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Abstract: The Assisted Living Environments Research Area–AAL (Ambient Assisted Living), focuses
on generating innovative technology, products, and services to assist, medical care and rehabilitation
to older adults, to increase the time in which these people can live. independently, whether they
suffer from neurodegenerative diseases or some disability. This important area is responsible for
the development of activity recognition systems—ARS (Activity Recognition Systems), which is a
valuable tool when it comes to identifying the type of activity carried out by older adults, to provide
them with assistance. that allows you to carry out your daily activities with complete normality.
This article aims to show the review of the literature and the evolution of the different techniques
for processing this type of data from supervised, unsupervised, ensembled learning, deep learning,
reinforcement learning, transfer learning, and metaheuristics approach applied to this sector of
science. health, showing the metrics of recent experiments for researchers in this area of knowledge.
As a result of this article, it can be identified that models based on reinforcement or transfer learning
constitute a good line of work for the processing and analysis of human recognition activities.

Keywords: ambient assisted living—AAL; human activity recognition—HAR; activities of daily
living—ADL; activity recognition systems—ARS; clustering; unsupervised activity recognition;
supervised learning; unsupervised learning; ensemble learning; deep learning; reinforcement learning

1. Introduction

Currently, the number of older adults who require a caregiver due to various condi-
tions related to neurodegenerative diseases has greatly increased. This situation constitutes
a great problem both for society and for integrated health systems worldwide because
there is not enough infrastructure to be able to massively attend to the increasing number
of people with this type of condition. Due to the above, a line of research arises that relates
the sensory and the processing of HAR (Human Activity Recognition) data, which allows
supporting the management of these individuals.

In general, this type of experimentation uses a model as a representation of reality
developed to study it. In most analyzes it is not necessary to consider all the details of
reality, the model is not only a substitute for reality but also a simplification of it. According
to the same author, the models are classified as iconic, analogous, symbolic, deterministic,
stochastic, static, continuous, and discrete depending on the tools used [1]. On the other
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hand, Cramér [2] from the foundation of probability theory, specifies from the object of
probability theory that a mathematical model makes a description of a certain class of
observed phenomena.

Artificial intelligence (AI) is defined as a field of science and engineering concerned
with the computational understanding of what is commonly called intelligent behavior
with the creation of artifacts that exhibit such behavior [3]. These processes require the
training of models from data sources, in some cases heterogeneous. Training with a learning
view involves the acquisition and pre-processing of information and the application or
construction of rules for the treatment and use of this, to generate reasoning. That is, it uses
the rules to reach approximate or definitive conclusions and self-correction [4].

Artificial Intelligence has become more popular today thanks to Big Data, advanced
algorithms, and computers with improved power and storage, systems based on artificial
intelligence are becoming an integrated element of digital systems and more specifically
they are generating a profound impact on human decision-making. As a result, there is a
growing demand for information systems researchers to investigate and understand the
implications of this, for decision making and contribute to the theoretical advancement and
practical success of the applications of this area of knowledge [5].

In 1959, Arthur Samuel coined the term Machine Learning and defined it as “the field
of study that gives computers the ability to learn without being explicitly programmed”.
Machine learning is part of the field of Artificial Intelligence, and its objective is usually
to recognize and fit statistics to models [6]. Along with Artificial Intelligence, Machine
Learning has emerged as the method of choice for the development of practical software
for image and speech recognition, natural language processing, robot control, and other
applications like Human Activity Recognition (HAR). Many developers of Artificial Intelli-
gence systems recognize that, for many applications, it may be easier to train a system by
feeding it examples of the desired input and output behavior, than to manually program in
advance the desired response for all possible inputs [7].

Machine Learning has been playing, in recent decades, an important role in the con-
struction of models based on experience from processed data [8], enabling computers to
build models from data For example, according to the automation of decision-making pro-
cesses, based on the input data [6], for their part [8] affirms that the study and construction
of algorithms are explored who can learn and make predictions from data. This systematic
review of the literature locates the advances made in Human Activity Recognition in each
of the automatic learning methods, their evolution, and results.

The recognition of human activities has become one of the most used areas of knowl-
edge that has allowed many advances in the care of patients at home and the improvement
of the quality of life of the elderly. That is why different ways have been used by which the
data from the different datasets can be processed, among which are machine learning and
metaheuristics. The HAR approach is based on the complexity associated with the different
data inputs that can come from wearable sensors, object sensors, images, audio, among
others. Many models have been developed to try to improve performance and quality
metrics based on different experimentations. Motivated by this research eld, the main
contribution of this paper is (a) Show researchers the datasets most used in the literature for
experimentation processes, as well as detailing the most used algorithms in their analysis.
(b) Identify for each one of the data processing approaches the results of the experimen-
tations of the algorithms, as well as discriminate the quality metrics associated with said
applications an (c) Suggest, based on the analysis of the literature, the different techniques
to be used to obtain good results in the experiments and show future researchers what the
results of current applications are for the improvement of their experiments.

For the development of this purpose, a compilation of 570 articles has been analyzed,
extracted from specialized databases such as IEEE Xplorer, Scopus, Science Direct, WOS.
These manuscripts were analyzed through a meta-analytic matrix that allowed extracting
relevant information such as year of publication, the database used, techniques imple-
mented, results of the quality metrics implemented.
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This article is a review of the literature on the use of the technique of the different
machine learning methods supervised, unsupervised, ensembled, deep learning, reinforce-
ment learning. First, a concept map of HAR Approach Concept Maps is shown (Section 2).
Second, conceptual information is displayed (Section 3). Third, the methodology for ana-
lyzing the information sources is detailed (Section 4). Fifth, is the Scientometric Analysis
(Section 5). Sixth, Technical Analysis (Section 6). Seventh, Conclusions (Section 7). Finally,
the Future Works are shown (Section 8).

2. HAR Approach Concept Maps

In the last decades, Machine Learning has evolved in different methods and tech-
niques to address different challenges in different areas of knowledge. In Figure 1 you
can see the discrimination of each of the data mining methods can be seen. From clas-
sic supervised or unsupervised-based machine learning. Among the most outstanding
algorithms of Supervised Analysis (Section 3.1), the following can be highlighted: De-
cision Tree [9], Support Vectorial Machine [10], Naive Bayesian Classifier [11], Artificial
Neural Networks [12], Decision Tables [13] and Logistic Models [14], among others. Re-
garding Unsupervised Learning (Section 3.2), several methods can be found, among which
Clustering [15] and Association Rules [16], and Dimensionality Reduction [17] can be
highlighted. As for Ensembled Learning (Section 3.3), techniques such as Stacking [18],
Bagging [19], Boosting [20] can be highlighted. Later, it was emphasized in methods or
techniques based on Deep Neural Networks (Section 3.4) [21] that have several levels of
analysis for knowledge discovery. Nowadays, machine learning has evolved to analysis
based on Reinforcement Learning (Section 3.5) [22], which allows the algorithm that is
strengthened in a system of rewards and punishments to permeate the learning process. In
(Section 3.6) Metaheuristic Techniques [23], are strategies for designing heuristic procedures.
Therefore, the types of metaheuristics are established, in the first place, based on the type
of procedures to which they refer. The following can be identified among other types of
algorithms: Threshold Accepting [24], Memetic algorithms [25], MultiBoot Algorithms [26],
CRO (Coral reef-based algorithms) [27], Swarm algorithms [28], Genetic algorithms [29],
Scatter Search [30], Variable Neighborhood Search [31] and Ant Colony [32]. Finally,
in (Section 3.7), we show the approach of Transfer Learning [33] to Human Activity Recog-
nition using a different type of combination of Neural networks for the analysis.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 33 
 

 

 
Figure 1. HAR Approach Concepts Maps. 

3. Conceptual Information 
3.1. Supervised Learning 

Supervised learning is a technique for deducing a function from training data. Train-
ing data consists of pairs of objects (usually vectors): one component of the pair is the 
input data and the other is the desired results. The output of the function can be a numeric 
value (as in regression problems) or a class label (as in classification problems). The goal 
of supervised learning is to create a function capable of predicting the value correspond-
ing to any valid input object after viewing a series of examples, the training data. To do 
this, you must generalize from the data presented to previously unseen situations. Among 
the techniques most used in machine learning, the following can be highlighted: 

3.1.1. Decision Tree [9] 
According to Timaran [34], the quality of the decision tree depends on the size and 

precision of the classification. A subset of the dataset set (training) is chosen and a decision 
tree is created. If it does not return the answer for the objects in the test set, a selection of 
exceptions is added to the dataset set, continuing the process until the correct decision set 
is found. The most used classification algorithms, from the decision trees category, are ID-
3, C4.5, CART, Sprint, and j48 [34]. 

3.1.2. Support Vectorial Machine (SVM) [10] 
In SVMs the input quantities are mapped non-linearly to a very high-dimensional 

feature space. In this feature space, a line decision surface is constructed [35]. According 
to Hang [36], SVM uses a non-linear mapping to transform the original training data into 
a higher dimension. Within this new dimension, it looks for the linear optimal separation 
hyperplane (that is, a “decision limit” that separates the tuples of one class from another). 
SVMs can be used for numerical prediction, as well as for classification. They have been 
applied to several areas, including handwritten digit recognition, object recognition, and 
speaker identification, as well as benchmark time series prediction tests. 

Figure 1. HAR Approach Concepts Maps.



