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Sub-shot-noise performance in transmission measurements can be achieved in optical quantum metrology owing
to significantly lower uncertainty in light intensity of quantum beams compared to their classical counterparts.
In this work, we simulate the outcome of an experiment that uses a multiplexed single-photon source, considering
several types of experimental losses, where we show that the sub-Poissonian statistics of the output is key for
achieving sub-shot-noise performance. We compare the numerical results with the shot-noise limit attained using
coherent sources and the quantum limit, obtained with an ideal photon-number Fock state. We also investigate
conditions in which threshold detectors can be used, as well as the effect of input light fluctuations. Our results
show that sub-shot-noise performance can be achieved with improvement factors ranging from 1.5 to 2, even
without using number-resolving detectors. ©2021Optical Society of America
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1. INTRODUCTION

The field of quantum metrology and its applications in biologi-
cal sciences [1–5] is a hot research topic. In particular, much
attention has been paid to the utilization of quantum light as a
resource for surpassing the classical limit of precision per unit
intensity [6,7]. The ability to obtain a light source that operates
below the shot-noise limit allows for performance improvement
of tasks such as imaging of photo-reactive biological samples
[8], high-precision optical activity measurements in chiral
media [9], and high-sensitivity single biomolecule detection and
tracking [10], among others.

This work is devoted to studying the behavior of a multi-
plexed single-photon source (an engineered light source that
emits non-classical light states) [11] in the task of measuring
the transmittance of a sample, to obtain an enhancement on the
precision when compared to a measurement using classical light.
Generally, the lower the intrinsic uncertainty in the intensity
of the incident light, the more precise the result will be. The
use of low-intensity light sources with sub-Poissonian statistics
for absorption and transmission measurements is a promising
technique for the study of fragile biological samples and ultra-
sensitive materials, since experiments can be performed with
minimum disturbance [10,12,13].

The uncertainty of such measurement is given by the com-
bination of random fluctuations, inherent in the optical probe

beam, and the stochastic nature of the interaction between
light and matter within the sampled object. By modeling two
kinds of light sources, coherent states and Fock or number
states, different precision limits can be obtained. In the former
case, using a light source with Poissonian photon statistics to
measure the transmittance of an object leads to a precision in
the measurement bounded by the shot-noise limit (SNL): this is
the best performance obtainable with classical light. Instead, the
eventual use of an ideal antibunched light source such as a Fock
state photon source gives the ultimate quantum limit (UQL)
for the measurement precision, due to the deterministic nature
of the photon number emission. This limit corresponds to the
best quantum scenario. A large n-photon number Fock state
source, however, is not an available resource yet. The challenge
is therefore to obtain an engineered light source with intensity
fluctuations below the Poissonian limit and to combine it with
an adequate choice of an estimator, to obtain a measurement
scheme that outperforms the classical one.

Real-world single-photon sources are an interesting option
since an ideal N-photon Fock state as input achieves the same
precision as an ideal single-photon input and N repetitions.
High photon-number Fock states are not experimentally
achievable nowadays, but a great deal of research is currently
in progress to obtain devices that deliver light pulses carrying
a single photon in well-defined spatio-temporal and polari-
zation modes. Different approaches rely on either the use of

0740-3224/21/092502-09 Journal © 2021Optical Society of America

https://orcid.org/0000-0003-2863-8017
mailto:mlarotonda@citedef.gob.ar
mailto:amagnoni@citedef.gob.ar
https://doi.org/10.1364/JOSAB.428105
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAB.428105&amp;domain=pdf&amp;date_stamp=2021-08-05


Research Article Vol. 38, No. 9 / September 2021 / Journal of the Optical Society of America B 2503

single-emitter sources, or some kind of multiplexing of one or
several heralded photon pair sources based on the spontaneous
parametric down conversion (SPDC). Single-emitter sources
include devices based on fluorescence from atoms, ions, or
molecules [14–17] and on different types of “artificial atoms.”
The single-photon emission from nitrogen-vacancy centers
has been extensively reviewed in [18]. It has been known that
quantum dots emit single photons since the end of the last
century [19–23]. By coupling the quantum dots with electri-
cally controlled cavities in deterministically fabricated devices,
an enhancement on brightness and purity of these kinds of
sources has been obtained, reaching indistinguishabilities above
99% and photon extraction efficiencies on the order of 66%
[24,25]. Recently, the effect of imperfections and unwanted
multi-photon components of such sources on the quality of the
source has been studied both theoretically and experimentally
[26].

