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Abstract
Aseisimic earth fissures are complex consequences of groundwater withdrawal and natural hydrogeologic conditions. This

paper aims to improve the understanding of the mechanism of earth fissuring and investigate the relative importance of

various factors to fissure activity, including bedrock geometry, piezometric depletion, compressibility and thickness of the

exploited aquifer. For these purposes, a test case characterized by an impermeable and incompressible rock ridge in a

subsiding basin is developed, where stress/displacement analyses and fissure state are predicted using an interface-finite

element model. Three different methods for global sensitivity analysis are used to quantify the extent of the fissure opening

to the aforementioned factors. The conventional sampling based Sobol’ sensitivity analysis is compared to two surrogate

based methods, the general polynomial chaos expansion based Sobol’ analysis and a feature importance evaluation of a

gradient boosting decision tree model. Numerical results indicate that earth fissure is forming in response to tensile stress

accumulation above the ridge associated to pore-pressure depletion, inducing the fissure opening at land surface with

further downward propagation. Sensitivity analysis highlights that the geometry of bedrock ridge is the most influential

feature. Specifically, the fissure grows more when the ridge is steeper and closer to the land surface. Pore pressure depletion

is a secondary feature and required to reach a certain threshold to activate the fissure. As for this specific application, the

gradient boosting tree is the most suitable method for its better performance in capturing fissure characteristics.
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1 Introduction

Aquifer over-exploitation has led to land deformation in

several semiarid basins worldwide and land subsidence is

one of the major impacts on the earth surface. However, in

certain cases, the accumulated deformation results in earth

fissuring. This geological hazard has caused negative

impacts on economic activities, social security, and envi-

ronment protection, thus raising greater attention in the last

decades. So far, land subsidence can be accurately simu-

lated and predicted by numerical models (Janna et al 2012;

Teatini et al 2005; Ye et al 2016), whereas the mechanism

of earth fissure is more complex and difficult to simu-

late (Budhu 2011; Hernandez-Marin and Burbey 2010;

Ochoa-González et al 2018). Different hydrogeological

settings favoring the occurrence of earth fissures have been

conceptualized based on field studies, including buried

undulating bedrock, pre-existing fault and abrupt hetero-

geneous thickness of aquifer (Sheng and Helm 1998;

Sheng et al 2003). The features of the earth fissures such as

density, shape, length, aperture, depth, and dislocation vary

greatly in different settings, which also implies different

driving mechanisms.

This work aims to improve the understanding of the

earth fissure mechanism with the presence of buried
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bedrock ridges in subsiding basins. Knowledge of the

mechanisms driving these hazards may help to predict and

therefore limit significant damages to buildings, streets,

highways, railroads, earth dams, water wells, and other

engineering structures. Note that earth fissures that coin-

cide with fault scarps and abrupt thickness change may also

be related to seismicity (Carreón-Freyre et al 2016; Peng

et al 2013), but this is beyond the scope of this work.

Modelling the behavior of earth fissure requires a deep

understanding of contact mechanism and various numerical

methods were developed to delineate the physics of this

problem (Hernandez-Marin and Burbey 2010; Liu et al

2019; Wang et al 2015). The FE-IE (finite element-inter-

face element) numerical method developed by Frances-

chini et al (2016) is a prominent approach which exhibits

stable and accurate performances on quantifying fissure

characteristics (Franceschini et al 2019; Frigo et al 2019;

Ye et al 2018; Li et al 2021). In this study, it is adopted to

simulate the fissuring process in a subsiding basin with

buried bedrock ridges.

The complexity of these systems typically give rise to

many uncertainties due to the geologic configuration, the

pore-pressure distribution, the hydro-geomechanical

parameters along with the mathematical and numerical

approximation of the physical problem (Frigo et al 2019;

Sheng et al 2003). In this context, a global sensitivity

analysis (GSA) is fundamental to evaluate the suscepti-

bility of input variables to fissure formation and propaga-

tion, considering their possible mutual interactions (Iooss

and Le Maı̂tre 2015; Saltelli and Annoni 2010). A vari-

ance-based GSA is employed based on the functional

decomposition of the output variance, providing the Sobol’

indices that quantify the input contribution to the output

variance (Sobol’ 1993, 2001).

First, we compute the indices using an efficient Monte

Carlo sampling design, employing the Sobol’ sequence to

generate a uniformly distributed sample over the uncertain

input domain (Sobol’ et al 2011). However, a large number

of samples are needed, in particular when interaction fac-

tors are investigated. This means a computationally pro-

hibitive cost for large scale models, as it is the case of earth

fissure modelling. For this reason, the use of surrogate (or

proxy) models, which are approximations of the forward

model built from a limited number of runs of the full

model, is seen as a prominent approach to reduce the

overall computational cost of the sensitivity analysis.

Among surrogate methods, polynomial chaos expansion

(GPC) is a probabilistic method which uses orthogonal

polynomial projections of the input random variables to

build the stochastic model output (Ghanem and Spanos

1991). This technique provides a straightforward way to

derive Sobol’ indices from model representation coeffi-

cients (Crestaux et al 2009). Thanks to these advantages,

GPC surrogates have been recently applied for GSA in

environmental modelling (Ciriello et al 2013; Couaillier

and Savin 2019; Friedman et al 2021; Sochala and Le

Maı̂tre 2013; Kaintura et al 2018; Zoccarato et al 2020).

However, difficulties may rise when the quantity of

interest presents some discontinuities with respect to the

model parameters (Sochala and Le Maı̂tre 2013; Le Maı̂tre

et al 2004). In case of earth fissuring simulation, this

occurrence occurs when the discontinuity develops within

the continuous porous medium. To overcome this problem,

we elected to employ a decision tree-based method such as

the gradient boosting tree (GBT) that uses an ensemble of

decision trees to approximate the solution, in particular for

non-linear models with arbitrary inputs (Friedman 2001;

Louppe 2014). Although tree-based models are considered

as ‘‘black box’’, many interpretation methods, such as

Shapley Additive Explanations and Mean Decrease Accu-

racy (MDA) were designed to assess feature importance

according to their relevance for the corresponding estima-

tor, similarly to the key insights of GSA (Arabameri et al

2022; Breiman 2001; Carvalho et al 2019; Lundberg and

Lee 2017).

The paper is structured as follows. At the beginning a

brief background of the geomechanical modelling

approach is provided. Then, the GPC and GBT methods are

described with their corresponding importance indices

(Sobol’ and MDA). The setup of forward model and

parameterization of interest are presented in the next sec-

tion. The results of the numerical simulations and the sta-

tistical analyses are then discussed in detail with a list of

main conclusions that close the paper.

