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Recent advances in Landsat archive data processing and characterization enhanced our
capacity to map land cover and land use globally with higher precision, temporal
frequency, and thematic detail. Here, we present the first results from a project aimed
at annual multidecadal land monitoring providing critical information for tracking global
progress towards sustainable development. The global 30-m spatial resolution dataset
quantifies changes in forest extent and height, cropland, built-up lands, surface water, and
perennial snow and ice extent from the year 2000 to 2020. Landsat Analysis Ready Data
served as an input for land cover and use mapping. Each thematic product was
independently derived using locally and regionally calibrated machine learning tools.
Thematic maps validation using a statistical sample of reference data confirmed their
high accuracy (user’s and producer’s accuracies above 85% for all land cover and land use
themes, except for built-up lands). Our results revealed dramatic changes in global land
cover and land use over the past 20 years. The bitemporal dataset is publicly available and
serves as a first input for the global land monitoring system.
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INTRODUCTION

The implementation of global initiatives towards sustainable development, climate change
mitigation, and maintaining biodiversity and ecosystem functions, such as the United Nations
Framework Convention on Climate Change (UNFCCC), the Paris Agreement and COP26 Glasgow
Declaration, the Convention on Biological Diversity, the UN Sustainable Development Goals, and
others depends on the timely provision of relevant data on land cover and land use change (LCLUC)
at global, national, and local scales. The need for globally consistent LCLUC data has long been a
priority of the scientific community, with the promise of improved quantification made possible
through the use of remote sensing data (Townshend, 1992). The growing and diverse user
community requires globally consistent yet locally relevant LCLUC data for the development
and implementation of land use policies, for monitoring sustainable development, conservation, and
restoration initiatives, and for Earth systems modeling applications. The LCLUC data
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requirements include free and open public access, operational
updates that reflect the most recent changes, suitability for
multidecadal historical analysis, spatial resolution sufficient
for local scale applications, thematic detail relevant to Earth
systems modeling, and customization capabilities to support a
wide range of practical applications. Recently, several new global
land cover and land use (LCLU) datasets have been created to
support such needs, including Esri 2020 Land Cover (Karra
et al., 2021) and European Space Agency WorldCover 2020
(Zanaga et al., 2021). While these new datasets have
unprecedentedly high spatial details and sufficiently high
mapping accuracy, they lack multidecadal LCLUC
monitoring capabilities and land cover typology
customization, which are required for many national and
regional applications.

The LCLUC data user community requires diverse thematic
data for their applications. Earth resources and climate change
scientists, national land management and reporting agencies,
non-government environmental organizations, and civil society
all need different thematic products that are impossible to provide
using a single LCLU classification system (Saah et al., 2020). The
LCLU products that attribute global land cover as a few discrete
types may not be suitable for most scientific and practical
applications. Class-based LCLU maps provide limited
information on vegetation structure and dynamics, which may
impair climate modeling and ecosystem functions analysis where
the information on gradients of vegetation characteristics is
required (DeFries et al., 1995). At the national scale, the
differences between global and national LCLU definitions
make global maps ineffective or inappropriate for land use
management, monitoring, and reporting (Fritz and See, 2008;
Saah et al., 2020).

A suite of thematic maps that reflects LCLU composition,
structure, and dynamics at the product cell (pixel) scale is an
alternative to discrete-legend characterization. The Vegetation
Continuous Fields (VCF) approach provides per-pixel
continuous fractional cover of the major land cover types,
namely woody vegetation, herbaceous vegetation, and non-
vegetated land cover. The VCF products were created at global
and national scales using Moderate Resolution Imaging
Spectroradiometer (MODIS) (Hansen et al., 2003; DiMiceli
et al., 2021) and Landsat data (Hansen et al., 2011). The
VCF approach provides rich information on vegetation
structure for various applications and can be transformed
into a custom LCLU classification scheme (DiMiceli et al.,
2021). A similar approach, a modular Regional Land Cover
Monitoring System (RLCMS) architecture, represents a set of
thematic layers called “primitives” (Saah et al., 2020). The
biophysical layers that reflect forest structure, vegetation
cover, and water dynamics are aggregated with land use
themes that can be directly mapped using Landsat data
(croplands, settlements) into a single land monitoring
system. The RLCMS approach was successfully implemented
at the regional scale, providing information for the national
land management and reporting agencies (https://
landcovermapping.org/en/landcover/). The RLCMS allows
users to select specific data tailored for their applications,

such as forest monitoring (Potapov et al., 2019), and to
apply custom definitions of LCLU classes.

The Landsat program jointly operated by the United States
Geological Survey (USGS) and the National Aeronautics and
Space Administration (NASA) provides the only satellite data
record that enables multidecadal LCLUC assessment at medium
spatial resolution (Wulder et al., 2012). Landsat optical data has
limitations compared to the modern Earth Observations systems.
Sentinel-2 and Planet constellations provide data at higher spatial
resolution and with shorter repeat intervals. However, Landsat is
the only publicly available medium resolution (30 m) global
satellite data source available before 2016, allowing
spatiotemporally consistent historical LCLUC assessment.
Other benefits of Landsat include thermal sensing capabilities
(which are important for cloud screening and land phenology
assessment), consistent band combination and data structure that
allow data integration from modern and retired sensors, and
consistently processed and easy to access public data archive.
With the recent successful launch of the Landsat 9 satellite, the
program ensures the future provision of high-quality public data
for operational LCLUC monitoring.

Recent advances in Landsat data processing into analysis-
ready data enhanced our capacity to map LCLUC globally with
higher precision and thematic detail. The Landsat analysis-ready
data processing and machine learning algorithms were
successfully employed for global forest monitoring (Hansen
et al., 2013), forest structure mapping (Potapov et al., 2019;
Potapov et al., 2021a), non-vegetated lands assessment (Ying
et al., 2017), cropland area and crop type mapping (Potapov et al.,
2021b; Khan et al., 2021; Song et al., 2021) and surface water
dynamic assessment (Pickens et al., 2020). Here, we present the
first results of global LCLUCmapping using Landsat data archive
over two decades, 2000–2020. We characterize global LCLUC
using a set of thematic bitemporal map that reflects distribution,
properties, and change of the dominant LCLU types, including
tree cover, croplands, built-up land, open water, and perennial
snow and ice. Each thematic product can be used separately, or
the products can be integrated to create a comprehensive LCLUC
map using custom class definitions (Hansen et al., 2021). Each
product was validated using a statistical sample of reference data.
The individual datasets and the global LCLUC maps are publicly
available from the dedicated web portal https://glad.umd.edu/
dataset/GLCLUC2020/.

METHODS

We derived most global thematic products, except open water,
using consistently processed Landsat Analysis Ready Data
(Potapov et al., 2020) produced by the Global Land Analysis
and Discovery laboratory (GLAD) at the University of Maryland,
hereafter referred to as GLAD ARD (Supplementary Figure S1).
The annual GLADARD data time series were integrated into a set
of phenology metrics that enabled global model calibration and
application. We used a separate supervised classification model to
map each thematic class. Individual decision tree models
calibrated with manually collected training data were
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implemented for cropland and perennial snow and ice mapping.
Forest height was estimated using a regression tree model
calibrated with Global Ecosystem Dynamics Investigation
Lidar (GEDI) forest structure measurements. Built-up lands
were mapped using a deep learning convolution neural
network (CNN) algorithm trained with Open Street Map
(OSM) data. The models were calibrated locally (for forest
height and cropland mapping) or regionally (other products).
Surface water mapping utilized per-scene Landsat data
classification and time series analysis in Google Earth Engine.
We independently validated each global thematic product using
statistical sample analysis. The sample reference data were
collected through visual interpretation of the best available
high-resolution satellite images and Landsat time series.

Landsat Data
The Landsat data archive enabled multidecadal LCLUC
monitoring at global extent and medium (30 m per pixel)
spatial resolution. For all thematic products except water, we
used the spatiotemporally consistent Landsat GLAD ARD inputs
available from https://glad.umd.edu/ard as the source data for
global LCLU mapping. The GLAD ARD product consists of 16-
day global Landsat normalized surface reflectance and brightness
temperature composites combined from the best quality
observations. The entire Landsat Collection 1 Tier 1 data
archive over the land area between 75°N and 56°S from 1997
to 2020 was processed. Small islands, Arctic islands (e.g., Novaya
Zemlya), and Greenland were excluded from the GLAD ARD
extent due to the absence of high-quality Tier 1 data or a short
growing season (Figure 1A). In temperate and boreal regions, we
processed only observations during the snow-free season defined
using the MODIS Snow Cover product (MOD10CM V6). The
GLAD ARD image processing consist of 1) observation quality
assessment, 2) reflectance normalization to reduce effects of
atmospheric scattering and absorption, and land surface
anisotropy, and 3) best quality data aggregation into 16-day
composites. Each 16-day composite includes the normalized
surface reflectance for visible, near-infrared, and shortwave
infrared Landsat bands and brightness temperature, along with
the data quality layer. The data quality layer indicates the
presence of atmospheric contamination (clouds, haze), cloud
and topographic shadows, open water, and snow/ice coverage.
The GLAD ARD data is stored in geographic coordinates with a

pixel size of 0.00025° organized as 1 × 1° tiles. The product is
available free of charge and is regularly updated, supporting
operational annual LCLU mapping. The GLAD ARD data
processing algorithm and data format are described in detail
in Potapov et al. (2020).

