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High-cadence dynamic cycling improves motor symptoms of Parkinson’s disease (PD),

such as tremor and bradykinesia. However, some participants experience greater

benefits than others. To gain insight into how individual characteristics and cycling

performance affects functional changes, data from two previous studies were used to

build several preliminary predictive models. The purpose was to examine which variables

contribute to greater improvement in symptoms after high-cadence dynamic cycling. We

hypothesized that individuals with higher body mass index (BMI), increased age, more

severe symptoms, and higher PD medication dosages were less likely to contribute effort

during cycling. UPDRS-III was assessed before and after each session, and cadence

and power were recorded every second. Entropy of cadence was calculated, and data

were analyzed using analysis of variance and multiple linear regression. The multiple

linear regression model of post UPDRS significantly (R2 = 0.81, p < 0.001) explained

its variance, with pre UPDRS as the main predictor (p < 0.0001). The binomial logistic

model of mean effort did not significantly (R2 = 0.36, p = 0.14) explain the variance.

Post-hoc analysis found a significant (β = 0.28, p = 0.03) moderating effect of different

levels of BMI on the association between mean effort and post UPDRS. These results

suggest that BMI, effort, and baseline UPDRS levels can potentially predict individual

responses to high-cadence dynamic cycling.

Keywords: movement disorder, rehabilitation, entropy, mixed model analysis, BMI

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease (1) not limited
geographically or by age, although prevalence is higher in individuals over 60 (2). In the
United States 822/100,000 people over the age of 45 presented with PD in 2010, representing
680,000 individuals. The incidence of PD is projected to rise tomore than onemillion individuals by
2030 (3). Typical symptoms are resting tremors, rigidity, bradykinesia, and postural instability (4).
Severity of symptoms increases as degeneration of the substantia nigra progress. Motor symptoms
usually appear once 60% of dopaminergic neurons in the substantia nigra have degenerated (5).
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Currently available therapeutics do not affect the outcome
or progression of the disease but can improve quality of life by
reducing motor and non-motor symptoms (6). Pharmaceutical
options act to increase the availability of a dopamine precursor,
levodopa, or via dopamine agonists (6). By increasing dopamine
levels in the brain viamedication, motor symptoms can improve.
Prolonged use of these medications can cause adverse side
effects such as dyskinesias, nausea, and impulse control (7).
Exercise can also help manage symptoms in early and mid-
stage PD, potentially allowing for decreased medication dosages
and delaying of the need to increase pharmaceutical treatment
with progression (8).

Forced cycling, where participants use equipment that “forces”
them to pedal at a cadence about 30% above their self-selected
level, improves the motor symptoms of PD (9–13) as measured
with the Unified Parkinson’s Disease Rating Scale part III
(UPDRS). The measure is used to assess motor function in PD by
analyzing performance on 14 different motor tasks using a scale
of 0 (normal) to 4 (severe) (14). An increase in motor function,
decreased tremors, and potential promotion of neuroplasticity
was previously documented (15). Specifically, a 35% decrease
in UPDRS scores was observed with forced cycling but not
voluntary solo cycling at the similar heart rate intensity (16).
These studies used a stationary tandem bike and an able-bodied
trainer to maintain a pedaling cadence of 80-90 revolutions per
minute (rpm). A unique feature of the forced cycling session was
significant entropy of cadence and power, providing a degree of
unpredictability to these measures throughout the duration of
the session (13).

The term “high-cadence dynamic cycling” was coined to
describe protocols using a motorized cycle that was programed to
integrate the degree of unpredictability into the operation of the
motor. This dynamic bike was used to examine if motor symptom
improvements were similar to that reported after forced cycling.
While symptom improvements were statistically and clinically
significant in these studies, not all participants experienced
them (17, 18).

