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Recognition of human activity and the state of an assembly task
using vision and inertial sensor fusion methods

James Male and Uriel Martinez-Hernandez

Abstract— The development of reliable human machine in-
terfaces is key to accomplishing the goals of Industry 4.0.
This work proposes the late fusion of a visual recognition
and human action recognition classifier. Vision is used to
recognise the number of screws assembled into a mock part
while action recognition from body worn Inertial Measurement
Units (IMUs) classifies actions done to assemble the part.
Convolutional Neural Network (CNN) methods are used in both
modes of classification before various late fusion methods are
analysed for prediction of a final state estimate. The fusion
methods investigated are mean, weighted average, Support
Vector Machine (SVM), Bayesian, Artificial Neural Network
(ANN) and Long Short Term Memory (LSTM). The results
show the LSTM fusion method to perform best, with accuracy
of 93% compared to 81% for IMU and 77% for visual sensing.
Development of sensor fusion methods such as these is key to
reliable Human Machine Interaction (HMI).

I. INTRODUCTION
The development of Industry 4.0 is widely regarded as

the next major milestone for the manufacturing industry [1].
This development will allow highly customizable products
and services with increases in efficiency and faster delivery
time [2][3][4]. There are a wide variety of technologies un-
derpinning the development of Industry 4.0: cyber-physical
systems, Human Robot Interaction, sensor fusion, artificial
intelligence, Internet of Things, amongst others [1].

A key aspect to the fulfilment of achieving Industry 4.0
is the development of natural human robot collaboration
(HRC) [1][2][4]. In HRC, humans must be able to work
closely with robots in an efficient, safe and predictable
manner. These processes require the robot to be capable of
perceiving accurately the current task being achieved and its
relation with the wider goal. This knowledge can then lead
to a predictive nature where the robot proactively decides
what actions are required next for more natural interaction.
This approach can be applied to Human Machine Interaction
(HMI) where a machine may be made more intelligent by
understanding the users need.

For machines and humans to work closely in an efficient
and safe manner, the machines should be capable of un-
derstanding and making decisions during interaction tasks.
These processes have led to the research and development
of computation methods for the recognition of human ac-
tions, gesture control and learning from interaction with the
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Fig. 1. Overview of the multimodal sensor fusion approach for recognition
of the number of screws and bolts assembled into a wooden part.

environment [2][5][6][7]. These computation methods need
to make use of information from various sensing modalities,
together with fusion strategies that allow machines or robots
to make accurate decisions [8][9][10]. Examples of sensor
fusion studied before include multimodal vision [11], visual-
inertial [12][13], visual-audio [14].

Convolutional Neural Networks (CNNs) have been shown
to have large success and versatility across sensing modal-
ities with limited requirement for prior feature extraction
and hence are used in this study. While fusion methods
should build on being adaptable to a wide range of sensor
modalities, this work focuses on the use of IMU and visual
sensing. These sensing modalities complement each other
well and are useful in an industrial setting having already
shown success in various other applications [12][15][16].

The work presented here is focused around a mock indus-
trial assembly task. A wooden part requiring three screws and
a bolt to be inserted is used to simulate a part with assembly
sequence requiring various tasks (Fig. 1). Visual recognition
is used to determine the current number of screws and
bolts inserted while action recognition from bodyworn IMU
sensors tracks the tasks completed so far in the assembly
process. In both vision and IMU recognition, CNN classifiers
are used for recognition of the desired features while fusion
of the two output classes by averaging, SVM, Bayesian,
ANN and LSTM methods provides a more reliable estimate
of the current part state. This work builds on that done in
[17] where a weighted averaging fusion method is shown to
have improved results in a 3D printer assembly task when
compared to individual vision, IMU and EMG methods.

Training of the visual and IMU classifiers is initially
done separately offline to optimise and evaluate performance.
Evaluation of the final fusion system is done using a data set
recorded in real time by completing the full assembly process
and evaluating the accuracy of the individual vision and IMU
methods along with the proposed fusion method.



