of-second-life terminal voltage 

𝐼𝑟 Rated discharge current 

𝑅𝐸𝑜𝐿 Internal resistance when a battery’s second life ends 

𝑉𝑜𝑐 Open circuit voltage 

𝑉𝑜𝑐_𝑟 Rated open circuit voltage 

𝛾 Maximum drop of the open-circuit voltage 

𝑃𝑐 SLB charging power 

𝐼𝑐 Rated charging current 

𝑉𝑐 Charging voltage 

𝑃𝑡𝑎𝑟 Target discharge power 

𝜂𝑑 Converter efficiency 

𝑥𝑖 On-off status of row i 



 

 

XVI 

 

𝑉𝑖𝑗 Voltage of the SLB at row i, column j 

𝐼𝑖 Discharge current of row i 

𝑉𝑜𝑐_𝑖𝑗 Open circuit voltage of SLB ij 

𝑅𝑖𝑗 Internal resistance of SLB ij 

𝐼𝑖𝑗 Rated discharge current of SLB ij 

𝜆Δ Mean rate of flexibility calls 

∆𝑡𝑓𝑠 Time interval between two consecutive flexibility calls 

𝐹 Performance factor of flexibility service 

𝑇𝑎 Actual duration for which the battery processer delivers flexibility 

𝑇𝑟 Duration required by the DNO for flexibility services 

𝑅𝑓𝑠 
Total revenue from providing both types of flexibility services within 

a month 

𝜌𝑛𝑓 
Unit price per kWh of flexible energy delivered for the non-critical 

flexibility service 

𝑁𝑛𝑓𝑠 Number of non-critical flexibility services within a month 

C Contracted flexibility capacity in kW 

𝑇𝑎,𝑖 Actual duration of the ith time of the non-critical flexibility service 

𝜌𝑐𝑓 
Unit price per kWh of flexible energy delivered for critical flexibility 

service 

𝑁𝑐𝑓 Number of critical flexibility services within a month 

𝑃𝑏,𝑖 Delivered power of critical flexibility service in kW 

𝑇𝑏,𝑖 Actual time interval of the ith time of the critical flexibility service 

𝐸𝑠,𝑡 Energy surplus at time t 

𝑃𝑗,𝑑𝑚𝑎𝑥 Maximum discharge power of SLB j 

𝑅𝑒𝑎 Revenue from energy arbitrage within a day or a month 

𝑃𝑡 Discharge power of the SLB matrix 

𝜌𝑡 Electricity price at time t 

Δ𝑡 Time interval 

𝜂𝑑 SLB discharging efficiency 

𝜂𝑐 SLB charging efficiency 

𝑅𝑗 The income customer j will receive from the battery processer 

𝐶𝑐𝑜𝑠𝑡 Operation and management cost of the battery processer 

𝑃𝑝𝑟𝑜𝑓𝑖𝑡 Profit reserved for the battery processer 

𝜋 
Percentage of revenue that the battery processer shares with all 

customers 

𝑃𝑖,𝑡
𝑐ℎ𝑎𝑟 Charging power for EB i 



 

 

XVII 

 

𝑃𝑖,𝑡
𝑔𝑟𝑖𝑑

 Charging power from the grid 

𝑃𝑖,𝑡
𝑆𝐿𝐵 Charging power from the SLB 

𝐸𝐶𝑆𝐿𝐵
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 Nominal energy capacity of SLB 

𝐸𝐶𝑆𝐿𝐵
𝐸𝑜𝐿 Energy capacity when SLB reach its end of life 

𝑆𝑜𝐶𝑆𝐿𝐵
𝑚𝑎𝑥 Maximum SoC at the time stage t of SLB 

𝑆𝑜𝐶𝑡
𝑆𝐿𝐵 Current SoC at the time stage t of SLB 

𝑇𝑖
𝑓𝑙𝑒𝑥

 Scheduled time interval of the flexibility service 

𝑡𝑖,𝑠𝑡𝑎𝑟𝑡
𝑓𝑙𝑒𝑥

 Start time of the flexibility service 

𝑡𝑖,𝑒𝑛𝑑
𝑓𝑙𝑒𝑥

 End time of the flexibility service 

𝑃𝑖
𝑓𝑙𝑒𝑥

 Delivered power of the flexibility service 

𝐶𝑡
𝐸𝐵𝑔𝑟𝑖𝑑

 Energy cost of EBs purchased from the grid at time slot t 

𝐶𝑡
𝑆𝐿𝐵𝑔𝑟𝑖𝑑

 Energy cost of SLB charging at time slot t 

𝐶𝑡
𝑆𝐿𝐵𝑑𝑒𝑔

 SLB degradation cost at time slot t 

𝐵𝑡
𝑓𝑙𝑒𝑥

 Benefits of providing flexibility service 

𝐸𝑃𝑡
𝑔𝑟𝑖𝑑

 Electricity price at time slot t 

𝑃𝑆𝐿𝐵,𝑡
𝑔𝑟𝑖𝑑

 SLB charging power at time slot t 

𝑃𝑡
𝑆𝐿𝐵 SLB discharged power at time slot t 

𝐿𝐶𝑡
𝑆𝐿𝐵 Remaining life cycles until its end-of-life 

𝐸𝑃𝑡
𝑓𝑙𝑒𝑥

 Price of the flexibility power 

𝐴𝑗 
Percentage of the power of the base load consumption for the 

distribution transformer at time slot t 

𝑆𝑇 Total capacity of the distribution transformer 

𝑁𝑝𝑜𝑡 Total number of chargers in the EB charging station 

𝑇𝑎𝑟𝑟𝑖𝑣𝑒 EB arrival time 

𝑇𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 EB scheduled departure time 

𝑆𝑜𝐶𝑗,𝑡
𝐸𝐵 SoC of EB j at time slot t 

𝑆𝑜𝐶𝑚𝑖𝑛
𝐸𝐵  Minimum value of the EB 



 

 

XVIII 

 

𝑆𝑜𝐶𝑚𝑎𝑥
𝐸𝐵  Maximum value of the EB 

∆𝑆𝑜𝐶𝑒𝑥𝑝,𝑡
𝐸𝐵  Expected SoC reduction for a trip at time t 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟,𝑚𝑎𝑥
𝑆𝐿𝐵  Maximum discharging power of the SLB 

𝑃𝑐ℎ𝑎𝑟,𝑚𝑎𝑥
𝑆𝐿𝐵  Maximum charging power of SLB 

𝑃𝑗,𝑡
𝑡𝑟𝑎𝑣𝑒𝑙 Energy consumption per hour for EB j at time slot t 

𝑃𝑗
𝑚𝑎𝑥 Maximum charging power for EB j 



Chapter 1  Introduction 

1 

 

Chapter 1.                              

Introduction 

 

Chapter contents: 

1.1. Background and motivation ...................................................................... 2 

1.2. Research aims ......................................................................................... 6 

1.3. Research objectives and contributions ..................................................... 6 

1.4. Thesis layout ............................................................................................ 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter briefly presents the background, motivation, objectives, challenges and 

contributions. It also shows the overview of this thesis. 
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1.1.  Background and motivation 

1.1.1. The importance of EV development 

The UK government has set the target to achieve net-zero carbon emissions by 2050 [1], 

in an effort to tackle the pressing climate change problem [2]. Major countries in the world 

have set similar targets to achieve net-zero carbon emissions [3], alongside the climate 

emergency declared by a number of countries [4]. Among the four sectors of transport, 

energy, retail and industry, transport accounts for 27% of CO2 emissions [5]. Therefore, 

the electrification of transport is necessary for achieving the target of net-zero carbon 

emissions. In light of this, there is a rapid increase of electric vehicles (EVs) replacing 

fossil fuel vehicles, from under 9000 EVs in 2010 to 565,000 in 2021 [6]. The UK 

government has taken a historical step with a plan to end the sale of fossil fuel vehicles 

by 2035 [7]. This translates to the huge potential growth of EVs (including HEVs and 

PHEVs) to replace fossil fuel vehicles in the years to come. 

The progress report in 2021 [9] shows that although the first and second carbon budget 

has been met, the fourth and fifth budget is difficult to be met. These budgets were set 

to achieve an 80% reduction in carbon emission, not the Net-Zero. To achieve the new 

target on time, the progress in reducing carbon emissions should be accelerated. One 

of the important parts of reducing carbon emissions is transportation electrification. 

In recent decades, the gas emission pollution produced by transport is a major concern. 

The report from the Department for Transport in the UK [5] shows that in 2019, the carbon 

emission from domestic transport produced 27% of the UK’s total emissions (122 

MtCO2e of 455 MtCO2e). Although it is a reduction of 1.8% compared with the emissions 

from 2018, transport is still the largest emitting sector of carbon emissions. The report 

from the government illustrates that it is important to push the step of transportation 
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electrification and developing the EVs. 

1.1.2. Challenges existing in the development of EVs 

There are a number of challenges associated with EVs. These challenges can be 

categorised into two classes:  

1. The challenges associated with EV performance: the limited mileage range; the time 

required to charge batteries; the inconvenience of finding EV charging facilities; the 

recycling of retired EV batteries in future. With the increase of EV battery capacities, the 

mileage range problem might be relieved. However, this would require either longer 

charging time, thus aggravating inconvenience, or higher charging power if the charging 

time is not increased. The higher charging power would aggravate serious network 

problems  

In particular, the processing of retired EV batteries brings both challenges and 

opportunities. From existing references, it is a huge waste to directly dump the retired 

batteries in landfills considering the retired batteries’ energy potential [10]. Further, this 

is not environmentally friendly [11]. There is the potential for retired EV batteries to be 

re-purposed for applications that are less demanding than powering EVs. In other words, 

these retired EV batteries can have a second life. 

2. The challenges EVs bring to the power grid: Since the distribution networks were not 

designed to host EVs, the rapidly increasing of EVs can cause network overloads, 

significant voltage drops, and excessive network losses. To enhance the stability and 

reliability of the power system for the connection of increasing EVs, a huge investment 

in grid reinforcement is required and the complexity of computation is much more than 

before. Due to the uncertainties and scalability of EVs, the connection of EVs is difficult 

to predict and this will bring more problems to the network planning for distribution 
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network operators. 

1.1.3. Research gaps 

To address these challenges mentioned above, two research topics are proposed to 

reduce the adverse effects of EV penetration and concerns brought by the increasing 

retired batteries: the control optimisation of EV charging and the second-life of the retired 

batteries. Up to now, a few references has studied the EV charging strategies and the 

possible solutions for retired EV batteries from different aspects. However, there are still 

a massive number of limitations in practice. 

⚫ The problems existing in EV controlled charging strategy   

For EV charging, some conventional control strategies designed for residential EV 

customers have been given from existing studies, e.g., charging at midnight to avoid 

peak time [12]. However, these control strategies cannot be applied directly to all types 

of EVs. For the industrial/ commercial EVs, these control strategies are not primary 

choices in practice because such EVs are characterized by a heavy-duty, high-usage-

frequency nature. A customized control strategy is supposed to be proposed to control 

their working and charging states. 

Existing research has studied the EV optimal control strategies from different 

perspectives. However, there are still outstanding problems and they are summarised as 

follows: 

For the scheduling part, it is necessary to collect the historical and statistical data 

to simulate the environment in which EVs operate. The accuracy of the data 

clustering or forecasting will significantly influence the efficiency of the optimal 
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control strategy. Even for some customers, such as a public parking lot, it is hard 

to make accurate predictions. 

The development of EV control algorithms should take into account problem 

dimensionality, computation efficiency and uncertainties in the environment. 

These difficulties result in the fact that EV control algorithms can only achieve 

approximate optimality.  

EV battery degradation costs should be considered but this is a difficult task. The 

degradation of the EV battery is a complicated chemical process and depends 

on many factors, including the battery type and the operating environment. It is 

difficult to collect the battery performance information and simulate the 

degradation of the battery accurately. 

⚫ The problems caused by EV batteries 

Although the retired EV batteries have the potential to serve for less-demand applications, 

e.g. providing grid services, there are still challenges that need to be addressed: 

1） The accurate remaining life of the SLB is difficult to predict. Given the 

uncertainties of the remaining life, it is hard to do life-cycle cost-benefit analyses 

involving SLBs. 

2） The SLBs of different types may be connected in the same system and such a 

mixture would reduce the SLBs’ remaining life. 

3） There are uncertainties in future laws and regulations regarding the recycling of 

retired EV batteries. For environmental reasons, it is expected that the laws and 

regulations would favour the second use of retired EV batteries. 

To sum up, two challenges are raised as follows: 1) for EV optimal control, modelling the 

operation of EVs and optimally managing the operation of EVs considering the related 
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uncertainties in operation environments and reflecting the effects of battery degradation; 

and 2) proposing a feasible business model of SLBs which should both reduce the effect 

of the accuracy of SLB remaining life prediction and the difference between their 

characteristics; and encourage the EV owners to send SLBs to battery processers 

instead of landfill. 

1.2. Research aims 

This thesis aims to tackle the following research questions: 1) the optimisation problem 

about the management of airport service electric vehicles; 2) the business model of the 

second-life batteries when utilized for less-demand applications; 3) the control 

management of the electric bus charging station with the connection of second-life 

battery energy storage system. 

This thesis aims to meet EV charging needs whilst respecting grid constraints, and 

develop a techno-economic solution to efficiently handle retired EV batteries, for the 

benefits of EV owners, the battery operator and the grid.  

1.3. Research objectives and contributions 

Chapter 1.1.2 has introduced that there are several research challenges existing in the 

development of transportation electrification. These challenges are divided into two 

different types. The first type of problems is about the modelling of EVs and how to 

achieve the control optimisation. To solve these problems, this thesis makes the original 

contributions that for the EV charging optimal charging strategy, for the first time chose 

airport service electric vehicles (ASEVs) as research objects and design a dynamics 

model for them and build a customized optimal control approach for the optimal operation 

of ASEVs. 
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The second kind of challenges are mainly about how to deal with the SLBs, including the 

accurate estimation of the SLB’s remaining life, the potential less-demand applications 

and how to encourage EV owners to send the retired batteries for their second life 

applications. To address these challenges, this thesis for the first time designs an SLB 

business model based on a monthly-payment mode and applies the SLBs to perform 

energy arbitrage and provide flexibility services for the DNOs. 

1.3.1. ASEV dynamics model and optimal control strategy 

The uncontrolled charging behaviour of EVs leads to severe network problems. For the 

industrial/commercial EVs, their owners will pay more for EV charging. According to 

these consequences, setting the ASEVs as research objects, this thesis developed a 

novel dynamic model to simulate the operation of ASEVs. To optimally control the model 

to both reduce the power demand during peak time and save the investment cost for the 

EV owner (airport), a customized optimal control strategy based on the rollout approach 

is designed. 

Firstly, this thesis develops a dynamic model of ASEV to guide its real-time management 

considering the uncertainties. In real-time management, the control of ASEV should be 

faced with a few uncertainties. They include the flight schedule, the number of 

passengers and the luggage weight. Unlike the previous models, the dynamic model 

describes the ASEV states, their transition over time and the effect produced by the 

control decisions. The model includes both discrete dynamics and continuous dynamics. 

For example, the discrete dynamics involves the transition of the ASEV states, including 

‘work’, ‘charge’ or ‘idle’, and the continuous dynamics involves the change of the battery 

state of charge (SoC) over time. Besides, the model simulates the stochastic nature of 

the ground transport workload to reflect the influence of the nature uncertainties. 
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Secondly, this thesis proposes a customized optimal control strategy for the dynamic 

system. The optimal control of dynamic systems is related to stochastic dynamic 

programming because of their stochastic and dynamic nature. A rollout algorithm is 

borrowed and adapted for ASEV optimal controlling. This control method is real-time 

management, with the objective of minimizing the total operation cost for the airport and 

encouraging to reduce peak demand compared with some heuristic algorithms. The 

rollout approach is designed based on two suboptimal control algorithms and iteratively 

improve them to a more optimal strategy. Moreover, the rollout significantly addresses 

the challenge of ‘the curse of dimensionality’. 

1.3.2. SLB monthly-payment-business model to perform energy arbitrage 

and provide flexibility services 

To address the SLB application problems, this thesis proposes a novel business model 

for SLB to perform energy arbitrage and provide flexibility services. Previous references 

pay much attention to the prediction of the SLB's remaining life. However, despite the 

development of prediction methods, the investment in applying these methods to real-

life keeps increasing. To address the challenge and adopt the SLBs to suitable 

applications, this thesis proposes a monthly-payment business model for SLBs. The 

model features a profit-sharing between battery processers and customers through 

monthly payments from the former to the latter. If there is a profit produced by a certain 

SLB, the battery processer will monthly pay to the SLB provider until its SLB reaches the 

threshold that indicates the end of life. In case a loss occurs in the business, the sharing 

will stop, and the model reveals the battery processer the true cost of the SLBs. Through 

the monthly payment mode, the task of predicting SLB remaining life for the second life 

applications and performance at the beginning will be bypassed. Also, a specific heuristic 

algorithm is designed to guide the SLBs to perform energy arbitrage and provide a range 

of flexibility services for DNOs. To sum up, the SLB business model will address the 
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difficulties of forecasting SLB remaining life, control SLBs to perform energy arbitrage 

and provide flexibility services, and encourage the EV owners to send SLBs to battery 

processers by profit sharing at the same time. 

1.4. Thesis layout 

The rest of the thesis is organised as follows: 

Chapter 2 reviews the existing literature on EV development, including the different 

optimal methodologies adopted in different EV scenarios, the application of SLBs. 

Chapter 3 proposes the dynamic model of ASEVs which can describe both the working 

state of ASEVs and the uncertainties during the management process. To control the 

ASEVs based on the dynamic model, a customized rollout approach is developed to get 

the optimisation results. The feasibility of the optimal algorithm is validated through 

simulations in a summer and a winter typical month. 

Chapter 4 proposes the business model of SLBs based on a monthly-payment 

methodology. The business model applies SLBs to supply flexibility services to DNOs 

and perform energy arbitrage to make profits. By a 10 years’ simulation, the energy 

potential and economic efficiency of the business model is proved. 

Chapter 5 proposes an EB charging station model with an SLB energy storage system. 

In this scenario, the SLB storage system supports the EB charging if necessary and 

provides flexibility services for DNOs. To validate the feasibility, a comparison between 

three different control algorithms is shown in the case study.  

Chapter 6 shows conclusions of the thesis, including the key findings of the research and 

the contributions from the work. 
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Chapter 7 proposes some potential future topics in EV optimal control and the SLB 

applications. 
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This chapter reviews the existing studies on the optimal control of EV charging and 

the utilization of second life EV batteries.  
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2.1. Introduction 

In this chapter, a comprehensive literature review is conducted on the EV optimal control 

and how to deal with SLBs retired from EVs.  

 

2.2. Optimal control of EV charging 

2.2.1. The consequence of over penetration of EVs in networks 

Nowadays, EV charging is classified into two categories: battery charging and battery 

swapping. Battery charging is further classified into slow charging (e.g., domestic 

charging outlet) and fast charging (e.g., charging stations or parking lots). However, 

regardless of the charging mode, EVs would bring severe problems to the grid if the EV 

charging behaviour is not controlled. 

⚫ Network overloads 

Power grids that were built decades ago were not designed to host unlimited EVs. Today, 

rapidly increasing EVs increase the network loading to an unprecedented level. This is 

particularly a problem if the EVs are charged in an uncoordinated fashion, which can 

result in cable and transformer overloads, equipment damages and consequent power 

outages [13]. 

For example, reference [14] demonstrates that with the connection of a single EV, the 

energy consumption will be potentially doubled for a local household. With a large 

population of grid-connected EVs, the number of grid congestion problems will rapidly 

increase. Additionally, reference [15] shows that the unpredicted EV charging demand 
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will affect the network reinforcement. 

⚫ Power quality degradations 

With the EV charged from the network, a huge number of power electronic devices, 

which are regarded as nonlinear loads, are connected to the grid. The harmonics from 

the nonlinear loads would cause power quality problems [16] [17]. 

For example, in reference [18], it shows that with the EV charger connected to the power 

grid, the highly nonlinear systems, including the power electronic converters, switching 

power semiconductor components, will cause severe disruption on the source side. 

Reference [19] clarified that the fast-charging stations made large effects on power 

quality and distribution transformer due to the adoption of voltage source converter in 

the process of EV fast charging. 

⚫ Reinforcement cost for DNOs 

The uncertainties of the EVs in their load behaviours increase the complexities of 

network planning and operation, potentially leading to high reinforcement costs for the 

DNOs. 

2.2.2. The different control strategies for EV charging 

There are many different control strategies for the charging of high penetration of EVs.  

The objective of these control strategies is also variable, such as reducing the impact of 

the charging behaviours for the distribution networks and reducing the cost for the EV 

owners. For example, reference [20] developed an algorithm that controls the EV 

charging behaviour to reduce the peak demand for distribution networks. The control 
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strategies are classified into two classes: centralized scheduling and decentralized 

scheduling. 

⚫ Centralized scheduling 

The centralized scheduling means that there is an EV aggregator or a central controller 

that optimises the EV charging process. A number of pieces of literature focus on 

centralised control of EV charging: reducing the power fluctuation for a network [21], 

reducing the cost for parking lots, especially those equipped with renewable energy 

systems [22], and increasing the security and the efficiency of the network [23]. A number 

of algorithms are employed to perform centralised optimal control, e.g. two-stage 

stochastic programming, genetic algorithm, and scenario tree.   

Among all these control methodologies, two-stage stochastic programming is of 

particular importance. In this modelling process, the decisions are made under 

uncertainties. For example, in reference [24], two-stage programming is used to manage 

the EV charging in an office building. In the first stage, the objective of the model is to 

minimize the expected cost, including the operation cost for the building, the energy cost 

for the day-ahead power market, the cancellation cost and the real-time electricity 

transaction cost. The second stage is to control the real-time EV charging taking the 

power scheduling from the first stage. In the second stage, it is necessary to satisfy all 

the EV charging demands although the actual EV power is not the same as is assumed 

in the first stage. 

Reference [25] adopts two-stage programming in the planning of charging stations. In 

this case, the first stage is to determine the location of the charging stations using 

historical and statistical data, while the second stage is to enhance the charging station 

placement with the actual EV charging demands. In reference [26], a two-stage 
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programming model is proposed to guide EV battery swapping in a battery swapping 

station. The first stage is to determine the location of the battery swapping station and 

the number of batteries stored in each station. The second stage is to satisfy the PHEV 

battery swapping demand at each time slot and provide energy backup services for the 

grid. In reference [27], the first stage is to make a charging strategy to minimise the EV 

owner’s charging cost, while the second stage is to maximize the aggregator’s economic 

benefit without increasing the EV owner’s charging cost. In stage two, the EV charging 

control strategy is treated as a constraint.  

However, the drawbacks of centralized control are also significant. Firstly, the centralized 

control strategy requires advanced information & communication infrastructure to 

transmit the information of all EVs in a timely manner. The data quality through the 

communication significantly affects the accuracy of the final decisions. Secondly, in this 

process, EV aggregators or operators are required to control the EV charging power. 

This business model itself incurs a transaction cost. Thirdly, the communication and 

computation burdens increase with the number of EVs, potentially hindering the 

scalability of the solution [28]. 

⚫ Decentralized scheduling 

A decentralized control strategy is where individual EVs determine their charging 

schedules to minimise the costs, taking into account their own needs and external 

incentives. Different EVs may communicate with each other, but there is no aggregator. 

Decentralized control strategies employ a range of mathematical models such as non-

cooperative games [29], neural networks [30] and the Markov decision process [31]. 

Compared to EV centralized control strategies that aim to achieve a common good or a 

social benefit, decentralized control strategies mainly focus on reducing individual costs, 
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aiming to indirectly realise a social benefit through external incentives and possible 

interactions among individual EVs. Reference [32] shows that to achieve the valley-filling, 

the decentralized algorithm is used to optimally schedule the EV charging behaviours. In 

the process, the EV charging profile will be constantly updated through the control signal 

broadcast to increase the time efficiency of the scheduling. In reference [33], the 

decentralized strategy is to minimize the energy purchased cost for EV owners and 

ensure grid stability. A game theory is introduced in the EV charging control to make a 

balance between the ‘individual best-response strategy’ and the ‘socially optimal 

charging profiles’. Reference [34] introduces a decentralized method, in which the 

objective function includes both the generation cost and the battery degradation cost. It 

proves that such a decentralized control strategy can be nearly socially optimal under 

certain mild conditions. 