Another approach to single-photon sources is based on non-
linear processes such as SPDC or four-wave mixing, where a pair
of photons is produced after the interaction of one or two pump
photons with a nonlinear material. One of the output photons
is sent to a detector, which heralds with high probability the
presence of the other photon, provided the two downconverted
modes are non-degenerated in some degree of freedom. State-of-
the-art implementations involve integrated optics devices and
heralding efficiencies exceeding 50% [27,28] and even reaching
90% [29]. The heralding process removes the zero-photon com-
ponent of the heralded field, but there is still a non-negligible
probability of generating more than one pair, that scales with the
pump intensity. Moreover, since these processes are probabilis-
tic, there is a trade-off between the probability of generating a
photon and the fidelity of the output to a single-photon state. By
spatially multiplexing several heralded sources [30–36], tempo-
rally multiplexing a single source [37–45], or even combining
temporal and spatial multiplexing [46], the source brightness
can be (ideally) arbitrarily increased, depending on the size of
the multiplexing network and its overall throughput. A com-
prehensive and updated review on such sources can be found in
[11].

Meanwhile, transmission/absorption measurements
have been widely studied recently. There are several differ-
ent approaches to achieving the highest possible precision,
which rely on different estimators and light sources, with and
without spatial resolution. Schemes for estimating the trans-
mission of a sample generally consist in measuring the intensity
attenuation of a light beam that propagates through it, which
can be done using a single light beam as the source (direct mea-
surement), splitting the beam and using the tap to normalize the
measurements and remove excess noise or avoid possible power
drifts (differential measurement), or with twin-beam correlated
sources. Twin-beams and difference-based estimators have been
used for spatially resolved implementations [47], including the
realization of the first sub-shot-noise wide-field microscope in
2017 [48]. The performance of this estimator depends on the
spatial resolution and reaches out a factor of improvement in
precision over the SNL of approximately 1.30. Estimators based
on the ratio of two correlated beams have been first proposed in
[49], and its recent experimental implementations use heralded
single-photon sources and achieve a maximum improvement

factor of 1.79 [50,51]. Another estimator based on the ratio of
two signals but with some optimizations is presented in [52],
reaching a maximum improvement factor of 1.46. Recently, a
complete theoretical and experimental study of the perform-
ance of these different estimators was presented [53]. In these
works, the reported improvement factors were obtained for
transmissions 0.9 or higher.

In this work, we propose the use of a specific engineered
single-photon-pulsed source [40,54] that relies on the cor-
relations present in a photon pair SPDC source and on a
binary-length division time-multiplexing network as the input
of a direct-type transmission measurement. We compare its
performance both with a weak coherent pulse source with
Poissonian statistics (a “classical” experiment) and an ideal
“photon gun,” that is, a deterministic source that emits a single
photon per pulse. The results can be adapted in a straight-
forward manner to essentially any single-photon source with
known probability distribution for the emission. The advantage
of a pulsed scheme compared with a heralded photon source
is the fact that it easily allows for a minimum exposure of the
sample to the probe beam by means of gating, while the stochas-
tic nature of an heralded source requires some kind of active
feed forward to reduce the illumination level or even to obtain a
quantum advantage [49,50].

