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Abstract—In this brief, it is proved that a linear dual rate 

system can be represented via a series cascade of (i) a 
conventional expander, a single input single output (SISO) linear 
time invariant (LTI) filter and a block decimator, or (ii) a block 
expander, an SISO LTI filter and a conventional decimator. 
Hence, incompatible nonuniform filter banks could achieve 
perfect reconstruction via LTI filters, conventional samplers and 
block samplers without expanding the input output dimension of a 
subsystem of linear dual rate systems or converting the nonuniform 
filter banks to uniform filter banks. The main advantage of the 
proposed representations is to avoid complicated design of the 
circuit layout caused by connecting subsystems with large input 
output dimension or a lot of subsystems together. 
 

Index Terms—Incompatible, nonuniform filter bank, direct 
representation, perfect reconstruction. 

I. INTRODUCTION 
ONUNIFORM filter banks are important not only because 
they are widely employed in audio, radar and 

transmultiplexing applications, but they could achieve more 
general time and frequency tiling in which conventional tree 
structured two channel filter banks could not [1], [2].  

However, there is a kind of nonuniform filter banks, called 
incompatible nonuniform filter banks [3], which do not 
achieve perfect reconstruction via non-ideal LTI filters and 
conventional samplers (without expanding the channels) [3]. 
There are two common approaches for tackling the perfect 
reconstruction problem. The first approach is to convert the 
nonuniform filter banks to uniform filter banks [3]. This 
approach is regarded as an indirect approach. Although the 
total number of filter coefficients of the corresponding 
uniform filter banks is the same as that of filter banks we 

propose via direct approaches in this brief, the number of 
channels of the corresponding uniform filter banks is equal to 
the least common multiple (LCM) of the set of decimation 
integers of the nonuniform filter banks. Sometimes, the LCM 
of the set of decimation integers could be very large. For 
example, for this set of decimation integers {2,5,7,10,35,35}, 
the LCM is 70. This implies that 70 channels are required for 
the implementation of the corresponding uniform filter bank. 
Compared to the original 6 channel nonuniform filter bank, 
the design of the circuit layout of the corresponding uniform 
filter bank is more complicated because more filters and 
samplers are required to be connected together. For the 
second approach, the LTI filters and the conventional 
samplers are generalized to linear dual rate systems [4]. Linear 
dual rate systems are linear systems for which shifting an 
input by n  samples resulting in shifting an output by m  
samples. There are three common realizations for linear dual 
rate systems. The first realization is to represent a linear dual 
rate system via a linear time periodic varying (LTPV) 
subsystem and a set of block samplers. For this realization, the 
input output relationship of the LTPV subsystem is no longer 
governed by the multiplication of its input and its frequency 
response. However, the fundamental working principle of 
filter banks is to decompose an input signal into different 
frequency bands and different processing units are tailored 
based on the characteristics of the decomposed subband 
signals. Hence, this realization would cause difficulties for the 
design of the subband processing units. The second realization 
is to represent a linear dual rate system via a vector sample 
rate changer. The dimension of the LTI filter in the vector 
sample rate changer depends on the highest common factor 
(HCF) of m  and n , where m  and n  are defined as above. The 
last realization is to represent a linear dual rate system via a 
linear switching time varying subsystem and a set of 
conventional samplers. The linear switching time varying 
subsystem is further realized via a parallel connection of LTI 
filters and a set of conventional samplers. The number of LTI 
filters required for the realization is also equal to the HCF of 
m  and n , where m  and n  are defined as above. For the 
second and the third realizations, although LTI filters are 
employed, the input output dimension of the subsystem 
required for the representations is expanded and equal to the 
HCF of m  and n . Similar to the indirect approach, sometimes 
the HCF of m  and n  may be very large and these two 
approaches require complicated design of the circuit layout. 
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The outline of this brief is as follows. Notations and 
definitions used throughout this brief are introduced in 
Section II. In Section III, a linear dual rate system is proved to 
be possible to be represented via a series cascade of (i) a 
conventional expander, an SISO LTI filter and a block 
decimator, or (ii) a block expander, an SISO LTI filter and a 
conventional decimator. In Section IV, an incompatible 
nonuniform filter bank is shown to achieve perfect 
reconstruction via LTI filters, conventional samplers and 
block samplers. Finally, a conclusion is drawn in Section V. 

