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Abstract 17 

The dynamics of phytoplankton across a seasonal frontal system formed in San José Gulf (SJG, Patagonia Argentina) and 18 

in neighbouring shelf waters was assessed based on bio-optical satellite data (2003-2018) and spring and summer in situ 19 

samplings. Bio-optical properties of the water masses on the eastern (ED) and western (WD) domains of the seasonal 20 

frontal system of SJG showed clear differences: the year-round-vertically-mixed waters from the WD, strongly connected 21 

with the adjacent shelf waters, evidenced a brief and strong single phytoplankton bloom, while those from the ED, showing 22 

lower exchange with shelf waters and a strong vertical stratification during the warm season, displayed an earlier and 23 

long-lasting spring phytoplankton bloom, followed by a late-summer and autumn bloom, both associated with the 24 

development and erosion of the seasonal thermocline. Waters from the entire system are optically influenced by the 25 

absorption of coloured dissolved organic matter and detritus (cdom + detritus), suggests a strong sediment load 26 

contribution from the continent and the seabed. To remark, a strong correlation between satellite chlorophyll-a (Chla-sat) 27 

and absorption by phytoplankton (aphy443) in the outer shelf waters differs from the weak correlation of those variables 28 

in the gulf’s water masses, whose optical parameters are more complex. In situ Chla records may indicate wind-driven 29 

upwelling and downwelling areas in the northern and southern coasts of the ED. Dissolved nitrogen was identified as the 30 

limiting macronutrient for phytoplankton growth in the ED during summer. This work contributes relevant ecological 31 

information that may support management actions on the SJG shellfish artisanal fishery. 32 

Keywords: bio-optical properties, remote sensing, macronutrients, San José Gulf. 33 
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1. Introduction 35 

 36 

Phytoplankton is the ocean autotroph for excellence. It is responsible for about 50% of global primary production (Field 37 

et al., 1998), a key component of the carbon cycle and a good indicator of environmental conditions (Smetacek and Cloern, 38 

2008; Gregg et al., 2003). The phytoplankton community closely interacts with the other components of the marine 39 

ecosystems. Thus, it is crucial to understand all the factors that govern the dynamics of the phytoplankton communities 40 

that ultimately determine the primary production (Litchman and Klausmeier, 2008). 41 

Many environmental forces drive the fluctuation of phytoplankton biomass (Cloern and Dufford, 2005; Longhurst, 1998; 42 

Margalef, 1978). Nutrients, temperature, solar radiation, stratification and grazing, and their interactions are the most 43 

important factors determining its fluctuations at seasonal scales. At the same time, eutrophication and climate change 44 

are more significant at inter-annual and decadal scales (Blauw et al., 2018; McQuatters-Gollop and Vermaat, 2011; 45 

Richardson and Schoeman, 2004). Climate change affects the thermal regimen in coastal waters and column stability, 46 

stratification, nutrient availability, dissolved oxygen, precipitations, and coastal runoff (Winder and Sommer, 2012). 47 

To understand phytoplankton’s spatial and temporal variability in a specific system, it is necessary to collect significant 48 
amounts of field data covering large areas. Still, satellite ocean colour technology and algorithm developments have open 49 
alternative and complementary ways to reach synoptic coverage of phytoplankton dynamics from local to global scales 50 
over long periods and to observe a broad range of other geophysical and biological variables (Krug et al., 2018, 2017; 51 
Blondeau-Patissier et al., 2014). Surface waters’ temperature and detection of reflected light from the water, are the most 52 
frequently variables monitored by satellite sensors, providing relevant information on the physical and biological 53 
conditions of the marine systems (Gholizadeh et al., 2016).  54 
 55 
The colour of the ocean mainly focuses on determining the concentration of chlorophyll-a (Chla), the main photosynthetic 56 
pigment, and therefore the most widely used proxy to study the variability of phytoplankton biomass (Huot et al., 2007). 57 
However, Chla retrieval is problematic in optically complex coastal waters, where dissolved organic matter (CDOM) and 58 
detritus are as important as phytoplankton (Blondeau-Patissier et al., 2014; Werdell et al., 2018, Delgado et al., 2021). The 59 
reflectance spectra of water masses greatly depend on the inherent optical properties (IOPs), resulting from the different 60 
concentrations of optically active components in seawater (Gordon et al., 1988). In the last years, the study of the IOPs 61 
has demonstrated to be one of the most robust tool to estimate phytoplankton properties from remote sensing data 62 
(Blondeau-Patissier et al., 2014; Kratzer and Moore, 2018; Aguilar Maldonado et al. 2019). The absorption by 63 
phytoplankton is one of the most important inherent optical properties of seawater, affecting the spectral reflectance of 64 
the ocean. Thus, this property reflects changes in phytoplankton biomass, phytoplankton types, and community structure 65 
(e.g., Bricaud et al., 2004; Sathyendranath et al., 2004).  66 
 67 
The Patagonian Continental Shelf (PCS) has been described as one of the most productive areas of the world's oceans in 68 

terms of phytoplankton biomass (Rivas et al., 2006; Romero et al., 2006). In this region, the analysis of the spatio-temporal 69 

variability of Chla concentration through ocean colour satellite images allowed to characterize climatological regions 70 

