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Saturated and primitive smooth compacti�cations of ball

quotients

P. G. Beshkov, A. K. Kasparian, ∗ and G. K. Sankaran†

Let Xi = (B/Γ)′, 1 ≤ i ≤ 2 be smooth toroidal compacti�cations of quotients B/Γi of
the complex 2-ball

B = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1} = PSU2,1/PS(U2 × U1)

by lattices Γ < PU(2, 1), D(i) := Xi \ (B/Γi) be the toroidal compactifying divisors and
ρi : Xi → Yi be compositions of blow downs with exceptional divisors E(ρi) onto min-
imal surfaces Yi. The present note establishes a bijective correspondence between the
unrami�ed coverings f : X2 → X1 of degree d, which restrict to unrami�ed coverings
f : D(2) → D(1), f : E(ρ2) → E(ρ1) of degree d and the unrami�ed coverings ϕ : Y2 → Y1
of degree d of the corresponding minimal models, which restrict to unrami�ed coverings
ϕ : ρ2(D

(2)) → ρ1(D
(1)) , ϕ : ρ2(E(ρ2) → ρ1(E(ρ1)) of degree d. The aforementioned

covering relations among Xi de�ne an artinian partial order < on the set S of the smooth
toroidal compacti�cations X = (B/Γ)′. The maximal elements with respect to < are called
saturated and the minimal elements with respect to < are said to be primitive. Our consid-
erations reduce the study of X ∈ S to the study of the primitive X ∈ S. For an arbitrary
totally ordered subset {Xα}α∈A ⊂ S, all the minimal models Yα of Xα have one and a
same universal cover and one and a same Kodaira dimension. We discuss the saturated and
the primitive X ∈ S of non-positive Kodaira dimension. The covering relations among the
smooth toroidal compacti�cations (B/Γ)′ are studies in Uludag's [Uludag], Stover's [Stover],
Di Cerbo and Stover's [DiCerboStover1] and other articles.

Here is a synopsis of the article. Let ρ1 : X1 → Y1 be a composition of blow downs
of a smooth projective surface X1 onto a smooth projective surface Y1. The �rst section
establishes a bijective correspondence between the unrami�ed coverings f : X2 → X1 of
degree d and the unrami�ed covering ϕ : Y2 → Y1 of degree d through �bered product
commutative diagrams (4) with appropriate compositions of blow downs ρ2 : X2 → Y2.
In order to induce ϕ : Y2 → Y1 by f : X2 → X1, one observes that ϕρ2 is the Stein
factorization of the proper holomorphic map ρ1f : X2 → Y1. If D(i) ⊂ Xi are (possibly
reducible) divisors, which do not contain irreducible components of the exceptional divisors
E(ρi) of ρi : Xi → Yi, then f is shown to restrict to an unrami�ed covering f : D(2) → D(1) of
degree d if and only if ϕ restricts to an unrami�ed covering ϕ : ρ2(D

(2))→ ρ1(D
(1) of degree

d. In particular, if ρ1 : X1 = (B/Γ1)
′ → Y1 is a composition of blow downs of a smooth
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toroidal compacti�cation X1 = (B/Γ1)
′ onto a minimal surface Y1 then the unrami�ed

coverings f : X2 = (B/Γ2)
′ → (B/Γ1)

′ = X1 of degree d, which restrict to unrami�ed
coverings f : B/Γ2 → B/Γ2 of degree d are in a bijective correspondence with the unrami�ed
coverings ϕ : Y2 → Y1 by appropriate minimal models Y2 of X2. Under the aforementioned
correspondence, f restricts to an unrami�ed covering f : D(2) = X2\(B/Γ2)→ X1\(B/Γ1) =
D(1) of degree d of the corresponding compactifying divisors if and only if ϕ restricts to an
unrami�ed covering ϕ : ρ2(D

(2)) → ρ1(D
(1)) of degree d. In such a way, the presence of a

�nite unrami�ed cover X2 = (B/Γ2)
′ of X1 = (B/Γ1)

′ can be detected by the means of an
arbitrary minimal model Y1 of X1 and its �nite unrami�ed covers Y2.

Let X2, Y2 be smooth projective surfaces and ρ2 = β1 . . . βr : X2 → Y2 be a commposi-
tion of blow downs with exceptional divisors E(βi) ⊂ βi+1 . . . βr(X2). The second section
introduces compatibility conditions on the �nite unrami�ed coverings f : X2 → f(X2) or
ϕ : Y2 → ϕ(Y2) with ρ2 in such a way that the existence of f : X2 → f(X2) to be equivalent
to the existence of ϕ : Y2 → ϕ(Y2). In particular, for a smooth toroidal compacti�cation
X2 = (B/Γ2)

′ with toroidal compactifying divisor D(2) := X2 \ (B/Γ2) and a composition of
blow downs ρ2 = β1 . . . βr : X2 → Y2 onto a minimal surface Y2, there exists an unrami�ed
covering f : X2 → f(X2) =: X1, which is compatible with ρ2 and restricts to an unrami-
�ed covering f : B/Γ2 → f(B/Γ2) of degree d if and only if there is an unrami�ed covering
ϕ : Y2 → ϕ(Y2) =: Y1 of a minimal model Y1 of X1, which is compatible with ρ2 and restricts
to an unrami�ed covering ϕ : ρ2(D

(2))→ ϕρ2(D
(2)) of degree d. Moreover, X1 = (B/Γ1)

′ is
a smooth toroidal compacti�cation and if ρ1 : X1 → Y1 is a composition of blow downs onto
Y1 then ϕρ2(D

(2)) = ρ(D(1)) for the compactifying divisor D(1) := X1 \ (B/Γ1) of B/Γ1. A
smooth toroidal compacti�cation X = (B/Γ)′ is primitive if there is no unrami�ed covering
f : X → f(X) of degree d, which restricts to an unrami�ed covering f : B/Γ → f(B/Γ)
of degree d and is compatible with some composition of blow downs ρ : X → Y onto a
minimal surface Y . Due to the established duality between the �nite unrami�ed coverings
f : X → f(X) and ϕ : Y → ϕ(Y ) of one and a same degree, the primitiveness of X = (B/Γ)′

can be detected by the properties of Y .
The last, third section studies the �nite unrami�ed Galois coverings f : X = (B/Γ)′ →

f(X) of smooth toroidal compacti�cations X = (B/Γ)′, which admit a blow down β :
X → Y of n ∈ N smooth irreducible rational (−1)-curves onto a minimal surface Y . Di
Cerbo and Stover have shown in [DiCerboStover2] that the smooth toroidal compacti�cations
X = (B/Γ)′ with abelian or bi-elliptic minimal model Y have the aforementioned property.
We establish that for such X = (B/Γ)′ the compatibility of the unrami�ed coverings ϕ :
Y → ϕ(Y ) of degree d, restricting to unrami�ed coverings ϕ : β(D) → ϕβ(D) of degree
d with β : X → Y is automatic, as far as β(E(β)) = β(D)sing coincides with the singular
locus of β(D). The relative automorphism group Aut(Y, β(D)) = Aut(Y, β(D), β(D)sing)
admits an isomorphism Φ : Aut(Y, β(D)) → Aut(X,D) onto the relative automorphism
group Aut(X,D) = Aut(X,D,E(β)). Let N(π1(Y )) be the normalizer of the fundamental
group π1(Y ) of Y in the biholomorphism group Aut(Ỹ ) of the universal cover Ỹ of Y .
It is well known that the biholomorphism group Aut(Y ) of Y is the quotient Aut(Y ) =
N(π1(Y ))/π1(Y ). If an unrami�ed covering ϕ : Y → ϕ(Y ) of degree d restricts to an
unrami�ed covering ϕ : β(D) → ϕβ(D) of degree d then any go ∈ N(π1(Y )) ∩ π1(ϕ(Y ))
is shown to induce a biholomorphism go := goπ1(Y ) : β(D) → β(D) and, therefore, a
factorization f = foζ of the associated unrami�ed covering f : X = (B/Γ)′ → X0 =
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(B/Γ0)
′ of ϕ : Y → ϕ(Y ) through the unrami�ed Galois covering ζ : X → X/〈Φ(go)〉

and an unrami�ed covering fo : X/〈Φ(go)〉 → X0 = (B/Γ0)
′. In particular, for a smooth

toroidal compacti�cation X = (B/Γ)′ with abelian minimal model Y , we establish that
any unrami�ed covering f : X = (B/Γ)′ → X0 = (B/Γ0)

′ of degree d, which restricts to
an unrami�ed covering f : B/Γ → B/Γ0 of degree d, factors through a Galois covering
X → X/〈g〉, g ∈ Aut(X,D), which restricts to a Galois covering B/Γ → (B/Γ)/〈g〉. The
third section discusses also the saturation and the primitiveness of the smooth toroidal
compacti�cations X = (B/Γ)′ with Kodaira dimension κ(X) = −∞, as well as the smooth
toroidal compacti�cations X = (B/Γ)′ with K3 or Enriques minimal model.

1 Unrami�ed pull back of a smooth compacti�cation

Lemma 1. Let M be a complex manifold and N be a complex analytic subvariety of M or

an open subset of M .

(i) If f : M → f(M) is an unrami�ed covering of degree d then f : N → f(N) is an

unrami�ed covering of degree d exactly when f : M \ N → f(M) \ f(N) is an unrami�ed

covering of degree d.
(ii) Let us suppose that f : M → f(M) is a holomorphic map onto a complex manifold,

f(N) ∩ f(M \N) = ∅ and f : N → f(N), f : M \N → f(M \N) are unrami�ed coverings

of degree d. Then f : M → f(M) is an unrami�ed covering of degree d.

Proof. (i) Let X := N or X := M \X. Then f : X → f(X) is an unrami�ed covering of
degree deg(f |X) = deg(f |M ) = d exactly when f−1(f(X)) = X. If so, then the intersection
f−1(f(M \ X)) ∩ X = ∅ is empty, whereas f−1(f(M \ X)) = M \ X, the union f(M) =
f(X)

∐
f(M \X) is disjoint and f : M \X → f(M \X) = f(M) \ f(X) is an unrami�ed

covering of degree d.
(ii) The union f(M) = f(N)

∐
f(M \N) is disjoint, so that f−1(f(M \N)) = M \N ,

f−1(f(N)) = N and f : M → f(M) is an unrami�ed covering of degree d.