II. NOTATIONS AND DEFINITIONS 
Denote N  as the number of channels of a nonuniform filter 

bank. Denote ( )zHi  and ( )zFi  for 1,,1,0 −= Ni L  as 
respectively, the analysis and synthesis filters, where ( )zHi  
and ( )zFi  for 1,,1,0 −= Ni L  are assumed to be LTI filters. A 
conventional decimator with a decimation integer ip  and a 
conventional expander with an expansion integer ip  are 
denoted as, respectively, ip↓  and ip↑ . A block decimator 
with a block length q  and a decimation integer ip , and a 
block expander with a block length q  and an expansion 
integer ip  are denoted as, respectively, ( )qpi ,↓  and ( )qpi ,↑ . 
It is worth noting that when q  is equal to 1, the block 
samplers reduce to the conventional samplers [5], [6]. 

For a maximally decimated nonuniform filter bank with 
decimation integers ip  for 1,,1,0 −= Ni L , denote 

il  as an 
integer such that { }1,,1,0 −∈ ii pl L . If for every ip  and 

{ }1,,1,0 −∈ ii pl L , there exists 
jp  and { }1,,1,0 −∈ jj pl L  such 

that ji ≠  and 
j

j

i

i

p
l

p
l
= , then the nonuniform filter bank is 

called a compatible nonuniform filter bank. Otherwise, it is 
called an incompatible nonuniform filter bank [3]. 

III. REPRESENTATIONS OF A LINEAR DUAL RATE SYSTEM VIA 
AN SISO LTI FILTER, A CONVENTIONAL SAMPLER AND A 

BLOCK SAMPLER 
A. Motivation 

A linear dual rate system can always be represented via a 
kernel function g  such that 

∑
∞+

∞→

=
-

][u],[g]y[
l

llkk , Ζ∈∀k , (1) 

where ][u l  and ]y[k
 
are the input and the output of the linear 

dual rate system, respectively. Since linear dual rate systems 
are defined as shifting an input by n  samples resulting in 
shifting an output by m  samples, we have 

]g[]g[ ,, nllk mk ++= , Ζ∈∀ lk, . (2) 
For a conventional m/n  rate changer with m↑ , an LTI filter 
with an impulse response ]f[k   and n↓  [4], the input output 
relationship is: 

∑
∞+

−∞→

−=
l

llmkn ][u][f[k]y , Ζ∈∀k . (3) 

If the linear dual rate system can be represented via the 
conventional m/n  rate changer, then the transformation 
between ],[ lkg  and ]f[l  is: 

]g[]f[ , lklmnk =− , Ζ∈∀ lk, . (4) 
However, according to the Euclid’s theorem, the mapping 
from { } Ζ×−1,,1,0 mL  to Ζ , where { } Ζ×−∈ 1,,1,0][ , mlk L  and 

Ζ∈− lmkn , is bijective if and only if m  and n  are co-prime. 
Hence, linear dual rate systems can be realized via 
conventional m/n  rate changers if and only if m  and n  are co-
prime [4]. 

The mapping between ]g[ , lk  and ]f[k  is illustrated in Figure 
1. The x-axis and the y-axis of Figure 1 are the time indices l  
and k , respectively. The value located at ( )kl,  is ]g[ , lk . Since 
for a given time index ( )kl, , it corresponds to a unique time 
index lmkn − . Hence, ]g[ , lk  also corresponds to a unique 
value of ]f[ lmnk − . Figure 1 shows the values of ]f[ lmnk −  at 
different time indices ( )kl, . Figure 1a shows the case when m  
and n  are co-prime. Since linear dual rate systems satisfy (2), 
shifting Figure 1a by n  samples horizontally and m  samples 
vertically will correspond to the same figure. It can be seen 
from Figure 1a that ]f[ lmnk −  is periodic with a horizontal 
period n  and a vertical period m , and the conventional m/n  
rate changer is ),( nm  shift invariant. Figure 1b shows the case 
when n  is an integer multiple of m  with the factor c , that is 