(Andreo et al., 2016; Rivas et al., 2006; Glembocki et al., 2015; Williams et al., 2021) and quantify its primary production 71 

(Dogliotti et al., 2014; Segura et al., 2013; Lutz et al., 2010). Likewise, the performance of standard chlorophyll-a algorithms 72 

has been evaluated, observing an acceptable performance in open waters (Dogliotti et al. 2009) and very low in coastal 73 

ones (Williams et al., 2013; Delgado et al., 2019). Several absorption algorithms by phytoplankton have been evaluated in 74 

the optically complex waters of “El Rincón” (Argentina), observing an acceptable performance of the absorption by 75 

phytoplankton at 443 nm from GIOP model (r2 = 0.48, BIAS 52%, Delgado et al., 2019). Contrarily, the estimation of 76 

phytoplankton biomass using standard absorption by Chla-sat in other areas of the Argentinean coastal waters has shown 77 

low performance as a proxy of phytoplankton biomass in these optically complex waters (r2 = 0.15, BIAS 113%, Williams 78 

et al., 2013).  79 

The San José Gulf (SJG) is a small and relatively shallow (mean depth 30 m, maximum 80 m) semi-enclosed basin located 80 

north of the PCS (between latitudes 42°14´ and 42°26´S). Its waters are connected through a narrow mouth (i.e., 6.9-km 81 

wide) in a N–S direction (SHN, Carta H214; Amoroso and Gagliardini, 2010) with those of the larger and deeper San Matias 82 
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Gulf (SMG). SJG is part of the Peninsula Valdés Protected Area, a natural reserve designated as a World Heritage Site and 83 

Biosphere Reserve by the United Nations Educational, Scientific and Cultural Organization (UNESCO) due to its importance 84 

for marine conservation. Nutrient-rich waters from the adjacent PCS, such as those from the Península Valdés (PV) frontal 85 

system, have been tracked in their passage through the southern region of SMG into SJG (Tonini et al., 2006; Gagliardini 86 

and Rivas, 2004; Rivas and Beier, 1990; Charpy and Charpy-Roubaud, 1980a; Carreto et al., 1974; Carreto and Verona, 87 

1974), contributing to its high nutrient concentration and productivity (Charpy, et al., 1983; Charpy and Charpy-Roubaud, 88 

1980b). These highly productive waters support an artisanal fishery mainly focused on the scallop Aequipecten tehuelchus 89 

(Orensanz et al., 2007; Amoroso et al., 2011) and of other species target of recreational fisheries (Venerus et al., 2008). 90 

As a result of the interaction between tidal circulation, the asymmetric northwest location of its narrow mouth, 91 

topography and geomorphology, two distinct hydrographic domains are generated in SJG: a highly vertically-mixed 92 

western domain (WD), and more stagnant eastern domain (ED) showing a strong vertical stratification during the warm 93 

season, thus promoting the formation of a thermal front between each other (Amoroso et al., 2011; Amoroso and 94 

Gagliardini, 2010; Gagliardini and Rivas, 2004). These two contrasting hydrographic domains are associated with 95 

differences in the mesozooplankton assemblages (Hernández-Moresino et al., 2017, 2014). There is a consistent spatial 96 

correlate between physical conditions of the water masses (SST, and bottom depth) and the mesozooplankton community 97 

structure (abundance, biomass, and slope of the size spectra), which should be also linked to the fluctuation of the 98 

phytoplankton biomass in the two hydrographic domains. 99 

Hence, the main questions that prompted the present work are: (i) Do surface waters of the eastern and western domains 100 

of SJG and the neighbouring shelf present different seasonal variation patterns of phytoplankton biomass proxies and 101 

related bio-optical variables?; ii) How can the entire system be classified and understood based on the bio-optical 102 

properties?, and (iii) What are the main environmental factors driving phytoplankton dynamics in the SJG? 103 

 104 

 105 

1. Materials and Methods 106 

 107 

1.1. Study system 108 

Based on the oceanographic characteristics of the area, a 15-year time series of satellite data on absorption by 109 

phytoplankton at 443 nm and other associated satellite variables described in the next section were analyzed, covering 110 

the northeastern coastal area of Peninsula Valdés (PV), south of the San Matías Gulf (SMG), and the entire San José Gulf 111 

(SJG, Fig. 1). Additionally, an exhaustive field sampling was carried out during the spring and summer seasons in the SJG 112 

with a particular setting at the beginning and the end of the thermal frontal system formation to get records of Chla, pH, 113 

temperature, redox potential, and nutrients concentration. 114 

1.2. Remote sensing data  115 

Images of absorption by phytoplankton (aphy at 443 nm, aphy443, GIOP model, Franz and Werdell, 2010; Werdell et al., 116 

