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We study the influence of a chaotic environment in the evolution of an open quantum system. We show that
there is an inverse relation between chaos and non-Markovianity. In particular, we remark on the deep relation
of the short time non-Markovian behavior with the revivals of the average fidelity amplitude—a fundamental
quantity used to measure sensitivity to perturbations and to identify quantum chaos. The long time behavior is
established as a finite size effect which vanishes for large enough environments.
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I. INTRODUCTION

The advent of quantum information and quantum technol-
ogy has brought us to a deeper understanding of the basics
of quantum mechanics. As a result, various fundamental
aspects, such as equilibration [1], simulability [2], and even
foundations [3], have been revised. This framework has
provided both valuable insight into the foundations and
new technological achievements. But theory and its related
experiments have advanced asymmetrically mainly due to the
impossibility of isolating completely the experimental setup,
leaving the system “open” and exposed to decoherence [4].

Many quantum open system problems can be solved
after assumptions are made. The widely used Born-Markov
approximation, successfully applied to describe many phys-
ical situations [5], is associated with both a memoryless
environment and a weak coupling between system and
environment. However, recently, interest in quantum open
systems where this assumption no longer applies—usually
called non-Markovian (NM) evolution—has flourished [6–8].

A natural question to ask is to what extent the dynamical
properties of the environment can extend the validity of the
Born-Markov approximation, even beyond the weak coupling
regime. In other words, how well does a chaotic environment
reproduce Markovian evolution? In this paper, we address this
question analytically and numerically by means of a probe
qubit coupled to a generic environment where different degrees
of chaos can be tested. Exploring the time evolution of non-
Markovianity measures, we show that the stronger the chaos
in the environment, the more Markovian the evolution is. We
build upon previous knowledge [9,10] of measurable quantities
such as the fidelity amplitude which can be directly related to
recently proposed measures of NM behavior. Moreover, we
establish that the short time behavior of the fidelity amplitude
determines the characteristics of the qualitative NM behavior.
The lingering, long time contributions are finite size effects
which contribute only as a linear term with a slope that goes
to zero as the environment size goes to infinity. The remaining
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non-Markovianity is thus size-independent and due to short
time revivals in the fidelity amplitude decay.

The paper is organized as follows. In Sec. II, we describe
the system we use for our analysis. It consists of a qubit in
the presence of an environment whose evolution is subject
to the state of the qubit. In Sec. III, we briefly describe the
non-Markovianity measure based on distinguishability and its
relation to the fidelity decay of the environment. The numerical
results and analysis are done in Sec. IV, and we present some
concluding remarks in Sec. V.

II. SYSTEM

We consider a system-environment situation, whose Hilbert
space is H = Hsys ⊗ Henv, where “sys” and “env” denote
system and environment. Any Hamiltonian can then be split
as

H = Hsys + Henv + εVsys,env, (1)

where ε is real and controls the strength of the interaction
between system and environment. We further restrict to the
case in which Hsys represents a qubit, i.e., when dim Hsys = 2,
and we call N = dim Henv. The choice of the terms in Eq. (1)
results in different physical situations. However, instead of
specifying the particular form of Eq. (1), we shall impose
two general conditions. The first one involves the nature of
the interaction. We shall assume that it is factorizable, i.e.,
that Vsys,env = Vsys ⊗ Venv. Such structure appears in a wide
variety of situations, including Ising interaction and atom-field
interaction under various approximations [11]. The second
assumption is to consider that the evolution of the central
system, Hsys, either occurs at much smaller time scales than
that in which decoherence occurs, or that it is a multiple of
Vsys. In the former, one can safely ignore the contribution to
the dynamics, and in the latter case, Hsys can be included in
the interaction term and can keep the factorizable structure
unaffected. This occurs, e.g., in the case of a strong magnetic
field applied to a set of interacting spins and thus is of particular
importance in, among others, nuclear magnetic resonance
(NMR). In this situation, one can write

H = |0〉〈0| ⊗ H0 + |1〉〈1| ⊗ H1 (2)
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with H0 and H1 acting only on the environment and both
|0〉〈0|, |1〉〈1| being projectors onto some orthonormal basis
of the qubit. This Hamiltonian has already been introduced
in [12] and can be interpreted as having an environment whose
evolution is conditioned by the state of the qubit. The initial
state of the system shall be ρsys,env(0) = ρsys(0) ⊗ ρenv. Notice
that the only condition imposed on the initial state is that it be
a product state. The evolution of the qubit is

ρsys(t) = Trenv[U (t)ρsys(0) ⊗ ρenvU
†(t)] (3)

with

U (t) = |0〉〈0|U0(t) + |1〉〈1|U1(t) (4)

and Uj (t) = exp(−itHj/h̄). It is convenient to rephrase Eq. (3)
in terms of a quantum channel,

ρsys(t) = �(t)[ρsys(0)]. (5)

Notice that, although �(t) results from tracing out the
environment, it still depends on ρenv.

