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The NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very
High-Resolution Radiometer) orbital drift prevents the use of its derived land surface
temperature (LST) data for global studies of temperature trends, especially for the 80s and
90s over land. In a previous study, we showed how orbital drift correction methods could
be validated by simulating a reference and drifted time series from alternative MSG
(Meteosat Second Generation) SEVIRI (Spinning Enhanced Visible and InfraRed
Imager) data, thanks to their high (15 min) temporal resolution. In this study, we show
how these alternative data allow identifying orbital drift effects on different land covers, and
how these effects could be mitigated with novel approaches. We also identify two key
statistical parameters to assess orbital drift correction performance: the bias between
corrected and drifted time series and the trend of their difference.We present twomethods
and compare their results with an alternative orbital drift correction, validated against in situ
data by their authors. Considering an ideal case where the whole influence of the orbital
drift is known, our novel approach allows for an almost complete removal of the orbital drift
effect (zero bias and 0.05 K/yr difference trend). However, in real cases, when we have only
access to the drifted time series, our approach’s performance decreases slightly, mainly
through a larger spread of the retrieved statistics. As for the alternative correction method,
its performance is poorer, even if it actually succeeds in removing part of the observed
orbital drift. These results, as well as the new insights we provide on the orbital drift effect
on LST, pave the way toward a reliable correction of NOAA AVHRR orbital drift. We
therefore recommend the use of simulated LST time series such as the ones used in this
study for the validation of orbital drift correction methods.
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1 INTRODUCTION

Despite providing the longest daily record of remotely sensed thermal data (more than 40 years), the
NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High-
Resolution Radiometer) dataset has been underutilized as regards its thermal component, due to
the orbital drift the NOAA platforms suffer (Price, 1990). For the afternoon satellites (NOAA-7, 9,
11, 14, 16, 18, and 19), this orbital drift consists in a progressively later overpass (see Figure 1), and
their nominal orbit being set to coincide roughly with maximum surface temperature; this results in
decreasing temperatures throughout the lifetime of each satellite. This orbital drift effect hides the
actual changes in surface temperature, while these changes in surface temperature would be
extremely useful for climate studies. Indeed, the NOAA AVHRR dataset starts in July 1981 and
covers the decades for which climate warming has soared and provides information over the whole
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world, filling the lack of data over wide areas of our planet (mostly
in the Southern Hemisphere), especially in the 80s and 90s.

Of course, the literature offers several methods to overcome
this orbital drift effect. As stated in a previous work (Julien and
Sobrino, 2021), these methods can be classified into three groups:
sun–target–sensor geometry modeling, land surface temperature
(LST) diurnal cycle reconstruction, and statistical methods. The
first group uses vegetation structure models to estimate the
proportion of shaded and lit areas to estimate each pixel LST
for each NOAA overpass (Pinheiro et al., 2004). This approach
has been used to build a daily record of NOAA-14 AVHRR LST
over Africa (Pinheiro et al., 2006). The second group relies on the
reconstruction of the LST diurnal cycle, which allows, once
identified, retrieval of the LST that would have been measured
at a given hour (Susskind et al., 1997; Jin and Treadon, 2003; Liu
et al., 2019). The reconstruction of the LST diurnal cycle is the key
aspect of this approach and can be carried out frommodeling (Jin
and Treadon, 2003), interpolation from several measurements
through the same day (Susskind et al., 1997), or a local
neighborhood (Liu et al., 2019), under the assumption of local
similarity of surface characteristics. The third group relies on time
series analysis and uses the drifted LST time series to isolate the
drift from a proxy signal, usually the solar zenith angle (SZA), to
represent the image acquisition time (Gutman, 1999; Pinzon
et al., 2005; Sobrino et al., 2008; Julien and Sobrino, 2012).

However, these orbital drift correction methods have been
seldom validated. At best, comparison of time series statistics
before and after the correction was used to show the
improvement in time series consistency. Recently, an orbital
drift correction method was proposed and validated by
comparison with independent ground data (Liu et al., 2019).
However, validation is a difficult task due to the large footprint of
the NOAA AVHRR pixel in available datasets (around 5–8 km)
and the lack of representativity of point measurements over such
a wide area, not to mention the lack of consistent in situ
measurements over 40 years of time. As a result, Liu et al.’s
(2019) validation shows an error up to 3 K. Such values are
expected in the case of LST validation from the AVHRR

instrument but may not inform on the actual removal of
orbital drift effects. Actually, LST, as an essential climate
variable (ECV), is expected to be retrieved with an uncertainty
below 1 K and a long-term stability below 0.1 K per decade (or
0.01 K per year).