We integrated the annual GLAD ARD 16-day clear-sky time
series into a set of rank-based statistics, hereafter named
phenology metrics, that enabled the application of the
multitemporal classification and regression models.
Observations contaminated by cloud and cloud shadows were
excluded. To avoid data inconsistency and gaps in cloudy regions
(where only a few clear-sky observations per year are available)
we implemented a gap-filling technique. For the forest structure
and perennial snow/ice mapping, we added observations
collected during three preceding years (e.g., 1997–1999 for the
year 2000) in case a gap between clear-sky observations was
longer than a month. For cropland mapping, we integrated all
available 16-day data into an annualized time series for
2000–2003 and 2016–2019 intervals. To create phenology
metrics, we ranked the annual gap-filled clear-sky observation
time series by 1) reflectance value, 2) corresponding brightness
temperature value, and 3) the corresponding value of vegetation
indices: normalized difference vegetation index, NDVI (Tucker,
1979), and normalized difference water index, NDWI, (Gao,
1996). From each ranking, we extracted a set of statistics that
include selected ranks (minimum, maximum, quartiles), inter-
rank averages (minimum – first quartile, first – third quartiles,
third quartile–maximum), and amplitudes (minimum to
maximum, minimum to the median, median to maximum). A
set of NDVI-based metrics that represent main phenology stages
(start, end, peak of the growing season) were calculated as well.
For each metric, we used the original per-pixel value along with
the 3 × 3-pixels average value. The metric methodology is
presented in detail in Potapov et al. (2020). The list of metrics
used for forest height, snow/ice, and cropland mapping is
provided in Potapov et al. (2021a). The metric list for built-up
mapping includes interquartile averages from the red, near-
infrared, and both shortwave infrared bands. Forest
disturbances, a part of the forest extent and dynamics product,
were mapped using a set of multitemporal metrics that highlight
abrupt land cover change (Potapov et al., 2020).

We augmented the Landsat reflectance metrics with
topographic metrics, including elevation and slope. These

FIGURE 1 | (A) Landsat GLAD ARD data extent (highlighted in blue). (B) Extent of perennial snow and ice mapping (highlighted in blue).
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metrics were derived from the Shuttle Radar TopographyMission
(SRTM) 90-m Digital Elevation Data downloaded from http://
srtm.csi.cgiar.org south of 60°N and the Terra Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model Version 3
(ASTGTM) downloaded from https://lpdaac.usgs.gov/products/
astgtmv003/ north of 60°N.

Thematic Mapping and Change Detection
Forest Height, Extent, and Disturbance
We mapped the height of woody vegetation for the years 2000
and 2020 using the approach of Potapov et al. (2021a). The
minimum height of woody vegetation included in our height
product is 3 m. To enable forest area comparison with the data
provided by the Food and Agriculture Organization of the United
Nations (FAO), we specified forest as an area with tree height
≥5 m at the Landsat pixel scale. Out definition includes wildland,
managed, and planted forests, agroforestry, orchards, and natural
tree regrowth. This definition differs from the one used by the
FAO by the inclusion of trees outside forests and the exclusion of
temporarily unstocked forest areas (FAO 2020). Unlike FAO, we
did not employ the tree canopy cover criterion to define forest
extent.

We employed the global Landsat-based woody vegetation
height mapping model calibrated for the year 2019 using
GEDI observations (Potapov et al., 2021a). The GEDI 95th
percentile of waveform energy relative to the ground elevation
(RH95) metric (Dubayah et al., 2020) was used as training data.
To exclude non-woody vegetation from the training, we assigned
the zero height to all GEDI observations with RH95 values below
3 m. The GEDI calibration data were filtered to exclude low-
quality observations and possible errors and gridded to the
Landsat ARD pixels. We used the year 2019 GEDI RH95 as a
dependent variable and the Landsat multitemporal metrics from
the same year as independent variables to calibrate the regression
tree ensembles. A separate model was calibrated for each Landsat
ARD tile (1 × 1°) using training data collected within neighboring
tiles. For the boreal regions north of 52°N, where GEDI data were
absent, we used a set of regional models. Three separate models
were calibrated for North America, Europe, and Northern Asia.
The training data for each model were aggregated from GEDI
observations between 40°N and 52°N and manually collected
samples of treeless wetlands and tundra areas. The model
calibrated for the year 2019 was applied to 2000, 2001, 2003,
2017, 2019, and 2020 annual metrics (the selection of years was
determined by the technical capacity at the time of data
processing).

The forest disturbance data for the 2001–2020 interval is the
result of the combination of two datasets: the Global Forest Loss
(GFL) data V1.8 (Hansen et al., 2013), available from https://
storage.googleapis.com/earthenginepartners-hansen/GFC-2020-
v1.8/download.html, and the new provisional annual forest loss
data derived using the approach of Potapov et al. (2019) globally.
To create the provisional annual forest loss product, we applied
the V1.8 regional forest loss model to the 2001–2020 annual
change detection metrics. The new annual forest loss product has
the potential to improve the temporal inconsistency of the

original GFL dataset, specifically, forest loss omission before
the year 2015 (Palahí et al., 2021). The new forest loss data
also enables the detection of repeated forest change events, which
is important for the forest change analysis over long time
intervals. We aggregated both datasets to create a single map
of forests that experienced disturbance from 2001 to 2020.

The woody vegetation height values for the years 2000 and
2020 were calculated as the median of 2000, 2001, 2003, and 2017,
2019, 2020 products, respectively, unless forest loss for the years
2001–2003 or 2017–2020 was indicated by the forest disturbance
data (in such case, only the year 2000 or 2020 product value was
used, respectively). To reduce errors and noise in the model
outputs due to remaining atmospheric contamination and
differences in the radiometric resolution of Landsat sensors,
we implemented extensive filtering of the output products.
Pixels that have no indication of forest loss and that had an
overlap of ranges of modeled forest height for 2000–2003 and
2017–2020 intervals were considered stable. For such pixels, we
ignored the difference between height values for the years 2000
and 2020. Manual masks were used to correct forest loss and gain
overestimation, especially in short seasonal forests.

We produced the year 2000 and 2020 forest extent maps by
attributing pixels with ≥5 m forest height as the “forest” land
cover class. The forest extent change (net forest extent loss and
gain) was derived directly from the year 2000 and 2020 map
comparison. The woody vegetation heigh maps were used to
stratify forest extent by height classes. The forest height increase
and decrease maps employed conservative definition of height
change to eliminate noise in the annual model application. We
calculated the net forest height increase only if a pixel had height
≥5 m in 2020 and 1) had forest height <5 m in 2000 or 2) had net
forest height increase from the year 2000–2020 by ≥100%.
Similarly, the net forest height loss was calculated only for
pixels with year 2000 forest heigh ≥5 m if forest height
reduced below 5 m or the net height reduction was by ≥50%
of the year 2000 value. Areas with small differences between the
years 2000 and 2020 forest height data that have no indication of
forest disturbance are considered stable forests in this prototype
product.

Cropland
Cropland was defined as land used to produce annual and
perennial herbaceous crops for human consumption, forage,
and biofuel (Potapov et al., 2021b). Our definition excludes
tree crops, permanent pastures, and shifting cultivation. The
fallow length was limited to 4 years for the cropland class. Our
definition is consistent with the FAO arable land category (FAO,
2005) and the FAO herbaceous crops land cover type (Conchedda
and Tubiello, 2021), except for the temporary meadows and
pastures that are included in the FAO arable land definition
and are excluded from our cropland class. Croplandmapping was
performed for two 4-year epochs, 2000–2003 and 2016–2019. For
each epoch, we attributed a GLAD ARD pixel as cropland if a
growing crop was detected during any year within the interval.

The cropland mapping model was calibrated with manually
delineated training areas which were extrapolated in space and
time through a three-stage algorithm (Potapov et al., 2021b).
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Supervised classification (bagged decision tree ensembles) was
implemented at each of these three steps. At the first step, we
selected 924 GLAD ARD tiles that represent crop type and
agricultural techniques diversity. For each tile, we calibrated
an individual cropland mapping model using manually
collected training data and 2016–2019 multitemporal metrics.
At the second stage, we used the resulting crop maps as training
data to calibrate regional models for the 2016–2019 interval.
These models were applied to a set of time intervals to create a
cropland map time series prototype. At the last step, we used the
stable cropland and no cropland pixels from different time
intervals as training to calibrate a set of local cropland
mapping models. This way we created a set of individual
cropland models (one for each 1 × 1° tile) that allowed us to
map cropland areas consistently for the 2000–2003 and
2016–2019 intervals. The final products were filtered by
removing artifacts and cropland patches smaller than 0.5 ha.

Built-Up Lands
Built-up land consists of man-made land surfaces associated with
infrastructure, commercial and residential land uses. At the
Landsat spatial resolution, we define the built-up land class as
pixels that include man-made surfaces, even if such surfaces do
not dominate within the pixel (Hansen et al., 2021). Due to the
contextual nature of built-up lands, particularly settlements, we
employed a deep learning convolution neural network (CNN)
algorithm to map this thematic class. We utilized the U-Net CNN
architecture (Ronneberger et al., 2015) which has proven to work
robustly over a variety of tasks in remote sensing (Feng et al.,
2019; Brandt et al., 2020). The training data were collected from
Open Street Map (OpenStreetMap contributors, 2021).
Specifically, we used the building outlines and roads resampled
to Landsat resolution. Additional training data were collected
manually through Landsat and high-resolution satellite data
interpretation. To facilitate the deep learning application, we
employed interquartile average metrics from the red, near
infrared, and both shortwave infrared bands of GLAD ARD.
The year 2020 annual Landsat input metrics were related to the
training data through the U-Net architecture. For parameterizing
the algorithm, we randomly sampled patches with a size of 128 ×
128 GLAD ARD pixels. Weight decay and data augmentation
were utilized in the form of downsampling, rotations, and flips for
the gradient-based optimization of the U-Net parameters. A
moving window approach at 10 × 10° tiles was employed to
better fit local development patterns. Final 2000 and 2020 per-
pixel class presence probabilities were generated, and validation
data were used to assist in the final thresholding of the layers in
depicting 2000 and 2020 extents and 2000–2020 gain in built-up
lands. Loss of built-up lands, which represents a small proportion
of the year 2000 class area, was not mapped by this provisional
product.

Water
Open surface water, or simply water, is defined as inland water
that covers ≥50% of a pixel and is not obscured by objects above
the surface (e.g., tree canopy, floating aquatic vegetation, bridges,
or ice). The presented multidecadal surface water change product

is based on the annual water presence dataset produced by
Pickens et al. (2020). Water presence is a percent of Landsat
observations classified as surface water of all annual clear-sky
observations calculated per pixel.