Sensors 2022, 22, 3401 4 of 37

3. Conceptual Information
3.1. Supervised Learning

Supervised learning is a technique for deducing a function from training data. Training
data consists of pairs of objects (usually vectors): one component of the pair is the input
data and the other is the desired results. The output of the function can be a numeric
value (as in regression problems) or a class label (as in classification problems). The goal of
supervised learning is to create a function capable of predicting the value corresponding
to any valid input object after viewing a series of examples, the training data. To do this,
you must generalize from the data presented to previously unseen situations. Among the
techniques most used in machine learning, the following can be highlighted.

3.1.1. Decision Tree

According to Timaran [34], the quality of the decision tree depends on the size and
precision of the classification. A subset of the dataset set (training) is chosen and a decision
tree is created [9]. If it does not return the answer for the objects in the test set, a selection
of exceptions is added to the dataset set, continuing the process until the correct decision
set is found. The most used classification algorithms, from the decision trees category, are
ID-3, C4.5, CART, Sprint, and j48 [34].

3.1.2. Support Vectorial Machine (SVM)

In SVMs [10] the input quantities are mapped non-linearly to a very high-dimensional
feature space. In this feature space, a line decision surface is constructed [35]. According to
Hang [36], SVM uses a non-linear mapping to transform the original training data into a
higher dimension. Within this new dimension, it looks for the linear optimal separation
hyperplane (that is, a “decision limit” that separates the tuples of one class from another).
SVMs can be used for numerical prediction, as well as for classification. They have been
applied to several areas, including handwritten digit recognition, object recognition, and
speaker identification, as well as benchmark time series prediction tests.

3.1.3. Naïve Bayesian Classifier

Is a special typology of machine learning algorithms that address the task of classifica-
tion [11]. The foundation of this is based on the “Bayes theorem”. In this algorithm, it is
assumed that the variables that are used for the prediction are independent of each other.
In other words, the presence of a series of characteristics in a data set is not related to the
absence of another character in another data set.

3.1.4. Artificial Neural Networks-ANN

The fundamental processing elements of an ANN are artificial neurons (or nodes) that
are interconnected by weighted links that form layers [12]. Normally in an ANN, there is
an input layer and an output layer, and several hidden layers that vary depending on the
complexity of the problem in question. Neurons transform weighted input into output, using an
activation function that can take different linear and non-linear forms. The process by which the
weights are adjusted is called learning. Several non-linear ANNs are known to perform function
approximators. Several parameters define the architecture of a neural network: the type of
connection, learning rule, and activation functions. Due to these conformation parameters,
there are different types of ANN, for example, Multilayer Perceptron—MLP [37], Echo State
Networks-ESN, radial basis function-RBFN, Boltzmann machine.

3.1.5. Decision Tables

The decision tables or also called decision rules achieve a synthetic representation
of knowledge [13]. There are at least four sources of inconsistencies in decision tables,
listed below: (1) hesitation in evaluating decision attribute values, (2) errors in recording,
measurement, and observation, (3) condition attributes missing related to the evaluation
of the decision attribute values, (4) the unstable nature of the system represented by the
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decision table and the like. These inconsistencies cannot be considered simple errors or
noise. To acquire rules, from inconsistent decision tables, relative attribute reductions are
needed. Skowron and Rauszer introduced the discernibility matrix method which became
a popular approach for listing all reductions in the Rough set [26].

3.1.6. Tree-Based on the Logistic Model-LMT

This classification process mixes decision trees with logistic regression [14]. The
classification process can be improved if characteristics selection techniques are used, these
allow assigning the prioritization or relevance of the attributes using the class criterion,
thus obtaining a structure of attributes that directly affect the model and that in turn. are
increasingly relevant concerning classification.

3.2. Unsupervised Learning

Unsupervised learning is a Machine Learning method where a model is fit for observations.
It is distinguished from supervised learning by the fact that there is no a priori knowledge. In
unsupervised learning, a data set of input objects is processed. Thus, unsupervised learning
typically treats input objects as a set of random variables, with a density model being constructed
for the data set. There are different unsupervised learning methods, among which we can
highlight: Clustering, Association Rules, and Dimensionality Reduction.

3.2.1. Clustering Methods

In the last decades, many are algorithms of grouping have been proposed and de-
veloped [38,39], from the hierarchical approach (Single Link, Complete Link, etc.) and
partition (K-means, Gaussian Mixture, Density Estimation and Mode Seeking, etc.) among
other methods. As data sets get larger and more varied, many of the dimensions are often
irrelevant. These irrelevant dimensions can confuse traditional clustering algorithms.

Clustering is a technology used for many purposes because it simplifies massive data
by extracting essential information, based on the relationship of subsequent analyzes or
processes that make the process feasible or more efficient. For example, in information
systems, grouping is applied to text documents or images to speed up indexing and
retrieval [40,41]. Clustering can also be a stand-alone process and has been used as a
technique for prototype-based supervised learning algorithms and different applications
have also been made in non-vector data. The application of Clustering algorithms for the
analysis of unsupervised data has become a useful tool to explore and solve the different
application problems of data mining. Clustering methods [39,42] have been used to solve
problems emanating from different contexts and disciplines, see Table 1.

Table 1. Clustering’s methods and applications.

Method Strategy Applications

Hierarchical

Agglomerative Nearest Neighbor [43]
Farthest Neighbor [44]
Average Linkage Pool [45]
Minimum Variance [46]
Median Method [47]

Divisive

Non-Hierarchical

Reassignment Centroids K-means [48], QuickCluster [49], Forgy Methods [50]

Medioid k-medioids [51], Clara [52]

Density

Dynamic clouds [53]

Typological approximation Modal Analysis [54], Taxmap Method [55], Fortin Method [56]

Probabilistic approximation Wolf Methods [57]

Direct Block Clustering [58]

Reductive Type Q Factor Analysis [59]
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3.2.2. Association Rules Methods

The association rules base their analysis on the “if-then” algorithmic sentences, which
allow supporting the different probabilities existing in the multiple elements of the data,
found in large databases of different formats and types. The data mining techniques that
are based on association rules throughout their evolution have had multiple applications,
among which the sales and analysis of medical data sets can be highlighted.

Based on the algorithmic “if-then” sentences and based on established criteria such
as support and trust, the association rules can identify the most important patterns. The
support criterion gives the association rules the ability to know the frequency of the
appearance of the elements in the data set is. As for the confidence criterion, it can
determine the number of times the Boolean value of the “if-then” statement is true. There is
also another common metric which is called Fit, which is fundamentally based on making
a comparison between the expected confidence and the confidence that can be evidenced
in the data. In the literature review, the progress of the association rules can be identified,
as detailed below, see Table 2.

Table 2. Association Rules Evolutions.

Based in Algorithms

Frequent Itemsets Mining

Apriori [60]

Apriori-TID [61]

ECLAT TID-list [62,63]

FP-Growth [64]

Big Data Algorithms

R-Apriori [65]

YAFIM [66]

ParEclat [67]

Par-FP (Parallel FP-Growth with Sampling) [68]

HPA (Hash Partitioned Apriori) [69]

Distributed algorithms PEAR (Parallel Efficient Association Rules) [70]

Distributed algorithms for fuzzy association rule mining Count Distribution algorithm [71,72]

3.2.3. Dimensionality Reduction Methods

Dimensionality reduction methods are statistical techniques that map the data set to
subspaces derived from the original space, of less dimension, which allow a description
of the data at a lower cost. These techniques become important as many algorithms from
various fields such as numerical analysis, machine learning or data mining tend to degrade
their performance when used with high dimensional data. In external cases, the algorithm
is no longer useful for the purpose for which it was designed. The curse of dimension
refers to the various phenomena that arise when analyzing and organizing data from
multi-dimensional spaces. Among the most important algorithms we can highlight.

Missing Values Ratio [73]: By examining the data, if we find that it contains many
missing values, if there are few missing values, we can fill in the missing values or remove
this variable directly; when the proportion of missing values in the dataset is too high,
I usually choose directly Remove this variable because it contains too little information.
Specific removal is not removed, how to remove depends on the situation, we can set a
threshold, if the proportion of missing values is greater than the threshold, remove the
column where it is. The higher the threshold. The more aggressive the dimensionality
reduction method.

Low Variance Filter [74]: If the value of a column is the same in a dataset, that is,
its variance is very low, we generally think that low-variance variables contain very little
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information, so you can eliminate it directly and put it into practice, which is to calculate
all Variation Size variables and then eliminate the smallest of them.

High Correlation Filter [75]: If the two variables are highly correlated, this means
that they have similar trends and can carry similar information. Similarly, the presence of
such variables can reduce the performance of certain models (such as linear and logistic
regression models). To solve such problems, we can calculate the correlation between
independent variables. If the correlation coefficient exceeds a certain threshold, one of the
variables is eliminated.

Random Forests/Ensemble Trees [76]: Random Forest is a widely used feature selec-
tion algorithm, it automatically calculates the importance of each feature, so no separate
programming is required. This helps us choose a smaller subset of features. The advan-
tages of the random forest: high precision, the introduction of randomness makes random
forests not easy to overfit, the introduction of randomness makes the random forests have
good anti-noise ability (can better handle outliers), can handle very high-dimensional data
without feature selection, it can handle both discrete data and continuous data, and the
data set does not need to be normalized, fast training speed, you can get the importance of
variable classification and easy to parallelize. Disadvantages of the random forest: when
there are many decision trees in the random forest, the space and time required for training
will be large, and the interpretability of the random forest is poor.

Principal Component Analysis (PCA) [77]: PCA is a very common dimensionality
reduction method. You can reduce the number of predictors by reducing the dimensional-
ity of high-dimensional data while eliminating noise through dimensionality reduction.
The most direct application is to compress data, mainly used in signal processing Noise
reduction, and visualization after data dimensionality reduction.