To bridge this gap, we showed in a previous work (Julien and
Sobrino, 2021) how orbital drift correction methods could be
validated by using an alternative data source, namely, the MSG
(Meteosat Second Generation) SEVIRI (Spinning Enhanced
Visible and InfraRed Imager) LST dataset. Due to its high
temporal resolution (15 min) and its similar spatial resolution
(3 km at nadir), SEVIRI LST can be used to simulate both a
reference and a drifted dataset, in the latter case, by applying
Ignatov et al. (2004) equations for equatorial crossing time
determination of different NOAA platforms. To see the effect
of orbital drift on various land covers, we constructed such time
series for the BELMANIP sites (Baret et al., 2006) located in the
SEVIRI observational disk. Then it is only a matter of correcting
the drifted time series with the chosen orbital drift correction
method and comparing it to the reference time series (see
Section 2).

Building on this previous work, we propose here to exploit
these drifted and reference time series for the analysis of the
orbital drift effect on LST, to find a general expression of this drift,
and to design an operational method for its correction (Section
3). This operational correction is then validated and compared
with Liu et al.’s (2019) approach (Section 4). Finally, advantages
and flaws of this operational correction are discussed (Section 5).

2 DATA

Although the aim of this study was to correct the NOAA AVHRR
orbital drift effect on LST, we did not use any AVHRR data in this
study. Since ground LST data for early NOAA satellites (80s and
90s) are at best seldom, there is no in situ LST information to
validate AVHRR LSTs, and proxy data, such as air temperature,
are available after modeling and at a coarser spatial resolution

FIGURE 1 | Equatorial crossing times for the NOAA afternoon platforms simulated in this work.
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(such as REANALYSIS or WATCH data, see, respectively,
Herschbach et al. (2020) and Weedon et al. (2011)). Therefore,
to validate our approach, we settled for the use of MSG-SEVIRI
LST data.

The SEVIRI sensor, on geostationary MSG satellite series since
2007, provides information for half the planet, centered at the (0°,
0°) latitude and longitude points, every 15 min. Its spatial
resolution is 3 × 3 km at nadir, spreading roughly 4 × 5 km
over Southern Europe, for example. The SEVIRI instrument
provides data on 12 spectral channels: four in the visible and
near-infrared wavelengths (0.4–1.6 µm) and eight in the infrared
wavelengths (3.9–13.4 µm). These bands are termed high-
resolution visible (HRV; with higher spatial resolution: 1 ×
1 km at nadir), VIS06, VIS08, IR016, IR039, WV062, WV073,
IR087, IR097, IR108, IR120, and IR134. Bands WV6.2 and
WV7.3 are located in a water vapor (WV) absorption region,
whereas band IR9.7 is located in the ozone absorption region and
band IR134 in a CO2 absorption region. The other bands are
located in regions with high atmospheric transmissivity
(atmospheric windows); in particular, bands IR108 and IR120
are located in the split-window region and are used for surface
and cloud observation. These two thermal bands are similar to the
ones of the AVHRR instrument. Moreover, the MSG-SEVIRI
spatial footprint is similar to the data available from the AVHRR
datasets (LTDR-V5: Long-Term Data Record version 5; Pedelty
et al., 2007) and can provide LST values for half our planet every
15 min, therefore allowing an adequate simulation of AVHRR
drifted and reference LST time series.

Since 2007, the Global Change Unit of the University of
Valencia operates a receiving station for MSG-SEVIRI data
and processes routinely the received data for the estimation of
NDVI (Normalized Difference Vegetation Index), SST (sea
surface temperature), and LST parameters. The whole
processing scheme of the data received by our MSG-SEVIRI
station is described in Julien et al. (2015), while the LST and SST
algorithms are presented in Sobrino et al. (2020c). In summary,
this process consists in retrieving brightness temperatures for
IR108 and IR120 bands, from which surface temperatures are
estimated through the split-window approach, through a
previous estimation of emissivities and total atmospheric water
vapor (Julien et al., 2015; Sobrino et al., 2020c).

Here, as for our previous study (Julien and Sobrino, 2021), we
used the LST data we retrieved at our premises for the years
2013–2019. Additionally, for comparison purposes with the Liu
et al. (2019) method, we retrieved daily maximum NDVI for the
same period. Finally, we downloaded MSG-SEVIRI cloud masks
from the EUMETSAT archive for the years 2013–2019. These
masks are built following the methodology developed by Derrien
and Le Gléau (2005). The masks are provided for pixels with a
viewing zenith angle below 80°, whose values 0, 1, 2, and 3
correspond, respectively, to clear over sea, clear over land,
cloudy, and no data. In this work, we only used LST
estimations corresponding to cloud mask values of 1. Cloud
mask values before 2016 are unavailable for pixels with a
viewing zenith angle above 73°.