The water dynamics analysis had three major steps: 1) per-
scene Landsat data classification 1999–2020, 2) production of the
annual water presence time series, and 3) multidecadal water
dynamics characterization. The Landsat data for the water
mapping was processed differently than for the other thematic
products (Pickens et al., 2020). Instead of the GLAD ARD, the
algorithm employed the original Collection 1 Tier 1 Landsat 5, 7,
and 8 scenes from 1999 to 2020. We processed the Landsat data
using the Google Earth Engine system.We classified each Landsat
scene into land, water, and unusable data classes using an
ensemble of hierarchical, bagged classification trees developed
for ARD data processing (Potapov et al., 2020).

The annual water presence time series was derived from the
counts of clear-sky water and land observations. To account for
intra-annual variation in clear-sky observation frequency, we first
calculated water presence per meteorological season. These
products were integrated into annual water presence time
series using seasonal weighting, for more details see (Pickens
et al., 2020). Temporal filters and manual masks were applied to
remove noise and errors from annual maps.

The annual water presence maps were used to characterize the
1999–2020 water dynamics (Pickens et al., 2020). The annual
time series data were first smoothed using a 3-year mean moving
window. From a resulting 1999–2020 time series we calculated
the distribution statistics of annual water presence values. Pixels
with a range of ≤33% and a mean of ≤10% or ≥90% water
presence values were labeled permanent land and water,
respectively. Change pixels were identified as pixels with a
range of ≥50%, and all other pixels were labeled as stable
seasonal water, characterized by having little or no inter-
annual variation in water presence and consistent intra-annual
variation. By an analysis of all local maxima and minima in the
time series, pixels labeled as change were further characterized
into the following main change types: net water gain, net water
loss, dry period (water-land-water), wet period (land-water-
land), and high-frequency (three or more) land-water
transitions during the 22 years of observation.

Perennial Snow and Ice
The perennial snow and ice layer includes land covered by
glaciers and snow which remains during the entire year. The
map is limited to the GLAD ARD tiles where perennial snow and
ice areas were detected using the ARD observation quality layer.
To define the mapping area, we first generated preliminary
annual snow and ice maps by selecting the ARD pixels where
16-day observation quality layers show the presence of snow and
ice and the absence of snow-free land or water within the year.
Using these annual maps, we selected GLAD ARD tiles which
contain perennial snow and ice in the year 2000 or 2020
(Figure 1B).

We mapped permanent snow and ice using regionally
calibrated supervised classification models (decision tree
ensembles). Overall, we used 14 models, one model per
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mountain system or geographic region. Each classification model
was calibrated with manually collected training data from
multitemporal Landsat metrics. We used the Landsat data
from the years 2000, 2010, and 2020 for training data
collection. For each year, we compiled composites from
Landsat observations during the peak land surface temperature
and peak NDVI to separate perennial and annual snow cover. The
training data were delineated using visual interpretation and
integrated from 3 years to calibrate a single regional model.
We iterated the models by assessing the classification output
and adding training data. The final model was applied to the years
2000 and 2020, and the results were filtered using a set of rules to
remove noise and artifacts.

Validation
We validated each thematic product separately using an
independently collected reference sample. The individual
Landsat GLAD ARD pixel (0.00025° × 0.00025°) served as a
sampling unit. The sampling region consists of the thematic
product mapping area which is equal to the GLAD ARD
extent for forests, water, and built-up lands (Figure 1A), and
represents a subset of the ARD extent for croplands (Potapov
et al., 2021b) and perennial snow and ice (Figure 1B) maps.
Sample units were allocated using a stratified random sampling
design. We used different strata for each thematic product to
target not only the LCLU class of interest but also areas with
likely class omission errors (Olofsson et al., 2014, 2020). For
product validation, the map and reference data were presented
as discrete LCLU classes (see details in the respective sub-
sections below). The map accuracy metrics include overall
accuracy (the proportion of correctly mapped sample pixels),
user’s accuracy of the LCLU class (which reflects the
commission of this class in the map), and producer’s
accuracy of the LCLU class (which reflects class omission).
Map accuracy statistics were accompanied by the standard
error of the estimate (s.e.). From the reference sample we
also estimated the areas of LCLU classes (stable class area for
a single date and change area between two dates) with the
corresponding confidence intervals. These estimates are further
referred to as “sample-based estimates.” Map accuracy metrics,
sample-based class areas, and their respective uncertainty
statistics were calculated using well-established methods
(Cochran, 1977; Stehman, 2014; Pickens et al., 2020). LCLU
class areas computed via counting of map pixels are referred to
as “map-based.”

Forest Extent and Height
To estimate the accuracy of forest height mapping, we compared
the forest height map for the year 2020 with the GEDI RH95
metric values within the extent of stable forests (forests that had
map-based tree height ≥5 m in both years 2000 and 2020 and no
indication of forest disturbance, degradation, or enhancement).
We used the GEDI Collection 2 data collected between April 2019
and September 2020 for this comparison. Unlike the Collection 1
data that were used for model calibration (Potapov et al., 2021a),
the Collection 2 data have better geometric precision and
thorough quality assessment that excludes low-quality

observations. In total, 104.7 million GEDI footprints were
selected within the stable forests for this comparison.

To validate the forest extent and change product derived from
the forest height dataset using the ≥5 m forest class definition, we
used five strata designed to target stable and dynamic forests. The
strata represented pixels which were characterized by the map
time series as 1) stable non-forest; 2) stable forest; 3) forest extent
loss; 4) forest extent gain; 5) forest that experienced disturbance,
net loss, or gain of forest height, or was within a 30-m buffer of
strata 3 or 4. We allocated 1,000 sample pixels in each of the strata
equally, 200 sample pixels per stratum. To account for the latitude
difference in GLAD ARD pixel area, we performed sampling of
pixels with inclusion probabilities proportional to their area
(Hartley and Rao, 1962; Pickens et al., 2020). A team of image
analysts performed the reference data collection by interpreting
each sample pixel using the Landsat GLAD ARD 16-day time
series data, annual and bimonthly image composites, and high
resolution image time series from Google Earth (Potapov et al.,
2019). A sample pixel was assigned to the forest class if at least
50% of the pixel area was covered with trees with interpreted
height of ≥5 m, or if the pixel was located within a homogeneous
natural forest area with the average tree height ≥5 m. Each sample
pixel was interpreted independently by two experts, and the
disagreements were discussed by the team to find the
consensus interpretation.

Cropland
The strata design for the cropland map time series represents the
intersection of seven geographic regions (North and Central
America, South America, Africa, Europe and Northern Asia,
Southwest Asia, Southeast Asia, Australia and New Zealand)
and five cropland change scenarios, including stable cropland
and no cropland, cropland gain and loss, and possible cropland
omission (Potapov et al., 2021b). In total, we used 3,500 reference
sample pixels equally allocated per stratum (35 strata, 100 pixels
in each). We performed simple random sampling within each
region following Ying et al. (2017), because the cropland strata in
each region were located within a limited latitudinal extent,
reducing the variation of the pixel size. The reference data
were collected through Landsat and high-resolution image
interpretation. Each sample pixel was interpreted by two
experts independently and the disagreements were discussed
and resolved by the team.

Built-Up Lands
The built-up map validation followed the same principles as
forest extent validation. We defined four strata, including 1)
stable built-up land, 2) low and 3) high confidence built-up
gain, and 4) other lands. In each stratum, we randomly
allocated 100 sample pixels (400 pixels total) that were
interpreted using Landsat image composites and high-
resolution data from Google Earth. A sample pixel was
assigned to the built-up class if the analyst detected the
presence of a building or an infrastructure object within the
pixel area. Twomap classes were validated separately: stable built-
up and built-up land expansion. The reference sample data were
used to select the best threshold of built-up class likelihood (by
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balancing user’s and producer’s accuracies) in addition to map
validation.

Water
The surface water 1999–2018 product validation was performed
using a sample of 600 reference pixels allocated using a stratified
random design created by Pickens et al. (2020). The strata
represent permanent land, permanent water, stable seasonal
water, water loss, water gain, wet period dynamics, dry period
dynamics, high frequency water, probable permanent water,
probable permanent land, sparse data, and a 1 km buffer
around all areas with detected water presence to quantify class
omission. The reference data were collected through visual
sample interpretation of a random Landsat scene per month
1999–2018, resulting in up to 240 observations per sample pixel,
with interpretation aided by high-resolution images provided by
Google Earth. Each month was labeled as water, land, or no-data.
Annual water percent and the dynamics classes were calculated
from the monthly reference data following the samemethodology
as for the maps.

Perennial Snow and Ice
For the perennial snow and ice product validation, we
implemented a stratified sampling design with five strata: 1)
stable snow/ice presence and 2) absence, 3) snow/ice gain and
4) loss between 2000 and 2020, and 5) a 30-m buffer around all
detected snow/ice areas to quantify class omission. We randomly
allocated 500 sample pixels (100 pixels per stratum) and
interpreted these pixels using Landsat time series data. To
ensure the correct separation of perennial and seasonal snow
cover for each year, we used the 16-day Landsat ARD data
composite with the highest brightness temperature for sample
visualization and interpretation.

Map Analysis and Intercomparison
The global thematic map extent is limited by the land area where
the Landsat ARD data was available (Figure 1A). Using global
thematic maps, we quantified LCLU extent and change at the
global, continental, and national scales. To estimate the area of
LCLU classes, we applied thresholds to convert continuous
products (e.g., forest height) into thematic classes. Since our
raster Landsat ARD-based maps are in geographic coordinates,
the pixel area changes with latitude. To account for the unequal
pixel area, we calculated the spherical surface area of each pixel and
summarized pixel areas by thematic class for each region of
analysis.

We summarized the LCLU area and change by country and
continent. Country boundaries were obtained from the Database
of Global Administrative Areas (GADM V3.6, https://gadm.org).
We delineated continents using national and administrative
boundaries. We divided North and South America by the
boundary between Panama and Colombia. We divided Europe
and Asia by the Russian southern border and by the boundary of
Russian administrative regions along the Ural Mountains.
Australia includes New Zealand and Pacific Islands and is
separated from Asia by the Indonesia/Papua-New Guinea
country border.

We compared our map-based estimates with the official forest
and cropland data provided by the FAO. The FAO Forest
Resource Assessment 2020 (FAO, 2020) provides data on
national forest areas for the years 2000 and 2020. The
FAOSTAT year 2018 national arable land area and the year
2019 global herbaceous crop area were used to compare against
our cropland area estimates (FAO, 2021).