cmn = . When the time index ( )kl,  is shifted horizontally by c  
and vertically by 1, l  becomes cl +  and k  becomes 1+k . 
Hence, lmkn −  becomes ( ) ( )mclnk +−+1 , which is equal to 

lmkn −  because cmn = . Consequently, ]f[ lmnk −  has a 
horizontal period c  and a vertical period 1, and the 
conventional m/n  rate changer is )1( ,c  shift invariant, instead 
of ),( cmm  shift invariant. This implies that the conventional 
m/n  rate changer cannot represent a general ),( cmm  shift 
invariant linear dual rate system. Figure 1c shows the case 
when m  is an integer multiple of n  with the factor c , that is 

cnm = . When the time index ( )kl,  is shifted horizontally by 1 
and vertically by c , l  becomes 1+l  and k  becomes ck + . 
Hence, lmkn −  becomes ( ) ( )mlnck 1+−+ , which is equal to 

lmkn −  because cnm = . Consequently, ]f[ lmnk −  has a 
horizontal period 1 and a vertical period c , and the 
conventional m/n  rate changer is )1,(c  shift invariant, instead 
of ),( ncn  shift invariant. This implies that the conventional 
m/n  rate changer cannot represent a general ),( ncn  shift 
invariant linear dual rate system. Figure 1d shows the case 
when nm = . When the time index ( )kl,  is shifted both 
horizontally and vertically by 1, l  becomes 1+l  and k  
becomes 1+k . Hence, lmkn −  becomes ( ) ( )mlnk 11 +−+ , 
which is equal to lmkn −  because nm = . Consequently, 

]f[ lmnk −  has the trivial horizontal period 1 and vertical period 
1, and the conventional m/n  rate changer is )1,1(  shift 
invariant, instead of ),( nn  shift invariant, or n  time periodic 
varying. This implies that the conventional m/n  rate changer 
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cannot represent a general ),( nn  shift invariant linear dual rate 
system. 
B. First proposed representation 
Theorem 1 

+Ζ∈∀ nm,  (no matter m  and n  are co-prime or not), all 
linear dual rate systems can be represented via a series 
cascade of m↑ , followed by an LTI filter with an impulse 
response ]f[k , and then followed by ( )mn,↓ . 
Proof: 

The input output relationship of all linear dual rate systems 
is: 

∑
∞+

∞→

−=+
-

][u],[g]y[
l

lknliikm
, Ζ∈∀ lk , , +Ζ∈∀ nm,  and 1,,1,0 −= mi L . (5) 

On the other hand, the input output relationship of the 
proposed representation is: 

∑
∀

+−=+
l

limlkmnikm ][u][f]y[
, Ζ∈∀ lk , , +Ζ∈∀ nm,  and 1,,1,0 −= mi L .(6) 

It is shown in Appendix A that Ζ∈∀ lk, , +Ζ∈∀ nm,  and 
1,,1,0 −= mi L , the mapping from { } Ζ×−1,,1,0 mL  to Ζ , 

where { } Ζ×−∈− 1,,1,0][ , mi knl L  and Ζ∈+− imlkmn , is 

bijective. Hence, Ζ∈∀ lk, , +Ζ∈∀ nm,  and 1,,1,0 −= mi L , 
there exists a unique time index imlkmn +−  corresponding to 
the time index ][ , knli − . As a result, there exists an LTI filter 
with an impulse response ][f k

 
satisfying: 

],[g][f knliimlkmn −=+− , Ζ∈∀ lk , , +Ζ∈∀ nm,  and 1,,1,0 −= mi L ,(7) 
that the linear dual rate systems and the proposed 
representation are input output equivalent. This completes the 
proof. ▄ 
C. Second proposed representation 
Theorem 2 