For visualization purposes and to save computer memory as
well as processing time, we selected all Benchmark LandMultisite

Analysis and Intercomparison of Products (BELMANIP; Baret
et al., 2006) sites included in the MSG-SEVIRI disk, provided
their viewing zenith angle was below 73° (177 in total). The
locations of these pixels are provided in Figure 2 along with the
International Geosphere Biosphere Programme (IGBP) class
associated to the corresponding BELMANIP site.
Corresponding MSG-SEVIRI pixels may include a possible
mix of land cover classes, although the labeled land cover class
is expected to be predominant. The number of available sites
within each class is presented in Table 1.

3 METHODS

The approach presented here is a statistical correction of the
orbital drift effect. Since the orbital drift has a different effect on
surface temperature depending on pixel latitude, land cover, and
daily and yearly temperature amplitudes, we chose a statistical
approach consisting in fitting the orbital drift effect against a
generic equation with parameter values varying for each pixel
characteristic.

Since the specifics of the building of reference and drifted LST
time series are detailed in Julien and Sobrino (2021), we provide
here only a summary of the approach. First, we need to choose a
reference hour for the reference time series. We tested different
hours (13:30, 14:00, and 14:30 solar time); although for
operational purposes, the average of the equatorial crossing
times over the first year of each platform was chosen
(AEXT0). These reference hours are estimated using Ignatov
et al. (2004) equatorial crossing time equations, and are
presented in Table 2, along with different platform
characteristics (start of activity period (SAP) and end of
activity period (EAP), as retrieved from the LTDR-V4 dataset,
as well as the date of the first available data (FAD)).

Since no MSG-like data are available before 2007, we used
the period 2013–2019 to simulate the daily overpass hour for
all NOAA platforms for each BELMANIP site of Figure 1. The
year 2019 was chosen as the end date of the SEVIRI LST time
series, conserving the DOY of the end of activity period in
order to respect eventual seasonal effects on the orbital drift.
Finally, daily LST values were retrieved linearly from the
closest two observations (LSTDRIFT). When any (or both)
of these two neighboring measurements were labeled as
cloudy, we also labeled the interpolated LST value as
cloudy. We proceeded similarly for the reference LST time
series (LSTREF). For comparison purposes, we retrieved these
LST time series also for a 9 × 9 neighborhood of each
BELMANIP location and daily NDVI maximum value for
this same neighborhood. In that case, and according to the
reference study (Liu et al., 2019), the reference overpass time
was set to 14:30 (solar time).

To assess the effectiveness of orbital drift correction, the few
studies available to date have used statistics such as bias, standard
deviation (STDV), and root mean square error (RMSE). Here, we
propose an alternative approach, by calculating, for each site and
each NOAA platform, the difference between the corrected and
the reference time series and then retrieving the lineal trend of
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this difference (TREND). Additionally, we retrieve the correlation
value between both time series (CORR).

With regard to the orbital drift influence on LST time series, we
estimated, for each site and each satellite, the difference between the
reference and drifted time series. Figure 3 presents this difference for

site 208 and theNOAA-11 platform.We can observe a clear increase
in the difference with time, modulated by a seasonal signal, whose
amplitude also increases with time. This temporal behavior is similar
for all pixels, with varying seasonal signals and amplitudes (not
shown for brevity).

FIGURE 2 | Location of BELMANIP sites and their corresponding IGBP class.

TABLE 1 | Number of BELMANIP sites for each IGBP class. Classes with no corresponding sites were removed from the table for brevity (classes 3, 11, and 15).

Class 1 2 4 5 6 7 8 9 10 12 13 14 16

Sites 3 28 7 2 1 13 12 26 15 17 1 1 51
Selected 244 156 120 188 − 139 − − 137 − − 40 208
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Based on this observation, we propose the following
formulation for the orbital drift effect (ΔLST):

ΔLST(t) � s(t) p(hREF − hDRIFT) + a + b · d(t), (1)
where t is time (in days), s(t) is a seasonal signal to be defined,
hREF is the reference equator crossing time (in hours), hDRIFT is
the drifted equator crossing time (in hours), a and b are fit
coefficients, and d(t) is the drift signal, as estimated from Ignatov
et al. (2004), as follows:

d(t) � α1 sin(ω1(t − t0) + φ1) + α2 sin(ω2(t − t0) + φ2), (2)
where α1, ω1, φ1, α2, ω2, and φ2 are fit coefficients retrieved by
Ignatov et al. (2004) and available for download at https://www.
star.nesdis.noaa.gov/socd/sst/3s/(tab labeled as EXT). As for t0,
its value is set, for each platform, to the difference between the
first available data (FAD) and the start of activity period (SAP).