2 Numerical model

The numerical model consists of a continuous model and a

contact mechanism model, where the former provides the

stress field analysis while the latter describes the generation

and propagation of fissures. Note that when the fissure

location is unknown, the stress field is fundamental to

identify the potential location.

2.1 Continuum model

Stress and strain fields caused in a 3D continuous porous

medium X are quantified by means of the classical

poroelasticity theory (Biot 1941). The governing equations

read:

�div r ¼ 0 ð1Þ

where r ¼ C : rsu� b p 1ð Þ is the total Cauchy stress

tensor, with rs ¼ 1
2
rþrTð Þ the symmetric gradient
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operator, C the rank-4 elasticity tensor, b the Biot coeffi-

cient, and 1 the rank-2 identity tensor. The displacement

field u is the primary unknown. The pore pressure p is a

known forcing term, either imposed according to previous

physical knowledge and measurements or provided by a

groundwater flow model (Ye et al 2018).

Without loosing the general validity of the approach, the

constitutive relationship between stresses and strains used

in this study is assumed linear elastic. Consequently, the

soil compressibility Cm and Poisson ratio m are constant and
do not vary with the pressure (i.e., stress) change. More-

over, as usually implemented in the geomechanical appli-

cation related to aquifer over-exploitation (Hernandez-

Marin and Burbey 2012; Ye et al 2016; Zhu et al 2020),

the small strain hypothesis is adopted. A tetrahedral finite

element (FE) discretization is used.

The stress analysis in the continuous model is used to

locate the zones where shear and tension accumulate, i.e.

they are more prone to fissuring. These are the sites where

the earth fissure model is ‘‘inserted’’ to check the actual

occurrence of discontinuity development and growth.

2.2 Earth fissure (EF) model

From a mathematical standpoint, a geological discontinuity

such as an earth fissure can be represented as a pair of

friction surfaces, possibly in contact with each other,

embedded within X. The model must ensure the normal

contact constraint, namely the impenetrability of the two

portions of the porous body detected by the discontinuity.

The discrete fracture model proposed by Karimi-Fard

et al (2003) and Garipov et al (2016) is used to describe the

contact mechanics. More specifically, we take advantage of

the model implementation proposed by Franceschini et al

(2016) and Franceschini et al (2019) where the fracture

network is discretized by interface elements (IEs), which

are zero-thickness FEs with shape functions compatible to

those of the surrounding FEs.

The fissure is considered as a boundary Cf within X,

with a contact condition acting on the opposed surfaces C1
f

and C2
f that allows for a relative displacement (opening and

sliding) between corresponding points whenever the stress

state violates a certain failure criterion. In this modeling

approach we elect to rely to a failure criterion based on the

classical Mohr-Coulomb framework, which imposes the

following condition on C1
f and C2

f :

f ðtÞ ¼ tTk k2�ðc� tN tanðuÞÞ� 0 ð2Þ

where t ¼ r � n is the contact stress, with tT ¼ t� tNn and

tN ¼ t � n the tangential and normal components, respec-

tively. The unit vector n denotes the normal vector for the

surface pair C1
f and C2

f . In the Coulomb criterion, c and u

are the cohesion and friction angle, respectively. The

impenetrability of solid bodies is prescribed by the normal

contact condition:

tNgN ¼ 0 ð3Þ

where gN is the normal component of g, i.e. gN ¼ g � n,
representing the relative displacement between C1

f and C2
f .

g is defined as:

g ¼ gNnþ gT ¼ sut ¼ ujC1
f
� ujC2

f
ð4Þ

where u is the global displacement in X, as consistently

computed through Eq. (1), and ujCi
f
the restriction to Ci

f .

The application of the friction law (Eq. (2)) and the

principle of impenetrability of solid bodies (Eq. (3)) sub-

divide the inner boundary Cf into three portions:

1. f\0 and tN\0: the fissure is in a stick state, i.e. the

discontinuity is fully closed and behaves as a part of

the continuum;

2. f ¼ 0 and tN\0: the fissure is in a slip state, i.e. a slip

displacement is freely allowed at a fixed tangential

traction smax ¼ c� tN tanðuÞ;
3. tN ¼ 0: the fissure is in a open state, i.e. both opening

and slip displacements are freely allowed with zero

traction.

The main challenges to find the solution in terms of u and t

is the identification of stick, slip and open portions of the

fissure surfaces. While the maximum extent of the fissure is

fixed during the discretization phase, corresponding to the

whole surface discretized through IEs, the subdivision into

the three different states and the corresponding constraints

evolve during the simulation. Details about the discretiza-

tion and solution strategy can be found in Franceschini

et al (2016) and Franceschini et al (2019).

3 Sensitivity analysis

A sensitivity analysis framework is implemented to

investigate the most important factors (and their interac-

tions) controlling earth fissuring in subsiding basis. In this

section, we first provide the mathematical framework of

two different types of surrogate models (GPC and GBT)

used to reduce the computational burden by approximating

the full forward model. Then, Sobol’ indices for sensitivity

analysis are introduced with specific reference to their

numerical computation based on Sobol’ and GPC approa-

ches. For GBT, the mean decrease accuracy metric (MDA)

is presented as a measure of the relative factor importance.

The notion of partial dependence is also introduced to

characterize the dependence of the model response on

individual factors.
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3.1 Surrogate models

3.1.1 Generalized polynomial chaos expansion (GPC)

Running the forward geomechanical model multiple times

for large and complex systems can be a very demanding

task, both in terms of CPU and memory requirements.

A GPC approach (Wiener 1938; Xiu 2007) is therefore

proposed to approximate the outcome of the deterministic

simulator as a function of the uncertain input parameters

with the help of polynomials. With such approximation,

propagation of the input uncertainties to the model output

can be efficiently computed and statistics such as mean,

variance, and quantiles can be easily determined.

The main idea of GPC surrogate models is based on

using orthogonal polynomial approximations of the random

input to project the stochastic model output. In the fol-

lowing, we provide the basic mathematical framework as

derived in Xiu (2007). Let us consider the random model

output U 2 R written as a function of the random vector Z

of n mutually independent random variables Z ¼
ðZ1; . . .; ZnÞ and distribution function FZðz1; . . .; znÞ ¼
PðZ1 � z1; . . .; Zn � znÞ. We are considering a stochastic

process in the probability space (X,F ,P) with space of

events X, r-algebra F and probability measure P on F , see

e.g. Xiu (2010). Z can directly be the vector of the input

random variables, or more usually a set of independent

random variables, the so called ’germs’, by which the input

variables can be described.

