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Abstract

The capability to manufacture at home is continually increasing with
technologies, such as 3D printing. However, the ability to design products
suitable for manufacture and use remains a highly-skilled and knowledge
intensive activity. This has led to ‘content creators’ providing vast reposit-
ories of manufacturable products for society, however challenges remain
in the search & retrieval of models. This paper presents the surrogate
model convolutional neural networks approach to search and retrieve
CAD models by mapping them directly to their real-world photographed
counterparts.

1 Introduction
3D printing has been recognised by many as the technology that will lead to the
“prosumption” society where individuals are both producers and consumers of
goods and services [1]. While 3D printing has democratised the manufacture of
components due to its low-price and suitability for home use, many individuals
in society are still limited in applying this technology due to the underlying
Design & Manufacture (D&M) knowledge required to produce the Computer
Aided Design (CAD) models required for the process.

To overcome this, a range of online CAD repositories have arisen where ex-
perts are able to upload their manufacturable models for others to download
and print. These individuals are often referred to as “content creators”. For
example, Thingiverse holds 1,655,150 CAD models and sees millions of down-
loads every month1, whilst GrabCAD features 4,030,000 produced by 6,920,000
content creators2. These CAD data lakes have since become an emergent area
for research with researchers investigating the open source nature of design
and ability to share knowledge, as well as the barriers in the application of

1https://www.thingiverse.com/about/
2https://grabcad.com/library
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stored 3Dmodels due to the variety in geometric representations used (e.g. .stl,
.ipt, .iges, .f3d) [2–4]. Given the wealth of available models for individuals to
download, the challenge that this paper identifies lies in search and retrieval.

Search & retrieval is currently achieved by individuals having the necessary
knowledge and understanding to describe the models they have created as
well as consumers in the search terms used. Descriptions that should embody
both form and application of the model. This is where one encounters all the
traditional challenges of text-based search and retrieval. Given the model
geometry, could one not use this to support the search and retrieval of models
and further democratise the D&M process for 3D printing?

This paper answers this question by applying Convolutional Neural Net-
works (CNNs) trained on a surrogate model of rendered images produced
from CAD files in online repositories. A surrogate model in this context is a
training set that has been generated to simulate the real-world data that will
be provided to the CNN for prediction. Training through a surrogate model
mitigates one of the biggest challenges in CNNs, which is having a rich la-
belled dataset to train on. The trained CNN then allows individuals to take
images/live video of real-world objects and have the CNN suggest the closest
matching CAD model available in the repository, thereby meeting our overall
objective of democratising 3D printing.

The related work in re-engineering CAD models is now discussed (§ 2).
This is then followed by the description of the surrogate model Convolutional
Neural Network and subsequent study used to evaluate the potential of the
approach (§ 3). The results are then presented (§ 4) followed by a discussion
on future work (§ 5). The paper then concludes by highlighting the key findings
from the study (§ 6).

2 Related work
Research into the generation of CAD models from real-world models can be
grouped as single-image object recognition, multi-image to 3D object repro-
duction and object-scanning to 3D model reproduction. In addition, there have
been a few studies showing the potential of Neural Networks for 3D geometry
primarily focused on the matching of digital 3D geometry [5, 6]. These are now
discussed in relation to their potential for democratising the D&M process of
3D printing.

2.1 Single-image object recognition
Single-image object reproduction estimates 3D geometry from 2D images.
When recovering polyhedral objects, reconstruction algorithms assume parallel
projection from an oblique view - a valid assumption for relatively short objects
where perspective projection is negligible [7].

Using “large differences between neighbouring elements by sharp spatial
gradient”, boundary detection identifies object edges [8]. These edges are built
into a surface using rectification to remove objective distortion and image
vanishing points to produce affine geometry. Affine geometry is converted to
a parallel original-image projection using circular vanishing points. A control
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(a) Single-image [10] (b) Multi-image [11]

(c) Makerbot digitiser (d) CNN CAD-to-CAD matching [5]

Figure 1: Approaches to 3D model reproduction

polyhedron is applied to the surface, followed by control-point cubic corner
inflation to produce 3D representations [9].