Fig. 2. (a) Part to be assembled (b-f) example images for classification:
(b) Screw Full (c) Screw Hole (d) Bolt Full (e) Bolt Hole (f) Null

II. METHODS

A semi-realistic assembly task is devised where the ben-
efits of multimodal sensor fusion can be investigated. A
6×10 cm wooden part (Fig. 2a) is made with 3 holes requir-
ing screws and one larger hole requiring a bolt; the screws
are inserted with a screwdriver and the bolt with an Allen
key. The part is used to collect visual and IMU training and
testing data, as well as a data set of real time complete actions
sequences for evaluation of various fusion methods. Various
assembly task actions common to an industrial setting have
been investigated previously [18][19][20], the screwdriver
and Allen key movement actions are relatively similar so
provide some challenge for a classifier to identify.

A. Vision Sensing

Visual recognition is used to assess the current completion
level of the part being assembled. A Kinect V1 RGB sensor
is used to count the number of screws and bolts currently in
the part. The recognition of screws being present or absent
through vision has been demonstrated before [6][21] and
while not challenging in ideal conditions, variation in lighting
and occlusions present a cause for errors.

The RGB image is converted to greyscale before im-
age processing techniques isolate the locations of estimated
screws or screw holes (Fig. 3). The image has Gaussian and
median filtering applied before a Sobel filter with thresh-
olding to find edges. Eroding the image fills in the circular
regions where a screw/bolt may be found then a circular blob
detector is applied to find possible candidates.

For each of the possible screw/bolt locations a 28×28 pixel
greyscale square is extracted around the centre point to feed
into a classifier, see examples Fig. 2b-f. The classifier has
a CNN structure (Fig. 4a) as this has been shown to have
success in many image recognition tasks. The 28×28 input
goes first through two convolution layers each with kernels
of size 3×3 and 100 filters before a max-pooling layer with
pool size of 2×2. Two more convolution layers and a max-
pooling layer with the same structures are then applied before
the data is flattened and fed into a fully connected layer
with 128 units. A dropout layer with probability=0.5 follows
before the softmax activation layer outputs to five categories:
screw hole, screw, bolt hole, bolt, null.

The image classifier is trained offline using a data set of
20790 images. The data set is split into 16016 training, 4004
validation and 770 test images with an equal split between

Fig. 3. Steps of image processing: (a) Original (b) Grayscale (c) Gaussian
and median filtering (d) Sobel filter (e) Thresholding (f) Erosion (g) Blob
detection (h) Classification and four closest points found

all 5 classes. For training the Adam optimiser is used with
learning rate of 0.001, 12 epochs and batch size of 8.

Points classified as null are removed under the assumption
they represent errors in the previous localisation techniques.
Given the roughly square screw hole arrangement, the four
points (or less) with most similar distance to each other are
found and used as the candidates for state estimation.

To find the current state estimation an averaging approach
is taken. The current 4 point classes and classification con-
fidence values are updated at a rate of 10 Hz. The previous
1 s of estimations are used in two bin counts, one for the
number of screws and one for the number of bolts. The bin
counts are weighted by the confidence prediction from the
classifier to give a final confidence for the number of screws
and bolts with the maximum from each taken as the current
state estimation. As there cannot be more than 3 screws or
1 bolt, the outputs for each class are limited to these values.

B. Body Worn Sensors

Bodyworn IMUs are used to identify the current action
being performed by the worker. The IMU devices used are
Shimmer3’s with three axis gyroscope and accelerometer
signals streamed over Bluetooth to a laptop at 51.2 Hz. The
three sensors, each with an accelerometer and gyroscope
measuring over three axes, give a total of 18 channels of data.
Given the dominant hand focused nature of the screwing
tasks, three sensors are used on the persons dominant side
placed on the top of the hand, wrist and upper arm (Fig. 1).

Classification is done using a sliding window and a 1D
CNN classifier. The window length is 3 s, equating to 154
samples, with a step giving a new activity estimate every
0.5 s. The window length is chosen to provide a long enough
period to have enough data to get an accurate classification
while providing minimal overlap on adjacent classes. Each
of the 18 data channels is initially preprocessed with scaling
to give unit standard deviation and mean of zero.