As usual, the independence assumption implies

FZðzÞ ¼
Qn

i¼1 FZiðziÞ, where FZiðziÞ ¼ PðZi � ziÞ is the

marginal distribution function with i ¼ 1; . . .; n. Since any

random variable may be represented as a series of poly-

nomials in uncorrelated and independent Gaussian vari-

ables (Wiener 1938) and, in its generalized extension, in

non-Gaussian measures, GPC basis functions of a uni-

variate random variable Zi are defined as the polynomials

f/kðZiÞgNk¼0 of Nth-degree satisfying the orthogonality

conditions:

E½/sðZiÞ/rðZiÞ� ¼
Z

Ri

/sðziÞ/rðziÞdFZiðziÞ ¼ csds;r

0� s; r�N

ð5Þ

with cs ¼ E½/2
s ðZiÞ� the normalization factors, ds;r the

Kronecker delta function and Ri is the support of Zi. In the

multivariate case, the GPC basis functions UaðZÞ of degree
up to N are products of the univariate orthogonal

polynomials:

UaðZÞ ¼ /a1ðZ1Þ. . ./anðZnÞ with 0� jaj �N ð6Þ

where a ¼ ða1; :::; anÞ 2 Nn
0 is a multi-index with

jaj ¼ a1 þ . . .þ an. The multivariate basis functions are

orthogonal polynomials in L2dFz
, that is, the space of all

mean-square integrable functions of Z with respect to the

inner product based on the measure dFZ :

E½UaðZÞUvðZÞ� ¼
Z

R
UaðzÞUvðzÞdFZðzÞ ¼ cadav ð7Þ

where R is defined by R ¼ R1 � R2. . .� Rn. As a conse-

quence, the class of orthogonal polynomials is selected

according to the measure FZi .

In the GPC context, we aim at finding an approximation
~UGPC;NðZÞ of the random function UðZÞ 2 R in the N-th

degree polynomial space generated by the basis functions

UaðZÞ:

UðZÞ � ~UGPC;NðZÞ ¼
X

jaj �N

caUaðZÞ ð8Þ

where ca are the coefficients of the expansion. For

UðZÞ 2 L2dFz
, the coefficients ca can be computed by

defining ~UGPC;N as the orthogonal projection of U onto the

polynomial space Z ¼ spanfUag. By prescribing the

orthogonality condition U � ~UGPC;N ? spanfUag:
Z

R
UðZÞ � ~UGPC;NðZÞ
� �

UadFZ ¼ 0 ð9Þ

The coefficients ca read:

ca ¼
1

ca
E½UðZÞUaðZÞ� ¼

1

ca

Z

R
UðzÞUaðzÞdFZðzÞ jaj �N

ð10Þ

i.e., they can be computed by numerically evaluating the

integral of the product of Ua and U. The expansion terms of

Eq. (10) guarantees the optimal approximation of U in the

sense of the norm defined in L2dFZ
.

The coefficients ca of the approximating GPC are

numerically computed by a non-intrusive approach, that is

without having to touch the finite element computation,

and computing the coefficients only from samples zj of the

parameters Z and the corresponding UðzjÞ values. We use a

pseudospectral projection, with the integral term approxi-

mated by a high-dimensional quadrature rule:

ca � ~ca ¼
Xq

j¼1

UðzjÞUaðzjÞwðzjÞ ð11Þ

with zj and wðzjÞ the q integration nodes and weights,

respectively. Since Ua is at most of degree N, the integrand

function has at most degree 2N. In the univariate case, this

requires the use of a ðq ¼ N þ 1Þ-point Gaussian quadra-

ture rule, while in the multivariate case with n random

variables the number of points grows up to q ¼ ðN þ 1Þn.
Using this approximation, the surrogate model needs the
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evaluation of U through the numerical solver of the for-

ward model at the q integration points zj.

Another approach to compute the coefficients ca of the

expansion is by regression, that is, by minimizing the

(unweighted) mean squared L2 error

Xq

j¼1

UðzjÞ � ~UGPC;NðzjÞ
� �2¼

Xq

j¼1

UðzjÞ �
X

jaj �N

caUaðzjÞ

0

@

1

A

2

ð12Þ

of the expansion. The sum attains its minimum, where the

gradient is zero, that is, where

�2
Xq

j¼1

UðzjÞ �
X

jaj �N

caUaðzjÞ

0

@

1

AUbðzjÞ ¼ 0 ð13Þ

for all jbj\N. The system of equations can be solved for

the coefficients ca.

3.1.2 Gradient boosting tree (GBT)

Convergence of the GPC approximation is especially

favorable when the dependence of the model output on the

given uncertain input parameters have sufficient smooth-

ness. As this is not necessarily the case for the given

geomechanical model, we have also tested a gradient

boosting tree (GBT) approximation of the model output to

explore the relationship between the input parameters and

the model output.

Given that the model output U is a function of the input

variables Z ¼ ðZ1; . . .; ZnÞ, gradient boosting method

assumes that the approximation ~UGBTðZÞ is represented by

an ensemble of base learners (e.g., weak basic models)

which minimizes the average value of a specified loss

function LðUðZÞ; ÛðZÞÞ such that:

~UGBTðZÞ ¼ argmin
ÛðZÞ

E½LðUðZÞ; ÛðZÞÞ� ð14Þ

evaluated at the sample points, where ÛðZÞ is the predicted
values of the observed values U and can be written in the

form:

ÛðZÞ ¼
XM

m¼0

bmhmðZÞ ð15Þ

with hmðZÞ the base learner at m-th stage of the boosting

algorithm characterized by a fixed size of stages M. In

particular, GBT uses the decision tree as base learner, thus

hmðZÞ can be written as:

hmðZÞ ¼
XIm

i¼1

bim1Rim
ð16Þ

where Im refers to the number of leaves at stage m, sub-

script i is the index for each leaf in the tree, bim is the

predicted value of the terminal region Rim with 1Rim
the

indicator function, which takes value 1 if Z lies in the

subset Rim otherwise takes value 0. Then, a steepest descent

step is commonly applied to fit hmðZÞ to the pseudo-

residuals rjm with the training setfðzj;UðzjÞÞgqj¼1, i.e.,

intermediate error terms at m-th stage, for j-th sample point

ðzj; rjmÞ:

Lj ¼
1

2
ðUðzjÞ � Ûm�1ðzjÞÞ2 ð17Þ

rjm ¼� oLj

oÛm�1

¼ UðzjÞ � Ûm�1ðzjÞ ð18Þ

where the mean squared error (MSE) is used as loss

function. Afterwards, the expansion coefficient bm can be

optimized:

bm ¼ argmin
b

Xq

j¼1

½UðzjÞ � ðÛm�1ðzjÞ þ bhmðzjÞÞ� ð19Þ

Therefore, the model can be updated by:

ÛmðZÞ ¼ Ûm�1ðZÞ þ bmhmðZÞ ð20Þ

Moreover, regularization methods impose the constrains on

fitting procedure to prevent the overfitting, that is when the

surrogate model exactly describes the training data and

fails to fit unseen data. For example, the maximum stage of

gradient boosting M in Eq. (15) is a natural regularization

parameter which discourages learning more complex

model to avoid overfitting. However, it has been found that

regularization through shrinkage provides superior results

to that obtained by restricting the maximum stage (Copas

1983), hence a simple shrinkage strategy is added to

Eq. (20):

ÛmðZÞ ¼ Ûm�1ðZÞ þ mbmhmðZÞ ð21Þ

Under this form, two regularization parameters are used in

the gradient boosting algorithm: the learning rate m and the

number of boosting stage M.