2013), absorption by detritus plus coloured dissolved organic matter (adg at 443 nm, adg443, GIOP model), monthly mean 117 

chlorophyll-a (Chla-sat, standard chlorophyll-a derived from the OC3M algorithm v2018), sea surface temperature 118 

(standard MODIS 11 μm, night, non-linear sea surface temperature algorithm NLSST vR2019.0), PAR (Photosynthetically 119 

Available Radiation, MODIS-Aqua_L3m_PAR v2018), and ZLEE (Euphotic depth, Z1%, Lee algorithm, MODIS-120 

Aqua_L3m_ZLEE v2018, Lee et al., 2007) were used. Images with 4 Km spatial resolution, and covering the period January 121 

2003–December 2018 were obtained from https://oceancolor.gsfc.nasa.gov/ (MODIS Mission page 2020 a, b, c, d, e). 122 

 123 

For the first inspection, maps of climatological seasonal averages of SST, aphy443, adg443, Chla-sat, and Z1% were calculated. 124 

Seasons were defined as follows: summer, from January to March; autumn, from April to June; winter, from July to 125 

September; and spring, from October to December. 126 

 127 
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After this first inspection and taking into consideration prior research in the area (Williams et al., 2018a, 2021; Amoroso 128 

and Gagliardini, 2010), the study system was partitioned into 5 windows: Península Valdés (PV, 9x9 pixels), Punta Norte 129 

(PN, 6x5 pixels), south of SMG (SSMG, 7x6 pixels), and western and eastern domains of SJG (WD and ED respectively, 4x3 130 

pixels) (Fig. 1a). The inclusion of very coastal pixels in the considered windows was avoided. 131 

Finally, climatology monthly mean images of SST, aphy443, adg443, Chla-sat, and Z1% were generated for each window, 132 

averaging all scenes available for each month, on a pixel-by-pixel basis, obtaining a series of twelve climatological images. 133 

Climatology monthly mean images were obtained using SeaDAS software (version 7.5.3). The spatial resolution of the 134 

input images (4 km) was kept. 135 

 136 

 137 

Figure 1: Location of the study area.(a) Selected windows for time series analyses of satellite data are showed in green 138 

boxes.(b) Locations of field sampling stations are indicated by black circles. Vertical red line in b shows the approximate 139 

location of the front that separates the Western and Eastern Domains with different hydrographic regimes (Amoroso and 140 

Gagliardini, 2010). Windows are numbered from 1 to 5: Península Valdés (PV), Punta Norte (PN), south of San Matías 141 

Gulf (SSMG), and western (WD) and eastern (ED) domains of San José Gulf (SJG). 142 

 143 

1.3. Field sampling 144 

Field sampling was conducted in waters of SJG, covering the entire gulf’s area (Fig. 1b). A spatial grid was set, with 14 145 

water samples obtained in September–November 2016 (spring), when vertical stratification begins to develop in the 146 

eastern hydrographic domain (ED), and with 22 water samples in March–April 2017 (summer–autumn), when it vanishes. 147 

The samples were collected using a Niskin water sampler, at three depths: near the surface, 10 m, and near the bottom. 148 

Temperature, conductivity, salinity, redox potential, and pH were recorded in the field using a pre-calibrated multiprobe 149 

YSI556. Samples were kept cold until arrived to the laboratory. There, 1.5-2 l of each sample were filtered using 0.4 µm 150 

pore GF/F filters (Munktell®). Filters and 200 ml PET bottles with filtered water were stored in the freezer at −20°C for 151 

further analyses of phytopigments and macronutrients. 152 

Chlorophyll-a (Chla) and pheophytin (Pheo) were measured with a Turner Designs fluorometer after extraction with 90% 153 

acetone (Strickland and Parsons 1972). Calibration was performed using a pure chlorophyll standard (Anacystis nidulans 154 

algae — Sigma-Aldrich). The macronutrients such as nitrate (𝑁𝑂3
−) + nitrite (𝑁𝑂2

−), referred hereafter as dissolved 155 

inorganic nitrogen (DIN), phosphate (𝑃𝑂4
3−) referred as dissolved inorganic phosphorous (DIP), and silicic acid (𝑆𝑖(𝑂𝐻)4) 156 

or dissolved silica (DSi) were determined by colorimetric methods using a Skalar San Plus autoanalyzer (Skalar Analytical® 157 

V.B., 2005 a, b, c). 158 

 159 
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1.4. Statistical analysis of oceanographic and bio-optical variables 160 

Principal Component Analysis (PCA) was applied to the climatological data set to classify each sampling window within the 161 

study area, grouping those with similar monthly variability patterns following methodology described by Gonzalez-Silvera 162 

et al. (2004). Thus, each window was treated as a variable (n = 5) and each month as the object describing such variable 163 

(n= 192, 2003-2018). The matrix (5x192) was transformed into a correlation matrix (192x192) that was used as input for 164 