Another issue to consider to maximize measurement pre-
cision is the performance of the detection devices. Photon
number-resolving (NR) detectors are the ultimate refinement
for intensity detection and constitute the most sophisticated
measurement devices for quantum optics. Different technologi-
cal approaches are currently employed to obtain high-efficiency
detectors with photon number resolution, such as arrays of
multiplexed standard detectors [55,56], transition edge sensors
[57–59], superconducting nanowire photon detectors (SNPD)
[60–62], and even coupled charged devices with floating-gate
amplifiers [63]. However, photon-counting detectors with
low dark counts and mid-to-high efficiency such as avalanche
photodiodes unable to resolve the number of detected photons
(threshold detectors), are quite widespread, and their use is very
common in research and metrology laboratories. We therefore
study the behavior of the proposed setup under two different
detection schemes: number resolving and threshold detectors.

This paper is organized as follows: in Section 2, we briefly
review the main features of the proposed single-photon source.
Section 3 is devoted to the discussion on the different trans-
mission estimators used under the aforementioned detection
conditions, and the discussion on the expected advantage that
can be obtained with the single-photon source. In Section 4,
we analyze the effect of fluctuations on the transmission
estimation when the sources are fed with an optical pump
governed by super-Poissonian photon statistics. Final remarks
and comments regarding the perspective for the use of single-
photon sources to obtain quantum advantage on transmission
measurements are pointed out in Section 5.

2. TIME-MULTIPLEXED SINGLE-PHOTON
SOURCE

The sub-Poissonian light source model studied here is a
binary-time-multiplexed single-photon (BinMux-SP) source.
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Fig. 1. Binary-time-multiplexed single-photon (BinMux-SP)
source consists of a collinear, non-degenerate photon-pair generation
stage, and a time-multiplexing stage that raises the single-photon
probability and synchronizes the output photon to an external clock
signal based on the timing of the herald photon detection. The latter
stage is based on an array of several fiber optic fixed-length paths, each
one imposing a different temporal delay to the signal photon.

This device is based on photon pairs (named signal and idler)
obtained from an SPDC source with output mean µ, and a
network of fiber optic components that conform the time-
multiplexing stage (Fig. 1). This array has several possible fiber
paths with different lengths that consequently impose different
temporal delays to the signal photon. Which-path decision
is made by a timing circuit, based on the information given
by the detection of the idler photon. Given the external clock
signal with period T, the time-multiplexing stage locates the
signal photon (within a fixed short temporal window 1t) and
re-routes it to the output, synchronized to the clock tick. Such
scheme efficiently raises the single-photon probability and
synchronizes the pulsed output state to an external clock signal.

The time-multiplexing network is binary divided with m
possible delay stages, each one with a duration of (2(i−1)1t),
i ∈ {1, · · · ,m}. Active switching of this stages allows for com-
pensation of a temporal mismatch (between the photon and
the clock) up to T = (2m

− 1)1t . A detailed description of the
source can be found in [40]. The probability mass function of
emitting i photons of this source, P (m)

b (i), assuming no dark
counts at the heralding detector was introduced and discussed
in [54]:

P (m)
b (i)=

∞∑
n=i

[
(1− P (0, 2mµe h))

P (n, µ)(1− (1− e h)
n)∑

j P ( j , µ)(1− (1− e h)
j )

+P (0, 2mµe h)
P (n, µ)(1− e h)

n∑
j P ( j , µ)(1− e h) j

]

×

(
n
i

)
(e tot

s )
i
(1− e tot

s )
n−i .

(1)

P (m)
b (i) depends on the following experimentally accessible

parameters: µ, the initial photon–pair rate per detection win-
dow 1t ; m, the number of correcting stages; e h , the overall
efficiency of the heralding branch; e tot

s = e s × (e sw)
m+1, the

overall transmission of the signal (or heralded) branch (with e sw

each switch’s transmission). P ( j , α) is the Poisson probability
of obtaining j photons on a trial with a mean photon number
α. The last term of the product on each element of the sum is

the binomial distribution B(x |p, n)≡ (
n
x )p

x (1− p)n−x that

considers the unavoidable loss on the switching network. This
term depends on the amount of delay stages used and takes into
account other possible general optical losses of the branch.