3.2 Variable importance metrics

3.2.1 Variance-based Sobol’ indices

Consider the model under investigation is described as a

function U ¼ f ðZÞ, where U is a scalar and the input Z ¼
ðZ1; Z2; . . .ZnÞ is defined over the n-dimensional hypercube

In with mutually independent components. Assuming U to
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be a square integrable function, the Sobol’ functional

decomposition scheme reads:

f ðZÞ ¼ f0 þ
Xn

i¼1

fiðZiÞ þ
Xn

i¼1

Xn

j[ i

fijðZi; ZjÞ þ . . .

þ f12...nðZ1; Z2; . . .; ZnÞ
ð22Þ

where each term is square integrable over In and mutually

orthogonal. The terms in the decomposition may be derived

by:

f0 ¼ EðUÞ

fi ¼ EZ� i
ðUjZiÞ � EðUÞ

fij ¼ EZ� ij
ðUjZi; ZjÞ � fi � fj � f0

ð23Þ

and similarly for higher degree terms. In Eq. (23) EZ� i

denotes the expected value over all elements of the

parameters Z except the i-th one.

The decomposition allows to attribute the variances to

the different parameters or their various degree interac-

tions. These can be given by the partial variances:

Vi ¼ VarðfiðZiÞÞ

Vij ¼ VarðfijðZi; ZjÞÞ
ð24Þ

and similarly for higher order terms. With the help of the

partial variances, the total variance can be decomposed:

VarðUÞ ¼
Xn

i¼1

Vi þ
Xn

i¼1

Xn

j[ i

Vij þ . . .þ V12...n ð25Þ

The variance based sensitivity is described by the ratio of

the partial variances and the total variance. The first and

second-order Sobol’ indices are defined as:

Si ¼
Vi

VarðUÞ

Sij ¼
Vij

VarðUÞ

ð26Þ

and similarly for the higher order sensitivity indices. The

first order indices fSigni¼1 measure the effect on the output

variance of factor Zi alone. Higher-order indices represents

the combined effect of the group of factors Z1; Z2; . . .; Zn on
the variance of the model output.

Another sensitivity measure is the total index of the i-th

factor:

STi ¼ 1� VarZ� i
ðEZiðUjZ� iÞÞ
VarðUÞ ð27Þ

where VarZ� i
ðEZiðUjZ� iÞÞ can be regarded as the first

order index of Z� i, so that STi measures the contribution to

the output variance of all terms which contain factor Zi.

These indices can be calculated by Monte Carlo

method (Saltelli 2002; Saltelli and Annoni 2010). The

procedure is as follows. Generate q� 2n sample matrix of

the input random variables Z. The first n columns are

gathered as matrix A and the second n columns are used

similarly as matrix B. From these two matrices we generate

n further q� n matrices AB
i by taking matrix A and

replacing its i-th column with the corresponding column of

B. The estimators:

ViðEZ� i
ðUjZiÞÞ �

1

q

Xq

j¼1

f ðBÞjðf ðAB
iÞj � f ðAÞjÞ

EZ� i
ðVZiðUjZ� iÞÞ �

1

2q

Xq

j¼1

ðf ðAÞj � f ðAB
iÞjÞ

2

ð28Þ

used in Eqs. (26) and (27) allow to compute the indices Si
and STi.

In this work, we use the Sobol’ sequence, i.e., a quasi-

random low discrepancy sequence, to generate the samples

zj (Saltelli 2002; Saltelli and Annoni 2010). The difference

with the ordinary Monte Carlo is that quasi-Monte Carlo

substitutes random points with low discrepancy sequences,

thus improving the convergence of the estimator. The main

problem with this sampling-based method is the cost of

computing f ðAB
iÞ. Instead, by using the GPC or GBT

surrogates as model proxy, the model output can be

directly computed from the proxy model in a computa-

tionally cheap manner.

One of the great advantages of the GPC surrogate model

is that the Sobol’ indices can be computed analytically

without using the sampling based approximation given in

Eq. (28). Due to the orthogonality condition, the mean and

the total variance of the GPC can be directly computed

from the coefficients of the expansion as follows:

Eðf ðZÞÞ �Eð ~f Þ ¼ cajjaj¼0; ð29Þ

Varðf ðZÞÞ �Varð ~f Þ ¼
X

0\jaj �N

c2aca: ð30Þ

According to Sudret (2008), if we introduce the set of a

tuples J i1;...;is such way that only the indices ði1; . . .; isÞ are
nonzero:

J i1;...;is ¼ a :
ak [ 0 8k ¼ 1; . . .; n; k 2 ði1; . . .; isÞ
aj ¼ 0 8k ¼ 1; . . .; n; k 62 ði1; . . .; isÞ

� �

;

ð31Þ

than J i is defined as a set of all multi-indices that corre-

sponds to the polynomials depending only on parameter Zi.

Consequently, the Sobol’ decomposition (see Eq. (22)) of

the GPC approximation is straightforward:
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~f ðZÞ ¼f0 þ
Xn

i¼1

X

a2J i

caUaðZiÞ

þ
X

1� i1\i2 � n

X

a2J i1 ;i2

caUaðZi1 ; Zi2Þ

þ . . .þ
X

a2J 1;2;...;n

caUaðZ1; Z2; . . .; ZnÞ

ð32Þ

and thus any element of the decomposition can be written

as:

fi1;...is ¼
X

a2J i1 ;...;is

caUaðZi1 ; . . .ZisÞ ð33Þ

The partial variances can be also easily computed from:

Vi1;...is ¼ Var
X

a2J i1 ;...;is

caUaðZi1 ; . . .ZisÞ

0

@

1

A ¼
X

a2J i1 ;...;is

c2aca

ð34Þ

that is, the coefficients corresponding to the polynomials

that have dependence only on the selected variables have to

be collected, squared, multiplied with its norm and sum-

med up. For the sensitivity index this expression has to be

divided by the total variance given in Eq. (30).