To understand how individuals respond to high-cadence
dynamic cycling, we previously created a measure of effort
defined as the percent of power output above zero [(19),
Equation 1], that, along with baseline UPDRS, was found to
be a significant predictor of UPDRS improvement. We also
found that our linear mixed model significantly described the
variance in effort of the dataset. However, the independent
measuresmodel of effort did not. Because PD is progressive, older
individuals usually have more severe symptoms and therefore
may show differential responses than younger individuals.
In addition, body mass index is associated with increased
PD risk (20–22). In light of these findings, we wanted to
investigate if other demographic measures, such as age and body
mass index (BMI), affected responses to high-cadence dynamic
cycling. The current study tested two hypotheses: first that
effort, quantified as the percent of time a participant overtakes
the dynamic bike motor during the session, is a significant
contributor to the variance change in UPDRS, and second that
BMI and age are significant contributors to the variance in
effort in two additional datasets.

METHODS

Datasets from two previously published repeated measures
studies, both showing significant improvements in UPDRS III
following high-cadence dynamic bike sessions (17, 18), were
used to test our hypotheses. The datasets were merged and
correlational, descriptive, and regression statistical methods were
completed using the R programming language (23).

Dataset Description
Dataset 1 (17): 24 participants (12F, 12M, 67± 8 years) completed
three sessions of high-cadence dynamic cycling across 4 days,
with at least 24 h between each session. Cadence was set to 75-
85 rpm. Due to the nature of the dynamic bike the cadence
varied between that range to maximize sample entropy (SamEn).
Each 30-min session was preceded by a 5-min 40-50 rpm
warmup and followed up with 5min of cooldown. During the
session participants were encouraged to maintain 50-80% of
their estimated heart rate reserves. Pre outcome measures were
collected during the first session and post outcome measures
were collected twice: first immediately after the last session,
and then 48-h after the last session. Pre-post outcome measures
included the UPDRS score administered by a blinded movement
disorders specialist.

Dataset 2 (18): eight participants (4F, 4M, 70 ± 7 years)
completed six 30min high-cadence dynamic cycling sessions
over 2 weeks with 24 h between each session at 75-85 rpm.
A 5-min warmup and cooldown at 50 rpm were included in
each session for a total of 40-min intervention. Pre-assessment
tests (UPDRS) were completed on day 1 before the start of
the intervention. These were also done 5min after each cycling
intervention, and once more 48 h after the last intervention.
As dataset 1 did not include repeated measures of UPDRS,
only the first measure of the first day and the last measure
of the last session was included in this study. Participants
were encouraged to pedal hard enough for torque values to be
positive on the display. Heart rate, cadence, and torque were
continuously recorded.

Protocol
Raw bike output files for each dataset were cleaned
and standardized in Python (24), as outlined in the
Supplementary Material. As effort is a measure utilizing
power output during the main 30-min period of each session,
each participant’s datasets were run through the segment
cutter script to objectively clip warmup and cooldown periods
from each session using the segmented library (25–28) in R. This
library utilizes segmented regression (piecewise linear regression,
stepwise linear regression) to calculate breakpoint (dashed lines,
blue dot, Figure 1) and slope estimations of each segmented
regression line (blue line, Figure 1). Following extraction of
main sessions, the effort for each session was calculated by
assigning a value of 1 to each row with a positive power, and 0 for
negative power. Each row in the datasets represented one second
of collected data. The mean was multiplied by 100 to calculate
the percent of time the participant was under positive power,
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FIGURE 1 | SMB005_day2 (Before) and SMB005_day2 (After). Demonstration of one typical session on the dynamic bike. Dashed lines and blue dot indicate the

estimated break points. Blue lines indicate the three calculated regression lines. Using our segment_cutter.r script and the segmented R library, warmups and

cooldowns were automatically and objectively cut from the main session. This allowed for more accurate calculations of entropy and effort.

TABLE 1 | Summary of data used for the model analysis.

Dataset 1 Dataset 2 Combined

N 24 8 31

Days 3 6

Age 67 ± 8.1 70 ± 7.4 67.8 ± 7.9

BMI 26.3 ± 4.5 25.7 ± 2.7 26.1 ± 4.1

LEDD 523.3 ± 397.7 422.3 ± 290.7 467.2 ± 371.1

Mean Cadence 78.8 ± 4.1 80.2 ± 2.3 79.1 ± 3.8

SamEn Cadence 1.43 ± 0.4 1.63 ± 0.5 1.5 ± 0.44

Mean Effort 44.5 ± 40.9 51.8 ± 38.2 46.3 ± 39.8

Pre UPDRS 30.4 ± 13.9 14.1 ± 2.1 26.3 ± 13.8

Post UPDRS 26.2 ± 14.2 11.6 ± 1.8 22.6 ± 13.8

Mean ± standard deviation for each dataset, and then combined. N refers to number of

participants used for analysis.

indicating overpowering of the bike motor, during that session.

effort = (x/N)∗ 100 (1)

As all outcome variables were measured in the same way
between datasets, and any differences can be accounted for
with variables representing the dataset or number of sessions,
no standardization was needed before the datasets were labeled
and merged.