3.3. Ensemble Learning

An ensemble is a set of machine learning models. Each model produces a different
prediction. The predictions from the different models are combined to obtain a single
prediction. The advantage we get from combining different models is that because each
model works differently, its errors tend to be compensated for. This results in a better
generalization error.

3.3.1. Voting by the Majority

Training multiple machine learning models with the same data [78]. When we have
new data, we will get a prediction from each model. Each model will have a vote associated
with it. In this way, we will propose as a final prediction what most of the models vote for.
There is another way to combine voting. When machine learning models give a probability,
we can use “soft-voting”. In soft voting, more importance is given to results in which some
model is very confident. That is, when the prediction is very close to probability 0 or 1,
more weight is given to the prediction of that model.

3.3.2. Bagging

Unlike majority voting, the way to get errors to compensate for each other is that each
model is trained with subsets of the training set [79]. These subsets are formed by randomly
choosing samples (with repetition) from the training set. The results are combined, for
classification problems, as we have seen in majority voting, with the soft vote for the models
that give probabilities. For regression problems, the arithmetic mean is normally used.

3.3.3. Boosting

In boosting, each model tries to fix the errors of the previous models [80]. For example,
in the case of classification, the first model will try to learn the relationship between the
input attributes and the result. You will surely make some mistakes. So, the second model
will try to reduce these errors. This is achieved by giving more weight to poorly classified
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samples and less weight to well-classified samples. For regression problems, predictions
with a higher mean square error will have more weight for the next model.

3.3.4. Stacking

When we talk about a stacking ensemble, we mean that we are stacking models [81].
When we stack models, what we are doing is using the output of multiple models as the
input of multiple models.

3.4. Deep Learning

Deep Learning is a type of machine learning that is structured and inspired by the
human brain and its neural networks [82]. Deep learning processes data to detect objects,
recognize conversations, translate languages, and make decisions. Being a type of machine
learning, this technology helps artificial intelligence learn continuously. Deep learning
is based on the use of artificial neural networks. Within neural networks 3 types are the
most used.

3.4.1. Convolutional Neural Networks (CNN)

Convolutional neural networks are artificial neural networks that have been designed
to process structured matrices, such as images [83]. That is, they are responsible for
classifying images based on the patterns and objects that appear in them, for example, lines,
circles, or even eyes and faces.

3.4.2. Recurrent Neural Networks (RNN)

Recurrent neural networks are neural networks that use sequential data or time-series
data [84]. These types of networks solve ordinal or temporal problems, such as language
translation, speech recognition, Natural Language Processing (NLP, Natural Language
Processing), and image capture. Therefore, these networks are in technologies such as Siri
or Google translate. In this case, natural language processing recognizes a person’s speech.
For example, it is distinguished if the person who is speaking is a man or a woman, an
adult or a minor, if they have an Andalusian or Catalan accent, etc. In this way, the person’s
way of speaking is analyzed, and their idiolect is reached.

3.4.3. Generative Adversarial Networks (GAN)

The antagonistic generative networks consist of using 2 artificial neural networks and
opposing them to each other (that is why they are known as antagonistic) to generate new
content or synthetic data that can be passed as real [85]. One of the networks generates
and the other works as a “discriminator”. The discriminatory network (also known as an
antagonistic network) has been trained to recognize real content and acts as a sensor for
the network that generates content to make content that appears real.

3.5. Reinforcement Learning

The field of machine learning is the branch of Artificial Intelligence that encompasses
techniques that allow machines to learn through their environment. This environment
can be considered as the set of data that the algorithm has or obtains in the training stage.
Reinforcement learning is the most common in nature. An individual has a connection with
the environment with which he obtains information from the cause-effect relationships, the
results of the actions carried out, and the strategy to follow to complete an objective [86].

The time difference method was introduced by Sutton [87] as a model-free method
based on a bootstrapping update rule and consists of estimating the values of immediate
and future rewards in a way like programming. Are dynamic and are denoted as TD (λ).
Methods of time difference attempt to estimate the value function of a given state of a
policy, and contrary to Monte Carlo methods, you do not need to wait at the end of an
episode to make such an estimate. Some prominent algorithms are.
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3.5.1. SARSA

One of the algorithms that derive from the method based on time difference is the
SARSA algorithm [88] which is an on-policy method, that is, it has an initial policy and
updates it at the end. of each episode.

3.5.2. Q-Learning

Q-learning is a value-based learning algorithm that focuses on optimizing the value
function according to the environment or problem [89,90]. The Q in Q-learning represents
the quality with which the model finds its next quality-improving action. The process
can be automatic and simple. This technique is great to start your reinforcement learning
journey. The model stores all the values in a table, which is Table Q. In simple words, the
learning method is used for the best solution.

3.5.3. Deep Reinforcement Learning

Deep Reinforcement Learning [91], where reinforcement learning is integrated with
neural networks. The DeepMind company began to use this type of learning to create
agents that would learn to play Atari games from scratch without having any information
about them, not even the rules of the video game.

3.6. Metaheuristic Learning

Metaheuristics are clever strategies to design or improve very general heuristic pro-
cedures with high performance. The term metaheuristic first appeared in Fred Glover’s
seminal article on tabu search in 1986 [92]. Since then, many proposals for guidelines have
emerged to design good procedures to solve certain problems that, by expanding their field
of application, have adopted the denomination of metaheuristics.

Some of the main types are: Relaxation metaheuristics [93] refer to problem-solving
procedures that use relaxations of the original model (that is, modifications of the model
that make the problem easier to solve), the solution of which facilitates the solution of the
original problem. The constructive metaheuristics [94] are oriented to the procedures that
try to obtain a solution from the analysis and gradual selection of the components that
form it. Search metaheuristics [95] guide procedures that use transformations or moves to
traverse the space of alternative solutions and exploit the associated environment structures.
Evolutionary metaheuristics [96] are focused on procedures based on solution sets that
evolve over the solution space.

3.7. Transfer Learning

Deep Learning primarily emphasizes features, Reinforcement Learning primarily
emphasizes feedback, and Transfer Learning primarily emphasizes adaptation. Traditional
machine learning is about reaping the benefits of planting fruits and reaping the benefits of
planting beans, while transfer learning can draw inferences from each other.

Artificial intelligence competition, from algorithm model development to data quality
and data competition, these successful models and algorithms are mainly driven by su-
pervised learning, and supervised learning consumes a lot of data and requires big data
support (big data) to meet the precise requirements of the application. The development of
artificial intelligence tends to satisfy the precise requirements of the applications without
requiring massive data. Therefore, “small data learning” is becoming a new point of inter-
est. Small data learning techniques represented by migration learning and reinforcement
learning can better reflect artificial intelligence.

Since the transfer learning (TL) concept was proposed by Stevo Bozinovski and Ante
Fulgosi in 1976 [97], it has received a great deal of attention from the academic community.
The definition of transfer learning is too broad and a variety of specialized terms have
appeared in related research, such as learning to learn, lifelong learning, multitasking
learning, meta-learning, inductive transfer, knowledge transfer, context-sensitive learning,
etc. Among them, transfer learning has the closest relationship with multitasking learning.
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Multitask learning learns multiple different tasks at the same time and discovers implicit
common features to aid single-task learning.

3.8. Human Activity Recognition

Recognizing human activities consists of interpreting human gestures or movements
through sensors to determine human action or activity [98]. For example, a HAR system
can report activities performed by patients outside of hospital facilities, which makes it
a useful tool for evaluating health interventions and therapy progress, and for clinical
decision-making [99]. HAR can be supervised or unsupervised. The supervised HAR
system requires prior training with a tagged data set, on the contrary, the unsupervised
system does not require training but has a set of rules configured during development. In
this particular work, we focused on a HAR system of the supervised type to recognize
the following six human activities: walking (WK), climbing stairs (WU), descending stairs
(WD), standing (ST), lying down (LD), and being sitting (SD). We name, in particular, the
WK, WU, and WD activities as dynamic activities since they involve a voluntary movement
that causes displacement and is reflected in the inertial sensors, and we call ST, LD, and SD
activities. Given that they do not involve voluntary movements of the subject and there is
no displacement of the person.

In HAR systems it is common to use signals and images that come from sensors that
can be located in a specific physical space, such as in a room, or that can be placed or
carried by people, like those found in smart cell phones or smartwatches. Smartphones
are mobile phones that can perform tasks like those of a computer, such as the ability to
store and process data and be able to navigate the Internet [100]. In addition, compared to
personal computers, smartphones are widely accepted due to their small size, low weight,
more personal device, and, especially, great connectivity that allows you to access at any
time and place to information sites and social networks [101]. Other applications that are
usually present are integrated cameras, contact management, multimedia software capable
of playing music and being able to view photos and videos, and the use of navigation
programs, and, in addition, having the ability to view business documents in different
formats such as PDF and Microsoft Office [101].

Currently, different sensors are installed, such as positioning sensors, proximity sen-
sors, temperature sensors, accelerometer, gyroscope, magnetometer, microphone, etc., as
shown in Figure 2. This is currently a challenge carried out by different scientific communi-
ties, particularly in the fields of computer vision, signal processing, and machine learning.
The sensors are usually operated by a microcontroller or microprocessor, which performs
the function of a computer.
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Inertial sensors are sensors based on the principle of inertia, the tendency of a body to
conserve its speed (in the absence of an external influence, a body remains in a uniform
rectilinear motion). There are different types of sensors to measure signals that can be used
by HAR systems. Two of the most used are the accelerometer and the gyroscope. The
accelerometer measures the acceleration (in meters per second squared, m/s2) based on
the different variations that a capacitance makes inside the sensor. This capacitance is a
microelectromechanical system (MEMS for its acronym in English microelectromechanical
systems) that consists of the suspension of silicon particles that are located at a fixed point
and are moved freely in the axis where they are measured. When acceleration occurs, the
particles move and break with equilibrium in capacitance; this is measured to provide the
information that occurs in a certain axis.