The IMU classifier, Fig. 4b, takes the 154×1 window with
18 channels as its input. First there are two 1D convolutional
layers, each with 100 filters and 5×1 kernel, followed by a
1D max-pooling layer with pool of 5. Two more convolution
layers and another max-pooling of the same structures as
before follow, then the data is flattened. A fully connected
layer with 64 units and dropout with probability=0.5 fol-
lows before the final softmax output layer to 5 categories:
screwing in, screwing out, Allen key in, Allen key out, null.



Fig. 4. (a) Image classifier CNN structure (b) IMU classifier CNN structure

Training the IMU classifier is performed offline in two
phases. In the first phase of training 9 subjects perform 3
screwing in/out actions and 1 Allen key in/out action with
data surrounding each action taken as null. The time taken
to perform 3 screwing actions roughly equals the time to
perform one Allen key action hence the different number of
times each is performed. Overall 1453 s of data is used for
training with an even split of 291 s for each category to avoid
bias. The data for each category is split into 3 s windows with
a 0.5 s step giving 567 windows for each category, a total of
2835 windows which is split into 2268 for training and 567
for validation. This training is run for 10 epochs with batch
size of 8, learning rate of 0.001 and Adam optimiser.

A second stage of training is then performed with more
realistic data sequences to improve the real time perfor-
mance. Two subjects perform the entire assembly sequence
of screwing the 3 screws and 1 bolt in during one trial
(sequence shown in Fig. 5) with all data recorded and
manually labelled. The first subject is to be used as training
data and performs two runs with a reorientation of the part
between each run providing slight variation to the actions,
the second subject performs the run once over. The same
windowing and preprocessing technique is applied with the
truth label taken to be the most common label within the
window. The training set has a total of 340 windows, 68
for each category split with 272 for training and 68 for
validation; the test set has a total of 240 with 48 for each
category. Training is done for 20 epochs with a batch size
of 8, Adam optimiser and learning rate of 0.001.

The current action estimation is updated every 0.5 s and
initially a basic filter is applied to remove outlying estima-
tions. Denoting the action predicted at time t as A t , filtering
is done as follows:

A t−1 =

{
A t A t = A t−2

A t−1 otherwise
(1)

Adjacent actions of the same type are then grouped

Fig. 5. Sequence of assembly states

together with the confidence of each group found as the mean
of the confidence values for each time step in the group.
The final prediction for the total number of each actions
completed is found from a weighted bin count of the list of
grouped actions with the confidence of each group as the
weight. As with the image prediction, the total number of
screw predictions is limited to 3 and bolt predictions to 1.

C. Fusion

By fusing vision and IMU predictions a more reliable
estimate of the current part state should be achieved. As
discussed by other sources there are three types of fusion:
data, feature and decision level [10][22]. Decision level
fusion methods are investigated by taking the estimate from
each mode and fusing to find a final state estimation. The
methods used are mean, weighted average, SVM, Bayesian,
ANN and LSTM. The general fusion process is shown in the
flowchart in Fig. 6.

To evaluate the different fusion methods, a data set is
recorded of vision and IMU classifier outputs during com-
pletion of the assembly task. Two participants record the data
set, each performing ten assembly sequences where a single
assembly comprises screwing in three screws and one bolt,
Fig. 5. For each participant five runs are done with the screws
first and 5 with the bolt first in case of variation between the
options. The test part is held in a vice on a table and the
camera aligned to observe the screw/bolt holes, Fig. 1. The
operator stands for the tasks and though their hand obstructs
the camera view while performing an action, a clear view is



TABLE I
FUSION OUTPUT CLASSES

Output Class 0 1 2 3 4 5 6 7
No. Screws 0 1 2 3 0 1 2 3
No. Bolts 0 0 0 0 1 1 1 1

Fig. 6. Overall fusion system structure

available in between each action as the operator reaches for
a new screw/bolt. After each action the vision/IMU classifier
outputs are recorded, with the first frame where the operators
hands are not occluding the part taken as the measurement
point. This gives five analysis points in each run (including
the starting state) for a total of twenty runs giving 100
analysis points.