Outcome Measures
Combined outcome measures utilized from all datasets included
pre and post UPDRS scores, cadence in rotations per minute
(rpm), heart rate in beats per minutes, and power. The baseline
(prior to any cycling session) UPDRS score of each participant
is labeled as the pre UPDRS score, and the UPDRS score

measured directly after the last biking session was labeled as
the post UPDRS score. Demographics collected include height,
weight, age, gender, date of diagnosis, medication dosage and
frequency. Post study variables were calculated and included the
sample (SamEn) and approximate (ApEn) entropies of cadence,
effort, body mass index (BMI), and levodopa equivalent dosage
(LEDD). The LEDD was calculated with the help of a levodopa
equivalent dosage calculator (29), and was included in the
model to control for variance in symptom presentation due to
medication type and intake. SamEn and ApEn were calculated
using a MATLAB script created byMohammed-Abdar et al. (30),
modified to automate the loading of bike output files.

Data Analysis
Two hypotheses were tested during the study: first that variations
in the post UPDRS can be described by effort, preUPDRS
scores, daily LEDD, age, number of sessions, and the SamEn of
cadence. Number of sessions was included to control for inter-
dataset variation and length of exposure to the dynamic bike.
Previous studies have shown that UPDRS motor scores continue
to improve with greater number of cycling sessions (18). Second,
that variations in effort can be described by BMI, preUPDRS
scores, daily LEDD, and age. Both were tested with the R version
4.0.5 software to build a multiple linear regression model using
the default lm function from the stats (23) library for UPDRS
and a binomial logistic model using the glm function from the
lme4 (31) library for effort. Linear regression model was chosen
as only one of the datasets used included repeated measures. The
gvlma library was used to test linear model assumptions (32). The
effort model was tested against a null model with theMuMIn (33)
library’s ANOVA function and the marginal R2 was determined
using the r.squaredGLMM function from the MuMIn library.
Graphs were created using the ggplot2 (34) R package. Alphas
were set at < 0.05.

Frontiers in Rehabilitation Sciences | www.frontiersin.org 3 April 2022 | Volume 3 | Article 858401

https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/rehabilitation-sciences#articles


Gates and Ridgel BMI and Effort Influences Symptoms

RESULTS

A total of 31 participants’ data were used for this analysis, not
including one participant from dataset 1 who was removed due
to missing demographic data. Mean and standard deviation of
key measures are included in Table 1.

Dataset 1: During the extraction of main sessions from raw
bike sessions, four participants had either day 1 or day 2 sessions
removed due to >20min of collected main session data. One
more participant did not have bike data output for day 2. These
participants were still included in data analysis, as there was no
significant difference in effort, mean cadence, SamEn of cadence,
or mean power when tested with RM multivariate analysis of
variance (MANOVA) [F(8,102) = 0.96, p= 0.97] between sessions
for all other participants. One participant took a 2–3-min break
during day 2’s main session. This session was manually extracted
and split, mean power and mean cadence as well as SamEn of
cadence calculated separately. The mean of all variables for those
two sub-sessions were then entered into the dataset. Effort was
calculated as per Equation 1. Paired t-test confirmed a significant
change in UPDRS scores from day 1 to day 3 (t = 3.3, p= 0.007).

Dataset 2: One participant’s third session was recorded as
0 cadence for the full 45min, this was regarded as equipment
failure and thrown out. The participant’s mean effort, power,
cadence, SamEn of cadence, were kept for data analysis as there
was no significant difference between days for these variables
for other participants when tested with RM ANOVA [F(20,144) =
0.60, p= 0.91]. Paired t-test confirmed a significant difference in
UPDRS scores from prescore of day 1 to postscore of day 6 (t =
5.2, p= 0.002).