The decentralised control strategy also has limitations in real applications. Firstly, 

decentralized control means a lack of global information [35], resulting in the difficulty of 

finding globally optimal solutions. Besides, although the demand for computational 

resources required is lower than the centralized control, the decentralized control will 

possibly pose a high communication burden. 

2.2.3. The optimal control of domestic EVs and industrial/ 

commercial EVs 

There are a number of differences in the control of industrial/commercial EVs versus 

domestic EVs. This is because: 

1) Firstly, the operation model of industrial/commercial EVs is different from that of 

domestic EVs. The domestic EVs serve people’s casual and commute purposes, 
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meaning that most of the time they are free for charging. Compared to domestic 

EVs, industrial/commercial EVs serve business needs as a top priority and thus 

may be busy even the whole day. Therefore, the control of industrial/commercial 

EVs tends to be more challenging to fit the tight schedule as compared to 

domestic EVs.  

2) Secondly, the charging mode is another gap between them. For domestic EVs, 

slow charging (typically with a charging power of 7 kW) is popular [36] [37]. Fast 

charging (with a power of more than 20 kW [38]) is available at some public 

parking lots for domestic EVs. In contrast, to reduce the charging time and meet 

business needs, industrial/commercial EVs are mostly charged under the fast-

charging mode.  

3) Thirdly, for an industrial/commercial EV fleet, the control decision is made by a 

common EV owner, for example, an airport controls its ASEVs centrally. Thus, 

the control strategy for industrial/commercial EV charging is designed as 

centralised control. But for domestic EVs, the control strategy can be both 

designed as centralised or distributed control. 

⚫ Research on domestic EV charging 

There is a variety of EV charging control strategies for domestic EV charging, 

depending on charging locations. In reference [24], the EV charging strategy is a 

centralised control strategy for charging at a commercial building. The charging 

strategy not only satisfies the charging demand of each EV but also controls the EV 

to be part of an energy management system for a commercial building with PV 

generation. In reference [39], the charging location is households. The charging 

strategy is designed that integrate EVs as part of an energy management system to 

provide vehicle-to-home service. The charging strategy is based on model predictive 
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control and it is a combination of stochastic modelling and prediction. Apart from the 

references mentioned above, reference [40] shows that a distributed charging 

strategy is proposed for community EV charging, without the need for a central 

control unit being unnecessary. Reference [41] studies EV charging at commercial 

parking lots. With a two-stage control strategy, the energy cost can be significantly 

decreased. 

From the references, domestic EVs charging at different locations corresponds to 

different charging strategies. Domestic EVs play specific roles at different charging 

locations. For charging at a commercial building, EVs can consume renewable 

energy and provide vehicle-to-building services [24]. When charging at home, EVs 

can be part of an energy management system or an energy hub [42]. Moreover, both 

the centralised control strategy and the distributed control strategy can be applied for 

domestic EV charging.  

⚫ Research on industrial/commercial EV charging 

Compared with the research on domestic EV charging, industrial/commercial EV 

charging is mainly decided by their nature of business, such as electric taxis and 

electric buses. Electric buses (EBs) are a major type of industrial/commercial EVs 

widely used nowadays. The research on EBs can be sorted into three different areas: 

long-term scheduling for investment in EV fleets and charging infrastructure, the 

improvement of charging infrastructure and optimal control scheduling. In this thesis, 

we primarily concentrate on the scheduling of the EBs. In reference [43], EBs are 

wirelessly charged, where the charging power can be much higher than that of 

traditional plug-in EBs. The objective is to minimise the operating electricity cost. The 

charging control model is formulated as follows: 
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𝑚𝑖𝑛𝑓 =∑∑𝐿𝑖,𝑡

𝐼

𝑖=1

𝑇

𝑡=1

 (2-1) 

subject to 

𝐸𝑚
𝑔
= 𝑆𝑜𝐶𝑛,𝑚,𝑡 + 𝐸𝑛,𝑚,𝑡

𝑐 − 𝑆𝑜𝐶𝑛,𝑚+1,𝑡  (2-2) 

𝐸𝑚
𝑔
= 𝑆𝑜𝐶𝑛,𝑚,𝑡 + 𝐸𝑛,𝑚,𝑡

𝑐 − 𝑆𝑜𝐶𝑛,𝑚+1,𝑡 

 

(2-3) 

𝑆𝑜𝐶𝑛,𝑚,𝑡 + 𝐸𝑛,𝑚,𝑡
𝑐 ≤ 𝐸𝑚𝑎𝑥

𝑐  

 

(2-4) 

𝑆𝑜𝐶𝑛,𝑚,𝑡 ≥ 𝐸𝑚𝑖𝑛
𝑐  

 

(2-5) 

𝐶𝑚𝑎𝑥𝑞𝑡 ≥ 𝑓𝑡,(𝑚,𝑚+1) 
(2-6) 

This first equation describes the minimum charging requirement for each EV, where 

𝐸𝑚
𝑔

 is the transmission electricity consumption, 𝐸𝑛,𝑚,𝑡
𝑐  is the obtained electricity. This 

constraint means that the EB should be charged with enough energy to ensure that 

it can arrive at the next station m+1. The second equation shows that the energy 

consumption of the travel between two bus stations should not be over the battery 

capacity and the 𝑚𝑎𝑥{𝐸𝑚
𝑔
} means the maximal transmission electricity consumption 

between two bus stations. The third and the fourth equations are the SoC limits that 

protect the battery. Considering the characteristics of the EBs, the EBs are supposed 

to provide satisfactory services for the passengers. All passengers should be taken 

and the charging time at the station should not influence the departure time. Based 
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on this, the fifth equation is the passenger satisfaction constraint, where 𝐶𝑚𝑎𝑥 is the 

capacity of the EBs, 𝑞𝑡 is the bus departure frequency in time slot t, 𝑓𝑡,(𝑚,𝑚+1) is the 

passenger flow between bus stations.  

Given the problem formulation, a two-stage control algorithm is proposed to solve it. 

In this first stage, the determination of the electricity from the day-ahead market will 

be made based on historical data and some reasonable assumptions. And then 

regarding the day-ahead electricity as an input for the second stage, the target of the 

second stage is to minimize the energy and operational cost with a centralized 

optimal algorithm.   

Besides the reference mentioned above, reference [44] denotes an optimal control 

strategy considering not only the limited EV driving ranges but also the crew labour 

regulation. The strategy solves the EB and the crew scheduling problem at the same 

time. In reference [45], the authors focus on the EB optimal management and 

reducing the number of battery chargers. The proposed method can reduce both the 

operational cost of EB and the investment in the battery charging infrastructure. 

Differently, reference [46] pays attention to the scheduling of multiple types of EBs 

and the simulation results show that the proposed method can reduce 15.93% of the 

annual total scheduling cost compared with the existing method. 

In addition to EBs, reference [47] focus on the optimisation of allocating the charging 

stations to support electric taxies in large urban areas. Reference [48] demonstrates 

the potential of applying battery swapping to electric taxi and propose a feasible 

validation. Reference [49] shows the control management of the electric refrigerated 

truck. However, industrial/commercial EVs have apparent differences based on their 

different application, and the control strategy designed for a certain type of 
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industrial/commercial EV cannot be directly applied to another type. To achieve the 

‘zero-emission’ target from transportation, transportation electrification will cover 

more areas in addition to public transport. The research on optimal control of the EV 

needs to work on different types of industrial/business EVs.  

2.3. Second life batteries 

Nowadays, the implementation of SLB still faces with several challenges. These 

challenges include: the uncertain economic benefits, lack of automation in battery 

dismantling, the difficulties on accurately identify the SLB’s state of health of remaining 

life and the absence of standards and policies [50]. The most two important challenges 

are the uncertain economic benefits and the accurate estimation of SLB’s state of health 

and remaining life. 

Existing references have compared the differences between the new batteries and SLBs 

in some certain scenarios. Reference [51] presents a project of solar-plus-second-life 

energy storage in California. With a comparison between the new batteries and SLBs, it 

concluded that if the SLBs can be sold less than 60% of their original price, it might be 

profitable in this project. Reference [52] studied the effect of the disassembling costs on 

the application of SLBs. It shows that to increaser the economic benefits of the SLBs 

compared with new batteries, it is important to reduce disassembling costs and the 

repurposing of the whole battery would make sense compared with reusing at module 

level. 

2.3.1. The economic analysis of SLBs 

The battery cost is a major component of the EV cost. The re-use of the retired batteries 

from EVs can benefit both EV owners and the battery processers. For EV owners, selling 
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retired EV batteries for second-life applications can maximize the battery value, 

compared to sending them directly to recycling or landfills. For the battery processer, the 

application of SLBs may reduce the investment and the operational cost. For the 

economic analysis, the most important part is to compare the utilisation of SLBs with the 

utilisation of new batteries in providing the same service. 

For example, in reference [51], the SLBs are used as stationary energy storage coupled 

with a PV system. To make a data-driven analysis, the SLB storage system project is 

compared with another storage system with new batteries. The operating environment 

of the two storage systems is set the same. The degradation of the SLBs is simulated by 

a data-based model and it will predict the capacity fade of SLBs. The SoC range is set 

between 15% to 65% to protect the batteries and the capacity threshold is 60% of its 

original capacity. The simulation results of the two storage systems show that with these 

conditions, the SLB storage system can save the total cost by 40% compared to using 

new batteries. However, the economic analysis is made based on the assumption of the 

costs of the SLBs being 80% of the new one. The ‘80%’ comes from assuming that the 

state of health of the SLBs is 80%. In reality, SLBs have different remaining lives, the 

pricing of SLBs would significantly affect the business feasibility. 

2.3.2. The buying price and the selling price for the SLBs 

Before applying SLBs to further applications, the first problem is to determine suitable 

pricing for the battery processer to buy retired EV batteries. In reference [53], the authors 

introduced the following formula for calculating the price: 

𝑉𝑢𝑠𝑒𝑑 = 𝑉𝑛𝑒𝑤 × 𝑓ℎ𝑒𝑎𝑙𝑡ℎ(1 − 𝑓𝑟𝑒𝑢𝑠𝑒 − 𝑓𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡) (2-7) 
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where 𝑉𝑢𝑠𝑒𝑑 is the buying price of the SLB in the nth year, 𝑉𝑛𝑒𝑤 is the price of the new 

battery whose capacity is the similar value in the nth year, 𝑓ℎ𝑒𝑎𝑙𝑡ℎ is the state of health 

(SOH) of the battery, 𝑓𝑟𝑒𝑢𝑠𝑒  denotes the SLB re-proposing cost and 𝑓𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡  is a 

discount factor to encourage the use of SLB. The SOH is one of the most often used 

parameters to define the potential of the battery. It is a ratio of the measured energy 

capacity of a battery to its nominal capacity, shown in Equation (2-8): 

𝑆𝑂𝐻(%) =
𝑄𝑚
𝑄𝑛

× 100% (2-8) 

where 𝑄𝑚 represents the measured capacity and 𝑄𝑛 is the nominal capacity. Although 

the energy capacity of the SLB is possible to be measured by modern facilities, the 

accuracy of the direct measurement is still limited by several components, such as the 

precision of the instruments. It is essential to develop the prediction of the remaining life 

of the SLB. 

2.3.3. The prediction of the remaining life of the SLBs 

Existing research has made a lot of efforts on improving the accuracy of the prediction 

of the SLB’s state of health (SOH) and remaining life. Reference [54] models battery 

degradations as a Brownian motion. The longer distance a Brownian particle moves, the 

deeper the degradation will be for the battery. A particle filter is used in this model to 

estimate the drift parameter of the Brownian motion. Reference [55] shows a prediction 

model based on a relevance vector machine. To improve the efficiency and accuracy of 

the model, a wavelet denoising approach is used to reduce uncertainties and a mean 

entropy method is employed to choose the optimal embedding dimension. References 

[56] and [57] both advise that deep learning be employed to estimate the capacity and 

predict the SLB lifespan. The difference between the two research papers is that: the 
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first one introduces a combination of the extreme learning machine and broad learning 

to make the prediction, and the second one proposes a full end-to-end deep learning to 

boost the forecast process and reduce the error rate. 

The existing methods for predicting SLBs’ health and remaining life have several 

limitations. The first limitation is about the challenges to achieve these predictions in real-

time operation. It includes: 1) these prediction methods are designed based on modern 

complex intelligent algorithms, the cost of adopting these algorithms is a large burden 

for the battery processers; 2) the relationship between the time efficiency and the 

economy benefits is still uncertain and there is no existing study which has discussed 

about it. For the battery processers, it is difficult to find a balance between the time 

efficiency and the profits. Another kind of limitations are about the real-time SLB states: 

1) each method is suitable for a specific type of battery, not mixed types of SLBs in a 

real-world setting. There is no single method suitable for all SLB types because of the 

different mechanisms of battery degradations; 2) experiments that underpin existing 

references are performed in laboratory conditions with constant environment parameters. 

However, in a real-world setting, environment parameters vary from time to time, 

challenging the validity of the regression models derived from the laboratory experiments. 

With these challenges, it is hard for the battery processer to choose an appropriate 

prediction method for the remaining life of SLBs. 

2.3.4. The existing business model on SLBs. 

There are existing business models for the SLBs. Reference [58] proposes that the EV 

owner can lease new batteries from the manufacturers instead of directly purchasing 

them. The EV owner needs to pay a monthly rent for the new batteries. After the 

retirement of the batteries, the SLBs will be leased to customers who need an energy 
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storage system. With the proposed model, the EV batteries can work for about 15 years 

and the profit rate can reach 35%. Reference [59] shows three different business models 

for SLBs. The first one is that the original equipment manufacturers (OEMs) only sell the 

SLBs to an agent, who can design the SLB applications. The SLB agent helps the SLB 

customers to solve the SLB application problems. The second one is that instead of 

simply selling the SLBs, the OEMs participate in solving the SLB application problems 

with the SLB agent. For the third one, the OEM of the SLBs should take both sell the 

SLBs and deploy them for applications for the customers. Reference [60] introduces an 

SLB business model that is built on a power system equipped with a ‘centralized battery 

swapping management system’ (CBSMS), a smart battery rapid tester, a local load 

management system, a battery bank, and a solar photovoltaic grid integrated/standalone 

system or a mobile unit for battery charging and swapping. In this power system, the 

SLBs serve as an energy storage system that contributes to the EV control and peak 

demand reductions for the grids. 

2.4. Chapter summary 

This chapter performs a comprehensive review of the existing research on the optimal 

control of EVs and SLBs, from both technical and economic perspectives. 

However, there are also gaps existing in solving these two problems. They are concluded 

as follows: 

For the EV charging optimisation, the existing research mainly focuses on domestic EVs. 

There is an absence of studying kinds of industrial/commercial EVs while they are faced 

with the need for transportation electrification, like ASEVs. Furthermore, considering the 

uncertainties existing in the operation nature and the business demand, the scheduling 
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of these EVs is difficult to be made. 

For the SLBs, as mentioned above, the buying price depends on their SOH and 

remaining life. Although a massive number of references have studied the prediction 

methods, in reality, the high investment and operation complexity still block the 

application of these methods.  

To increase the development of EVs, both the EV charging optimisation problems and 

the SLB application problems need to be solved. However, mostly the two problems are 

addressed separately. It might be feasible to apply SLBs to optimally control the 

operation of EVs so that the two problems can be solved at the same time. 

To bridge the above challenges, this thesis, 1) proposes a dynamic model for the control 

of ASEV and designs a customized rollout approach as a near-optimal control method 

for this model in Chapter 3; 2) proposes a monthly-payment-based business model for 

SLBs and provide flexibility services for grids and perform energy arbitrage in Chapter 4; 

3) combine the SLB storage system with EB charging station to enhance the optimisation 

efficiency of the charging station in Chapter 5. 
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This chapter develops a novel dynamic model for the ASEVs and designed a 

customized algorithm based on the rollout approach to solving the EV charging 

optimisation problems. 
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3.1. Chapter overview 

With the target of ‘zero-emission’, transferring traditional diesel vehicles to EVs is 

essential for not only residential customers but also industrial/commercial users. 

However, unlike domestic EVs, industrial/commercial EVs should satisfy business 

demands based on their characteristics, which means a high-usage-frequency operation 

nature. For different types of industrial/commercial EVs, it is necessary to design specific 

control strategies to achieve optimal control considering the different working natures. 

This chapter takes airport service EVs as the research object to achieve energy 

management and guide the charging strategy to reduce the energy generation cost. The 

ASEVs are different from other kinds of industrial/commercial EVs. For example, 

compared with EBs, its departure time depends on the arrival/departure time of flights, 

which are frequently faced with delay or even cancellation. But the EBs have to be 

departed on time according to its time schedule. Compared with electric taxis, the ASEVs 

are mostly adopted centralized control strategies but not distributed control strategies. 

Firstly, this chapter proposes a novel ASEV dynamics model. This model involves both 

the discrete variables, e.g. the state of the ASEVs (charging, idle or work) and continuous 

variables, e.g. the SoC of each ASEV. Furthermore, considering the uncertainties in this 

model, including the number of passengers and the luggage weight, stochastic 

programming is used to model the uncertain ground transport workload. The model 

transfers the ground transport workload uncertainties to ASEV’s working time for each 

flight and adopt related distributions to describe it. To perform the optimal control of the 

ASEVs, a near-optimal control strategy based on the rollout approach is proposed to 

minimize the operational cost, including the energy purchase cost and the battery 

degradation cost, and match the renewable generation. 
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In the case studies, a medium-sized airport is chosen and the simulations are operated 

in a summer month and a winter month. To validate the feasibility of the proposed 

management strategy, a comparison between the benchmark model and the proposed 

dynamics model is shown in the case studies. In this chapter, the benchmark control 

strategy is assumed as the ‘greedy charging’ heuristic algorithm. The simulation results 

denote that on both summer days and winter days, the rollout approach results in a 

reduction of over 10% of the total cost compared with a ‘greedy charging’ strategy. It also 

reflects the related accuracy of the proposed dynamics model of the ASEV and the 

customized rollout approach.  

The rest of the chapter is cited from the author’s submitted article in IEEE Transactions 

on Transportation Electrification. The structure of this chapter is organised in an 

alternative-based format, where the indices, equations, tables, figures and titles are 

numbered independently. 
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3.2. Abstract 

Traditional diesel-based airport service vehicles are characterized by a heavy-duty, high-

usage-frequency nature and a high carbon intensity per vehicle per hour. Transforming 

these vehicles into electric vehicles would reduce CO2 emissions and potentially save 

energy costs in the context of rising fuel prices if proper energy management of airport 

service electric vehicles (ASEVs) is performed. To perform such energy management, 

this thesis proposes a new customized rollout approach, as a near-optimal control 

method for a new ASEV dynamics model, which models the ASEV states, their 

transitions over time, and how to control decisions affect them. The rollout approach 

yields a near-optimal control strategy for the ASEVs to transport luggage and charge 

batteries, with the objective to minimize the operation cost, which incentivizes the 

charging of the ASEVs to match renewable generation. Case studies demonstrate that 

the rollout approach effectively overcomes the “curse of dimensionality” challenge. On 

both typical summer and winter days, the rollout algorithm results in a total cost of 

approximately 10% less than that of the underlying “greedy charging” heuristic, which 

charges a battery whenever its state of charge is not the maximum. The rollout algorithm 

is proven to be adaptive to flight schedule changes at short notice. 

3.3. Introduction 

The transition to electric vehicles (EVs) is vital for fulfilling the target of reducing CO2 

emissions by 80% by 2050 in the UK, relative to the 1990’s level [61]. Much attention 

was devoted to electrifying tens of millions of consumer vehicles. Although they are vast 

in number, they have a relatively low carbon intensity in terms of emission per vehicle 

per hour, because an average consumer vehicle remains dormant in most hours of the 

day and it is of a light-duty nature. Unlike consumer vehicles, airport service vehicles are 
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characterized by a heavy-duty, high-usage-frequency nature, a high carbon intensity per 

vehicle per hour, and a strong correlation with flight patterns. Transforming diesel-based 

airport service vehicle fleets into EVs would dramatically reduce CO2 emissions for this 

carbon-intensive industry. In this context, airport service electric vehicles (ASEVs) 

specifically refer to electric trailers that transport checked luggage between the sorting 

facility in the terminal and departure/arrival flights. The aim of this paper is to develop an 

optimal energy management strategy for the ASEVs in terms of battery charging and 

task assignment.  

Existing research work focuses on consumer EVs and taxis at different locations, e.g. 

households, office buildings, highway service stations, etc. References [24], [62] focus 

on consumer EV charging at commercial buildings. A number of references consider 

domestic EVs as a part of home energy management systems [62], [39], [63], an energy 

hub [42] or a community energy system [40]. A number of references investigate the 

operation of electric vehicle parking lots [64], [41], including airport parking lots [65]. 

References [66], [67] both develop stochastic optimization models for the joint operation 

of EV fleets and renewable generation. Reference [68] develops a balanced charging 

strategy to satisfy both the EV owners (saving costs) and the network operator (relieving 

loads). However, the electrification of heavy-duty, high-usage-frequency, carbon-

intensive commercial/industrial transport is a seriously under-researched area. In 

particular, no research work focuses on the optimal management of ASEVs. Reference 

[69] develops an optimization model to schedule airport ground operations, including 

aircraft and shuttle bus scheduling. Although that reference does not focus on EVs, it 

acknowledges the importance of the optimization of airport ground operations. 

Although existing research has provided many optimal strategies for electric vehicle 

charging, for ASEV, they are not suitable for solving the energy management problem. 

Due to the flights not always arriving on time, the optimal plan is supposed to adjust to 
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the real situation.    

Also, because consumer EVs are owned by many different individuals, their behaviour 

reflects human lifestyles as well as individual random behaviour. However, ASEVs 

demonstrate fundamentally different behaviour as compared to consumer EVs, because 

ASEVs are centrally controlled and their behaviour depends on the flight schedule, the 

number of passengers, and luggage weight. ASEVs constitute a dynamic system of a 

stochastic, dynamic, hybrid nature that is distinct from consumer EVs and not reported 

in the existing literature. The uncertainty in the ground transport workload renders the 

model of a stochastic nature. The existence of both discrete variables (the decision 

variables for individual ASEVs to undertake ground transport tasks, charge, or idle) and 

continuous variables (the battery state of charge) renders the model of a hybrid nature. 

Both types of variables change over time, rendering the model a dynamic nature. It 

should be noted that, although the ASEV dynamics shares a similar stochastic, hybrid, 

and dynamic nature with a stochastic hybrid system (SHS) [70], it is not an SHS, because 

the discrete variables of the ASEV dynamics system do not follow a controlled Markov 

chain.  

There are ASEV suppliers [71], [72], [73], but the optimal control of the ASEVs was an 

unanswered question. For an airport with tens of ASEVs, the dynamic system has a 

prohibitively large number of states (i.e. the “curse of dimensionality”), too large to derive 

an accurate optimal solution to the ASEV control problem. Therefore, two research 

questions arise from the optimal scheduling of ASEVs: 1) the modelling of the ASEVs as 

a distinctive dynamic system of a stochastic dynamic, hybrid nature; and 2) the derivation 

of an optimal control strategy for the dynamic system.  

The optimal control of a dynamic system is related to the stochastic dynamic 

programming [19] in terms of its stochastic and dynamic nature. The rollout algorithm for 
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dynamic programming [74], [75] can be borrowed but it needs to be adapted for the 

optimal control of ASEVs: the underlying heuristic control strategies need to be defined 

and uncertainties need to be properly modelled.  

In summary, the following challenges are identified from the literature survey:  

1) The optimal management of ASEVs considering its uncertainties is still a problem not 

yet investigated.  

2) There is an absence of an ASEV dynamics model, which describes the ASEV states, 

their transitions over time, and how to control decisions affect them. Compared with the 

existing dynamics model, the ASEV model should reflect the uncertainties of the ground 

transport workloads and the flights, which are never discussed before. 