Various fusion methods are implemented and analysed.
Where applicable, 5 fold cross validation is used to train/fit
a model to 16 of the 20 trials before testing on the remaining
4. Each method has an input size of 4 corresponding to the
IMU and vision prediction of how many bolts and screws are
present with the output to one of 8 possible classes (Table
I). The mean method takes the mean number of bolts/screws
from each classifier. The weighted average uses the accuracy,
Ac, of each sensor mode for each fastener type, f , as the
weight for each state prediction, S, i.e.:

Swa
f =

Svision
f ·Acvision

f +Simu
f ·Acimu

f

Acvision
f +Acimu

f
(2)

The Bayesian method implements a categorical Naive
Bayes model while the SVM method used a one-vs-one
multicategorical method. For the ANN fusion, a classifier
with 2 hidden layers, each with 128 units followed by 0.5
dropout and trained for 40 epochs is used.

The LSTM method is trained using each trial as a data
window, i.e. with a training input of 5 timesteps. The model
has a single layer with 16 units and the full sequence returned
followed by 0.3 dropout and the final softmax output. This
is trained for 60 epochs.

III. EXPERIMENTS

A. Vision Recognition

Offline training and testing of the vision classifier is done
as detailed in Section II-A. Using the 16016 training, 4004
validation and 770 testing images gives a final accuracy of
0.987 and loss of 0.059, see Fig. 7. The confusion matrix in
Fig. 8a shows the even split in errors across all classes.
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Fig. 7. Training plot of vision recognition CNN classifier

Fig. 8. Offline testing confusion matrices (a) vision (b) IMU classifiers

B. Body Worn Sensor Classification

As detailed in Section II-B, the offline training of the
IMU data classifier is split into two phases. For the first
stage the 2835 windows recorded from 9 participants are
split into 2268 training and 567 validation windows. For
this stage of training the windows all contain readings from
the same action type and each action is collected in a
relatively structured way. This allowed faster collection of
more data for the pretraining stage at the expense of not
having completely natural actions. Training on this data set
gives a validation accuracy of 0.977 and loss of 0.087.

The second stage of training is performed on realistic data.
Two participants record complete assembly processes with
the full sequences used for training and testing, the sequential
part states are shown in Fig. 5. The first participant records
340 windows of data, split into 272 for training and 68 for
validation; the second participant records 240 windows used
for testing. This process yields an accuracy of 0.850 and
loss of 0.771, Fig. 9. The confusion matrix from the two
stage training approach, Fig. 8b, shows the main error as
misclassifying Allen key in as screwing in, understandable
given the similar nature of the two tasks.

The two stage training approach helps increase accuracy
by first finding the distinguishing features for each class
before training on more real data to help distinguish the
appropriate features from background noise. The results of
the different training possibilities are shown in Table II where
the same test sequence was used on the classifier after only
training on the first constrained data set, only training on the
second realistic data set, training on both data sets shuffled
together and the proposed two stage approach.

C. Fusion Methods

Each fusion method is assessed on the same data set of 20
trials recorded by 2 participants. The data set contains the



TABLE II
IMU CLASSIFIER RESULTS AFTER TRAINING ON DIFFERENT DATA SETS

1st data set 2nd data set 1st & 2nd shuffled 1st then 2nd

Accuracy 0.671 0.608 0.712 0.850
Loss 1.176 1.793 2.144 0.771
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Fig. 9. Training plot of IMU recognition CNN classifier

screw and bolt output from the vision and IMU classifiers at
the 5 measurement points during the assembly sequence. A
final state prediction is made for each measurement point in
each trial by the fusion method. If the fusion method requires
a model to be fit/trained then 5 fold cross validation is
performed by iterating through training on 16 and predicting
on 4 trials.

Analysing the change in state from one measurement point
to the next avoids counting single errors multiple times, for
instance if the first action is misclassified then all future
predictions will be wrong however the change in state could
still be correct. The results from all trials combined gives
the precision, recall and F1 scores shown in Table III.

Each state can be represented as underestimating, overes-
timating or correctly estimating the number of screws and
bolts. At each state the prediction of over, under or correct
for both screws and bolts is done for each method and the
results shown in Table III.