The matrix elements of the channel induced by Eq. (3), in
the Pauli basis, are

�
(t)
j,k = 1

2 Tr[σjU (t)σk ⊗ ρenvU
†(t)]. (6)

If we take σ0 = I and σ1,2,3 = σx,y,z, the channel takes the
simple form

� =

⎛
⎜⎜⎜⎝

1 0 0 0

0 Re[f (t)] Im[f (t)] 0

0 Im[f (t)] Re[f (t)] 0

0 0 0 1

⎞
⎟⎟⎟⎠ (7)

with f (t) = Tr[ρenvU1(t)†U0(t)] being the expectation value
of the echo operator. If ρenv is a pure state [10], then
|f (t)|2 is a Loschmidt echo (LE) [13]—also called fidelity—
originally proposed to measure sensitivity to perturbations in
the Hamiltonian as a signature of quantum chaos [14]. The LE
decays as a function of time and the—more or less—universal
decay regimes have been extensively studied (see the reviews
in [15–17]). The environment could in fact be in a pure state,
e.g., in a thermal ground state at zero temperature. However, it
is probably easier to imagine the environment being in a mixed
state, e.g., at thermal equilibrium at a given temperature. We
choose then the environment to be in the maximally mixed
state, i.e., proportional to the identity. In that case, we obtain
the real and imaginary part of the average fidelity amplitude
(AFA),

〈f (t)〉 = 1

N
Tr[U1(t)†U0(t)], (8)

i.e., the average value of the echo operator with respect to an
orthonormal basis. We remark that the choice of basis (or any
complete set) is arbitrary. This fact contrasts the case of the
LE where the kind of states in the set is crucial [22].

III. FIDELITY AMPLITUDE MEASURES
NON-MARKOVIAN BEHAVIOR

During a classical Markovian process, the distance between
two initial distributions decreases monotonically. Deviations
from this behavior are a landmark of non-Markovianity. Breuer

et al. [7] used this property to define a measure of NM behavior
in a quantum setting. The distance can be chosen so as to link
non-Markovianity with distinguishability of states and thus
information flow between the system and its surroundings.
Such a measure is defined as

M = max
ρ1,2(0)

∫
σ>0

dtσ (t,ρ1.2(0)), (9)

where σ (t,ρ1.2(0)) = dD(ρ1(t),ρ2(t))/dt is the rate of change
of the trace distance

D(ρ1(t),ρ2(t)) = 1
2 tr|ρ1(t) − ρ2(t)| (10)

between initial states ρ1,2(0). In [8], two other measures
were proposed, based on the deviation of the semigroup
properties of quantum flows. Both study the physicality of
the induced instant map at intermediate times, one via the
Jamiołkowski isomorphism and the other via the entanglement
(as measured with the concurrence) with an ancilla qubit. It
is straightforward to show that for channels like Eq. (7), the
measure induced by the entanglement is proportional to M .

In our case, the states that maximize M are ρ± = [I ±
(aσx + bσy)]/2, with |a|2 + |b|2 = 1, leading to

M = 2
∫

˙|f |>0

d|〈f (t)〉|
dt

. (11)

In other words, Eq. (11) means that NM behavior is directly
related to the positive derivative of the AFA as a function of
time [18].

For fully chaotic systems, both the AFA and the LE saturate
around a value that depends on h̄. After saturation sets in, the
state is approximately random and the value of both fidelity
and fidelity amplitude fluctuate. As a consequence, we expect
the NM measure to grow indefinitely. Thus in our calculations
of M we modify the original definition in [7] and calculate
the NM measure up to a certain time. Regardless, the measure
at time t still holds its meaning, i.e., the larger M (t) means
the distance between the two states has ceased to decrease (or
increased) more in that period of time, which implies a more
NM behavior.

IV. NON-MARKOVIANITY AND CHAOS: RESULTS

Now we consider the long-standing question of the relation
between chaos and Markovianity. To do so, we model the
environment using simple but fully featured systems: quantum
maps on the torus. The quantization of the torus implies that
both position and momentum are discretized and the effective
Planck constant is the inverse of the Hilbert space dimension
N . In this setting, a quantum map is simply a unitary U acting
on an N -dimensional Hilbert space.