Lemma 2. Let f : X → X ′ be an unrami�ed covering of degree d of smooth projective

surfaces.

(i) Suppose that D =
k∐
j=1

Dj is a divisor on X with disjoint smooth irreducible components

Dj and f restricts to an unrami�ed covering f : D → f(D) of degree d. Then f(D) =
∪kj=1f(Dj) has smooth irreducible components f(Dj), f restricts to unrami�ed coverings

f : Dj → f(Dj) for all 1 ≤ j ≤ k and f(Di) ∩ f(Dj) = ∅ for f(Di) 6≡ f(Dj).
In particular, Dj are smooth elliptic curves of and only if f(Dj) are smooth elliptic

curves.

(ii) If C ′ is a smooth irreducible rational curve on X ′ then the complete preimage

f−1(C ′) =
d∐
i=1

Ci consists of d disjoint smooth irreducible rational curves Ci and f restricts

to isomorphisms f : Ci → C ′ for all 1 ≤ i ≤ d.

Proof. (i) The unrami�ed covering f : D → f(D) is a local biholomorphism, so that f(D)
is a smooth divisor on X ′. Thus, all the irreducible components f(Dj) of f(D) are smooth
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curves and f(Di)∩ f(Dj) 6= ∅ requires f(Di) ≡ f(Dj). For any 1 ≤ i ≤ k let J(i) be the set
of those 1 ≤ j ≤ k, for which f(Dj) ≡ f(Di). Then there exists a subset I ⊆ {1, . . . , k} with∐
i∈I

J(i) = {1, . . . , k} and f(D) =
∐
i∈I

f(Di). By the very de�nition of J(i), there holds the

inclusion
∐

jijJ(i)

Dj ⊆ f−1(f(Di)). Since f restricts to an unrami�ed covering f : D → f(D)

of degree d, any p ∈ f−1(f(Di)) belongs to Ds for some 1 ≤ s ≤ k. Then f(p) ∈ f(Di)
speci�ed that s ∈ J(i), whereas f−1(f(Di)) ⊆

∐
j∈J(i)

Dj and f
−1(f(Di)) =

∐
j∈J(i)

Dj . Thus,

for any i ∈ I the morphism f restricts to an unrami�ed covering f :
∐

j∈J(i)
Dj → f(Di) of

degree d. By de�nition, any f(p) ∈ f(Di) with p ∈
∐

j∈J(i)
Dj has a trivializing neighborhood

U on f(Di), whose pull back f
−1(U) =

∐
q∈f−1(p)

Vq is a disjoint union of neighborhoods Vq of

q ∈ f−1(p) on
∐

j∈J(i)
Dj with biholomorphic restrictions f : Vq → U . For a su�ciently small

U one can assume that Vq ⊂ Dj for q ∈ Dj . That is why f restricts to unrami�ed coverings
f : Dj → f(Dj) = f(Di). In particular, Dj are smooth elliptic curves exactly when f(Dj)
are smooth elliptic curves.

(ii) Let f−1(C ′) =
k∑
i=1

Ci be a union of k irreducible corves Ci, di := deg [f |Ci : Ci → C ′]

and Br(f |Ci) := {q ∈ C ′ |
∣∣f−1(q) ∩ Ci∣∣ < di} be the branch locus of f |Ci for 1 ≤ i ≤ k. Any

Br(f |Ci) is a �nite set, as well as the intersection ∪1≤i<j≤kCi ∩ Cj of di�erent irreducible
components, so that

Σ :=
[
∪ki=1Br(f |Ci)

]
∪ [∪1≤i<j≤kf(Ci ∩ Cj)]

is a �nite subset of C ′. For any q ∈ C ′ \ Σ one has f−1(q) =
k∐
i=1

f−1(q) ∩ Ci, whereas

d =
∣∣f−1(q)∣∣ =

k∑
i=1

∣∣f−1(q) ∩ Ci∣∣ =
k∑
i=1

di.

If qj ∈ Br(f |Cj ) then f
−1(qj) = ∪ki=1f

−1(qj) ∩ Ci with
∣∣f−1(qj) ∩ Cj∣∣ < dj , so that

d =
∣∣f−1(qj)∣∣ ≤ k∑

i=1

∣∣f−1(qj) ∩ Ci∣∣ < k∑
i=1

di = d.

This is an absurd, justifying Br(f |Cj ) = ∅ for all 1 ≤ j ≤ k. Similarly, for any p ∈ Ci ∩ Cj
there holds

d =
∣∣f−1(p)∣∣ < k∑

i=1

∣∣f−1(p) ∩ Ci∣∣ =
k∑
i=1

di = d.

The contradiction shows that the irreducible components Ci of f
−1(C ′) are disjoint. The

unrami�ed coverings f |Ci : Ci → C ′ of the smooth irreducible rational curve C ′ are of degree

di = 1, due to π1(C
′) = {1}. Therefore d =

k∑
i=1

di = k and f−1(C ′) =
d∐
i=1

Ci consists of d
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disjoint smooth irreducible rational curves with biholomorphic restrictions f |Ci : Ci → C ′

for all 1 ≤ i ≤ d.

A (−1)-curve Li on a smooth projective surface Y is a smooth irreducible rational curve
with self-intersection L2

i = −1. Throughout, we say that a smooth projective surface Y is
minimal if it does not contain a (−1)-curve. This is slightly di�erent from the contemporary
viewpoint of the Minimal Model Program, which considers a smooth projective surface Y to
be minimal if its canonical divisor KY is nef (i.e., KY .C ≥ 0 for all e�ective curves C ⊂ Y ).
The numerical e�ectiveness of KY excludes the existence of (−1)-curves on Y . If Y is of
Kodaira dimension κ(Y ) = −∞ then KY is not nef, regardless of the presence of (−1)-
curves on Y . That is the reason for exploiting the older, out of date notion of minimality
of a smooth projective surface, which requires the non-existence of (−1)-curves on Y . By a
theorem of Castelnuovo (Theorem V.5.7 [Ha]), for any smooth irreducible projective surface
X there is a birational morphism ρ : X → Y onto a minimal smooth projective surface Y ,
which is a composition of blow downs of (−1)-curves. If X is of Kodaira dimension κ(X) ≥ 0
then the minimal model Y of X is unique (up to an isomorphism). This is no more true
when X is birational to a rational or a ruled surface.

Lemma 3. (i) Let Bl : X1 → Y1 be a blow down of a (−1)-curve L1 ⊂ X1 and ϕ : Y2 → Y1
be an unrami�ed covering of degree d. Then the �bered product commutative diagram

X2 := X1 ×Y1 Y2 Y2

X1 Y1

?

f

-β

?

ϕ

-Bl

(1)

consists of an unrami�ed covering f : X2 → X1 of degree d and the blow down β : X2 → Y2

of the disjoint union f−1(L1) =
d∐
j=1

L1,j of the (−1)-curves L1,j.

(ii) Let ρ1 : Bl1 . . .Blr−1Blr : Tr := X1 → Y1 =: T0 be a composition of blow downs

Bli : Ti → Ti−1 of (−1)-curves Li ⊂ Ti and ϕ : Y2 → Y1 be an unrami�ed covering of degree

d. Then the �bered product commutative diagrams

Si := Ti ×Ti−1 Si−1 Si−1

Ti Ti−1
?

ϕi

-βi

?

ϕi−1

-Bli

(2)

�t into a commutative diagram

Sr . . . Si := Ti ×Ti−1 Si−1 Si−1 . . . S0 := Y2

Tr := X . . . Ti Ti−1 . . . T0 := Y1

?

f

?

ϕi

-βi

?

ϕi−1

?

ϕ=ϕ0

-Bli

(3)
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and induce a �bered product commutative diagram

X2 = X1 ×Y1 Y2 Y2

X1 Y1

?

f

-ρ2

?

ϕ

-ρ1

(4)

with an unrami�ed covering f : X2 → X1 of degree d and a composition ρ2 = β1 . . . βr−1βr :

X2 → Y2 of blow downs of ϕ−1i (Li) =
d∐
j=1

Li,j for all 1 ≤ i ≤ r.

Proof. (i) By the very de�nition of a blow down Bl : X1 → Y1 of L1 to Bl(L1) = q1 ∈ Y1,
one has X1 \ L1 = Y1 \ {q1}. Then

X2 := X1 ×Y1 Y2 = [(X1 \ L1)×Y1 Y2]
∐

[L1 ×Y1 Y2]

decomposes into the disjoint union of

(X1 \ L1)×Y1 Y2 = {(x1, y2) |x1 = Bl(x1) = ϕ(y2)} ' Y2 \ ϕ−1(q1) and

L1 ×Y1 Y2 = {(x1, y2) | q1 = Bl(x1) = ϕ(y2)} = L1 × ϕ−1(q1).

If ϕ−1(q1) = {p1,j | 1 ≤ j ≤ d} then X2 is the blow up of Y2 at {p1,j | 1 ≤ j ≤ d}. Due
to Blf = ϕβ, the exceptional divisor of β is β−1 ({p1,j | 1 ≤ j ≤ d}) = β−1ϕ−1(q1) =

(ϕβ)−1(q1) = (Blf)−1(q1) = f−1Bl−1(q1) = f−1(L1) =
d∐
j=1

L1,j . According to Corollary

17.7.3 (i) from Grothendieck's [Groth4], f : X2 → X1 is an unrami�ed covering, since
ϕ : Y2 → Y1 is an unrami�ed covering.

(ii) By an increasing induction on 1 ≤ i ≤ r, one applies (i) to the �bered product
commutative diagrams (2) and justi�es (ii).