PCA calculations. Components with cumulative variance greater than 90% were taken as significant and locations were 165 

classified according to the correlation matrix between PCA results and time series location.  166 

Monthly climatological series of aphy443 and Chla-sat data for each sampling window were adjusted to an annual plus 167 

semi-annual cycle by the least-squares data fitting (Eq. 1, Espinosa-Carreon et al., 2004) to obtain their stationary signal: 168 

 169 

Data-sat = Data-sat0 + T1cos (w(t – t0)) + T2cos2(w(t – t00)) (Eq. 1), 170 

 171 

where Data-sat0 is the mean temporal value of aphy443 or Chla-sat, T1 is the annual harmonic amplitude, T2 is the semi-172 

annual harmonic amplitude, w is the frequency (w = 2π/12 months), t0 and t00 are the annual and semi-annual harmonic 173 

phases, respectively. The fit of the data to a mean plus annual and semi-annual harmonics model explains the total 174 

variance (r2
a+s = 1, a = annual, s = semi-annual). The contribution of each harmonic (annual and semi-annual) to the cycle 175 

was determined by fitting monthly climatological data to each harmonic separately (second and third terms of Eq. 1, 176 

respectively, as stated in Williams et al. (2018a). 177 

Pearson's correlation coefficient (r) was applied between pairs of bio-optical variables to measure the association between 178 

the two variables considered. Kriging interpolation method was used in order to map the spatial distribution of 179 

chlorophyll-a in the field. 180 

 181 

2. Results and discussion 182 

 183 

2.1. Spatial and seasonal variability of SST, aphy443, and Z1%. 184 

 185 

The spatial distribution of the climatological maps of SST was relatively uniform in autumn and winter (Fig. 2a and b). In 186 

the former, the temperature was around 15°C, and in the latter it was 11-12°C. In spring and summer (Figure 2c and d), 187 

the SST distribution showed spatial heterogeneity: lower values were observed to the east and north of PV and in the 188 

western domain of SJG (spring 11-12° C; summer 15°C) compared to the rest of the study area (spring 13-14°C, summer 189 

18-19 °C).  190 

The aphy443 showed values of 0.025-0.030 m-1 in the east and northeast of PV and the western domain of SJG in autumn 191 

(Fig.2e). In winter, a decrease was observed in the SJG and southern SMG (0.016-0.020 m-1, Fig. 2f). The aphy443 increased 192 

in spring, showing the highest annual values in almost the entire area (including the eastern domain of the SJG, 0.025-193 

0.068m-1), lower values to the north of PV, and the WD of the SJG (0.025 mg m-1, Fig. 2g). Finally, the spatial distribution 194 

of aphy443 in summer was similar to that of spring but with lower values (0.010-0.045 m-1, Fig. 2h). 195 

The depth of the euphotic zone (Z1%) showed spatial heterogeneity and similar distribution patterns during all the year 196 

(Fig. 2, i to l): lower values were observed to the east and northeast of PV (20-22 m), mainly in autumn and winter, while 197 

Z1% increased towards the south of GSM (28-32 m). In the case of GSJ, slight differences between domains were observed 198 

in spring and summer (Fig. 2, k and l), with higher values in the eastern than in the western domain, resembling that 199 

observed with the SST patterns and that can be associated with the thermocline formation in this domain. 200 
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In general terms, the spatial pattern of SST, aphy443, and Z1% in spring and summer can be explained by the development 201 

of a tidal front located at the mouth and to the south of SMG (Pisoni et al., 2015; Rivas and Pisoni, 2010; Gagliardini et al., 202 

2004; Piola and Scasso, 1988). The tidal front separates the mixed waters in shallow sectors (less than 70 m) on the 203 

adjacent continental shelf from the deeper waters that tend to stratify into SMG (Williams et al., 2013). Thus, the coastal 204 

waters from PV present lower temperatures, higher aphy443 values and shallower Z1% compared to the surrounding waters 205 

due to mixing caused by tidal currents and energy dissipation in the area (Palma et al., 2004). The SST and Z1% maps suggest 206 

the entry of water from the continental shelf through the south of SMG to the western portion of the GSJ.  207 

 208 

 209 

Figure2: Climatological maps of Sea surface temperature (SST; a-d), absorption by phytoplankton at 443 nm (aphy443; e-h) 210 

and depth of euphotic zone (Z1%; i-l) expressed by seasons. The values are expressed as average from year 2003 to 2018. 211 

 212 

2.2. Principal Component Analysis (PCA) of aphy443, adg, Chla-sat and Z1% temporal variability 213 

 214 

Performing the PCA for each bio-optical variable, including the 5 sampling windows, they yielded 3 main components, 215 

explaining more than 90% of the variance in all cases (Fig. 3). The analysis using aphy443 associated SJG (WD and ED) with 216 

SSMG supported by PC1 (r > 0.69), while PN and PV were represented by PC2 (r > -0.72). This pattern was also observed by 217 

