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Abstract—In this brief, it is proved that a linear dual rate
system can be represented via a series cascade of (i) a
conventional expander, a single input single output (SISO) linear
time invariant (LTI) filter and a block decimator, or (ii) a block
expander, an SISO LTI filter and a conventional decimator.
Hence, incompatible nonuniform filter banks could achieve
perfect reconstruction via LTI filters, conventional samplers and
block samplers without expanding the input output dimension of a
subsystem of linear dual rate systems or converting the nonuniform
filter banks to uniform filter banks. The main advantage of the
proposed representations is to avoid complicated design of the
circuit layout caused by connecting subsystems with large input
output dimension or a lot of subsystems together.

Index Terms—Incompatible, nonuniform filter bank, direct
representation, perfect reconstruction.

I. INTRODUCTION

NONUNIFORM filter banks are important not only because
they are widely employed in audio, radar and
transmultiplexing applications, but they could achieve more
general time and frequency tiling in which conventional tree
structured two channel filter banks could not [1], [2].
However, there is a kind of nonuniform filter banks, called
incompatible nonuniform filter banks [3], which do not
achieve perfect reconstruction via non-ideal LTI filters and
conventional samplers (without expanding the channels) [3].
There are two common approaches for tackling the perfect
reconstruction problem. The first approach is to convert the
nonuniform filter banks to uniform filter banks [3]. This
approach is regarded as an indirect approach. Although the
total number of filter coefficients of the corresponding
uniform filter banks is the same as that of filter banks we
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propose via direct approaches in this brief, the number of
channels of the corresponding uniform filter banks is equal to
the least common multiple (LCM) of the set of decimation
integers of the nonuniform filter banks. Sometimes, the LCM
of the set of decimation integers could be very large. For
example, for this set of decimation integers {2,5,7,10,35,35},
the LCM is 70. This implies that 70 channels are required for
the implementation of the corresponding uniform filter bank.
Compared to the original 6 channel nonuniform filter bank,
the design of the circuit layout of the corresponding uniform
filter bank is more complicated because more filters and
samplers are required to be connected together. For the
second approach, the LTI filters and the conventional
samplers are generalized to linear dual rate systems [4]. Linear
dual rate systems are linear systems for which shifting an
input by n samples resulting in shifting an output by m
samples. There are three common realizations for linear dual
rate systems. The first realization is to represent a linear dual
rate system via a linear time periodic varying (LTPV)
subsystem and a set of block samplers. For this realization, the
input output relationship of the LTPV subsystem is no longer
governed by the multiplication of its input and its frequency
response. However, the fundamental working principle of
filter banks is to decompose an input signal into different
frequency bands and different processing units are tailored
based on the characteristics of the decomposed subband
signals. Hence, this realization would cause difficulties for the
design of the subband processing units. The second realization
is to represent a linear dual rate system via a vector sample
rate changer. The dimension of the LTI filter in the vector
sample rate changer depends on the highest common factor
(HCF) of m and n, where m and n are defined as above. The
last realization is to represent a linear dual rate system via a
linear switching time varying subsystem and a set of
conventional samplers. The linear switching time varying
subsystem is further realized via a parallel connection of LTI
filters and a set of conventional samplers. The number of LTI
filters required for the realization is also equal to the HCF of
m and n, where m and n are defined as above. For the
second and the third realizations, although LTI filters are
employed, the input output dimension of the subsystem
required for the representations is expanded and equal to the
HCF of m and n. Similar to the indirect approach, sometimes
the HCF of m and n may be very large and these two
approaches require complicated design of the circuit layout.
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The outline of this brief is as follows. Notations and
definitions used throughout this brief are introduced in
Section II. In Section 111, a linear dual rate system is proved to
be possible to be represented via a series cascade of (i) a
conventional expander, an SISO LTI filter and a block
decimator, or (ii) a block expander, an SISO LTI filter and a
conventional decimator. In Section IV, an incompatible
nonuniform filter bank is shown to achieve perfect
reconstruction via LTI filters, conventional samplers and
block samplers. Finally, a conclusion is drawn in Section V.

II. NOTATIONS AND DEFINITIONS

Denote N as the number of channels of a nonuniform filter
bank. Denote H (z) and F(z) for i=0,,--,N-1 as
respectively, the analysis and synthesis filters, where Hi(z)
and F,(z) for i=0,1,---,N —1 are assumed to be LTI filters. A
conventional decimator with a decimation integer p, and a
conventional expander with an expansion integer p, are
denoted as, respectively, | p, and T p,. A block decimator
with a block length g and a decimation integer p., and a
block expander with a block length g and an expansion
integer p, are denoted as, respectively,  (p,,q) and T (p,,q)-
It is worth noting that when ¢ is equal to 1, the block
samplers reduce to the conventional samplers [5], [6].