3.2.2 Mean decrease accuracy (MDA)

For the GBT surrogate model instead of computing the

Sobol’ indices with the help of the MC estimation, we use a

different sensitivity measure that can be efficiently com-

puted by GBT models. Each feature importance is here

evaluated through a permutation-based measure following

the idea of Breiman (2001) and the application in Jaxa-

Rozen and Kwakkel (2018). Given the q� n matrix A of

the random input variables Z, the MDA index of the i-th

feature measures the decrease of the estimator accuracy by

randomly permuting the values of Zi (i-th column of input

variables matrix) for K times in total and for each repetition

re-computing the ensemble tree predictions with the k-th

(for k ¼ 1; . . .;K) permuted column Ai . The higher the

inaccuracy, the most important is the feature for the par-

ticular model. MDA of the i-th feature is defined as

MDAi ¼ s� 1

K

XK

k¼1

sk;i ð35Þ

where s is the reference score and sk;i the score for the k-th

permutation of feature Zi, where the score is obtained by

computing the mean square error between predictions and

observations. The feature is important if permuting its

values causes a large drop on the model performance.

3.3 Convergence criterion of importance indices

Here we apply the convergence criterion proposed by

Roustant et al (2014) to evaluate the stability of the

important indices. The vector Vq ¼ ðv1; . . .; vnÞ of the

variable importance indices is estimated from a sample size

of q observation points, where n is the number of input

features. Specifically, the Euclidean norm of the vector is

taken into account rather than the individual indices so that

the more influential indices have more effect on the con-

vergence measurement. The importance indices are com-

puted sequentially over an increasing sample size at

intervals of Dq. Then the convergence criterion kq is

computed by:

kq ¼
1=t

Pt
i¼1 kVq � Vq�iDqk

kVqk
ð36Þ

where k k is the Euclidean norm and t is the number of

total intervals. The values of Dq and t are case-dependent.

This criterion will be imposed on the total Sobol’ indices

ST and MDA.

3.4 Partial dependence

Compared to Sobol’ indices and MDA, partial dependence

is more similar to one-at-a-time (OAT) sensitivity analysis,

which assumes the model response is a function of one or

two input variables and characterizes the average marginal

effect on model prediction (Goldstein et al 2015). Owing to

this feature, partial dependence plot can visually depicts

the relationship between model prediction and the variables

of interest. The partial dependence function ~Ui reads:

~Ui zið Þ ¼ EZj
~U zi;Zj

� �� �
¼

Z
~U zi;Zj

� �
dP Zj

� �
ð37Þ

where zi and Zj are respectively the feature set of interest

and complement used in the surrogate models ~U. Gener-

ally, zi accounts for two components at most. The partial

dependence can be computed by a Monte or quasi Monte

Carlo method with the help of a surrogate model.

3.5 Software availability

In this work, the forward geomechanical models are carried

out by the GEPS3D simulator (Isotton et al 2019;

Franceschini et al 2016). The reference global sensitivity

analysis, that is Sobol’ technique, is implemented by the

SALib library in Python environment (Herman and Usher

2017). SGLib library (Zander 2020; Friedman and Zander

2020) is used to compute the polynomial chaos expansion

and Sobol’ indices (Vittek et al 2006). Gradient boosting

tree algorithm and mean decrease accuracy computation
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are carried out by the scikit � learn module in Python with

gradient boosting regression estimator and permutation

feature importance function (Pedregosa et al 2011).

4 Model setup and parameterization

The investigated configuration conceptualizes the geolog-

ical setting in Wuxi, China, where the compressible

deposits of the Yangtze River cover an undulating bedrock.

The numerical simulation is developed on a quasi-3D

domain 2000-m long (x-direction), 50-m thick (y-direc-

tion), and 500-m deep (z-direction). A traction-free top

surface and a fixed bottom surface are considered (Fig. 1).

On the lateral surfaces the horizontal displacements are

precluded in the orthogonal direction. The conceptual

model is composed of three hydrostratigraphic units: an

upper aquitard, a bottom aquifer, and a buried triangular

bedrock. For sake of simplicity, each material is assumed

to behave elastically with the same Poisson ratio m ¼ 0:25.

Cohesion c and friction angle u are set equal to 0.01 MPa

and 30	 respectively. A piezometric drop linealy varies

from 0 to Dp in 10 years and is uniformly assigned to the

bottom aquifer, meanwhile the upper aquitard is regarded

as an hydraulically ‘‘inactive’’ unit where the pore pressure

propagation from the underlying sandy layer is negligible.

The initial stress field is computed based on the gradient

density (rv ¼ 1200 kg/m2/m) and the minimum-to-maxi-

mum stress ratio reads rh=rv ¼ m=ð1� mÞ.
The vertical size of tetrahedral FE elements is 10 m and

the horizontal dimension is in range between 5.5 and 20 m,

slightly varying according to the ridge geometry. Previous

studies have proved that earth fissures are most prone to

generate from the ground surface above the ridge tip

downward, with a stress state characterized by high tension

above the ridge (Ye et al 2018; Frigo et al 2019). More-

over, fissures cannot propagate within the bedrock where

pressure does not change and the stress field variation is

negligible. Therefore, a IE alignment is vertically intro-

duced from the land surface to the ridge tip as highlighted

by the white line in Fig. 1. The triangular IE discretization

is consistent with FE discretization. Stress distribution and

magnitude depend on the ridge geometry, the aquifer

thickness, and differential subsidence. This latter is pri-

marily dependent on the pore pressure change and sedi-

ment compressibility. Therefore, these four variables, i.e.

ridge geometry, aquifer thickness, pressure change and

sediment compressibility, are selected as input features for

GSA.

Here, the ridge geometry is characterized by the slope of

the bedrock ridge (tan h). Note that the length of ridge

basement is fixed at 500 m. The fraction of the aquifer

thickness over the domain thickness (500 m) is denoted f.
The selected ranges for tan h and f are determined by the

domain dimensions and discretization. The bounds for the

aquifer compressibility (Cm) and the maximum piezometric

decline (Dp) are based on available literature data on

exploited aquifer systems (Burbey 2002; Conway 2016;

Ochoa-González et al 2018; Ye et al 2018; Zhu et al

2020). The piezometric decline reaches the maximum

value with a linear behavior in 10 years. The variability

ranges of the parameters used in this study are summarized

in Table 1. A uniform probability distribution is assumed

for each variable.

5 Results

5.1 Deterministic model run

We randomly choose one experiment designed for GSA to

present the numerical outcomes. The simulated temporal

evolution of tensile stress on a vertical section of the

domain is shown in Fig. 2. Tensile stress rh initially

accumulates around the ridge tip. As piezometric level

declines, a tensile zone also occurs at the land surface

above the apex of ridge. Once tensile stress excesses the

tensile strength, i.e. tN ¼ 0 (see Sect. 2.2), IEs change from

a stick to an open state with the discontinuity that develops

at the land surface and propagates downwards. Simulta-

neously, tensile stress dissipates due to the crack opening.