Single-image object reproduction is only capable of reproducing visible
views, meaning the final model inevitably lacks detail, unless it is rotationally
symmetric with the view used (Figure 1a) [10]. Single images lose true depth
information of a scene point in 2D projection, meaning depth recovery is
required to re-produce a 3D object [8]). Hence single-image object recognition
is limited to (and only advantageous in) simple geometry cases such as a logo,
where one view can capture the entire geometry.

2.2 Multi-image to 3D object reproduction
Multi-image to 3D object reproduction uses several object viewpoints to build
a 3D model (Figure 1b), known as multi-view stereopsis [12]. Multi-view ste-
reopsis uses a reconstruction pipeline to produce 3D object surfaces. Camera
parameters, such as focal length, are estimated by comparing images, allowing
image calibration. Common features are identified and matched between
images, producing connection points. An initial view is selected, and addi-
tional views added sequentially through connecting points, producing a sparse
cloud representation of the object. The sparse-point cloud is converted into a
dense-cloud by computing image pixel depths across surfaces of correspond-
ing object images. This produces a depth-map, filtered and converted to a
detailed 3D object model [13].

3



ARC3D is a commercial tool that applies this technique for 3D geometry
generation (Figure 1b). The tool is advantageous as the scanned object size is
scale free enabling both small and large items to be re-created. However, the
tool can find ‘weak’ textures, such as skin and reflective surfaces, challenging
with the resulting surface often requiring post-processing tools to produce
acceptable surface resolution [11]. In addition, the method re-constructs a
surface and further checks are required to ensure the surface forms a body
and that the resulting body is suitable of 3D printing. This post-processing
requires knowledge, skills and tools in digital image processing and surface
geometry manipulation, meaning poor usability for the home consumer.

2.3 Object-scanning to 3D model reproduction
Another approach that has been taken is to apply object scanning of the model
using distance measuring devices, such as lasers. These systems create a point-
cloud, which is used to create a mesh of the object. Filtering techniques, such
as Kalman filters, reduce surface noise and roughness effects of measurement
uncertainty [14]. The MakerBot Digitiser is one such example of a commercial
solution that applies this approach (Figure 1c).

Challenges in this approach are in the time it takes to complete a scan (typ-
ically 12 min for the MakerBot Digitiser) and missing occluded surfaces often
resulting in a convex hull of the item being scanned. Post-scan, individuals are
still required to the check the mesh to ensure it form a complete body. Again,
there is an underlying requirement for the individual to have knowledge of
manipulating geometry.

2.4 Convolutional neural networks
Convolutional Neural Networks (CNN) have also been applied with the focus
on matching digital 3D geometries. For example, [5] has trained a CNN on
multi-view renders of 3D geometry and used these to cluster and classify other
3D geometries (Figure 1d). A potential use case for this is the matching of
similar parts across product families with a view to reduce the part variety
in an organisations supply chain. While [6] have sought to augment depth
mapped images with Neural Networks to develop voxel-based approximations
of objects within a scene.

2.5 Summary
These results show the promise of CNNs as a means of supporting geometry
matching and classification and this paper further contributes to this space
by investigating the potential of CAD renders to form a surrogate model for
the CNN to be trained on and its subsequent accuracy in classifying a set of
real-world photographs. Achieving this would eliminate the need to build
labelled datasets of real-world images featuring the objects of interest as well
as being able to relate real-world objects to 3D printable CAD files. Table 1
summarises the advantages and disadvantages of the four approaches.

4



Table 1: Comparing approaches to object reconstruction

Method Advantages Disadvantages

Single-image object
reproduction

1. Computationally
inexpensive.

1. Applicable to 2D
geometry with little to no
3D variation.

2. Repeatable and
explainable.

Multi-image to 3D object
reproduction

1. No limitation to object
size.

1. Generally, produces
poor resolution surfaces

2. Professional programs
can produce reasonable
resolution models.

2. Post-processing
software is required for
optimal resolution.
3. Considerable digital
toolchain and skillset
required by the user.

