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ABSTRACT 
 

This paper aims to provide a better understanding of the interaction between solitary waves and vertical circular cylinders. This is 

achieved via process based numerical modelling using the parallel Particle-In-Cell based incompressible flow solver PICIN. The 

numerical model solves the Navier-Stokes equations for free-surface flows and incorporates a Cartesian cut cell method for fluid-

structure interaction. Solitary waves are generated using a piston-type wave paddle. The PICIN model is first validated using a test 

case that involves solitary wave scattering by a single vertical cylinder. Comparisons between the present results and experimental data 

show good agreement for the free surface elevations around the cylinder and the horizontal wave force on the cylinder. The model is 

then employed to investigate solitary wave interaction with a group of eleven vertical cylinders. The wave run-up and wave forces on 

the cylinders are discussed.  
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INTRODUCTION 
 
Over the past few decades, Computational Fluid Dynamics (CFD) modelling has become very popular in the coastal and 

offshore engineering community. Both Eulerian grid based models (e.g. the OpenFOAM® model [1]) and Lagrangian 

particle based models (e.g. the SPHysics model [2]) have been widely used. While the Eulerian method is relatively 

efficient and better at enforcing boundary conditions for fluid-structure interaction via use of a grid, the Lagrangian 

method is more suited to handling large free-surface deformations using particles. In an attempt to combine these 

advantages, the Particle-In-Cell (PIC) method [3-5] is devised by a joint use of grid and particles. In recent years, the PIC 

method has been introduced to the coastal and offshore engineering field [6-9], where modelling complex wave-structure 

interaction with computational efficiency remains an important challenge.  

 

The PIC method based solver PICIN has achieved promising results in terms of modelling complex free-surface flows 

and the interaction of such flows with coastal and offshore structures [7-9]. The PICIN model solves the incompressible 

Navier-Stokes equations (NSE) for free-surface flows and employs both a tailored Distributed Lagrange Multiplier 

(DLM) method (see Kelly et al. [7]) and a Cartesian cut cell based two-way strong coupling algorithm (see Chen et al. 

[9]) for fluid-structure interaction. The novelty of the PICIN model lies in the fact that the linear non-advection terms of 

the NSE are resolved on an underlying grid, while the nonlinear advection terms are handled using particles in a 

Lagrangian manner. This makes the model both efficient and flexible in terms of simulating complex physical problems. 

One the other hand, the double-grid nature of the PIC method makes the model very demanding in memory storage which 

makes its application in three spatial dimensions particularly challenging. Very recently, the PICIN model was extended 

to three spatial dimensions and parallelised using the Message Passing Interface (MPI) approach [10]. In this approach 

the computational domain is decomposed into sub-domains based on the underlying grid and the particles are allowed to 

move through the sub-domains, assigning the computational loads to each process. This enables the PICIN model to 

practically simulate 3D problems that arise in the coastal and offshore engineering field.  

 

In this paper, the 3D parallel PICIN model is applied to simulate solitary wave interaction with vertical circular cylinders. 



 

This topic has practical importance as vertical cylindrical structures are widely employed as foundations for coastal and 

offshore structures; examples include the design of oil platforms, offshore wind turbine foundations and piled wharfs. In 

the literature, a number of numerical models have been applied to study the interaction of solitary wave and vertical 

cylinders in different configurations. Yates and Wang [11] studied solitary wave scattering by a single vertical cylinder 

using the generalized Boussinesq (GB) model and also a physical experiment.  Zhao et al. [12] also solved a set of GB 

equations using a finite element method to simulate nonlinear solitary wave scattering by an array of four vertical cylinders 

in a square arrangement. Ai and Jin [13] studied a similar configuration of four cylinders but used a non-hydrostatic finite 

volume model to solve the incompressible NSE. Mo and Liu [14] solved the Euler equations coupled with a volume of 

fluid (VOF) method for free-surface tracking to simulate a non-breaking solitary wave interacting with a group of three 

cylinders. In these papers, the principal variables of interest were wave run-up, wave forces and free-surface elevations 

in the vicinity of the cylinders. In this paper, the PICIN model is first validated using a test case of solitary wave scattering 

by a single cylinder, in terms of the above-mentioned quantities. Then, the model is applied to an extension study of 

solitary wave interaction with a group of eleven cylinders, which could be considered as the foundations of column-

supported structures [15].  