In the aforementioned equations, the unknowns are s(t), a,
and b. To retrieve them, we proceed iteratively, by first estimating
a and b by fitting ΔLST(t) against d(t) using a
Levenberg–Marquardt approach and then by the estimation of
s(t) as the average year of ΔLST(t)−(a+b·d(t))

(hREF−hDRIFT) , smoothed over 60 days
to remove discontinuities. This step can be carried out satellite by
satellite or considering all satellites at the same time. Since it leads
to better performance, we present here only the results when this
step is carried out considering all satellites together. Then in a
second iteration, ΔLST(t) − s(t) p(hREF − hDRIFT) is fitted against
d(t), followed by the second step mentioned earlier. This iterative
process allows us to refine the estimates of s(t), a, and b, until the
maximum difference between two iterations is below 0.05 K.

This procedure corresponds to the ideal case, when both the
reference and drifted time series are available; therefore, we have

ΔLST(t) � LSTREF(t) − LSTDRIFT(t). However, for practical
cases, only the drifted time series is available, and therefore
ΔLST(t) has to be guessed approximatively. Considering that
for each platform, its first year of activity was the year with a
lower orbital drift effect—this is especially verified for NOAA-7,
9, 11, and 14, and to a lesser extent for the last three
platforms—we can use ΔLST(t) � LSTDRIFT(t) − LSTy0

DRIFT(t),
where LSTy0

DRIFT(t) is the smoothed (over 60 days) drifted LST
during the first year activity of the platform, replicated to cover
the whole activity period. This is the equivalent of the anomaly of
the drifted LST from its first year. However, in that case, the
seasonal component of the drift is lost within the day-to-day
variations in LST, and recovering it is a challenging task. So, a
simple Levenberg–Marquardt fit is carried out to retrieve the
value of coefficients a and b, while s(t) is set fixed to zero.

Finally, for comparison purposes, we implemented the orbital
drift correction approach described in Liu et al. (2019). This
approach is based on the estimation of the daily temperature cycle
at a given location by using a local neighborhood (3 × 3 or 9 × 9)
to retrieve the five coefficients needed to describe this daily
temperature cycle. These coefficients are then used to estimate
the corrected LST at this pixel at the reference time. All the
specifics of the approach are detailed in Liu et al. (2019) and were
implemented thoroughly for our comparison.

4 RESULTS

4.1 Overall Statistics
First, to decide which statistics are best suited for orbital drift
correction effectiveness, we present in Table 3 different
parameters retrieved by comparison of the drifted LST time
series and the reference LST time series, averaged over all
sites, for each satellite, over NOAA-7 to 11 platforms, and
over all platforms. We observe a clear difference between the
four first NOAA platforms (7–11) and the last three, which had
orbits carefully chosen so that the drift was lower during the first
years of the activity period (see Figure 1). For the last two
platforms especially, bias and difference trend are close to
zero, standard deviation and RMSE are of the order of 0.7 K,
while correlation is high (0.99). However, for the platforms with
the strongest orbital drift (NOAA-7 to 11), bias can reach −2 K
and below, and STDV almost 3.6 K, resulting in an RMSE above
4 K. Difference trends are negative, as expected, and are close to
−1.5 K per year, while correlations can drop below 0.90. However,
these statistics are not independent, and besides the well-known
relationship between bias, standard deviation, and RMSE, the

TABLE 2 | Characteristics of NOAA platforms. AEXT0: average of the equatorial crossing times over the first year of each platform; SAP: start of activity period; EAP: end of
activity period; FAD: first available data.

Platform NOAA-7 NOAA-9 NOAA-11 NOAA-14 NOAA-16 NOAA-18 NOAA-19

AEXT0 (h) 14.6944 14.5639 13.7073 13.7260 13.8842 13.8687 13.8096
SAP 24/08/1981 25/02/1985 08/11/1988 01/01/1995 18/12/2000 17/05/2005 14/04/2009
EAP 01/02/1985 07/11/1988 31/12/1994 15/10/2001 31/12/2005 31/12/2009 02/10/2015
FAD 23/06/1981 12/12/1984 25/02/1989 30/12/1994 21/09/2000 20/05/2005 06/02/2009

FIGURE 3 | Effect of NOAA-11 simulated orbital drift on LST for site 208.
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difference trend is integrated in the standard deviation, alongside
the uncertainty in LST measurement. As a matter of fact, most
standard deviation values are below or around 2 K, which is
roughly the uncertainty in LST estimation (see, for example,
Sobrino et al., 2020c). On the other hand, bias and difference
estimates depart considerably from zero and display all the
influence of the orbital drift. As for correlation, its value
remains high in all cases, and the amplitude of its variation
may be too small for our purposes. Thus, we will focus on bias and
difference trend statistics hereafter.