The accuracy score gives an indication as to how far
each method is from the correct prediction at each point as
opposed to a binary correct/incorrect score. For each trial,
the maximum number of errors, Emax, for screws is 13 and
bolt is 5 as the maximum prediction is limited to 3 screws
and 1 bolt. Taking the predicted part state for participant p
during trial t at measurement point n as Sp,t,n

pred , the average
accuracy for each of screws or bolts can be found as follows:

Accuracy = 1−
P

∑
p=1

T

∑
t=1

∑
N
n=1

∣∣∣Sp,t,n
true −Sp,t,n

pred

∣∣∣
Emax

/P×T (3)

Using the same error data, the root mean squared (RMS)
error, Erms, for each fusion method is found as follows:

Erms =

√
∑

P
p=1 ∑

T
t=1 ∑

N
n=1(S

p,t,n
true −Sp,t,n

pred)
2

P×T ×N
(4)

IV. DISCUSSION AND FUTURE WORK

The F1 analysis indicates the IMU method tends to over
predict results, shown by the high recall and also seen in the

TABLE III
RESULTS ON FINAL DATA SET, BEST OF EACH RESULT IN BOLD

IMU Vision Mean W. Ave. SVM Bayes ANN LSTM
Precision 0.73 0.66 0.61 0.75 0.76 0.76 0.73 0.82

Recall 0.95 0.68 0.80 0.72 0.68 0.69 0.71 0.86
F1 Score 0.83 0.67 0.69 0.73 0.72 0.73 0.72 0.84

State
Estimation

Over 0.24 0.27 0.39 0.11 0.10 0.09 0.10 0.07
Under 0.03 0.14 0.04 0.14 0.14 0.14 0.14 0.05
Correct 0.73 0.60 0.58 0.75 0.76 0.78 0.77 0.88

Accuracy
Screw 0.78 0.85 0.83 0.84 0.85 0.85 0.86 0.96
Bolt 0.87 0.56 0.55 0.87 0.87 0.90 0.86 0.87

Overall 0.81 0.77 0.75 0.85 0.86 0.87 0.86 0.93
Overall RMS Error 0.73 0.66 0.70 0.57 0.52 0.53 0.54 0.35

confusion matrix. This is likely due to the relatively simplis-
tic method of grouping and filtering IMU predictions where
a single action could easily be classed as multiple actions
if misclassification events occur, splitting the prediction into
multiple events. This was observed during the experiment as
operators fumbled the screws or paused during an action.

The confusion matrices and accuracy scores show that the
IMU method is generally better at predicting the number
of bolts while the vision method is better at screws. While
taking the basic mean of the two methods tended to result in
worse accuracy, the weighted average method successfully
gives improved correct guesses and better accuracy.

Comparing the weighted average, SVM, Bayesian and
ANN methods it can be seen the majority of metrics show
similar results. All of these methods show better accuracies
and RMS error metrics when compared with the individual
sensor estimates, showing that while the IMU method in
particular achieves good abilities to recognise a change in
state, as measured by the F1 analysis, the other methods are
better at aligning this to the true state.

In almost all metrics the LSTM method is shown to
have significantly improved results. This would be expected
given the LSTM method has the ability to take into account
previous state readings while the other methods only take
inputs of the current state estimation. This can be seen in
the confusion matrices where the IMU, SVM, Bayesian and
ANN methods in particular show much worse predictions
with higher numbers of screws, i.e. as time progresses.
The LSTM method shows much improved consistency in
accuracy over the duration of the assembly task.

V. CONCLUSION

Various sensor fusion methods were analysed and shown
to give improved accuracy on state prediction of an industrial
style assembly task when compared to each mode of clas-
sification individually. CNN based classifiers for both visual
recognition and human action recognition from IMU data
were developed and showed promising offline performance.
Testing was done in a mock assembly task where each indi-
vidual classifier method was compared along with various
fusion methods. Of the fusion methods tested, an LSTM
based network architecture performed the best. Development
of accurate sensing and perception methods such as this is
key to successful HMI, a core development to Industry 4.0.



Fig. 10. Confusion matrices for fusion methods analysed
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