The recently published global Sentinel-based 2020
WorldCover 2020 (Zanaga et al., 2021) developed by the
European Space Agency was used for comparison with our
Landsat-based data. We compared the national areas of
relevant thematic classes (forest extent, cropland, built up,
surface water, and snow/ice). The WorldCover product was
resampled to a geographic pixel grid with a spatial resolution
of 0.0001°, and the national areas were calculated using the same
approach as for our product. In addition, we compared our new
forest height map with the former Landsat-based tree canopy
cover product for the year 2000 (Hansen et al., 2013). A detailed
spatial product intercomparison was beyond the objectives of this
manuscript.

To analyze the carbon emissions due to the forest loss, we
estimated the average aboveground biomass carbon (AGC)
density for each forest height and type strata using the
harmonized global AGC map for the year 2010 (Spawn
et al., 2020). The average AGC estimation was done at the
spatial resolution of the AGC map resampled to the 0.0025 ×
0.0025° cell grid (approximately 300 m at the Equator). To
account for forest type differences, we estimated mean AGC
separately for each biome obtained from the Global Ecological
Zones (GEZ) map (FAO, 2012). Forest AGC strata were
created by the intersection of four forest biomes (Boreal,
Temperate, Subtropical and Tropical) with forest height
categories that include short (5–9 m), medium-height
(10–19 m), and tall (≥20 m) forests, creating 12 strata total.
The forest height strata thresholds are informed by the pan-
tropical AGC change estimation study (Tyukavina et al., 2015).
To create a mask of 0.0025° cells suitable for the mean AGC
estimation, we calculated the percent of stable forests (forests
that have no indication of canopy height change or disturbance
between 2000 and 2020) by each AGC strata within each grid
cell. Only grid cells that had 100% of stable pixels that belong
to the same forest strata were used for the mask. We randomly
selected a set of 1,000 grid cells from each stratum and
calculated sample-based average AGC. The per-stratum
average AGC was used to estimate the total AGC for the
years 2000 and 2020 and the AGC change from the
corresponding strata areas calculated from the original 30-m
spatial resolution data.

We performed a LCLUC hotspot analysis to highlight regions
that have the highest intensity of the 2000–2020 change. Hotspots
were selected for the four thematic LCLUC categories that have
the highest environmental and social value: deforestation
(defined as net forest loss for 2000–2020); forest AGC
reduction for 2000–2020 (estimated using forest AGC strata
area for years 2000 and 2020 and the per-strata mean AGC);
net cropland gain for 2003–2019; and built-up area expansion for
2000–2020. The regions were defined using the Icosahedral
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Snyder Equal Area aperture 3 Hexagon Geodesic Discrete Global
Grid System (ISEA3H GDGGS) (Sahr et al., 2003). We generated
the global hexagon map at resolution 6 using the dggridR package
in R (https://rdrr.io/cran/dggridR/). The grid has a nearly equal-
area cell size of 70,000 km2 on average (standard deviation
1,000 km2). We calculated the 2000–2020 net quantity change
for each thematic class per grid cell. For each class separately, we
ranked the cells by the value of the net change. We defined
hotspots as a group of cells with the highest net change quantity
that together are responsible for 50% of the total change quantity.
I.e., to make the deforestation hotspots map, we ranked all grid
cells by their net forest change area in reverse order (from the
highest loss to highest gain) and selected the cells from the top of
the list until the total forest loss for the selected cell is equal 50% of
the global total net forest loss.

RESULTS

Global Land Cover and Land Use Dynamics
Our global bitemporal maps portray changes in the Earth’s land
cover and land use during the first 20 years of the century. The
results show the reduction of global tree cover extent and
expansion of cropland and settlements. LCLU dynamics have
distinct regional patterns reflecting the expansion and
abandonment of intensive land management. Surface water
dynamics have pronounced regional variation linked to
hydropower projects and depletion of natural lakes in dry
climates. The area of perennial snow and ice declined
dramatically in a warming climate. The global and regional
LCLUC areas were obtained directly from the maps, therefore
regional area estimates may be biased due to map errors. Our
global maps can facilitate the national and sub-national reporting
provided that an additional statistical sampling approach and
independent reference data collection are employed.

Forest Dynamics
We define forest as land cover with tree canopy height ≥5 m,
including natural and planted trees. In the year 2020, the global
forest area was 40.2 million km2, which makes up 31% of the

analyzed land area (land area within the Landsat ARD product
extent excluding inland water). During the last two decades,
2000–2020, forest extent decreased by 1 million km2, or by
2.4% of the year 2000 forest area (Table 1). The net forest loss
is a result of the imbalance between the gross forest loss (2.3
million km2), defined as forest area of the year 2000 cleared
permanently or temporarily by the year 2020, and gross forest
gain (1.3 million km2), defined as forests established or recovered
by the year 2020 within the year 2000 non-forest land. Of the year
2000 forest area, 5.6% was cleared (forest loss) and another 8%
affected by stand-level disturbances or experienced forest height
reduction by ≥50% (forest disturbance and degradation). The
global forest loss and disturbance pattern (Figure 2D) highlights
agricultural expansion frontiers, timber production regions, and
the effects of stand-replacement wildfires. Of the year 2020 forest
area, 3.3% was made up of forest stands established since the year
2000 (forest gain), and 1% was made up of forest stands where
tree height increased by ≥100% (forest enhancement).

Asia and South America had the largest shares of global forest
extent in 2020 (33 and 21%, respectively), while Europe and
Australia’s shares were the least (9 and 4%) (Table 1; global forest
distribution shown in Figure 2A). Compared to the continent’s
land area, South America and Europe had the largest forest
proportion (48 and 40%, respectively), while Australia has the
lowest (17%). South America had the highest rate of 2000–2020
net forest loss (5% of the year 2000 forest area, or 0.44 million
km2), followed by Africa (4.6%, or 0.32 million km2). The gross
forest gain in Africa and South America compensated less than
30% of their respective gross forest loss area. In South America,
net forest loss is concentrated along agricultural expansion
frontiers surrounding remaining intact Amazonian rainforests,
while in Africa it is spread over the forest extent of the continent
(Figure 2C). Asia has the largest area of gross forest area change,
both loss and gain. Forest loss hotspots in Asia are related to fires
and logging in Siberia and agricultural clearing in the Lower
Mekong region (Figure 2C). In Asia, Australia, and North
America, forest gain area compensates 70–80% of the forest
loss, resulting in a moderate net forest area reduction by
1–2%. Europe was the only continent that increased its forest
area (by 1.7% of the year 2000 forest area, or 64,000 km2). Forest

TABLE 1 | Map-based forest area and change, 2000–2020.

Forest Area,
km2 × 106

Net Forest Change,
2000–2020

Gross Forest Loss Gross Forest Gain Forest Loss, Disturbance,
and Degradation

2000 2020 Area,
km2 × 106

% Of
Forest Area

2000

Area,
km2 × 106

% Of
Forest Area

2000

Area,
km2 × 106

% Of
Forest Area

2020

Area,
km2 × 106

% Of
Forest Area

2000

Africa 7.07 6.74 −0.32 −4.6 0.45 6.3 0.12 1.8 0.98 13.9
Asia 13.25 13.10 −0.15 −1.1 0.62 4.7 0.47 3.6 1.97 14.9
Australia 1.48 1.47 −0.01 −0.8 0.03 2.3 0.02 1.6 0.14 9.3
Europe 3.74 3.80 0.06 1.7 0.15 4.0 0.21 5.6 0.46 12.2
North America 6.90 6.75 −0.15 −2.1 0.48 7.0 0.33 4.9 1.05 15.2
South America 8.78 8.34 −0.44 −5.0 0.58 6.6 0.14 1.7 1.02 11.6
World 41.23 40.22 −1.01 −2.4 2.31 5.6 1.31 3.3 5.61 13.6

Forest defined as Landsat ARD pixels with ≥5 m canopy height. The “Forest disturbance and degradation” includes gross forest loss area, area of forests affected by stand-level
disturbances, and forests that reduced canopy height by ≥50%.
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gain in Europe was concentrated within the Russian
“Nechernozemie” (non-chernozem soils) region that had the
highest agricultural abandonment rate and subsequent forest
encroachment over former croplands and pastures. North
America had the highest rate of forest change (15.2% of the
year 2000 forest area), including gross forest loss, stand-
replacement disturbance, and forest height reduction as a
result of forest management or degradation.

Most of the global forest area (99.8%) is within the 135
countries that have at least 5,000 km2 of forests. Just five
countries, Russia, Brazil, Canada, USA, and China, together
share more than 50% of the global forest area. Of the 135
countries, 60 countries lost more than 1% of their forest area
while only 17 countries increased their forest area by more than
1%. The largest net forest loss area was found in Brazil, followed
by Canada, the Democratic Republic of the Congo, and Paraguay.
The highest rate of forest area loss (compared to the year 2000
forest area) was in Cambodia (−26%), Paraguay (−25%), and
Uganda (−23%). The largest net forest gain area was in China,
followed by India, Uruguay, and East European countries Poland,
Ukraine, and Belarus. The highest forest area increase compared

to the year 2000 forest area was in Uruguay (+54%) and Ireland
(+34%). Forest area increase in both these countries is due to the
rapid expansion of commercial timber plantations made up
mostly by introduced tree species (Eucalyptus in Uruguay and
Sitka spruce in Ireland).

Our forest height maps provide information on land cover
dynamics that is relevant for carbon monitoring. Here, we
separated forest extent into three strata by forest height: short
(5–9 m), medium-height (10–19 m), and tall (≥20 m) forests.
Most of the world’s forests have canopy heights of 10 m and
higher. Of the total year 2020 forest area, short forests made up
24% while medium-height and tall forests made up 38% each
(Figures 2B, 3A and Table 2). Most of the forests in Europe and
South America (≥62%) are tall, while in Africa short forests
represent 45% of total forest area. South America, Asia, and
Europe together comprise 75% of global tall forests.

Gross loss and gain dynamics affect short and medium-height
forests more than tall forests. Of the global gross forest loss and
gain area, only 20 and 12%, respectively, were found within tall
forests. However, the ratio of gross forest gain to loss is lower for
tall forests (0.34) than for short and medium-height forests (0.56

TABLE 2 | Map-based forest area and change, 2000–2020, by forest height strata.