Chla-sat parameter, where the SJG domains and the southern SMG were also represented by PC1 (r > 0.85), whereas PN 218 

and PV were represented by PC1 and PC2 (0.69 and 0.64, respectively). The PCA results using adg are not concluding, 219 

however, it is evidenced a slight association between PV and PN on the one hand, and between the domains of SJG on the 220 

other hand, with SSMG in the middle, similar to the grouping defined by aphy443 and Chla-sat. In the cases of the depth of 221 

the euphotic zone (Z1%), it was observed that the ED together with SSMG, PN and PV correlate mainly with PC1 (>0.64). On 222 

the contrary, the WD window presents a particular behaviour associated with PC3 (0.96). 223 

 224 
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   225 

Figure 3: Plots for the first and second factors for the PCA regarding bio-optical variables. 226 

2.3. Climatological annual cycle of PAR, Z1%, aphy443, Chla-sat and adg443. 227 

 228 

The PAR cycle showed a typical annual signal evidenced with high percentage of variance explained by the annual 229 

harmonic (Williams et al., 2018a), with minimum values from May to July (15.41 to 13.51 E m-2 d-1) and maximum values 230 

from November to January (54.86 to 60.12 E m-2 d-1). In general, the annual cycle of Z1% (euphotic depth) also showed 231 

strong annual signal and positive correlation with PAR and SST, with minimum mean values in June (24 m), and maximum 232 

values from December to February (~ 30 m). High correlation between Z1% and PAR series were evidenced in PV and PN 233 

windows (r2> 0.9), as well as in the ED (r2 = 0.67). This slightly lower correlation in the ED can be explained by the increase 234 

in Z1% during July and August (Figure 3, e), probably due to the decrease in the suspended organic matter, as a consequence 235 

of the low biological activity and the sinking of particles towards the bottom. Conversely, SSMG and the WD of SJG reveal 236 

a low temporal variability (SSMG = 31.32 ± 1.45 m and WD = 27.54 ± 0.87 m) and a lack of correlation with the PAR cycle. 237 

They presented the lowest or null relationship between these parameters (0.32 and -0.10), suggesting that PAR effect on 238 

Z1%  is masked by other variables such as suspended materials from land and sea bottom sources all year round. 239 

The aphy443 for PN and PV windows showed little annual variability and a moderated peak in November (Fig. 3a and b), 240 

showing a good fit to the unimodal function (r2 = 0.67 and 0.70 respectively, Supplementary Materials, Table I). The Chla-241 

sat estimated for PN and PV windows also showed little annual variability and a moderated peak in November (Fig. 3, a 242 

and b), showing a good fit to the unimodal function in the case of the PV and no significant fit to any harmonic function in 243 

the case of PN (r2 = 0.85 and 0.33 respectively, Supplementary Materials, Table II). This low annual variability can be 244 

explained by the high tidal energy flow that prevents the stratification of the water column (Tonini and Palma, 2017; Palma 245 

et al., 2004). In the case of the SSMG and GSJ windows, they showed broad annual variability with a high peak also in 246 

November (aphy443 = 0.04- 0.08 m-1, Chla-sat = 3.46-4.39 mg m-1) and low values in winter (August, 0.02 m-1; 1.00 mg m-1), 247 

fitting to the unimodal function using either aphy443 or Chla-sat parameters (r2 ~ 0.7, Supplementary Materials, Table I and 248 

II), in agreement with previous studies using shorter time series (2003-2009, Williams et al., 2018a, 2013). Particularly in 249 

the SSMG window, moderate values there were sustained during summer-early autumn (from February to April: 0.04± 250 

0.005 m-1; 1.33±0.01 mg m-1) probably due to the continuous injection of nutrients leading by the interaction of tidal 251 

currents with the topography (Williams et al., 2013, 2021). This feature can be observed to some extent within SJG also 252 

explained by a permanent income of nutrient through the mouth. 253 
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The Chla-sat annual cycle in SJG has already been characterized by an annual harmonic function with relatively high values 254 

in spring-summer (Williams et al., 2018a). As a novelty, the present work highlights the differences between the western 255 

and eastern hydrographic domains supported by aphy443 as a proxy for phytoplankton biomass. Although the aphy443 and 256 

Chla-sat annual cycles are mainly explained by the annual harmonic function, the ED presents a significant contribution of 257 

the semiannual harmonic function given by the absorption by aphy443 (r2 = 0.71, Supplementary Materials, Table II). The 258 

ED showed two maximums: the first from October to December (0.04± 0.005 m-1), and the second in March-May (0.04± 259 