Combined Dataset: A significant (r2 = −0.44, p = 0.02)
correlation was found between mean effort, pre UPDRS and post
UPDRS, however no other correlations were found (Table 2).
Overall, a paired t-test found significant difference between the
pre UPDRS of the first and post UPDRS of the last day (t =
3.63, p = 0.0006), and no significant difference was found in
post UPDRS scores between the two datasets by a non-parametric
ANCOVA test of equality (h= 0.76, p= 0.06). Due to significant
collinearity issues during model building, our outcome variable
had to be changed from “change in UPDRS” to post UPDRS. The
results from our preliminary unpublished study (19) managed
similar collinearity warnings by switching to linear regression
with restricted maximum likelihood analysis from maximum
likelihood analysis. However that technique did not alleviate the

error in this study. To test the hypothesis that the post UPDRS is
significantly affected by the pre UPDRS, SamEn of cadence, mean
effort, age, daily LEDD, and BMI, a linear model (R2 = 0.81, p <

0.001) was constructed:

updrspost = −8.92+0.83updrspre−0.005meaneffort

−5.01samcadence+ 0.24age− 2.32medsg

+0.11bmi+0.03updrspre∗leddg+0.16sessions (2)

Because only the pre UPDRS score was a significant
contributor to variance in post UPDRS (p < 0.0001), the
hypothesis was rejected. Following a review of effort’s distribution
(Figure 2A shows per session and Figure 2B per participant),
the hypothesis that pre UPDRS, age, BMI, and daily LEDD
significantly contributed to its variance was slightly modified.
While our preliminary study (19) used a linear regression model
to describe effort, we designed a binomial general linear model
fitted by maximum likelihood with a logit link function. A RM
model was not suitable as UPDRS values were not obtained for
each day in dataset 1.

effortbool = 3.2+ 0.01bmi− 0.09age+ 0.003updrspre

+3.58leddg − 0.08updrspre∗leddg + 0.43sessions (3)

The mean effort across participant’s sessions was categorized
into “effort” and “not effort” with 50% as the cutoff point,
turning effort into a logical variable. The resulting logistic
regression did not show statistically significant predictive power
(adj R2 = 0.36, p = 0.14). To compare our model of
effort more easily from the preliminary study (19), a linear
model was also tested on the mean effort of participants
across sessions.

effortmean = 92.15− 0.16updrspre + 0.63bmi− 1.16age

+64.43leddg − 1.75updrspre∗leddg + 2.64sessions (4)

Less variance (R2 = 0.16, p = 0.11) was explained than in our
binomial model, there were no significant contributors, and the
model was not statistically better from the null hypothesis.

Post-hoc Analysis
We found a minimal contribution by effort (β = −0.005, p =

0.94) toward the variance in post UPDRS scores. This minimal

TABLE 2 | Correlation table for the combined dataset.

BMI Age LEDD Effort Pre UPDRS Post UPDRS

BMI 1

Age −0.11, p = 0.56 1

LEDD −0.32, p = 0.08 −0.10, p = 0.62 1

Effort −0.03, p = 0.86 −0.30, p = 0.10 0.16, p = 0.39 1

Pre UPDRS −0.03, p = 0.89 0.16, p = 0.41 0.01, p = 0.94 –0.44, p = 0.02 1

Post UPDRS 0.03, p = 0.86 0.23, p = 0.23 −0.06, p = 0.75 –0.44, p = 0.02 –0.29, p < 0.001 1

Bolded values are statistically significant. No relationship between gender and effort was found.
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FIGURE 2 | KDE plot of effort per session (A). KDE plot of mean effort per participant (B). Histogram with an overlayed KDE distribution and rug plot demonstrating

the binomial nature of effort. (A) is the distribution of the RM dataset, while (B) is the distribution of mean effort.

FIGURE 3 | Conceptual diagram of the effect of BMI (A), where the effect of effort on post UPDRS is influenced by BMI. Moderating effect of BMI on mean effort (B).