Table 4 displays the bias and difference trend statistics for the
ideal case, that is, when both drifted and reference time series are

available for the correction. We see that our correction, in this
ideal case, performs adequately, with close to zero bias values and
low difference trend values overall. However, these trend values
are slightly higher for NOAA-11, 14, and 16 platforms (around
0.10 K/yr), even though the error has been decreased by a factor
10 (see Table 4).

Table 5 presents the bias and difference trend statistics for the
real case, that is, when reference time series are not available for
the time series correction. We see that our correction, in this real
case, performs slightly worse, with higher mean bias values with
higher variability. As for difference trend values, their average is
similar to that of the ideal case, although with a higher
heterogeneity (overall trend difference standard deviation
around 0.33 K/yr). Again, these trend values are slightly
higher, this time for NOAA-7 and 9 platforms (around
0.10 K/yr).

Table 6 presents the bias and difference trend statistics for the
correction of Liu et al. (2019), as described in the Methods
section. We see that this correction decreases the bias and
difference trend values when compared with the drifted time
series, with better success in these latter for NOAA-16, 18, and 19,
although this method falls short from removing the orbital drift
completely.

4.2 Selected Sites
For visualization purposes, we selected eight sites among the 177
BELMANIP sites located within MSG-SEVIRI disk. Table 7

TABLE 3 | Statistical assessment of the orbital drift effect on LST for each NOAA platform, for NOAA-7 to 14 platforms, and overall: average value over all sites with its
standard deviation in parentheses. STDV: standard deviation; RMSE: root mean square error; TREND: the lineal trend of the difference between drifted and reference
time series; CORR: the correlation value between both time series.

Platform BIAS (K) STDV (K) RMSE (K) TREND (K/yr) CORR

NOAA-7 −1.30 (0.76) 1.90 (0.54) 2.36 (0.76) −1.44 (0.82) 0.94 (0.05)
NOAA-9 −1.53 (0.90) 2.14 (0.65) 2.69 (0.95) −1.52 (0.86) 0.93 (0.06)
NOAA-11 −1.99 (1.27) 3.12 (1.08) 3.78 (1.47) −1.36 (0.79) 0.88 (0.08)
NOAA-14 −2.36 (1.43) 3.59 (1.24) 4.39 (1.67) −1.43 (0.79) 0.86 (0.10)
NOAA-16 −0.59 (0.41) 1.27 (0.38) 1.43 (0.46) −0.49 (0.33) 0.97 (0.03)
NOAA-18 0.04 (0.09) 0.67 (0.31) 0.68 (0.31) −0.03 (0.04) 0.99 (0.02)
NOAA-19 0.05 (0.10) 0.67 (0.32) 0.67 (0.32) −0.02 (0.04) 0.99 (0.02)
N7-14 −1.80 (1.19) 2.69 (1.16) 3.31 (1.51) −1.44 (0.82) 0.90 (0.08)
All −1.10 (1.24) 1.91 (1.29) 2.29 (1.67) −0.90 (0.90) 0.94 (0.08)

TABLE 4 | Statistical assessment of our orbital drift correction method in the ideal
case for each NOAA platform, for NOAA-7 to 14 platforms, and overall:
average value over all sites with its standard deviation in parentheses. TREND: the
lineal trend of the difference between drifted and reference time series.

Platform BIAS (K) TREND (K/yr)

NOAA-7 −0.00 (0.07) 0.01 (0.10)
NOAA-9 −0.00 (0.08) 0.01 (0.12)
NOAA-11 −0.00 (0.08) 0.07 (0.11)
NOAA-14 0.01 (0.07) 0.12 (0.08)
NOAA-16 0.01 (0.06) 0.06 (0.06)
NOAA-18 0.00 (0.04) −0.00 (0.02)
NOAA-19 −0.00 (0.04) −0.00 (0.02)
N7-14 0.00 (0.08) 0.04 (0.09)
All 0.00 (0.07) 0.05 (0.06)

TABLE 5 | Statistical assessment of our orbital drift correction method in the real
case for each NOAA platform, for NOAA-7 to 14 platforms, and overall:
average value over all sites with its standard deviation in parentheses. TREND: the
lineal trend of the difference between drifted and reference time series.

Platform BIAS (K) TREND (K/yr)

NOAA-7 −0.19 (0.62) 0.12 (0.54)
NOAA-9 0.00 (0.69) −0.08 (0.47)
NOAA-11 −0.24 (0.88) 0.02 (0.27)
NOAA-14 −0.09 (0.95) 0.01 (0.22)
NOAA-16 −0.22 (0.89) −0.04 (0.30)
NOAA-18 −0.29 (0.81) −0.02 (0.10)
NOAA-19 −0.29 (0.83) −0.02 (0.08)
N7-14 −0.03 (0.81) 0.02 (0.40)
All −0.13 (0.83) −0.00 (0.33)

TABLE 6 | Statistical assessment of Liu et al. (2019) orbital drift correction method
for each NOAA platform, for NOAA-7 to 14 platforms, and overall: average
value over all sites with its standard deviation in parentheses. TREND: the lineal
trend of the difference between drifted and reference time series.