According to the type of sensors and the occupation of the indoor environments,
a series of datasets have been built that have served to carry out different experiments
based on machine learning techniques. The most prominent datasets are: UCI HAR [102],
KU-HAR [103], Precis HAR [104], Fall-Up Dataset [105], VanKasteren [106], CASAS Mul-
tiresident [107], WISDM [108], DOMUS [109], Opportunity [110], CASAS Aruba [111],
USC-HAD [112], MIT PlaceLab [113], Smart Environment—Ulster University [114], CASAS–
Daily Life Kyoto [115], PAMAP2 [116], mHealth [117], DSADS [118], UJAmI SmatLab [119].

4. Methodology for Analyzing the Information

The methodology for the analysis of the publications is supported and defined by
Kitchenham [120]. This methodology consists of identifying the main research problem,
and then disaggregating each of its components by analyzing the different inclusions
and exclusions, to determine a suitable search string to be used in scientific databases.
Specifically for our case study, in addition to the Scientometric type variables, those re-
lated to the type of dataset used, techniques or algorithms implemented, as well as the
quality of the results measured by the quality metrics, were identified. Kitchenham [120]
defines different stages of the literature review process, among which the following can
be highlighted: (a) Identification of the search parameters (search objectives, hypotheses
identified) (b) Definition of search engines (selection of specialized databases where the
study is to be developed) (c) Response to the hypotheses that were raised for the literature
inquiry process.

By these previously defined phases, the first thing to do is to identify the central ques-
tion of the inquiry process. For this literature review, it would be “What are the different
techniques based on Machine Learning that support the analysis of dataset recognition
of human activities?”. To carry out the literature review, the IEEE, Scopus, Science Direct,
and WOS databases were used. To delimit the documentary findings, the following search
string was used: (HAR OR ADL OR AAL) AND dataset AND (“indoor environment” OR
“smart homes” OR “intelligent buildings” OR “ambient intelligence” OR “assisted living”).
In Figure 3 you can see the basic concept scheme for the review document filter. Then the
references were analyzed by the machine learning technique that is implemented, which is
described in Section 6.

It is important to specify that the order of the different terms that are observed in
Figure 3 determine all those that are part of the domain of knowledge, which was previously
tested in the different search engines of the scientific databases to eliminate the different
noises from them. that can be generated at the time of the search and the exclusion of papers
not related to the study area. Taking into account the previously explained methodology,
different factors of the analytical order and high importance for those interested in this area
of knowledge were described in the meta-analytic matrix, such as year of publication of the
work (which is not greater than a window of 5 years), journal, conference or book where
the publication was made, quartile in the case of publications in journals, country of origin
of the first author as well as the university or research center. Other technical variables are
taken into account in the same way for the development of this research, such as Name of
the dataset, type of data collection, type of activities carried out, several individuals who
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define the occupation, data mining techniques used, hybridization of techniques, results of
quality metrics.
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5. Scientometric Analysis

In the results obtained from the 570 articles processed, different relevant variables
were taken into account, among which are detailed: (1) the year of publication of the article
see Figure 4, (2) the database where the publication can be found, (3) Type of publication
if it is a journal, conference or book, (4) Quartile of the journal in the case of publications
in this medium, (5) country of origin of the journal (6) country of origin of the first au-
thor of the article (7) University of the first author, (8) Dataset used for the experiments,
(9) Techniques used for the discovery of information and (10) results of the metrics of
each technique.
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Figure 4. Years of publication of the articles.

It can be identified that 2018 was where the most publications were generated in
HAR’s line of work. In the same way, when discriminating the databases in which the
publications are made, it is highlighted that most of the works have been published in the
Science Direct database, then Scopus. Some publications are visible in different databases,
as shown in Figure 5.
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Of the total articles, analyzed 64% of them refer to conference publications, 4 & are
books and 36% refer to journals, see Figure 6a,b.
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6. Technical Analysis
6.1. Supervised Learning Applied to Human Activity Recognition Dataset

Regarding the application of Machine Learning techniques, to Human Activity Recog-
nition Dataset, various experiments have been developed, but the most relevant ones found
in the literature are highlighted below (see Table 3). Tasmin [121], carried out implemen-
tations in the UCI-HAR Dataset, through the implementation of supervised algorithms
Nearest Neighbor, Decision Tree, Random Forest, and Naive Bayes, of the techniques used,
the one with the best results in the detection of activities was the Bayesian with an accuracy
of 76.9%. Igwe [122], concentrated his experimentations on the ARAS Data-set which was
implemented in 2 different locations (House A and House B), CA-SAS Tulum created by
WSU University, the author applied supervised techniques such as SVM, ANN, and MSA
(Margin Setting Algorithm), demonstrating the effectiveness of the latter in identifying
activities with an accuracy of 68.85%, 96.24% and 68% in the respective Datasets.

Subasi [123], performed analysis on the Meath Dataset, applying techniques such as
K-NN, ANN, SVM, C4.5, CART. Random Forest and Rotation Forest obtained better results
with SVM and Random Forest with 99.89%. Maswadi [124], firstly I prepare the Dataset
using Sliding window segmentation techniques with a variable size in different Datasets
such as WISDM with SCUT_NA-A, SCUT NA-.An only, PAMPA2 with Mhealth, SBHAR,
WISDM, UTD-MHAD, Groupware, Free-living WISDM with Skoda, UniMiB SHAR, and
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Groupware, showing the superiority of this technique obtaining results greater than 80%
accuracy. Other authors such as Damodaran [125], applied SVM, LSTM to the CSI-Data
Dataset, where better results are shown in the use of SVM with 96%.

Other authors such as Saha [126] and Das [127], define the characteristics and process
for the construction of their Dataset, to which a set of techniques are applied and it should
be noted that both authors show that vector support machines show efficiency in the results
of classification of human activities. Franco [128], uses techniques such as FFNN, SVM, and
LSTM in the UK-Dale Dataset, showing the effectiveness of FFNN with 95.28% accuracy in
quality metrics.

Bozkurt [129] and Wang [130], carry out supervised learning implementations in
the UCI HAR Dataset, with various combined supervised techniques, and in the case of
Bozkurt, they describe that using SVM + KNN obtains good results in the classification
with an accuracy of 96.71% and Wang explains that using a combination of Decision Tree it
is possible to count on the accuracy of 92.73%. Outreach [131], performs analysis on two
Datasets of the set CASAS Tulum and Two, highlighting the use of BackPropagation with
results 88.75% and 76.9%, respectively in accuracy.

Demrozi [132], performs multiple experiments of many supervised techniques in many
widely known Datasets such as WISDM, DAPHNET, PAPAM, HHAR (Phone), HHAR
(watch), Mhealth, RSSI, CSI. For this, different algorithms are implemented such as KNN,
LDA, QDA, RF, DT, CNN. In the case of the algorithm WISDM, DAPHNET, PAPAM, HHAR
(Phone), HHAR (watch) the RF algorithm obtains the best results with accuracy of 90%,
91%, 80%, 88%, 85% precision, and recall of 91%, 91%, 83%, 89%, 85%. For Mhealth, RSSI,
the performance of the QDA algorithm is denoted with 91% and 92% in accuracy and 85%
and 92% in precision and recall respectively.

Xu [133], applies compares techniques such as DT, SVM, KNN, AdaBoost, DCNN in
Dataset CASAS Aruba, showing the superiority of ensembled techniques such as Adaboost
with the accuracy of 98%, precision 96%, recall 95.9%, and f -measure 95.9%. Other authors
such as Hussain [134] apply algorithms such as SVM, Random Forest, KNN to datasets
such as SisFall, the SVM results being better with 97.77% accuracy. Finally, Liciotti [135],
performs experimentation on a set of well-known CASAS project Datasets such as Milan,
Cairo, Kyoto 2, Kyoto 3, Kyoto 4, of algorithms such as Naive Bayes, HMM + SVM, CRF,
LSTM, showing the superiority of LSTM in the results.