Object Scanning to 3D
Image Reproduction

1. Simple camera
calibration

1. Higher cost in
comparison to other
techniques.

2. High resolution
surfaces.

2. Limited by types of
surface that can be
scanned.

3. Dimensionally accurate
models 3. Long scanning time

Convolutional Neural
Networks

1. Fast response in
determining a match.

1. Requires dataset to
train on.

2. New data can be added
to the training.

2. Requires considerable
computational power to
train.

3. Returns CAD models 3. Can return no matches.

The paper now continues into the development of the study to investigate
the potential of surrogate model convolutional neural networks to democratise
D&M through the matching of 3D printable CAD files to real-world objects.

3 Study
The investigation into the potential of generating a surrogate model from CAD
renders to train a CNN that will be used to evaluate real-world photos followed
a four-step process.

1. Model selection

2. Generating the surrogate model

3. Train

4. Test & refine
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(a) Coffee Cup [15] (b) Turbine [16] (c) Gear [17]

(d) Car [18] (e) Mouse [19]

Figure 2: Models selected from GrabCAD

The first step involved selecting a subset of CADmodels held within GrabCAD
that will be used to generate the surrogate model. With the models chosen,
the surrogate model was developed. The process then preceded into training
a series of CNNs using the surrogate model. To test the CNNs, a set of test
images generated from real-world 3D printed versions of the CAD models was
created and metrics on the accuracy of prediction were created. Following the
results from the initial test, experiments were then performed to see how one
could refine the model by reducing the computational cost of generating the
surrogate model by reducing the number of images rendered and applying
rotation, reflection and scaling augmentation strategies. Each step is now
discussed in further detail.

3.1 Model selection
The parts selected are shown in Figure 2. The rationale for their selection is that
they were some of the most popular models on GrabCAD and feature a mixture
of everyday objects individuals might wish to produce. In addition, models
were selected based on having similar geometric profiles to test the level at
which the CNN could differentiate between models. The primary example for
this test is between the car and mouse (Figures 2d and 2e).

3.2 Generating the surrogate model
To generate the surrogate model, the models (in STL format) were placed
in Blender and 500 × 500 pixel renders produced at 6° increments rotating
about the 𝑦 and 𝑧 axes (Figure 3a). The scene has been set-up to mimic a
lightbox in order to emphasise the geometric features and patterns of the
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Figure 3: Rendering the object in 6° increments

models and normalise the background. This was validated against a real-
world lightbox scene through linear intensity correlation using the Pearson
Correlation Coefficient and colour distribution closeness using Bhattacharyya
distance. This resulted in a set of rendered images labelled against the CAD
models (Figure 3b). The rendering time for the 915 image dataset was 4.1 h.

3.3 Train
With the surrogate model generated, the study moved to training the CNN.
Five CNNs were selected to investigate the influence of the CNN architecture
on the accuracy and computational requirements. This also ensures that the
particular implementation does not skew the findings in evaluating the poten-
tial of CNNs as an approach for CAD model to real-world image classification.
The CNNs are described in Table 2 and have been developed to be trained
on labelled images having all performed well in CNN competitions, such as
ImageNet. For each model, the surrogate model renders where re-scaled to
the required input size.

The CNN training, validation and testing applied the well-established 80%
training, 10% validation and 10% testing. In this case, the training and val-
idation images come from the surrogate model and testing from real-world
images of 3D-printed versions of the CAD models. Training was left until 200
iterations were complete.

3.4 Test & refine
Having trained the CNNs, three experiments were performed to evaluate the
potential in using a surrogate model CNN for real-world object to CAD model
classification. The image test used consisted of images taken in a controlled
lightbox environment featuring 3D printed versions of the CAD models and
totalled 48 images (Figure 4). Images were taken using an iPhone 6 rear-camera
which has a 7.99 MP resolution, image sensor size of 4.8 × 3.6mm2, focal length
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Table 2: CNNs evaluated

Network Depth Size [MB] Parameters [M] Input Size

AlexNet [20] 8 227 61.0 227x227
GoogleNet [21] 22 27 7.0 224x224
ResNet-18 [22] 18 44 11.7 224x224
ResNet-50 [22] 50 96 25.6 224x224
Inception-v3 [23] 48 89 23.9 299x299

(a) Car (b) Gear (c) Mouse

Figure 4: Real-world photograph of 3d-printed models

of 4.2mm and field of view of 72.8°. The selection of a phone camera reflects
the typical type of camera that would be used by the target audience of this
model.