 

1 NUMERICAL MODEL 
 

The 3D PICIN model solves the incompressible NSE for single-phase flow: 
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where, in 3D, u is the velocity field; t is the time; p is the pressure; f = (0.0, 0.0, -9.81 m/s2) corresponds to the 

gravity acceleration; ρ and ν are the density and kinematic viscosity of the fluid, respectively. As a PIC based solver, 

the PICIN model employs both Lagrangian particles and an Eulerian grid. The grid is uniform and staggered 

following Harlow and Welch [16] and eight particles are initially seeded in each fluid cell.  Following the full 

particle PIC approach used in Brackbill and Ruppel [4], the particles are assigned with the mass and momentum of 

the fluid, and are used to solve the nonlinear advection term (the second term on the left hand side of Eq. 2) and 

track the fluid configuration (including the free surface), while the underlying grid is solely employed for 

computational convenience for solving the non-advection terms. During each computational cycle, the non-

advection terms are first solved on the grid and then the velocity field carried by the particles and the particle position 

are updated using the information on the grid; more details of the solution procedure are described in what follows. 

It is noted that no turbulence models are currently incorporated in the PICIN model. 

 

The overall solution is divided into two major steps: an Eulerian step and a Lagrangian step. In the Eulerian step, 

the NSE, ignoring the nonlinear advection term, are solved on the grid using the pressure projection technique [17], 

where a pressure Poisson equation (PPE) is resolved incorporating the boundary conditions. On the free surface 

boundary, a second-order accurate technique following Gibou et al. [18] is employed to enforce this condition: 

 

0p    on ζ         (3)   

 
where ζ represents the free surface position on the grid that is computed based on the particle position at each time 

step (see details in Chen et al. [9]). On the solid boundary, a Cartesian cut cell based approach following Ng et al. 

[19] is used to resolve the following conditions: 

 

b n u = n U  and  1 * 1( ) n

b bt p       n n U U  on Γ     (4)  

 

where Γ represents the surface of solid objects; n is the unit outward normal vector; Ub is the velocity imposed on 

the surface of solid objects; the superscript n+1 represents the time step; 
*

bU  denotes the tentative boundary velocity 

before the pressure projection step. Once the Eulerian step is completed, a divergence-free velocity field un+1

 
is 

obtained on the grid. The velocity change, an+1 = un+1 - un, on the grid is interpolated, using a 4th-order accurate 

weighted essentially non-oscillatory (WENO) scheme [20], to increment the velocity field carried by the particles. 

It is noted that for the purpose of numerical stability, the divergence-free velocity itself, un+1, is also interpolated 

using the WENO scheme to constitute a small proportion of the final velocity carried by the particles (see more 



 

details in Chen et al. [9]). After the particle velocity field is updated, the remaining advection term of the NSE is 

solved in the Lagrangian step by advecting the particles. That is, the particles, carrying the updated velocity field, 

are advected through the divergence-free velocity field on the grid using the 3rd-order accurate  Runge-Kutta scheme 

[21]. Once this is done, one computational cycle is completed. It is noted that at the beginning of the next 

computational cycle, the velocity field is mapped from the particles to the grid using a SPH-like kernel interpolation 

that conserves the mass and momentum (see more details in Chen et al. [10]). The current 3D PICIN model also 

employs the domain decomposition based MPI approach for parallelisation [10]. For full details of the PICIN model, 

the reader is referred to Kelly et al. [7], Chen et al. [9, 10] and Chen [22].  

 

The solitary wave is generated using a piston-type wavemaker approach following Wu et al. [23, 24]. This approach 

adopts the formula of wave paddle motion proposed by Goring [25] and combines it with the 9th-order solitary wave 

solution of Fenton [26]. Specifically, with the assumption that the average horizontal water particle velocity, 

adjacent to the wave paddle, equals the wave paddle velocity, the motion of the wave paddle is expressed by: 
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where ξ is the position of the wavemaker; h is the still water depth; C is the wave celerity and η is the water surface 

elevation. The water surface elevation η at the wavemaker position is specified according to the 9th-order solitary 

wave solution of Fenton [26]: 
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where H is the targeted wave crest height of a solitary wave and ηi is a function of S = sech(KX), where  
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where ξ0 is the initial position of the wave crest, which must be a negative value as the solitary wave is generated 

in a quiescent water flume; Ki and Ci are coefficients; the formulas required to determine η1 to η9, K1 to K8 and C1 

to C9 are listed in Table 1 of Fenton [26] and are not repeated here.  

 

In the numerical simulation, the water surface elevation at a certain location is computed as the highest position of 

the particles around the location in the z-direction. The wave force on a cylinder is calculated by integrating the 

water pressure over the wetted area of the surface of the cylinder: 

 

pd


 F n  (10) 

 
where n is the unit outward normal vector. 