Table 3. Supervised Techniques results.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

UCI Machine
Learning

Nearest Neighbor 75.7 - - -

[121]
Decision Tree 76.3 - - -

Random Forest 75.9 - - -

Naive Bayes 76.9 - - -

Aras (House A)

MSA (Margin Setting Algorithm) 68.85 - - -

[122]

SVM 66.90 - - -

ANN 67.32 - - -

Aras (House B)

MSA (Margin Setting Algorithm) 96.24 - - -

SVM 94.81 - - -

ANN 95.42 - - -

CASAS Tulum

MSA (Margin Setting Algorithm) 68.00 - - -

SVM 66.6 - - -

ANN 67.37 - - -
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Table 3. Cont.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

Mhealth

K-NN 99.64 - - 99.7

[123]

ANN 99.55 - - 99.6

SVM 99.89 - - 100

C4.5 99.32 - - 99.3

CART 99.13 - - 99.7

Random Forest 99.89 - - 99.89

Rotation Forest 99.79 - - 99.79

WISDM,
SCUT_NA-A

Sliding window with variable size, S
transform, and regularization based
robust subspace (SRRS) for selection
and SVM for Classification

96.1 - - -

[124]

SCUT NA-A
Sliding window with fixed samples,
SVM like a classifier,
cross-validation

91.21 - - -

PAMPA2, Mhealth Sliding windows with fixed 2s,
SVM, and Cross-validation 84.10 - - -

SBHAR Sliding windows with fixed 4s,
SVM, and Cross-validation 93.4 - - -

WISDM MLP based on voting techniques
with nb-Tree are used 96.35 - - -

UTD-MHAD Feature level fusion approach&
collaborative representation classifier 79.1 - - -

Groupware Mark Hall’s feature selection and
Decision Tree 99.4 - - -

Free-living k-NN and Decision Tree 95 - - -

WISDM, Skoda Hybrid Localizing learning
(k-NN-LSS-VM) 81 - - -

UniMiB SHAR LSTM and Deep Q-Learning 95 - - -

Groupware Sliding windows Gaussian Linear
Filter and NB classifier 89.5 - - -

Groupware Sliding windows Gaussian Linear
Filter and Decision Tree classifier 99.99 - - -

CSI-data
SVM 96 - - -

[125]
LSTM 89 - - -

Built by the authors

IBK 95 - - -

[126]Classifier based ensemble 98 - - -

Bayesian network 63 - - -

Built by the authors

Decision Tree 91.08 - - 89.75

[127]

Random Forest 91.25 - - 90.02

Gradient Boosting 97.59 - - 97.4

KNN 93.76 - - 93.21

Naive Bayes 88.57 - - 88.07
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Table 3. Cont.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

SVM 92.7 - - 91.53

XGBoost 96.93 - - 96.63

UK-DALE

FFNN 95.28 - - -

[128]SVM 93.84 - - -

LSTM 83.07 - - -

UCI Machine
Learning

KNN 90.74 91.15 90.28 90.45

[129]

SVM 96.27 96.43 96.14 96.23

HMM+SVM 96.57 96.74 96.49 96.56

SVM+KNN 96.71 96.75 96.69 96.71

Naive Bayes 77.03 79.25 76.91 76.72

Logistic Reg 95.93 96.13 95.84 95.92

Decision Tree 87.34 87.39 86.95 86.99

Random Forest 92.3 92.4 92.03 92.14

MLP 95.25 95.49 95.13 95.25

DNN 96.81 96.95 96.77 96.83

LSTM 91.08 91.38 91.24 91.13

CNN+LSTM 93.08 93.17 93.10 93.07

CNN+BiLSTM 95.42 96.58 95.26 95.36

Inception+ResNet 95.76 96.06 95.63 95.75

UCI Machine
Learning

NB-NB 73.68 - - 46.9

[130]

NB-KNN 85.58 - - 61.08

NB-DT 89.93 - - 69.75

NB-SVM 79.97 - - 53.69

KNN-NB 74.93 - - 45

KNN-KNN 79.3 - - 49.82

KNN-DT 87.01 - - 60.98

KNN-SVM 82.24 - - 53.1

DT-NB 84.72 - - 60.05

DT-KNN 91.55 - - 73.11

DT-DT 92.73 - - 75.97

DT-SVM 93.23 - - 77.35

SVM-NB 30.40 - - -

SVM-KNN 25.23 - - -

SVM-DT 92.43 - - 75.31

SVM-SVM 43.32 - - -

CASAS Tulum

Back-Propagation 88.75 - - -

[131]SVM 87.42 - - -

DBM 90.23 - - -
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Table 3. Cont.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

CASAS Twor

Back-Propagation 76.9 - - -

SVM 73.52 - - -

DBM 78.49 - - -

WISDM

KNN 69 78 - 78

[132]

LDA 40 34 - 34

QDA 65 58 - 58

RF 90 91 - 91

DT 77 77 - 77

CNN 66 62 - 60

DAPHNET

KNN 90 87 - 88

LDA 91 83 - 83

QDA 91 82 - 82

RF 91 91 - 91

DT 91 83 - 83

CNN 90 87 - 87

PAPAM

KNN 65 66 - 66

LDA 45 45 - 45

QDA 15 19 - 19

RF 80 83 - 83

DT 60 60 - 60

CNN 73 76 - 73

HHAR(Phone)

KNN 83 85 - 85

LDA 43 45 - 45

QDA 40 50 - 50

RF 88 89 - 89

DT 67 66 - 66

CNN 84 84 - 84

HHAR(watch)

KNN 78 82 - 82

LDA 54 52 - 52

QDA 26 27 - 27

RF 85 85 - 85

DT 69 69 - 69

CNN 83 83 - 83

Mhealth

KNN 76 81 - 81

LDA 38 59 - 59

QDA 91 82 - 82

RF 85 85 - 85

DT 77 77 - 77

CNN 80 80 - 80
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Table 3. Cont.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

RSSI

KNN 91 91 - 91

LDA 91 91 - 91

QDA 91 91 - 91

RF 91 91 - 91

DT 91 91 - 91

CNN 91 90 - 91

CSI

KNN 93 93 - 93

LDA 93 93 - 93

QDA 92 92 - 92

RF 93 93 - 93

DT 93 93 - 93

CNN 92 92 - 92

Casas Aruba

DT 96.3 93.8 92.3 93

[133]

SVM 88.2 88.3 87.8 88.1

KNN 89.2 87.8 85.9 86.8

AdaBoost 98 96 95.9 95.9

DCNN 95.6 93.9 95.3 94.6

SisFall

SVM 97.77 76.17 75.6

[134]Random Forest 96.82 79.99 79.95

KNN 96.71 93.99 68.36

CASAS Milan

Naive Bayes 76.65

[135]

HMM+SVM 77.44

CRF 61.01

LSTM 93.42

CASAS Cairo

Naive Bayes 82.79

HMM+SVM 82.41

CRF 68.07

LSTM 83.75

CASAS Kyoto 2

Naive Bayes 63.98

HMM+SVM 65.79

CRF 66.20

LSTM 69.76

CASAS Kyoto 3

Naive Bayes 77.5

HMM+SVM 81.67

CRF 87.33

LSTM 88.71

CASAS Kyoto 4

Naive Bayes 63.27

HMM+SVM 60.9

CRF 58.41

LSTM 85.57
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6.2. Unsupervised Learning Applied to Human Activity Recognition Dataset

In the unsupervised learning applications in the literature, different applications of
the algorithms can be observed that are measured with quality metrics associated with the
groupings such as ARI, Jaccard Index, Silhouette Index, Euclidean, F1 Fisher’s discriminant
(see Table 4). The following works developed by authors such as Wang [130] stand out,
who uses various versions of the UCI-HAR Dataset, implementing algorithms such as
K-means, HAC, FCM, both showing better results for the case of FCM. Mohmed [136]
applies unsupervised algorithms like FCM to the Nottingham Trent University Dataset.
Brena [137], applies his form developed by the author called PM Mo-del to perform
unsupervised analysis to the Chest Sensor Dataset, Wrist Sensor Dataset, WISDM Dataset,
and Smartphone Dataset, which he measures using the silhouette index. He [138], applies
another method developed by the authors called wavelet tensor fuzzy clustering scheme
(WTFCS) to the DSAD Dataset, obtaining an ARI index of 89.66%.

Wang [139], implements clustering-based algorithms such as Spectral Clustering,
Single Linkage, Ward Linkage, Average Linkage, K-medioids to the UCI-HAR dataset,
analyzing their Jaccard and Euclidean indices as shown in Table 4. In the same way,
Bota [140] also makes experiments in the UCI-HAR and CADL Dataset with the K-means,
K-Means 5, Spectral Clustering, Gaussian Mixture, DBSCAN algorithms analyzing its F1
Fisher’s discriminant rat.

Table 4. Unsupervised Techniques results.

Dataset Technique

Metrics

References
ARI Jaccard

Index
Silhouette

Index Euclidean
F1 Fisher’s

Discriminant
Ratio

UCI HAR
SmartPhone

K-means 0.7727 0.3246 0.4416

[130]

HAC 0.4213 0.2224 0.5675

FCM 0.8343 0.4052 0.4281

UCI HAR Single
Chest-Mounted
Accelerometer

K-means 0.8850 0.6544 0.6935

HAC 0.5996 0.2563 0.6851

FCM 0.9189 0.7230 0.7751

Nottingham Trent
University FCM - - - - [136]

Chest Sensor
Dataset

PM Model

25.8% -

[137]
Wrist Sensor

Dataset 64.3% -

WISDM Dataset 54% -

Smartphone
Dataset 85% -

DSAD
wavelet tensor
fuzzy clustering
scheme (WTFCS)

0.8966 - - - [138]

UCI HAR

Spectral Clustering 0.543 0.583

[139]
Single Linkage 0.807 0.851

Ward Linkage 0.770 0.810

Average Linkage 0.790 0.871

K-medioids 0.653 0.654
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Table 4. Cont.

Dataset Technique

Metrics

References
ARI Jaccard

Index
Silhouette

Index Euclidean
F1 Fisher’s

Discriminant
Ratio

UCI HAR

K-means 52.1

[140]

K-Means 5 50.7

Spectral Clustering 57.8

Gaussian Mixture 49.8

DBSCAN 16.4

CADL

K-means 50.9

K-Means 5 50.5

Spectral Clustering 61.9

Gaussian Mixture 58.9

DBSCAN 13.9

6.3. Ensemble Learning Applied to Human Activity Recognition Dataset

In the lessons based on ensemble learning, the application of multiple techniques is
usually carried out, which together offer better results (see Table 5). Below is a detailed
description of the works found in the literature review that shows the application of these
techniques in the recognition of human activities. Yacchirema [141], uses a combination
of techniques such as Decision Tree, Ensemble, Logistic Regression, Deepnet to analyze
the SisFall Dataset, explaining the results of the DeepNet algorithm with an accuracy of
99.06%. For his part, Manzi [142], uses a mixture of X-means and SV; to analyze the Cornell
Activity Dataset and TST Dataset obtaining 98.4% and 92.7% respectively.