+Ζ∈∀ nm,  (no matter m  and n  are co-prime or not), all 
linear dual rate systems can be represented via a series 
cascade of ( )nm,↑ , followed by an LTI filter with an impulse 
response ][f k , and then followed by n↓ . 
Proof: 

The input output relationship of the proposed 
representation is: 

∑ ∑
∞+

∞→

−

=

+−−=
-

1

0

][u]f[]y[
l

n

i

inlimnlknk
, Ζ∈∀ lk , , +Ζ∈∀ nm,  and 1,,1,0 −= ni L . 

On the other hand, the input output relationship of linear dual 
rate systems is: 

∑ ∑
∞+

∞→

−

=

++=
-

1

0

][u],g[]y[
l

n

i

inlinlkk
, Ζ∈∀ lk, , +Ζ∈∀ nm,  and 1,,1,0 −= ni L . 

It is shown in Appendix B that Ζ∈∀l , +Ζ∈∀ nm, , 
{ }1,,1,0 −∈ mk L  and { }1,,1,0 −∈ ni L , the mapping from 

{ } Ζ×−1,,1,0 mL  to Ζ , where { } Ζ×−∈+ 1,,1,0][ , mk inl L  and 
Ζ∈−− imnlkn , is bijective. Since (2) is satisfied, Ζ∈∀l , 

+Ζ∈∀ nm, , { }1,,1,0 −∈ mk L  and { }1,,1,0 −∈ ni L , there exists 
a unique time index imnlkn −−  corresponding to the time 
index ][ , inlk + . As a result, there exists an LTI filter with an 
impulse response ][f k

 
satisfying: 

],[g][f inlkimnlkn +=−− , Ζ∈∀ lk , , +Ζ∈∀ nm,  and 1,,1,0 −= ni L , 
that the proposed representation and the linear dual rate 
systems are input output equivalent. This completes the 
proof. ▄ 
D. Discussions and verifications 
 It is worth noting that one of the existing realizations of 
linear dual rate systems also involves block samplers, but it 
still requires an LTPV subsystem with its periodicity equal to 
the HCF of m  and n . On the other hand, our proposed 
realizations do not involve LTPV subsystem. This is because 
the symmetric representation of the existing realization 
cannot cancel the HCF of m  and n . On the other hand, our 
proposed representations are asymmetric so that they can 
cancel the HCF of m  and n . Therefore, we can simply 
employ an LTI filter, which is generally simpler than the 
LTPV or linear switching time varying counterparts, as its 
impulse and frequency responses are more easily exploited. 

To verify our proposed representations, the conventional 
samplers and the block samplers are represented via matrix 
forms because they are both linear systems. Let ji,I  be an i  by 
j  matrix with its upper rightmost element being 1 and 0 

elsewhere. Similarly, let ji ,I′  be an i  by j  matrix with 
diagonal elements equal to 1 and 0 elsewhere. m↑  can be 
represented as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

M

M

OO

O

O

OO

M

M

u[1]
]0u[

y[1]
]0y[

1,

1,

m

m

I0
0I , (8) 

while ( )mn,↓  can be represented as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′

=

M

M

OO

O

O

OO

M

M

u[1]
]0u[

y[1]
]0y[

,

,

nmm

nmm

I0
0I . (9) 

The input output relationship of our first proposed 
representation is: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′

=

M

M

OO

O

O

OO

OMMN

LL

LL

NMMO

OO

O

O

OO

M

M

u[1]
]0u[

]1f[]2f[
]0f[]1f[

y[1]
]0y[

1,

1,

,

,

m

m

nmm

nmm

I0
0I

I0
0I

,(10) 

which is equivalent to: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−+−−+−−−

−−+−
−−−

=

M

M

M

M

M

OMMMMN

LLL

LLL

MMOMM

LLL

LLL

NMMMMO

M

M

M

M

M

u[1]
]0u[

]0f[]f[]f[]f[
]1f[]21f[]1f[]1f[

]1f[]1f[]1f[]1f[
]f[]f[]f[]0f[

]1y[
]0y[

mmnmnm
nmmnmmm

nmnmmm
nmnmmm .(11) 

A similar result can be obtained from our second proposed 
representation. From (11), we can see that the kernel function 
of our proposed representations is ),( nm  shift invariant. 