Notice that the porous medium directly above the ridge tip

Fig. 1 FE grid of one numerical experiment in sensitivity analysis,

where tan h ¼ 1:2, f ¼ 0:65. The three colors (red, green and blue)

represent the hydrogeologic units. hr represents bedrock ridge height

which is the function of h. The IE alignment is highlighted by a white

line whose length equal to 500� hr
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does not experience any shear stress due to the symmetric

configuration. Therefore, only fissure opening develops

with this setting.

Figure 3 shows the evolution of the earth fissure as

provided by the IE model. Fissure initially originates at the

land surface where the tensile strength is the lowest and

later develops at depth too, just above the ridge tip, in

response to the concentration of tensile stress. The upper

fissure which initially is very narrow, keeps enlarging

horizontally and extending downwards as the aquifer

pressure continues to decrease. At the 10th year, i.e. in

correspondence of a piezometric decline in the confined

aquifer equal to 1 MPa, the fissure reaches a depth about

30 m with a maximum opening equal to 1.7 m at the land

surface and tapers with depth. Conversely, the bottom

discontinuity remains confined at the depth without a sig-

nificant development.

Generally, the energy is dissipated after fissuring mainly

at land surface. Moreover, the overburden stress due to

sediment load usually limits tensile fissuring at depth

(Budhu and Shelke 2008). Therefore, the bottom activated

zone is not included in the quantity of interest dact that is

defined as the fissure depth from the land suface. It is worth

mentioning that the size of activated depth is controlled by

the vertical length of the IE alignment, thus the relative

activated depth dr;act ¼ dact=ð500� hrÞ is introduced to

have comparable results when varying the model geometry

(Fig. 1). In this case, dr;act equals 0.132.

Table 1 Range of the input features for GSA: the four random vari-

ables tan h, f, Cm, and Dp are uniformly distributed

Feature Min. Max.

tan h 5:0� 10�1 1:9� 10�0

f 4:0� 10�1 9:0� 10�1

Cm (MPa�1Þ 5:0� 10�3 5:0� 10�2

Dp (MPa) �1:0� 10�0 0:0� 10�0

Fig. 2 Sequential evolution of

the dimensionless horizontal

stress r
h ¼ rh=Dp at the 5th,

8th and 10th years as simulated

with the EF model. The results

are obtained using tan h ¼ 1:2,

f ¼ 0:65, Cm ¼ 0:05 MPa�1

and Dp ¼ �0:89 MPa

Fig. 3 Sequential evolution of fissure opening at the 5th, 8th and 10th

years: opening gN (dotted black line), opening Copen and close Cstick

areas (red and blue zones) are provided. The results are obtained using

tan h ¼ 1:2, f ¼ 0:65, Cm ¼ 0:05 MPa�1 and Dp ¼ �0:89 MPa
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5.2 Approximation by surrogate models

5.2.1 GPC surrogate

The computation of the GPC coefficients has been initially

carried out by the pseudospectral approach (Eq. (11)) and

increasing step by step the GPC degree of the polynomial

response. The surrogate model ~UGPC is developed to

approximate dr;act with input parameters

Z ¼ ftan h; f;Cm;Dpg. The validation of the fitted surro-

gate model is carried out by employing 7000 samples, that

is the available set of points used to compute Sobol’ indices

with the quasi Monte Carlo approach. Moreover, train and

validation of the GPC surrogate is also obtained from the

7000 points using 80% for regression and the remaining

20% for validation.

The results are shown in Table 2 with the coefficient of

determination R2 used to assess the fit goodness of the

surrogate model to the full problem and computed by

means of the leave-one-out cross-validation. Increasing the

GPC degree both approaches, i.e. pseudospectral and

regression, provide similar results with increasing values of

the coefficient of determination R2. Obviously, the com-

putational cost of regression is much higher, in particular at

low GPC degrees. The maximum R2 is close to 0.80. A

visual comparison of the full model results and the surro-

gate solution is shown in Fig. 4a. The higher discrepancy is

obtained at the boundary of the solution where the surro-

gate solution provides results larger than 1.0 or lower than

0.0. These solutions correspond to the nonphysical

response meaning (i) a fissure reaches and propagates

within bedrock (dr;act [ 1.0) and (ii) a negative opening

(dr;act \ 0.0), representing non-penetration that is not

admitted by the model hypothesis (see Eq. (3)).

5.2.2 GBT surrogate

Gradient boosting algorithm is also implemented with

increasing size of input data to check the convergence,

thereof 80% is used to fit model with remaining 20% for

validation. Hyperparameter tuning is carried out by a Grid

Search method which enumerates all the possible combi-

nations of hyperparameters and gets optimal values based

on the corresponding coefficient of determination R2
GB. In

this application, only the learning rate m has been tuned

given it’s the most important hyperparameter for GBT

estimator(Probst et al 2019).

Table 3 shows the model goodness that stabilizes when

the data size reaches 5000. In addition to Sobol’ samples,

the Gauss points (4096) for the GPC method are also used

to validate the regression tree obtained from maximum

sample size (7000) (Fig. 4b). The regression tree also has

some nonphysical predictions (dr;act [ 1.0), however the

absolute values of discrepancy are much less than that of

GPC solutions. Moreover, R2
GB suggests GBT algorithm

outperforms GPC algorithm with respect to the prediction

accuracy (R2
GB=0.96 vs R2

RG=0.79). Nevertheless, both two

surrogate models fail to capture the characteristic that the

fissure opening depth dr;act keeps constant within some

q sub-domains irrespective of parameters variation.

5.3 Importance metrics

Sobol’ technique is chosen as the ‘‘reference’’ sensitivity

analysis with the input samples generated by the Sobol’

sequence. As mentioned in Sect. 5.2, these samples are

reused to train and validate GPC and GBT surrogates.

Knowing that the reliability of sensitivity measures

obtained by metamodels are dependent on their predictive

power, we can assure GPC and GBT are good surrogates

and the ‘‘overfitting’’ problem can be excluded according

to the R2 values obtained from the cross validation.

Figure 5 shows that Sobol’ and GPC methods estimate

similar results of first order indices Si and total Sobol’

indices (STi), with the GPC algorithm showing a quicker

convergence with respect to the quasi Monte Carlo method.

For each variable, Si accounts for the larger proportion of

the corresponding STi, indicating a minor contribution from

interactions between the i-th variable and the other input

factors. The second order indices from Sobol’ technique

and GPC, both computed with 7000 samples, are listed in

Table 4. It is evident the small interaction between input

factors. Note that Sobol’ technique gives some negative

indices for the non-influential terms indicating some

computation errors which could not be eliminated with the

current sample size (Herman and Usher 2017).