Ma [143], uses the model based on Multi-task deep clustering in the HHAR, MobiAct,
MobiSense datasets, where the latter algorithm obtains an accuracy of 72.5%, a precision
of 71.2%, and a recall of 70.7%. Budisteanu [144], describes the NTU-RGB + D Dataset,
and implements the K-Means, GMM algorithms, obtaining 85.72% and 87.26% respectively.
Xu [145], uses the well-known UCI-HAR Dataset, implementing the CELearning own
technique, obtaining an accuracy of 96.88%.

Choudhury [146], also analyzes the UCI-HAR Dataset, with the algorithms RF, XGB,
AdaB, GB, ANN, V. RNN, LSTM, DT, KNN, and NB, where the RF algorithm performs
the best result in the ensemble models with 96.96%. Wang [147] for his part defines his
Dataset to which he implements the algorithms GB, RFs, Bagging, XGB, AdaBoost, DT,
MLP, LSVM, NLSVM, LR, KNNs, GNB, in which the RF algorithm obtains the best results
with an accuracy of 83.9%. Jethanandani [148], works with the popular Dataset House A
and House B, applying algorithms such as Bernoulli NB, Decision Tree, Logistic Regression,
KNN. This experimentation shows the good results of the algorithms based on decision
trees with 88% and 97.2% respectively.

Subasi [149], also uses the UCI-HAR Dataset, applying the algorithms SVM-AdaBoost,
k-NN-AdaBoost, ANN-AdaBoost, NB-AdaBoost, RF-AdaBoost, CART-AdaBoost, C4.5-
AdaBoost, REPTree-AdaBoost, LADTree-AdaBoost obtaining better results with the REPTree-
AdaBoost combination with 99.95% accuracy. Padmaja [150], uses HAR Dataset, HAPT
Dataset implementing the KN, CART, BAYES, RF, ET alalgorithms, a method proposed
by the authors, demonstrating the superiority of the results of the method proposed by
the authors.
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Table 5. Ensembled Learning Techniques results.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

SisFall

Decision Tree 97.48 - - -

[141]
Ensemble 99.51 - - -

Logistic Regression 84.87 - - -

Deepnet 99.06 - - -

Cornell Activity Dataset
X-means-SVM

98.4 95.0 95.8 -
[142]

TST Dataset 92.7 95.6 91.1 -

HHAR

Multi-task deep clustering

67.2 65.3 65.9

[143]MobiAct 68.3 69.1 66.8

MobiSense 72.5 71.2 70.7

NTU-RGB + D
K-Means 85.72 - - -

[144]
GMM 87.26 - - -

UCI HAR CELearning 96.88% - - - [145]

UCI HAR

RF 96.96 97.0 97.0 98

[146]

XGB 96.2 96 96 96

AdaB 50.5 61 51 51

GB 94.53 95 95 95

ANN 92.51 92 93 92

V. RNN 90.53 90 91 90

LSTM 91.23 90 91 90

DT 94.23 95 95 95

KNN 96.59 97 97 97

NB 80.67 84 81 81

Proposed Dataset

GB 84.1 84.1 84.2 84.1

[147]

RFs 83.9 83.9 84.1 83.9

Bagging 83 83 83.1 83

XGB 80.4 80.5 80.4 80.4

AdaBoost 77.2 77.3 77.3 77.3

DT 76.9 77 77 77

MLP 67.6 68.7 67.8 67.8

LSVM 65 65.7 65.1 64.9

NLSVM 63 63.3 63.2 62.8

LR 59.6 60.2 59.8 59.4

KNNs 58.9 60.1 59.2 58.9

GNB 56.1 59.4 55.4 45.2

House A

Bernoulli NB 78.7 64 - -

[148]
Decision Tree 88 79.4 - -

Logistic Regression 81.4 69.2 - -

KNN 75.8 64.9 -
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Table 5. Cont.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

House B

Bernoulli NB 95.9 79.4 -

Decision Tree 97.2 86.4 -

Logistic Regression 96.5 82.7 -

KNN 93.1 79.8 -

UCI HAR

SVM-AdaBoost 99.9 99.9

[149]

k-NN-AdaBoost 99.43 99.4

ANN-AdaBoost 99.33 99.33

NB-AdaBoost 97.24 97.2

RF-AdaBoost 99.98 100

CART-AdaBoost 99.97 100

C4.5-AdaBoost 99.95 100

REPTree-AdaBoost 99.95 100

LADTree-AdaBoost 98.84 98.8

HAR Dataset

KNN 90.3

[150]

CART 84.9

BAYES 77

RF 92.7

HAPT Dataset

KNN 89.2

CART 80.2

BAYES 74.7

RF 91

ET 91.7

Proposed Method 92.6

6.4. Deep Learning Applied to Human Activity Recognition Dataset

Implementations based on Deep Learning have become very useful for the identifi-
cation of activities of daily life, especially those that include image processing [151,152]
(see Table 6). Some relevant results of the literature review are detailed below. Wan [153],
makes use of the UCI-HAR and PAMAP2 Dataset, implementing algorithms such as CNN,
LSTM, BLSTM, MLP, SVM, in which the good results of CNN network implementation
are shown with 92.71% and 91% respectively. Akula [154], configures its Dataset to which
it applies the algorithms LBP-Naive Bayes, HOG-Naive Bayes, LBP-KNN, HOG-KNN,
LBP-SVM, HOF-SVM obtaining better results with the implementation of HOF -SVM with
85.92% accuracy.

He [155], implements DeepConvLSTM, CNN in the UCI-HAR, and Wealky Datasets,
showing good results of the implementation of Deep learning with 94.77% and 92.31%
respectively. Long [156] in turn uses the Opportunity and Uni-MiB-SAHR Dataset with
the algorithms HC, CBH, CBS, AE, MLP, CNN, LSTM, Hybrid, ResNet, and ARN were
the results of RNA of 90.29% and 76.39%. Bozkurt [157], for his part, only analyzes the
UCI-HAR Dataset, KNN, SVM, HMM + SVM, SVM + KNN, Naive Bayes, Logistic Regres-
sion, Decision Tree, Random Forest, MLP, DNN, LSTM, CNN + LSTM, CNN + BiLSTM,
Inception + ResNet, the result of the DNN algorithm is shown with an accuracy of 96.81%.

Mekruksavanich [158], uses the Utwente Dataset and PAMAP2, applying the Naive
Bayes, SVM, Deep Stacked Autoencoder, CNN-BiGRu techniques, showing better results



Sensors 2022, 22, 3401 23 of 37

with this last technique described. Papagiannaki [159] used the FrailSafe dataset with the
implementation of CNN networks with an accuracy of 91.84%. Liciotti [139] uses techniques
such as LSTM, Bi-LSTM, Casc-LSTM, ENs2-LSTM in the CASAS group dataset to show
the dynamics of processes based on deep learning. Hassan [160], applied ANN, SVM and
DBN in a proposal dataset for the development of a robust human activity recognition
system based on the smartphone sensors’ data, obtaining the following accuracy results
ANN 89.06%, SVM 94.12% and DBN 95.85%.

Table 6. Deep Learning Techniques results.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

Uci Har

CNN 92.71 93.21 92.82 92.93

[154]

LSTM 89.01 89.14 88.99 88.99

BLSTM 89.4 89.41 89.36 89.35

MLP 86.83 86.83 86.58 86.61

SVM 89.85 90.5 89.86 89.85

PAMAP2

CNN 91.00 91.66 90.86 91.16

LSTM 85.86 86.51 84.67 85.34

BLSTM 89.52 90.19 89.02 89.4

MLP 82.07 83.35 82.17 82.46

SVM 84.07 84.71 84.23 83.76

Propio Infrared Images

LBP-Naive Bayes 42.1 - - -

[155]

HOG-Naive Bayes 77.01 - - -

LBP-KNN 53.261 - - -

HOG-KNN 83.541 - - -

LBP-SVM 62.34 - - -

HOF-SVM 85.92 - - -

Uci Har
DeepConvLSTM 94.77 - - -

[156]
CNN 92.76 - - -

Weakly Dataset
DeepConvLSTM 92.31 - - -

CNN 85.17 - - -

Opportunity

HC 85.69 - - -

[157]

CBH 84.66 - - -

CBS 85.39 - - -

AE 83.39 - - -

MLP 86.65 - - -

CNN 87.62 - - -

LSTM 86.21 - - -

Hybrid 87.67 - - -

ResNet 87.67 - - -

ARN 90.29 - - -
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Table 6. Cont.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

UniMiB-SAHR

HC 21.96 - - -

CBH 64.36 - - -

CBS 67.36 - - -

AE 68.39 - - -

MLP 74.82 - - -

CNN 73.36 - - -

LSTM 68.81 - - -

Hybrid 72.26 - - -

ResNet 75.26 - - -

ARN 76.39 - - -

Uci Har

KNN 90.74 91.15 90.28 90.48

[158]

SVM 96.27 96.43 96.14 96.23

HMM+SVM 96.57 96.74 06.49 96.56

SVM+KNN 96.71 96.75 96.69 96.71

Naive Bayes 77.03 79.25 76.91 76.72

Logistic Regression 95.93 96.13 95.84 95.92

Decision Tree 87.34 87.39 86.95 86.99

Random Forest 92.30 92.4 92.03 92.14

MLP 95.25 95.49 95.13 95.25

DNN 96.81 96.95 96.77 96.83

LSTM 91.08 91.38 91.24 91.13

CNN+LSTM 93.08 93.17 93.10 93.07

CNN+BiLSTM 95.42 95.58 95.26 95.36

Inception+ResNet 95.76 96.06 95.63 95.75

Utwente Dataset

Naive Bayes - - - 94.7

[159]