3) There is an absence of an energy management method, which controls the ASEVs to 

meet a low-cost, low-carbon objective, subject to the ASEV dynamics. The existing real-

time control algorithm is mainly consisted of modern artificial intelligent algorithms. 

Considering that the investment and the computational complexity, a customized control 

algorithm needs to be designed for the ASEV dynamics model.   

To bridge the above gaps, this paper makes the following original contributions: 

1) This paper proposes a new ASEV dynamics model. The model involves: i) discrete 

dynamics, i.e. the changes of the ASEV discrete states to “work”, “charge”, or “idle” over 

time; ii) continuous dynamics, i.e. the changes of the battery state of charge (SoC) over 

time; and iii) a stochastic nature of the ground transport workload.  

2) To perform energy management of the ASEVs, this paper proposes a new customized 

rollout approach, as a near-optimal control method for the ASEV dynamics model. The 

approach controls the ASEVs to transport luggage and charge batteries, with the 

objective to minimize the total operation cost. Two customized suboptimal heuristic 
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control strategies are proposed as the base strategies for the rollout approach, which 

then iteratively improves the heuristic control strategies into a near-optimal control 

strategy. The rollout approach effectively overcomes the “curse of dimensionality” 

challenge.  

The energy management of ASEVs through the rollout approach will bring a number of 

benefits: 1) it will save costs for the airport; 2) by matching the ASEV battery charging 

load curve with renewable generation, the control method encourages the ASEVs to 

consume locally generated renewable energy, reduces CO2 emissions, and makes the 

charging load curve friendly to the grid.   

The rest of this paper is organized as follows: Chapter 3.4 gives an overview of the 

methodology; Chapter 3.5 presents the ASEV dynamics model; Chapter 3.6 presents the 

optimal control method for the ASEV dynamics model; Chapter 3.7 performs case studies, 

and Chapter 3.8 concludes the paper. 

3.4. Overview of methodology 

The optimal control of ASEVs aims to minimize the total operation cost, including the 

energy cost and battery degradation cost. Electrical energy comes from two sources: 1) 

energy from the grid under the time of use tariffs, and 2) energy purchased directly from 

local renewable generation. The 2nd energy source has a lower tariff than the 1st source. 

This encourages ASEVs to consume locally generated energy for local balancing.  

The ground transport workload depends on the number of passengers and luggage 

weight for each flight. The uncertainties in the ground transport workload are 

incorporated into the ASEV dynamics model, which models the control decisions, the 

ASEV states and their transitions.  
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As a near-optimal control method for the ASEV dynamics model, the rollout approach 

starts from two suboptimal heuristic control strategies and iteratively improves the better 

one of the two heuristics toward reducing the total operation cost. 

 
  

Fig. 3-1 Flowchart of the models and the optimal control approach 

Fig. 3-1 shows a flowchart consisting of the three components: the stochastic model of 

the ground transport workload, the ASEV dynamics model, and the rollout approach. 

3.5. Problem formulation: ASEV dynamics model 

The ASEV uncertainties are divided into two different parts: the uncertainties of the 

ground transport workloads and the uncertainties of the flights. For the uncertain ground 

transport workloads, the proposed model adopted an appropriate model which is 

explained in Chapter 3.5.1. For the uncertainties of the flights, including the flights 

delaying or cancelling, a Guassian noise is added to the model to reflect the delaying 

time of each flight. 
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3.5.1. Modelling of Uncertain Ground Transport Workload 

Before presenting the ASEV dynamics model, the ground transport workload model is 

presented. Suppose the jth flight is awaiting ground transport service at time t (called 

flight j at time t) because it has landed or is ready to depart. The time required for an 

ASEV to serve this flight is stochastic because: 1) although the airline company knows 

the number of passengers and luggage weight for the flight in question, the information 

may not be shared with the airport. 2) Even if the information were made available to the 

airport, there is random noise in the time required to service the flight. Denote the time 

required for an ASEV to serve flight j at time t as �̃�𝑗𝑡, which follows a truncated normal 

distribution ψ [76]. 

𝜓(𝜇, 𝜎, 𝑎, 𝑏, �̃�𝑗𝑡) =

{
 
 

 
 

0                        if �̃�𝑗𝑡 ≤ 𝑎

∅(𝜇, 𝜎2;  �̃�𝑗𝑡)

Φ(𝜇, 𝜎2; 𝑏) − Φ(𝜇, 𝜎2; 𝑎)
    if 

0                          if �̃�𝑗𝑡 ≥ 𝑏

𝑏 ≤ �̃�𝑗𝑡 ≤ 𝑎 
(3-1) 

where 𝜇  and 𝜎  are the mean and deviation of the “parent” normal distribution, 

respectively. a and b are the upper and lower bounds, respectively. ∅(𝜇, 𝜎2;  𝑥) and 

Φ(𝜇, 𝜎2; 𝑥) are the probability density function and cumulative distribution function, 

respectively, of the “parent” normal distribution with mean 𝜇  and deviation 𝜎 . The 

truncated normal distribution model is justified because: 1) a normal distribution is a 

default choice when there is no detailed knowledge to support alternative complicated 

probability distributions, and 2) �̃�𝑗𝑡 is bounded in reality. 

Suppose that the 24 hours of a day are discretised into 144 stages, starting from Stage 

0 to Stage 143 at an interval of 10 minutes. Let 𝑤𝑗𝑡 denote the discrete number of stages 

(essentially the amount of time) required for an ASEV to serve the jth flight that is awaiting 

service at Stage t. Therefore, 𝑤𝑗𝑡 is a random discrete variable. 
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Now the continuous random variable �̃�𝑗𝑡 is discretized into 𝑤𝑗𝑡: first, divide the time 

range of [𝑏, 𝑎] into m stages at an interval of ∆𝑡 = 10 minutes (assuming that the length 

of [𝑏, 𝑎] is 𝑚∆𝑡). These m stages are represented by m integers from 𝑏/∆𝑡 to 𝑎 ∆𝑡⁄ −

1, therefore, 𝑤𝑗𝑡 ∈ [𝑏 ∆𝑡⁄ , 𝑎 ∆𝑡⁄ − 1] and 𝑤𝑗𝑡 is an integer. Secondly, the probability of 

𝑤𝑗𝑡 taking value k out of the m values is given by 

Prob(𝑤𝑗𝑡 = 𝑘) = Φ(𝜇, 𝜎
2; 𝜌𝑢) − Φ(𝜇, 𝜎

2; 𝜌𝑙) (3-2) 

where Φ is the cumulative distribution function as defined in (3-1). 𝜌𝑢 and 𝜌𝑙 are the 

upper and lower bounds of �̃�𝑗𝑡  within Stage k, respectively. 𝑤𝑗𝑡  is the discretized 

random workload, as explained above. For example, 𝑤𝑗𝑡 ∈ {1, 2, 3, 4}, meaning that the 

ground transport for the jth flight at Stage t requires 10 minutes (𝑤𝑗𝑡 = 1 stage) to 40 

minutes (𝑤𝑗𝑡 = 4 stages) to complete. The probability of 𝑤𝑗𝑡 taking each discrete value 

is given by (2). 𝑤𝑗𝑡 is a critical input for the ASEV dynamics model introduced in Chapter 

3.5.2. 

3.5.2. ASEV dynamics model 

In this chapter, an ASEV dynamics model is presented, which models the control 

decisions, the ASEV states and their transitions over time. The model considers the 

uncertain ground transport workload as modelled in Chapter 3.5.1.  

At any Stage t (time is discretised into stages), the ASEV fleet state 𝑆𝑡 consists of the 

states of all individual ASEVs. 𝑆𝑖𝑡 denotes the state of an ith ASEV at Stage t, given by 

𝑆𝑖𝑡 = [𝑞𝑖𝑡 , 𝑆𝑜𝐶𝑖𝑡 , 𝑓𝑅𝑖𝑡] (3-3) 
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where 𝑞𝑖𝑡 is a discrete state: 𝑞𝑖𝑡 = 1 means that the ith ASEV is charging at Stage t; 

𝑞𝑖𝑡 = 0 means that it is idling; 𝑞𝑖𝑡 < 0 means that it is working (in this paper, “working” 

means undertaking ground transport) and it will take |𝑞𝑖𝑡| stages to complete the work. 

𝑆𝑜𝐶𝑖𝑡, a continuous state, is the state of charge (SoC) of the ith ASEV’s battery at Stage 

t. 𝑓𝑅𝑖𝑡 denotes the battery cycles to failure for the ith ASEV at Stage t. 

 

Fig. 3-2 Overview of the ASEV dynamics model. 

According to Fig 3-2, the optimal control is performed online, i.e. the control decision for 

each Stage t is made when the state 𝑆𝑖𝑡 at Stage t becomes known. 

The energy cost for the ith ASEV at Stage t is given by: 

𝐶𝑖𝑡 = {
𝐶𝑅 ∙ 𝑚𝑎𝑥{𝑞𝑖𝑡 , 0} ∙ 𝐸𝑐        if𝑚𝑎𝑥{𝑞𝑖𝑡 , 0} ∙ 𝐸𝑐 ≤ 𝐸𝑅𝑡
𝐶𝑅𝐸𝑅𝑡 + 𝐶𝐺𝑡(𝑚𝑎𝑥{𝑞𝑖𝑡, 0} ∙ 𝐸𝑐 − 𝐸𝑅𝑡)   otherwise

 (3-4) 

where 𝐶𝑅 denotes the energy price per kWh from renewable generation. 𝐸𝑐  denotes the 

energy consumption (some of the energy is charged to the battery and the rest is lost) 

during each stage. 𝐸𝑐  is a constant given the assumption of the constant battery 

charging power. 𝐶𝐺𝑡 denotes the price per kWh of the grid-supplied energy at Stage t. 

𝐸𝑅𝑡 denotes the available energy generated by renewable generation at Stage t. 𝑞𝑖𝑡 is 

given in (3-3). The “max” term in (3-4) ensures that the energy cost is incurred only when 
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the ASEV is charging. Equation (3-4) is based on the principle that the ASEV fleet gives 

priority to consuming the cheap energy directly purchased from renewable generation 

over consuming the grid-supplied energy. For the 𝐸𝑅𝑡, it is assumed to be accurately 

predicted by a combination of historical data and prediction algorithms and for each time 

stage, it is known to the airport control system. 

The battery degradation cost for the ith ASEV at Stage t is given by 

𝐵𝑖𝑡 = 𝑓(𝑆𝑜𝐶𝑖𝑡, 𝐸𝑤 , 𝑓𝑅𝑖𝑡)     if 𝑞𝑖𝑡 < 0 (3-5) 

where 𝑞𝑖𝑡, 𝑆𝑜𝐶𝑖𝑡 and 𝑓𝑅𝑖𝑡 are given in (3-3). 𝐸𝑤 is the energy discharged during Stage 

t. Function f is the linear function for battery degradation cost during its normal charging-

discharging cycles, with its coefficient derived from [77]. It is the function of the SoC, 

energy discharged during Stage t, and the cycles to failure. If the battery is over-charged 

or deep discharged, some parameters in this function will be changed and the 

degradation cost increases more with the same energy discharged.   

The total cost (including energy and battery degradation costs) for all ASEVs at Stage t 

is given by: 

𝑔𝑡 = ∑(𝐶𝑖𝑡 + 𝐵𝑖𝑡)

𝑁𝐸𝑉

𝑖=1

   𝑡 = 0,1,2… ,𝑁 − 1 (3-6) 

where 𝐶𝑖𝑡 and 𝐵𝑖𝑡 are given in (3-4) and (3-5), respectively. 𝑁𝐸𝑉 is the total number of 

ASEVs.  

Ideally, all ASEV batteries, except for those which is under work state or just finishing 

work, should be charged to full at the end of the day to prepare the ASEVs for ground 

transport the next day. If any battery is not charged to full at the last stage of the day 
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(Stage N), this incurs a terminal stage cost. Also, if a flight needs the ASEV but there is 

no ASEV available, a punishment for the delay is added. In this paper, it is included in 

the terminal stage cost because it is calculated at the end of each day. The terminal stage 

cost is given by 

𝑔𝑁 = ∑𝐶𝐺𝑁𝐵(𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶𝑖𝑁)

𝑁𝐸𝑉

𝑖=1

+ ∑ 𝑇𝑑𝑒𝑙𝑎𝑦𝑖𝐶𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡

𝑁𝑑𝑒𝑙𝑎𝑦

𝑖=1

 (3-7) 

where 𝐶𝐺𝑁  denotes the price per kWh of the grid-supplied energy at Stage N. 𝐵 

denotes the battery energy capacity. 𝑆𝑜𝐶𝑚𝑎𝑥 is the upper bound of the SoC. 𝑁𝐸𝑉 is the 

total number of ASEVs. 𝑆𝑜𝐶𝑖𝑁 denotes the SoC of the ith ASEV at Stage N. 𝑁𝑑𝑒𝑙𝑎𝑦 is 

the total number of times of ASEV delay on the day and 𝑇𝑑𝑒𝑙𝑎𝑦,𝑖 is the duration of the ith 

ASEV delay. 𝐶𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 denotes the punishment cost per time slot. 

The objective of the ASEV optimal control is to minimize the summation of 𝑔𝑡 over all 

stages of the day. 

Min 𝐽 = 𝑔𝑁 + ∑ 𝑔𝑡
𝑁−1
𝑡=0  (3-8) 

where 𝑔
𝑡
 and 𝑔

𝑁
 are given in (3-6) and (3-7), respectively. 

When the SoC of the ith ASEV battery reaches either the upper bound or the lower bound, 

there are two state constraints:  

Case 1: an ASEV i is prevented from switching to work because of a low SoC. 

If 𝑞𝑖𝑡 ≥ 0 and 𝑆𝑜𝐶𝑖𝑡 ≤ 𝑆𝑜𝐶𝑚𝑖𝑛, then 𝑞𝑖𝑡+1 = 𝑢𝑖𝑡 ≥ 0 (3-9) 

where 𝑞𝑖𝑡, 𝑞𝑖𝑡+1, and 𝑆𝑜𝐶𝑖𝑡 are defined in (3-3). 𝑆𝑜𝐶𝑚𝑖𝑛 denotes the lower bound of the 
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SoC. 𝑢𝑖𝑡 is the control decision for ASEV i at Stage t: 𝑢𝑖𝑡 = 1 means “to charge battery”; 

𝑢𝑖𝑡 = 0 means “to idle”; and 𝑢𝑖𝑡 = −1 means “to work (i.e. undertake ground transport)”.  

Case 2: an ASEV i is prevented from battery charging because its SoC has reached the 

upper bound. 

If 𝑞𝑖𝑡 ≥ 0 and 𝑆𝑜𝐶𝑖𝑡 = 𝑆𝑜𝐶𝑚𝑎𝑥, then 𝑞𝑖𝑡+1 = 𝑢𝑖𝑡 ≠ 1  (3-10) 

where 𝑞𝑖𝑡 , 𝑞𝑖𝑡+1 , and 𝑆𝑜𝐶𝑖𝑡  are defined in (3-3). 𝑆𝑜𝐶𝑚𝑎𝑥  is defined in (3-7); 𝑢𝑖𝑡  is 

defined in (3-9).  

When the SoC of the ith ASEV battery is above the lower bound and the ASEV is not 

currently working, a control-based state transition can occur. This is further divided into 

two cases: 

Case 1: the ASEV i is controlled to work.  

  If 𝑆𝑜𝐶𝑚𝑖𝑛 < 𝑆𝑜𝐶𝑖𝑡 and 𝑞𝑖𝑡 ≥ 0 and 𝑢𝑖𝑡 = −1, then 𝑞𝑖𝑡+1 = −𝑤𝑗𝑡 (3-11) 

where 𝑆𝑜𝐶𝑚𝑖𝑛  is defined in (3-9). 𝑞𝑖𝑡 , 𝑞𝑖𝑡+1 , and 𝑆𝑜𝐶𝑖𝑡  are defined in (3-3). 𝑢𝑖𝑡  is 

defined in (3-9). 𝑤𝑗𝑡 denotes the number of stages (the amount of time) required for an 

ASEV to serve the jth flight that is awaiting service at Stage t, as explained in Chapter 

3.5.1. 

When a flight j is awaiting ground transport service at Stage t, it should be served as 

soon as there is at least one free ASEV.  

  If 𝑤𝑗𝑡 > 0 and ∃𝑖: 𝑞𝑖𝑡 ≥ 0 and 𝑆𝑜𝐶𝑖𝑡 > 𝑆𝑜𝐶𝑚𝑖𝑛 + 𝐸𝑤𝑓 ,  (3-12) 
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then ∃𝑖: 𝑞𝑖𝑡+1 = −𝑤𝑗𝑡  and 𝑢𝑖𝑡 = −1 

where 𝐸𝑤𝑓 denotes the energy required for serving this flight and the other variables are 

defined the same as in (3-11). 

If a flight j is awaiting service at Stage t but because no ASEV is available, the service 

for flight j is delayed to Stage t + 1. This translates to: 

  if 𝑤𝑗𝑡 > 0 and ∀𝑖: 𝑞𝑖𝑡 < 0, then 𝑤𝑗𝑡+1 = 𝑤𝑗𝑡  and 𝑑𝑗 ← 𝑑𝑗 + 1    

𝑡 = 0,1,2… ,𝑁 − 1 

(3-13) 

where 𝑤𝑗𝑡 is defined in Chapter 3.5.1. 𝑞𝑖𝑡 is defined in (3-3). 𝑑𝑗 denotes the stages of 

delay. It is initialized to zero.  

A hard constraint exists that the stages of service delay for any flight should be no more 

than a threshold.  

  𝑑𝑗 ≤ 𝑑𝑡ℎ𝑟𝑒 (3-14) 

where 𝑑𝑡ℎ𝑟𝑒 is the threshold of delay; 𝑑𝑗 is defined in (3-13). 

Case 2: the ASEV i is controlled to idle or charge.  

  If 𝑆𝑜𝐶𝑖𝑡 < 𝑆𝑜𝐶𝑚𝑎𝑥 and 𝑞𝑖𝑡 ≥ 0 and 𝑢𝑖𝑡 ≥ 0, then 𝑞𝑖𝑡+1 = 𝑢𝑖𝑡 (3-15) 

where 𝑆𝑜𝐶𝑚𝑎𝑥  is defined in (3-7). 𝑞𝑖𝑡 , 𝑞𝑖𝑡+1 , and 𝑆𝑜𝐶𝑖𝑡  are defined in (3-3). 𝑢𝑖𝑡  is 

defined in (3-9).  

When the ith ASEV is working, its work cannot be interrupted by any control decision. 
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The ASEV will naturally complete the work. This is expressed as 

  If 𝑞𝑖𝑡 ≤ −2, then 𝑞𝑖𝑡+1 = 𝑞𝑖𝑡 + 1 and 𝑢𝑖𝑡 = −1 (3-16) 

 If 𝑞𝑖𝑡 = −1, then 𝑞𝑖𝑡+1 = 0 and 𝑢𝑖𝑡 = 0 (3-17) 

where all variables are defined the same as in (3-12).  

Fig. 3 presents a state transition graph describing the relation among 𝑞𝑖𝑡, 𝑤𝑗𝑡, and 𝑢𝑖𝑡.   

 

Fig. 3-3 State transition graph for the ith ASEV. 

 

In Fig. 3-3, each circle represents a state of the ith ASEV. The value in each circle is 𝑞𝑖𝑡, 

i.e. the discrete state of the ith ASEV at Stage t. Red circles mean that the ith ASEV is 

working. The green and blue circles mean that the ith ASEV is idling and charging, 

respectively. As mentioned above, work cannot be interrupted. Therefore, in Fig. 3-3, the 

state transits naturally from -6 to 0 over time, as described by (3-16) and (3-17). 

For any ASEV i at stage t, the continuous dynamics of its battery SoC depends on its 

-6 -5 -4 -3 -2 -1 0 1
qit=-wjt

wjt

uit=-1 uit=0 uit=1

uit=-1
wjt

uit=-1

wjt is a random discrete variable describing the number of stages 
required to serve flight j. In this example, wjt belongs to the set {3, 4, 
5, 6}, meaning that the ground transport requires at least 15 
minutes (3 stages) and at most 30 minutes (6 stages) to complete.
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control decision 𝑢𝑖𝑡. 

  
𝑆𝑜𝐶𝑖𝑡+1 = {

𝑆𝑜𝐶𝑖𝑡 − 𝐸𝑤                                              if 𝑢𝑖𝑡 = −1

𝑆𝑜𝐶𝑖𝑡 +𝑚𝑖𝑛{𝛾𝐸𝑐 , 𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶𝑖𝑡}   if 𝑢𝑖𝑡 = 1
𝑆𝑜𝐶𝑖𝑡                                                          if 𝑢𝑖𝑡 = 0

    (3-18)   

where 𝑆𝑜𝐶𝑖𝑡 and 𝑆𝑜𝐶𝑖𝑡+1 are defined in (3-3). 𝑢𝑖𝑡 is defined in (3-9). 𝐸𝑤 is defined in 

(3-5). 𝐸𝑐 is the energy consumption during each stage, as defined in (3-4). 𝛾 is the 

efficiency of the battery. 𝛾𝐸𝑐 is therefore the energy charged to the battery during each 

stage.  

With the ASEV dynamics model established, the next step is to determine a sequence 

of control variables 𝑢𝑖𝑡 (defined in (3-9)) for all i (all ASEVs) and for all t (all stages of a 

day), with the objective to minimize the total operation cost (defined in (3-8)). 

3.6. Near-optimal control of the ASEV dynamics model 

Based on the ASEV dynamics model detailed in the last chapter, a rollout approach is 

presented as a near-optimal control method to determine a sequence of control variables 

𝑢𝑖𝑡 for each ASEV at each stage t.  

At each stage t, the optimal cost-to-go function 𝐽𝑡 is defined as the minimum total cost 

from Stage t to Stage 𝑁 − 1 (the last stage of the day) plus the terminal stage cost 𝑔𝑁 

(as given by (3-7)). Because the prohibitively large number of states in the ASEV 

dynamics model cause a combinatorial explosion, it is impossible to calculate the 

accurate cost-to-go function 𝐽𝑡, thus being impossible to develop an accurate optimal 

control strategy for the ASEV dynamics model. A customized rollout approach is 

developed to yield a near-optimal control strategy through approximations. It consists of 

the following steps: 
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Two customized suboptimal heuristic control strategies are developed to approximate 

the cost-to-go function  𝐽𝑚 as 𝐽𝑚, given the starting state 𝑆𝑚 (the ASEV fleet state at 

Stage m). The two heuristics are elaborated as follows: 

Heuristic i): the “renewable matching” heuristic. At each Stage t from Stage m to the last 

stage of the day, control the ASEVs to charge only when is available renewable energy 

as dictated by the renewable generation profile. When a flight is awaiting ground 

transport service, always assign the available ASEV with the greatest SoC to take the 

work. The pseudo-code for heuristic i) is presented in Fig. 3-4.  

Heuristic ii): the “greedy charging” heuristic. Given the starting state 𝑆𝑚 at Stage m, 

control the ASEVs to charge as early as possible until the maximum SoC is reached. 

When a flight is awaiting ground transport service, always let the available ASEV with 

the greatest SoC take the work. The pseudo-code for heuristic ii) is presented in Fig. 3-

5.  

Heuristic i) is not always feasible because, when renewable energy is seriously deficient 

throughout the day, the ASEV batteries all have too low SoC values to undertake the 

“peak” workload of ground transport. If heuristic i) is not feasible from Stage t, then 

heuristic ii) is selected. If both heuristics are feasible from Stage t, the better one (the 

one that leads to a lower 𝐽𝑡) of the two heuristics is selected. The approximate cost-to-

go 𝐽𝑡 for the selected heuristic is recorded for use in Step 2). 
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Fig. 3-4 Pseudo-code for heuristic i), i.e. the “renewable matching” heuristic. 
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Fig. 3-5 Pseudo-code for heuristic ii), i.e. the “greedy charging” heuristic. 