The year 2020 Forest Area, km2 × 106 Net Forest Change, 2000–2020, km2 × 103

5–9 m 10–19 m ≥20 m 5–9 m 10–19 m ≥20 m
Africa 3.0 1.9 1.9 −193.1 −49.8 −81.3
Asia 2.1 7.1 3.9 64.4 9.8 −223.6
Australia 0.4 0.5 0.5 −2.3 −0.2 −8.7
Europe 0.5 1.0 2.4 −3.3 68.6 −1.4
North America 2.0 3.3 1.5 41.8 −160.0 −27.7
South America 1.7 1.5 5.2 −131.7 3.0 −310.3
World 9.7 15.2 15.3 −224.1 −128.1 −652.8

FIGURE 2 | Forest extent, structure, and dynamics for each 1 × 1° grid cell. (A) Forest area 2020, % cell area. Forest defined as Landsat ARD pixels with ≥5 m
canopy height. (B)Mean forest height 2020, meters. (C) Net forest area change, 2000–2020, % cell area. (D) Forest loss, disturbance, and degradation 2000–2020, %
year 2000 forest area within a cell.
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and 0.68, respectively). As a result, net forest loss area is highest
for the tall forests strata (0.65 million km2, or 4.1% of the year
2000 forest area) (Table 2). Net loss within short and medium-
height forests was 2.3 and 0.8% of the respective year 2000 strata
area; both estimates are below the global net forest area reduction
of 2.4%.

Intensive gross forest loss and gain in short and medium-
height forests of Asia are nearly balanced and resulted in a small
net area gain (Figure 3B). In North America, gross forest change
in short forests is also balanced, but medium-height forests
experienced net area loss. Intensive forest dynamics on both
these continents are due to timber plantations and agroforestry
management in the south and forest fires in the north. The gain of
short forests in Asia and North America can be explained by the
timber plantation management, establishment of tree plantations
(oil palm, rubber) in tropical and subtropical forests, and forest
restoration over old burned areas in the boreal forests. Forest
change in Africa and South America shows the loss and gain
imbalance for all forest height strata, leading to a net forest area
reduction. Earlier research (Tyukavina et al., 2015; Tyukavina
et al., 2017; Tyukavina et al., 2018; Curtis et al., 2018; Turubanova
et al., 2018; Zalles et al., 2021) suggested that the expansion of
shifting cultivation, permanent croplands, and pastures are the
main drivers of forest conversion in these continents. The area of
tall forests was reduced in all continents, including Europe. The
largest reduction of tall forests was in Asia and South America,
followed by Africa. The observed reduction of tall forests in the
tropics corresponds to the expansion of permanent agriculture
(which resulted in deforestation), shifting cultivation (which
resulted in conversion to secondary forests), and agroforestry
(which resulted in conversion of tall primary forests into shorter
tree plantations).

Tall forests store the highest amount of carbon per unit of area
(Tyukavina et al., 2015), which suggested that the loss of the tall
forest area corresponds to the highest carbon emissions. Using
the average AGC per forest stratum defined by forest height and
biome, we estimated that the global forest AGC reduced by 3.3%
from the year 2000–2020. Net reduction of tall forests area
accounted for 83% of the total AGC loss, while net forest

change within short and medium-height forests contributed
only 9 and 8%, respectively. Of the total AGC reduction in tall
forests, 52% occurred in South America, 30% in Asia, and 13% in
Africa. At the national scale, Brazil had the highest AGC
reduction, contributing 34% to the global total, followed by
Indonesia (9%) and the DRC (7%), together contributing 50%
of the global AGC reduction due to net forest area change.

Reference sample data are the best tool for attribution of
forest change proximity drivers (Tyukavina et al., 2017;
Tyukavina et al., 2018). Using our validation sample data, we
estimated that 38% (s.e. 4%) of total gross forest loss area was
due to land use or land cover conversion (deforestation), and the
rest was due to logging, tree plantation management, and
shifting cultivation (temporary tree removal). The small
sample size did not allow us to quantify the role of different
proximate drivers of forest conversion. Visual analysis of sample
data suggested that deforestation was primarily driven by
pasture and cropland expansion. Other factors such as
settlement and infrastructure expansion, mining, and
permanent flooding were also detected in the reference
sample. Using an overlay of the forest loss 2000–2020 map
and the year 2019 cropland map, we found that 9% of the forest
loss area was transformed into permanent cropland. In Africa
and South America, the proportion of forest loss conversion to
cropland was the highest, 18 and 13%, respectively. Our built-up
lands map shows that urban expansion and construction within
existing urban areas were linked to 4% of gross forest loss
globally. Asia had the largest proportion of the forest loss
within year 2020 built-up lands (6%), followed by Europe
and Australia, while South America had the least (<2%).
Using the overlay with the water extent map, we estimated
that 1% of forest loss was caused by flooding, either natural or
due to reservoir construction. In Asia, nearly 2% of forest loss
was due to flooding, mostly for hydropower projects.

Using the reference sample data, we estimated that 39% (s.e.
5%) of gross forest gain was due to man-made restoration or
plantation establishment, and the remainder to natural forest
restoration. Of the mapped gross forest gain, 5% were located
within year 2020 built-up lands. Asia had the largest share of

FIGURE 3 | (A) Percent of each forest height strata within the year 2020 forest area. (B) Gross forest area loss and gain 2000–2020 by forest height strata.

Frontiers in Remote Sensing | www.frontiersin.org April 2022 | Volume 3 | Article 85690310

Potapov et al. Global LCLUC 2000-2020

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


gross forest gain in settlements. Because the thematic land cover
maps were derived independently, a small overlap between land
cover classes may be due to the inconsistencies in mixed pixel
attribution (e.g., a mixed pixel on the border of cropland and
forest may be attributed as both these classes). Given this
limitation, findings from the land cover map overlays should
be confirmed with reference sample data.

Cropland Dynamics
Global cropland area increased by 11.5% between the
2000–2003 interval and the 2016–2019 interval (Table 3).
The largest net cropland area increase was in Africa (by 0.5
million km2), followed by Asia and South America. South
America had the largest relative cropland area increase (45%
of the year 2000 cropland area) followed by Africa (33%
increase), while other continents increased their cropland
area by less than 10%.

During the last 20 years, the gross global cropland area
expansion (2.3 million km2) was twice higher than the
cropland area reduction (1.1 million km2). In Europe and
North America, where crop expansion (mostly through
pasture or long fallow conversion) and reduction (through
abandonment or conversion to other land uses) are balanced,
the resulting net cropland area change was small. In Africa and
South America, cropland expansion is four times and six times
(respectively) higher than reduction, driving net cropland area
increase.

In 2019, six countries, the USA, India, China, Russia, Brazil,
and Australia, hosted more than half of the global cropland area
(Figure 4A). From 2000 to 2019, Russia experienced the largest
net cropland area reduction, while Brazil and India had the largest
net cropland gain. Spatial distribution of net cropland area
change (Figure 4B) highlights agricultural expansion hotspots
in South America (Pampas, Chaco, Brazilian Highlands, and
southeast part of Amazon rainforests), Africa (the Sahel and
the Great Rift Valley), India, Lower Mekong countries, Northern
China, and Australia. The largest cropland loss hotspot is in the
Russian Nechernozemie region due to the abandonment of
unproductive croplands. At the same time, croplands that
were abandoned after the breakdown of the Soviet Union in
southern European Russia, Ukraine, Belarus, and the Baltic States
are being recultivated, creating a cropland gain hotspot in Eastern

Europe. Local crop reduction hotspots in China are driven by tree
plantation, agroforestry, and urban expansion that replaced
traditional annual crops.

Our sample reference data (Potapov et al., 2021b) showed that
nearly half of the global cropland expansion happened at the
expense of natural vegetation. To highlight regions where
cropland replaced forests during the last 20 years, we overlaid
the cropland gain map with the map of forest loss, disturbance,
and degradation (Section 3.1.1). Globally, 8% of the cropland
expansion area was co-located with forest loss, with the highest
proportion in South America (17%) and Africa (13%). The map
(Figure 4C) shows the major hotspots of cropland-driven
deforestation in South America (Cerrado and Amazonian
moist forests in Brazil, Chaco forests in Argentina, and
Chiquitano forests in Bolivia), the Great Rift Valley and West
African countries, and in Cambodia.

Global cropland reduction was primarily driven by crop
abandonment or conversion into pastures (52% of cropland
loss area, Potapov et al., 2021b), while built-up area and
infrastructure expansion was the second most important
driver. Using the cropland loss and built-up lands map
overlay, we showed that 13% of the cropland reduction area is
co-located with stable or expanding settlements. In Asia and
North America, the proportion of cropland loss area within the
year 2020 built-up lands was 21 and 10%, respectively. The
spatial distribution of cropland reduction with the year
2020 built-up lands (Figure 4D) highlights intensive
cropland conversion due to urban sprawl in Northern China
and South Korea.

Built-Up Lands Expansion
The map-based year 2020 global built-up lands area was 4.3
million km2, nearly half of which (47%) was in Asia (Figure 5A
and Table 4). China alone had 21% of the global settlement and
infrastructure area followed by the USA (14%). These two
countries, together with India, Brazil, Russia, Indonesia, and
Canada, comprise half of the global built-up extent. Using
global maps, we found that the built-up area increased by 50%
from 2000 to 2020. Of the total built-up area gain, 60% was in
Asia, where it increased by 73%. This increase was primarily
caused by urban expansion in North and Southeast China and
in Northern and Eastern India (Figure 5B). China was

TABLE 3 | Map-based cropland area and change, 2000–2019.