For a maximally decimated nonuniform filter bank with
decimation integers p; for i=0,1,---,N -1, denote I, as an
integer such that |ie{0’1’...’pi_1}. If for every p; and
I, e{0,1,--, p, ~1}, there exists p, and |, 6{0,1,..., P, _1} such

that j= j and L , then the nonuniform filter bank is

o
called a compatible nonuniform filter bank. Otherwise, it is
called an incompatible nonuniform filter bank [3].

III. REPRESENTATIONS OF A LINEAR DUAL RATE SYSTEM VIA
AN SISO LTI FILTER, A CONVENTIONAL SAMPLER AND A
BLOCK SAMPLER

A. Motivation
A linear dual rate system can always be represented via a
kernel function g such that

y[k]= Jimg[k,l]u[l]a vkEZ, (1)
| > -

where y[l] and y[k] are the input and the output of the linear
dual rate system, respectively. Since linear dual rate systems
are defined as shifting an input by n samples resulting in
shifting an output by m samples, we have

glk,11=glk+m,1+n], Vk,IeZ. 2)
For a conventional m/n rate changer with T m, an LTI filter
with an impulse response flk] and | n [4], the input output
relationship is:

fikl= X ilkn-Imjufi)> YK <Z- ®

I > -0

If the linear dual rate system can be represented via the
conventional m/n rate changer, then the transformation
between g[k,1] and f]I] is:
flkn—Im]=g[k,11, Vk,1 e Z. 4

However, according to the Euclid’s theorem, the mapping
from {0,1,---,m-1}xz to Z, where [k,I]e{0,1,---,m-1}xz and
kn—Ime Z, is bijective if and only if m and n are co-prime.
Hence, linear dual rate systems can be realized via
conventional m/n rate changers if and only if m and n are co-
prime [4].

The mapping between g[k,1] and f[k] is illustrated in Figure
1. The x-axis and the y-axis of Figure 1 are the time indices |
and k , respectively. The value located at (1,k) is g[k,I]. Since
for a given time index (],k), it corresponds to a unique time
index kn-Im. Hence, g[k,I] also corresponds to a unique
value of flkn—Im]. Figure 1 shows the values of flkn—Im] at
different time indices (I,k). Figure 1a shows the case when m
and n are co-prime. Since linear dual rate systems satisfy (2),
shifting Figure la by n samples horizontally and m samples
vertically will correspond to the same figure. It can be seen
from Figure la that flkn—Im] is periodic with a horizontal
period n and a vertical period m, and the conventional m/n
rate changer is (m,n) shift invariant. Figure 1b shows the case
when n is an integer multiple of m with the factor c, that is
n=cm. When the time index (I,k) is shifted horizontally by ¢
and vertically by 1, | becomes |+c¢ and k becomes k+1.
Hence, kn-Im becomes (k+1)n—(1+c)m, which is equal to
flkn—Im]
horizontal period ¢ and a vertical period 1, and the
conventional m/n rate changer is (1,¢) shift invariant, instead

kn—Im because n=cm. Consequently, has a

of (m,cm) shift invariant. This implies that the conventional
m/n rate changer cannot represent a general (m,cm) shift
invariant linear dual rate system. Figure lc shows the case
when m is an integer multiple of n with the factor c, that is
m=cn. When the time index (I,k) is shifted horizontally by 1
and vertically by ¢, | becomes |+1 and k becomes k+c.
Hence, kn-Im becomes (k+c)n—(1+1)m, which is equal to
flkn—Im]
horizontal period 1 and a vertical period ¢, and the
conventional m/n rate changer is (c,1) shift invariant, instead

kn—Im because m=cn. Consequently, has a

of (cn,n) shift invariant. This implies that the conventional
m/n rate changer cannot represent a general (cn,n) shift

invariant linear dual rate system. Figure 1d shows the case
when m=n. When the time index (I,k) is shifted both

horizontally and vertically by 1, | becomes |+1 and k
becomes k+1. Hence, kn-Im becomes (k+1)n—(I+1)m,

which is equal to kn-Im because m=n. Consequently,
flkn —Im] has the trivial horizontal period 1 and vertical period