2) Given 𝑆𝑡 (the ASEV fleet state at Stage t) which consists of 𝑆𝑖𝑡 for all ASEVs i, the 

rollout approach generates the set of all possible 𝑆𝑡+1  by enumerating all feasible 

control decisions 𝑢𝑖𝑡  (defined in (3-9)) for Stage t, considering the workload 𝑤𝑗𝑡 

(defined in (3-11)). The approach then selects the “best” 𝑆𝑡+1  that produces the 

minimum approximate cost-to-go among all S𝑡+1  in the set [74]. The mathematical 

expression is  
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𝑆𝑡+1 = argmin𝑆∈𝑁(𝑆𝑡) 𝐽(𝑆) (3-19) 

where 𝑆𝑡 is the state at Stage t. 𝑁(𝑆𝑡) is the set of all possible states at Stage t + 1. 

𝐽(𝑆) is the approximate cost-to-go 𝐽𝑡+1 of the better one of the two heuristics, expressed 

as the function of state 𝑆. The rollout control 𝑢𝑖𝑡  for all ASEVs i is the control that 

corresponds to the transition from 𝑆𝑡 to 𝑆𝑡+1. 

An alternative expression with the same meaning is given by 

𝑢𝑡 = argmin𝑢𝑡∈𝑈𝑡 and 𝑆∈𝑁(𝑆𝑡)
[𝑔𝑡 +  𝐽(𝑆)] (3-20) 

where 𝑢𝑡 is the set of control decisions for all ASEVs i at Stage t, i.e. 𝑢𝑡 = {𝑢𝑖𝑡 for all 𝑖}. 

𝑈𝑡 is the constraint set for 𝑢𝑡 at Stage t. 𝑆𝑡, 𝑁(𝑆𝑡), and 𝐽(𝑆) is defined in (3-19). 𝑔𝑡 is 

defined in (3-6).  

This process iterates until S𝑡, S𝑖𝑡, and 𝑢𝑖𝑡 for all stages t are determined. The sequence 

of 𝑢𝑖𝑡 for all ASEVs i and all stages t constitute a near-optimal control strategy, which 

controls each ASEV to charge, idle, and work at each stage. 

3.7. Case study 

In this chapter, case studies are performed to validate the ASEV dynamics model and 

the customized rollout approach. The case studies are based on Bristol Airport, a 

medium-sized airport in the UK. The flight information, including its scheduled time and 

real-time, is obtained from the Bristol Airport website [78]. Considering the scale of the 

airport, the number of ASEVs is set as 35. The renewable power output profiles for 

summer and winter are obtained from [79] and [80], respectively. The battery charging 

type is fast charging at a constant power of 22 kW [81]. The battery cycle efficiency is 
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90% [82]. To prevent overcharge and deep discharge, the upper and lower threshold of 

SoC of each battery is 20% and 80%. If the SoC of the battery is over 80% or lower than 

20%, the degradation cost will increase significantly. The battery capacity is 50 kWh [83]. 

The case studies consider photovoltaic (PV) generation. The price for PV energy is 

£0.04/kWh. The tariffs of the grid-supplied energy follow a time of use (TOU) tariff system, 

which is shown in Fig. 3-6.   

 

Fig. 3-6 The time of use tariffs in the summer and winter month. 

To validate the algorithm, this chapter performs two sets of simulations. The first set is a 

comparison of the ‘greedy charging’ algorithm and the rollout algorithm in a typical 

summer month. The second set is a comparison between the ‘greedy charging’ algorithm 

and the rollout algorithm in a typical winter month, which corresponds to a substantially 

different PV output profile and TOU tariff from those in the summer month.  
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Fig. 3-7 The PV generation power of the summer and winter month. 

3.7.1. Scenario 1): Comparison between the ‘greedy charging’ 

and the rollout algorithm for a typical sunny month in summer 

One typical month in summer is chosen for the case study. The blue curve in Fig. 3-7 

shows the PV output profile for the month. The workload of serving any given flight is a 

random variable. The random workload model is explained in Chapter 3.4.1. Each flight 

is served by one ASEV.  

The SoC of the ASEVs under the ‘greedy charging’ algorithm is shown in Fig. 3-8 

Compared with the control algorithm, the ‘greedy charging’ algorithm is set as the 

benchmark. The SoC of the ASEVs under the ‘greedy charging’ strategy is shown in Fig. 

3-9. Each colour in the two figures represents an ASEV.  
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Fig. 3-8 The SoC of the ASEVs in the summer month under rollout algorithm. 

 

Fig. 3-9 The SoC of the ASEVs in the summer month under ‘greedy charging’ algorithm. 

The operation costs of ASEVs under the two different algorithms are shown in Fig. 3-10.  
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Fig. 3-10 The cost of Bristol Airport under ‘greedy charging’ and rollout algorithm in the 

summer month. 

When the ‘greedy charging’ algorithm is applied, in the summer month, for every time 

slot, there is no ASEV working beyond the upper bound or under the lower bound of its 

SoC range. It is assumed that there is no punishment for the ASEV's late departure. The 

total cost is £11,871.3 for the airport in the month. The battery degradation cost, energy 

purchase cost and terminal stage cost are about £4,221.3, £7,649.7 and £0 respectively. 

If the rollout algorithm is applied, the total cost in the summer month is £10,673.2 for the 

airport. This is broken down into the battery degradation cost, energy purchase cost, and 

terminal stage cost of £4,668.6, £5,012.1, and £922.4, respectively.  

From the comparison of the ‘greedy charging’ algorithm and the rollout algorithm, it is 

clear that the rollout algorithm incurs a total cost of 10.5% less than that of the ‘greedy 

charging’ algorithm. The battery degradation cost and energy purchase cost of the rollout 

algorithm is 11.1% more than and 51.3% less than those of the ‘greedy charging’ 
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algorithm, respectively. In Fig. 3-8, it is shown that using the rollout algorithm, the ASEV 

battery may have an SoC below the lower bound. This is because the ASEV would be 

charged without considering possible flight delays. However, the rollout algorithm 

achieves a significant saving in the energy purchase cost, compared to the ‘greedy 

charging’ algorithm, because: the ‘greedy charging’ algorithm does not care about the 

electricity price at all but charges the battery whenever the SoC is not at the maximum. 

In contrast, the rollout algorithm takes advantage of both the cheap PV energy and the 

low tariff period of the grid-supplied energy.   

In Fig. 3-8 and Fig. 3-9, the charging-discharging frequency of ‘greedy charging’ is 

greater than that of the rollout algorithm. However, the battery degradation cost under 

the ‘greedy charging’ algorithm is less than that under the rollout algorithm. This is 

because under the ‘greedy charging’ according to Heuristic ii), the average SoC at the 

start of charging is greater than that under the rollout algorithm. In other words, the rollout 

algorithm leads to deeper discharges and thus a greater battery degradation cost than 

the ‘greedy charging’ algorithm. Secondly, as mentioned above, occasionally, the SoC 

of the ASEV under the rollout algorithm drops below the lower threshold, resulting in a 

higher-than-usual degradation cost. The terminal stage cost of ‘greedy charging’ is £0 

because it charges an ASEV battery whenever it is not full and the ASEV is not working, 

regardless of the electricity price. This ensures that the ASEV batteries all have the 

maximum SoC value at the end of the day, resulting in a zero terminal stage cost. In 

contrast, the rollout algorithm only charges the ASEV batteries when the electricity price 

is low. As a result, at the end of the day, not all ASEV batteries are fully charged, causing 

a positive terminal stage cost.  
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3.7.2. Scenario 2): Comparison between ‘greedy charging’ and 

the rollout algorithm for a typical month in winter 

Scenario 1) is a typical month in summer in the UK. Scenario 2) considers a typical month 

in winter in the UK. The flight information is collected from the airport website same as 

the Scenario 1). However, the daytime is significantly different, resulting in a different PV 

generation profile. The red curve in Fig. 3-7 shows the output profile of the PV generation 

in the winter month [80]. The price curve of grid-supplied energy is also different from 

the summer one, which is shown as the blue curve shown in Fig. 3-6.  

The simulation results of SoC of the ASEVs under two different algorithms are shown in 

Fig. 3-11 and Fig. 3-12. The operation costs of ASEVs under the two different algorithms 

are shown in Fig. 13. As same as above, each colour in the two figures represents an 

ASEV. 

 

Fig. 3-11 The SoC of the ASEVs in the winter month under rollout algorithm. 
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Fig. 3-12 The SoC of the ASEVs in the winter month under ‘greedy charging’ algorithm. 

  

Fig. 3-13 The cost of Bristol Airport under ‘greedy charging’ and rollout algorithm in the 

winter month. 

The case study proves that both the rollout algorithm and the ‘greedy charging’ algorithm 

are adaptive towards differing flight schedules. But the total cost under the rollout 
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algorithm is 10.6% less than that under the ‘greedy charging’ algorithm. The comparisons 

of the three cost components (i.e. the battery degradation cost, the energy purchase cost 

and the terminal stage cost) show a similar trend to that in Scenario 1). The rollout 

algorithm yields a battery degradation cost 11.1% greater than that under the ‘greedy 

charging’ algorithm, and an energy purchase cost 51.7% less than that under ‘greedy 

charging’. The ‘greedy charging’ algorithm leads to a zero terminal stage cost, whereas 

the rollout algorithm leads to a terminal stage cost of £992.4. The reason for having such 

a trend is the same as that explained in Scenario 1).  

From the simulation results, considering the total cost, the rollout algorithm may be better 

than the ‘greedy charging’ algorithm. But in future, if the degradation cost increases, the 

‘greedy charging’ algorithm can be set as a possible protection control strategy for the 

ASEVs.  

3.8. Conclusion 

This paper proposes a new dynamics model for airport service electric vehicles (ASEVs) 

and a new customized rollout approach as a near-optimal control method for the ASEV 

dynamics model.  Case studies compare the rollout algorithm and the ‘greedy charging’ 

algorithm (it charges the battery whenever its SoC is not the maximum) for a typical 

summer month and a typical winter month. The two months have very different PV output 

profiles and TOU tariffs. In both cases, the rollout algorithm achieves a lower total cost 

than the ‘greedy charging’ algorithm. This is because the rollout algorithm takes 

advantage of the cheap PV energy as well as the off-peak price of the grid-supplied 

energy. However, the ‘greedy charging’ algorithm can help reduce the degradation cost. 

The battery of the ASEV under the ‘greedy charging’ algorithm may work for a longer 

time than the rollout algorithm. The research outcome will guide the airport to control the 
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ASEV based on the transportation electrification in the airport. It helps the airport better 

save costs and reduce carbon emissions in the context of transport electrification, 

facilitate local consumption as well as the penetration of distributed generation, and 

make the battery-charging load friendly to the grid. 
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This chapter develops a novel business model for SLBs with a monthly payment-

based strategy. In this business model, the SLBs are utilized to perform energy 

arbitrage and provide flexibility services. The case studies validate its feasibility with a 

10-year simulation 
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4.1. Chapter overview 

The UK government has confirmed that the purchase of new petrol and diesel cars will 

be moved in 2030. With the increasing number of EVs, their retired batteries will be on a 

mass scale. When the capacity of the battery is reduced to approximate 70%~80%, it 

has to be retired from the EVs. However, these batteries still have potential in other fewer 

demand applications. These applications are known as second-life applications and 

these retired batteries are called second-life batteries.    

This chapter proposes a monthly payment-based business model for the SLBs. In this 

model, without direct payment to the SLB providers, profits sharing is introduced in this 

model between the battery processer and the SLB providers. If the SLB makes profits, 

the monthly payments to the SLB providers will cease until the SLB reaches its end of 

life. In case the SLB does not make profits, there is no sharing for the providers. With 

the monthly payment strategy, the business model reflects the true value of the SLBs 

and it is not necessary to increase the additional investment in predicting the lifespan of 

the SLBs at the beginning of the second-life applications. In this chapter, the SLB is 

utilized to perform energy arbitrage and provide flexibility services for a DNO to make 

profits. 

To validate the feasibility of the SLB business model, the case studies perform a 10-year 

horizon simulation, considering two different scenarios. The two scenarios represent two 

possible SLB pack replacement modes for the SLB matrix. In the first scenario, the SLB 

packs cannot be replaced but will be removed from the battery matrix when it reaches 

its end of life. In the second scenario, those ‘retired’ SLBs will be replaced by the new 

SLBs with similar parameters. The case study shows the degradation results of the SLBs 

and the profits of the business model in 10 years. In the first scenario, the net present 
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value of the profit in 10 years is £2,648,782 and in the second scenario, the net present 

value of the profit is £3,433,247. The case studies indicate the feasibility of the business 

model from the technical and economic aspects. The proposed monthly-payment 

business model improves the economic and energy efficiency of the EV batteries and 

thus it will increase the development of EVs. 

The rest of the chapter is cited from the author’s submitted article in Energy Power 

System Research. The structure of this chapter is organised in an alternative-based 

format, where the indices, equations, tables, figures and titles are numbered 

independently. 
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4.2. Abstract 

With the rapid increase of electric vehicles (EVs), they will eventually retire on a mass 

scale. However, the pricing of retired EVs depends on the pricing of their batteries. Such 

pricing depends on how the batteries are used in their second lives. The pricing cannot 

be appropriately determined at the beginning of their second lives as a one-off price 

because it is difficult to forecast the lifetime and performance of the second-life batteries 

(SLBs). To reflect the true value of SLBs, this paper develops a new monthly-payment-

based business model, where the SLBs are controlled to both perform energy arbitrage 

and provide flexibility services for the grid. Any profit is shared between the battery 

processer and EV owners on a ‘monthly basis’. The monthly payment to any EV owner 

ceases when its SLB reaches the technical threshold of the end of life – a “wait and see” 

strategy to eliminate the need for forecasting. Numerical simulations reveal the scenarios 

in which this model would make profits, considering stochastic changes in the energy 

arbitrage prices along with a conservative estimation of the long-term income from 

providing flexibility services. 

4.3. Introduction 

With the rapid growth of electric vehicles (EVs), the handling of their retired batteries is 

gaining increasing attention. When customers send their retired gasoline vehicles for 

disposal, they receive a payment (in the UK, this can be a few hundred British Pounds) 

and there is a pricing methodology underlying this. Likewise, when customers send their 

retired EV batteries for disposal, they should receive payments, which depend on the 

true value of the batteries.  

Re-purposing the retired EV batteries for second-life applications is an area that i) 
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attracts growing research attention and industrial trials, supported by increasing 

government funding from the UK and European Union (EU) [84], [85]; ii) minimizes 

environmental impact, promotes circular economy and is part of the long-term 

decarbonization agenda [86]. A proposed EU regulation defines a framework that will 

facilitate second-life batteries (SLBs) as either standalone or grid-connected energy 

storage systems [87]. In light of these, the true value and pricing of retired EV batteries 

that are re-purposed for second life applications depend on the second use process. It 

is difficult to determine a one-off price at the beginning of the second life because it is 

difficult to forecast the remaining life and performance of various types of batteries under 

a time-varying environment. This calls for a methodology to properly price the batteries, 

using an appropriate payment mode, based on the modelling of the second use process. 

A number of references explored a range of second-life battery (SLB) applications. Unlike 

the new batteries, the degradation of SLBs is more rapid and the available energy 

capacity is significantly lower. Thus, the SLBs will only take less-demand applications.  

Reference [88] shows that it is feasible to use SLBs as a stationary energy storage 

system and reference [89] shows the economic potential of adopting SLBs compared 

with new batteries. Reference [90] illustrates that SLB systems can be introduced to the 

electric bus charging station to charge the buses. SLB systems are also deployed to 

provide ancillary services, such as frequency regulation [91], spinning reserve [92], 

demand side response including energy arbitrage [93] [94] [95], rural energy access [96], 

energy management with renewables [97] [98], (including renewable smoothing [99] and 

microgrid energy management [98] [100]), backup power for telecommunication facilities 

[101], etc.  

A number of references focus on estimating the remaining life of SLBs. Reference [102] 

estimates the effective capacity of second-life lithium-ion batteries. References [57], [56] 
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predict the remaining life of SLBs through deep learning. However, existing literature has 

two limitations: 1) those references perform experiments under controlled lab 

environments that have a constant temperature, but a real operation environment varies 

from time to time. 2) Those references focus on specific types of batteries, not applicable 

to SLBs of mixed types that are different from each other. The two limitations prevent the 

extrapolation of those forecast methods to the real case of this paper.  

This paper makes an original contribution by developing a novel business model for 

SLBs. The model is characterized by profit sharing between the battery processer and 

customers through monthly payments from the former to the latter. If there is a profit, the 

monthly payments to any customer cease if its SLB reaches the threshold that indicates 

the end of life. In case the business incurs a loss, there is no sharing, and the model 

reveals the true cost of the SLBs to the battery processer. In this way, the model reflects 

the true value of SLBs, bypassing the difficult task to forecast the SLB lifetime and 

performance at the beginning of the second life. On the technical side, a customized 

heuristic algorithm is developed to control the SLB matrix to both provide a range of 

flexibility services for a distribution network operator (DNO) and perform energy arbitrage. 

In this process, both the energy capacity and terminal voltage degradations are modelled 

to limit the SLB lifetime in a realistic way.  

The rest of this paper is organized as follows: Chapter 4.4 presents an overview of the 

SLB business model; Chapter 4.5 presents the business and technical models for SLBs 

and a method for the calculation of stochastic revenues; Chapter 4.6 performs case 

studies; Chapter 4.7 performs the discussion of the case studies and Chapter 4.8 

concludes the paper. 
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4.4. Overview of methodology 

An overview of the SLB business is presented in Fig. 4-1. 

 

Fig. 4-1 Procedure for battery processing 

In stage 1, when the battery processer receives a retired battery, it does an initial test to 

determine whether the retired battery is suitable for a second use or not. If not, then the 

battery is sent for recycling. At this time, the SLB processer makes an initial payment to 

the EV owner (also the customer) for purchasing the retired battery. The initial payment 

reflects the value of useful materials within the SLB. In stage 2, the processer deploys 

the received SLB pack in the SLB matrix for second use if the initial test gives a positive 

result. Then, the battery processer controls the SLB matrix to both provide flexibility 

services and perform energy arbitrage and shares any profit with the customers every 

month. More specifically, if there is a profit, the battery processer makes monthly 

payments to each customer’s account proportional to the nominal capacity of the 

customer’s SLB pack in service during that month. Stage 2 ends if the SLB pack reaches 
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the end of its second life. In stage 3, the SLBs that reach the end of their second life is 

disassembled for recycling. 

4.5. Methodology 

4.5.1. SLB Pack Model 

SLBs will be repurposed at the pack level to save re-manufacturing costs. For any SLB 

pack 𝑗 that is suitable for second-life applications, its starting energy capacity, 𝐸𝐶𝑗0, is 

modelled by a truncated Gaussian distribution, where subscript 0 denotes the start of the 

second life. The probability density function of 𝐸𝐶𝑗0 is given by 

𝜓(𝜇, 𝜎, 𝐸𝐶𝑚𝑖𝑛, 𝐸𝐶𝑚𝑎𝑥; 𝐸𝐶𝑗0)

=

{
 
 

 
 

0                        if 𝐸𝐶𝑗0 ≤ 𝐸𝐶𝑚𝑖𝑛
0                        if 𝐸𝐶𝑗0 ≥ 𝐸𝐶𝑚𝑎𝑥

∅(𝜇, 𝜎2 ;  𝐸𝐶𝑗0)

𝛷(𝜇, 𝜎2 ; 𝐸𝐶𝑚𝑎𝑥) − 𝛷(𝜇, 𝜎
2 ; 𝑎)

     otherwise                   

            

 

(4-1) 

where 𝜇  and 𝜎  denote the mean and the standard deviation; 𝐸𝐶𝑚𝑖𝑛  and 𝐸𝐶𝑚𝑎𝑥 

denote the lower and upper bounds of 𝐸𝐶𝑗0 , respectively. ∅(𝜇, 𝜎2 ; 𝐸𝐶𝑗0)  and 

Φ(𝜇, 𝜎2 ; 𝑥)  are the probability density function and cumulative distribution function, 

respectively, of the “parent” normal distribution with mean 𝜇 and deviation 𝜎2 . 

The equivalent circuit of an SLB pack is referenced from [103]: 

 

Fig. 4-2 Equivalent Circuit for Battery Pack [103] 

Uoc: the open circuit voltage
UL: the terminal voltage
R0: the internal resistance

Uoc
R0+

-

+

-

UL
IL
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An SLB pack suffers from two degradations [104]: 1) energy capacity degradation and 2) 

terminal voltage degradation (equivalent to an increase of the internal resistance 𝑅0). In 

this chapter, the battery degradation is simplified as a physics model based on the battery 

pack model shown in Fig. 4-2.   

For any SLB j, the 1st degradation is modelled as an energy capacity decrease (kWh) 

per kWh of energy discharged. Such a decrease is denoted as 𝐸𝐶𝑑𝑗, modelled by a 

Gaussian distribution. The mean energy capacity decrease per kWh of energy 

discharged is given by 

𝐸𝐶̅̅̅̅ 𝑑𝑗 =
𝐸𝐶𝑛𝑜𝑚 − 𝐸𝐶𝐸𝑜𝐿

𝑁𝐿𝐶 ∙ 𝐸𝐶𝑛𝑜𝑚 ∙ 𝑆𝑜𝐶𝑚𝑎𝑥(𝜔 + 𝑆𝑜𝐶)
 (4-2) 

where 𝐸𝐶𝑛𝑜𝑚 and 𝐸𝐶𝐸𝑜𝐿 denote the nominal energy capacity and the end-of-second-

life energy capacity, respectively. 𝑁𝐿𝐶 denotes the life cycles. 𝑆𝑜𝐶𝑚𝑎𝑥 and SoC denotes 

the maximum SoC and the current SoC, respectively. 𝜔 is a parameter that is fitted with 

respect to the type of battery. The standard deviation of the Gaussian distribution of 𝐸𝐶𝑑𝑗 

is set as 0.1𝐸𝐶̅̅ ̅̅ 𝑑𝑗. 

A battery's second life ends when its energy capacity deteriorates to a predefined 

threshold 𝐸𝐶𝐸𝑜𝐿. This battery is then sent for recycling. 𝐸𝐶𝐸𝑜𝐿 is the end-of-life capacity: 

𝐸𝐶𝐸𝑜𝐿 = 𝑘𝑟 ∙ 𝐸𝐶𝑛𝑜𝑚 (4-3) 

where 𝑘𝑟 is the predefined threshold percentage. 𝐸𝐶𝑛𝑜𝑚 is the nominal capacity of the 

jth battery pack.  

For any SLB j, the 2nd degradation is modelled as an internal resistance increase (Ω) 
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per kWh of energy discharged, resulting in a terminal voltage decrease. The resistance 

increase is denoted as Δ𝑅 , modelled by a Gaussian Distribution. The mean internal 

resistance increases per kWh of energy discharged are given by 

Δ𝑅̅̅ ̅̅ =
𝑉𝑜𝑐𝑟 − 𝑉𝐸𝑜𝐿

𝐼𝑟 ∙ 𝑁𝐿𝐶 ∙ 𝐸𝐶𝑛𝑜𝑚 ∙ 𝑆𝑂𝐶𝑚𝑎𝑥(𝜔2 + 𝑆𝑂𝐶)
 (4-4) 

where 𝑉𝑜𝑐_𝑟 and 𝑉𝐸𝑜𝐿 denote the rated open-circuit voltage and the end-of-second-life 

terminal voltage, respectively. 𝐼𝑟 is the rated discharge current. 𝜔2 is a parameter that 

is fitted with respect to the type of battery. 𝑁𝐿𝐶, 𝐸𝐶𝑛𝑜𝑚, 𝑆𝑂𝐶𝑚𝑎𝑥 and 𝑆𝑂𝐶 are defined 

in (4-2). 

A battery's second life ends when its internal resistance increases to a predefined 

threshold 𝑅𝐸𝑜𝐿, which is given by 

𝑅𝐸𝑜𝐿 =
𝑉𝑜𝑐𝑟 − 𝑉𝐸𝑜𝐿

𝐼𝑟
 (4-5) 

where 𝑉𝑜𝑐_𝑟, 𝑉𝐸𝑜𝐿, and 𝐼𝑟 are defined in (4-4). 

Both degradations occur simultaneously with the day-to-day operation of the SLB pack. 

The SLB lifetime is determined by whichever degradation first reaches the end-of-life 

threshold. 