Platform BIAS (K) TREND (K/yr)

NOAA-7 −0.04 (3.41) −0.74 (1.42)
NOAA-9 0.13 (3.48) −0.59 (1.64)
NOAA-11 1.04 (2.56) −0.96 (1.76)
NOAA-14 0.78 (2.93) −0.99 (1.71)
NOAA-16 1.80 (1.48) −0.39 (1.19)
NOAA-18 2.55 (2.40) −0.13 (0.24)
NOAA-19 2.70 (2.51) −0.12 (0.27)
N7-14 0.48 (3.14) −0.82 (1.64)
All 1.28 (2.93) −0.56 (1.36)
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presents the characteristics of these eight sites, such as site
number, corresponding IGBP class number and land cover,
site latitude, and longitude, as well as the percentage of cloudy

pixels over the NOAA-11 activity period. Note that for only two
of these sites the percentage of cloudy observations is below 50%
(sites 139 and 208).

TABLE 7 | Characteristics of the eight sites selected for visualization purposes.

Site Class number Class Latitude Longitude % Clouds

40 14 Crop/vegetation mosaic −8.403 −35.607 89.9
120 4 Broadleaf deciduous forest −21.421 30.445 66.7
137 10 Grassland −12.075 21.582 71.4
139 7 Open shrubland −17.956 15.504 46.2
156 2 Broadleaf evergreen forest 7.774 35.293 95.7
188 5 Mixed forest 10.967 16.339 72.1
208 16 Desert 25.159 22.711 33.4
244 1 Needleleaf evergreen forest 43.860 −1.099 83.7

FIGURE 4 | Simulated time series for NOAA-11 platform for eight selected sites: reference (black) and drifted (red) time series alongwith the resulting bias and trend
difference statistics.
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Figure 4 displays bias and trend difference statistics for the
eight sites, as described in Table 7, for reference and drifted
NOAA-11 simulated data. We see that for five of these sites (120,
137, 139, 188, and 208), the influence of the orbital drift can be
detected visually, while the bias and trend difference statistics
show substantial deviations from zero for all sites. We also see
that the sites with higher absolute bias values (above 2 K)
correspond to the following classes: broadleaf deciduous forest,
grassland, open shrubland, mixed forest, and desert. These sites
are also the ones evidencing the lowest trend difference values
(below −1 K/yr). However, we observe that NOAA orbital drift
influences retrieved statistical parameters for all selected sites.

Figure 5 presents the same statistical parameters after our orbital
drift correction in the ideal case (reference time series available for
correction). At first glance, we see that the reference and corrected

time series have a similar behavior. We observe a clear reduction in
both bias and trend difference values, with bias values ranging from
−0.19 to 0.08 K and trend difference values from 0 to 0.13 K/yr.

As for the real case (reference time series unavailable for
correction), we also observe (Figure 6) a similar behavior for both
reference and corrected time series, with small deviations for site 137.
We see a clear increase of the bias statistics, with values ranging from
−3.40 to 0.97 K. Regarding the trend statistics, it also increases, with
values ranging from −0.29 to 0.59 K/yr. Note that for the desert site,
with lower cloud contamination, the remaining trend is 0.03 K/yr.

Finally, the same statistical parameters were retrieved for the
same sites for Liu et al. (2019) correction (Figure 7). Visually, a
remaining orbital drift is evident for all sites, except maybe site 40.
For all sites, the trend difference absolute value remains high,
ranging between −2.70 and 1.05 K/yr.

FIGURE 5 | Corrected time series for NOAA-11 platform for eight selected sites: reference (black) and ideal case corrected (green) time series along with the
resulting bias and trend difference statistics.
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4.3 Statistics by Platform, Class, and Pixel
Figure 8 presents the histograms of bias and trend statistics for all
sites and each satellite platform for raw data, as well as corrected
time series in the ideal and real cases, and finally after Liu et al.
(2019) correction. We see that bias and trend histograms are
centered on 0 for NOAA-18 and 19 platforms in all cases,
although bias values have a larger spread in the real case. For
NOAA platforms 7 to 16, their bias and difference trend
histograms present a strong deviation from zero before
correction (smaller for NOAA-16), mostly removed after
correction in both cases. We also observe that the spread of
bias and trend statistics is stronger for NOAA-7 to 16. As for Liu
et al. (2019) correction, both bias and difference trend histograms
present a wide range of values (−5 to 10 K and −4 to 4 K/yr,
respectively).