1, and the conventional m/n rate changer is (1,1) shift
invariant, instead of (n,n) shift invariant, or n time periodic
varying. This implies that the conventional m/n rate changer
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cannot represent a general (n,n) shift invariant linear dual rate
system.
B. First proposed representation
Theorem 1

vm,nezt (no matter m and n are co-prime or not), all
linear dual rate systems can be represented via a series
cascade of T m, followed by an LTI filter with an impulse
response f[k], and then followed by | (n,m).
Proof:

The input output relationship of all linear dual rate systems
is:

yikm+i]= 3 fi,l —kn]u[l]

[

On the other hand, the input output relationship of the
proposed representation is:
ylkmi]= 3 fkmn_mi +ijugiy® Yk €25 vmnezt and i=o1,....m-1.(6)
VI
It is shown in Appendix A that vkleZ, vmnez' and
i=0,1,---,m—1, the mapping from {0,1,---,m—1}xZ to Z,
where [i,l-kn]e{0,,---,m-1}xz and kmn-ml+iez, is
bijective. Hence, vk,IeZ, vmnez' and i=0,,---,m-1,
there exists a unique time index kmn—ml+i corresponding to
the time index [i,| —kn]. As a result, there exists an LTI filter
with an impulse response f[k] satisfying:

flkmn—ml+i]=gfi,l —kn]> Vk,1eZ, vmnez" and j=0,1,-.-,m-1,(7)

that the linecar dual rate systems and the proposed
representation are input output equivalent. This completes the
proof. m
C.Second proposed representation

Theorem 2

vm,nezt (no matter m and n are co-prime or not), all
linear dual rate systems can be represented via a series
cascade of T (m,n), followed by an LTI filter with an impulse
response f[k], and then followed by | n.
Proof:

The input
representation is:

output relationship of the proposed

+o0 n— + s
yikl= 3 S fikn—mni—ijufni +i)> YK €Z> YmneZ and j=q[,.--,n-1-
Il > -20i=0
On the other hand, the input output relationship of linear dual
rate systems is:

& St un iy €2 vmnezt and j=o1,....n-1.

I > -0i=0

ylk]=

It is shown in Appendix B that vleZ, vmnez',
ke{ol,---,m-1} and ie{o,,---,n-1}, the mapping from
{0,,---.m-1}xz to Z, where [k,nl+i]e{0,,---,m-1}xZ and
kn—mnl—iez, is bijective. Since (2) is satisfied, VleZ,
vmnez®, ke{ol,---,m-1} and ie{0,1,---,n—1}, there exists
a unique time index kn—mnl-i corresponding to the time
index [k,nl +i]. As a result, there exists an LTI filter with an

impulse response f[k] satisfying:

, vklez, vmnezt and j=01,....m-1. (5)

fikn—mnl —i]=g[k,nl +i]> Vk,1€Z, vmnez™ and j=01,---,n-1,
that the proposed representation and the linear dual rate
systems are input output equivalent. This completes the
proof. m
D.Discussions and verifications

It is worth noting that one of the existing realizations of
linear dual rate systems also involves block samplers, but it
still requires an LTPV subsystem with its periodicity equal to
the HCF of m and n. On the other hand, our proposed
realizations do not involve LTPV subsystem. This is because
the symmetric representation of the existing realization
cannot cancel the HCF of m and n. On the other hand, our
proposed representations are asymmetric so that they can
cancel the HCF of m and n. Therefore, we can simply
employ an LTI filter, which is generally simpler than the
LTPV or linear switching time varying counterparts, as its
impulse and frequency responses are more easily exploited.

To verify our proposed representations, the conventional
samplers and the block samplers are represented via matrix
forms because they are both linear systems. Let I;; be an i by
j matrix with its upper rightmost element being 1 and 0
elsewhere. Similarly, let 1'; be an i by j matrix with

diagonal elements equal to 1 and O elsewhere. Tm can be
represented as:
ylol| |l O u[0] |,

_ ®)
y[1] 0 lu u[1]
while  (n,m) can be represented as:
ylo1| om0 u[0] . 9)
y[1] 0 Il'nm u[1]
The input output relationship of our first proposed
representation is:
ylol| | tam O Sl fI0] || I O u[0] (10)
yl1| 0 Tnm oo f[2] 1] 0 o .f|ul]
which is equivalent to:
: 0] f-m] fIm—nm] f-nm] (1D
y[0] ] fi-m] fll+m-nm]  f[1-nm] u[0]
¥l | = : : . : : u[1]
: - fIm-1] f-1] - f[-1+2m-nm] f[-1+m-nm] --- :
flnm]  flnm-m] - fim] f10]

A similar result can be obtained from our second proposed
representation. From (11), we can see that the kernel function
of our proposed representations is (m,n) shift invariant.