Lemma 4. (i) In the notations from Lemma 3 (i) and the �bered product commutative

diagram (1), let D(2) be a (possibly reducible) divisor on X2, which does not contain an

irreducible component of the exceptional divisor of β and D(1) be a (possibly reducible) divisor

on X1, which does not contain the exceptional divisor L1 of Bl. Then the restriction f :
D(2) → D(1) is an unrami�ed covering of degree d = deg[f : X2 → X1] if and only if

ϕ : β(D(2))→ Bl(D(1)) is an unrami�ed covering of degree d.
(ii) In the notations from Lemma 3 (ii) and the �bered product commutative diagram

(4), let D(2) be a (possibly reducible) divisor on X2, which does not contain an irreducible

component of the exceptional divisor of ρ2 and D(1) be a (possibly reducible) divisor on X1,

which does not contain an irreducible component of the exceptional divisor of ρ1. Then the

restriction f : D(2) → D(1) is an unrami�ed covering of degree d if and only if the restriction

ϕ : ρ2(D
(2))→ ρ1(D

(1)) is an unrami�ed covering of degree d.

6



Proof. (i) If f : D(2) → D(1) is an unrami�ed covering of degree d then f−1(D(1) ∩ L1) =
f−1(D(1))∩ f−1(L1) = D(2) ∩ f−1(L1) and the restriction f : D(1) ∩ f−1(L1)→ D(1) ∩L1 is

an unrami�ed covering of degree d. After denoting f−1(L1) =
d∐
j=1

L1,j , β(L1,j) = p1,j and

Bl(L1) = q1, one applies Lemma 1 (i), in order to conclude that

ϕ ≡ f : β(D(2)) \ {p1,j | 1 ≤ j ≤ d} ≡ D(2) \ f−1(L1) −→ D(1) \ L1 ≡ Bl(D(1)) \ {q1}

is an unrami�ed covering of degree d. Now, ϕ restricts to ϕ : {p1,j | 1 ≤ j ≤ d} → {q1}, so
that

ϕ : β(D(2)) = β(D(2)) \ {p1,j | 1 ≤ j ≤ d}
∐
{p1,j | 1 ≤ j ≤ d} −→

−→
[
Bl(D(1)) \ {q1}

]∐
{q1} = Bl(D(1))

is an unrami�ed covering of degree d by Lemma 1 (ii).
Conversely, assume that ϕ : β(D(2)) → Bl(D(1)) is an unrami�ed covering of degree

d. Choose a su�ciently small neighborhood V of q1 = Bl(L1) on Y1, such that ϕ−1(V ) =
d∐
j=1

Uj is a dsijoint union of neighborhoods Uj of p1,j , 1 ≤ j ≤ d on Y2 with biholomorphic

restrictions ϕ : Uj → V of ϕ. Bearing in mind that Bl1 : X1 → Y1 is the blow up of Y1 at
q1, one decomposes

Bl(D(1)) =
[
Bl(D(1)) \ V

]∐[
Bl(D(1)) ∩ V

]
and

D(1) =
[
Bl(D(1)) \ V

]∐
Bl−1(Bl(D(1)) ∩ V ).

Similarly, β : X2 → Y2 is the blow up of Y2 at ϕ−1(q1) = {p1,j | 1 ≤ j ≤ d}, so that there
are decompositions

β(D(2)) =
[
β(D(2)) \ ϕ−1(V )

]∐[
β(D(2)) ∩ ϕ−1(V )

]
and

D(2) =
[
β(D(2)) \ ϕ−1(V )

]∐
β−1(β(D(2)) ∩ ϕ−1(V )).

According to ϕ−1(Bl(D(1)) ∩ V ) = ϕ−1(Bl(D(1))) ∩ ϕ−1(V ) = β(D(2)) ∩ ϕ−1(V ), the re-
striction ϕ : β(D(2)) ∩ ϕ−1(V )→ Bl(D(1)) ∩ V is an unrami�ed covering of degree d. Now,
Lemma 1 (ii) applies to provide that

f ≡ ϕ : β(D(2)) \ ϕ−1(V ) −→ Bl(D(1)) \ V

is an unrami�ed covering of degree d. According to Lemma 1 (ii), it su�ced to show that

f : β−1(β(D(2)) ∩ ϕ−1(V )) −→ Bl−1(Bl(D(1)) ∩ V )

is an unrami�ed covering of degree d, in order to conclude that f : D(2) → D(1) is an
unrami�ed covering of degree d. To this end, note that

ϕ−1(Bl(D(1)) ∩ V ) = β(D(2)) ∩ ϕ−1(V ) = β(D(2)) ∩

 d∐
j=1

Uj

 =

d∐
j=1

[
β(D(2)) ∩ Uj

]
,
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so that

ϕ :
d∐
j=1

[
β(D(2)) ∩ Uj

]
−→ Bl(D(1)) ∩ V

is an unrami�ed covering of degree d. Therefore, the biholomorphisms ϕ : Uj → V restrict
to biholomorphisms ϕ : β(D(2))∩Uj → Bl(D(1))∩V . According to ϕ(p1,j) = q1, there arise
biholomorphisms

ϕ : (β(D(2)) ∩ Uj) \ {p1,j} −→ (Bl(D(1)) ∩ V ) \ {q1}.

By the very de�nition of a blow up at a point, these induce biholomorphisms

f :
[
(β(D(2)) ∩ Uj) \ {p1,j}

]∐
L1,j −→

[
(Bl(D(1)) ∩ V ) \ {q1}

]∐
L1

for all 1 ≤ j ≤ d. Bearing in mind that

d∐
j=1

{[
(β(D(2)) ∩ Uj) \ {p1,j}

]∐
L1,j

}
= β−1(β(D(2)) ∩ ϕ−1(V )),

one concludes that ϕ induces an unrami�ed covering

f : β−1(β(D(2)) ∩ ϕ−1(V )) −→ Bl−1(Bl(D(1)) ∩ V )

of degree d.
(ii) Along the commutative diagram (3), if f : D(2) → D(1) is an unrami�ed covering of

degree d then by a decreasing induction on r ≥ i ≥ 1 and making use of (i), one observes that
ϕi : βi+1 . . . βr(D

(2)) → Bli+1 . . .Blr(D
(1)) is an unrami�ed covering of degree d, whereas

ϕ : ρ2(D
(2)) → ρ1(D

(1)) is an unrami�ed covering of degree d. Conversely, suppose that
ϕ : ρ2(D

(2)) → ρ1(D
(1)) is an unrami�ed covering of degree d. Then by an increasing

induction on 1 ≤ i ≤ r and making use of (i), one concludes that

ϕi : βi+1 . . . βr(D
(2))→ Bli+1 . . .Blr(D

(1))

is an unrami�ed covering of degree d. As a result, f : D(2) → D(1) is an unrami�ed covering
of degree d.

Corollary 5. Let X1 = (B/Γ1) be a smooth toroidal compacti�cation, ρ1 : X1 → Y1 be

a composition of blow downs onto a minimal surface Y1, ϕ : Y2 → Y1 be an unrami�ed

covering of degree d and (4) be the de�ning commutative diagram of the �bered product

X2 = X1 ×Y1 Y2. Then:

(i) there is a subgroup Γ2 of Γ1 of index [Γ1 : Γ2] = d, such that X2 = (B/Γ2)
′ is the

toroidal compacti�cation of B/Γ2;

(ii) f : X2 → X1 restricts to unrami�ed coverings f : B/Γ2 → B/Γ1, respectively,

f : D(2) := X2 \ (B/Γ2)→ X1 \ (B/Γ1) =: D(1) of degree d;
(iii) the composition ρ2 : X2 → Y2 of blow downs maps onto a minimal surface Y2;
(iv) ϕ restricts to an unrami�ed covering ϕ : ρ2(D

(2))→ ρ1(D
(1)) of degree d.
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Proof. By Lemma 3 (ii), the �bered product diagram (4) consists of an unrami�ed covering
f : X2 → X1 of degree d and a composition ρ2 : X2 → Y2 of blow downs. The surface
Y2 is minimal. Otherwise any (−1)-curve L′i on Y2 maps isomorphically onto a (−1)-curve
ϕ(L′i) ⊂ Y1, according to Lemma 2 (ii). That contradicts the minimality of Y1 and shows
the minimality of Y2.

The unrami�ed covering f : X2 → X1 = (B/Γ1)
′ of degree d restricts to an unrami�ed

covering f : f−1(B/Γ1)→ B/Γ1 of degree d. The smoothness of B/Γ1 excludes the existence
of isolated branch points of the Γ1-Galois covering ζ1 : B → B/Γ1. However, ζ1 can ramify
along divisors and B is not the usual universal cover of the complex manifold B/Γ1. Nev-
ertheless, B is the orbifold universal cover of B/Γ1 and the orbifold universal covering map
ζ1 : B → B/Γ1 factors through a (possibly rami�ed) covering ζ2 : B → f−1(B/Γ1) and the
covering f : f−1(B/Γ1) → B/Γ1, i.e., ζ1 = fζ2. Since π

orb
1 (B) = {1} is a normal subgroup

of Γ2 := πorb1 (f−1(B/Γ)), the covering ζ2 is Galois and its Galois group Γ2 is a subgroup of
Γ1 = πorb1 (B/Γ1) of index [Γ1 : Γ2] = d. In particular, f−1(B/Γ1) = B/Γ2. By Lemma 1
(i), f restricts to an unrami�ed covering f : D(2) := X2 \ (B/Γ2) → X1 \ (B/Γ1) =: D(1)

of degree d of the toroidal compactifying divisor D(1) =
k∐
j=1

D
(1)
j of B/Γ1. Note that for

any 1 ≤ j ≤ k the restriction f : f−1(D
(1)
j ) → D

(1)
j is an unrami�ed covering of degree

d, whereas a local biholomorphism. Therefore f−1(D
(1)
j ) = ∪rji=1D

(2)
j,i is smooth and has

disjoint smooth irreducible components D
(2)
j,i . As a result,

D(2) = f−1(D(1)) =
k∐
j=1

f−1(D
(1)
j =

k∐
j=1

rj∐
i=1

D
(2)
j,i

has disjoint smooth irreducible components D
(2)
j,i . By assumption, D

(1)
j are smooth elliptic

curves, so that allD
(2)
j,i are smooth elliptic curves by Lemma 2 (i). That is why, X2 = (B/Γ2)

′

is the toroidal compacti�cation of B/Γ2. According to Lemma 4 (ii), ϕ : Y2 → Y1 restricts
to an unrami�ed covering ϕ : ρ2(D

(2))→ ρ1(D
(1)) of degree d.