We consider two different maps. First, the quantum per-
turbed cat map (PCM),

Uc,K = e−iπNap̂2
eiπNaq̂2

eiπNK[2 sin(2πq̂)−sin(4πq̂)], (12)

where q̂ and p̂ are the generators of periodic position and
momentum translations on the torus with discrete eigenvalues
0, 1/N, . . . ,(N − 1)/N . The subindex K denotes the depth of
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FIG. 1. (Color online) M (t) for the PCM (top) and the HM
(bottom). Top: squares, λ = 0.96; circles, λ = 1.76; triangles, λ =
5.99. δK/h̄ = 3.635. Diamonds, λ = 0.96 and δK/h̄ = 0.64 (weak
coupling). Bottom: squares, k = 0.001 (regular); circles, k = 0.25
(mixed); triangle, k = 1 (fully chaotic). Top inset: diamonds, weak
coupling case. Bottom inset: triangles, k = 1; note the linear
dependence. The slopes of the straight lines are α = 1/2N (top panel,
dashed) and α = 2/3N (bottom inset, dot-dash). N = 4096.

the kicking potential. For a = 1 and K = 0, it is the quantum
version of Arnold’s cat map, a uniformly hyperbolic and
mixing map of the torus onto itself, which is a paradigmatic
example of chaos in two dimensions. The positive Lyapunov
exponent λ, which determines the rate of exponential diver-
gence of classical trajectories, is uniform over the whole phase
space. We explore different degrees of chaos by changing a

since, for small K , λ ≈ ln{[2 + a2 +
√

a2(4 + a2)]/2}. Here
U (t) ≡ Ut , where now t is an integer, and U0 = Uc,K and
U1 = Uc,K+δK .

The other map we consider is

UH,k,k′ = eiNk cos(2πq̂)eiNk′ cos(2πp̂), (13)

which corresponds to the Harper map (HM) [19]. It is an
approximation of the motion of an electron in a crystal under
the action of an external field [20]. For k � 0.11, the dynamics
described by the associated classical map is regular, while for
k � 0.63 there are no remaining visible regular islands. We set
U0 = UH,k,k and U1 = UH,k+δk,k .

We now take the result of Eq. (11) and compute numerically
M (t) for the two maps. Notice that the structure of the
maps is U1 = U0P (ε) (with ε = δK or δk). The ε → 0
limit implies P (ε)[andf (t)] → 1 (i.e., no decoherence). The
coupling strength is given by δK and δk. For weak couplings
(in the chaotic case), the AFA decays exponentially, and the
rate depends quadratically on the coupling parameter—the
Fermi golden rule regime (FGR). Here the evolution is
expected to be Markovian. Throughout this paper, we consider
mainly coupling strengths beyond the FGR.

The AFA is evaluated directly by averaging the echo
operator over a complete set of states. For the PCM, we change
a in Eq. (12) so we can assess the change in M for different
levels of chaoticity. For the HM varying k in Eq. (13), we
go from integrable to completely chaotic. In Fig. 1 (top), we
show the NM measure M (t) for three different examples of

the PCM with varying degrees of chaoticity. On the bottom
of Fig. 1, we show the same for the HM, where we show the
AFA for three different k (regular, mixed, and chaotic). For the
PCM after a small number of steps, there appear three distinct
jumps. As expected, the larger λ is, the smaller is the jump,
which confirms the intuitive relation that the more chaotic the
environment is, the more Markovian is the evolution. After
this short time behavior, the three cases exhibit linear growth
of M (t). The explanation is simple. For fully chaotic systems,
at a time of the order of Ehrenfest time [tE = ln(1/h̄)/λ], the
AFA saturates—but oscillates—around 1/N . This saturation
corresponds to the overlap between two completely random
states, and is approximately constant. This implies that M
will grow linearly and that the slope α will be proportional
to 1/N . The proportionality constant depends on the map (for
the PCM, regardless of the value of λ, we found the slope to be
α ≈ 1/2N ). For completeness, we include the case λ = 0.96
in the weak coupling regime. As expected, M (t) = 0 visibly
up to t ≈ 50. After that, we have linear growth. On the bottom
of Fig. 1, we show M (t) for the HM for three qualitatively
different cases. In the case in which the classical dynamics is
regular (k = 0.001), we observe that up to the times shown,
M (t) increases nonlinearly. There is a saturation of the AFA,
but not at 1/N , which eventually leads to a linear growth of M .
This saturation for small k takes place at much larger times.
When the dynamics is almost fully chaotic (k = 1), there is
a very small jump after which there remains only the linear
growth due to fluctuations around the saturation value. The
slope of this linear growth is α ≈ 2/3N . In the parameter
region where the KAM tori of the HM begin to break,
there is a combination between regular and chaotic dynamics
(initial states can have components inside regular islands and
components inside the chaotic sea) and the behavior is less
intuitive. In fact, what is observed in Fig. 1 for k = 0.25 is
that the environment modeled by a HM in the transition from
regular to chaotic can be strongly non-Markovian (see also
Fig. 3).