By blocking the input and the output of our proposed
representations by n and m samples, respectively, as follows:

ukl=[ufkn], -, ulkn+n-1]]7, VkeZ, (12)

and

yIK=[ytkm], -, ykm+m-1]', vkez, (13)
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where the superscript T denotes the transpose operator, then
the blocked output y[k] will shift by 1 sample if the block

input y[k] shifts by 1 sample. From this point of view, we can
see that our proposed representations are also (m,n) shift
invariant.

IV. PERFECT RECONSTRUCTION OF INCOMPATIBLE
NONUNIFORM FILTER BANKS

For a given analysis bank with an incompatible set of
decimation integers as well as a desirable delay and an
overall gain of the whole system (including both the analysis
and the synthesis banks), by converting the analysis bank to a
uniform filter bank, if the corresponding polyphase matrix is
full rank for all frequencies, then there exists a unique
synthesis bank that achieves perfect reconstruction. However,
in [4] the synthesis bank is realized via linear dual rate
systems. By applying the results in this brief, these linear dual
rate systems can now be further realized via LTI filters,
conventional samplers and block samplers.

For an illustration, consider the example in [4] with the set
of decimation integers {2,3,6} and the set of analysis filters
H,(z)=1, H(z)=z*+z° and H,(z)=z". Follow the
discussion in [4], the synthesis bank involves three linear dual
rate systems. The input output relationship of the first linear
dual rate system is y(6k)=-x(3k —2), y(6k+1)=x(3k-2),
y(6k +2)=0, y(6k +3)=x(3k —1), y(6k +4)=—-x(3k —1) and
y(6k + 5): x(3k); that of the second linear dual rate system is
y(6k)=x(2k), y(6k+1)=0, y(6k+2)=0, y(6k+3)=0,
y(6k +4)=x(2k +1) and y(6k +5)=0; and that of the third
linear system is  y(6k)=0, y(6k+1)=0,
y(6k +2)=x(k), y(6k +3)=0, y(6k +4)=0 and
y(6k +5)=0. By using our first proposed realization, the

dual rate

synthesis ~ filters are F (z)=z"+z°-z"-2"+z",

F(z)=2*+1,and F,(z)=z", respectively. The block diagram
of the incompatible nonuniform filter bank is shown in Figure
2a. If our second proposed realization is employed, then the
synthesis filters are F (z)=-z2+z°+z""-z"+z ",
F(z)=1+z7, and F,(z)=z2, respectively. The block
diagram of the incompatible nonuniform filter bank is shown
in Figure 2b. It is worth noting that the lengths of the
corresponding filters in these two proposed representations
are the same because g[k,I] of the corresponding linear dual

rate systems in these two proposed representations are the
same. However, the time indices of the coefficients of the
corresponding filters in these two representations are
different because the mappings between gfk, 1] and flk] in

these two representations are different. Hence, the frequency
responses of the corresponding filters in these two
representations are different.

There are several points of views for investigations of
implementation complexity issues. One is from a software
point of view and the other is from a hardware point of view.
From a software point of view, the implementation

complexities could refer to the operation counts, etc, in which
they are dependent on the filter lengths. Form a hardware
point of view, the implementation complexities could refer to
the number of connections, etc. The number of connections
of the proposed representations is directly proportional to the
number of channels of the nonuniform filter banks, while that
of the nonuniform filter banks realized via linear dual rate
systems is directly proportional to the LCM of the set of the
decimation integers. Hence, our proposed representations
could reduce the number of connections significantly.

For design issues, the design of analysis filters can be
formulated as a semi-infinite programming problem with the
objective being minimizing the total ripple energy of
individual filters subject to continuous constraints defined
based on the bounds on the maximum ripple magnitudes. The
semi-infinite programming problem can be solved via the
dual parameterization method [7]. Once the analysis filters
are designed, the synthesis filters could be uniquely derived
using our proposed representations and perfect reconstruction
can be guaranteed. Since no iteration is required between the
design of the analysis bank and the synthesis bank, the
convergent problem occurred in traditional design methods
based on near perfect reconstruction approaches would not
occur.

Consider a design of an incompatible nonuniform filter
bank with decimation integers {2,3,6}. The bandwidth of the

filters are | 7|, |Z 37| and [ _|. The transition
2] 276 6’

bandwidth of all the filters is 0.05z. The specifications on
the bounds on the maximum passband and stopband ripple
magnitudes of all filters are 0.3 and 0.4, respectively. The
filter length of all filters is 6. By applying our proposed
representations on realizing the synthesis bank, the synthesis
filters can be derived uniquely and perfect reconstruction is
guaranteed.