The shortest correcting time of the network was set to
1t = 2 ns, constrained by the coherence length of the photon
pair and by the photo-detection jitter at the heralding side.
The efficacy of the setup as a sub-Poissonian photon gun relies
on the ability to obtain a high probability of detecting at least
one photon during the total synchronization interval T—thus
minimizing the zero-photon component of the distribution—
together with a low probability of multi-photon occurrence
within a single temporal window1t . Optimum conditions for
fixed number of delay stages (or correction stages) and loss can
be obtained by adjusting the input mean photon pair number
µ from the SPDC source. Throughout this paper, the other
parameters have been set to e h = 0.8 and e sw = 0.9 (0.5 dB
insertion loss).

3. TRANSMISSION ESTIMATORS

Following the strategy of using many single photons instead of
a large-number Fock state as input, we study the performance
of the BinMux-SP in a direct single beam transmission mea-
surement scheme, like the one depicted in Fig. 2. We compare
its performance by replacing the BinMux-SP with a source of
weak coherent pulses and with a perfect single-photon source.
We consider an optical loss of e s = 0.9 for the coherent and
BinMux-SP cases, which is included within the probability
distributions, while we use a lossless channel for the Fock state
source.

The performance of the different estimators (T̂) of a given
parameter (t) can be compared by computing their expected
value E, and their mean squared error (MSE). These quantities
depend on the random variable k that is being measured and its
probability distributionP(k) [64,65]:

E (T̂)=
∑

k

T̂(k)P(k), (2)

MSE(T̂)=
∑

k

[T̂(k)− t]2P(k), (3)

Fig. 2. General scheme for a direct transmission measurement: a
light source sends a beam through the sample, and the transmitted
light is detected afterwards. The detector efficiency is η= 0.9, and it
may or may not have an NR capacity. The measured random variables
are k, the number of detected photons in the former case, and kt , the
number of detector clicks in the latter. This procedure is repeated ν
rounds. Lenses and other optical elements can impose an additional
loss between the source and the sample. For the non-ideal sources
studied, we consider an optical loss of 0.9, while we do not consider
any optical loss for the ideal Fock-state photon source.
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for discrete probability distributions. Throughout this
work, k represents the number of detected events on each
experiment. The benefit of using the MSE over the variance
(Var(T̂)=

∑
k [T̂(k)− E(T̂)]2P(k)), is that it considers both

the precision and the accuracy of the estimator. These quantities
enable us to simulate the performance of the estimators using
the real value of the parameter.

In what follows we introduce transmission estimators both
for NR and threshold detectors. The efficiency of both detectors
is set to η= 0.9. Detector dark counts are not considered, since
the pulsed characteristics of the sources allow for fast gating
and dark count rates per pulse<10−6 can be achieved with any
state-of-the-art detection device.

Throughout the work, we assign the SNL performance to the
coherent state photon source illuminating a translucent sample
using a NR detector, and the UQL performance with the single-
photon Fock state, which given its nature, does not change with
the choice of the detector.

A. Estimators for NR Detectors

When using NR detectors, the measured random variable k is
the detected number of photons. For the three different sources
considered in this work, the emission probability distribution
of i photons is Poissonian in the coherent case P (i, α), sub-
Poissonian in BinMux-SP with m delay stages P (m)

b (i) [54],
and a perfect number state—with null variance—in the single-
photon Fock case. The inefficiency of the detection process
combines the emission distribution with an additional binomial
distribution in each case to describe the statistics of the random
variable k.