Cropland Area,
km2 × 106

Net Cropland Area
Change, 2000–2019

Gross Cropland Area
Expansion, 2000–2019

Gross Cropland Area
Reduction, 2000–2019

2000 2019 Area,
km2 × 106

% Of
year
2000

Area,
km2 × 106

% Of
year
2019

Area,
km2 × 106

% Of
year
2000

Africa 1.43 1.90 0.47 33.0 0.62 32.7 0.15 10.6
Asia 4.22 4.57 0.35 8.2 0.77 16.9 0.43 10.1
Australia 0.43 0.46 0.03 7.5 0.05 11.3 0.02 4.7
Europe 2.10 2.12 0.02 0.9 0.26 12.0 0.24 11.3
North America 1.97 2.02 0.05 2.4 0.21 10.6 0.17 8.5
South America 0.75 1.09 0.34 44.9 0.41 37.8 0.07 9.9
World 10.90 12.16 1.25 11.5 2.33 19.2 1.08 9.9
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responsible for 30% of the global built-up area gain. Africa,
while it shared a much smaller portion of the total built-up area
gain (12%), had the second-highest rate of built-up increase
(by 68%). This gain was mostly driven by urbanization within
the East (Ethiopia, Kenia, Rwanda) and West (Nigeria, Ghana)
parts of the continent. Europe and North America had the
lowest rates of built-up lands increase globally. However, at the
national scale, the absolute area of built-up area gain in the
USA was the third-largest (after China and India). The
urban expansion in the USA mostly happened on the
outskirts of the established population centers, thus the
relative net gain of the built-up area was moderate (by 20%
of the year 2000 area).

Water Dynamics
Globally, 3.5 million km2 were mapped as persistent inland open
water in 2020. Persistent water was defined as ≥50% annual water
presence, excluding snow and ice cover. North America had the
most inland surface water, representing 46% of all persistent
water in 2020, followed by Asia with 27%. Africa, South America,

and Europe each shared 8–9% of global persistent water area, and
Australia had only 0.4%. Canada alone represents 34% of the
global surface water, largely due to the water-saturated landscape
of the Canadian Shield (Figure 6). The top five countries
(Canada, Russia, the USA, China, and Brazil) comprise 71% of
the total global 2020 persistent water extent, which reflects their
high share of the global freshwater supply.

Considering 1999–2020 interannual dynamics, North
America had the most surface water, with 39% of the global
total for all water dynamic classes and 51% of all permanent
water. The surface water extent of North America is the most
stable with permanent water composing 63% of its total water
extent. Asia had the largest extent of dynamic water presence
(44% global total) but only 22% of permanent water. The surface
water extent in Australia was the most dynamic with 82% of its
total water area being seasonally (44%) or interannually variable
(39%) and only 18% permanent.

On the national scale, Kazakhstan had the largest share of
global surface water loss (14%) following by Uzbekistan
(8%) due to the decline of the Aral and Caspian Seas

TABLE 4 | Map-based built-up lands area and change, 2000–2020.

Built-Up Area 2020,
km2 × 106

Built-Up Area Change,
km2 × 106

Built-Up Area Change,
% of the
year 2000

Africa 0.44 0.18 68
Asia 2.03 0.86 73
Australia 0.11 0.03 40
Europe 0.61 0.11 23
North America 0.79 0.16 26
South America 0.30 0.09 43
World 4.29 1.43 50

FIGURE 4 |Cropland extent and dynamics for each 1 × 1° grid cell. (A)Cropland area 2019, % cell area. (B)Net cropland area change, 2000–2019, % cell area. (C)
Cropland gain 2000–2019 within forest loss 2000–2020 area, % cropland gain area within a cell. (D). Cropland loss 2000–2019 within the year 2020 built-up lands, %
cropland loss area within a cell.
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(Figure 6). China had the largest proportion of surface
water gain (19% global total) due to the expansion of
lakes on the Tibetan Plateau and creation of reservoirs by
construction of dams.

Perennial Snow and Ice Reduction
Our global mapping extent excludes the largest Earth’s ice sheets
of Greenland and Antarctica. Within the analyzed land area
(between 75°N and 56°S), the perennial snow and ice cover is

mostly found within mountain regions in the form of mountain
and valley glaciers and snowcaps, and as perennial snowfields in
the Arctic. For mapping purposes, we define perennial snow and
ice by the land cover during the hottest time of the year at the
Landsat ARD pixel scale. A pixel was assigned to this thematic
class if snow or ice cover was detected for the Landsat observation
with the highest annual land surface temperature.

Our bitemporal maps show that the area of perennial snow
and ice within the analyzed part of the globe decreased by

FIGURE 5 | Built-up lands and their net change for each 1 × 1° grid cell. (A) Built-up lands 2020, % cell area. (B) Built-up lands increase 2000–2020, % cell area.

FIGURE 6 | Surface water extent and unidirectional dynamics, 1999–2020.

FIGURE 7 | (A) The year 2000 perennial snow and ice extent and its 2000–2020 reduction for each 1 × 1° grid cell. (B) Mount Kilimanjaro perennial snow and ice
reduction, 2000–2020.
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11.5%. Such a high area loss, however, was not confirmed by
our sample analysis, which quantifies the total loss of snow
and ice cover by 6.6% (see section 3.2.5). The overestimation
is related to the year 2000 snow and ice commission error.
While our maps may not serve for direct estimation of ice and
snow cover change, they can be used to indicate change
hotspots. The highest rate of snow and ice decline was
found in Africa (Table 5), where glaciers on top of Mount
Kilimanjaro and Mount Ngaliema are quickly melting
(Figure 7B). The largest area of snow and glaciers retreat
was in North America, within Western Cordillera and the
Canadian Arctic Archipelago (Figure 7A). In Asia, the loss of
perennial snow and ice was the highest in the Western part of
the Himalayas and in the Hindu Kush mountain range. We
found that the perennial snow and ice cover in Europe and in
Northern Asia was relatively stable.

Map Accuracy and Product
Intercomparison
Forest Height and Extent
The year 2019 forest height model validation results are
provided in Potapov et al. (2021a). The year 2019 forest
height map was compared to the GEDI Collection 1 set-
aside validation data (RMSE = 6.6 m; MAE = 4.45 m, R2 =
0.62) and available canopy height data derived from airborne
lidar (RMSE = 9.07 m; MAE = 6.36 m, R2 = 0.61). Here, we
compared the year 2020 forest height map for stable forests
with the GEDI Collection 2 RH95 metric value (Figure 8).
The comparison showed similar relationship between the
map-based and GEDI height values: RMSE = 6.75 m, MAE
= 4.76 m, and R2 = 0.53. The Landsat map is limited to the
forest height ≥5 m (forest definition), and the GEDI data to
the forest height ≥3 m (pixels with RH95 below 3 m were
considered non-forest). We expect that the year 2000 product
created using the same regression model and similar Landsat
metrics have similar model uncertainty.

The sample-based validation revealed that themaps of forest extent
2000 and 2020 and the stable forest class extent have high accuracies,
with both user’s and producer’s accuracies above 93% (Table 6). The
accuracy of the forest gain and loss classes is lower. The user’s accuracy
of forest gain (71%) was compromised by the confusion between
forest enhancement (existing forest height increase) and forest gain
(establishment of forests within the year 2000 non-forest land). This

confusion was most prominent in the boreal forests, where forest
height in the year 2000 was not always possible to interpret even by
reference data. The producer’s accuracies of both forest loss and gain
classes were the lowest, indicating that the product provides
conservative estimates of forest dynamics.

Our global map-based forest area estimates are very similar to
the global forest area reported by FAO Forest Resource
Assessment 2020 (FAO FRA) (FAO, 2020), with less than 1%
difference for both year 2000 and 2020 total forest area
(Figure 9A). At the national scale, the forest area from the
map and FAO FRA are closely related (Figure 10) with R2 of
0.98 and 0.99 for the year 2000 and 2020 forest area, respectively.
However, we observe significant differences between the map and
reported forest area in some countries. Our map underestimated
the year 2020 forest area in Brazil, Canada, and Australia by
nearly 0.5 million km2 each. In Somalia, Botswana, and Namibia,
our map shows nearly twice as less forest area as the FAO FRA
estimate. The map-based area for Indonesia, the DRC, and the
Central African Republic are higher than the FAO estimate. The
discrepancies are due to 1) forest definition inconsistency
between the countries, and 2) the area of agroforestry and tree
crops that are excluded from the FAO FRA forest area estimation.

The ESA WorldCover 2020 overestimates our map-based
forest area and FAO FRA forest area by 7 and 6%, respectively
(Figure 9A). The overestimation is driven by non-forest tundra
regions in North America and East Siberia, which were classified
as forests by the WorldCover map (Figure 11A). We also found
that our GEDI-calibrated forest height map shows forest height
≥5 m within open canopy forests and savannas in Africa, which
are attributed by the WorldCover map as shrubland. These
discrepancies illustrate that the continuous forest height data
may be better suited for vegetation structure, and, consequently,
carbon storage assessment, as compared to discrete land cover
classifications.

We compared our new year 2000 forest extent map (based on the
≥5m forest height threshold) with the forest extent map that was
obtained by applying canopy cover thresholds on the tree canopy
cover map for the year 2000 (Hansen et al., 2013). Our new map
shows smaller forest extent in the North American forest-tundra and
in dry shrubland/savanna in Brazil (where the former map
overestimated tree cover), while it better detects open-canopy
forests in the Sahel, Australia, and Northern Siberia. Our
observations are confirmed by the year 2000 sample-based
accuracy analysis (Table 7) performed using the same reference

TABLE 5 | Map-based perennial snow and ice extent and reduction area, 2000–2020.

Perennial Snow and
Ice Area, 2020,

km2 × 103

Net Snow and Ice Area Change

km2 × 103 % Of the year
2000

Africa 0.002 −0.003 60.6
Asia 128.1 −17.3 11.9
New Zealand 1.7 −0.3 16.8
Europe 24.4 −0.2 0.9
North America 145.0 −21.9 13.1
South America 33.3 −3.6 9.6
World 332.6 −43.4 11.5
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data that were used for the map validation. The user’s and producer’s
accuracies for the new product are higher and more balanced
compared to the accuracies of the former tree canopy cover map.

Cropland Extent
The year 2000–2003 and 2016–2019 interval cropland maps have
high quality, with both user’s and producer’s accuracies above

86% (Table 6). Our map consistently represents industrial
cropland areas in North and South America, Southern Europe,
and the main crop production regions of Asia. In a heterogeneous
landscape, where small crop fields are intermixed with orchards,
villages, and natural vegetation, the map underestimates the
cropland area (Potapov et al., 2021b). Croplands were also
underestimated in dryland agricultural areas, where the

FIGURE 8 | Comparison of the Landsat-based year 2020 forest height map values with the GEDI Collection 2 data within stable forests. The analysis is performed
within the GEDI data range. N = 104,673,802.