Battery calendar ageing is embedded into the degradation models (energy capacity and 

terminal voltage degradations) for simulations. The reason for this integration is that the 

SLBs are not deployed for idling (i.e., not merely suffering calendar ageing) but are under 

constant operations to generate profits. This makes it difficult to single out calendar 

ageing from the overall ageing caused by the energy capacity and terminal voltage 
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degradations. In similar situations, existing references do not single out calendar ageing 

from the overall ageing but embed the former into the latter [105], [99]. 

In Fig. 4-2, the open circuit voltage 𝑉𝑜𝑐 is a function of the SoC: 

𝑉𝑜𝑐 = 𝑉𝑜𝑐𝑟 (1 − 𝛾
𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛
) (4-6) 

where 𝑉𝑜𝑐_𝑟 is the rated open-circuit voltage. 𝛾 is the maximum drop of the open-circuit 

voltage as a percentage of 𝑉𝑜𝑐_𝑟. 𝑆𝑜𝐶𝑚𝑎𝑥, 𝑆𝑜𝐶𝑚𝑖𝑛, and 𝑆𝑜𝐶 denote the maximum 𝑆𝑜𝐶, 

minimum 𝑆𝑜𝐶, and the current 𝑆𝑜𝐶, respectively.  

SLB packs are operated within a predefined 𝑆𝑜𝐶 band: 𝑆𝑜𝐶 ∈ [𝑆𝑜𝐶𝑚𝑖𝑛, 𝑆𝑜𝐶𝑚𝑎𝑥]. Two-

stage charging applies to battery packs. The first stage is constant current charging and 

the second stage is constant voltage charging [106]. In the first stage, the charger for a 

battery pack is equivalent to a current source, of which the current is equal to the rated 

charging current. The charging power is given by 

𝑃𝑐 = 𝑉𝑜𝑐𝐼𝑐 + 𝐼𝑐
2𝑅0 (4-7) 

where 𝑉𝑜𝑐 is the open-circuit voltage given by (4-6). 𝐼𝑐 is the rated charging current. 𝑅0 

is the internal resistance as shown in Fig. 4-2. 

In the second stage, i.e. the constant voltage charging, the charging power is given by 

𝑃𝑐 = 𝑉𝑐
𝑉𝑐 − 𝑉𝑜𝑐
𝑅0

 (4-8) 

where 𝑉𝑐 is the charging voltage. Other variables are defined in (4-7). 
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4.5.2. SLB Matrix Model 

The battery processer has 𝑁𝑏𝑎𝑡𝑡  SLBs that are of different characteristics (energy 

capacities, power capabilities, etc.). These batteries are arranged into an SLB matrix, 

where SLBs in the same row are connected in series and different rows are connected 

in parallel to each other. SLBs with similar discharge currents are clustered into the same 

row, whereas those with different discharge currents are clustered into different rows. 

This is achieved through k-means clustering. Parameter k is determined through the 

knowledge of the types of SLBs. For example, k = 5 if a battery processer can take five 

types of SLBs in terms of the discharge current ratings. Each row of the SLB matrix has 

a switch that controls its on and off status. 

 

Fig. 4-3 Battery matrix structure 

Fig. 4-3 shows the structure of the SLB matrix. In the matrix, voltage stabilizers step 

down high DC voltages (thousands of volts) from the rows to the same low DC voltage, 

which is fed into an inverter (DC/AC) connected to a transformer. The SLB matrix system 

outputs a three-phase AC power to the 11 kV distribution grid. 

VS
Voltage 

stabilizer
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The SLB system can be connected to 11 kV or even 33 kV distribution networks which 

have larger capacities than 415 V networks. Currently, there are mature methodologies 

to determine the network connection fees for pure loads, but not for batteries which 

sometimes act as loads and sometimes as a generation. Therefore, the connection fee 

for batteries is uncertain and is regarded as part of the initial investment. 

The lifetime of the SLB matrix depends on the lifetime of the SLBs. An SLB is removed 

from the matrix for recycling when it reaches the end of its second life. A row of the matrix 

where SLBs are connected in series is out of service when too many SLBs in the row 

have reached the end of second life that the voltage of the row drops below a lower 

threshold. The SLB matrix reaches its end of life when all rows are out of service. 

However, if there are incoming EVs that bring SLBs to replace the dead ones, the SLB 

matrix would be able to run for the long term. 

At any time t, the SLB matrix can be controlled to follow a target discharge power by 

solving the following mixed-integer quadratic optimization model. To keep the 

expressions concise, time t is dropped in the optimization model. 

min(𝑃𝑡𝑎𝑟 − 𝜂𝑑∑𝑥𝑖∑𝑉𝑖𝑗𝐼𝑖
𝑗𝑖

)

2

 

𝑥𝑖 ∈ {0,1} 

(4-9) 

where 𝑃𝑡𝑎𝑟 is the target discharge power; 𝜂𝑑 is the converter efficiency; 𝑥𝑖 is the on-

off status of row i, also the control variable; 𝑉𝑖𝑗 is the voltage of the SLB at row i, column 

j (i.e. SLB ij); 𝐼𝑖 is the discharge current of row i.  

The voltage of SLB ij is given by 
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𝑉𝑖𝑗 = {
𝑉𝑜𝑐𝑖𝑗 − 𝐼𝑖𝑅𝑖𝑗     if 𝑆𝑂𝐶𝑖𝑗 > 𝑆𝑂𝐶𝑚𝑖𝑛

           0             if 𝑆𝑂𝐶𝑖𝑗 ≤ 𝑆𝑂𝐶𝑚𝑖𝑛
 (4-10) 

where 𝑉𝑜𝑐_𝑖𝑗 is the open circuit voltage of SLB ij; 𝑅𝑖𝑗 is the internal resistance of SLB ij. 

Other variables are defined in (4-9) and (4-6). 

At any time t, the discharge current of row i and the total discharge power of the battery 

matrix are given by 

𝐼𝑖 = min𝑗{𝐼𝑖𝑗} (4-11) 

𝑃 =∑∑𝑉𝑖𝑗
𝑗𝑖

𝐼𝑖 (4-12) 

where 𝐼𝑖𝑗 is the rated discharge current of SLB ij. 𝑉𝑖𝑗 is defined in (4-9). 

With respect to charging, each SLB is charged individually. If there is a limit on the total 

charging power for the battery matrix, the battery packs with lower SoC have priority in 

charging. Each SLB is charged using the two-stage charging as explained in Chapter 

4.5.1.   

4.5.3. Flexibility Service Model 

SLBs are controlled to both provide flexibility services and perform energy arbitrage. This 

chapter introduces two types of flexibility services: non-critical flexibility service and 

critical flexibility service.   

The non-critical flexibility service is the provision of demand reduction or generation 

increase (the SLBs serve as a generation) when the network is congested but is not 
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suffering any fault. This is based on the model published by Western Power Distribution 

(WPD), a UK distribution network operator (DNO) [107], whose purpose is to relieve 

overloads for highly loaded distribution substations. For the non-critical flexibility service, 

the battery processer (as the flexibility provider) submits its availability period and flexible 

kW value (i.e. the demand that can be reduced or the generation that can be injected 

into the grid during peak time) to the DNO. Each time when flexibility is required, the 

DNO would notify the battery processer to deliver its flexible kW by specifying the start 

time [107]. The DNO does not specify the end time but will give the battery processer an 

instruction to cease the flexibility service [107].  

The critical flexibility service is the provision of demand reduction or generation increase 

(the SLBs serve as a generation) when the network is suffering a fault. This represents 

an urgent unpredictable need, and hence the DNO does not inform the battery processer 

in advance. When the battery processer receives the notification from the DNO, it needs 

to discharge power to the grid as much as it can throughout the full duration (normally 

less than 30 minutes) in order to support this urgent need of the grid.  

Both types of flexibility service calls are assumed to occur continuously and 

independently at a constant average rate, i.e. following a Poisson point process [108]. 

Therefore, the time interval between two consecutive flexibility calls follows an 

exponential distribution: 

𝑓∆(∆𝑡𝑓𝑠) = {
𝜆Δ𝑒

−𝜆Δ∙∆𝑡𝑓𝑠     𝑖𝑓 ∆𝑡𝑓𝑠 > 0

0     otherwise
 (4-13) 

where 𝜆Δ  denotes the mean rate of flexibility calls. ∆𝑡𝑓𝑠  denotes the time interval 

between two consecutive flexibility calls.  
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When the DNO calls the battery processer for a flexibility service, both the start time of 

the flexibility service and its required duration are modelled by truncated Gaussian 

Distributions, which take the same form as (4-1). 

When the battery processer is providing non-critical flexibility service, it discharges power 

at the contracted flexibility capacity (in kW). Suppose that the contracted flexibility 

capacity is C. A performance factor is defined by the DNO to measure the performance 

of the battery processer, i.e. to what extent the battery processer fulfils the flexibility 

contract [106] [107]. The performance factor is given by 

𝐹 = 𝑔 (
𝑇𝑎
𝑇𝑟
) =

{
 
 

 
 

1    if 𝑇𝑎 𝑇𝑟⁄ ≥ 0.9

0.8   if 0.8 ≤ 𝑇𝑎 𝑇𝑟⁄ < 0.9

0.7   if 0.7 ≤ 𝑇𝑎 𝑇𝑟⁄ < 0.8

0.6   if 0.6 ≤ 𝑇𝑎 𝑇𝑟⁄ < 0.7

0    if 𝑇𝑎 𝑇𝑟⁄ < 0.6

 

 

(4-14) 

where 𝑇𝑎 is the actual duration for which the battery processer delivers flexibility. 𝑇𝑟 is 

the duration required by the DNO for flexibility services. For the non-critical flexibility 

service, the SLB packs are not always able to deliver the contracted flexibility capacity 

C for the required duration 𝑇𝑟, because the flexibility service is called at short notice 

when the total energy available in the SLBs may not be sufficient. Such an 

underperformance compromises the revenue. For the critical flexibility service, the SLB 

matrix discharges the maximum possible power, subject to the transformer capacity limit 

and the available energy, whichever is more constraining.  

The total revenue from providing both types of flexibility services within a month is given 

by 
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𝑅𝑓𝑠 = 𝜌𝑛𝑓 ∑ 𝐶 ∙ 𝑇𝑎,𝑖 ∙ 𝑃𝐹𝑖

𝑁𝑛𝑓𝑠

𝑖=1

+ 𝜌𝑐𝑓∑𝑃𝑏,𝑖 ∙ 𝑇𝑏,𝑖

𝑁𝑐𝑓

𝑖=1

 

 

(4-15) 

where 𝜌𝑛𝑓  is the unit price per kWh of flexible energy delivered for the non-critical 

flexibility service. 𝑁𝑛𝑓𝑠 is the number of non-critical flexibility services within a month. C 

is the contracted flexibility capacity in kW. 𝑇𝑎,𝑖 is the actual duration of the ith time of the 

non-critical flexibility service. 𝑃𝐹𝑖 is the performance factor of the ith time of the flexibility 

service. 𝜌𝑐𝑓 is the unit price per kWh of flexible energy delivered for critical flexibility 

service. 𝑁𝑐𝑓  is the number of critical flexibility services within a month. 𝑃𝑏,𝑖  is the 

delivered power of critical flexibility service in kW. 𝑇𝑏,𝑖 is the actual time interval of the 

ith time of the critical flexibility service.  

Considering the contract between the consumers and the DNO, the flexibility prices 𝜌𝑛𝑓 

and 𝜌𝑐𝑓 (defined in (4-15)) are fixed within the contract period of one year. However, 

after the current contract expires, the prices are likely to change to new values which are 

fixed throughout the next contract period. The absolute flexibility prices over the long 

term are difficult to forecast. In this study, it is assumed that the flexibility prices increase 

each year (i.e. between two consecutive contracts) by an inflation rate of 2%. This 

corresponds to a conservative revenue calculation because future growth of electric 

vehicles and electric heat pumps will increase network congestion and thus possibly 

increase the flexibility prices beyond 2% per annum. 

4.5.4. Heuristic Control and Business Model incorporated in 

Monte Carlo Simulation 

A heuristic algorithm is developed that controls the SLB matrix (detailed in Chapter 4.5.2) 

to both provide flexibility services (detailed in Chapter 4.5.3) and perform energy 
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arbitrage. The heuristic algorithm determines the charge, discharge and idling of the SLB 

matrix. The business model is that any profits from the above activities are shared among 

customers every month, in proportion to their nominal SLB capacity in service in that 

month. Both the heuristic control and the business model are incorporated into a Monte-

Carlo simulation (MCS) framework, which simulates the day-to-day operation of the SLB 

matrix throughout its lifetime. Fig. 4-4 shows the MCS framework with the heuristic 

control and the business model.    

Before performing the MCS, the days when non-critical flexibility services are called, the 

service start time (which is simulated but which the battery processer does not know until 

30 minutes in advance), required durations are sampled by MCS, based on truncated 

Gaussian distributions as explained in called 4.5.3. The days when critical flexibility 

services are called and their start time are also simulated (the battery processer does 

not know them).        

Suppose that the electricity buying and selling prices are known to the battery processer. 

The prices are classified as low, medium, and high prices. In Fig. 4-4, the grey block of 

“Calculate energy surplus” estimates the energy surplus at any time t. The energy 

surplus at time t is given by 

𝑬𝒔,𝒕 ≈ 𝝋∑𝑬𝑪𝒏𝒐𝒎𝒋
∙ (𝑺𝒐𝑪𝒋,𝒕 − 𝑺𝒐𝑪𝒎𝒊𝒏)

𝒋

−∑∑𝑷𝒋,𝒅𝒎𝒂𝒙 ∙

𝒋𝒕

𝚫𝒕 ∙ 𝜹(𝝆𝒕) 

where 𝛿(𝜌𝑡) = {
1    if 𝜌𝑡 ≥ 𝜌𝐻
0    otherwise

 

(4-16) 

Although the degradation is simulated objectively, the actual degree of degradation at 

any time t is unknown to the battery processer. Therefore, an average degradation factor 

𝜑  (0 < 𝜑 < 1 ) is introduced for the battery processer to estimate the degradation. 

𝐸𝐶𝑛𝑜𝑚_𝑗 is the nominal energy capacity of SLB j. 𝑆𝑜𝐶𝑗,𝑡 is the SoC of SLB j at time t. 𝜌𝐻 
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is the threshold for a high electricity price. 𝑃𝑗,𝑑𝑚𝑎𝑥 is the maximum discharge power of 

SLB j.  

In Fig. 4-4, the blue block of “Charge batteries” first determines the total charging power 

that is limited by the transformer capacity. This block then calls the SLB matrix charging 

function as explained in Chapter 4.5.2. In Fig. 4-4, the green block of “Discharge batteries” 

first determines the SLB discharge power, subject to the transformer and converter 

capacities, whichever is lower. It then calls the SLB matrix discharging function as 

explained in Chapter 4.4.2. In Fig. 4-4, the yellow block is detailed in Chapter 4.5.1.   

The revenue from energy arbitrage within a day or a month is given by 

𝑹𝒆𝒂 =∑𝝓(𝑷𝒕) ∙ 𝑷𝒕 ∙ 𝚫𝒕 ∙ 𝝆𝒕

𝑵

𝒕=𝟏

 

where 𝜙(𝑃𝑡) = {
𝜂𝑑       if 𝑃𝑡 ≥ 0
1

𝜂𝑐
     if 𝑃𝑡 < 0

 

 

(4-17) 

In (4-17), N stands for the last time point of the day or month. 𝑃𝑡 is the discharge power 

of the SLB matrix given by (4-12) (discharge is positive and the charge is negative). 𝜌𝑡 

is the electricity price at time t. Δ𝑡 is the time interval. 𝜂𝑑 and 𝜂𝑐 are the discharge and 

charge efficiencies, respectively.  

The costs of SLB degradations are implicitly considered: the degradations lead to a 

limited lifetime of the SLB matrix, thus limiting the total revenue throughout the lifetime. 

The total monthly revenue for the battery processer is given by 

𝑅 = 𝑅𝑓𝑠 + 𝑅𝑒𝑎 (4-18) 
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where 𝑅𝑓𝑠 is given by (4-15) and 𝑅𝑒𝑎 is given by (4-17). 

It should be noted that according to Fig. 4-4, the control algorithm prevents gaming 

between energy arbitrage and flexibility services. In other words, for any flexibility call, 

from when its advance notice is released until the whole process ends, the SLB matrix 

does not charge to avoid aggravating grid congestions. 
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Fig. 4-4 Monte Carlo simulation incorporating heuristic control to assess profitability of 

the monthly-payment-based business model. 

⚫ The monthly-payment-based business model 

The pink block in Fig. 4-4 represents the monthly payment-based business model: the 
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battery processer shares part of the revenue with customers in proportion to each 

customer’s SLB energy contribution by the end of each month. Each customer j receives 

an income 𝑅𝑗 from the battery processer in the month concerned. 

𝑅𝑗 =
𝐸𝐶𝑏𝑗

𝐸𝐶𝑏𝑠𝑢𝑚
(𝑅 − 𝐶𝑐𝑜𝑠𝑡 − 𝑃𝑝𝑟𝑜𝑓𝑖𝑡) =

𝐸𝐶𝑏𝑗

𝐸𝐶𝑏𝑠𝑢𝑚
𝑅 ∙ 𝜋 (4-19) 

where 𝐸𝐶𝑏𝑗 is the energy contribution of customer j’s battery packs that are in service 

at the end of the month. 𝐸𝐶𝑏𝑠𝑢𝑚  denotes the total energy contribution of battery packs in 

service. 𝑅 is given by (18). 𝐶𝑐𝑜𝑠𝑡 denotes the operation and management cost of the 

battery processer. 𝑃𝑝𝑟𝑜𝑓𝑖𝑡 denotes the profit reserved for the battery processer. 𝑅𝑗 = 0 

when customer j’s SLB reaches the end of second life. 𝜋 denotes the percentage of 

revenue that the battery processer shares with all customers. 𝜋  is set to meet two 

requirements: 1) ensure a profitable business for the battery processer; 2) offer 

competitive rewards to customers in competition with other battery processers. 

In this paper, the business model entails a monthly payment to EV owners. 

4.6. Data environment and simulation results 

Case studies are performed on the monthly-payment-based business model alongside 

the heuristic control. 

4.6.1. Input Data 

This chapter presents the input data for case studies. The battery processer has an SLB 

matrix consisting of 2,000 SLBs in 5 rows, with 400 SLBs in each row. The rated open-

circuit voltages of SLBs are 300 V. However, their actual open-circuit voltages are 

different, depending on their degradation and SoC. The charge current of the SLBs is 
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about 0.8C. The range of discharge current ranges from 0.5C to 1C. The efficiency of 

battery charging and discharging is 90%. The internal resistance ranges from 0.9 Ω to 

1.8 Ω and the nominal energy capacity ranges from 15 kWh to 30 kWh. To avoid over-

charging and over-discharging, the SoC of each SLB is controlled between 20% and 80% 

under all circumstances except for when providing critical flexibility services through 

deep discharges. In the latter circumstance, the SoC lower limit is 10%. The electricity 

price provided by the local distribution network is given in Table 4-1. The prices of the 

flexibility services are shown in Table 4-2 [109]. 

Table 4-1 THE ELECTRICITY PRICE OF ONE DAY 

0.00-7.00 7.00-17.00 17.00-22.00 22.00-0.00 

£0.07/kWh £0.11/kWh £0.18/kWh £0.11/kWh 

 

Table 4-2 FIXED PRICE OF FLEXIBILITY SERVICES 

Non-critical 

flexibility* 

Non-critical 

flexibility 

Critical 

flexibility 

£300/MWh £305/MWh £600/MWh 

*The non-critical flexibility corresponds to the “secure” type of flexibility service in [110]. The critical 

flexibility corresponds to the “restore” type of flexibility service in [110].  

The average interval between two non-critical flexibility calls is 3 days. The average 

interval between two critical flexibility calls is 21 days. 

In this paper, the price series of the energy arbitrage is shown in Table III. The maximum 

price is £0.18/kWh and the minimum price is £0.07/kWh. The mean value of the price 

series is about £0.11/kWh and the standard deviation is about £0.04/kWh. 
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4.6.2. Numerical Results 

This chapter presents the revenues from the SLB businesses, including energy arbitrage, 

critical flexibility service and non-critical flexibility service. The simulation is performed 

over a 10-year horizon, considering two scenarios. The simulation is performed on 

MATLAB 2020.   

⚫ Scenario 1): SLB matrix replaced by whole 

Scenario 1) is defined as when any SLB reaches its end of life, it will be removed from 

the SLB matrix without replacement. After the 10-year horizon, the revenues from the 

three services are plotted in Fig. 4-7. The average revenues of the three services (energy 

arbitrage, critical flexibility, and non-critical flexibility) are £5,483.04, £20,459.23 and 

£19,253.28 per month, respectively. The total revenue and the net benefit per month are 

shown in Fig. 4-8. In Fig. 4-7, it is shown that all these revenues decrease over time. 

This is because the capacity of the SLB matrix decreases as increasing SLBs reach the 

end of life. SLBs will reach the end of life because of two reasons: 1) the energy capacity 

drops below the lower threshold; 2) and the terminal voltage drops below the lower 

threshold. The number of the SLBs that die from each of the two reasons is shown in 

Table 4-3. Fig. 4-5 and Fig. 4-6 show the number of SLBs reaching the end of life at a 

constant rate. The maximum rate appears in the 64th month. Fig. 4-9 shows the second 

life energy throughput each year.  

In summary, without replacing dead SLBs, the maximum life of the SLB matrix is 115 

months. In the implementation, considering the operation cost of the business, the SLB 

matrix should be replaced before 115 months. 

 



Chapter 4  Monthly-payment-based business model 

for second-life batteries to provide flexibility services 

84 

 

 

 

Table 4-3 STATES OF SLBS AFTER 10-YEAR OPERATION IN SCENARIO 1 

Number of 

dead SLBs 

because of 

low energy 

capacity 

Number of 

dead SLBs 

because of 

low terminal 

voltage 

Remaining 

SLBs in 

service 

235 1586 179 

 

Fig. 4-5 The number of dying batteries each year in scenario 1. 
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Fig. 4-6 The ‘cumulative function’ of dying batteries in scenario 1. 

 

Fig. 4-7 The revenue of the battery matrix for the three services. 
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Fig. 4-8 The total revenue and the net benefit of the battery matrix. 

 

Fig. 4-9 The SLB energy throughput per year in scenario 1. 

⚫ Scenario 2): SLB matrix replaced by SLB packs 

For Scenario 2), the dying SLBs are replaced by new SLBs on a real-time basis. This is 

to ensure that the SLB matrix can continue with its operation indefinitely. The new SLBs 

are of the same type and have the same nominal parameters as the dying ones. 

The business is also simulated over a 10-year period. The input data, including the 

electricity price curve and the flexibility prices, are as same as in Scenario 1. Fig. 4-10 
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and Fig. 4-11 indicate the distribution of SLB end of life, and Table 4-4 shows the number 

of SLBs dying from insufficient terminal voltage and energy capacity. Fig. 4-14 shows the 

second life total energy throughput each year. Fig. 4-12 shows the revenues from energy 

arbitrage, critical flexibility service and non-critical flexibility service. The average 

revenue from the energy arbitrage service is £8,518.14, while the average revenues per 

month from critical and non-critical flexibility services are £28,217.93 and £27,838.21, 

respectively. Fig. 4-13 shows the total revenue and net profits over time. 

 

Table 4-4 STATES OF SLBS AFTER 10-YEARS OPERATION 

Number of dead SLBs 

because of low energy 

capacity 

Number of dead SLBs 

because of low 

terminal voltage 

1,439 3,246 

 

Fig. 4-10 The number of dying batteries each year in scenario 2. 
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Fig. 4-11 The ‘cumulative function’ of the dying batteries 

 

Fig. 4-12 The revenue of the battery matrix for the three services. 
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Fig. 4-13 The total revenue and the net benefit of the battery matrix. 

 

Fig. 4-14 The SLB energy throughput per year. 