The general form of the transmission estimators for each
case are

Coherent : T̂nr
c (kc )=

kc

η ∗ 〈nc 〉
, (4)

BinMux−SP : T̂nr
b (kb)=

kb

η ∗ 〈nb〉
, (5)

Fock : T̂nr
f (k f )=

k f

ηNin
. (6)

The measured number of photons in the experiments with
coherent BinMux-SP and Fock pulsed sources is kc , kb , and
k f , respectively; η is the detector efficiency (which is set to
0.9 throughout the simulations), 〈n〉 is the mean number of
photons per pulse incident on the sample, and Nin is the eigen-
value of the photon number operator in the case of Fock states.
In particular, we set Nin = 1 and α = 〈nc 〉 = 1, 〈nb〉 = 1 for
Subsections 3.A and 3.B. Since the relative error is high in such a
low-intensity regime, we also considered ν = 200 as the number
of repetitions of the experiment for all simulations presented
in these subsections, to reduce the uncertainty of the measure-
ment. The performance of these estimators was studied using
their definitions, Eqs. (4)–(6), and the explicit expressions of the
probability distributions of the random variables k to compute
the mean and the MSE using Eqs. (2) and (3).

The first important property of these estimators is that they
are accurate (or unbiased) for all three sources: the expected

value is equal to the transmission parameter, which also means
that the MSE is equal to the variance. To study the improvement
factor, we computed the ratio between the MSE of the coher-
ent source (what we call the SNL) to the MSE of each source
[Fig. 3(A)]. For the BinMux-SP, we studied the performance of a
different number of correction stages m (Section 2). Analyzing
the ratios enables for a quick check of the quantum advantage
(ratio >1) and also independence from the number of repe-
titions (ν). Repetitions only raise the precision equally for all
sources (in the case of unbiased estimators), reducing the vari-
ance by a factor ν. The MSE as a function of the transmission
alone can be observed in Fig. 3(B).

It is clear that for the case of the BinMux-SP source, there is an
advantage over the shot-noise limit for the complete transmis-
sion range. The enhancement on the source statistics obtained
by increasing the number of correcting stages is eventually com-
pensated by the loss introduced at each switching element. The
choice of experimental parameters for this simulation implies
that the maximum ratio is obtained for m = 2. For the selected
correcting time 1t = 2 ns, this corresponds to a source output
repetition rate of 250 MHz. Regarding the absolute value of
the MSE (or variance, in this case), it can be further reduced by
increasing the number of repetitions ν. It is important to note
that these estimators are close to the optimum for the probability
distribution of the BinMux-SP source: the variance approaches
the limit imposed by the Cramér–Rao bound, which sets a
lower bound on the variance of unbiased estimators of a given
parameter, for a particular experiment [66].

B. Threshold Detectors

Even though there has been substantial attention and significant
progress in the development of photon NR detectors [61], they
are still expensive and resource-demanding pieces of equipment.
In contrast, standard photon-counting devices with binary
output (detection-no detection) are quite common in quantum
optics and metrology laboratories. It is therefore interesting to
study the changes introduced by replacing the NR detectors
with threshold detectors, considering the high efficiencies
achieved [67] and the low-intensity working scenario.

By replacing the NR detectors, the measured random variable
changes from number of photons to detector clicks, each one
of them triggered by the arrival of one or more photons. The
previous estimators (4)–(6) can be adapted in a straightforward
fashion: in this condition, kt represents the total number of
clicks after the sample and 〈nt

〉 the mean number of clicks
without sample, in ν repetitions of the experiment:

Coherent : T̂ t
c (k

t
c )=

kt
c

〈nt
c 〉
, (7)

BinMux−SP : T̂ t
b (k

t
b)=

kt
b

〈nt
b〉
, (8)

Fock : T̂ t
f (k

t
f )=

kt
f

ηNin
. (9)

The probability distributions of kt are now binomials
B(kt
|p click, ν), with ν trials (number of repetitions), kt suc-

cesses, and a probability of success per trial pclick. This pclick
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A B

Fig. 3. (A) MSE ratio between the coherent source (SNL) and either the BinMux-SP (with one to six correction stages m) or the single-photon
Fock state (UQL). (B) MSE for the SNL, the BinMux-SP source, and the UQL.