Table 2 Validation of the GPC at increasing value of the maximum

total degree of the GPC expansion

GPC degree N # Gauss points R2
PS

# Regression points R2
RG

2 81 0.64 5600 0.64

3 256 0.69 5600 0.68

4 625 0.72 5600 0.73

5 1296 0.77 5600 0.76

6 2401 0.78 5600 0.78

7 4096 0.79 5600 0.79

The coefficient of determination R2 is used to asses the goodness of

fit. R2
PS refers to GPC coefficients computed using the pseudospectral

approach through Gauss quadrature, whereas R2
RG is obtained by

regression. The number of points indicated are those used to train the

surrogate models
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Figure 6a depicts MDA importance indices obtained

from the GBT model with default repetition K ¼ 100. A

comparison with Sobol’ method measures is presented in

Fig. 6b. Note that Sobol’ indices and MDA importance

indices measure different quantities, thus a min-max scal-

ing for each value is employed for direct comparison of the

indices. According to Eq. (36), both GPC and GBT sur-

rogate models reach the convergence criteria kq\0:05 at

q ¼ 7000 (with Dq ¼ 2000 samples and t ¼ 3 intervals).

Conversely, the reference Sobol’ method fails to converge

at 7000 sample size which proves surrogate models can

reduce the overall computational cost of analysis with

respect to Sobol’ method. Moreover, GBT not only ranks

the variables in the same way as Sobol’ method but also

provides basically identical proportional indices with

respect to the total effect. The importance metrics obtained

from the three methods highlight the ridge geometry is the

most influential variable for the fissure opening, with the

pressure variation also having a non-negligible impact on

the fissure development. The contributions from the other

two variables are smaller.

5.4 Partial dependence

We also employ partial dependence to investigate the

surrogate model response to the variable changes(Fig. 7). A

number of 50 samples from the validation set are used to

illustrate how the model prediction to one variable chan-

ges, keeping fixed the other features. Note that each sample

is represented by one thin line. The thicker lines represent

the partial dependence calculated from the whole valida-

tion set (20% of 7000 samples). Although there are some

Fig. 4 Visual comparison

between the full model run and

the surrogate solutions. a GPC

model with regression, the blue

shaded areas imply nonphysical

solutions, i.e., dr;act larger than
1.0 representing a fissure thet

extends within the buried

bedrock, and lower than 0

indicating interpenetration of

solid bodies. b GBT model,

where the predictions are

basically within the rational

range

Table 3 Learning rate and validation of GBT at increasing sample

size

Sample size q Learning rate m R2
GB

1000 0.23 0.90

2000 0.14 0.94

3000 0.12 0.95

4000 0.16 0.95

5000 0.10 0.96

6000 0.10 0.96

7000 0.10 0.96
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discrepancies between GPC and GBT models results, the

trend of partial dependence for each variable is similar.

The impact is limited when tan h\1, however, once

exceeding 1.47, the relative activated depth boosts

significantly. The model response remains almost constant

until f[ 0:8 when the average line slope that abruptly

increases, although the contribution of thicker aquifers is

still limited. According to the gradient variation, dr;act is

more sensitive with Cm up to 0.02 MPa�1 and a larger

compressibility does not favor a much larger fissure

development. Dp causes a relative larger output variation

with respect to f and Cm, which is consistent with the

variable importance ranking. The slope of partial depen-

dence gently decreases when the absolute value of Dp
reduces.

Fig. 5 Sobol’ indices with

reference Sobol’ method (top

panels) and GPC (bottom

panels) method. Left panels

present the convergence of

Sobol’ total indices ST;i, with
the shaded areas in

a representing the 95%

confidence intervals of the

indices. The right panels shows

the relationships between first

order and total indices

Table 4 Second order indices with reference Sobol’ method and GPC

surrogate model

S12 S13 S14 S23 S24 S34

Sobol’ 0.013 0.033 0.059 -0.005 -0.005 0.010

GPC 0.026 0.020 0.070 0.002 0.017 0.007

Fig. 6 MDA metric with the

GBT method. a Convergence of

MDA and b comparison of total

effect between Sobol’ and GBT

methods. The importance

indices are obtained from the

sample size q ¼ 7000
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Fig. 7 Marginal effect of GPC

(left panel) and GBT (right

panel) methods on the model

parameters tan h, f, Cm, and Dp.
Each subplot contains 50

samples which are represented

by the thin lines. Partial

dependence is highlighted by

the thick line
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Based on these analyses, we conclude that the ridge

geometry and the pressure variation are the first and sec-

ondary variables influencing fissure generation and propa-

gation. Therefore, we plot the partial dependence of these

two variables as shown in Fig. 8. The outcomes of two

surrogate models are mainly consistent with respect to the

model output distribution. In general, the size of ridge

slope controls the upper limit of fissure opening. While a

certain amount of Dp is necessary for the fissure

occurrence.

6 Discussion

Earth fissuring accompanying differential subsidence

above buried bedrock ridges is becoming a worldwide

hazard. Since 1950s, this typical fissure occurrence has

been reported, for example, in Casa Grande in Arizona,

USA (Jachens and Holzer 1979), Yangzi Delta in China

(Wang et al 2010), Najran Basin in Saudi Arabia (Youssef

et al 2014). These studies have pointed out that fissure

formation is induced by groundwater depletion and buried

geological structures, but the undergoing physical process

is not well known owing to little information and limited

modelling technique.

The general consensus is that the pore pressure depletion

causes a variation of the in-situ stress field, which is

responsible for aseismic formation of earth fissures.

Opening and sliding are induced by tensile and shearing,

respectively (Hernandez-Marin and Burbey 2010; Budhu

2011). Here, we limit the investigation on the depth of the

fissure opening that occurs when the stress normal com-

ponent becomes greater than zero. This causes the van-

ishing of contact between the pair of surfaces constituting

the IEs inserted above the ridge tip. However, we are aware

of the possible formation of fissures due to sliding condi-

tion only, such as in the case addressed by Li et al (2021),

where multi-fissure formation is simulated for the hydro-

geologic setting at Guangming village, Wuxi, China. These

are more complex cases, where discontinuities develop

where the stress field reaches the yield surface (Eq. (2)),

and require an appropriate analyses of the stress field in the

continuous body prior to insert the IEs in the most critical

zones of the 3D mesh. Notice that in regions with bare land

surface, e.g., in Arizona (Cook 2011, 2013), initial (thin)

fissures caused by stress accumulation can be enlarged at

the land surface by erosion and collapses due to surface

flow during significant rainfall events. These processes are

not accounted for in our modelling approach.