Lemma 6. (i) Let f : X2 → X1 be an unrami�ed covering of degree d of smooth projective

surfaces and Bl : X1 → Y1 be a blow down of a (−1)-curve L1 ⊂ X1. Then the Stein

factorization ϕβ of Blf consists of the blow down β : X2 → Y2 of f−1(L1) =
d∐
j=1

L1,j and an

unrami�ed covering ϕ : Y2 → Y1 of degree d, so that X2 = X1 ×Y1 Y2 is the �bered product

of X1 and Y2 over Y1.
(ii) Let ρ1 = Bl1 . . .Blr : Tr := X1 → Y1 =: T0 be a composition of blow downs of

(−1)-curves Li ⊂ Ti and f : X2 → X1 be an unrami�ed covering of degree d. Then the Stein

factorization ϕρ2 of ρ1f : X2 → Y1 closes the �bered product commutative diagram (4) with

the composition ρ2 = β1 . . . βr : Sr := X2 → Y2 := S0 of the blow downs βi : Si → Si−1 of

ϕ−1i (Li) =
d∐
j=1

Li,j for all 1 ≤ i ≤ r and an unrami�ed covering ϕ : Y2 → Y1 of degree d.

Proof. (i) If Blf = ϕβ : X2 → Y1 is the Stein factorization of Blf and q1 := Bl(L1)
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then (Blf)−1(q1) = f−1Bl−1(q1) = f−1(L1) =
d∐
j=1

L1,j has irreducible components L1,j

by Lemma ??. For any q ∈ Y1 \ {q1} one has (Blf)−1(q) = f−1Bl−1(q) = f−1(q) of
cardinality

∣∣f−1(q)∣∣ = d. Therefore, the surjective morphism β : X2 → Y2 with connected
�bres is the blow down of L1,j , ∀1 ≤ j ≤ d. According to Lemma 1 (i), the restriction
f : X2 \ f−1(L1) → X1 \ L1 is an unrami�ed covering of degree d, since f : f−1(L1) → L1

is an unrami�ed covering of degree d. In such a way, there arises a commutative diagram

X2 \ f−1(L1) Y2 \ βf−1(L1)

X1 \ L1 Y1 \ {q1}
?

f

-β=Id

?

ϕ

-Bl=Id

and ϕ : Y2\βf−1(L1)→ Y1\{q1} is an unrami�ed covering of degree d. If p1,j := β(L1,j) then

β−1ϕ−1(q1) = (ϕβ)−1(q1) = (Blf)−1(q1) =
d∐
j=1

L1,j reveals that ϕ
−1(q1) = {p1,j | 1 ≤ j ≤ d}

consists of d points and ϕ : Y2 → Y1 is an unrami�ed covering of degree d. By Lemma 3 (i),
the �bered product X ′2 := X1×Y1 Y2 is the blow up of Y2 at ϕ

−1(q1) = {p1,j | 1 ≤ j ≤ d}, so
that X ′2 = X2.

According to Grothendieck's Corollary 17.7.3 (i) from [Groth4], it su�ces to show that
X ′2 = X2, in order to conclude that ϕ : Y2 → Y1 is an unrami�ed covering of degree d. We
have justi�ed straightforwardly that ϕ : Y2 → Y1 is an unrami�ed covering of degree d, in
order to use it towards the coincidence of X2 with the �bered product X ′2 := X1 ×Y1 Y2.

(ii) is an immediate consequence of the fact that the composition of morphisms with
connected �bres has connected �bres.

Corollary 7. Let f : X2 → X1 = (B/Γ1)
′ be an unrami�ed covering of degree d of a smooth

toroidal compacti�cation X1 = (B/Γ1)
′, ρ1 : X1 → Y1 be a composition of blow downs onto

a minimal surface Y1 and D(1) := X1 \ (B/Γ1) be the toroidal compactifying divisor of B/Γ1.

Then:

(i) there exist a composition ρ2 : X2 → Y2 of blow downs onto a minimal surface Y2 and

an unrami�ed covering ϕ : Y2 → Y1 of degree d, which exhibits X2 = X1 ×Y1 Y2 as a �bered

product of X1 and Y2 over Y1;
(ii) there is a subgroup Γ2 < Γ1 of index [Γ1 : Γ2] = d, such that X2 = (B/Γ2)

′ is the

toroidal compacti�cation of B/Γ2 and f restricts to unrami�ed coverings f : B/Γ2 → B/Γ1,

f : D(2) := X2 \ (B/Γ2)→ X1 \ (B/Γ2) =: D(1) of degree d;
(iii) ϕ restricts to an unrami�ed covering ϕ : ρ2(D

(2))→ ρ1(D
(1)) of degree d.

Proof. (i) is an immediate consequence of Lemma 6 (ii) and the fact that any inrami�ed
cover Y2 of a minimal surface Y1 is minimal.

(ii) The unrami�ed covering f : X2 → X1 = (B/Γ1)
′ of degree d restricts to an un-

rami�ed covering f : f−1(B/Γ1) → B/Γ1 of degree d. As in the proof of Corollary 5,
there is a subgroup Γ2 < Γ1 of index [Γ1 : Γ2] = d, such that X2 = (B/Γ2)

′ is the
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toroidal compacti�cation of B/Γ2 and f restricts to unrami�ed coverings f : B/Γ2 → B/Γ1,
f : D(2) := X2 \ (B/Γ2)→ X1 \ (B/Γ1) =: D(1) of degree d.

(iii) is an immediate consequence of Lemma 4 (ii).

De�nition 8. A smooth toroidal compacti�cation X1 = (B/Γ1)
′ is saturated if there is no

unrami�ed covering f : X2 = (B/Γ2)
′ → (B/Γ1)

′ = X1 of degree d, which restricts to an

unrami�ed covering f : B/Γ2 → B/Γ1 of degree d.

Bearing in mind that the fundamental group of a smooth projective variety is a birational
invariant, one combines Corollary 5 with Corollary 7 and obtains the following

Corollary 9. A smooth toroidal compacti�cation X1 = (B/Γ1)
′ is saturated if and only if

one and, therefore, any minimal model Y1 of X1 is simply connected.

2 Unrami�ed push forward of a smooth compacti�cation

Let X2 be a smooth projective surface, β : X2 → Y2 be a blow down with exceptional divisor

E(β) =
d∐
s=1

L1,s and f : X2 → X1 be an unrami�ed covering of degree d, which restricts

to an unrami�ed covering f : E(β) → f(E(β)) of degree d. According to Lemma 2 (ii),
L1 := f(E(β)) is a (−1)-curve on X1. Then Lemma 6 (i) implies that there is a �bered
product commutative diagram (1) with the blow down Bl : X1 → Y1 of L1 and an unrami�ed
covering ϕ : Y2 → Y1 of degree d, which shrinks β(E(β)) = {p1,j := β(L1,j) | 1 ≤ j ≤ d} to
a point q1 ∈ Y1. We say that ϕ is induced by f .

Suppose that ρ2 = β1 . . . βr : Sr := X2 → Y2 =: S0 is a composition of blow downs

βi : Si := βi+1 . . . βr(Sr) −→ Si−1 := βi . . . βr(Sr) (5)

with exceptional divisors E(βi) =
d∐
s=1

Li,s for all 1 ≤ i ≤ r. By a decreasing induction on

r ≥ i ≥ 1, let us assume that there is a �bered product commutative diagram

Sr Sr−1 . . . Si+1 Si

f(Sr) ϕr−1(Sr−1) . . . ϕi+1(Si+1) ϕi(Si)
?

f=ϕr

-βr

?

ϕr−1

?

ϕi+1

-
βi+1

?

ϕi

-Blr -
Bli+1

with �bered product squares Bljϕj = ϕj−1βj , such that ϕj restricts to an unrami�ed cov-
ering ϕj : E(βj) → Lj := ϕj(E(βj)) of degree d and ϕj−1 shrinks the set βj(E(βj)) =
{pj,s := βj(Lj,s) | 1 ≤ s ≤ d} to a point qj ∈ ϕj−1(Sj−1) for all r ≥ j ≥ i + 1. If
ϕi : Si → ϕi(Si) restricts to an unrami�ed covering ϕi : E(βi) → Li := ϕi(E(βi)) of
degree d then there is an unrami�ed covering ϕi−1 : Si−1 → ϕi−1(Si−1) of degree d, which
shrinks βi(Eβi) = {pi,s = βi(Li,s) | 1 ≤ s ≤ d} to a point qi ∈ Si−1 and closes the �bered
product commutative diagram ϕi−1βi = Bliϕi. Thus, if an unrami�ed covering f : X2 → X1

11



of degree d induces unrami�ed coverings E(βi) =
d∐
s=1

Li,s → Li of degree d for all 1 ≤ i ≤ r

then there is an unrami�ed covering ϕ := ϕ0 : Y2 = S0 → ϕ0(S0) =: Y1 of degree d, which
induces unrami�ed coverings βi(E(βi)) = {pi,s := βi(Li,s) | 1 ≤ s ≤ d} → {qi} ⊂ ϕi−1(Si−1)
of degree d for all 1 ≤ i ≤ r.

Conversely, assume that Y2 is a smooth projective surface, β : X2 → Y2 is a blow down

with exceptional divisor E(β) =
d∐
s=1

L1,s and ϕ : Y2 → Y1 is an unrami�ed covering of degree

d, which shrinks β(E(β)) = {p1,s = β(L1,s) | 1 ≤ s ≤ d} to a point q1 ∈ Y1. According to
Lemma 3 (i), there is a �bered product commutative diagram (1), where Bl : X1 → Y1 is
the blow up of Y1 at q1 ∈ Y1 and f : X2 → X1 is an unrami�ed covering of degree d, which

restricts to an unrami�ed covering f : E(β) =
d∐
s=1

L1,s → L1 := Bl−1(q1) of degree d. Let

ρ2 = β1 . . . βr : Sr := X2 → Y2 =: S0 be a composition of blow downs (5) with exceptional

divisors E(βi) =
d∐
s=1

Li,s. By an increasing induction on 1 ≤ i ≤ r, suppose that

Si Si−1 . . . S1 S0 = Y2

ϕi(Si) ϕi−1(Si−1) . . . ϕ1(S1) ϕ(Y2)
?

ϕi

-βi

?

ϕi−1

?

ϕ1

-β1

?