 

2 RESULTS AND DISCUSSIONS 

 
In this section, the 3D parallel PICIN model is first validated against a benchmark test of solitary wave scattering 

by a single circular cylinder in terms of wave elevations around the cylinder and the horizontal wave force on the 

cylinder. After that, the results of an extension study of solitary wave interaction with a group of eleven cylinders 

are discussed. 

 



 

2.1 Solitary Wave Scattering By a Vertical Circular Cylinder 
 

In this section, the solitary wave scattering by a single vertical circular cylinder is simulated in order to validate the 

current numerical model. This test case was previously studied by Yates and Wang [11] through both physical 

experiments and numerical simulations using a GB model. The experiments conducted by Yates and Wang [11] 

used a water tank measuring 7.6 m long, 0.76 m wide and 0.6 m deep. The water depth in the experiments was h = 

0.04 m. The surface-piercing vertical circular cylinder was placed on the bottom of the water tank and on the centre 

line of the water tank, and the radius of the cylinder was R = 0.0635 m. The solitary waves used in the experiment 

were generated by moving a flat plate which filled the tank cross section. The principal variables of interest in this 

test case were the water surface elevations in the vicinity of the cylinder and the horizontal wave loading on the 

cylinder. The water surface elevation was measured in a semi-circular region around the cylinder and the location 

of the measuring point is expressed in the polar angle θ and the radial distance r/R measured from the centre of the 

cylinder. As examples, θ = 0° represents the upstream centre line of the water tank and r/R = 1.0 is on the surface 

of the cylinder. Fig. 1 shows a sketch of the arrangement of the measuring points. 

 

 
 

Fig. 1 Sketch of the arrangement of the measuring points for the water surface elevation 

 

A numerical wave tank (NWT) was established for the present simulation. While the width of the NWT was the 

same as that of the water tank in the experiment, the length of the NWT was reduced to 2.0 m in order to save on 

CPU cost. The solitary wave was generated using the approach described in Section 1 by a piston-type wavemaker 

which was located at the upstream end of the NWT, and for all test cases in this section, ξ0 in Eq. 7 was set to -0.5 

m. The cylinder was placed at the centre line of the NWT in the x-direction with the distances to the wavemaker 

being 1.0 m and to the downstream end of the NWT being 0.95 m, respectively. The grid size was set to x = y = 

z = 0.0016 m, resulting in approximately 114.89 million particles and 29.86 million grid cells (note that the height 

of the NWT was set to 0.08 m). The Courant number was set to 0.5. It took approximately 20.8 hours for a non-

dimensional t(g/h)1/2 = 78.3 of simulation time with 80 cores at the University of Bath High Performance Computing 

(HPC) system for the test case where the relative wave height was H/h = 0.4. 

 

Fig. 2 shows snapshots of the present numerical results at various time instants for H/h = 0.4. From Fig. 2 it can 

been seen that as the solitary wave impacts on and passes the cylinder, significant wave run-up occurs and a small 

positive reflected wave starts to propagate radially outward (see Fig. 2(a)~(c)). This reflected radial wave, as also 

noted in Yates and Wang [11], diminishes in amplitude as it expands and is followed by a negative wave which 

develops into oscillatory waves (see Fig. 2(d)~(f)). It is also observed that when the main wave passes, a diffracted 

wave around the cylinder from the leeward side occurs, which wraps around the cylinder and propagates radially 

outward (see Fig. 2(d)~(f)). This is consistent with the findings discussed in Yates and Wang [11].  

 

Fig. 3 shows comparisons of the free surface elevation along θ = 0° at different radial positions for H/h = 0.4. Note 

that in all comparisons of the free surface elevation (including those in Figs. 4 and 5), the time was shifted 

consistently so that the peak wave amplitude of the numerical result coincides with that of the experimental 

measurement at r/R = 4.5 and θ = 0°. It can be seen from Fig. 3 that generally the comparisons show good agreement 

between the present results and the numerical and experimental results obtained by Yates and Wang [11]. In 

particular, the good agreement of the main wave as shown at r/R = 4.5 demonstrates that the solitary wave is 

correctly generated in the present simulation. It is nevertheless noted that both numerical models over-predict the 

maximum wave height very close to the cylinder surface (see r/R = 1.03). We found that this is also the case for the 

results computed by other numerical models; e.g., Zhao et al. [12], Ai and Jin [13] and Cao and Wan [27]. The 

secondary wave peak clearly seen at r/R = 2.61 and r/R = 4.5 is due to the reflected wave as observed in Fig. 2.  