SVM - - - 91.6

Deep Stacked
Autoencoder - - - 97.6

CNN-BiGRu - - - 97.8

PAMAP2

DeepCOnvTCN - - - 81.8

InceptionTime - - - 81.1

CNN-BiGRu - - - 85.5

FrailSafe dataset CNN 91.84 - - - [160]

CASAS Milan

LSTM 76.65 - - -

[135]
Bi-LSTM 77.44 - - -

Casc-LSTM 61.01 - - -

ENs2-LSTM 93.42 - - -
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Table 6. Cont.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

CASAS Cairo

LSTM 82.79 - - -

Bi-LSTM 82.41 - - -

Casc-LSTM 68.07 - - -

ENs2-LSTM 83.75 - - -

CASAS Kyoto 2

LSTM 63.98 - - -

Bi-LSTM 65.79 - - -

Casc-LSTM 66.20 - - -

ENs2-LSTM 69.76 - - -

CASAS Kyoto 3

LSTM 77.5 - - -

Bi-LSTM 81.67 - - -

Casc-LSTM 87.33 - - -

ENs2-LSTM 88.71 - - -

Proposal

ANN 89.06 - - -

[160]SVM 94.12 - - -

DBN 95.85 - - -

6.5. Reinforcement Learning Applied to Human Activity Recognition Dataset

Currently, there is a new trend in reinforcement-based learning processes where it is
possible to have systems capable of learning by themselves from punishment and reward
schemes, defined by behavioral psychology. It has been introduced in this new line of work
for HAR. Which this review shows three highly relevant works (see Table 7). Ber-lin [161],
made implementations in the Weizmann and KTH Datasets through the implementation
of Spiking Neural Network showing promising results 94.44% and 92.50%. Lu [162] uses
the DoMSEV Dataset using the Deep-shallow algorithm with an accuracy of 72.9% and
Hossain [163], Pop used a new Dataset to which they implemented the Deep Q-Network
algorithm with an accuracy of 83.26%.

Table 7. Reinforcement Learning Techniques results.

Dataset Technique
Metrics

References
Accuracy

Weizmann datasets
Spiking Neural Network

94.44
[161]

KTH datasets 92.50

DoMSEV Deep-Shallow 72.9 [162]

Proposal Deep Q-Network (DQN) 83.26 [163]

S.Yousefi-2017 Reinforcement Learning Agent Recurrent Neural
Network with Long Short-Term Memory

80
[156]

FallDeFi 83

UCI HAR Reinforcement Learning + DeepConvLSTM 98.36 [164]

Proposal 79 [165]

UCF-Sports

Q-learning

95

[166]UCF-101 85

sub-JHMDB 80
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Table 7. Cont.

Dataset Technique
Metrics

References
Accuracy

MHEALTH

Cluster-Q learning

94.5

[167]
PAMAP2 83.42

UCI HAR 81.32

MARS 85.92

DataEgo LRCN 88 [168]

Proposal Mask Algorithm 96.02 [169]

Proposal LSTM-Reinforcement Learning 90.50 [169]

Proposal Convolutional Autoencoder 87.7 [170]

6.6. Metaheuristic Algorithms Applied to Human Activity Recognition Dataset

In the review of the state of the art, it was possible to identify different metaheuristic
techniques that contribute to the identification of different algorithms. Among the most ev-
ident results are applications of Genetic Algorithms with the following results 96.43% [171],
87.5 [172], 95,71 [173], 99.75 [174], 98.00 [175] and 98.96 [175]. In many solutions, hybrid
systems or new algorithms proposed by the authors are used, see Table 8.

Table 8. Metaheuristic Learning Techniques results.

Dataset Technique
Metrics

References
Accuracy

Cifar-100 L4-Banched-ActionNet + EntACS + Cub-CVM 98.00 [175]

Sbharpt Ant-Colony, NB 98.96 [176]

Ucihar Bee swarm optimization with a deep Q-network 98.41 [177]

Motionsense
Binary Grey Wolf Optimization

93.95
[178]

Mhealth 96.83

Uci Har Genetic Algorithms-SVM 96.43 [171]

Ucf50 Genetic Algorithms-CNN 87.5 [172]

Sbhar GA-PCA 95,71 [173]

Mnist GA-CNN 99.75 [174]

Cifar-100 Genetic Algorithms-SVM 98.00 [175]

Sbharpt Genetic Algorithms-CNN 98.96 [176]

6.7. Transfer Algorithms Applied to Human Activity Recognition Dataset

Transfer Learning TL transfers the parameters of the learned and trained model to a
new model to help the training of the new model. Considering that most of the data or
tasks are related, through transfer learning, the learned model parameters can be shared
with the new model in a certain way to speed up and optimize the model learning efficiency.
The basic motivation of TL is to try to apply the knowledge gained from one problem to a
different but related problem, see Table 9.
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Table 9. Transfer Learning Techniques results.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

CSI

KNN 98.3 - - -

[179]SVM 98.3 - - -

CNN 99.2 - - -

Opportunity

KNN+PCA 60 - - -

[180]
GFK 59 - - -

STL 65 - - -

SA-GAN 73 - - -

USC-HAD

MMD 80 - - -

[181]DANN 77 - - -

WD 72 - - -

Proposal

KNN-OS 79.84 85.84 91.88 88.61

[182]

KNN-SS 89.64 94.41 94.76 94.52

SVM-OS 77.14 97.04 79.23 87.09

SVM-SS 87.5 94.39 92.61 93.27

DT-OS 87.5 94.61 92.16 93.14

DT-SS 91.79 95.19 96.26 95.71

JDA 86.79 92.71 93.07 92.89

BDA 91.43 95.9 95.18 95.51

IPL-JPDA 93.21 97.04 95.97 96.48

KNN-OS 79.84 85.84 91.88 88.61

Wiezmann
Dataset

VGG-16 MODEL 96.95 97.00 97.00 97.00

[183]VGG-19 MODEL 96.54 97.00 97.00 96.00

Inception-v3 Model 95.63 96.00 96.00 96.00

PAMAP2
DeepConvLSTM

- - - 93.2
[184]Skoda Mini

Checkpoint - - - 93

Opportunity

PCA 66.78 - - -

[185]

TCA 68.43 - - -

GFK 70.87 - - -

TKL 70.21 - - -

STL 73.22 - - -

TNNAR 78.4 - - -

PAMAP2

PCA 42.87 - - -

TCA 47.21 - - -

GFK 48.09 - - -

TKL 43.32 - - -

STL 51.22 - - -

TNNAR 55.48 - - -
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Table 9. Cont.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

UCI DSADS

PCA 71.24 - - -

TCA 73.47 - - -

GFK 81.23 - - -

TKL 74.26 - - -

STL 83.76 - - -

TNNAR 87.41 - - -

UCI HAR

CNN-LSTM 90.8 - - - [186]

DT 76.73 . - -

[187]

RF 71.96 - - -

TB 75.65 - - -

TransAct 86.49 - - -

Mhealth

DT 48.02 - - -

RF 62.25 - - -

TB 66.48 - - -

TransAct 77.43 - - -

Daily Sport

DT 66.67 . . .

RF 70.38 . . .

TB 72.86 . - -

TransAct 80.83 - - -

Proposal

Without SVD (Singular Value
Decomposition) 63.13% - - -

[188]With SVD (Singular Value
Decomposition) 43.13% - - -

Transfer Accuracy 97.5% - - -

PAMAP2
CNN

84.89 - - -
[189]

UCI HAR 83.16 - - -

UCI HAR

kNN 77.28 - - -

[190]
DT 72.16 - - -

DA 77.46 - - -

NB 69.93 - - -

Transfer Accuracy 83.7 - - -

UCF Sports
Action dataset VGGNet-19 97.13 - - - [191]

AMASS
DeepConvLSTM

87.46 - - -
[192]

DIP 89.08 - - -

DAR Dataset

Base CNN 85.38 - - -

[193]
AugToAc 91.38 - - -

HDCNN 86.85 - - -

DDC 86.67 - - -
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Table 9. Cont.

Dataset Technique
Metrics

References
Accuracy Precision Recall F-Measure

UCI HAR

CNN_LSTM 92.13 - - -

[194]

CNN_LSTM_SENSE 91.55 - - -

LSTM 91.28 - - -

LSTM_DENSE 91.40 - - -

ISPL

CNN_LSTM 99.06 - - -

CNN_LSTM_SENSE 98.43 - - -

LSTM 96.23 - - -

LSTM_DENSE 98.11 - - -

7. Conclusions

The objective of this systematic literature review article is to provide HAR researchers
with a set of recommendations, among which the different data sets that can be used
depending on the type of research are highlighted. For the development of this analysis,
different data sources were considered in an observation window between the years 2017
and 2021. Among the most representative databases, IEEE Xplorer can be highlighted with
256 articles, far surpassing other specialized databases such as Scopus, Science Direct, Web
of Science, and ACM.

It is important to specify that 47% of the publications are due to proceedings of
congresses or conferences and 36% to the specialized journal. Discriminating the quartiles
where the articles are published, it is important to highlight that although the vast majority
of publications are indeed focused on conference proceedings that do not have a specific
category, 36% of the publications that were made in journals were are mostly in the first
two quartiles Q1 and Q2.