As for the histograms of bias and trend statistics by land cover
(not shown), the small number of sites for most cases prevent
from identifying clear behaviors for given classes. However, the
desert land cover shows a coherent behavior for all corresponding
sites, with bias values of −0.3 ± 0.1 K and difference trend values
of −1.8 ± 0.5 K/yr before correction, of 0.0 ± 0.1 K and 0.0 ± 0.1 K/
yr in the ideal case, and of 0.0 ± 1.0 K and 0.1 ± 0.3 K/yr in the real
case, and −2 ± 2 K and −2 ± 2 K/yr for Liu et al. (2019) correction.

5 DISCUSSION

5.1 Insights
Our simulated time series provide new insights on orbital drift
influence on LST time series. By subtracting the drifted from the

FIGURE 6 | Corrected time series for NOAA-11 platform for eight selected sites: reference (black) and real case corrected (blue) time series along with the resulting
bias and trend difference statistics.
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reference time series, we have evidenced a seasonal component of
the orbital drift, ignored in previous statistical approaches.
However, in real case applications, the noise in the drifted
time series, due to changes in illumination and/or atmospheric
conditions, prevented us from correcting this seasonal
component.

This seasonal component results from a decrease in annual
amplitude with time of the simulated drifted LST time series. This
characteristic is logical, since the nominal orbit of NOAA
platforms was chosen to coincide with daily maximum
temperature. Therefore, a later overpass of the platform
induces a decrease in retrieved LST (as evidenced by Price,
1990), although this decrease is not linear. Indeed, for a given
pixel and similar delay, with a larger daily amplitude, summer
LST estimates suffer from a major decrease than their winter

counterparts, and therefore decrease the yearly amplitude of the
drifted LST time series. This study is the first statistical approach
to try and correct this effect, although somemodeling and diurnal
cycle approaches implicitly deal with it (Susskind et al., 1997; Jin
and Treadon, 2003; Pinheiro et al., 2004; Liu et al., 2019).

On another hand, we have also shown that a key statistical
parameter for orbital drift correction is the trend of the difference
between reference and drifted time series. Alternative statistical
parameters, such as standard deviation and RMSE, used in the
literature, include both the influence of the orbital drift and inner
characteristics of the time series. When comparing with in situ
data, for coarse spatial resolutions such as NOAA AVHRR
instruments, high standard deviation and RMSE values are
common (see, for example, Liu et al., 2019), and can mask
residual orbital drift effects.

FIGURE 7 | Corrected time series for NOAA-11 platform for eight selected sites: reference (black) and Liu et al. (2019) corrected (red) time series along with the
resulting bias and trend difference statistics.
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Furthermore, Figure 3 shows how the orbital drift effect can be
evidenced for all pixels selected in Table 7, representative of most
available land covers. In previous studies (Sobrino and Julien, 2016),
the orbital drift effect has been said to have greater influence on given
land covers (desert, semi-arid, croplands, etc). However, our results
show that most sites suffer from this effect, with difference trend
absolute values (up to 3 K/yr) largely above expected changes from
global warming for example (maximum values of the order of
0.15 K/yr, see Sobrino et al., 2020a; Sobrino et al., 2020b).

5.2 Comparison of the Different Approaches
Among the three approaches studied here, the first approach,
labeled ideal case, leads to the best results. The corresponding bias
and difference trend values are close to zero, for most NOAA
platforms, and thus hint toward a reliable correction of NOAA
orbital drift effect. However, for real cases, the performance of the
correction decreases slightly, although it remains higher than for
the only other validated correction method (Liu et al., 2019).

We have seen that these results remain true for all NOAA
platforms, although the remaining orbital drift effect varies with
platform number. Since NOAA-16, platforms have been placed
on an orbit that minimizes drift effect, at least for the first
3–4 years of operation. This leads to a lower need for orbital
drift correction for these platforms, especially NOAA-18 and 19.
However, in the recent LTDR-V5 dataset (Pedelty et al., 2007),
NOAA-19 data span a period of more than 12 years. In that case,
orbital drift correction will also be mandatory.

Liu et al. (2019) correction nevertheless improves on the
drifted time series but falls short of removing it completely.
This approach is based on the reconstruction of the LST
diurnal cycle, by using the local heterogeneity of the fraction
of vegetation cover. However, in most cases, at coarse spatial
scale, the local heterogeneity of the fraction of vegetation cover is
limited, and therefore the reconstruction of the LST diurnal cycle
is hindered. The best example of this lies in desert areas, where
this method cannot be carried out, due to a homogeneous null

FIGURE 8 | Histogram of bias and trend difference statistics for drifted time series, as well as ideal, real case, and Liu et al. (2019) corrections for each NOAA platform.
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fraction of vegetation cover. However, deserts are one of the land
covers most influenced by the orbital drift effect.