Simple slopes plot demonstrating the moderating effect of BMI on mean effort. As BMI increases the effect of effort on post UPDRS decreases.

contribution was surprising, as our previous study (19) detected
a significant contribution to the explained variance (β = −0.1, p
= 0.04) in updrs_chg, and with the pre UPDRS controlled for in
the current model the contribution was expected to have a similar
coefficient. Given effort’s significant contribution to the repeated
measures model but not to the model of means of that study, it
may be that an intrapersonal variable that is controlled for by
the RM design masked effort’s contribution in the current study.
The current results show a significant correlation between post
UPDRS and mean effort (r2 = −0.44, p = 0.02). To test whether
a moderating variable was involved we ran a post-hoc linear
regression model with post UPDRS as the dependent variable

(DV), mean effort the independent variable (IV), and pre UPDRS
as the moderating variable (MoV) (postUPDRS = preUPDRS +
effort + preUPDRS∗effort). There was no significant interaction
between pre UPDRS and mean effort and so pre UPDRS was
removed from consideration as a MoV.

Our previous study (19) showed a significant correlation
between BMI and effort (r2 = −0.72, p = 0.01, chapter 2), and
while no significant correlation was shown in the current study
it is possible that BMI had a moderating effect on mean effort.
To test this, we post-hoc ran a linear regression model with
post UPDRS as the DV, mean effort as IV, and BMI as MoV
(postUPDRS = bmi+effort+bmi∗effort). We found a significant
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FIGURE 4 | Mean effort had a significant association with both pre (a) and

post (c) UPDRS, and pre UPDRS with post UPDRS (b). The effect between

mean effort and post UPDRS was fully mediated by pre UPDRS (c’). *p < 0.05

**p < 0.01.

contribution of the interaction between IV and MoV (β = 0.28,
p = 0.03) to the post UPDRS, indicating a moderating effect of
different levels of BMI on the association of mean effort and post
UPDRS (Figure 3A). The BMI (β = −1.74, p = 0.08) and mean
effort (β=−0.98, p= 0.02) both contributed to the post UPDRS.
To better understand the relationship between these variables
the estimated marginal means and simple slopes were calculated
using the emmeans (35) R library. Our results (Figure 3B) show
that with increasing levels of BMI, one unit increase in the mean
effort is associated with improvements in the post UPDRS score
where a lower score indicates less severe motor symptoms. At
low BMI (22.07, or one std below the mean of our dataset) the
post UPDRS decreased by 0.25 for each unit increase in effort.
The mean BMI (26.15) showed similar results, where each unit
increase in effort was associated with a 0.11 decrease in post
UPDRS. High BMI (30.22, or one std above the mean) did not
see much effect at a 0.02 increase in post UPDRS.

While no moderating relationship was found between pre
UPDRS and mean effort, a mediating relationship is also likely.
If pre UPDRS is a mediator of mean effort, the possibility that
pre UPDRS is a mediator of other variables can be explored,
such as the participant’s power output (a measure similar to,
but more direct than, effort) or cadence (the dynamic bike
calculates SamEn from a preset range of cadence, however not
all participants are able to keep up with that cadence). The four
step method of mediation analysis as outlined by Baron and
Kenny (36) was used, along with the R package mediation (37) to
test for significance. Our results (Figure 4) showed a significant
association between mean effort and post UPDRS (c = −0.14, p
= 0.02) and pre UPDRS (a = −0.14, p = 0.02). There were also
significant associations between pre UPDRS and post UPDRS (b
= 0.88, p< 0.001). As both a and b relationships were significant,
pre UPDRS was considered a mediator. The effect of mean
effort on post UPDRS was fully mediated by pre UPDRS (c’ =
−0.01, p= 0.69). The unstandardized indirect effects were found
for each of 1,000 bootstrapped samples and averaged together,
then confidence intervals determined at the 2.5th and 97.5th

percentiles. This mean indirect effect was −0.14 (−0.24, −0.03)
and determined to be statistically significant (p= 0.04).