Fig. 4. Difference between the mean of the estimator and the
transmission as a function of the latter for the three sources (coherent,
BinMux-SP, and single-photon Fock states [UQL]) using threshold
detectors.

success probability corresponds to the probability of having a
click in the detector per trial, and it can be calculated for each
case as follows:

Coherent : pclick
c =

∑
i≥1

[1− B(0|tη, i)]P (i, α), (10)

BinMux−SP : pclick
b =

∑
i≥1

[1− B(0|tη, i)]P (m)
b (i), (11)

Fock : pclick
f = tη. (12)

These consider i photons emitted from each respective source
(with Poissonian probability P (i, α) for the coherent case,
P (m)

b (i) for the BinMux source [54], and 1 for the Fock state)
and at least one of them being detected, surviving both the
sample and the detection efficiency. This survival is accounted
for in the

∑
i≥1[1− B(0|tη, i)] terms for the first two sources

and, more simply, with tη in the Fock case.
Because of the nature of the detection process, an increase in

the multi-photon emission probability of the source lowers the
correlation between a single photon and a click.

As expected, these estimators are biased for the coherent and
the BinMux-SP cases, and unbiased for the Fock states. This can
be seen in Fig. 4, which shows the difference between the mean
of the estimator and the true value of the transmission.

The sub-Poissonian statistics of the BinMux-SP source are
responsible for the reduced bias in the estimators. This behav-
ior is observable in the MSE ratios and in the MSE alone, as
shown in Figs. 5(A) and 5(B), respectively. In this case, using
the BinMux-SP source is favorable only for a limited range of
transmissions close to the transparent t = 1 limit. However,
in this region, the performance of the SNL can be significantly
improved (in some cases with a ratio >2). Additionally, it is
always a better alternative to the coherent source with a thresh-
old detector. It is also worth noting that for high transmissions,
an advantage over the SNL can be obtained by using a threshold
detector with the coherent state. This is due to the variance-
reduction effect of the binarization introduced by the threshold
detection, which has only two possible outcomes: click or
no-click [68].

However, unlike the case of unbiased estimators, it is not
possible to arbitrarily reduce the MSE by increasing the number
of repetitions ν. The MSE has a fundamental limit, given by
the inaccuracy of the estimators: it can not be smaller than the
squared of the difference between the mean and the parameter
(Fig. 4). However, since the estimator is not biased for t = 0
and t = 1, a good performance can always be obtained for high
transmission values.

Even though a fair comparison with the single-photon
Fock state would correspond to input mean photon num-
bers 〈nc 〉 = 〈nb〉 = 1, and given that the bias in the threshold
estimators is mainly due to the multi-photon components of
the statistics, it would be interesting to explore the performance
of the estimators for lower intensity values. In the next section,
we study how these results are modified for different input
intensities.

C. Lower Light Intensity Regimes

Lowering the mean number of photons per pulse to reduce the
amount of multi-photon emission is a common strategy when
using a weak coherent pulse source. The sub-Poissonian nature
of the BinMux-SP statistics also guarantees a more efficient
response to this action, showing an improved reduction on the
multi-photon pulses compared to that of the coherent source.
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A B

Fig. 5. (A) MSE ratios for the threshold detection case. One of the reference curves (from which the ratios are computed) is again the one obtained
using a coherent source with NR detectors (SNL). The other reference is the MSE ratio for a single-photon Fock state (UQL). (B) MSE for the same
sources, together with the SNL reference (light-green curve) for direct comparison.

A B

Fig. 6. MSE ratio for a sample transmission t = 0.8 as a function of the input mean number of photons for (A) the threshold estimators and (B) the
NR estimators, when ν = 200. The vertical axis is shared for both plots.