ϕ=ϕ0

-Bli -Bl1

is a �bered product commutative diagram with �bered product squares ϕj−1βj = Bljϕj ,
such that ϕj−1 restricts to an unrami�ed covering

ϕj−1 : βj(E(βj)) = {pj,s := βj(Lj,s) | 1 ≤ s ≤ d} −→ {qj} ⊂ ϕj−1(Sj−1)

of degree d and ϕj restricts to an unrami�ed covering

ϕj : E(βj) =

d∐
s=1

Lj,s −→ ϕj(E(βj)) =: Lj

of degree d for all 1 ≤ j ≤ i. If ϕi restricts to an unrami�ed covering

ϕi : βi+1(E(βi+1)) = {pi+1,s = βi+1(Li+1,s) | 1 ≤ s ≤ d} −→ {qi+1} ⊂ ϕi(Si)

of degree d then there is an unrami�ed covering

ϕi+1 : Si+1 −→ ϕi+1(Si+1)

of degree d, which restricts to an unrami�ed covering

ϕi+1 : E(βi+1) =
d∐
s=1

Li+1,s −→ Li+1 := ϕi+1(E(βi+1))

12



of degree d and closes the �bered product commutative diagram ϕiβi+1 = Bli+1ϕi+1 with
the blow down Bli+1 : ϕi+1(Si+1) → ϕi(Si) of Li+1. In such a way, if ϕ : Y2 → Y1 is an
unrami�ed covering of degree d, which induces unrami�ed coverings

βi(E(βi)) = {pi,s := βi(Li,s) | 1 ≤ s ≤ d} −→ {qi} ⊂ ϕi−1(Si−1)

of degree d for all 1 ≤ i ≤ r then f := ϕr : X2 → f(X2) is an unrami�ed covering of degree

d, which induces unrami�ed coverings E(βi) =
d∐
s=1

Li,s → Li of degree d for all 1 ≤ i ≤ r.

The above considerations justify the following

Lemma-De�nition 10. Let X2, Y2 be smooth projective surfaces and

ρ2 = β1 . . . βr : Sr := X2 −→ Y2 =: S0

be a composition of blow downs (5) with exceptional divisors E(βi) for all 1 ≤ i ≤ r. Then

the following are equivalent:

(i) there is an unrami�ed covering f : X2 → f(X2) of degree d, which induces unrami�ed

coverings E(βi) =
d∐
s=1

Li,s → Li of degree d for all 1 ≤ i ≤ r;

(ii) there is an unrami�ed covering ϕ : Y2 → ϕ(Y2) of degree d, which induces unrami�ed

coverings βi(E(βi)) = {pi,s = βi(Li,s) | 1 ≤ s ≤ d} → {qi} ⊂ ϕi−1(Si−1) of degree d for all

1 ≤ i ≤ r.
If there holds one and, therefore, any one of the aforementioned conditions then there is

a �bered product commutative diagram (4), where

ρ1 = Bl1 . . .Blr : X1 := ϕ(X2)→ ϕ(Y2) =: Y1

is the composition of blow downs Bli of Li for all 1 ≤ i ≤ r and we say that f : X2 → f(X2)
and ϕ : Y2 → ϕ(Y2) are compatible with ρ.

Corollary 11. Let X2 = (B/Γ2)
′ be a smooth toroidal compacti�cation and ρ2 : X2 → Y2 be

a composition of blow downs onto a minimal surface Y2. If there is an unrami�ed covering

f : X2 = (B/Γ2)
′ → f(X2) =: X1 of degree d, which is compatible with ρ2 and restricts to

an unrami�ed covering f : B/Γ2 → f(B/Γ2) of degree d then:

(i) there is a �bered product commutative diagram (4) with an unrami�ed covering ϕ :
Y2 → ϕ(Y2) =: Y1 of degree d and a composition of blow downs ρ1 : X1 → Y1 onto a minimal

surface Y1;
(ii) there is a lattice Γ1 of Aut(B) = PU(2, 1), containing Γ2 as a subgroup of index

[Γ1 : Γ2] = d and such that X1 = (B/Γ1)
′ is the toroidal compacti�cation of B/Γ1;

(iii) ϕ restricts to an unrami�ed covering ϕ : ρ2(D
(2)) → ρ1(D

(1)) of degree d, where

D(j) := Xj \ (B/Γj) are the compactifying divisors of B/Γj, 1 ≤ j ≤ 2.

Proof. (i) is an immediate consequence of Lemma 10.
Towards (ii), let us note that the composition fζ2 : B→ f(B/Γ2) of the orbifold universal

covering ζ2 : B → B/Γ2 with the unrami�ed covering f : B/Γ2 → f(B/Γ2) is Galois, since
πorb1 (B) = {1} is a normal subgroup of Γ1 := πorb1 (f(B/Γ2)). Moreover, πorb1 (B/Γ2) = Γ2 is
a subgroup of Γ1 of index [Γ1 : Γ2] = d and f(B/Γ2) = B/Γ1. By Lemma 1 (i), f : X2 → X1
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restricts to an unrami�ed covering f : D(2) = X2 \ (B/Γ2)→ D(1) := X1 \ (B/Γ1) of degree
d. The toroidal compactifying divisor D(2) of B/Γ2 has disjoint smooth elliptic irreducible
components, so that Lemma 2 (i) applies to provide that D(1) consists of disjoint smooth
elliptic irreducible components and X1 = (B/Γ1)

′ is the toroidal compacti�cation of B/Γ1.
According to Lemma 4 (ii), that su�ces for ϕ : Y2 → Y1 to restrict to an unrami�ed covering
ϕ : ρ2(D

(2))→ ρ1(D
(1)).

Corollary 12. Let X2 = (B/Γ2)
′ be a smooth toroidal compacti�cation, D(2) := X2\(B/Γ2)

be the compactifying divisor of B/Γ2 and ρ2 : X2 → Y2 be a composition of blow downs onto

a minimal surface Y2. If ϕ : Y2 → ϕ(Y2) is an unrami�ed covering of degree d, which is

compatible with ρ2 and restricts to an unrami�ed covering ϕ : ρ2(D
(2)) → ϕρ2(D

(2)) of

degree d then:

(i) there is a �bered product commutative diagram (4) with an unrami�ed covering f :
X2 → f(X2) =: X1 of degree d and a composition of blow downs ρ1 : X1 → Y1 onto a

minimal surface Y1;
(ii) there is a lattice Γ1 of Aut(B) = PU(2, 1), containing Γ2 as a subgroup of index

[Γ1 : Γ2] = d and such that X1 = (B/Γ1)
′ is the toroidal compacti�cation of B/Γ1;

(iii) f restricts to an unrami�ed covering f : B/Γ2 → B/Γ1 of degree d.

Proof. Lemma 10 justi�es (i). According to Lemma 4 (ii), f restricts to an unrami�ed
covering f : D(2) → f(D(2)) of degree d. Then Lemma 1 (i) applies to provide that f :
X2 \ D(2) = B/Γ2 → X1 \ f(D(2)) is an unrami�ed covering of degree d. The proof of
Corollary 11 (ii) has established that this is su�cient for the existence of a lattice Γ1 of
Aut(B) = PU(2, 1), containing Γ2 as a subgroup of index [Γ1 : Γ2] = d and such that
X1 \ f(D(2)) = B/Γ1. That justi�es (iii). By assumption, D(2) consists of smooth elliptic
irreducible components. Therefore f(D(2) has smooth elliptic irreducible components and
X1 = (B/Γ1)

∐
f(D(2)) is the toroidal compacti�cation of B/Γ1.

De�nition 13. Let X = (B/Γ)′ be a smooth toroidal compacti�cation. If there is no un-

rami�ed covering f : X → f(X) of degree d, which restricts to an unrami�ed covering

f : B/Γ → f(B/Γ) of degree d and is compatible with some composition of blow downs

ρ : X → Y onto a minimal surface Y , we say that X = (B/Γ)′ is primitive.

The Euler characteristic of a smooth toroidal compacti�cation X = (B/Γ)′ is a natural
number e(X) = e(B/Γ). That is why, there exists a primitive smooth toroidal compacti�-
cation X0 = B/Γ0 and a �nite sequence

Xn := X Xn−1 . . . Xi Xi−1 . . . X1 X0
-fn -fi -f1

of unrami�ed coverings fi : Xi = (B/Γi)′ → (B/Γi−1)′ = Xi−1 of degree di of smooth toroidal
compacti�cations Xj = (B/Γj)′, which restrict to unrami�ed coverings fi : B/Γi → B/Γi−1
of degree di and are compatible with some compositions of blow downs ρi : Xi → Yi onto
minimal surfaces Yi. Combining Corollary 11 with Corollary 12, one obtains the following
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Corollary 14. Let X = (B/Γ)′ be a smooth toroidal compacti�cation with toroidal com-

pactifying divisor D := X \ (B/Γ). Then X is primitive if and only if no one minimal

model Y of X with a composition of blow downs ρ : X → Y admits an unrami�ed covering

ϕ : Y → ϕ(Y ) of degree d > 1, which restricts to an unrami�ed covering ϕ : ρ(D)→ ϕρ(D)
of degree d and is compatible with ρ.

Let us suppose that a smooth toroidal compacti�cation X = (B/Γ)′ with toroidal com-
pactifying divisor D := X \ (B/Γ) admits a blow down β : X → Y of n ∈ N smooth irre-
ducible rational (−1)-curves onto a minimal surface Y and there is an unrami�ed covering
ϕ : Y → ϕ(Y ) of degree d, which restricts to unrami�ed coverings ϕ : β(D) → ϕβ(D) and
ϕ : β(E(β)) → ϕβ(E(β)) of degree d. Then the Euler number of the smooth surface ϕ(Y )

is e(ϕ(Y )) = e(Y )
d ∈ Z and the cardinality of ϕβ(E(β)) if |ϕβ(E(β))| = |β(E(β))|

d = n
d ∈ N,

so that d ∈ N divides e(Y ) and n = |β(E(β))|. As a result, d divides the greatest common
divisor GCD(|β(E(β))| , e(Y )).