By blocking the input and the output of our proposed 
representations by n  and m  samples, respectively, as follows: 

[ ]Tnknknk ]1u[,],u[][ −+= Lu , Ζ∈∀k , (12) 

and 
[ ]Tmkmkmk ]1y[,],y[][ −+= Ly , Ζ∈∀k , (13) 
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where the superscript T  denotes the transpose operator, then 
the blocked output ][ky  will shift by 1 sample if the block 
input ][ku  shifts by 1 sample. From this point of view, we can 
see that our proposed representations are also ),( nm  shift 
invariant. 

IV. PERFECT RECONSTRUCTION OF INCOMPATIBLE 
NONUNIFORM FILTER BANKS 

For a given analysis bank with an incompatible set of 
decimation integers as well as a desirable delay and an 
overall gain of the whole system (including both the analysis 
and the synthesis banks), by converting the analysis bank to a 
uniform filter bank, if the corresponding polyphase matrix is 
full rank for all frequencies, then there exists a unique 
synthesis bank that achieves perfect reconstruction. However, 
in [4] the synthesis bank is realized via linear dual rate 
systems. By applying the results in this brief, these linear dual 
rate systems can now be further realized via LTI filters, 
conventional samplers and block samplers. 

For an illustration, consider the example in [4] with the set 
of decimation integers {2,3,6} and the set of analysis filters 

( ) 10 =zH , ( ) 54
1

−− += zzzH  and ( ) 3
2

−= zzH . Follow the 
discussion in [4], the synthesis bank involves three linear dual 
rate systems. The input output relationship of the first linear 
dual rate system is ( ) ( )236 −−= kxky , ( ) ( )2316 −=+ kxky , 
( ) 026 =+ky , ( ) ( )1336 −=+ kxky , ( ) ( )1346 −−=+ kxky  and 
( ) ( )kxky 356 =+ ; that of the second linear dual rate system is 
( ) ( )kxky 26 = , ( ) 016 =+ky , ( ) 026 =+ky , ( ) 036 =+ky , 
( ) ( )1246 +=+ kxky  and ( ) 056 =+ky ; and that of the third 

linear dual rate system is ( ) 06 =ky , ( ) 016 =+ky , 
( ) ( )kxky =+ 26 , ( ) 036 =+ky , ( ) 046 =+ky  and 
( ) 056 =+ky . By using our first proposed realization, the 

synthesis filters are ( ) 13121095
0

−−−−− +−−+= zzzzzzF , 

( ) 12
1 += zzF , and ( ) 2

2
−= zzF , respectively. The block diagram 

of the incompatible nonuniform filter bank is shown in Figure 
2a. If our second proposed realization is employed, then the 
synthesis filters are ( ) 15131052

0
−−−−− +−++−= zzzzzzF , 

( ) 7
1 1 −+= zzF , and ( ) 2

2
−= zzF , respectively. The block 

diagram of the incompatible nonuniform filter bank is shown 
in Figure 2b. It is worth noting that the lengths of the 
corresponding filters in these two proposed representations 
are the same because ]g[ , lk  of the corresponding linear dual 
rate systems in these two proposed representations are the 
same. However, the time indices of the coefficients of the 
corresponding filters in these two representations are 
different because the mappings between ]g[ , lk  and ]f[k  in 
these two representations are different. Hence, the frequency 
responses of the corresponding filters in these two 
representations are different. 