Figure 6 shows results for a sample transmission t = 0.8.
Although for a unity input mean photon number, the estimators
with threshold detectors do not present any enhancement over
the SNL, an advantage can be still obtained for lower intensities.
Indeed, MSE ratios of ∼1.5 can be achieved, which is very
similar to the best performance available with NR detectors.
The reduced intensity condition at the output of the source also
enhances the effect of the switching network, and the net result
is that the optimum condition is obtained for a higher number
of compensating stages m. It is also interesting to note that, for
this transmission range and number of repetitions, the coherent
source with threshold detection barely outperforms the SNL
between 0 and 0.4 mean photon number.

The overall behavior is representative of the source per-
formance for mid-range transmissions. This analysis enables
a rapid visualization for selecting the most convenient com-
bination of number of correcting stages m on the BinMux-SP
source and input mean photon number, for a given value of the
transmission.

Given that the estimators for threshold detectors are indeed
biased, the improvement of their performance is therefore lim-
ited by the asymptotic limit imposed by their inaccuracy, while
the NR detector estimators only get more precise. In Fig. 7, we
present the asymptotic minimum relative MSE, achievable per

Fig. 7. Asymptotic minimum relative MSE (%) achievable as a
function of the transmission. These values correspond to a very large
number of repetitions ν, and they are thus caused by the inaccuracy of
the estimators. Solid line corresponds to the BinMux-SP source and
the dashed line to the coherent source.

transmission value, for three representative values of input mean
photon number, both for the coherent and the BinMux-SP
sources.

These values of MSE can be accessed by performing a very
large number of repetitions; in this situation the inaccuracy
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eventually dominates over the precision. As expected, the
MSE% is greatly influenced by the intensity used. The enhance-
ment obtained with the use of the BinMux-SP source over a
coherent source is present for all transmissions in all three val-
ues of 〈n〉, and for mid-range transmission values, a threefold
increase can be obtained.

4. EFFECT OF FLUCTUATIONS IN THE INPUT
LIGHT SOURCE

Both the BinMux-SP and the coherent sources must be fed
with a light source governed by Poissonian statistics; in the
coherent case, it is the source itself, whereas the BinMux-SP is
based on a parametric fluorescence photon pair source, which
for practical purposes, shows Poissonian statistics on the pair
emission. A technique to minimize excess noise produced by
super-Poissonian light sources is to monitor the photon rate
of a portion of the beam before interacting with the sample, to
compensate for any drift. Such differential measurement may not
always be possible to implement, and therefore, it is interesting
to study the robustness of the method against excess fluctuations
in a direct transmission measurement scheme, considering the
mean photon number of the coherent source α, and the mean
photon pair rate that feeds the multiplexed sourceµ as a random
variable with Gaussian statistics. Their respective standard
deviations are σc = aα and σb = aµ, a ∈ {0, · · · , 0.6}. For
the following discussion, the mean value of this distribution is
chosen to beα = 〈nc 〉 = 0.5, 〈nb〉 = 0.5.

The estimator MSE for a transmission t = 0.8 as a function of
the size of the fluctuations (i.e., a in %) for both types of detec-
tors is shown in Fig. 8, for two representative amounts of correc-
tion stages m for the BinMux-SP.

Since the reference beam in this direct type of measurements
is computed without fluctuations (or considering a significant
amount of integration time that ensures compensation), the
larger the fluctuations, the greater the MSE observed; this is
primarily caused by the bias introduced in the measurement.
For the coherent source in the NR case, the MSE at maximum
fluctuation is 3.4 times its original value, while for m = 5
BinMux-SP, it is 2.1, in agreement with the results shown in
Fig. 6(A). This effect is slightly reduced when using threshold

detectors due to the variance reduction introduced (referred to
in Section 3.B).

At the same time, the width of the 68% confidence interval is
larger and more dependent on the fluctuations for the coherent
source than for the BinMux-SP source, for both types of detec-
tors.

These results show that the effect of raising the single-photon
probability introduced by the time-multiplexing stage in the
BinMux-SP source also guarantees a more robust output flux
against fluctuations of the pump-power intensity. This is mainly
because less intensity is required at the input to achieve a certain
mean number of photons at the output, an effect that increases
with an increasing number of correcting stages. Taking into
account that perfect Poissonian coherent sources (that would
require laser sources with perfectly stable output) are not easily
attainable experimentally, this feature of the BinMux-SP source
is also of great importance.