Note that the compatibility of an unrami�ed covering ϕ : Y → ϕ(Y ) with β : X → Y
reduces to ϕ−1(ϕβ(E(β)) = β(E(β)) and is detected on Y . When ρ = β1 . . . βr : X → Y
is a composition of r ≥ 2 blow downs, the compatibility of an unrami�ed covering ϕ :
Y → ϕ(Y ) of degree d with ρ cannot be traced out on the minimal model Y of X alone.
Namely, if S0 := Y , T0 := ϕ(Y ) then in the notations from the commutative diagram (3),
the unrami�ed covering ϕ1 : S1 → T1 of degree d may restrict to an unrami�ed covering
ϕ1 : β2(E(β2)) → ϕ1β2(E(β2)) of degree d, but ϕ0 := ϕ is not supposed to restrict to
an unrami�ed covering ϕ : β1β2(E(β2)) → ϕβ1β2(E(β2)) of degree d. More precisely, if
an irreducible component L1,j of E(β1) intersects β2(E(β2)) in at least two points then
|β1β2(E(β2))| < d and ϕ : β1β2(E(β2))→ ϕβ1β2(E(β2)) is of degree < d.

3 Saturated and primitive smooth compacti�cations of non-

positive Kodaira dimension

De�nition 15. Let X = (B/Γ)′ and X0 = (B/Γ0)
′ be smooth toroidal compacti�cation. We

say that X dominates X0 and write X � X0 or X0 � X if there exist a �nite sequence of

ball lattices

Γn := Γ < Γn−1 < . . . < Γi < Γi−1 < . . . < Γ1 < Γ0,

with smooth toroidal compacti�cations Xi = (B/Γi)′ of the corresponding ball quotients B/Γi
and a �nite sequence of unrami�ed coverings

Xn := X Xn−1 . . . Xi Xi−1 . . . X1 X0
-fn -fi -f1

of degree deg [fi : Xi → Xi−1] = [Γi−1 : Γi] = di ∈ N, which restrict to unrami�ed coverings

fi : B/Γi → B/Γi−1 of degree di and are compatible with some compositions ρi = βi,1 . . . βi,ri :
Xi → Yi of blow downs βi,j onto minimal surfaces Yi.

It is clear that a smooth toroidal compacti�cation X = B/Γ is saturated if and only if it
is maximal with respect to the partial order �. Similarly, X is primitive exactly when it is
minimal with respect to �. Note that the partial order � on the set S of the smooth toroidal
compacti�cations X = (B/Γ)′ is artinian, i.e., any subset So ⊆ S has a minimal element
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Xo = (B/Γo)′ ∈ So. The minimal X ∈ S are exactly the primitive ones, but the minimal
Xo ∈ So are not necessarily primitive, since such Xo is not supposed to be a minimal element
of S.

The present section discusses the saturated and the primitive smooth toroidal compact-
i�cations X = (B/Γ)′ of Kodaira dimension κ(X) ≤ 0.

Proposition 16. If X = (B/Γ)′ is a smooth toroidal compacti�cation of Kodaira dimension

κ(X) = −∞ then X is a rational surface or X has a ruled minimal model π : Y → E with

an elliptic base E.

Any smooth rational X = (B/Γ)′ is both saturated and primitive.

There is no smooth saturated X = (B/Γ)′, whose minimal model is a ruled surface

π : Y → E with an elliptic base E.

Proof. (i) Let ρ : X = (B/Γ)′ → Y be a composition of blow downs onto a minimal surface
Y of κ(Y ) = −∞, Then Y = P2(C) is the complex projective plane or π : Y → E is a
ruled surface with a base E of genus g ∈ Z≥0. The toroidal compactifying divisor D :=

X \ (B/Γ) =
k∐
j=1

Dj has disjoint smooth irreducible elliptic components Dj . If g ≥ 2 then

the morphisms πρ : Dj → E map to points pj := πρ(Dj) ∈ E, so that ρ(Dj) ⊆ π−1(pj) for
all 1 ≤ j ≤ k. The exceptional divisor L of ρ : X → Y has �nite image ρ(L) = {q1, . . . , qm}
on Y and ρ(L) ⊆

m∐
i=1

π−1(π(qi)). Therefore

Y ′ := Y \

[
m∐
i=1

π−1(π(qi))

]
⊆ Y \ ρ(L) ≡ X \ L

and ρ acts identically on Y ′. Moreover,

Y ′′ := Y ′ \

 k∐
j=1

π−1(pj)

 = Y \

( m∐
i=1

π−1(π(qi))

)∐ k∐
j=1

π−1(pj)

 ⊆ B/Γ.
However, Y ′′ contains (in�nitely many) �bres π−1(e) ' P1(C), e ∈ E of π : Y → E and
that contradicts the Kobayashi hyperbolicity of B/Γ. In such a way, we have shown that
any minimal model Y of a smooth toroidal compacti�cation X = (B/Γ)′ of κ(X) = −∞ is
birational to P2(C) or to a minimal ruled surface π : Y → E with an elliptic base E.

Any rational X = (B/Γ)′ is simply connected and does not admit �nite unrami�ed
coverings X1 → X of degree d > 1. That is why X is saturated. Let us suppose that f :
X = (B/Γ)′ → X0 = (B/Γ0)

′ is an unrami�ed covering of degree d > 1, which is compatible
with some composition of blow downs ρ : X → Y onto a minimal rational surface Y and
restricts to an unrami�ed covering f : B/Γ → B/Γ0 of degree d. The Kodaira dimension is
preserved under �nite unrami�ed coverings, so that κ(X0) = κ(X) = −∞. The surface X0 is
not simply connected, whereas non-rational. Therefore, there is a composition ρ0 : X0 → Y0
of blow downs onto a ruled surface π0 : Y0 → E0 with base E0 of genus g0 ∈ N. The surjective
morphism ρ0f : X = (B/Γ)′ → Y0 induces an embedding (ρ0f)∗ : H0,1(Y0)→ H0,1(X). On
one hand, the irregularity of Y0 is h

0,1(Y0) := dimCH
0,1(Y0) = go ∈ N. On the other hand,

the rational surface X has vanishing irregularity h0,1(X) = 0. That contradicts the presence
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of a �nite unrami�ed covering f : X → X0 of degree d > 1 and shows that any smooth
rational toroidal compacti�cation X = (B/Γ)′ is primite.

Let X = (B/Γ)′ be a smooth toroidal compacti�cation, whose minimal model Y is a
ruled surface π : Y → E with an elliptic base E. Since Y is birational to P1(C)×E and the
fundamental group is a birational invariant, one has π1(X) ' π1(Y ) ' π1(E) ' (Z2,+). In
particular, Y is not simply connected. According to Corollary 9, X cannot be saturated.

According to the Enriques-Kodaira classi�cation, there are four types of minimal smooth
projective surfaces Y of Kodaira dimension κ(Y ) = 0. These are the abelian and the bi-
elliptic surfaces with universal cover C2, as well as theK3 and the Enriques surfaces withK3
universal cover. If ϕ : Y2 → Y1 is a �nite unrami�ed covering of smooth projective surfaces
then the Kodaira dimension κ(Y1) = κ(Y2) and the universal covers Ỹ1 = Ỹ2 coincide. Let
Y2 be a smooth projective surface with a �xed point free involution go : Y2 → Y2 and
β : X2 → Y2 be the blow up of Y2 at a 〈go〉-orbit {p1,1, p1,2 = go(p1,1)} ⊂ Y2. Then by the
very de�nition of a blow up, go iniduces a �xed point free involution g1 : X2 → X2, which
leaves invariant the exceptional divisor E(β) = L1,1

∐
L1,2, L1,i := β−1(p1,i) of β and there

is a �bered product commutative diagram (4) with a 〈go〉-Galois covering ϕ : Y2 → Y1, a 〈g1〉-
Galois covering f : X2 → X1 and the blow up Bl : X1 → Y1 of Y1 at {q1} = ϕ({p1,1, p1,2}).
Now, suppose that ρ2 = β1 . . . βr : Sr := X2 → Y2 =: S0 is a composition of blow downs with
exceptional divisors E(βi) = Li,1

∐
Li,2 and go : S0 → S0 is a �xed point free involution. By

an increasing induction on 1 ≤ i ≤ r, if gi−1 : Si−1 → Si−1 is a �xed point free involution,
which leaves invariant βi(E(βi)) = {pi,1, pi,2} then there is a �xed point free involution
gi : Si → Si, which leaves invariant E(βi) = Li,1

∐
Li,2. In such a way, if a �xed point free

involution g0 : S0 → S0 induces isomorphisms Li,1 → Li,2 for all 1 ≤ i ≤ r then there is a
�xed point free involution gr : Sr → Sr and a �bered product commutative diagram (4) with
a 〈go〉-Galois covering ϕ : Y2 → Y1, a 〈gr〉-Galois covering f : X2 → X1 and the composition
ρ1 = Bl1 . . .Blr : X1 → Y1 of the blow downs of E(βi)/〈gi〉 = Li ' P1(C). If go : S0 → S0
induces isomorphisms Li,1 → Li,2 of the irreducible components of E(βi) = Li,1

∐
Li,2 for

all 1 ≤ i ≤ r, we say that go is compatible with ρ2 = β1 . . . βr.

Proposition 17. Let X = (B/Γ)′ be a smooth toroidal compacti�cation, D := X \ (B/Γ)
be the toroidal compactifying divisor of B/Γ and ρ = β1 . . . βr : X → Y be a composition of

blow downs onto a K3 surface Y . Then:

(i) X is a saturated compacti�cation;

(ii) X is non-primitive exactly when there is a �xed point free involution go : Y → Y ,

which is compatible with ρ and leaves invariant ρ(D);
(iii) if X is non-primitive then there is a �bered product commutative diagram

X Y

X0 Y0

?

f

-ρ

?

ϕ

-ρ0

with a primitive smooth toroidal compacti�cation X0 = (B/Γ0)
′, a composition of blow downs
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ρ0 : X0 → Y0 onto a minimal Enriques surface Y0 and unrami�ed double covers f : X → X0,

ϕ : Y → Y0.

Proof. (i) is an immediate consequence of π1(Y ) = {1}, according to Corollary 9.
(ii) and (iii) follow from Corollary 14 and the fact that a minimal projective surface Y0

admits an unrami�ed covering ϕ : Y → Y0 by a K3 surface Y if and only if Y0 is the quotient
of Y by a �xed point free involution go : Y → Y . Such Y0 = Y/〈go〉 are called minimal
Enriques surfaces and do not admit unrami�ed coverings ϕ0 : Y0 → ϕ0(Y0) of degree > 1.