Table 4-5 FINAL PROFIT RESULTS OF SCENARIO 1) AND SCENARIO 2) 

Scenario 1 2 

Net profit (£) 5,423,465 7,735,270 

Present value 

of profit (£) 

2,648,782 3,433,247 

 

In Scenario 1), the direct summation of the revenues over 10 years is £5,423,465, without 

being discounted to the present. On the other hand, given the 10% discount rate, the 

present value of the total revenue over 10 years is £2,648,782. Suppose the battery 

processer pays 20% of the total revenues to EV owners. The business would be 

profitable if the present value of the total cost over 10 years is less than £2,383,904, in 

which case it would correspond to a positive net present value (NPV). In Scenario 2), 

after the 10-year operation, the direct summation of the revenues over 10 years is 

£7,735,270. On the other hand, given the 10% discount rate, the present value of the 

total revenue over 10 years is £3,433,246. Suppose the battery processer pays 20% of 

the total revenues to EV owners. The business would be profitable if the present value 

of the total cost over 10 years is less than £3,089,922, in which case it would correspond 
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to a positive net present value (NPV). 

⚫ SLB degradation curve 

For both scenarios, the degradation curve of the energy capacity and the terminal voltage 

are shown in Fig. 4-15 and Fig. 4-16. 

 

Fig. 4-15 The degradation curve of SLB energy capacity. 

 

Fig. 4-16 The degradation curve of SLB terminal voltage. 
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The two figures choose 200 representative SLBs to demonstrate the degradation of 

energy capacity and terminal voltage. If one SLB is dead, its energy capacity and 

terminal voltage will keep the final value. In Fig. 4-15, the right vertical colour bar 

represents the per cent of the SLB energy capacity out of its nominal capacity. In Fig. 4-

16, the colour bar represents the terminal voltage. 

⚫ Profits for EV owners 

Lastly, the battery processer shares a percentage of the total revenues with EV owners 

as the profits. This percentage depends on a number of factors: market competition, 

regulation, etc. However, the SLB business model is in advance of commercialization. 

Therefore, these factors are unknown and are hard to predict. In this study, three 

scenarios with 5%, 10% and 15% sharing percentages are considered to present the 

profits for EV owners. 

 

Fig. 4-17 The obtained profits for one example EV owner throughout the SLB’s second-

life. 
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Fig. 4-17 presents the obtained profits for one example EV owner throughout the second 

life of the retired battery. In Fig. 4-17, in the 21st month, the monthly profits achieve the 

maximum. However, after the 21st month, the monthly profits reduce by different levels. 

For example, for a 10% sharing percentage, the maximum monthly profits are 

approximately £3.54 in the 21st month, while the monthly profit reduces to zero in the 

115th month. The total profits for the EV owner are approximately £90.67, £181.34 and 

£272.01, respectively, for scenarios with 5%, 10% and 15% sharing percentages 

throughout 10 years. 

4.7. Discussion 
The monthly-payment model essentially adopts a “wait and see” strategy. This model 

has advantages over the existing models where the battery processer offers one-off 

payments to buy back retired EV batteries: The one-off payment model requires SLB 

pricing at the beginning of its second life. Such pricing should reflect the true value of the 

SLB and it requires the forecast of the SLB lifetime and performance. This is a difficult 

task if considering the various types of SLBs and complicated field environment, posing 

serious difficulty to the SLB pricing. Although a number of references forecast battery 

lifetime and performance based on experiments and using data analytics [102] [57] [56], 

or advanced equipment [111], they are limited to specific battery types and are within 

controlled lab environments (including temperature, humidity, etc.). In reality, battery 

ageing occurs because of complex physical and/or chemical mechanisms, which depend 

on the battery type and environment. Therefore, if extrapolating the existing forecasting 

approaches to real scenarios where mixed types of batteries are deployed under different 

operating environments (which probably vary over time), the forecast accuracy is not 

guaranteed and significant errors may arise. What adds to the challenge is the 

replacement of dead SLBs with incoming new SLBs. In the worst case, the careless 
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extrapolation of existing forecast approaches may lead to totally wrong and unusable 

forecast results. On the other hand, the monthly-payment model offers an advantage by 

completely bypassing the difficulty of forecasting. 

In this paper, the battery processer is not a player large enough to directly enter the 

wholesale market for energy arbitrage. Rather, to save transaction costs, the battery 

processer enters into a Power Purchase Agreement (a bilateral contract) with the energy 

supplier, as is an ongoing practice for small-to-medium prosumers to sell energy in the 

UK [112]. This agreement stipulates the purchase and sale prices for electricity and the 

energy supplier effectively acts as an aggregator. Further, there is no flexibility market in 

the UK. Instead, there are bilateral contracts between network operators and flexibility 

suppliers. In this paper, the battery processer as a flexibility supplier enters into a bilateral 

contract with the DNO and this is detailed in Chapter 4.5.3. Both bilateral arrangements 

effectively reduce transaction costs and enable small-to-medium prosumers such as the 

battery processer to participate in the market.  

In this chapter, the innovation of this research is to find a win-win business model for 

both the EV owners and the battery processers. In the monthly-payment business model, 

the total payment for the EV owners consists of two parts: the advance payment which 

will reflect the materials recycling prices and the monthly payment which reflects their 

SLBs’ contribution to the less-demand applications. The month-payment business model 

will improve the energy and economic potential of the SLBs which cannot be directly 

adopted by the EV owners, and help the EV owners make profits to encourage them to 

send their retired batteries for possible second life applications. It is a relatively fair 

business model for both the EV owners and the battery processers. 

It should be noted that the control strategy of the SLB matrix ensures that energy 
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arbitrage does not add to grid congestion. When the distribution network operator calls 

for flexibility to relieve congestions, the SLB matrix control ensures no charging 

throughout the duration of the flexibility call but allows the SLB matrix to either discharge 

(thus helping the grid by meeting local demands with local generation) or idle, regardless 

of what the energy arbitrage prices are at that time. For example, Table. III shows the 

control strategy when a flexibility call comes. During this period, when the advance notice 

of a flexibility call comes at 20.50, the control system determines that the SLB matrix 

would provide the flexibility service and the SLB matrix is controlled to idle during the 

advance notice period. The SLB matrix then discharges during the actual flexibility 

service period. After the flexibility service ends at 21.40, the SLB matrix is then free to 

charge. 

Another example is: when a flexibility call comes, the SLB matrix does not provide the 

full flexibility service because of insufficient energy stored in the SLB matrix. Table IV 

shows the SLB behaviour in this example: the SLB matrix is not allowed to charge during 

the advance notice period (starting from 20.30) of the flexibility call, thus not aggravating 

grid congestions. 2) the requested flexibility service time is from 21.00 to 21.30 when the 

SLB matrix is either discharged or idle. The SLB matrix only charges after the flexibility 

service ends at 21.30.  

Accurate optimization solutions are difficult to obtain because of the combinatorial 

explosion [74]. A heuristic algorithm is a practical, easy-to-implement, cost-saving control 

solution in industrial applications. Adopting the heuristics is likely to be consistent with 

reality. If profit is achieved using realistic heuristics, the profit is also reasonable, not 

overly optimistic, and this would support the profitability of the business model.  The 

control is performed under uncertain flexibility calls in terms of their uncertain time to 

occur. This further adds to the challenge of obtaining accurate optimization solutions. In 
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this case, heuristics effectively tackle the uncertainties, whilst reducing complexity. In the 

area of optimal control, there is a “no free lunch” theory: no approach exists that is 

universally better than others in all cases.  Consequently, there is no guarantee that 

more mathematically complex alternative approaches provide better results than 

heuristics.   

The reasons for the SLB deaths are presented in Table 4-3 and Table 4-4. For both 

Scenarios 1 and 2, most SLBs reach the end of life because of the low terminal voltage. 

The result illustrates that for most SLBs, the terminal voltage determines its lifetime. 

However, for those SLBs whose initial energy capacity is near the lower threshold, they 

would be dead because of low energy capacity. In Scenario 2, the ratio of the two failures 

(low terminal voltage to low energy capacity) is lower than that in Scenario 1. This means 

that in Scenario 2, a greater percentage of SLBs reach the end of life because of low 

energy capacity, compared to that in Scenario 1. 

To minimize the investment and operation costs for the SLB processers, in this paper, 

the existing car dealer launches and incorporates the SLB business into its existing car 

dealing business, using the same physical location and the same financial sheets. This 

business arrangement reduces the costs of SLB handling as well as the labour costs 

because existing members of staff and their expertise can be readily utilized. Further, it 

is a trend that car dealers are planning to deploy more rapid charging infrastructure at 

their sites. Therefore, there is the potential to integrate the rapid charging converters and 

the SLBs converters to further reduce investment costs. 

4.8. Conclusions 

This paper develops a novel business model for SLBs to make benefits for the battery 



Chapter 4  Monthly-payment-based business model 

for second-life batteries to provide flexibility services 

96 

 

processer and EV owners by providing flexibility services and energy arbitrage. The 

study validates the feasibility of the business model through two different scenarios: one 

scenario with incoming SLBs replacing the dead ones and the other scenario without 

incoming SLBs. Several key findings are obtained from the studies: 

1) The monthly-payment business model can make economic benefits for both the 

battery processer and the EV owners. For the first scenario, after 10 years’ operation, 

the benefit of the battery business model is £5,423,465. The present value of profit of the 

SLB business model is £2,648,782, which means that the business model is 

economically feasible. For the second scenario, the 10 years benefit is £7,735,270 and 

the present value of profit is £3,433,247. It means that the business model is also worth 

investing with the dead SLBs replaced.  

2) For both scenarios, the profits mostly come from offering flexibility services rather than 

energy arbitrage. In the first scenario, the profits from the flexibility services account for 

approximately 87.87% of the total profits, while in the second scenario, the profits from 

the flexibility services account for approximately 86.81%.  

3) Both scenarios can be adopted in reality based on the economic potential of the SLB 

business model. The advantage of Scenario 1) is that the SLB matrix can be replaced 

as a whole, without the complication of partially replacing the SLB matrix and making the 

day-to-day operation easy. A limitation of Scenario 1) is: the difficulty of processing the 

new arrivals of SLBs, which will be piled up to form a new SLB matrix for re-use. The 

merit of Scenario 2) is its advantage in processing incoming new SLBs, which replace 

the dead ones from the SLB matrix, respecting the metabolism nature of the business. A 

limitation of Scenario 2), however, is that the performance of the relatively “heathier” new 

SLBs are compromised by the “unhealthier” old ones. 
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4) Although the case studies prove the economic feasibility of the SLB business model, 

it is subject to a steady supply chain of SLBs from retired electric vehicles and a friendly 

regulatory framework. The limitation as well as the risks, however, are the uncertainties 

within the supply chain and future regulatory framework. 
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This chapter develops an EB charging station model with SLB energy storage system. 

In this system, the SLB energy system will support the EB charging and provide 

flexibility services for DNOs.  
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5.1. Chapter overview 

The UK government has announced that the UK will meet the target of net-zero carbon 

emission by 2050. In this process, it is important to replace the petrol and diesel buses 

with electric buses (EBs). To make the penetration of EBs friendly to the network, it is 

necessary to optimally control their charging behaviours. At the same time, as mentioned 

in Chapter 4, the application of SLBs is becoming a highlight in the study of EV 

development. In this chapter, an EB charging station model with an SLB energy storage 

system is proposed and a customized day-ahead scheduling approach is designed to 

solve the optimisation problem. 

In this EB charging model, the main objective is to reduce operational costs. The 

timetable of the EBs is known in advance and all the EBs should depart from the station 

with enough SoC on time. In this model, the arrival time and SoC of each EB are 

unknown and random. To address this problem, a sample average approximation (SAA) 

based stochastic programming is proposed to estimate the arrival time of SoC of each 

EB at any time stage and it is adopted based on the historical data. Besides, the model 

is necessary to satisfy several constraints, including the constraints of the capacity of the 

distribution transformer and the constraints of the continuous charging behaviour. 

For the EB charging model, the SLB energy storage has several contributions: firstly, it 

can reduce the energy purchased cost for the EB charging station. Secondly, by reducing 

the charging demand during the peak time, it will help the DNO manage the peak load 

and reduce the network congestions. Finally, the SLB energy storage system will provide 

flexibility services for the DNO, which will reduce network loading and support the grid.  

Case studies show a comparison of three different control strategies to validate the 
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feasibility of the EB charging model. The results indicate that the day-ahead scheduling 

can reduce 10% of the operational cost compared with the heuristic control strategy; and 

significantly reduce the charging demand during the peak time. The connection of SLB 

energy storage will lead to another 10% reduction compared with the charging station 

without an SLB system. The results of the study will contribute to both the EB charging 

station and the DNOs. 

The rest of the chapter is cited from the author’s submitted article in IEEE Transactions 

on Smart Grid. The structure of this chapter is organised in an alternative-based format, 

where the indices, equations, tables, figures and titles are numbered independently. 
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5.2. Abstract 

Electric buses (EBs) play an important role in transport electrification as a pathway 

toward net-zero carbon emissions. In this paper, an EB charging station model is 

developed with centralized control of EB charging. The control strategy is customized, 

based on day-ahead scheduling, to achieve the objective of minimizing total costs. The 

charging demand is estimated based on the bus timetable and related historical data. To 

improve the performance of the control strategy, a second-life battery (SLB) energy 

storage system is adopted. Further, the SLB system is controlled to provide peak 

demand reduction/generation services (or flexibility in short) for distribution network 

operators (DNOs) to relieve network congestions. Three different control algorithms are 

trailed in the case studies: heuristic control algorithm, ‘day-ahead scheduling’ without 

SLB energy storage and ‘day-ahead scheduling’ with SLB energy storage. Results show 

that compared to the heuristic algorithm, the ‘day-ahead scheduling’ can significantly 

reduce the operational cost and the charging demand during the peak time. The 

connection of SLB can not only reduce operational cost but also improve the fault 

tolerance of the ‘day-ahead’ scheduling and provide contracted flexibility services without 

affecting EB charging. 

5.3. Introduction 

The UK government has set the target to achieve net-zero carbon emissions by 2050 [2]. 

Transport electrification is necessary for achieving this target. Public transportation 

electrification plays an important role in this process. The UK government has 

announced more than £120 million in funding for electric buses (EBs) from 2021 [113]. 

EBs can cause overloads to the grid by consuming large power especially when the grid 

is already supplying peak demand. To make EB charging friendly to the grid and to 
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facilitate EB integration, EB optimal control is needed to save costs while meeting EB’s 

business needs and not overloading the grid. The EB optimal control is a challenge, 

considering various uncertainties including traffic conditions, time of journey and energy 

consumption uncertainties.   

Existing research studied the EB charging strategies from multiple perspectives. 

References [114], [115] suggested that distributed control be applied to EB charging. 

However, references [116], [117] developed central control strategies for EB charging. 

References [118], [119] developed control strategies based on battery swapping. To 

solve the uncertainties in EB operation, various studies modelled the uncertainties within 

traffic conditions. References [120], [121] model uncertain traffic conditions and develop 

solutions that reduce the uncertainties. Reference [122] considers observable variables 

such as time of journal in the modelling of traffic conditions. Reference [123] uses 

historical traffic data to plan the EB routines through a K-shortest routes algorithm. 

The above references mainly focus on addressing the traffic uncertainties in an EB 

setting without storage systems. Introducing an energy storage system is a possible 

solution that can reduce uncertainties. In this paper, considering the number of batteries 

retiring from electric vehicles in future, second-life batteries are regarded as the 

stationary energy storage for an EB charging station. An illustration of the EB charging 

station is shown in Fig. 5-1. 
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Fig. 5-1 The control system of the EB charging station with SLB energy storage. 

The processing of retired EV batteries is gaining increasing research attention. According 

to UK laws, the battery suppliers are required to collect the retired batteries and 

repurpose them for second-life applications, e.g. serving as energy storage for power 

systems. In this paper, an EB operator deploys SLBs to support EB charging as well as 

providing grid services, thus reducing operation costs, relieving grid congestions and 

promoting more sustainable uses of batteries.  

From the existing references, the adoption of SLB can help mitigate environmental 

impact, improve battery energy utilizations and promote life-cycle economics. Compared 

with batteries not having a second life, the SLB energy storage system might be a better 

choice considering its economic benefits [89]. A number of references explored the 

applications of SLBs. Reference [124] shows the SLB application in an electric/thermal 

hybrid energy storage system. Reference [125] focuses on the SLB application in 

microgrids. It is a major type of application for SLBs to provide ancillary services for the 



Chapter 5  Energy management for an electric bus 

charging station with facilitated second-life batteries 

105 

 

grid. These services include frequency regulation [91], spinning reserve [126], demand 

side response [94] and rural energy access [96]. 

A large-scale EV charging coordination requires sufficient computer power and 

information & control technologies (ICTs) to solve the optimal control problem in a timely 

manner with a satisfactory accuracy. For charging stations, it is necessary to model 

various constraints, process accumulated as well as continuously generated data, and 

obtain optimal charging strategies for real-time control. For the EB charging station, the 

bus schedule will be determined in advance and it is necessary to consider its stochastic 

working nature, including its uncertain arrival time as well as energy consumption that 

affect the state of charge (SoC). The requirement for efficient computation is much more 

demanding as compared to the charging stations for other types of EVs. To ensure 

computation efficiency, day-head scheduling is developed in this paper to guide the EB 

charging. A sample average approximation (SAA) method [127] is adopted to model the 

stochastic nature of this optimal control problem. 

The contributions of this paper are summarized as follows: 

This paper proposes a novel EB charging station with the connection of SLB energy 

storage system. The SLB energy storage system will help charge the EB during peak 

time and provide flexibility services to the network. Considering SLB energy storage as 

well as uncertainties, this paper develops a novel optimal control scheme for an EB 

charging station. Day-ahead scheduling with SAA stochastic programming is introduced 

to produce the day-ahead optimal control strategy. In real-time operations, control 

adjustments are made on EBs when the information unfolds with regard to EB arrival 

time and the overall economics of the model is assessed. 

The rest of this paper is organized as follows: Chapter 5.4 shows the overview of the 
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proposed EB charging station model; Chapter 5.5 presents the detailed model of the 

different parts of the EB charging station; Chapter 5.6 presents the optimization problem 

and its related control algorithm; Chapter 5.7 performs the case studies with the real-

world data and Chapter 5.8 concludes the paper. 

5.4. Overview of methodology 

An overview of the EB charging station control methodology is presented in Fig. 5-2. 

 

Fig. 5-2 The overview of the EB charging station control methodology. 

For the control methodology, firstly, the historical data are collected and set as different 

inputs in the optimization problem. Among these different inputs, some of them can be 

directly adopted in the EB charging optimization, e.g. the electricity prices, base load 

consumptions, EB timetable and flexibility requirements. If the inputs belong to stochastic 

variables, such as the EB arrival time and the energy consumption for each travel, 

stochastic programming is utilized to reduce the effects of the uncertainties of these 
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stochastic variables. With these inputs for the day-ahead scheduling, the model can 

make control planning on both the EB and SLB for the coming day. The output of the 

day-ahead scheduling, the real-time management system guides the EB and SLB for 

charging or discharging. Finally, after the real-time operation, the data of EB and SLB 

will be recorded and updated the historical data for the next scheduling. 

5.5. System model 

5.5.1. Electric bus model 

It is assumed that the EB charging is centrally controlled by the EB station operator. 

There are M EBs in total for control every day. For EB i, its working schedule is settled 

in advance, including the number of travels Nt on the day and the departure time of each 

travel. However, the arrival time of each travel, the SoC upon arrival, the time and SoC 

required for serving a trip is uncertain. However, their probability distribution can be 

learned from historical data.  

5.5.2. EB charging model 

The charging mode of the charging station is chosen as fast charging at 220 kW If the 

SoC of the EB battery is far from its upper limit, the charging power is capped at its 

nominal value. When the SoC of the battery is near its upper limit, the charging power is 

reduced to ensure the battery will not be over-charged. This is expressed as: 

𝑆𝑜𝐶𝑖,𝑡 + 𝑃𝑖,𝑡
𝑐ℎ𝑎𝑟 ∗ ∆𝑡 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 (5-1) 
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where 𝑆𝑜𝐶𝑖,𝑡 denotes the SoC of the EB i at time t, 𝑃𝑖,𝑡
𝑐ℎ𝑎𝑟 is the charging power for EB 

i, ∆𝑡 is the charging interval and 𝑆𝑜𝐶𝑚𝑎𝑥 is the upper limit of the SoC. 

Apart from charging from the grid, EBs can also be charged by the SLBs. However, 

considering the SLB degradations, SLBs serve as a secondary charging source for the 

EB. There are two scenarios where an EB would be charged by the SLBs: 1) the EB 

arrives late at the station and charging to a sufficient level is urgently needed for the next 

travel; 2) the EB has to be charged during peak time, reflected by either the peak demand 

experienced by the DNO or the peak electricity price of the day. The SLBs themselves 

are charged from the grid, then discharge to EBs. The charging power for EB i at time t 

is given by: 

𝑃𝑖,𝑡
𝑐ℎ𝑎𝑟 = 𝑃𝑖,𝑡

𝑔𝑟𝑖𝑑
+ 𝑃𝑖,𝑡

𝑆𝐿𝐵 

 

(5-2) 

where  𝑃𝑖,𝑡
𝑔𝑟𝑖𝑑

 and 𝑃𝑖,𝑡
𝑆𝐿𝐵  represents the charging power from the grid and the SLB 

respectively. 

5.5.3. SLB degradation model 

The equivalent circuit of an SLB is shown in Fig. 5-3 [103]. 

 

Fig. 5-3 The equivalent circuit of the SLB. 
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An SLB suffers from two degradations: the degradation of the energy capacity and the 

degradation of the open-circuit voltage. For the energy capacity degradation, it leads to 

decreasing energy capacity with the energy discharged. The process of capacity 

degradation can be approximated as: 

𝐸𝐶̅̅̅̅ 𝑡 =
𝐸𝐶𝑆𝐿𝐵

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − 𝐸𝐶𝑆𝐿𝐵
𝐸𝑜𝐿

𝑁𝐿𝑖𝑓𝑒 ∙ 𝐸𝐶𝑆𝐿𝐵
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ 𝑆𝑜𝐶𝑆𝐿𝐵

𝑚𝑎𝑥(𝑘 + 𝑆𝑜𝐶𝑡
𝑆𝐿𝐵)

 

 

(5-3) 

where 𝐸𝐶𝑆𝐿𝐵
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal energy capacity of SLB, 𝐸𝐶𝑆𝐿𝐵

𝐸𝑜𝐿 is the energy capacity 

when SLB reach its end of life, 𝑁𝐿𝑖𝑓𝑒  denotes the life cycles, 𝑆𝑜𝐶𝑆𝐿𝐵
𝑚𝑎𝑥  and 𝑆𝑜𝐶𝑡

𝑆𝐿𝐵 

represent the maximum SoC and the current SoC at the time stage t of SLB. 𝑘 is a 

constant variable that is determined by the battery type. 

From Fig. 5-3, the degradation of the open-circuit voltage is caused by the increase of 

the internal resistance. The increase in internal resistance, 𝑟𝑆𝐿𝐵,𝑡
𝑖𝑛 , is shown in (5-4): 

𝛥𝑟𝑆𝐿𝐵,𝑡
𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ =

𝑉𝑆𝐿𝐵
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − 𝑉𝑆𝐿𝐵

𝐸𝑜𝐿

𝐼𝑆𝐿𝐵
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ 𝑁𝐿𝑖𝑓𝑒 ∙ 𝐸𝐶𝑆𝐿𝐵

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ 𝑆𝑜𝐶𝑆𝐿𝐵
𝑚𝑎𝑥(𝑘𝑟 + 𝑆𝑜𝐶𝑡

𝑆𝐿𝐵)
 (5-4) 

where 𝐼𝑆𝐿𝐵
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 denotes the nominal discharge current of SLB, 𝑉𝑆𝐿𝐵

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 denotes the 

nominal open-circuit voltage, 𝑉𝑆𝐿𝐵
𝐸𝑜𝐿 denotes the open-circuit voltage when SLB reaches 

its end of life. 𝑘𝑟 is the constant variable of the internal resistance and it is related to the 

battery type. 𝑁𝐿𝑖𝑓𝑒, 𝐸𝐶𝑆𝐿𝐵
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 , 𝑆𝑜𝐶𝑆𝐿𝐵

𝑚𝑎𝑥 and 𝑆𝑜𝐶𝑡
𝑆𝐿𝐵 are defined in (5-3). 