There are several points of views for investigations of 
implementation complexity issues. One is from a software 
point of view and the other is from a hardware point of view. 
From a software point of view, the implementation 

complexities could refer to the operation counts, etc, in which 
they are dependent on the filter lengths. Form a hardware 
point of view, the implementation complexities could refer to 
the number of connections, etc. The number of connections 
of the proposed representations is directly proportional to the 
number of channels of the nonuniform filter banks, while that 
of the nonuniform filter banks realized via linear dual rate 
systems is directly proportional to the LCM of the set of the 
decimation integers. Hence, our proposed representations 
could reduce the number of connections significantly. 

For design issues, the design of analysis filters can be 
formulated as a semi-infinite programming problem with the 
objective being minimizing the total ripple energy of 
individual filters subject to continuous constraints defined 
based on the bounds on the maximum ripple magnitudes. The 
semi-infinite programming problem can be solved via the 
dual parameterization method [7]. Once the analysis filters 
are designed, the synthesis filters could be uniquely derived 
using our proposed representations and perfect reconstruction 
can be guaranteed. Since no iteration is required between the 
design of the analysis bank and the synthesis bank, the 
convergent problem occurred in traditional design methods 
based on near perfect reconstruction approaches would not 
occur. 

Consider a design of an incompatible nonuniform filter 
bank with decimation integers {2,3,6}. The bandwidth of the 
filters are 

⎥⎦
⎤

⎢⎣
⎡

2
,0 π , 

⎥⎦
⎤

⎢⎣
⎡

6
5,

2
ππ  and 

⎥⎦
⎤

⎢⎣
⎡ ππ ,

6
5 . The transition 

bandwidth of all the filters is π05.0 . The specifications on 
the bounds on the maximum passband and stopband ripple 
magnitudes of all filters are 0.3 and 0.4, respectively. The 
filter length of all filters is 6. By applying our proposed 
representations on realizing the synthesis bank, the synthesis 
filters can be derived uniquely and perfect reconstruction is 
guaranteed. 

V. CONCLUSIONS 
The main contribution of this brief is to represent linear 

dual rate systems via a series cascade of (i) a conventional 
expander, an LTI filter and a block decimator, or (ii) a block 
expander, an LTI filter and a conventional decimator. The 
difference between our proposed representations and that of 
the existing one is that an SISO LTI filter is employed in our 
proposed representations, whereas an LTPV subsystem, a 
linear switching time varying subsystem or a multiple input 
multiple output LTI subsystem is required for the existing 
realizations. These existing representations would expand the 
input output dimension of the subsystem and cause the 
complicated design of the circuit layout. On the other hand, 
our proposed realizations just involve an SISO LTI filter. 
Hence, the complicated design of the circuit layout does not 
occur. Consequently, the proposed realizations of linear dual 
rate systems can thus be employed for perfect reconstruction 
of incompatible nonuniform filter banks. 

APPENDIX A 

To show that Ζ∈∀ lk, , +Ζ∈∀ nm,  and 1,,1,0 −= mi L , the 
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mapping from { } Ζ×−1,,1,0 mL  to Ζ , where 
{ } Ζ×−∈− 1,,1,0][ , mi knl L  and Ζ∈+− imlkmn , is bijective, 

first assume that ( ) ( ) { } Ζ×−∈ 1,,1,02211 ,,, mzizi L  where 
( ) ( )2211 ,, zizi ≠  and 2211 imzimz +−=+− . This implies that 
( ) 1212 iizzm −=− . Since { }1,,1,021, −∈ mii L , 

( ) ( )[ ]1,112 −−−∈− mmii . As Ζ∈21, zz , ( ) 1212 iizzm −=−  implies 
that 21 ii =  and 21 zz = . This shows that the mapping is 
injective. As Ζ∈∀y ,  { }1,,1,0 −∈∃ mi L  and Ζ∈∃z  such that 

( )myi ,mod= , ( )
m

myyz ,mod−
−=  and imzy +−= . Hence, the 

mapping is surjective. This proves that the mapping is 
bijective. This completes the proof. ▄ 