Proposition 18. Let X = (B/Γ)′ be a smooth toroidal compacti�cation and ρ : β1 . . . βr :
X → Y be a composition of blow downs onto a minimal Enriques surface Y . Then:

(i) X is a primitive compacti�cation;

(ii) X is not saturated;

(iii) there is an unrami�ed double cover f : X1 = B/Γ1 → B/Γ = X by a saturated

smooth toroidal compacti�cation X1 = (B/Γ1)
′ with K3 minimal model Y1.

Proof. (i) is due to the lack of an unrami�ed covering ϕ : Y → ϕ(Y ) of degree d > 1.
(ii) follows from π1(Y ) = (Z2,+) 6= {1}.
(iii) is an immediate consequence of the Enriques-Kodaira classi�cation of the smooth

projective surfaces.

Let X = (B/Γ)′ be a smooth toroidal compacti�cation with abelian or bi-elliptic minimal
model Y . According to Theorem 1.3 from Di Cerbo and Stover's article [DiCerboStover2],
X can be obtained from Y by blow up β : X → Y of n ∈ N points p1, . . . , pn ∈ Y .

Proposition 19. Let X = (B/Γ)′ be a smooth toroidal compacti�cation with a blow down

β : X → Y onto a minimal surface Y with exceptional divisor E(β) =
n∐
i=1

Li and D :=

X \ (B/Γ) be the toroidal compactifying divisor of B/Γ. Then:

(i) β transforms E(β) onto the singular locus β(E(β)) = β(D)sing of β(D) ⊂ Y ;

(ii) X is non-primitive if and only if there is an unrami�ed covering ϕ : Y → ϕ(Y ) of

degree d > 1, which restricts to an unrami�ed covering ϕ : β(D)→ ϕβ(D) of degree d;
(iii) the relative automorphism group Aut(Y, β(D)) = Aut(Y, β(D), β(D)sing) admits an

isomorphism

Φ : Aut(Y, β(D)) −→ Aut(X,D)

with the relative automorphism group Aut(X,D) = Aut(X,D,E(β));
(iv) go ∈ Aut(Y, β(D) is �xed point free if and only if it corresponds to a �xed point free

g = Φ(go) ∈ Aut(X,D).

Proof. (i) If D =
k∐
j=1

Dj has irreducible components Dj then the singular locus of β(D) is

β(D)sing =
[
∪kj=1β(Dj)

sing
]
∪ [∪1≤i<j≤kβ(Di) ∩ β(Dj)] .

18



Since Dj are smooth irreducible elliptic curves, β(D)sing ⊆ β(E(β)). Conversely, any (−1)-

curve Li on X = (B/Γ)′ intersects D =
k∐
j=1

Dj in at least three points, due to the Kobayashi

hyperbolicity of B/Γ. In fact, |Li ∩ F | ≥ 4, according to Theorem 1.1 (2) from Di Cerbo and
Stover's article [DiCerboStover2]. Therefore, the multiplicity of β(Li) = pi with respect to
β(D) is ≥ 4 and pi ∈ β(D)sing. That justi�es β(E(β)) ⊆ β(D)sing and β(E(β)) = β(D)sing.

(ii) By Corollary 14 and (i), X = (B/Γ)′ is non-primitive if and only if there is an
unrami�ed covering ϕ : Y → ϕ(Y ) of degree d > 1, which restricts to unrami�ed coverings
ϕ : β(D) → ϕβ(D) and ϕ : β(D)sing → β(D)sing of degree d. Let us observe that any
unrami�ed covering ϕ : β(D) → ϕβ(D) of degree d restricts to an unrami�ed covering
ϕ : β(D)sing → β(D)sing of degree d, as far as the local biholomorphism ϕ : β(D)→ ϕβ(D)
preserves the multiplicities of the points with respect to β(D) and β(D)sing consists of the
points of β(D) of multiplicity ≥ 2.

(iii) If a holomorphic automorphism go : Y → Y restricts to a holomorphic automorphism
go : β(D) → β(D) then go preserves the multiplicities of the points with respect to β(D)
and β(D)sing is 〈go〉-invariant. That justi�es Aut(Y, β(D)) ≤ Aut(Y, β(D), β(D)sing) and
Aut(Y, β(D)) = Aut(Y, β(D), β(D)sing).

In order to show the existence of a group isomorphism

Φ : Aut(Y, β(D), β(D)sing) −→ Aut(X,D,E(β)),

let us pick up go ∈ Aut(Y, β(D), β(D)sing). Then X \ E(β) = Y \ β(E(β)) = Y \ β(D)sing

is acted by Φ(go)|X\E(β) := go|Y \β(D)sing . By the very de�nition of a blow up at a point,

the bijection go : β(D)sing → β(D)sing with go(β(L1,i)) = β(L1,j) induces isomorphisms
Φ(go) : L1,i → L1,j and provides an element Φ(go) ∈ Aut(X,E(β)). After observing that
Φ(go)(D \ E(β)) = go(β(D) \ β(D)sing) = β(D) \ β(D)sing = D \ E(β), one concludes that
Φ(go) transforms the Zariski closure D of D \ E(β) onto itself and Φ(go) ∈ Aut(D).

The correspondence Φ is a group homomorphism since go and Φ(go) coincide on Zariski
open subsets of Y , respectively, X. Towards the bijectiveness of Φ, let g ∈ Aut(X,D,E(β))
and note that Y \β(D)sing = X \E(β). That allows to de�ne φ−1(g)|Y \β(D)sing := g|X\E(β).
The isomorphism g : E(β)→ E(β) of the exceptional divisor E(β) of β induces a permuta-
tion Φ−1(g) : β(D)sing → β(D)sing of the �nite set β(D)sing and provides an automorphism
Φ−1(g) ∈ Aut(Y, β(D)sing). Bearing in mind that Φ−1(g)(β(D)\β(D)sing) = g(D \E(β)) =
D \ E(β) = β(D) \ β(D)sing, one concludes that Φ−1(g) ∈ Aut(β(D)) is an automorphism
of the Zariski closure β(D) of β(D) \ β(D)sing = β(D)smooth.

Note that any automorphism g ∈ Aut(X,D) acts on the set of the smooth irreducible
rational curves on X. Moreover, g preserves the self-intersection number of such a curve

and 〈g〉 acts on the set E(β) =
n∐
i=1

Li of the (−1)-curves on X. Thus, g ∈ Aut(X,D,E(β))

and Aut(X,D) ⊆ Aut(X,D,E(β)), whereas Aut(X,D,E(β)) = Aut(X,D).
(iv) If g ∈ Aut(X,D) has no �xed points on X then go := Φ−1(g) ∈ Aut(Y, β(D))

restricts to go|Y \β(E(β)) = g|X\E(β) without �xed points. The assumption go(pi) = pi =
Bl(Li) for some 1 ≤ i ≤ n implies that g restricts to an automorphism g : Li → Li.
Any biholomorphism g ∈ Aut(Li) = Aut(P1(C)) = PGL(2,C) of the projective line Li =
P1(C) is a fractional linear transformation and has two �xed points, counted with their
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multiplicities. That contradicts the lack of �xed points of g on X and implies that the
associated automorphism go = Φ−1(g) ∈ Aut(Y, β(D)) has no �xed points on Y .

Conversely, if go ∈ Aut(Y, β(D)) has no �xed points on Y and g := Φ(go) then the

restriction g|X\E(β) = go|Y \β(β) has no �xed points. If g(x) = x for some x ∈ E(β) =
n∐
i=1

Li

then x ∈ Li for some 1 ≤ i ≤ n and g(Li) = Li. As a result, go �xes pi = β(Li) ∈ Y , which
is an absurd. In such a way, any �xed point free go ∈ Aut(Y, β(D)) corresponds to a �xed
point free g = Φ(go) ∈ Aut(X,D).

Proposition 20. Let X = (B/Γ)′ be a smooth toroidal compacti�cation with toroidal com-

pactifying divisor D := X \ (B/Γ) and a blow down β : X → Y of n ∈ N smooth irreducible

rational (−1)-curves. Then Aut(X,D) is a �nite group.

Proof. By Proposition 19 (iii), Aut(X,D) = Aut(X,D,E(β)). Any g ∈ Aut(X,D) acts on

D =
k∐
j=1

Dj and induces a permutation of the smooth elliptic irreducible components D1,

. . ., Dk of D. In such a way, there arises a representation

Σ1 : Aut(X,D) −→ Sym(D1, . . . , Dk) = Sym(k).

The image of Σ1 in the �nite group Sym(k) is a �nite group, so that it su�ces to show
the �niteness of ker(Σ1), in order to conclude that Aut(X,D) is a �nite group. Similarly,

Aut(X,D) = Aut(X,D,E(β)) acts on the exceptional divisor E(β) =
n∐
i=1

Li of β : X → Y

and de�nes a representation

Σ2 : Aut(X,D) −→ Sym(L1, . . . , Ln) = Sym(n).

Since Σ2(ker(Σ1)) is a �nite group, it su�ces to show that G := ker(Σ2)∩ker(Σ1) is a �nite
group. For any 1 ≤ i ≤ n, 1 ≤ j ≤ k and g ∈ G, the �nite set Li ∩Dj is transformed into
itself, according to g(Li∩Dj) ⊆ g(Li)∩g(Dj) = Li∩Dj . Therefore, there is a representation

Σi,j : G −→ Sym(Li ∩Dj).

The image Σi,j(G) is a �nite group, while the kernel Ki,j := ker(Σi,j) �xes any point
p ∈ Li∩Dj and acts on Dj . It is well known that the holomorphic automorphisms Autp(Dj)
of an elliptic curves Dj , which �x a point p ∈ Dj form a cyclic group of order 2, 4 or 6.
Therefore, Ki,j ≤ Autp(D), G, ker(Σ1) and Aut(X,D) are �nite groups.

De�nition 21. A smooth toroidal compacti�cation X = (B/Γ)′ with a blow down β : X → Y
of n ∈ N smooth irreducible rational (−1)-curves onto a minimal surface Y is Galois non-

primitive if there is a �xed point free automorphism g ∈ Aut(X,D) \ {IdX}.