0.0006 m-1), gradually decreasing until July (0.03 m-1), similar to that of temperate areas biomass phytoplankton cycle with 260 

seasonal stratification of the water column (Mann and Lazier et al., 2006). 261 

The climatological annual cycles of the bio-optical variables showed a general pattern of higher absorption by adg 443than 262 

that by aphy443 (~ 0.09 and 0.03 m-1, respectively, Fig. 3). The relatively much higher absorption by adg443 is a characteristic 263 

optical feature alongside coastal and shallow waters with strong hydrodynamics (Werdell et al., 2018; Blondeau-Patissier 264 

et al., 2014). Adg may originate either from the degradation of phytoplankton cells and other organic particles from water 265 

or terrestrial sources (Lutz et al., 2016; IOCCG, 2000). Usually, the former accounts for a higher percentage of adg in the 266 

open ocean, while the latter dominates in coastal, estuarine, and inland waters (Zhang et al., 2013; Bricaud et al., 1981), 267 

with contribution from bottom sediments during storm-driven suspension events (Boss et al., 2001). 268 

 269 

Figure 4: The annual cycle of bio-optical variables in the upper layer estimated by satellite remote sensing. Blue arrow 270 

into the map schematizes the flow of the water masses from the platform (from Península Valdés or PV) into San José 271 

Gulf (GSJ), western and eastern domains (WD and ED), flowing through Punta Norte (PN) and the south of San Matías 272 

Gulf (SSMG). PAR plot shows the solar irradiance cycle, equal for all the areas under study. Chlorophyll-a is expressed in 273 

mg m-3, adg443 and aphy443 in m-1, Z1% in –m, and PAR in E m-2 d-1). 274 

 275 

2.4. Interaction of bio-optical variables 276 

 277 
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The absorption by phytoplankton (aphy443) is closely related to the Chla-sat variability, regardless of its relatively low 278 

values compared to cdom + detritus (adg443). This association was the highest outside of GSJ (SSMG, PN, and PV, r2 ~ 0.8, 279 

Table I), indicating similar annual variability between aphy443 and Chla-sat. It decreased in the GSJ domains (r2 ~ 0.6, Table 280 

I), being even higher than the relationship in the ED. It is important to note the low correlation between aphy443 and adg443, 281 

ruling out any covariance between both variables (Table I). 282 

The correlation between the depth of the euphotic zone (Z1%) with Chla-sat, aphy443, and adg443 were low in some cases 283 

(mainly in SJG) and near-zero in others (mainly in PV and PN), with slightly higher values in SSMG than in SJG (r2<-0.56, 284 

Table I). These weak and negative relationships in SSMG and SJG likely respond to an increment of the phytoplankton 285 

biomass (estimated as Chla-sat and aphy443) and detritus and dissolved organic matter (adg443), both absorbing light 286 

through the water column in spring and summer. On the other hand, the absence of correlation between Z1% and the bio-287 

optic parameters in PV and PN areas would indicate that other factors that affect the low penetration of PAR throughout 288 

the year, such as inorganic suspended sediments (Capuzzo et al., 2015). 289 

The waters in SJG display complex optical patterns, where the absorption of light is dominated by detritus and cdom 290 

instead of the phytoplankton processes of the water column (Williams et al., 2018b; Morel and Prieur, 1977 and references 291 

therein). Allochthonous material coming from the continent (runoff, atmospheric dust, landslides, among others) likely 292 

governs the IOPs in this enclosed basin (Zhang et al., 2013; Bricaud et al., 1981). 293 

 294 

Table I: Correlations between the main bio-optical variables. Values > 0.6 are highlighted in bold. 295 

Pair-correlations PV PN SSM WD ED 

 aphy443 vs Chla-sat  0.88 0.79 0.82 0.63 0.55 

aphy443 vs adg443 0.17 -0.41 0.35 0.22 0.05 

aphy443 vs Z1% -0.06 -0.04 -0.69 -0.42 -0.50 

adg443 vs Z1% 0.08 -0.44 -0.56 -0.07 -0.46 

adg443 vs Chla-sat vs  0.46 0.14 0.65 0.40 0.60 

Chla-sat vs Z1% -0.35 -0.05 -0.61 -0.52 -0.54 

 296 

 297 

2.5. Water column chlorophyll-a patterns in SJG 298 

Results from field sampling conducted at the beginning and the end of the frontal system formation in SJG suggest that 299 

the spring sampling did not coincide with the bloom period since the Chla values were low for the entire SJG. On the other 300 

hand, the second phytoplankton peak estimated by satellite data in the ED was reflected by the results of the summer 301 

sampling. 302 

The field data in the three strata of the water column shows some particularities to consider (Fig. 5). High Chla values were 303 

found in the north coast of the ED during the two sampling seasons: in the surface sample in spring and at all depths in 304 

summer. High Chla concentrations were also found in the bottom of the southeast coast for both seasons. In addition, 305 

moderate Chla values were observed in the frontal zone in summer. In terms of pheopigments (data not shown), they 306 

were always low (~ 0.1 mg m-3) except for the very high values in the bottom of the southeast coast, both in spring and 307 

summer (2.5 and 1.5 mg m-3, respectively). These two singular events of high Chla contents in the north of the ED and of 308 

high pheopigment contents in the bottom of the southeast coast of the ED suggest particular conditions of these coastal 309 

areas. Previous work on sediment circulation patterns (Hernández Moresino et al., 2019) indicated that the prevailing 310 

southward winds in spring and summer would generate a surface circulation of the water masses in the same direction. 311 