In this article, technical analysis of different types of datasets that are used for ex-
perimentation processes with HAR was carried out. It should be noted that the creation
of new data sets has increased. Some traditional approaches related to the use of indoor
datasets based on the WSU Casas project remain. Also, public repositories such as UCI
Machine learning have provided sets widely used in the literature such as Opportunity
and UCI HAR. It should be noted that the processing of images and videos to the dataset
has also been increased, allowing the application of different cutting-edge techniques, such
as Weakly Dataset and UniMiB-SAHR.

In this review, different data processing approaches that have been used in this area
of knowledge were used. For the specific case of supervised learning, the usability of
algorithms based on decision trees such as RandomForest, Naive Bayes, and Support Vector
Machine stands out. Regarding unsupervised learning, in most of the analyzed works,
the use of techniques such as Spectral Clustering, Single Linkage, Ward Linkage, Average
Linkage and K-medioids. Using ensembled learning, it was possible to demonstrate the use
of different sets of techniques that allowed improving the results of the experiments, among
which those based on classification and grouping can be highlighted. Another modern and
widely used approach is the use of DeepLearning focused on datasets with massive image
processing requirements, where the use of the following LSTM algorithms stands out,
Bi-LSTM, Casc-LSTM, ENs2-LSTM. Other approaches based on Reinforcement learning use
resources such as Q-learning and Cluster-Q with learning, in the experimentation processes.
The metaheuristic-based approach shows the usability of different algorithms, among
which the following stand out: L4-Banched-ActionNet+EntACS+Cub-CVM, Ant-Colony,
N.B Bee swarm optimization with a deep Q-network and Genetic Algorithms.

It is important to point out that due to the high demand for data and information
processing, it becomes increasingly necessary to implement techniques capable of improv-
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ing performance and results, such as those based on Reinforcement Learning and Transfer
Learning. Another challenge found in the literature is the processing of multi-occupancy
datasets that make the use of computational resources and the identification of activities
more expensive.

8. Future Works

Among the future works that can be implemented after this systematic review of
the literature, the real-time analysis of the dataset not only with data from sensors but
also images and sound, among which algorithms based on Reinforcement Learning and
Transfer Learning can be highlighted. provide a wide range of competitive solutions,
adding multi-occupancy in data sets.

Author Contributions: Definition of taxonomy, P.P.A.-C., F.P. and E.V.; Conceptualization, P.P.A.-C.,
A.I.O.-C. and M.A.P.-M.; Human Activity Recognition conceptual Information P.P.A.-C., F.P. and E.V.;
Methodology P.P.A.-C. and M.A.P.-M.; Technical and Scientometric Analysis P.P.A.-C., M.A.P.-M.
and F.P. and A.Q.-L.; Formal Conclusions P.P.A.-C. and A.I.O.-C.; Supervision F.P. and E.V.; Writing-
Review & Editing, P.P.A.-C., S.B.A. and F.P. All authors have read and agreed to the published version
of the manuscript.

Funding: European Union’s Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement No. 734355.

Acknowledgments: This research has received funding under the REMIND project Marie Sklodowska-
Curie EU Framework for Research and Innovation Horizon 2020, under Grant Agreement No. 734355.
Furthermore, this research has been supported by the Spanish government by means of the projects
RTI2018-098979-A-I00, PI-0387-2018 and CAS17/00292.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aracil, J.; Gordillo, F. Dinámica de Sistemas; Alianza Editorial: Madrid, Spain, 1997.
2. Cramer, H.; Cansado, C. Métodos Matemáticos de Estadística; Aguilar: Madrid, Spain, 1968.
3. Shapiro, S.C. Artificial intelligence. In Encyclopedia of Artificial Intelligence, 2nd ed.; Shapiro, S.C., Ed.; Wiley: New York, NY, USA,

1992; Volume 1.
4. Rouse, M. Inteligencia Artificial, o AI. Available online: https://www.computerweekly.com/es/definicion/Inteligencia-artificial-

o-IA (accessed on 30 October 2021).
5. Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data—Evolution, challenges

and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [CrossRef]
6. Sekeroglu, B.; Hasan, S.S.; Abdullah, S.M. Comparison of Machine Learning Algorithms for Classification Problems. Adv. Intell.

Syst. Comput. 2020, 944, 491–499.
7. Jordan, M.I.; Jordan, M.T.M. Machine Learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
8. Ge, Z.; Song, Z.; Ding, S.X.; Huang, B. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE

Access 2017, 5, 20590–20616. [CrossRef]
9. Amiribesheli, M.; Benmansour, A.; Bouchachia, A. A review of smart homes in healthcare. J. Ambient Intell. Humaniz. Comput.

2015, 6, 495–517. [CrossRef]
10. Cook, D.J.; Youngblood, M.; Das, S.K. Amulti-agent approach to controlling a smart environment. In Designing Smart Homes;

Springer: Berlin/Heidelberg, Germany, 2006; pp. 165–182.
11. Andrew McCallum, K.N. A Comparison of Event Models for Naive Bayes Text Classification. In Proceedings of the AAAI-98

Workshop on Learning for Text Categorization, Menlo Park, CA, USA, 26–27 July 1998; Volume 752, p. 307. [CrossRef]
12. Murata, N.; Yoshizawa, S.; Amari, S. Network information criterion-determining the number of hidden units for an artificial

neural network model. IEEE Trans. Neural Netw. 1994, 5, 865–872. [CrossRef] [PubMed]
13. Du, W.S.; Hu, B.Q. Approximate distribution reducts in inconsistent interval-valued ordered decision tables. Inf. Sci. 2014, 271,

93–114. [CrossRef]
14. Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random

forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 2017, 151, 147–160.
[CrossRef]

15. Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.-T. A review of clustering techniques
and developments. Neurocomputing 2017, 267, 664–681. [CrossRef]

https://www.computerweekly.com/es/definicion/Inteligencia-artificial-o-IA
https://www.computerweekly.com/es/definicion/Inteligencia-artificial-o-IA
http://doi.org/10.1016/j.ijinfomgt.2019.01.021
http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1109/ACCESS.2017.2756872
http://doi.org/10.1007/s12652-015-0270-2
http://doi.org/10.3115/1067807.1067848
http://doi.org/10.1109/72.329683
http://www.ncbi.nlm.nih.gov/pubmed/18267861
http://doi.org/10.1016/j.ins.2014.02.070
http://doi.org/10.1016/j.catena.2016.11.032
http://doi.org/10.1016/j.neucom.2017.06.053


Sensors 2022, 22, 3401 31 of 37

16. Jones, F.W.; McLaren, I.P.L. Rules and associations. In Proceedings of the Twenty First Annual Conference of the Cognitive
Science Society, Vancouver, BC, Canada, 23 December 2020; Psychology Press: East Sussex, UK, 2020; pp. 240–245.

17. Van Der Maaten, L.; Postma, E.; Van den Herik, J. Dimensionality reduction: A comparative. J. Mach. Learn. Res. 2009, 10, 13.
18. Divina, F.; Gilson, A.; Goméz-Vela, F.; García Torres, M.; Torres, J.F. Stacking Ensemble Learning for Short-Term Electricity

Consumption Forecasting. Energies 2018, 11, 949. [CrossRef]
19. Sewell, M. Ensemble learning. RN 2008, 11, 1–34.
20. Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R.P.; Song, Q. Boosting: An ensemble learning tool for compound classification

and QSAR modeling. J. Chem. Inf. Modeling 2005, 45, 786–799. [CrossRef] [PubMed]
21. Shen, Y.; Chen, T.; Xiao, Z.; Liu, B.; Chen, Y. High-Dimensional Data Clustering with Fuzzy C-Means: Problem, Reason, and

Solution. In Proceedings of the International Work-Conference on Artificial Neural Networks, Virtual Event, 16–18 June 2021;
Springer: Cham, Switzerland, 2021; pp. 89–100.

22. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
23. Kaur, M.; Kaur, G.; Sharma, P.K.; Jolfaei, A.; Singh, D. Binary cuckoo search metaheuristic-based supercomputing framework for

human behavior analysis in smart home. J. Supercomput. 2019, 76, 2479–2502. [CrossRef]
24. Althöfer, I.; Koschnick, K.U. On the convergence of “Threshold Accepting”. Appl. Math. Optim. 1991, 24, 183–195. [CrossRef]
25. Moscato, P.; Cotta, C.; Mendes, A. Memetic algorithms. In New Optimization Techniques in Engineering; Springer: Berlin/Heidelberg, Germany,

2004; pp. 53–85.
26. Wesselkamper, J. Fail-Safe MultiBoot Reference Design; XAPP468; Xilinx: San Jose, CA, USA, 2009.
27. Salcedo-Sanz, S.; Cuadra, L.; Vermeij, M. A review of Computational Intelligence techniques in coral reef-related applications.

Ecol. Inform. 2016, 32, 107–123. [CrossRef]
28. Krause, J.; Cordeiro, J.; Parpinelli, R.S.; Lopes, H.S. A survey of swarm algorithms applied to discrete optimization problems.

In Swarm Intelligence and Bio-Inspired Computation; Elsevier: Amsterdam, The Netherlands, 2013; pp. 169–191.
29. Kumar, M.; Husain, M.; Upreti, N.; Gupta, D. Genetic Algorithm: Review and Application. 2010. Available online: https:

//papers.ssrn.com/sol3/papers.cfm?abstract_id=3529843 (accessed on 30 October 2021).
30. Glover, F.; Laguna, M.; Martí, R. Scatter search. In Advances in Evolutionary Computing; Springer: Berlin/Heidelberg, Germany,

2003; pp. 519–537.
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