In both situations, the long time behavior for the NM
measure is linear. This would imply M → ∞. However, this
assertion presents no problems in our analysis. The slope of
the long time linear regime goes to zero as N grows. Intuition
suggests a “large” environment as a necessary condition of
Markovianity. However, in the N → ∞ limit, there will always
remain the short time value attained by M (see Fig. 1), which
is independent of N (Fig. 2).

To shed more light on the results displayed in Fig. 1, we
focus on the evolution of the AFA as a function of time for
the cases considered above. In Fig. 2, we show examples of
the decay of the square of the AFA. In the top panel, we
show results for the PCM for three different values of λ [i.e.
different a in Eq. (12)]. In the bottom panel, we show the
same for the HM, with three values of k (regular, mixed, and
chaotic). In contrast with the LE, the AFA is independent
of the type if initial states and decays exponentially with
two distinct decay rates. The short time decay rate 
 can be
related to uncorrelated—random—dynamics [9]. The value of

 can be computed using semiclassical methods. This decay
rate can diverge, meaning that the short time decay can be
extremely fast. These divergences—which depend on the type
of perturbation and are more evident the larger λ is—could be
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FIG. 2. (Color online) |〈f (t)〉|, same cases as Fig. 1 for the PCM
(top) and the HM (bottom). Inset: λ = 0.96 for the PCM, for N =
512, 4096, and 16 384.

related to the phenomenon known as survival collapse [21]
after which the largest revivals appear. For the numerical
results, on the top we chose a value of δk for the PCM which
corresponds to a large 
 (near the diverging values), where
the largest revivals have been observed [9,22]. We remark,
moreover, that the short time decay of the AFA is independent
of N and therefore so is the revival. In the inset of Fig. 2
we see that the AFA (for the PCM, with λ = 0.96) is almost
equal for three different values of N up to t ≈ 10. This is
important because the short time revivals will provide the main
contribution to M . While this contribution remains constant
with N , the long time contribution goes to zero as 1/N . The
curve with diamonds supports the results shown in Fig. 1 (top)
for the weak coupling regime.

The possibility to assess the behavior as an environment
model by changing one parameter from regular to chaotic
is indeed tempting. In Fig. 3, we computed M at a fixed
time for the HM for different values of k. We chose t = 20,
around the time in which the fastest decaying case starts
to saturate (see Fig. 2, bottom). We see that for small k

(regular dynamics), M takes a constant value (which, apart
from the fixed time, depends on N and δK) and there is
a transition where M depends on k just where the KAM
tori begin to break. When the dynamics is fully chaotic,
the value of M (at t = 20) again takes a constant value.
Figure 3 is a clear example of the expected behavior: regular
environments are expected to be more NM while the NM
behavior that appears to linger in the chaotic regime is
due to the same oscillatory behavior around the saturation
value mentioned for the case of the PCM. In the transition
region, 0.11 � k � 0.63, there is coexistence between tori
and chaotic regions. In the first place, the existence of regular
islands implies that even though there will be leaking—by
tunneling—to the chaotic regions, the saturation will take
much longer. In addition, the area occupied by the chaotic
region is smaller than the torus, therefore the saturation value
is larger than 1/N . We have checked for other times (up to
t ∼ 1000) and also other methods (not shown), e.g., taking as
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FIG. 3. M (t = 20) as a function of k, for t = 20, for the HM
with N = 4096 and δk = 0.001 13. Top: phase space diagram for
three examples of k: regular, k = 0.001; mixed k = 0.25; chaotic
k = 1. The corresponding points in the bottom panel are drawn in
solid black.

the NM value the y intercept of an asymptotic linear fit—and
the qualitative behavior is the same. Further studies are
needed in order to fully grasp the behavior in the intermediate
region.

V. CONCLUSIONS

We addressed the issue of how well a chaotic environment
can model Markovian evolution. We used a probe qubit as
a system coupled to an environment modeled by a quantum
map. In this setting, there is a straightforward relation between
some measures of NM behavior and the AFA. The study of
the time evolution of the NM measure has shown that the
stronger the chaos of the environment (in the PCM larger λ),
the more Markovian the evolution will be, even if the coupling
is strong. Furthermore, there are two well defined regimes.
For short times, there is no dependence with N and the NM
is measured by revivals in the AFA. In contrast, for large
times the measure grows linearly with a slope that vanishes as
∝ 1/N . Thus, in accordance with [23], as N → ∞ there can
be a remaining nonvanishing value for non-Markovianity for
a chaotic environment. The revivals of the LE were recently
related to NM behavior [10]. Here we take a more general
approach by allowing the bath to be in a thermal state and
expressing non-Markovianity in terms of the AFA—a quantity
which is independent of the set of states over which the average
is done.
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