5.3 Limits
Our approach is based on the LST data estimated at the Global
Change Unit of the University of Valencia as described in Sobrino
et al. (2020c). LST values for all 15-min acquisitions between 2013
and 2019 were retrieved for each pixel, from which both the
reference and drifted time series were estimated. An objection to
the correction we present here is that we use the same equation
(d(t) equation in the Methods section) for both simulating the
drifted time series and correcting them. We emphasize that this
equation is used to select the LST values based on their acquisition
times, and then as a baseline for drift fitting on temperature
values. This could lead to an overestimation of the adequacy of
the correction methods presented here. Straightforward
application of our method to actual AVHRR data will provide
more confidence in our results.

An alternative to this drawback could be to simulate data from
the actual satellite equator crossing time, and not the approximation
provided by Ignatov et al. (2004). Another alternative would be to
compare the simulated time series with actual NOAA data. Finally,
one could add noise to the simulated equator crossing times, thus
considering the residuals of the fitting from which results Ignatov
et al. (2004) equation. These are directions for future work.

On another hand, pixel spatial heterogeneity is not expected to
have any influence on the correction, since its performance relies on
the retrieval of fitting parameters, depending only on the pixel LST
time series, and not its land cover class. However, pixel spatial
heterogeneity may influence our analysis of the results by land cover.
This can be addressed by selecting a higher number of pixels and
checkingmethod performance homogeneity within each IGBP class.

Additionally, the bias statistical parameter for our real case
correction is suboptimal in most cases (up to 0.2 K in absolute
value). However, classical intercalibration approaches between
satellites can be carried out to remove this bias (Pedelty et al.,
2007), by matching time series for overlapping periods for
different NOAA platforms or by using alternative sensors
(SPOT–Satellite Pour l’Observation de la Terre,
MODIS–Moderate Resolution Imaging Spectroradiometer)
when no overlapping periods are available.

Our results show that a complete correction of the orbital drift
is feasible, provided a previous knowledge of the full influence of
the drift on the LST time series. This knowledge can be
approximated by using a geometrical model of the surface
(Pinheiro et al., 2004) or by reconstructing the LST diurnal
cycle (Susskind et al., 1997; Jin and Treadon, 2003; Liu et al.,
2019). However, in the case of statistical approaches, such as our
previous studies (Sobrino et al., 2008; Julien and Sobrino, 2012;
Julien and Sobrino, 2021), this knowledge has to be approximated
from an average year of data, or the first year of data as carried out
here. Nonetheless, either an average or the first year of data still
include some orbital drift effects, and therefore lead to a
suboptimal correction of this orbital drift. There is therefore
room for further improvements, where simulated data such as the
ones used in this work are recommended.

6 CONCLUSION

In this study, we have simulated reference and drifted LST time
series for 177 sites, representing various land covers, and seven
NOAA afternoon platforms (7, 9, 11, 14, 16, 18, and 19). We have
shown that the orbital drift effect is evidenced for most sites and
not only specific land covers (desert, semi-arid areas, and
croplands). We have selected the bias and trend of the
difference between reference and drifted time series to assess
the validity of an orbital drift correction, as better indicators than
traditionally used standard deviation and RMSE.

We have analyzed the difference between reference and drifted
time series and identified a seasonal component in the orbital drift,
never identified in previous studies. We proposed an approach for
orbital drift correction in an ideal case where the full orbital drift
effect is known. In that case, overall bias is zero, with a standard
deviation of 0.07 K, and overall difference trend value is 0.05 K/yr,
with a standard deviation of 0.06 K/yr. These values are within reach
of the stability specifications of LST as an ECV. However, in the
actual panorama of validated orbital drift correction methods, our
approach is definitively an improvement.

When actually correcting LST time series, the full orbital drift
effect is unknown, and statistical corrections are based on the
drifted time series alone. We proposed a simpler approach for
that real case, where the seasonal component is omitted for the
correction. This correction leads to a slight decrease of
performance, with overall bias value of −0.13 K (standard
deviation of 0.83 K), and a null overall difference trend
(standard deviation of 0.33 K/yr).

These results were also analyzed for eight selected sites and
compared with the only available correction method which had
been validated against in situ data, with a performance clearly
lower than both of our approaches. We explain this difference by
methodological drawbacks in the case of coarse spatial resolution
data. Finally, all results were also analyzed by satellite platforms,
showing that the performance of the correction varied with the
characteristics of the orbit the platforms were placed on.

Finally, we discussed how future orbital drift corrections could
be improved, by considering its seasonal component, and by
better identifying the full effect of the orbital drift on the drifted
LST time series alone. These are the directions we plan to explore
in future work.
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