Jo
urn

al 
Pre-

pro
of



Contrarily, the analysis of transport vectors carried out in the same work showed a northward trend of sediment transport 312 

in summer. Summarizing these results and considering water bodies act as a continuous fluid, the authors suggest that 313 

prevalent southward winds generate an upwelling event in the northern coasts of the ED during the spring and summer. 314 

Surface waters driven southward, leave a space occupied by reach-nutrient bottom waters, evidenced by the Chla 315 

registered in the entire water column in spring and summer. In this sense, in the southern coasts of the ED there might be 316 

a downwelling event caused by the surface water masses that come from the north and force the local waters to sink, 317 

evidenced by the high levels of pheopigments and Chla in the bottom waters of the area also in spring and summer.  318 

Chla-field maps were constructed and compared with those obtained from satellite data for the same dates. No clear 319 

similarities were observed between both sets of data (Fig. 1, supplementary materials). Nor a clear correlation fit observed 320 

when both data sources were contrasted (r2 = 0.11-0.27; n = 8-14). This low correlation could be explained by the 321 

complexity of the optical characteristics in the gulf (high absorption of cdom + detritus), as well as by the intrinsic 322 

differences between each estimation method (spatial and temporal coverage of satellite images vs. interpolation of in-323 

situ data, the time difference between estimates in a complex system, among others). 324 

 325 

  326 

Figure 5: Field chlorophyll-a maps by stratum (surface, 10 m, and near bottom). Dashed vertical lines divide the two 327 

sampling time for each sampling season (spring sampling: 28/09/16 ED and 09/11/16 WD; summer sampling: 16/03/17 328 

ED and 27/04/17 WD). White circles represent missing data. 329 

 330 

 331 

2.6. Vertical profiles of in situ environmental hydrographic variables 332 

 333 

Depth profiles of some environmental variables were used to identify differences between the hydrographic domains into 334 

SJG (Fig. 6). A marked increase in temperature was observed in both parts from spring to summer, with high values in the 335 

ED, which is consistent with previous studies (Amoroso et al., 2011). However, the temperature profiles did not detect the 336 
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occurrence of the water column stratification of the ED in the present study. The redox potential showed an apparent 337 

decrease during summer in both domains, which suggests a critical oxygen consumption during the warm season due to 338 

the zooplankton proliferation, the high bacterial degradation activity, and a consequence of an increase in phytoplankton 339 

biomass. On the contrary, the pH values remained constant and no differences were observed between seasons.  340 

 341 

Figure 6: Relevant environmental variables profiles from in situ data in the two domains of SJG. Sur: surface. Bot: bottom. 342 

Horizontal bars represent the mean value and standard deviations of all available data. 343 

 344 

Regarding the macronutrient profiles (Fig. 7), WD spring samples showed lower values of all parameters than their summer 345 

counterparts, suggesting that the spring sampling was conducted after an increase of phytoplankton biomass event (Fig. 346 

4, WD). Conversely, ED samples only showed lower values of dissolved inorganic nitrogen (DIN) in summer. Low values of 347 

DIN in the ED summer samples show a significant consumption of this macronutrient, close to being undetectable, 348 

indicating that this sampling was carried out at the end or after the second phytoplankton bloom (Fig. 4, ED). 349 

In marine environments, the criteria of absolute nutrient limitation thresholds for phytoplankton growth (Justić et al., 350 

1995) suggest values of DIN = 1 μmol L-1, DIP = 0.1 μmol L-1, and DSi = 2 μmol L-1. According to that, DIN is the only 351 

macronutrient that can restrict phytoplankton growth in the ED in summer. No nutrient limitation was found regarding 352 

the other two macronutrients with values above their absolute criteria, except for a probably slight DSi-limitation in some 353 

stations for both seasons (DSi>1.4 μmol L-1). 354 

Nutrients affect and determine the phytoplankton growth according to the ecology strategies. Its distribution is disparate 355 

and terrestrial runoff, or upwelling events are the main hotspots (Wang and Gao, 2020; Roelke and Spatharis, 2015; 356 

Buyukates and Roelke, 2005). Nutrient pulse will favour the proliferation of fast-growing species (r-strategists or 357 

opportunists). In contrast, species with a higher affinity for limiting nutrients (k-strategists or gleaners) will have the 358 

competitive advantage during the nutrient depletion period, which occurs before the next nutrient pulse 359 

(Papanikolopoulou et al., 2018; Sommer, 1989; Kilham and Kilham, 1980). In this context, the rapid growth of r-strategist 360 

species proliferates in spring when optimal light and nutrient conditions. They consume part of the macronutrients in the 361 