DISCUSSION

The primary goal of this analysis was to identify participant
characteristics or demographic variables that might influence
the degree of UPDRS change following several sessions of
high-cadence dynamic cycling. We demonstrated an automated
and objective way of extracting main sessions from between
warmup and cooldown times using our segment cutter script
(Supplementary Data). We also confirmed a significant change
in UPDRS scores between the first and last session of each dataset,
and no significant changes in effort between sessions. This latter
finding lends further support to the idea that effort, defined as the
percent of time a participant overtakes the bike motor, is a result
of properties intrinsic to each participant and not necessarily to
the bike. We also tested two models, one of UPDRS (Equation
2) and another of effort (Equation 3), to describe the changes
seen in both datasets. The former explains variance in its outcome
measure significantly better than the null hypothesis, however the
latter does not. The UPDRS model explains 81% of variance in
our participants’ post UPDRS scores, with the main significant
contributor being baseline UPDRS scores. The finding suggests
that participants with more severe symptoms are more likely to
improve. Effort’s contribution was minimal, with a coefficient of
−0.005 (the variable effort was in decimal, not percent form), and
was not significant.

The relationship between baseline UPDRS, post UPDRS,
and effort indicate the importance of baseline UPDRS or
symptom severity in participant’s response to high-cadence
dynamic cycling. There was also a moderating relationship
between BMI and effort. This finding lends support to our
previous observation that participants in the obese category of
BMI provided low effort ( <35%) regardless of UPDRS score,
while those in the normal category of BMI were capable of
high effort (>65%) with lower UPDRS score (19). Similarly,
following our correlation results the moderation analysis found
a decreased effect of effort on post UPDRS based with increasing
BMI. A concrete statement cannot be made based off these
observations alone. It is likely that our independent measures
design is not accounting for individual variance, thereby masking
our results. Further testing is needed to decipher the precise
relationship between demographic variables, effort, and UPDRS
outcome. By identifying these relationships, it is possible to adapt
the high-cadence dynamic cycling prescription to individual
characteristics and maximize the outcome.

Our models of effort suggest a True/False property, where
effort may be best described not on a continuous but a binomial
scale. The current definitions of >50% of time in positive power
is “effort” and <50% is “no effort” is slightly different from our
previous reporting (19) that >65% is “high” and <35% is “low”
effort. It is likely that the low sample size of 16 participants
in the previous study did not sufficiently capture the pattern
as our current n=31. Unlike the previous model, our current
model of mean effort (Equation 4) and the log probability
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of expending effort (Equation 3) did not explain variance in
the outcome to a statistically significant degree. This might be
due to the repeated measures design of our previous model
that can account for interpersonal variance unlike our current
independent measures-based model. The fact that the previous
linear model of mean effort also did not show significance
supports this idea. More studies are needed to conclusively
determine the role of effort on the post UPDRS score and the role
of demographic variables on effort. Previous studies have shown
that intensity of exercise, as defined by heart rate, can drive motor
function improvements, and potentially promote neuroplasticity
(38). However, heart rate is not necessarily a direct measure of
effort in this population due to autonomic dysfunction (39) and
chronotrophic incompetence (40).

One limitation of this study is lack of heart rate as a variable in
the model due to missing or inaccurate data. However, previous
cycling studies have shown that heart rate is not a direct predictor
of improvement in UPDRS III scores after high-cadence cycling
(16, 17), so it is not likely to contribute to the model. The next
step is to collect additional data over a longer exercise period (12
sessions) with a larger sample. The significant improvements in
UPDRS scores after high-cadence dynamic cycling is promising
but the variance between individuals was considerable. Future
studies will utilize our script to extract main sessions and develop
more accurate and valid models of motor symptoms changes
after high-cadence dynamic cycling. By understanding what
variables influence this interaction, the cycling-based exercise
prescriptions can be tuned to better accommodate participants
with certain intrinsic or performance-based characteristics. As
our dataset of results and variables grow, a machine learning
model can be implemented that may improve the prediction
power of our models and better describe the parameters that
can most influence improvements in UPDRS scores after high-
cadence cycling.

CONCLUSION

These results suggest that BMI, physical effort, and baseline
UPDRS levels can potentially predict individual responses

to high-cadence dynamic cycling. Future studies improve
upon this model to develop an adaptive controller that
will optimize symptom improvements in individuals
with PD.
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