Besides the two degradations mentioned above, there is also calendar ageing, which is 

caused by the self-chemistry reaction with the time going on. In this paper, considering 

the short timeframe of the simulation, the effect of the ageing degradation is not 

considered.  
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5.5.4. Base load power consumption 

Besides the charging for EBs and SLB energy storage, the base load consumption will 

also occupy the power capacity of the distribution transformer. The base load demand 

includes the electricity demands of the charging station, such as the infrastructure, air 

conditioners, heaters and so on. In this paper, the base load power consumption is 

collected from historical data. 

5.5.5. Flexibility services for the network 

In this paper, the SLB is encouraged to provide flexibility services for the distribution grid. 

According to published documents from Western Power Distribution (WPD), a UK 

distribution network operator (DNO), there are three different flexibility services that WPD 

requires: the secure service, the dynamic service and the restore service [109]. The 

secure service aims to reduce the peak demand and achieve the phase balance. It 

occurs frequently and the DNO declares the service demand in advance. The dynamic 

service is to support the grid when specific faults occur, such as the reinforcement work 

during summer. The restore service means to provide power when the network suffers 

from severe faults and the power system needs restoration. In this paper, the SLB is 

controlled to provide secure services. This is because the secure service is more 

frequent than the other two services and the power demand of this service is also more 

flexible. Additionally, the secure service is predictable and the requirements are 

announced to providers one week in advance. Both the dynamic service and the restore 

service are only declared 15 minutes in advance, too short for the EB charging station to 

schedule. 

In this paper, it is assumed that every time a secure flexibility service is provided, the EB 
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charging station delivers constant power for the required duration. The flexibility service 

for each day is given by: 

𝑆𝑖
𝑓𝑙𝑒𝑥

= (𝑇𝑖
𝑓𝑙𝑒𝑥

, 𝑃𝑖
𝑓𝑙𝑒𝑥

, 𝑡𝑖,𝑠𝑡𝑎𝑟𝑡
𝑓𝑙𝑒𝑥

, 𝑡𝑖,𝑒𝑛𝑑
𝑓𝑙𝑒𝑥

) (5-5) 

where 𝑇𝑖
𝑓𝑙𝑒𝑥

 denotes the scheduled time interval of the flexibility service, 𝑡𝑖,𝑠𝑡𝑎𝑟𝑡
𝑓𝑙𝑒𝑥

 and 

𝑡𝑖,𝑒𝑛𝑑
𝑓𝑙𝑒𝑥

 denote the start time and the end time of the flexibility service, 𝑃𝑖
𝑓𝑙𝑒𝑥

 shows the 

delivered power of the flexibility service.  

Although the SLBs can be adopted to provide flexibility service, their priority is to ensure 

EBs depart with sufficient energy, i.e. sufficient SoC levels. Therefore, it is possible that 

the SLBs cannot satisfy the demand for a secure flexibility service. A performance factor, 

𝑃𝐹, is defined to measure the performance of the SLBs. The performance factor is shown 

as: 

𝑃𝐹 = 𝑔(
𝑇𝑖
𝑟𝑒𝑎𝑙

𝑇𝑖
𝑓𝑙𝑒𝑥

) =

{
  
 

  
 1    if 𝑇𝑖

𝑟𝑒𝑎𝑙 𝑇𝑖
𝑓𝑙𝑒𝑥

⁄ ≥ 0.9

0.8   if 0.8 ≤ 𝑇𝑖
𝑟𝑒𝑎𝑙 𝑇𝑖

𝑓𝑙𝑒𝑥
⁄ < 0.9

0.7   if 0.7 ≤ 𝑇𝑖
𝑟𝑒𝑎𝑙 𝑇𝑖

𝑓𝑙𝑒𝑥
⁄ < 0.8

0.6   if 0.6 ≤ 𝑇𝑖
𝑟𝑒𝑎𝑙 𝑇𝑖

𝑓𝑙𝑒𝑥
⁄ < 0.7

0    if 𝑇𝑖
𝑟𝑒𝑎𝑙 𝑇𝑖

𝑓𝑙𝑒𝑥
⁄ < 0.6

 
(5-6) 

where 𝑇𝑟𝑒𝑎𝑙 represents the real-time duration of the SLB providing flexibility service and 

𝑇𝑖
𝑓𝑙𝑒𝑥

  is shown in (5-5). With the insufficient performance factor, the revenue from 

flexibility service will be reduced. 

5.6. Framework Formulation 

This paper proposes day-ahead scheduling for the EB charging. The day-ahead 
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scheduling produces an optimal control strategy that minimizes the expected cost, 

including the energy purchase cost and the SLB degradation cost. Stochastic 

programming is adopted to account for uncertainties in the bus arriving time and the 

arriving SoC of EBs. In the process of day-ahead scheduling, the SLBs help to reduce 

the charging demand during the peak time and provide the secure flexibility service for 

the DNO. During off-peak time and when not providing services for the DNO, the SLBs 

serve as backup power for the EBs if the EB arrives late or with less SoC than predicted 

by the day-ahead scheduling. 

5.6.1. Day-ahead scheduling 

In the day-ahead scheduling, the control variables of the EB 𝑢𝑗,𝑡 are determined. The 

objective of the day-ahead scheduling is to minimize the total operation cost of the EB 

charging station. The objective function of the scheduling is shown in (5-7): 

𝑚𝑖𝑛𝑓1 =∑(𝐶𝑡
𝐸𝐵𝑔𝑟𝑖𝑑

𝑇

𝑡=1

+ 𝐶𝑡
𝑆𝐿𝐵𝑔𝑟𝑖𝑑

+ 𝐶𝑡
𝑆𝐿𝐵𝑑𝑒𝑔

− 𝐵𝑡
𝑓𝑙𝑒𝑥

) 
(5-7) 

where 𝑓1 means the total operational cost for the EB charging station, 𝐶𝑡
𝐸𝐵𝑔𝑟𝑖𝑑

 denotes 

the energy cost of EBs purchased from the grid at time slot t, 𝐶𝑡
𝑆𝐿𝐵𝑔𝑟𝑖𝑑

  denotes the 

energy cost of SLB charging at time slot t, 𝐶𝑡
𝑆𝐿𝐵𝑑𝑒𝑔

 denotes the SLB degradation cost 

at time slot t and 𝐵𝑡
𝑓𝑙𝑒𝑥

 denotes the benefits of providing flexibility service. 

The EB energy cost for the EB and SLB charging at time slot t is given by: 

𝐶𝑡
𝐸𝐵𝑔𝑟𝑖𝑑

=∑(𝑃𝑗,𝑡
𝑔𝑟𝑖𝑑

∗ 𝐸𝑃𝑡
𝑔𝑟𝑖𝑑

𝑁

𝑗=1

∗ ∆𝑡) (5-8) 
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𝐶𝑡
𝑆𝐿𝐵𝑔𝑟𝑖𝑑

= 𝑃𝑆𝐿𝐵,𝑡
𝑔𝑟𝑖𝑑

∗ 𝐸𝑃𝑡
𝑔𝑟𝑖𝑑

∗ ∆𝑡 (5-9) 

where 𝑁 is the total number of charging EBs at stage t, 𝐸𝑃𝑡
𝑔𝑟𝑖𝑑

 denotes the electricity 

price at time slot t, 𝑃𝑆𝐿𝐵,𝑡
𝑔𝑟𝑖𝑑

  denotes the SLB charging power at time slot t, ∆𝑡  is the 

duration of each time slot. 𝑃𝑗,𝑡
𝑔𝑟𝑖𝑑

 is given in (5-2).  

The SLB degradation cost of SLB at stage t is given by: 

𝐶𝑡
𝑆𝐿𝐵𝑑𝑒𝑔

= 𝑓(𝑆𝑜𝐶𝑡
𝑆𝐿𝐵 , 𝐸𝑡

𝑆𝐿𝐵 , 𝐿𝐶𝑡
𝑆𝐿𝐵) (5-10) 

where 𝐸𝑡
𝑆𝐿𝐵 denotes the SLB discharged power at time slot t, 𝐿𝐶𝑡

𝑆𝐿𝐵 denotes, at time t, 

the remaining life cycles until its end-of-life. 𝑆𝑜𝐶𝑡
𝑆𝐿𝐵is given in (5-3). The function 𝑓 is a 

function for the battery degradation cost and the detailed function is given in [22]. 

The profit from providing flexibility services is given by: 

𝐵𝑡
𝑓𝑙𝑒𝑥

=  𝑃𝐹 ∗ 𝑃𝑡
𝑓𝑙𝑒𝑥

∗ ∆𝑡 ∗ 𝐸𝑃𝑡
𝑓𝑙𝑒𝑥

 

 

(5-11) 

where 𝑃𝑡
𝑓𝑙𝑒𝑥

 denotes the delivered power for the flexibility service, 𝐸𝑃𝑡
𝑓𝑙𝑒𝑥

 shows the 

price of the flexibility power. 𝑃𝐹 is defined in (5-6) and ∆𝑡 is given in (5-8). 

To protect the power system and satisfy the business demand, there are several 

constraints that the charging station should meet: 
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⚫ The constraints of the distribution transformer 

The capacity of the distribution transformer of the EB charging station limits the total EB 

charging power from the grid at all time slots t. The base load consumption of the 

charging station should be satisfied as a priority. The constraint of the distribution 

transformer is shown as: 

∑𝑃𝑗,𝑡
𝑔𝑟𝑖𝑑

𝑁

𝑗=1

+ 𝑃𝑆𝐿𝐵,𝑡
𝑔𝑟𝑖𝑑

+ 𝑃𝑡
𝑓𝑙𝑒𝑥

≤ (1 − 𝐴𝑡) ∗ 𝑆𝑇 ∗ 𝜂 (5-12) 

where  𝐴𝑗 denotes the percentage of the power of the base load consumption for the 

distribution transformer at time slot t,  𝑆𝑇 denotes the total capacity of the distribution 

transformer, 𝜂 is the efficiency of the transformer. 𝑃𝑗,𝑡
𝑔𝑟𝑖𝑑

 and 𝑃𝑆𝐿𝐵,𝑡
𝑔𝑟𝑖𝑑

 is given in (5-2) and 

𝑃𝑡
𝑓𝑙𝑒𝑥

 is given in (5-11). 

⚫ The constraints of the chargers 

In the EB charging station, to save the infrastructure investment cost, the number of 

chargers is less than the number of EBs. The constraint of the number of chargers is 

given by: 

∑𝑢𝑗,𝑡

𝑁

𝑗=1

≤ 𝑁𝑝𝑜𝑡 (5-13) 

where  𝑢𝑗,𝑡 denotes the control variable for EB j at time slot t. If 𝑢𝑗,𝑡 = 1, it means that 

EB j is charging at time slot t. If 𝑢𝑗,𝑡 = 0, it means that EB j is under an ‘idle’ state or does 

not park in the charging station at time slot t. 𝑁𝑝𝑜𝑡 is the total number of chargers in the 

EB charging station. 
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⚫ The constraints of the continuous charging behaviour 

To protect the EB batteries and SLB, if an EB starts the charging process, the charging 

behaviour should be kept until the EB battery reaches its target SoC or charging time. 

To express the ‘continuous charging’ constraints, two intermediate variables are 

introduced: 

𝑎𝑗,𝑡 ≥ 𝑢𝑗,𝑡 − 𝑢𝑗,𝑡−1     𝑎𝑗,𝑡𝜖{0, 1} (5-14) 

𝑏𝑗,𝑡 ≥ 𝑢𝑗,𝑡 − 𝑢𝑗,𝑡+1     𝑏𝑗,𝑡𝜖{0, 1} (5-15) 

where t in these two equations for EB j is the time slot when EB j is parking in the charging 

station, 𝑢𝑗,𝑡 is given in (5-13). In (5-13), only if the EB j starts charging at time stage t, 

the value of  𝑎𝑗,𝑡 will be 1. Similarly, in (5-14), only if the EB j finishes charging at time 

𝑡 + 1, the value of  𝑎𝑗,𝑡 will be 1. 

With the two variables 𝑎𝑗,𝑡 and 𝑏𝑗,𝑡, the constraints are given by: 

∑ 𝑎𝑗,𝑡

𝑇𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

𝑡=𝑇𝑎𝑟𝑟𝑖𝑣𝑒

= ∑ 𝑏𝑗,𝑡

𝑇𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

𝑡=𝑇𝑎𝑟𝑟𝑖𝑣𝑒

≤ 𝑛 (5-16) 

In this equation, for EB j, t is the time slot during its waiting time at the charging station. 

𝑇𝑎𝑟𝑟𝑖𝑣𝑒 is its arrival time and 𝑇𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 is its scheduled departure time. This equation 

represents that for EB j during its parking time, it can be charged for n times.  

⚫ The constraints of working 

The EB cannot be charged during its working time. The constraints are given by: 
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𝒖𝒋,𝒕 = 𝟎       𝒕 ∈ (𝑻𝒎
𝒅𝒆𝒑𝒂𝒓𝒕𝒖𝒓𝒆

, 𝑻𝒎
𝒂𝒓𝒓𝒊𝒗𝒆) 

𝑚 = 1, 2,…𝑀 

(5-17) 

where 𝑚 denotes the mth travel for EB j,  𝑇𝑚
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

 denotes the scheduled departure 

time and 𝑇𝑚
𝑎𝑟𝑟𝑖𝑣𝑒 denotes the expected arrival time. M is the number of travels that EB j 

should take on a certain day. 

⚫ The constraints of SoC 

There are two types of constraints for the SoC of EB and SLB. To avoid overcharging or 

discharging and protect the batteries, the SoC of both the EB and SLB is limited to a 

certain range, which is given by: 

𝑺𝒐𝑪𝒎𝒊𝒏
𝑬𝑩 ≤ 𝑺𝒐𝑪𝒋,𝒕

𝑬𝑩 ≤ 𝑺𝒐𝑪𝒎𝒂𝒙
𝑬𝑩  

(5-18) 

𝑺𝒐𝑪𝒎𝒊𝒏
𝑺𝑳𝑩 ≤ 𝑺𝒐𝑪𝒕

𝑺𝑳𝑩 ≤ 𝑺𝒐𝑪𝒎𝒂𝒙
𝑺𝑳𝑩  (5-19) 

where 𝑆𝑜𝐶𝑗,𝑡
𝐸𝐵 denotes the SoC of EB j at time slot t, 𝑆𝑜𝐶𝑚𝑖𝑛

𝐸𝐵  denotes the minimum value 

of the EB and 𝑆𝑜𝐶𝑚𝑎𝑥
𝐸𝐵  denotes its maximum value. 𝑆𝑜𝐶𝑚𝑖𝑛

𝑆𝐿𝐵 is the lower threshold of the 

SLB and 𝑆𝑜𝐶𝑡
𝑆𝐿𝐵 and 𝑆𝑜𝐶𝑚𝑎𝑥

𝑆𝐿𝐵  are given in (5-3). 

To ensure the constraints of the SoC range and the demand of travelling, the EB should 

satisfy SoC constraints when reaching the departure time. The SoC constraints of EB 

battery is described as: 

𝑺𝒐𝑪𝒋,𝒕
𝑬𝑩 ≥ 𝑺𝒐𝑪𝒎𝒊𝒏

𝑬𝑩 + ∆𝑺𝒐𝑪𝒆𝒙𝒑,𝒕
𝑬𝑩     𝒊𝒇 𝒕 = 𝑻𝒎

𝒅𝒆𝒑𝒂𝒓𝒕𝒖𝒓𝒆 
(5-20) 
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𝑚 = 1, 2,…𝑀 

where ∆𝑆𝑜𝐶𝑒𝑥𝑝,𝑡
𝐸𝐵   denotes the expected SoC reduction for a trip at time t. The SoC 

reduction is a stochastic variable and the stochastic programming will be shown in 

Chapter 5.6.2 in detail. 

⚫ SLB power constraints 

In the EB charging station, the SLBs serve as both the stationary energy storage and the 

flexibility service provider. The total output power is limited by: 

∑𝑃𝑗,𝑡
𝑆𝐿𝐵

𝑁

𝑗=1

+ 𝑃𝑡
𝑓𝑙𝑒𝑥

≤ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟,𝑚𝑎𝑥
𝑆𝐿𝐵  (5-21) 

where 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟,𝑚𝑎𝑥
𝑆𝐿𝐵  denotes the maximum discharging power of the SLB. 𝑃𝑗,𝑡

𝑆𝐿𝐵, 𝑃𝑡
𝑓𝑙𝑒𝑥

 

and 𝑁 are given in (5-2), (5-11).   

Similarly, the charging power of SLB is limited by: 

𝑃𝑆𝐿𝐵,𝑡
𝑔𝑟𝑖𝑑

< 𝑃𝑐ℎ𝑎𝑟,𝑚𝑎𝑥
𝑆𝐿𝐵  (5-22) 

where 𝑃𝑐ℎ𝑎𝑟,𝑚𝑎𝑥
𝑆𝐿𝐵  denotes the maximum charging power of SLB and 𝑃𝑆𝐿𝐵,𝑡

𝑔𝑟𝑖𝑑
 is given in (5-

2).  

⚫ Energy balance constraints 

In this system, the total charging power of one day should be balanced with the total 

energy consumption, including both the EBs and the SLB. It is given by: 



Chapter 5  Energy management for an electric bus 

charging station with facilitated second-life batteries 

118 

 

∑∑(𝑃𝑗,𝑡
𝑔𝑟𝑖𝑑

∗ ∆𝑡)

𝑁

𝑗=1

𝑇

𝑡=1

+∑(𝑃𝑆𝐿𝐵,𝑡
𝑔𝑟𝑖𝑑

∗ ∆𝑡)

𝑇

𝑡=1

=

∑∑(𝑃𝑗,𝑡
𝑆𝐿𝐵 ∗ ∆𝑡)

𝑁

𝑗=1

𝑇

𝑡=1

+∑(𝑃𝑡
𝑓𝑙𝑒𝑥

∗ ∆𝑡)

𝑇

𝑡=1

+∑∑(𝑃𝑗,𝑡
𝑡𝑟𝑎𝑣𝑒𝑙 ∗ ∆𝑡)

𝑁

𝑗=1

𝑇

𝑡=1

 (5-23) 

where 𝑃𝑗,𝑡
𝑡𝑟𝑎𝑣𝑒𝑙 denotes the energy consumption per hour for EB j at time slot t. 𝑃𝑗,𝑡

𝑔𝑟𝑖𝑑
, 

𝑃𝑆𝐿𝐵,𝑡
𝑔𝑟𝑖𝑑

, 𝑃𝑗,𝑡
𝑆𝐿𝐵, 𝑃𝑡

𝑓𝑙𝑒𝑥
, and 𝑃𝑗,𝑡

𝑡𝑟𝑎𝑣𝑒𝑙 are given by (5-2), (5-11). 

⚫ EB charging power constraints 

For the EBs, although the SLB storage system can help increase the charging power at 

some special time, the total charging power from the grid and the SLB energy storage 

cannot be more than its maximum charging power. It is given by: 

𝑃𝑗,𝑡
𝑔𝑟𝑖𝑑

+ 𝑃𝑗,𝑡
𝑆𝐿𝐵 < 𝑃𝑗

𝑚𝑎𝑥 (5-24) 

where 𝑃𝑗
𝑚𝑎𝑥 denotes the maximum charging power for EB j, 𝑃𝑗,𝑡

𝑔𝑟𝑖𝑑
 𝑃𝑗,𝑡

𝑆𝐿𝐵 are given by 

(5-2) 

5.6.2. Sample average approximation based stochastic 

programming 

In this model, for the stochastic variables including the time for each travel and the 

reduction of SoC after each travel, a stochastic programming is introduced to find the 

solutions with the distribution of historical data. However, with a large number of EB fleets 

and different travel routes, it is difficult to calculate all the possible scenarios. In this paper, 
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the SAA based stochastic programming is adopted to reduce the scenarios. 

For the variables, the time interval of each travel 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 and the consumption of SoC 

𝑆𝑜𝐶𝑡𝑟𝑎𝑣𝑒𝑙, firstly, the 24 hours of one day are divided into three different types: the peak 

time, the off-peak time and the midnight. It is according to the historical EB energy data 

and traffic data. The time interval of one day is shown in Fig. 5-4. 

 

Fig. 5-4 The different time intervals of one day. 

To further reduce the complexity, during the different time intervals, the distribution of the 

time and energy consumption, 𝜓𝑗,𝑡
𝑡𝑖𝑚𝑒 and 𝜓𝑗,𝑡

𝑆𝑜𝐶 are obtained from the historical data. In 

this paper, Monte Carlo Sampling is utilized to obtain the samples for SAA. In each 

sample scenario, the stochastic variables, 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 and 𝑆𝑜𝐶𝑡𝑟𝑎𝑣𝑒𝑙, are calculated based 

on their distributions 𝜓𝑗,𝑡
𝑡𝑖𝑚𝑒 and 𝜓𝑗,𝑡

𝑆𝑜𝐶, respectively. 

5.7. Case studies 

In this chapter, the performance of the EB charging station with SLB and the customized 

control strategy is evaluated with the practical data. The calculation algorithm in this 

model is designed based on a mixed-integer linear programming. The control 

optimization problem is modelled in Matlab 2021a and solved by the IBM ILOG CPLEX 

Optimizer. 

The case studies are based on a medium-sized bus charging station in the UK. This 

station serves two different bus routes: the first one is a 24-hour bus service and the 
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other bus service starts from 7 am and ends at 7.45 pm on weekdays. The first bus 

service is called U1 and the second bus service is 22 in Bath, the UK. The detailed 

information, including the bus timetable, the historical data of the bus is obtained from 

the bus aggregator, First Bus company. Considering that for each day, 20 U1 buses and 

8 22 buses are controlled to work. The type of the bus is all BYD K9 [128] and the battery 

capacity of each bus is 324 kWh. The average power consumption for the bus is 1.3 

kWh/km. The upper and lower threshold of SoC for the EB batteries is set as 0.8 and 0.2 

respectively. In the bus charging station, the base load consumption is shown in Fig. 5-

5 and the capacity of the distribution transformer is assumed as 4000 KVA. The number 

of chargers in the charging station is 8 and its nominal power output is 200 kW, following 

the fast-charging mode. The tariff of the electricity is a three-level tariff system and it is 

shown in Fig. 5-6. From the historical data, for a certain day, the midnight is from 0 am 

to 7 am, the peak time is from 7 am to 10am and 5.30 pm to 7.30 pm, and the off-peak 

time is from 10 am to 5.30 pm and from 7.30pm to the end of the day. The duration of 

each time slot is set as 5 minutes. 

 

Fig. 5-5 The base load power consumption of the charging station. 
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Fig. 5-6. The electricity price in one day. 

For the SLB energy storage in this system, the capacity of the SLB storage is assumed 

as 1000 kWh. The maximum input power and output power is assumed as 200 kW and 

220 kW. To protect the SLB from deep charging or discharging, the maximum SoC is 

assumed as 0.8 and the minimum SoC is assumed as 0.2. The efficiency of the battery 

charging and discharging to the grid is 0.9. The efficiency of the power from SLB to the 

EBs is assumed as 0.85. From the WPD flexibility service introduction [103], the fixed 

price of the secure flexibility service is £300/MWh. The requirements of the flexibility 

service for the coming day include: the required time duration is from 7.10 pm to 8.05 

pm, the required delivered power is 110 kW. 

To validate the feasibility of the proposed EB charging model, a comparison is taken 

between three different scenarios. In the first scenario, the EB charging station is 

operated based on a ‘greedy charging’ mode. The ‘greedy charging’ is to charge the EB 

as soon as its SoC does not reach the upper threshold. In this mode, the EB charging 

station is not equipped with SLB energy storage and the other limits of the EB and the 

charging station should also be satisfied. 

In the second scenario, the EB charging station is not equipped with SLB storage. But 

the charging strategy will still follow the day-ahead scheduling model. The objective 
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function of the optimization and the constraints are all the same as given before. The 

third scenario is the EB charging station with an SLB storage system. 

To better compared with the three scenarios, for the three scenarios, the EBs of route 22 

should be fully charged after finishing the whole day’s work. For the U1 EBs, those who 

do not work at midnight should be charged to satisfy the next day’s work. In Scenario 3, 

the SLB should be fully charged at the end of the day. 