WD and almost all the nitrogenous products in the ED. The persistence of the moderated concentration of phytoplankton 362 

during the summer in the ED would respond to the growing of k-strategist species in the upper mixed layer until the next 363 
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nutrient pulse in March when the thermocline disrupts, favouring a second seasonal increase of phytoplankton biomass 364 

of r-strategist.  365 

 366 

 367 

Figure 7: Macronutrients profiles from in situ data in the two domains of SJG. DIN: dissolved inorganic nitrogen. DIP: 368 

dissolved inorganic phosphorous. DSi: dissolved silica. Sur: surface. Bot: bottom. Horizontal bars represent mean value 369 

and standard deviation of all available data. 370 

 371 

3. Conclusions 372 

 373 

The seasonal variability of aphy443 as a proxy for phytoplankton biomass shows that the system describes a classic 374 

temperate environment (Mann and Lazier, 2006), with high aphy443 values in spring, decreasing during summer, and 375 

reaching low values in autumn and winter. The availability of light and nutrients explains maximums found in SSMG and 376 

SJG in spring before summer. Remarkably, the ED of SJG presents a second maximum in the late summer and autumn, 377 

associated with the erosion of the thermocline and the reinjection of nutrients to the upper layer. In contrast, moderate 378 

and low variability values of aphy443 in PN and a weak peak in the northeast of PV are explained by low light penetration 379 

in the water column resulting from suspended sediments associated with turbulence produced by strong tidal currents in 380 

shallow waters.  381 

A graphical synthesis of the conceptual framework of the SJG system (Fig. 8) shows that in the WD, the water column 382 

remains vertically mixed throughout the year, given the strong tidal currents that favour the suspension of particulate 383 

material absorbing light and avoiding the increase of Z1% during the warm season. The high peak of phytoplankton biomass 384 

in this domain in spring decreases rapidly, probably associated with a combination of ecological factors of phytoplankton 385 

populations with fast growth rates: r-strategist with a fast rate of nutrients consumption and/or self-shading that limit the 386 

light penetration (Holligan et al., 1984). However, an increase in the stratification of the water column during the warm 387 

season in the more stagnant ED and the rise in light associated with the deeper euphotic zone, favour an earlier increase 388 

in the spring biomass of phytoplankton. This event persists longer and slowly decreases until the second increase in late 389 
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summer, likely explained by the stability disruption of the water column and the re-injection of nutrients into surface 390 

water. The phytoplankton populations growing in the ED probably differ from those in the WD, with lower growth rates 391 

typical of k-strategist. 392 

 393 

  394 
 395 

Figure 8. Conceptual framework of the annual cycles of sea surface phytoplankton dynamics (based on aphy443 396 

satellite estimation) along with related critical variables in the western and eastern domains of SJG. 397 

 398 

The environmental conditions during the formation of the thermal front in SJG are summarized in detail in Figure 9. In 399 

both seasons, a water mass from the adjacent continental shelf enters SJG, as evidenced by the low SST and Z1% values in 400 

the northeast of PV, SSMG, and the WD of SJG. As expected, the increase in solar radiation that reaches the upper layer 401 

of the water column during spring and summer generates a deeper penetration of light into the water column, promoting 402 

the growth of phytoplankton. The WD of the SJG presents particular bio-optic characteristics associated with strong 403 

hydrodynamics and a large amount of suspended material that shortens the annual variability of Z1%. Still, a high spring 404 

bloom in the WD allows concluding that phytoplankton can grow even in turbulent waters due to the high levels of 405 

nutrients that mostly come from external sources. On the other hand, the more isolated and seasonal stratified ED can 406 

uptake nutrients from the adjacent WD and local decomposers from the bottom sediments.  407 

 408 
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 409 

Figure 9.  Schematic diagram of the main environmental processes during the frontal system formation in SJG. 410 

 411 

Therefore, this work concludes that the nutrient (mainly DIN) and light regimes are the main drivers of the phytoplankton 412 

dynamics in the area. The annual light cycle affects the stability/stratification processes of the water column in the ED 413 

and, therefore, the availability of nutrients in the upper layer. In contrast, tidal currents prevent stratification in the WD 414 

throughout the year. These two counteracting hydrographic domains promote the formation of the thermal frontal system 415 

into SJG. Notably, the predominant southward winds during the warm season recorded in previous work (Hernández-416 

Moresino et al., 2019) seem to be responsible for a vertical loop in the north-south direction, which produces an upwelling-417 

downwelling structure in the ED and deserves further attention. All the information in this work lays the foundation for 418 

future ecological studies within this system that supports an important shellfish fishery, tourism, and ecosystem services 419 

in the Patagonian region. 420 
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Highlights 

 

A long-term bio-optical MODIS data in San José Gulf and adjacent waters were studied. 

 

Additional spring and summer cruise data in the San José Gulf (SJG) was investigated. 

 

Phytoplankton annual cycles respond to disparate nutrients/stratification/turbidity conditions. 

 

East and west hydrographic domains in the SJG are evidenced for both data set. 

 

Upwelling-downwelling structure in the east domain is driven by prevailing winds. 
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