 

 

 
Fig. 2 Snapshots of the present numerical results for H/h = 0.4. 

 

 
Fig. 3 Comparisons of the time histories of free surface elevation along θ = 0° at various radial positions: (o), experimental data [11]; 

(---), numerical results by Yates and Wang [11] and (), PICIN. The numerical results are for H/h = 0.4. 
 

Fig. 4 shows the comparisons of free surface elevation for θ = 100°. The comparisons also show very good 

agreement between the present results and those obtained by Yates and Wang [11]. Both numerical models again 

appear to overestimate the main wave peak very close to the surface of the cylinder (see r/R = 1.03). However, the 

present result seems to be slightly better than that of the GB model by Yates and Wang [11]. The secondary wave 

peak as shown at all radial positions along θ = 100° is attributed to the diffracted wave from the leeward side of the 

cylinder rather than the reflected wave. This is confirmed by Fig. 2(e) and (f). That is, as this diffracted wave wraps 

around the cylinder and propagates radially upstream, along the θ = 100° line it is first observed at r/R = 1.03 and 

1.35 at around t(g/h)1/2 = 16, and then observed at other radial points after a small time lag.  

 



 

 
Fig. 4 Comparisons of the time histories of free surface elevation along θ = 100° at various radial positions: (o), experimental data 

[11]; (---), numerical results by Yates and Wang [11] and (), PICIN. The numerical results are for H/h = 0.4. 

 

 
Fig. 5 Comparisons of the time histories of free surface elevation along θ = 180° at various radial positions: (o), experimental data 

[11]; (---), numerical results by Yates and Wang [11] and (), PICIN. The numerical results are for H/h = 0.4. 

 

Fig. 5 shows the comparisons of free surface elevation along the downstream centre line θ = 180°. Again, reasonable 

agreement between the present results and those obtained by Yates and Wang [11] is shown. Note that the main 

wave peak in the experiment is significantly reduced very close to the surface of the cylinder and both the numerical 

models over-predict the wave amplitude. Similar results can also be found in the numerical model of Zhao et al. 

[12]. 

 

In Fig. 6, comparisons of the horizontal wave force are shown for various relative wave heights. For each case, the 

time is shifted such that the peak of the wave force of the present numerical result coincides with that of the 

experimental measurement. It can be seen from Fig. 6 that for small amplitude waves (see H/h = 0.24), the present 



 

numerical result agrees well with the experimental data. However, the discrepancy between the numerical and the 

experimental data becomes larger when the wave amplitude increases. In general, the present numerical results are 

in reasonable agreement with the experimental measurements.  
 

 
Fig. 6 Comparisons of the time histories of the horizontal wave force for various incident wave heights: (o), experimental data [11]; 

(---), numerical results by Yates and Wang [11] and (), PICIN. 

 

2.2 Solitary Wave Interacting With a Group of Cylinders 
 

This section presents an extension study of solitary wave interaction with a group of eleven cylinders. The principal 

variables of interest in this test case are the wave run-up, R, at the front stagnation point of each cylinder and the 

horizontal wave forces, F, on the cylinders. The properties of the solitary wave and the layout of the cylinders used 

in this test case are inspired by those proposed in Mo and Liu [14]. Fig. 7 shows a sketch of the arrangement of the 

eleven vertical circular cylinders and the setup of the NWT. The cylinders are labelled with C1, C2, etc. (see Fig. 

7) and have an identical diameter D. They are symmetrically placed on the centre line of the NWT, with the centre-

to-centre distances being 2D between the adjacent cylinders in both the streamwise and the spanwise directions (see 

Fig. 7). The distance in the x-direction between the centre of cylinder C1 and the wavemaker was 14.7D. The length 

and the width of the NWT were set to 28.71D and 9.93D, respectively, and the water depth, h, was fixed at 0.615D. 
A piston-type wave paddle was employed at the upstream end of the NWT as shown in Fig. 7 for solitary wave 

generation using the approach described in Section 1. The solitary wave used in this test case was non-breaking; the 

relative wave height H/h was 0.4 and ξ0 in Eq. 7 was set to -6.563D.  
 

The grid size used in the numerical modelling was x = y = z = 0.04h, resulting in approximately 88.75 million 

particles and 31.37 million grid cells (note that the height of the NWT was set to 1.64D). The Courant number was 

0.5. It took approximately 14.2 hours for a non-dimensional t(g/h)1/2 = 54 of simulation time with 160 cores at the 

University of Bath HPC system for this demanding test case.  