V. CONCLUSIONS

The main contribution of this brief is to represent linear
dual rate systems via a series cascade of (i) a conventional
expander, an LTI filter and a block decimator, or (ii) a block
expander, an LTI filter and a conventional decimator. The
difference between our proposed representations and that of
the existing one is that an SISO LTI filter is employed in our
proposed representations, whereas an LTPV subsystem, a
linear switching time varying subsystem or a multiple input
multiple output LTI subsystem is required for the existing
realizations. These existing representations would expand the
input output dimension of the subsystem and cause the
complicated design of the circuit layout. On the other hand,
our proposed realizations just involve an SISO LTI filter.
Hence, the complicated design of the circuit layout does not
occur. Consequently, the proposed realizations of linear dual
rate systems can thus be employed for perfect reconstruction
of incompatible nonuniform filter banks.

APPENDIX A

To show that vk,1ez, vmnezt and i=0,,---,m-1, the
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from to where

mapping 01, .m-1}xZ z,
li,l —kn]e {0,1,--,m-1}xz and kmn-ml+icz, is bijective,
first that (i, z,),(i,,2,) e {0.,---,m-1}xZ
(i,z,)#(,,z,) and —mz +i =-mz, +i,- This implies that
Since i,i, e {01, m—1},

— 21): i, —i, implies

assume where
m(zz _21): iy =iy
i, —i, e[-(m=1),(m=1)]. As z,,z,eZ, m(z,
that and z =z,. This shows that the mapping is
injective. As vyez, Jie{0l,,m-1} and 3zeZ such that

_y-mod(y.m) 4nq y=-mz+i. Hence, the
m

=1,

i =mod(y,m), z

mapping is surjective. This proves that the mapping is

bijective. This completes the proof. m
APPENDIX B

To show that viez, vmnez*, ke{0]l,---,m-1} and

ie{0,,---,n—1}, the mapping from {01,..,m-1}xz to Z,

where  [k,nl+i]e{0,1,---,m-1}xz and kn-mnl-icz, is

bijective, first we show that the mapping from {o,1,---,n-1}xZ
to z, where [i,I]e{0,l,---,n-1}xZz and nl+ieZ, is bijective.

Assume that (i1,|1),(i2,|2)e{O,l,m,nfl}xZ where (i1’|1)¢(i2’|2)

and nl +i, =nl, +i,. This implies that n(l, —1I,)=i, —i,. Since
i,i, €{0,1,--,n—1}, i~ e[-(n=1),(n-1)]. As 1, ez,
n(l,=1,)=i, —i, implies that j =i, and | =1,. This shows that

the mapping is injective. As vyez, 3Jie{ol,---,n-1} and

3l ez such that i =mod(y,n), |:y_Ld(y’n) and y=nl+i.
n

Hence, the mapping is surjective. This proves that the
mapping is bijective. Second we show that the mapping from

o.,--,m=1}x{0,1,---,n-1}x2 to z, where
k,i,1e{0.1,---,m=1}x{0,,---,n-1}xZz and kn-mnl-iez, is
bijective. Assume that
(kp»is 1), (Ky iy 1y ) € {01, m =1} 40,1, ,n =1} Z where
(k,»i, 1) # (k,,iy,1,) and  kn—mnl —i, =k,n—mnl, —i,. This
implies that mn(l, —1,)+n(k, =k, )+i, =i, =0 Since
iy,i, €{0,1,---,n—1} and k,,k, € {0,,,---,m—1},
k—k e[-(m-1(m-1)] and i-i,e[-(n-1)(n-1)] As

mnez", mn(l,-1)+n(k —k,)+i,—i, =0 implies that j =i,,

k, =k, and I, =1,. This shows that the mapping is injective. As

vyeZ, Fke{ol---,m-1}, Jie{ol--,n-1} and 3l ez such

that ;_ M ~mod(y,n) mod(y,n)=0  _mod(y+i,mn) . 4
- 0 mod(y, n) =0 n

| _Kn=Y—i Hence, the mapping is surjective. This proves

mn
the mapping is bijective. By combining these two results, we

can conclude that vleZ, vmnez® ke{O,l,---,m—l} and

ie{0,,---,n—1}, the mapping from {o1,..,m-1}xz to Z,
where  [k,nl +iJe{0,,---,m-1}xz and kn-mnl-ieZz, is
bijective. This completes the proof. =
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Figure 2a. An incompatible nonuniform filter bank

system realized via our first proposed representation
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Figure 2b. An incompatible nonuniform filter bank system

realized via our second proposed representation.