5. FINAL REMARKS AND DISCUSSION

In this work, we studied the use of a time-multiplexed
single-photon source (BinMux-SP) as an input for trans-
mission/absorption measurements, and we investigated its
performance in obtaining a quantum enhancement in such
tasks. Perfect number Fock states can achieve the ultimate
quantum limit in this type of measurements, but represent a
technological challenge, particularly for large number states.
The proposed strategy is to approach the ν number perfect Fock
state performance using single-photon states generated from the
BinMux-SP source as input and performing ν repetitions.

We investigate a direct measurement scheme, comparing
the number of photons detected with and without sample.
Due to the single-photon nature of the sources, we have built
estimators for both NR and threshold detectors. Working with
threshold detectors and achieving sub-shot-noise performance
is a desirable goal due to their widespread use in quantum optics
and metrology laboratories.

In terms of accuracy, NR estimators are unbiased, as opposed
to threshold estimators: while the precision can be arbitrarily
reduced by the number of repetitions in the NR case, a fun-
damental limit exists in the threshold case. Nonetheless, the
bias is non-trivially reduced to zero for t = 1, indicating that an

A B

Fig. 8. Estimator MSE for (A) the NR detectors and (B) the threshold detectors, as a function of the amount of fluctuation present in the incident
light (the standard deviation as a percentage of the mean). The solid line corresponds to the mean MSE (obtained over 50 rounds), whereas the shaded
region shows the 68% confidence interval. The behavior with m = 3 and m = 5 correcting stages is shown. Figures at the right of each plot correspond
to the confidence interval for the maximum fluctuation considered.
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acceptable performance can still be obtained for low absorption
samples. Explicitly, for a transmission t = 0.98, an enhance-
ment factor of 2.2 over the SNL can be achieved with ν = 200
repetitions, and 〈nb〉 = 1 using the BinMux-SP source with
threshold detectors. This measurement implies a relative MSE
of 5%.

For increased absorption, it is convenient to work at even
lower mean photon numbers, to reduce the effect of the bias.
Halving the photon flux, an enhancement factor of 1.4 can be
achieved with ν = 2000 repetitions on samples with a 20%
absorption.

In the NR case, for a transmissions of t = 0.98 and t = 0.8,
maximum enhancement factors of 1.6 and 1.45 can be achieved
respectively, using 〈nb〉 = 0.6. The relative MSE can be
arbitrarily reduced, due to the zero bias of the estimators.

A key issue is that the pulsed source output has sub-
Poissonian statistics. This means that sub-shot noise
uncertainties can be obtained for illumination levels as low
as a single photon per detection window. Dynamic biological
measurements require low light levels to avoid sample damage.
With this constraint on optical power, quantum noise funda-
mentally limits the measurement sensitivity, and this limit can
only be surpassed by extracting more information per photon.
The fact that the source is pulsed allows for accurate and fast
triggering, limiting the sample exposure only to pre-selected
photons. Even though repetitive sampling using a strong clas-
sical source may lead to a high precision measurement, fragile
samples might not be studied in this way. We have also shown
that the performance of a temporally multiplexed single-photon
source is less influenced by super-Poissonian fluctuations than
that of a coherent source with excess noise. This is an interesting
result for real-life imperfect experimental implementations.

The results presented in this work encourage the use of
single-photon sources as suitable input beams for transmission
estimation, while achieving a large quantum enhancement.
Equivalent results can be obtained for any multiplexed
source with known emission probability distribution and
sub-Poissonian statistics. Particularly, this study on the per-
formance of the BinMux-SP source taking into account several
experimental imperfections shows that single-photon sources
built from SPDC and time-multiplexing strategies represent a
valid, cost-effective and room temperature alternative to other
single-photon sources.
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