APPENDIX B 

To show that Ζ∈∀l , +Ζ∈∀ nm, , { }1,,1,0 −∈ mk L  and 
{ }1,,1,0 −∈ ni L , the mapping from { } Ζ×−1,,1,0 mL  to Ζ , 

where { } Ζ×−∈+ 1,,1,0][ , mk inl L  and Ζ∈−− imnlkn , is 
bijective, first we show that the mapping from { } Ζ×−1,,1,0 nL  
to Ζ , where { } Ζ×−∈ 1,,1,0][ , nli L  and Ζ∈+ inl , is bijective. 
Assume that ( ) ( ) { } Ζ×−∈ 1,,1,02211 ,,, nlili L  where ( ) ( )2211 ,, lili ≠  
and 2211 inlinl +=+ . This implies that ( ) 1221 iilln −=− . Since 

{ }1,,1,021, −∈ nii L , ( ) ( )[ ]1,112 −−−∈− nnii . As Ζ∈21, ll , 
( ) 1221 iilln −=−  implies that 21 ii =  and 21 ll = . This shows that 

the mapping is injective. As Ζ∈∀y ,  { }1,,1,0 −∈∃ ni L  and 

Ζ∈∃l  such that ( )nyi ,mod= , ( )
n

nyyl ,mod−
=  and inly += . 

Hence, the mapping is surjective. This proves that the 
mapping is bijective. Second we show that the mapping from 
{ } { } Ζ×−×− 1,,1,01,,1,0 nm LL  to Ζ , where 

{ } { } Ζ×−×−∈ 1,,1,01,,1,0][ ,, nmk li LL  and Ζ∈−− imnlkn , is 
bijective. Assume that 
( ) ( ) { } { } Ζ×−×−∈ 1,,1,01,,1,0222111 ,,,,, nmliklik LL  where 
( ) ( )222111 ,,,, liklik ≠  and 222111 imnlnkimnlnk −−=−− . This 
implies that ( ) ( ) 0122112 =−+−+− iikknllmn . Since 

{ }1,,1,021, −∈ nii L  and { }1,,1,021, −∈ mkk L , 
( ) ( )[ ]1,121 −−−∈− mmkk  and ( ) ( )[ ]1,121 −−−∈− nnii . As 

+Ζ∈nm, , ( ) ( ) 0122112 =−+−+− iikknllmn  implies that 21 ii = , 

21 kk =  and 21 ll = . This shows that the mapping is injective. As 
Ζ∈∀y , { }1,,1,0 −∈∃ mk L , { }1,,1,0 −∈∃ ni L  and Ζ∈∃l  such 

that ( ) ( )
( )⎩

⎨
⎧

=
≠−

=
0,mod0
0,mod,mod

ny
nynyn

i , ( )
n

mniyk ,mod +
=  and 

mn
iyknl −−

= . Hence, the mapping is surjective. This proves 

the mapping is bijective. By combining these two results, we 
can conclude that Ζ∈∀l , +Ζ∈∀ nm, , { }1,,1,0 −∈ mk L  and 

{ }1,,1,0 −∈ ni L , the mapping from { } Ζ×−1,,1,0 mL  to Ζ , 
where { } Ζ×−∈+ 1,,1,0][ , mk inl L  and Ζ∈−− imnlkn , is 
bijective. This completes the proof. ▄ 
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Figure 1b. Mapping from g[n,k] to f[k] when n=cm.
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Figure 1a. Mapping from g[n,k] to 
f[k] when m and n are co-prime.

F B0 B(z)

F B2 B(z)

↑6 ↓(3,6)

F B1 B(z)

Figure 2a. An incompatible nonuniform filter bank 
system realized via our first proposed representation. 

H B0 B(z) ↓2

H B1 B(z)

↓6H B2 B(z)
↓3 ↑6

↑6

↓(2,6)

F B0 B(z)

F B2 B(z)

↓3↑(6,3) 
F B1 B(z)

Figure 2b. An incompatible nonuniform filter bank system 
realized via our second proposed representation.

H B0 B(z) ↓2

H B1 B(z)

↓6H B2 B(z)
↓3 ↓2

↑6

↑(6,2) 