FIGURE 9 | Global LCLU class areas from different data sources. (A) forest extent; (B) croplands; (C) built-up lands; (D) perennial snow and ice. Map-based
estimates are from the thematic map time series and ESAWorldCover 2000. Sample-based estimates are from the reference data. FAO data represent years 2000 and
2020 forest extent (FAO, 2020) and arable land area for the years 2003 and 2018 (FAO, 2021).
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irregular fallow length and short growing cycle hampered crop
detection. Crop overestimation was found over intensively
managed, planted, and irrigated pastures in Australia,
New Zealand, and Western Europe.

The cropland area change map has higher uncertainty
compared to the crop extent maps, specifically, for the

cropland gain class, which has relatively low user’s accuracy
(Table 6). The cropland loss and gain are usually confused
with stable cropland areas.

A comparison of the national 2016–2019 cropland area with
the year 2018 arable land estimates published by the FAO showed
good agreement (R2 of 0.98) (Potapov et al., 2021b). Our total
cropland extent is lower than the FAO arable land area by 11%
(Figure 9B), which is most probably due to differences in
definitions: while our map only reflects the area of actively
used croplands, the FAO data may include abandoned lands,
meadows, pastures, long fallows, and perennial crops (See et al.,
2015).

We compared our global cropland area estimates with the
FAO land cover statistics for the year 2019 that is derived from
multiple data sources, including MODIS Land Cover product
(MCD12Q1), Catholic University of Louvain Geomatics land
cover (CCILC), and Copernicus Global Land Service land cover
product (CGLS) (Conchedda and Tubiello, 2021; FAO, 2021).We
found that the global herbaceous crop area estimates from CCILC
and CGLS are significantly higher than our 2019 cropland area,
by 57 and 22%, respectively. The MODIS-based herbaceous
cropland has a good agreement with our estimate with a 2%
difference. The FAO land cover class area calculated as the mean
of three products (1.5 ± 0.4 billion ha) is higher than our global
cropland area by 27%, although our estimate is within the
uncertainty interval. As stated by the authors of the FAO land
cover statistics report (Conchedda and Tubiello, 2021), the
FAOSTAT data should not be used for land cover change
analysis due to the high uncertainty of the herbaceous crops
area estimated by the moderate spatial resolution products.

The cropland areas from our map and the ESA WorldCover
2020 product are very similar (Figure 9B), with just a 4%

FIGURE 10 |Comparison between map-based forest area estimate and
FAO FRA forest area for the year 2020, by country.

TABLE 6 | Global forest, cropland, perennial snow and ice, and built-up land extent and change maps accuracy metrics (expressed as a percentage).

Overall Accuracy,
% (s.e.)

User’s Accuracy,
% (s.e.)

Producer’s Accuracy,
% (s.e.)

Forest extent and change
Forest extent 2000 97.4 (0.7) 96.2 (1.0) 94.4 (2.2)
Forest extent 2020 97.2 (0.7) 94.6 (1.1) 94.8 (2.3)
Stable forest 96.9 (0.7) 93.4 (1.2) 94.4 (2.3)
Forest gain 99.3 (0.1) 71.4 (3.2) 57.8 (6.0)
Forest loss 98.9 (0.1) 88.5 (2.3) 58.7 (4.2)

Cropland extent and change
Cropland 2000–2003 97.5 (0.2) 90.0 (1.1) 86.0 (1.8)
Cropland 2016–2019 97.2 (0.3) 88.5 (1.0) 86.4 (1.9)
Stable cropland 97.3 (0.2) 88.3 (1.3) 82.9 (1.9)
Cropland gain 98.9 (0.1) 67.4 (1.9) 73.3 (5.8)
Cropland loss 99.4 (0.1) 73.3 (1.9) 70.3 (6.4)

Perennial snow and ice extent and change
Snow/Ice 2000 99.7 (0.05) 88.4 (2.09) 98.1 (0.55)
Snow/Ice 2020 99.8 (0.04) 92.6 (1.99) 97.1 (0.83)
Stable snow/ice 99.8 (0.04) 93.8 (2.00) 96.6 (0.85)
Snow/Ice gain 99.96 (<0.01) 11.7 (4.14) 100.0 (0.00)
Snow/Ice loss 99.8 (0.02) 39.7 (6.16) 86.6 (6.11)

Built-up land change
Stable built-up lands — 63.7 (5) 39.1 (19.5)
Built-up lands gain — 74.1 (5) 59.6 (4.6)

Standard errors (s.e.) of accuracy metrics are shown in parenthesis.
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difference in the total area. Some of the differences related to
confusion between croplands and pastures (e.g., in South
America and Australia) and high uncertainties of cropland
mapping in drylands and in fragmented agricultural
landscapes (Figure 11B).

Built-Up Land Extent
The built-up lands class is inherently heterogeneous at the
Landsat pixel scale, which impedes the accurate class mapping
and reference data collection. We defined built-up lands as
Landsat pixels that contains man-made constructions or
surfaces, like buildings and roads. This thematic class
effectively outlines the extent of human settlements, by it is
not sensitive to internal settlement structure when different
land covers (impervious surfaces, soil, trees, grass) are
intermixed within the Landsat pixel. The reference data for
the validation exercise considered the presence of man-made
surfaces, even when they did not occupy most of the pixel area.
Consequently, the user’s and producer’s accuracies for stable
built-up class and built-up expansion are relatively low
(Table 6).

Despite the low accuracies of the built-up class, the over- and
underestimation rates are balanced, and the total map-based class
area is within the 95% confidence interval of the sample-based
estimate (Figure 9C). This is because we employed sample data to
select the best class probability threshold to create the final map
products.

Our year 2020 built-up lands area is nearly five times higher
than the ESA WorldCover 2020 built-up class area due to
definition differences. (Figure 9C) The WorldCover map

considered only Sentinel pixels covered by buildings and roads
as a built-up class. Moreover, the WorldCover map frequently
assigned built-up lands within cities to “bare ground,” and the
land cover within villages to the “grassland” class. Our definition
relies on the presence of human-made structures and roads
within a Landsat pixel even if they are not dominant land
cover class. Therefore, our map includes mosaic land covers
associated with settlements and industrial areas. We found
that our map is complementary to the WorldCover map,
which shows bare ground and impervious surfaces inside the
outlines of the populated areas defined by our map.

Water Dynamic
Annual 2000 water percent has high and balanced user’s and
producer’s accuracies of 92.2 and 92.8%, respectively, when
thresholded at ≥50% water presence. However, mapping water
dynamics is much more difficult as reflected by the accuracies of
the dynamic classes (Table 8). The lower accuracies of the
dynamic classes illustrate challenges of mapping water
presence in landscapes where it changes rapidly and
frequently, and where mapping of the proportion of surface
water through time is impacted by irregular clear-sky
observation frequency.

The map-based areas of total area with open surface water
within 1999–2018 (4.8 million km2) are within 1% of the
sample-based area estimates of Pickens et al. (2020) (4.8 ±
0.8 million km2). However, the maps underestimate the
proportion that is permanent water (18% smaller) and
overestimate the extent with interannual and seasonal
dynamics (25% larger). The largest differences are for

FIGURE 11 | LCLU class area difference between ESA WorldCover 2020 and the year 2020 thematic map for each 1 × 1° grid cell. Blue colors represent lower
estimates of the class area in our newmap relative to WorldCover, and red colors–higher estimates in our map (in percent of the cell area). (A) Forest extent; (B) cropland
extent.

TABLE 7 | Forest cover extent accuracy metrics for the forest maps generated using the tree canopy cover 2000 (Hansen et al., 2013) (TCC) and forest height 2000 (TCH)
datasets.

Forest Class Definition Overall Accuracy (s.e.) User’s Accuracy (s.e.) Producer’s Accuracy (s.e.)

TCC 2000, ≥30% 95.1 (0.9) 93.1 (2.3) 88.8 (2.0)
TCC 2000, ≥20% 94.3 (1.1) 87.7 (3.0) 92.1 (1.8)
TCC 2000, ≥10% 92.4 (1.4) 80.4 (3.5) 95.8 (1.5)
TCH 2000, ≥5 m 97.4 (0.7) 96.2 (1.0) 94.4 (2.2)

Standard errors of accuracy metrics are shown in parenthesis.
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seasonal and loss (55 and 145% larger, respectively), whereas the area
with multiple interannual transitions between land and water states
matched the sample mean estimate. While the map-based areas
should not be used for area reporting, they can be used to assess
the broad distribution of open surface water dynamics.

Perennial Snow and Ice Extent
The snow and ice extent and dynamic maps have high
producer’s accuracies (above 86%), which confirms that these
maps correctly delineate the extent of glaciers and perennial
snowfields (Table 6). However, the user’s accuracies for the
dynamic classes are low, and the user’s accuracies for class
extent maps are lower than the producer’s, which indicated the
map overestimation of the class area (Figure 9D). The
commission error is higher for the year 2000, thus the net

snow and ice area reduction is lower based on sample data
(6.6%) than using the map (11.5%). We suggest two primary
reasons for these discrepancies. Some of the observed errors
related to challenges with discrimination of perennial and
seasonal snow cover in mountain regions with frequent cloud
cover. The absence of cloud-free Landsat data during the
warmest time of the year leads to perennial snow and ice
class overestimation. Longer time intervals for metric
selection (similar to the one used for cropland mapping) may
be needed to improve map accuracy. Another reason is the low
radiometric resolution of Landsat TM and ETM+ sensors,
which saturates over the sunlit slopes and precluded correct
snow identification on the shadow slopes.

The ESA WorldCover data shows the much larger area of
persistent snow and ice than our map (Figure 9D). We suggest
that using Sentinel-2 data, which lacks a thermal band, may be
inadequate for detecting snowmelt events and for separation of
seasonal and perennial snow cover.