5.7.1. Scenario 1): the ‘greedy charging’ strategy for the EB 

charging station 

As mentioned above, in Scenario 1, a ‘greedy charging’ charging algorithm is adopted 

for the EB charging. The simulation is taken on a weekday.  

In this scenario, all of the charging power is from the grid supply. The power output for 

EB charging is shown in Fig. 5-7 and the number of charging EBs at each time slot is 

shown in Fig. 5-8. 

From Fig. 5-7, the average power output at the midnight is 100.91 kW, the average power 

output of the first peak time is 522.27 kW and for the second peak time, it is 838.267 kW. 

For two off-peak times, the average power output is 777.32 kW and 649.19 kW 

respectively. From Fig. 5-8, with the 8 chargers for the EB charging station, there are 6 

time slots when all the chargers are charging EBs, 3 in the peak time and 3 in the off-

peak time. 
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Fig. 5-7 The power of the EB charging station for charging services under ‘greedy 

charging’ algorithm. 

 

Fig. 5-8. The number of charging EBs on the day with ‘greedy charging’ algorithm. 

 

Fig. 5-9 The SoC of the EBs on the day under ‘greedy charging’ algorithm. 
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In Fig. 5-9, the SoC of the EBs under the ‘greedy charging’ algorithm is shown. The 

minimum SoC during the day is 0.47, which is much higher than the SoC lower limit. The 

trend of the SoC directly reflects the bus timetable at different time intervals. At the end 

of the day, except for the EBs which is in the travel, almost every EB is fully charged. 

5.7.2. Scenario 2): the optimal control strategy for the EB 

charging station without SLB storage 

For scenario 2, the control strategy is partly adopted the day-ahead scheduling. The 

difference is that there is no SLB energy storage. The chosen weekday is the same as 

that in scenario 1. The simulation results are shown below: 

Fig. 5-10 and Fig. 5-11 show the power for EB charging and the number of charging EBs 

on the chosen day. In Fig. 5-10, the average charging power at the two peak time is 

131.43 kW and 91.43 kW, while the average charging power at the two off-peak time is 

677.65 kW and 1437.74 kW. From Fig. 5-11, the average number of charging EBs at the 

peak time is 0.5 and at the off-peak time, the average number is 5.3. There are 73 stages 

when there are 8 EBs are being charged. All of them is at the peak time and 30 of them 

is at the first peak time and 43 is during the second peak time. 

Fig. 5-12. demonstrates the SoC of the EBs under the day-ahead scheduling without 

SLB energy storage. It shows that the SoC of the EB ranges from 0.21 to 0.8, which is 

more than that under the ‘greedy charging’ strategy. Furthermore, except for the 

beginning and the end of the day, the EBs is possible to be fully charged only during the 

first off-peak time, from 2.55 pm to 4.10 pm. Different from the EB SoC under ‘greedy 

charging’ in Fig. 5-9, the trend of the EB SoC reflects the different levels of the electricity 

price. 
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Fig. 5-10. The EB charging power under ‘day-ahead scheduling’ without SLB energy 

storage 

 

Fig. 5-11 The number of charging EBs under day-ahead scheduling without SLB energy 

storage. 
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Fig. 5-12 The SoC of the EBs under day-ahead scheduling without SLB energy storage 

5.7.3. Scenario 3): the optimal control strategy for the EB 

charging station with an SLB storage system 

In the third scenario, the EB charging station adopts the ‘day-ahead’ scheduling and it is 

equipped with SLB energy storage. It is simulated on the same day as scenario 1 and 

scenario 2. The simulation results are shown as follows: 

Fig. 5-13 and Fig. 5-14 show the charging power from the grid and the number of 

charging EBs at each time slot. Fig. 15 illustrates the change in EBs’ SoC. In Fig. 5-13, 

the average charging power from the grid is 172.22 kW, 654.76 kW, 126.32 kW and 

1090.57 kW at the two peak-time intervals and the two off-peak time intervals 

respectively. The number of charging EBs at the four different time intervals are 0.9, 3.3, 

0.5 and 5.6. However, in this scenario, the EB can also be charged from the SLB energy 

storage. The charging power from the energy storage is shown in Fig. 5-16. The figure 

shows that the SLB energy storage provides power for the EBs mostly between 9.35 am 

and 11.30 am. Additionally, from 5.50 pm to 7.30 pm, considering the high energy 

consumption during the peak time, the SLB provide energy for EBs but just satisfy their 

energy demand for the next travel. When it comes to the night, when the electricity price 

is low and the bus scheduling is not as frequent as the peak time, the EBs would rather 

purchase energy from the grid. 
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Fig. 5-13 The EB charging power from the network under ‘day-ahead scheduling’ with 

SLB energy storage. 

 

Fig. 5-14. The number of charging EBs under day-ahead scheduling with SLB energy 

storage. 
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Fig. 5-15. The SoC of the EBs under day-ahead scheduling with SLB energy storage. 

 

Fig. 5-16. The EB charging power from the SLB energy storage under ‘day-ahead 

scheduling’. 

5.7.4. The comparison of the energy cost of the three control 

algorithms 

As mentioned above, the target of the EB charging optimization is minimizing the 

operational cost, including the energy purchase cost and the battery degradation cost. 

For the first two scenarios, the operational cost is the energy cost. The cost comparison 

is taken on 5 continuous working days. The simulation results of the cost are shown in 

Fig. 5-17.  
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Fig. 5-17. The comparison of the operational cost in the three scenarios of 5 continuous 

days. 

In Fig. 5-17, the operational cost of the EB charging station under the ‘greedy charging’ 

algorithm is £1123.13. The same operational cost is because, under the ‘greedy charging’ 

strategy, the EB will be charged if there are free chargers in the station, without 

considering the electricity price. The SoC of EBs keeps in the range of 0.4 to 0.8. Thus, 

when it reaches night, the EBs does not work as frequently as in the daytime and there 

is sufficient time for the EBs to be fully charged, except for those under business 

demands.  

For scenario 2, the operational cost of the five days is £1082.67, £1081.67, £1083.34, 

£1080.43 and £1081.01 respectively. The cost reduction of scenario 2 compared with 

scenario 1 is on average £41.18. For scenario 3, the operational cost of the five days is 

£1024.10, £1013.27, £1016.16, £1017.06 and £1016.76. The cost reduction of this 

scenario is £64.48 compared with scenario 2 and £105.65 compared with scenario 1 on 

average. From the comparison of the three scenarios, the day-ahead scheduling with 

SLB energy storage can save more than 11% on the operational cost of the EB charging 

station. 



Chapter 5  Energy management for an electric bus 

charging station with facilitated second-life batteries 

130 

 

5.7.5. Numerical results analysis 

To validate the feasibility of adopting the ‘day-ahead scheduling’ with SLB energy storage 

to the EB charging station, the simulation results of the three scenarios under different 

control strategies are shown above. The discussion of the numerical results is given as 

follows: 

The main difference between the ‘greedy charging’ algorithm and the ‘day-ahead 

scheduling’ is that the charging load of the former control algorithm is mainly at the two 

peak-time intervals of the day, which increases the difference in the load demand for the 

networks. While the ‘day-ahead scheduling’ controls the EBs to concentrate the charging 

demand on the off-peak time with the consideration of the capacity of the distribution 

transformer, it leads to high power demand during the two off-peak time.  

The SoC of EBs in the first scenario varies from 0.4 to 0.8, while in the second and the 

third scenario, the SoC of EBs varies from 0.21 to 0.8. The difference in the SoC of EBs 

in the three scenarios is because: in the first scenario, the EB will be charged without 

considering the electricity price. The EBs can be charged at any time stage only if there 

are free chargers. In scenario 2 and scenario 3, the EBs will be charged with the 

consideration of different electricity prices at different time stages. Thus, with the ‘greedy 

charging’ control strategy, the EB battery suffers from a ‘shallow charging cycle’ mode 

and with the ‘day-ahead’ control strategy, the EB battery is under ‘deep charging cycle’ 

mode.  

With the comparison of Fig. 5-6, Fig. 5-9 and Fig. 5-12, it is shown that all the chargers 

are adopted during the off-peak time under the ‘day-ahead scheduling’ strategy. This not 

only achieves the target of reducing operational cost but also achieve the peak shaving 

for the DNOs. The ‘day-ahead scheduling’ increases the energy efficiency and transfer 
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the energy benefit to economic benefits. With the ‘greedy charging’ control strategy, the 

working time of the charging machine is related to the EB timetable. 

This paper proposes a ‘day-ahead’ control strategy for the EB charging station to guide 

its operation of the EB charging station. In real-time operation, the EB station will follow 

the given strategy. If an EB arrives late or its SoC is lower than the scheduled SoC, the 

SLB can be worked as a backup power to increase the charging rate and ensure that the 

EB will depart for the next travel with the scheduled SoC on time. For the control strategy 

without SLB storage, when the EB does not follow the scheduled model, it should report 

the difference to the bus operator and the operator will be determined whether the 

departure time will delay. The detailed steps of the real-time adjustment are not 

discussed in this paper. 

With the comparison mentioned above, the ‘day-ahead scheduling’ strategy can 

significantly reduce the operational cost and achieve peak shaving by charging EBs 

mostly at the off-peak time. Furthermore, with the connection of SLB, the EB charging 

station can further avoid charging EB at the peak time by charging EBs with SLB energy 

storage and providing flexibility services for DNOs to enhance the grid.  

5.8. Conclusions 

This paper develops an optimal EB charging methodology for an EB charging station 

equipped with SLB energy storage. With the target of reducing the operational cost, a 

customized ‘day-ahead scheduling’ strategy is proposed to achieve the optimal charging 

control of the EB charging station, by controlling the charging power and the EB charging 

time. In this process, the SLB energy storage takes three roles: 1) the SLB can be 

charged during the off-peak time and support the charging of the EBs to reduce the 
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charging demand during peak time; 2) the SLB is controlled to provide flexibility services 

for a DNO to relieve network congestions; 3) the SLB is regarded as a secondary source  

to increase the charging power for the EBs. The case study is performed, where three 

different control strategies are compared. Conclusions are presented as follows: 

1) The ‘day-ahead scheduling’ control strategy can effectively reduce the operational 

cost by 11% for the EB charging station compared with the ‘greedy charging’ strategy, 

considering the constraints of the distribution transformer capacity and the bus timetable. 

2) Through the day-ahead scheduling control strategy, the charging demand at the 

peak time is significantly reduced compared with the ‘greedy charging’. It is very 

remarkable for the DNOs to reduce the load demand during the peak time and balance 

the network system. 

3) The connection of the SLB energy storage system brings benefits to both the EB 

charging station and the distribution network. For the EB charging station, the energy 

purchased cost is further reduced by SLB providing charging power during the peak time, 

and the SLBs can directly make profits by providing flexibility services for DNOs. For the 

distribution network, with the SLB energy storage system, the charging demand will be 

reduced more during the peak time. In addition, the SLBs can participate in the flexibility 

services, which will support the network and reduce network congestion. 

 

 

 



Chapter 6  Conclusion 

133 

 

Chapter 6.                                
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This chapter concludes the thesis by listing the contributions and findings from the 

studies. 
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With the target of zero carbon emission in the future, the development of EVs plays an 

important role in transportation electrification. However, there are a massive number of 

challenges that need to be addressed in this process, for example, the over-penetration 

of EVs to the network and the recycling of their retired batteries. The over-penetration of 

EVs to the grid is due to the uncontrolled EV charging behaviour and it will lead to 

network overloads, the reduction of power quality, an increase in network phase 

imbalance, and the increasing reinforcement investment for the DNOs. With the increase 

of EVs, they will bring a huge number of retired batteries eventually. However, directly 

splitting the battery module and recycling the materials is discarding the batteries’ energy 

potential and reducing their economic efficiency. Nowadays, adopting retired batteries 

for a second life application is a better choice compared with traditional recycling. But 

some problems still exist in the application of SLB: how to set the pricing of SLBs which 

reflects their true value, which second life services they will take and the benefits of the 

SLB applications for their potential consumers. 

This thesis makes intensive efforts to solve the two problems. For the EV penetration 

problems, the current studies mainly focus on the optimal control for domestic EVs, and 

the environment is always the parking lots. Few of them study the industrial/commercial 

EV control optimization. This thesis chooses the ASEVs as the research objects and 

proposes a dynamic model for the ASEVs. To optimally control the ASEVs and address 

the problems brought by the uncertainties, a customized near-optimal approach is 

proposed for the ASEV dynamics model. 

For the SLBs, this thesis for the first time proposes a business model which is designed 

based on a monthly-payment model. Unlike the traditional business model, it is not 

necessary to pay more attention to the prediction of the SOH and the remaining life of 

the SLBs. The payment of each battery in this model will reflect the true value of each 

SLB based on its performance in the second life applications. Further, in this model, the 
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SLB is used to provide flexibility service for DNOs and perform energy arbitrage, which 

can make profits for the battery processers. 

Finally, this thesis for the first time proposes that it is possible to adopt the SLB energy 

storage in the EV optimal control, which addresses the two problems in one scenario. 

This thesis develops an EB charging station control strategy with the participant with SLB 

energy storage. With the connection of the SLB energy storage, the EB charging station 

can not only further reduce the operational cost for the bus aggregators and the charging 

demand during the peak time but also provide flexibility services for the DNOs to support 

the networks. 

The detailed conclusions of the thesis are summarised as follows: 

⚫ The optimal control of ASEVs for reducing operational costs and 

matching the renewable generation in the airport. 

In this thesis, a novel dynamic model is proposed for ASEVs. To achieve the control 

optimisation of the ASEV model, a customized near-optimal approach, the rollout 

approach is designed to guide the management of the ASEVs. The dynamic model 

considers the uncertainties in the operation environment, including the arrival time and 

the departure time of flights, the load of the ground transport. To solve the problems, the 

rollout approach is designed based on two different heuristic algorithms which represent 

the underlying control strategies. To validate the feasibility of the dynamic ASEV model 

and the rollout algorithm, two case studies compare the rollout approach with a 

benchmark algorithm (‘greedy charging’ in this case study) in a winter month and a 

summer month. The differences between the two seasons include the different flight 

information and the different PV generation. The key findings from the comparison of the 

two scenarios are shown as follows: 
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⚫ In both the winter month and the summer month, the performance of the rollout 

approach is better than that of the greedy charging approach. In the two scenarios, 

with the rollout approach, the total operational cost can be reduced by more than 

10% compared with the ‘greedy charging’ strategy. 

⚫ Among all the types of cost, the rollout algorithm mainly focuses on the reduction of 

the energy cost, which will reduce 50% of the cost compared with the ‘greedy 

charging’ algorithm. Unlike the energy cost, the battery degradation of the ASEVs 

with the ‘greedy charging’ algorithm is approximately 11% lower than that with the 

rollout approach. With the development of EV batteries, battery degradation costs 

can be reduced in the future.   

⚫ The research outcome helps develop the transportation electrification for the airports. 

With the ASEV model and the customized rollout control algorithm, the total 

operational cost of the ASEVs will be reduced and the renewable generation will be 

efficiently adopted. Further, reducing the charging demand during the peak time will 

make the EV charging friendly to the network.    

⚫ SLB monthly-payment business model 

This thesis develops an SLB business model based on the monthly-payment model. The 

business model aims to make benefits for both the battery processer and the battery 

providers (EV owners in this research). The business model does not predict the 

accurate remaining life and SOH of the SLBs for their potential second-life applications. 

The battery processer will share the profits monthly with the EV owners based on their 

contributions. In this model, the SLBs are controlled to provide flexibility services for the 

DNOs and perform energy arbitrage. The flexibility services consist of two different types: 

the critical flexibility service, including the dynamic service and the restore service, and 

the non-critical flexibility service, including the secure service. To validate the feasibility 

of the business model, a 10-year simulation is taken to check the degradation of the 
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SLBs, the performance of the SLBs on energy arbitrage and flexibility services, and the 

profits of the model. There are two different scenarios for the case studies: In the first 

scenario, the SLBs will not be replaced individually until the SLB matrix can not work. In 

the second one, the SLBs will be replaced individually as soon as the SOH drops to the 

threshold. Several key findings from the studies are summarised as follows: 

⚫ With the business model, the SLB can make profits in the two scenarios. In the first 

scenario, the profits in 10 years are £2,648,782, while in the second scenario the 

profits are £3,433,247. The profits are from the energy arbitrage service and the 

flexibility services. For both two scenarios, the profits from the flexibility services 

account more compared with performing energy arbitrage. The profits from the 

flexibility services account for over 85% in the two scenarios.  

⚫ The two scenarios represent two different battery replacement modes. For the first 

scenario, the advantage of it is that with the battery matrix replaced as a whole, the 

computational complexity is reduced without partially replacing the SLBs. For the 

second scenario, the advantage is that the incoming SLBs will replace those 

reaching their end-of-life directly. It respects the metabolism nature of the business.  

⚫ The case studies have proved the economic potential of the SLB business model. 

With the SLB business model, those retired EV batteries with enough energy 

potential can be adopted to perform energy arbitrage and provide flexibility services 

for DNOs. In general, the SLB business model improves the energy and economic 

efficiency of the SLBs. 

⚫ Optimal control of EB charging station cooperated with SLB energy 

storage system 

This paper develops an EB charging station model with the SLB energy storage system 

participating. In this model, a ‘day-ahead scheduling’ algorithm is adopted to manage the 
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EB charging station. The ‘day-ahead scheduling’ algorithm is designed based on 

historical and statistical data. To address the uncertainties, e.g. the EB arriving time and 

the arriving SoC, an SAA stochastic programming is applied in the management system. 

To validate the feasibility of the system, case studies show the comparison between three 

different scenarios with different control strategies. The key findings are summarised as 

follows: 

Compared with the ‘greedy charging’ strategy, the ‘day-ahead scheduling’ will 

reduce the charging demand during the peak time, which can relieve the gird 

congestions for DNOs. For the EB aggregators, the ‘day-ahead scheduling’ will 

efficiently reduce the operational cost considering the transformer capacity and 

ensuring that all the EB departures are on time. 

For the EB charging station, with the SLB being connected to the EB charging 

station, the operational cost will be reduced more compared with that without the 

SLB storage system. Furthermore, the EB charging station will provide flexibility 

services for the DNOs to support the network.  

In these case studies, the SLBs can be directly from the retired batteries. This 

significantly reduces the difficulties in the process of SLB collection. Meanwhile, 

the EB retired batteries can be adopted in an appropriate second-life application, 

which increases the energy and economic efficiency of the batteries.  

In general, this thesis firstly helps control the ASEV charging with a novel dynamic model 

and a customized rollout approach. Secondly, a proposed business model for SLBs will 

guide the battery processers to develop the energy and economic potential of the SLBs 

and make profits through suitable applications, like performing energy arbitrage and 

providing flexibility services. Thirdly, the thesis proposes to utilize the SLB energy storage 

system in the EB charging station. The EB control strategy is further developed with the 

connection of SLB energy storage. Relatively, the energy and economic potential of the 
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SLBs are improved by participating in the EB optimal control process. With the study 

outcomes, the problems of EB optimal charging and the application of retired batteries 

would be solved in one scenario. 
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This chapter presents future works that can be done to further improve the EV control 

optimisation and the application of SLBs. 
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In this thesis, to help the development of EVs, previous chapters have reviewed the 

existing studies and proposed feasible solutions for ASEV dynamic control and SLB 

business model; and developed an EB charging station model to utilize the SLB energy 

storage for EB charging strategies. This chapter focuses on the potential future work on 

the optimal control of EV charging and the application of SLBs, which are not discussed 

in this thesis but have the potential to improve transportation electrification.  

⚫ The control strategy of EV charging with the consideration of 

renewable energy generation 

Nowadays, renewable generation is widely connected to networks and provide clean 

energy to reduce carbon emission. In the UK, wind power and PV generation are the two 

most popular renewable energy resources for DNOs. In the future smart grid, for EV 

charging, renewable generation will become an important power supplier. However, the 

connection of PV generation or wind power generation will bring several challenges: 

⚫ The output power of renewable energy is uncertain and difficult to make an accurate 

prediction. Such power will be significantly affected by the environment, such as the 

sunshine intensity, the temperature, and the humidity. It leads to huge uncertainties 

in the process of EV charging management. 

⚫ With the renewable energy system, it is necessary for the system to be equipped 

with an energy storage system. Thus, the initial investment will increase and it 

requires that the energy and economic efficiency of the energy management system 

(EMS) should be higher. 

⚫ For the energy storage system, the batteries are the most popular storage in the 

smart grid. The battery degradation is supposed to be considered when making the 

control strategy for EV charging. 
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To address these challenges, future work should firstly propose stochastic programming 

for renewable energy. Then the battery degradation model needs to be developed based 

on the existing studies. Furthermore, the control strategy should help both the planning 

and the real-time operation. The objective of the control strategy should include reducing 

the operational cost, improving the energy efficiency of renewable energy, and 

enhancing the lifetime of the batteries. 

⚫ Proposing a control strategy for SLB applications considering the 

battery longevity 

With the proposed business model and potential second life applications, retired 

batteries will improve their economy and energy efficiency. However, like the new 

batteries, the battery ageing should be mitigated, and a relative control strategy needs 

to be proposed. In the process, there are several challenges and constraints which 

should be considered: 

⚫ As mentioned in Chapter. 4, the degradation of the battery can be sorted into two 

different types: calendar ageing and cycling ageing. The two degradation models 

are different and both of them should be considered in the SLB model. 

⚫ With the two different degradation types, there are many factors that will affect the 

lifetime of the SLBs. It is necessary to consider all of these factors and make 

reasonable assumptions. 

⚫ The objective function of the problem contains at least two different parts: Firstly, the 

SLB should make benefits the potential consumers. Secondly, the control strategy 

should extend the lifespan of the SLBs compared with some existing methods 

without affecting the performance of the second-life applications. 

To address these challenges, firstly, future work needs to propose a battery degradation 
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model, which can directly reflect the calendar ageing and the cycling ageing for the SLBs. 

Secondly, although there are several different factors that will influence battery 

degradation, the number of optimization variables should be limited to no more than three. 

Thus, sensitivity analysis should be made to determine which factors can be set as the 

optimization variables. Finally, the control algorithm should be designed to solve the 

multi-objective optimisation problem with several variables. 

⚫ Applying V2G service for the industrial/commercial EVs 

In Chapter. 3 and Chapter. 5, the control optimisation of ASEV and EB charging will help 

relieve the network congestion for the DNOs by reducing the charging load during the 

peak time. In Chapter. 4 and Chapter. 5, the SLB system is designed to provide flexibility 

services for DNOs to support the distribution network. Nowadays, the V2G service is 

another important grid service for the power system. Compared with domestic EVs, 

commercial/industrial EVs are equipped with large-capacity batteries, which means that 

commercial/industrial EVs can provide more energy capacity. Also, these EVs are mostly 

controlled based on centralized control strategies. It leads to more optimisation space 

for the operators. However, it is necessary to address some challenges from V2G 

services: 

⚫ For the commercial/industrial EVs, it is prior to satisfying the business demands they 

need to take. They can only provide V2G service during the parking time at the 

charging station. Thus, it is necessary to balance the time for V2G services and EV 

charging. 

⚫ For the V2G service, one of the major concerns is that it will reduce the lifespan of 

EV batteries by increasing the charging-discharging cycles. For 

commercial/industrial EVs, the cost of their batteries is higher than the domestic EV 
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batteries. In the energy management system, it is essential to consider the EV 

battery degradation in the optimisation model. 

⚫ Chapter. 3 mentioned that uncertainties exist in the ASEV model and they will deeply 

affect the EV state control. Similarly, these uncertainties will also significantly affect 

the performance of the V2G service. In the control strategy, stochastic programming 

or a suitable prediction method should be adopted to address these uncertainties. 

To overcome these challenges, future work should contain an EV model which describes 

the state control, an EV battery model which can demonstrate the battery degradation 

caused by the V2G service, a V2G service model, and a customized control strategy. 

The control strategy is required to make the optimal decisions with the updated 

information of constraints in real-time operation. The objective of the optimisation 

problem should consider not only the economic benefits for the EV owners or the favour 

to the network but also developing a protective strategy for the EV batteries. 
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