With more fissure appearances over the last decades,

researches started focusing on the quantitative analyses of

the fissure formation mechanism. Sheng et al (2003)

defined the ratio of tensile stress over tensile strength as an

indication for fissure inception and carried out an one-at-a-

time sensitivity analysis which suggested the confining

stress and, secondarily, the depth of aquifer as the key

parameters for fissure formation. Unfortunately, the impact

of the ridge geometry was not taken account into this

analysis. Frigo et al (2019) applied a multivariate regres-

sion to fit the depth of fissure opening as function of the

pressure variation and the ratio between exploited aquifer

thickness and ridge tip depth. The regression surface con-

sists of a pair of planes with discontinuous joint, high-

lighting that fissure is more prone to occur when the depth

of the ridge tip is shallow. It is also found that pressure

depletion plays an important role by controlling the dif-

ferential subsidence. However, multivariate analysis stan-

dardizes regression coefficients as direct measures of

sensitivity, which is more suitable for linear problems.

Moreover, the number of evaluated variables was restricted

to two in order to derive a regression surface in a 3D

setting. Thus, the ridge depth and aquifer geometry were

combined in a single parameter.

Fig. 8 Partial dependence of

tan h and Dp with GPC (left

panel) and GBT (right panel)
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In this work, to systematically investigate the model

sensitivity to input parameters and model geometry, we

perform a global sensitivity analysis using a variance-based

approach. Sobol’ and total effects indices result in ranking

the input factors, with a priority of importance assigned to

the geometry of the ridge and the pore pressure drop of the

system. The aquifer thickness and the compressibility are

less influential with respect to the increase of the proba-

bility of fissure opening. The interactions between factors

is one order of magnitude lower than the main indices,

indicating a second order effect on the output variation.

Results are mostly according to the mentioned previous

studies, except for the less importance assigned to the

aquifer thickness. However, this parameter was considered

in a combined form with the ridge depth in Frigo et al

(2019), probably causing an overestimation effect. Another

reason may be attributable to the selection of the bounds

values of the uniform distributions from which each

parameter is sampled (Wagener and Pianosi 2019). For

example, the slope of the bedrock ridge (tan h) is assumed

variable between 0.5 and 1.9 due to some model grid

constrains, discarding all h values lower than � 27	. This
may result in a not sufficiently wide choice of the param-

eter space, cutting out the possible influence of the other

parameters at lower h values. We also point out that further

analyses are needed to consider the possibility that variance

is not a good measure of the output uncertainty, for

example using indices that consider moment independence

(Borgonovo 2007; Pianosi and Wagener 2015; Dell’Oca

et al 2017).

We advocate the use of surrogate models to reduce the

computational cost of the generation of the output samples

for the computation of the importance metrics (Saltelli et al

2010). Surrogates based on GPC techniques are prominent

because the easy derivation of the Sobol’ indices at no

additional computational burden. However, it is observed

that increasing the level of problem non linearity, e.g., in

proximity of the fissure opening, the method fails to pro-

vide a good model proxy (e.g., the predicted dr;act [ 1, see

Fig. 4a). For this reason, we also employed the GBT

algorithm for the estimation of total sensitivity measures,

i.e., the mean decrease accuracy estimates MDA. Com-

pared to Sobol’ indices, MDA importance lacks of a

straightforward interpretation, as they are computed based

on the model prediction accuracy rather than the effects on

the output variance. Thus, MDA is limited to assess the

interaction effects between the input variables. However,

this limit can be compensated by using other inter-

pretability methods like SHAP (Lundberg and Lee 2017) or

by using them as interpretation of the Sobol’ total effects.

The counterpart of this methodology, which seems more

suitable for applications on discontinuous problems

compared to GPC, is that GBT regression tree spends more

time on tuning hyperparameters to optimize the model

performance, increasing the overall computational burden.

7 Conclusion

The present work investigates the relative importance of

various hydrogeologic features to the formation and prop-

agation of aseismic fissures above the crest of buried

bedrock. The conceptual model used for numerical simu-

lation is idealised and simplified from the field case

reported in Wuxi, China. Earth fissures develop only with

the simultaneous occurrence of an undulating bedrock that

intercept a thick compressible aquifer where pressure

decline takes place.

An advanced geomechanical simulator is used to anal-

yse the stress field and quantify the fissure opening. The

numerical simulations show how the pore pressure deple-

tion results in the accumulation of tensile stress above the

ridge tip, favoring the development of an earth fissure at

the land surface. The fissure deepens as the pressure

decline increases.

The numerical results are processed by GSA to assess

the variable (bedrock ridge geometry, aquifer thickness and

compressibility, and pore pressure variation) importance to

fissure activation and propagation. Sobol’ provided with

Monte Carlo approach are taken as the reference and

compared to Sobol’ indices derived from surrogates of the

forward model. GPC and GBT algorithms are applied to fit

the numerical solution and then estimate the factor

importance based on surrogate model prediction. The fol-

lowing main conclusions can be drawn:

– The three methods, i.e. Sobol’, GPC, and GBT, rank the

four variables consistently and provide similar impor-

tance measurements, thus supporting the validity of the

achievement;

– The aquifer thickness and compressibility are less-

influential variables to fissure opening;

– Marginal effect and surface response plots highlight

that the probability of significant fissuring (deep and

with large opening) is higher when the buried ridge is

steeper and its tip closer to the land surface, with

sufficiently large pore pressure depletion.

Finally, we have assessed the computational performances

of three techniques on this application. Sobol’ technique

requires a larger sample size to converge, which makes it

computationally expensive. Compared to GPC-based

model, GBT performs better on approximating the dis-

continuous solution but requires a larger computational

burden.

Stochastic Environmental Research and Risk Assessment (2022) 36:3911–3928 3925

123



Acknowledgements The Authors wish to thank the University of

Padova Strategic Research Infrastructure Grant 2017 ‘‘CAPRI: Cal-

colo ad Alte Prestazioni per la Ricerca e l’Innovazione’’ for the

availability of the computational resources used in this work and

acknowledge the partial support of the Hungarian Ministry of Inno-

vation and Technology NRDI Office within the framework of the

Artificial Intelligence National Laboratory Program and the Hungar-

ian National Research, Development and Innovation Office (SNN

134368). The cooperation project ‘‘Inversion of SAR-based mea-

surements to constrain land subsidence model in typical Beijing area’’

between the Capital Normal University (China) and the University of

Padova (Italy) and the Project 41877180 of the National Natural

Science Foundation of China are also kindly acknowledged. The first

author was supported by the European Union PRIMA Programm

under grant agreement No. 1924, project RESERVOIR.

Funding Open access funding provided by Università degli Studi di
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