 

Fig. 8 shows snapshots of the simulated wave field in plan view at different time instants. The solitary wave travels 

from left to right. Generally, it is seen that as the solitary wave passes the cylinders, circular scattered waves start 

to propagate radially away from the cylinders, which are similar to what was observed in the single cylinder case 

presented in Section 2.1. Focusing more on detail, it can be seen from Fig. 8(b) that a steep wave (maybe close to 

breaking) forms in front of the cylinders C5 and C6 due to the symmetric scattered waves from both cylinders 

interacting with each other and propagating upstream. However, as seen from Fig. 8(d), similar waves emanating 
from cylinders C2 and C3 are blocked by cylinder C4, and the waves could be reflected back and trapped in the 

cylinder group C1-C2-C3-C4. Moving to Fig. 8(f), it is seen that after the solitary wave completely passes the 

cylinder group, a complex wave field has formed, due to both wave-wave and wave-structure interaction.  



 

 

 
Fig. 7 Sketch (plan view) showing locations of the eleven cylinders in the NWT. D is the diameter of the cylinders. 

 

 
Fig. 8 Snapshots (plan view) of the numerical simulation of a solitary wave interacting with a group of eleven cylinders. t is the 

simulation time normalised by (h/g)1/2. 

 

The numerical results of the wave run-up R at the upstream stagnation points of the cylinders and the wave force F 

on the cylinders are plotted in Fig. 9. Since the flow field is symmetrical, the results are presented for two cylinder 

groups based on their positions: the first group consists of cylinders C1, C4 and C7, which are located in the middle, 

and the second group includes cylinders C2, C5, C8 and C10, which are located at the leftmost side (facing 

downstream). The results were all shifted in time, with the time instants of all main peak values made to coincide 

with the non-dimensional time zero.  

 

Fig. 9(a) shows the results for wave run-up. It can be seen that all cylinders in the first group (located in the middle) 

exhibit very similar wave run-up for this spatial configuration of cylinders. Similar run-up is also observed at the 

lateral cylinders C2, C8 and C10, with the exception of cylinder C5, which is located at the front of the cylinder 

group. Both the primary and the secondary peaks of the wave run-up at cylinder C5 appear to be the largest. In 

particular, the very steep secondary peak wave confirms the observations in Fig. 8(b).  

 



 

Fig. 9(b) presents the results for the horizontal wave forces on the cylinders. It is seen that the horizontal wave 

forces are nearly identical on all the three middle cylinders until the secondary force peaks. These secondary peak 

values are approximately 38% of their corresponding primary peak values. For the forces on the lateral cylinders, 

cylinder C5 again encounters the largest wave forces for both the primary peak and the primary trough. Apart from 

these, the secondary peak forces on all lateral cylinders are very close and are nearly 20% of their corresponding 

primary peak forces. 

 

 
Fig. 9 Comparisons of the numerical results: (a) wave run-up at the upstream stagnation points of different cylinders; (b) horizontal 

wave forces on the cylinders. 

 

3 CONCLUSIONS 

 

Solitary wave scattering by vertical circular cylinders has been simulated using the 3D parallel PICIN model in this 

paper. The 3D PICIN model employs the hybrid Eulerian-Lagrangian PIC method to solve the incompressible 

Navier-Stokes equations (NSE) for free-surface flows and incorporates a Cartesian cut cell based approach for fluid-

structure interaction. Due to the PIC nature, both Lagrangian particles and an Eulerian grid are employed in the 

PICIN model; the particles carry all the material information of the fluid, and are used to track the free surface and 

solve the nonlinear advection term in the NSE, while the underlying grid is solely employed for computational 

convenience in solving the non-advection terms of the NSE. Parallelisation based on the MPI approach has also 

been implemented which enables the PICIN model to the simulation of large-scale 3D problems (i.e. those require 

a large number of grid cells and particles). The numerical model was first validated using the test case of solitary 

wave scattering by a single cylinder proposed in Yates and Wang [11]. Comparisons show reasonable agreement 

between the present results and those (both numerical and experimental) of Yates and Wang [11]. For this test case, 

the solitary wave was correctly generated and the free surface elevations at various measuring points were well 

reproduced by the present model. The horizontal wave forces on the cylinder were also reasonably predicted for 

various amplitude solitary waves. The numerical model was then used to investigate a solitary wave interacting with 

a group of eleven cylinders. Complex hydrodynamic processes involving violent wave-wave and wave-structure 

interaction tend to occur in this case. The model is capable of handling such complex 3D scenarios.  
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