The first experiment compares the trained CNNs performance in relation
to accurately determining the model captured in the real-world images. The
second experiment investigates the potential in augmenting the surrogate
model to investigate how the accuracy can be improved with minimum addi-
tional computational cost and the compromise that could be made between
render time and CNN accuracy. The third and final experiment sought to un-
derstand how reducing the number of renders in the surrogate model effects
the accuracy of the CNN.

4 Results
This section details the results of the three experiments outlined in § 3.4.

4.1 Experiment 1. CNN comparison
Table 3 details the performance results for the 5 CNNs trained on the surrogate
model and tested against real-world photos. It can be seen that both AlexNet
and GoogleNet perform well in identifying real-world images even though
they were trained on a surrogate model. This confirms that a surrogate model
approach is viable for the classification of objects. Further, the associated
mean confidence scores for correctly and incorrectly labelled images shows
that the CNNs confidence value can be used as a threshold to prevent false
positive detection.
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Table 3: CNN accuracy

CNN Training Time
[s] Accuracy [%] Correct/

Incorrect Mean Confidence [%]

Correct Incorrect

AlexNet 680 83.3 40/8 89.4 68.9
GoogleNet 1914 91.7 44/4 88.6 63.4
ResNet-18 1553 27.1 13/35 34.2 32.7
ResNet-50 4949 33.3 16/32 39.0 38.4
Inceptionv3 7160 22.9 11/37 25.7 23.0

However, the ResNet and Inception models did not perform as well even
though they outperform AlexNet and GoogleNet in the ImageNet tests. They
also require significantly greater training time. This reveals the importance of
the CNN architecture for the given application.

From these results, AlexNet was selected as the CNN to carry forward to
Experiment 2 due to its low training time and high accuracy. The accuracy of
83.3% also provided headroom to evaluate the capability of augmentation to
support the training of the CNNs.

4.2 Experiment 2. Augmentation
Augmentation is the process of manipulating the input images in order to
increase the training set size through methods of low-computational cost [24].
The first method is rotation of the image about its centre. Both 90° and 180°
were trialled with 90° increasing the accuracy of AlexNet to 96.2%. However,
this is at the detriment of the difference in confidence measures between
correct and incorrect results (Table 4). This would lead to the tool providing
a greater number of accurate results but with a greater likelihood of false
positives.

The second method is reflection, which was performed about the 𝑥 = 0 and
𝑦 = 0 axes of the image. Table 4 reveals that all forms of reflection improved the
accuracy of AlexNet with x, y giving the greatest increase in accuracy while also
maintaining a significant difference between the mean correct and incorrect
confidence scores enabling false positive detection.

The third method trialled was scaling of the image through the ranges of
0.9–1.1, 0.8–1.2 and 0.7–1.3. The centre of the image was the point at which the
scaling was acted upon. This yielded results similar to reflection where an
increase in accuracy while maintaining the difference in confidence values was
preserved.

From these results, it was decided to continue with AlexNet trained on a
surrogate model that had been augmented through reflection by 𝑥, 𝑦.