Any Galois non-primitive X = (B/Γ)′ is non-primitive, because the 〈g〉-Galois covering
ζ : X → ζ(X) = X/〈g〉 is unrami�ed and restricts to unrami�ed coverings ζ : B/Γ→ ζ(B/Γ)

and ζ : E(β) =
n∐
i=1

Li → ζ(E(β)) of degree |〈g〉| = ord(g).
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Note that the presence of an unrami�ed covering ϕ : Y → ϕ(Y ) implies the coincidence

Ỹ = ϕ̃(Y ) of the universal cover Ỹ of Y with the universal cover ϕ̃(Y ) of ϕ(Y ). The
fundamental group π1(ϕ(Y )) of ϕ(Y ) acts on Ỹ by biholomorphic automorphisms with-
out �xed points and contains the fundamental group π1(Y ) of Y as a subgroup of index
[π1(ϕ(Y )) : π1(Y )] = d.

Proposition 22. Let X = (B/Γ)′ be a smooth toroidal compacti�cation with toroidal com-

pactifying divisor D := X \ (B/Γ), β : X → Y be a blow down of n ∈ N smooth irreducible

rational (−1)-curves to a minimal surface Y and N(π1(Y )) be the normalizer of the fun-

damental group π1(Y ) of Y in the biholomorphism group Aut(Ỹ ) of the universal cover Ỹ
of Y . Then X is Galois non-primitive if and only if there exist a natural divisor d > 1 of

GCD(
∣∣β(D)sing

∣∣ , e(Y )) ∈ N and an unrami�ed covering ϕ : Y → ϕ(Y ) of degree d, such

that π1(ϕ(Y )) ∩ N(π1(Y )) 
 π1(Y ) and ϕ : β(D) → ϕβ(D) is an unrami�ed covering of

degree d.

Proof. If X = (B/Γ)′ is Galois non-primitive then there exists a �xed point free biholo-
morphism g ∈ Aut(X,D) \ {IdX} of X. By Proposition 19(iv), g induces a �xed point free
biholomorphism go = Φ−1(g) ∈ Aut(Y, β(D))\{IdY } of Y . The element go of the �nite group
Aut(Y, β(D)) is of �nite order d ∈ N \ {1} and the 〈go〉-Galois coverings ζ : Y → Y/〈go〉,
ζ : β(D) → ζβ(D) are unrami�ed and of degree d. The automorphism go of Y lifts to
an automorphism σ ∈ Aut(Ỹ ) of the universal cover Ỹ of Y , which normalizes π1(Y ) and
belongs to

π1(ζ(Y )) = π1(Y/〈go〉) = π1

(
(Ỹ /π1(Y ))/〈σπ1(Y )〉

)
= π1

(
Ỹ /〈σ, π1(Y )〉

)
= 〈σ, π1(Y )〉.

Conversely, suppose that ϕ : Y → ϕ(Y ) is an unrami�ed covering of degree d > 1,
which restricts to an unrami�ed covering ϕ : β(D) → ϕβ(D) of degree d and there exists
σ ∈ [π1(ϕ(Y )) ∩N(π1(Y ))] \ π1(Y ). Then go := σπ1(Y ) ∈ Aut(Y ) = N(π1(Y ))/π1(Y ) is a
non-identical biholomorphism go : Y → Y . Since 〈σ, π1(Y )〉 is a subgroup of π1(ϕ(Y )), the
unrami�ed covering ϕ : Y → ϕ(Y ) factors through the 〈go〉-Galois covering ζ : Y → Y/〈go〉
and a covering ϕo : Y/〈go〉 → ϕ(Y ) along the commutative diagram

Y Y/〈go〉

ϕ(Y )

@
@

@
@R

ϕ

-ζ

?

ϕo (6)

The �nite coverings ζ : Y → Y/〈go〉 and ϕo : Y/〈go〉 → ϕ(Y ) are unrami�ed, because their
composition ϕ = ϕoζ : Y → ϕ(Y ) is unrami�ed. That is why, go has no �xed points on Y .
If β(D) ⊂ Y is not 〈go〉-invariant then there is an orbit Orb〈go〉(yo) ⊂ Y of some yo ∈ β(D)
which intersects, both, β(D) and Y \ β(D). Therefore, ζ : β(D) → ζβ(D) has a �bre
ζ−1(ζ(yo)) of cardinality

∣∣ζ−1(ζ(yo))
∣∣ < deg(ζ) = |〈go〉| = ord(go) and ζ : β(D) → ζβ(D)

is rami�ed. As a result, the composition ϕ = ϕoζ : β(D) → ϕβ(D) is rami�ed. The
contradiction shows the 〈go〉-invariance of β(D). According to Proposition 19 (iv), the
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�xed point free go ∈ Aut(Y, β(D)) \ {IdY } corresponds to a �xed point free g = Φ(go) ∈
Aut(X,D) \ {IdX} and X is Galois non-primitive.

De�nition 23. A covering ϕ : Y → ϕ(Y ) by a smooth projective surface Y has Galois

factorization if there exist go ∈ Aut(Y ) \ {IdY } and a covering ϕo : Y/〈go〉 → ϕ(Y ), such
that ϕ = ϕoζ gactors through the 〈go〉-Galois covering ζ : Y → Y/〈go〉 and a covering ϕo
along the commutative diagram (6).

Now, Proposition 22 can be reformulated in the form of the following

Corollary 24. Let X = (B/Γ)′ be a non-primitive smooth toroidal compacti�cation with

toroidal compactifying divisor D := X \ (B/Γ), β : X → Y be a blow down of n ∈ N
smooth irreducible rational (−1)-curves onto a minimal surface Y and ϕ : Y → ϕ(Y ) be an

unrami�ed covering of degree d, which restricts to an unrami�ed covering ϕ : β(D)→ ϕβ(D)
of degree d. Then X is Galois non-primitive if and only if ϕ admits a Galois factorization.

Corollary 25. (i) Let X = (B/Γ)′ be a smooth toroidal compacti�cation with abelian min-

imal model Y . Then X is not saturated and X is non-primitive if and only if it is Galois

non-primitive.

(ii) If X = (B/Γ)′ is a smooth toroidal compacti�cation with bi-elliptic minimal model

Y then X is not saturated.

Proof. (i) Any abelian surface Y has non-trivial fundamental group π1(Y ) ' (Z4,+). Ac-
cording to Corollary 9, that su�ces for a smooth toroidal compacti�cation X = (B/Γ)′ with
abelian minimal model Y to be non-saturated.

By Theorem 1.3 from Di Cerbo and Stover's article [DiCerboStover2], if a smooth toroidal
compacti�cation X = (B/Γ)′ has abelian minimal model Y then there is a blow down
β : X → Y of n ∈ N smooth irreducible rational (−1)-curves on X onto Y . Such X is
non-primitive exactly when there exists an unrami�ed covering ϕ : Y → ϕ(Y ) of degree
d > 1, which restricts to an unrami�ed covering ϕ : β(D) → ϕβ(D) of degree d. Since Y

and ϕ(Y ) have one and a same universal cover ϕ̃(Y ) = Ỹ = C2 and one and a same Kodaira
dimension κ(ϕ(Y )) = κ(Y ) = 0, the minimal smooth irreducible projective surface ϕ(Y ) is
abelian or bi-elliptic.

If ϕ(Y ) is an abelian surface then its fundamental group π1(ϕ(Y )) ' (Z4,+) is abelian
and π1(Y ) ' (Z4,+) is a normal subgroup of π1(ϕ(Y )). As a result, ϕ : Y → ϕ(Y ) is a
π1(ϕ(Y ))/π1(Y )-Galois covering and Y is Galois non-primitive.

Let us suppose that ϕ(Y ) is a bi-elliptic surface. According to Bagnera-de Franchis
classi�cation of the bi-elliptic surfaces from [BagneraDeFranchis], there is an abelian surface
A and a cyclic subgroup 〈g〉 ≤ Aut(A) of order d ∈ {2, 3, 4, 6} with a non-translation
generator g ∈ Aut(A), such that ϕ(Y ) = A/〈g〉. Let AffLin(C) := T (C2)oGL(2,C) be the

group of the a�ne linear transformations of C2 = Ỹ = ϕ̃(Y ) = Ã and

L : AffLin(C2) −→ GL(2,C)

be the group homomorphism, associating to σ ∈ AffLin(C2) its linear part L(σ) ∈ GL(2,C).
Then the fundamental group of A is the maximal translation subgroup

π1(A) = π1(ϕ(Y )) ∩ ker(L)
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of π1(ϕ(Y )). The translation subgroup π1(Y ) ≤ π1(ϕ(Y ))∩ ker(L) of π1(ϕ(Y )) is contained
in π1(A) and the unrami�ed covering ϕ : Y → ϕ(Y ) factors through unrami�ed coverings
ϕ1 : Y → A and ϕ2 : A→ ϕ(Y ), along the commutative diagram

Y A

ϕ(Y )

@
@
@R

ϕ

-ϕ1

?

ϕ2 .

The covering ϕ1 : Y → A is π1(A)/π1(Y )-Galois, so that ϕ = ϕ2ϕ1 is a Galois factorization
of ϕ for π1(Y ) � π1(A). In the case of π1(Y ) = π1(A), there is an isomorphism Y '
C2/π1(Y ) ' C2/π1(A) = A and the covering ϕ : Y ' A → ϕ(Y ) = A/〈g〉 is 〈g〉-Galois.
Thus, X is Galois non-primitive and a co-abelian smooth toroidal compacti�cation X =
(B/Γ)′ is non-primitive if and only if it is Galois non-primitive.

(ii) The fundamental group π1(Y ) of a bi-elliptic surface Y is subject to an exact sequence

1 π1(Y ) ∩ ker(L) π1(Y ) 〈g〉 1- - - -

with a non-translation cyclic subgroup 〈g〉 of Aut
(
C2/π1(Y ) ∩ ker(L)

)
= Aut(Ao) of order

2, 3, 4 or 6. In particular, Y is not simply connected and a smooth toroidal compacti�cation
X = (B/Γ)′ with bi-elliptic minimal model Y is not saturated.
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