Global LCLUC Hotspots
The global hotspots map (Figure 12) highlights regions with the
most intensive LCLUC changes over the last two decades. We
selected the LCLUC categories that have the highest impact on
biodiversity, climate change, food production, and quality of
living. The deforestation hotspots map (Figure 12A)
unequivocally highlights the Brazilian rainforests and the
Chaco in Argentina, Paraguay, and Bolivia as the most
threatened forest ecosystems in the world because of recent
agricultural expansion. Cambodia, Mozambique, Uganda, and
West African countries are also within the agriculture-driven
deforestation hotspots. Outside the tropics, we found large
hotspots of forest loss in the northern boreal forests in
Canada, Alaska (USA), and the Republic of Sakha (Russia) related

TABLE 8 | Accuracies of interannual dynamics of surface water for 1999–2018,
where italicized classes represent aggregations of the classes below.

User’s Accuracy, % Producer’s Accuracy, %

Permanent land 99.9 (<0.1) 99.8 (<0.1)
Water presence 94.4 (1.4) 98.5 (0.6)
Permanent water 98.8 (0.7) 86.1 (2.7)
Dynamic water 72.4 (4.0) 94.7 (1.7)
Stable seasonal 45.0 (7.2) 73.0 (5.6)
Interannual change 64.3 (4.9) 70.9 (5.8)

Gain 48.2 (12.0) 72.1 (13.6)
Loss 41.4 (8.1) 89.4 (6.9)
Multiple transitions 59.1 (6.1) 58.3 (6.6)
Dry period 47.9 (7.3) 81.1 (11.8)
Wet period 41.0 (8.0) 37.4 (15.9)
High frequency 53.0 (7.6) 50.5 (6.4)

Map accuracies expressed as a percentage, standard errors (s.e.) of accuracy metrics
are shown in parenthesis.

FIGURE 12 | Global 2000–2020 LCLUC hotspots defined as the ISEA3H GDGGS hexagon grid cells (70,000 km2 in area) that include 50% of the respective
thematic quantity of the global total. (A) Deforestation. (B) Forest AGC reduction. (C) Cropland expansion. (D) Built-up area expansion.
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to the recent increase in fire frequency and severity (Flannigan et al.,
2009). The observed decline of forest cover in the regions with cold
continental climates is aligned with the predictions of large-scale
vegetation change triggered by global warming (Soja et al., 2007).
Forest AGC loss was the highest within tall humid tropical forests
(Figure 12B), with the largest hotspots in the Amazon Basin and in
Sumatra and Borneo Islands. TheAGC loss hotspots highlight regions
where the effect of the avoided forest conversion will have the highest
impact to mitigate climate change (Griscom et al., 2017). Cropland
expansion hotspots (Figure 12C) partially overlap with deforestation
hotspots in South America, Africa, and Cambodia. However,
most of the cropland expansion hotspots are outside forests,
within shrublands, grasslands and drylands which are
extensively converted into intensively managed agriculture.
Most of the built-up expansion area found in South and
Southeast Asia, with the largest hotspots in China, India,
Turkey, and Indonesia (Figure 12D). The hotspots on other
continents highlight the fastest growing urban centers such as
Addis Ababa (Ethiopia), Kampala (Uganda), Lagos and Ibadan
(Nigeria), Mexico City, Guatemala, Houston and Orlando
(USA). In Europe, the largest built-up area hotspot is in
Poland, which is related to the recent rapid development of
the new logistics hubs serving European Union countries. The
hotspots map derived from our global thematic LCLUC
products may support prioritization research, policy
development, and sustainability investments globally.

DISCUSSION

Thematic Map Time Series Applications to
Support Sustainable Development
Our novel bitemporal LCLUC maps and sample-based analysis
document dramatic changes in global land cover following land
use intensification, extensification through the human appropriation
of natural ecosystems, and climate change during the last two
decades. Our dataset provides global LCLUC information at the
locally relevant spatial resolution (30m) suitable for national and
sub-national applications. We separately mapped structure and
dynamics of different LCLU classes which allows users to
implement custom thematic class definitions and to analyze
LCLU trajectories. Statistical sample analysis that is required for
national and international LCLUCarea and uncertainties reporting is
supported by our globally consistent maps that enable efficient
stratified sampling design.

Some of the changes that we revealed using the bitemporal maps
are well known, such as the reduction of forest cover reported by the
FAO FRA (FAO, 2020), while other results are novel. Using spatially
explicit maps of forest height, we found disproportionally high forest
area reduction in tall, high AGC forests. Consequently, we estimated
that most of the net forest AGC loss (84%) is due to tall forest
conversion. Our estimate of 2003–2019 cropland area gain, supported
by the extensive sample analysis, is four times higher than the gain of
arable land reported by the FAO for 2003–2018 (FAO, 2021). In
Cambodia, we quantified cropland area increase to be 36%, while FAO
reported a gain in arable land of just 5.6%. Such discrepancies should
be considered when the consistency of global databases is critical, e.g.,

for global carbon emission assessment and for monitoring of progress
towards sustainable development goals.

The global thematic maps provide insights into LCLU change
trajectories.We show that net forest loss was partly driven by cropland
and settlement expansion (sections 3.1.1 and 3.1.2). The reduction of
perennial snow and ice (section 3.1.5) was likely caused by climate
warming, which is in turn linked to carbon emissions from forest
AGC reduction (section 3.1.1) and agriculture development (section
3.1.2). The changes in land management priorities resulted in
cropland conversion to settlements (section 3.1.2) and flooding
forests and croplands by water reservoirs.

Global LCLUC data support the development, implementation,
and monitoring of national land management policies and global
initiatives towards climate changemitigation and protection of natural
ecosystems. Here, we will outline just a few examples of possible
applications of our bitemporal maps. Spatially explicit maps highlight
regions where investments in sustainable development, nature
protection, and mitigation of climate change effects are most
needed. Our forest change data shows that 50% of the global
forest AGC reduction is due to forest clearing in just three
countries, Brazil, Indonesia, and the DRC, highlighting the need
for national policies combating deforestation. The overlay of our
forest and cropland change data with protected areas and primary
forests highlights conservation priority targets (Heino et al., 2015;
Turubanova et al., 2018). Sustainable development policies are needed
in regions where cropland expansion is the primary cause of natural
ecosystem reduction. At the same time, cropland abandonment in
Russia’s Nechernozemie region provides extensive land resources for
timber plantation and forest ecosystem restoration. Our approach,
which is planned to be operationally implemented moving forward,
will support forest restoration monitoring. Water dynamic and
perennial snow and glaciers reduction maps provide critical
information on water supply change that is needed for climate
change adaptation in the affected regions. The overlay of forest
height and settlement extent data benefits “green” urban development.

Limitations of Thematic Maps
It is well known that any thematic LCLU map derived from the
satellite images has errors (Olofsson et al., 2014). Limitations of
the satellite data resolutions, imperfect calibration data, and
empirical model precision are the primary causes of thematic
class omission and commission errors.

Landsat clear-sky data availability is the primary limitation for land
cover mapping. While some of the land cover themes can be directly
mapped using a single-day satellite images (e.g., surface water), others
may not be directly retrieved from the optical medium resolution data
and instead are predicted using empirical modeling tools that requires
information on land surface phenology (such as forest height or
cropland extent). The incompleteness of the Landsat observation time
series decreases map accuracy in regions with persistent cloud cover.
For the perennial snow and ice mapping, the availability of Landsat
observations during the warmest time of the year is critical, and the
absence of such observations causes class overestimation. Short revisit
interval is the key requirement for future satellite missions aimed at
global LULC monitoring.

A high proportion of mixed pixels at the Landsat spatial
resolution is another important constraint for discrete land cover
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classes mapping in heterogeneous landscapes. Most LULC classes
have higher map accuracy over large homogeneous areas compared
to fragmented landscapes and class patch edges. Cropland maps are
more accurate over industrial agriculture areas (North and South
Americas) compared to fragmented rural landscapes (Europe, Asia,
and Africa). Some classes, like settlements and infrastructure, mostly
consist of mixed pixels and thus may be hard to map using per-pixel
classifications. To overcome some of these issues, we implemented a
CNN tool that considers spatial properties and distribution of objects
for mapping built-up lands. Small features (fractional water, single
trees, isolated houses, and narrow roads) cannot be consistently
mapped globally using Landsat data and are usually omitted by
global maps.

The spectral similarity between different LCLU classes may
preclude class discrimination. Lava fields, dark soils and
vegetation, and high turbidity are typical reasons for
surface water mapping errors. Croplands may be confused
with intensively managed permanent pastures as both classes
have similar spectral response and phenology, which caused
crop commission in Australia, New Zealand, and parts of
Western Europe. Rainfed dryland agriculture is not always
spectrally separable from the surrounding natural land cover,
which is the reason for crop omission in the Sahel, Central
Asia, and the Middle East.

Continuous structure variables, such as forests height, are
the most challenging to map using medium resolution optical
data. Our forest height product has issues related to GEDI data
quality and Landsat data availability (Potapov et al., 2021a).
The empirical tree height model saturates above 30 m and may
not adequately represent the height of the tallest forest stands.
The GEDI data in boreal regions are not available above 52°N,
consequently, the global map may incorrectly represent the
height of boreal forests, especially in the far North. Small
changes in forest height between the years 2000 and 2020 may
not indicate actual forest structure change but may instead
represent noise in the model outputs. To mitigate this artifact,
we used conservative thresholds to define forest height
increase and decrease in our products (see Section 2.2.1). A
direct comparison of the years 2000 and 2020 forest height
products, without the application of such thresholds, will not
provide consistent and meaningful results.

Dynamic classes (LCLU class loss and gain) have lower
accuracies compared to static maps. The changes in Landsat
data frequency and sensor radiometric resolution are primary
factors for temporal inconsistencies of the LCLU maps. The
change data was filtered to reduce errors, which, in turn, may
result in land cover change omission.

Thematic maps provide valuable data for global LCLUC
analysis. Direct map-based area estimations may be used to
highlight trends and hotspots of land change and to compare
areas of thematic classes and their change between regions.
However, map-based estimates are not adequate for national
and international reporting due to unknown spatial and temporal
variability of map errors. A probability-based sample analysis is
the recommended good practice approach for LCLU extent and
change estimation (Olofsson et al., 2014; Stehman, 2014). The
global LCLUmap time series enables a higher sampling efficiency

through stratification at the sub-national, national, and global
scales.
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