4.3 Experiment 3: Reduction
Experiment 3 investigated the potential in reducing the surrogate model data-
set to provide an indication of the minimum level of rendering time that would
be required given that one can enhance the dataset through augmentation.
Table 5 presents the results of reducing the surrogate model dataset. It can
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Table 4: Effect of augmentation on the predictive power of the CNN

Test Data Accuracy [%] Mean Confidence [%]
Correct Incorrect

Original 83.3 80.0 51.0

Rotation

±90° 96.2 94.5 82.5
±180° 89.7 94.9 69.3

Reflection

𝑥 85.9 93.1 71.0
𝑦 89.7 93.6 92.2
𝑥, 𝑦 94.9 93.5 63.7

Scaling

0.9 – 1.1 94.9 94.4 72.9
0.8 – 1.2 89.7 96.8 83.2
0.7 – 1.3 91.0 96.2 62.6

Table 5: Effect of reduction on the predictive power of the CNN

Reduction [%] Accuracy [%] Mean Confidence [%]
Correct Incorrect

00 94.9 93.5 63.7
20 93.6 96.5 73.0
50 92.3 93.9 56.9
80 84.6 91.5 72.5

be seen that an 80% reduction of the dataset can be achieved with only a 10%
loss in accuracy and 10% reduction in the margins between confidences. This
highlights the potential of using a reduced and less computationally expensive
surrogate model dataset, 1.37 h from 4.1 h in render time.

Figure 5 shows the confusion matrices for the four reductions. Confusion
matrices visualises the results true to predicted class prediction made by the
CNN and enables the identification of common classes that may be confused
with one another. Out of the five models used in this study, it reveals that it is
the coffee cup and mouse that are often miss-classified and correlates with a
lack of, one might argue, features. In contrast, the models with a high number
of features, the gear and turbine, are not misclassified until one reaches the
80% reduction of the surrogate model.

5 Discussion and future work
This study has shown the potential of surrogate model CNNs as a method of
classifying real-world images of objects to their respective CADmodel, however
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Figure 5: Confusion matrices with respect to reducing the size of the surrogate
model

further work is required to fully realise this and for it to be used on a repository
of millions of models. First and foremost is the scaling of these experiments
to much larger surrogate models with a greater number of CAD models, as
well as increasing the scene variance in the real-world test image set. This
additional variance is likely to decrease the accuracy of the CNN although may
be mitigate through further augmentation of the surrogate model to alter the
scene the rendered model is in.

Experiment 1 revealed the architecture of the CNN has a considerable effect
on its performance in the intended application and further exploration of this
is required to create a custom CNN that is specifically tasked for handling CAD
surrogate models. Further analysis into the layer activations of the CNNs will
provide an understanding of the most informative components of the current
CNNs. Additional studies in optimising the training settings could also be
performed for existing CNNs.

Experiment 2 shows the power of augmentation to reduce the computa-
tional requirement on rendering from the CAD models with reflection providing
the greatest gain in performance. Further work on combinations of augmenta-
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tion may reduce the surrogate model render requirements.
Experiment 3 revealed that a considerable reduction of the rendered images

forming the surrogate model could be achieved with minimal reduction in
the accuracy of the CNN. Evaluating the confusion matrices highlighted an
emerging relationship between the complexity of the CAD model geometry and
its probability of being misclassified. This relationship could be investigated
further by classifying the complexity of models and correlating it to the number
of misclassifications in testing the CNN. Understanding this relationship would
enable propositions to be made on the minimum number of rendered images
required to minimise misclassification of real-world photos to their respective
CAD models.

6 Conclusion
Democratised manufacturing technologies, such as 3D printing, are providing
the capability for society to fundamentally alter how we produce and consume
goods. While the capability to manufacture at home is increasing, the ability
to design products suitable for manufacture and use remains a highly skilled
and knowledge intensive activity. The associated movement of ‘content cre-
ation’ has enabled individuals with these skills to form vast repositories of
manufacturable products for society, however challenges remain in the search
& retrieval of models.

This study has shown the potential for Convolutional Neural Networks
(CNNs) trained on surrogate models of CAD model renders is able to classify
real-world images accurately with respect to their CAD counterpart. This
provides a promising route whereby individuals would be able to take pictures
of items in the real-world and be then taken to the respective CAD model
for manufacture in their own homes. The study attained a 94.9% accurate
model with the ability to detect false positives. Augmentation through rotation,
reflection and scaling has a significant potential in reducing the computational
time required to generate a surrogate model of the CAD models.
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