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Abstract. This study discusses the development of tactical-level integrated planning at seaport 
container terminals in an uncertain environment. The suggested approach seeks to strike a balance 
between the cost-effectiveness of a robust baseline schedule and recovery plan and the required 
quality of customer service in order to enhance the competitive edge of container ports. Integrated 
planning for a tactical level at the container terminal synchronizes the decisions of berth allocation 
and quay crane assignment planning by taking into account the unpredictability of the vessel's 
arrival time and handling time caused by a variety of unforeseen factors such as unfavorable 
weather conditions, instability in the productivity rate of the quay cranes, the uncertainty of the 
quantity of loading and discharging containers, and other unpredictable events. The proposed 
optimization model produces a robust and proactive baseline schedule with a recoverable reactive 
plan for each scenario that occurs by utilizing buffer times and quay cranes that anticipate 
fluctuations in uncertain parameters. The proposed bi-objective recoverable robustness 
optimization model is solved by applying a hybrid method, namely the Rolling Horizon-based 
Optimization Algorithm (RHOA) and the Preemptive Goal Programming approach, using Gurobi-
Python Optimization. The proposed bi-objective recoverable robust optimization model 
demonstrates superior solution quality in terms of service level and total costs, as well as a more 
efficient computational time when compared to an optimization model that minimizes total costs 
for tactical level planning decisions in seaside container terminals. 
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1. Introduction 

The tactical level planning decisions in resources planning that have the most influence 
on container terminal performance are the berth and quay cranes as the primary resources 
at seaport container terminals (Carlo et al., 2015). The Tactical Berth Allocation Problem 
(TBAP) dictates the timetable and placement of each incoming vessel's berth. This decision 
is heavily influenced by the Quay Crane Assignment Problem (QCAP) decision, which 
determines the number of quay cranes assigned to each vessel, and vice versa. Since TBAP 
and QCAP decisions are intertwined, these two issues should be considered as a whole 
(Prayogo et al., 2018). 

The essential factor in getting ahead of the intense competition in container terminals  
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is to improve service quality through a well-balanced combination of robust resource 
planning, recoverable planning in an uncertain environment, and operational cost-
efficiency (Iris & Lam, 2019). Maximization of the service level is required to increase the 
competitive advantage of container terminals. However, maximizing the service level will 
increase the expected total operating and recovery costs. Therefore, this study offers a bi-
objective recoverable robust optimization model for integrated tactical planning that 
considers two objectives, i.e., maximization of minimum service levels for all vessels served 
and minimization of total operational and recovery costs at a seaside container terminal. 
To obtain a compromise solution between these two conditions. Non-Polynomial/NP-hard 
problem characterizes the integrated model (Li et al. 2015; He 2016; Gutierrez et al. 2018; 
Homayouni & Fontes 2018; Yu et al. 2019), that becomes more complex when considering 
the uncertain environment. When there is uncertainty, it is extremely challenging to 
compute the global optimal solution of the TBAP and QCAP integration models using the 
exact method, and if it is even feasible, it takes an extremely long time. Therefore, in this 
study, we apply a hybrid solution methodology using the Rolling Horizon-based 
Optimization Algorithm (RHOA) of Xiang et al. (2018), adapted with Pre-emptive Goal 
programming to solve the proposed bi-objective recoverable robust optimization model to 
get good quality solution with efficient computation time. In the case of complex problems, 
RHOA's solution methodology provides various advantages. The computation time can be 
reduced by subdividing the problem into multiple subproblems. We shall obtain the optimal 
solutions while tackling sub-problems utilizing the exact method. In addition, the rolling 
horizon-based optimization will let the subproblems be linked together, which will make for 
a smooth transition and the best solution overall. The following are the main contributions 
of this study: 
 The proposed model of bi-objective recoverable robust optimization for integrated 

tactical planning decisions at a seaside container terminal in an uncertain environment 
aims to increase the competitive advantage of the container terminal by maximizing the 
service level and balancing total cost efficiency, robustness, and recoverable planning. 
This is different from a single-objective optimization model, which only tries to 
minimize expected total costs. 

 We describe a hybrid method that combines the RHOA and Preemptive Goal 
Programming approaches to get a high-quality solution in a reasonable amount of 
computing time. This method is used to solve the proposed bi-objective recoverable 
robust optimization model. 

 Moreover, by maximizing the minimum service level of all vessels served as the first 
objective function, which is solved by the Preemptive Goal Programming approach, and 
then using the solution result as a goal constraint to minimize the total cost, this is in 
addition to being able to produce a better quality solution as well as more efficient 
computational time compared to the single-objective model, which has a greater 
computational burden to achieve the same result. 
This paper will henceforth be arranged as described below. In Section 2, there is a 

review of the research on the deterministic and probabilistic TBAP and QCAP integrated 
planning models. In Section 3, the construction of a bi-objective optimization model is 
discussed. The Rolling Horizon-based Optimization approach is proposed as a solution 
method for this study in Section 4. The proposed model and solution approach are evaluated 
in Section 5 through numerical experiments and analysis of the findings. Finally, Section 6 
concludes with conclusion thoughts and some research directions.  
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2. Literature Review 

 This section focuses on a literature review about the development of a bi-objective, 
recoverable integrated model in the presence of environmental uncertainty. In container 
terminals at seaports, unexpected things happen often, which can make it hard to carry out 
operational planning. It results in decreased service levels and inefficient use of resources 
at container terminals. In latest years, some scholars have recognized the importance of 
including unpredictability in container terminal operational planning. In tactical planning, 
there are two strategies for dealing with uncertainty: proactive and reactive strategies. In 
the proactive strategy, a baseline plan is constructed by incorporating a degree of 
uncertainty anticipating (Xu et al., 2012; Liu et al., 2016a; Liu et al., 2016b; 
Nourmohammadzadeh & Voß, 2021) In the meantime, the reactive strategy changes the 
baseline plan to account for realistic events that have a certain chance of happening (Li et 
al. 2015; Umang et al. 2017). 
 Furthermore, only a few researchers have explored a robust optimization approach to 
tactical planning at container terminals in the presence of uncertainty. Zhou and Kang 
(2008) were pioneers in developing a proactive technique for Berth Allocation and Quay 
Crane Assignment Problem (BACAP) with unforeseeable vessel arrival and service times. 
They established a Genetic Algorithm as a method for finding solutions. Han et al. (2010) 
used a simulation-based Genetic Algorithm to construct a robust, proactive strategy for 
discrete berth allocation and quay crane scheduling under unpredictability of vessel arrival 
and container handling times. For numerous disruption situations, Zhen et al. (2011) 
worked on a reactive technique to resolve the integrated planning of Berth Allocation 
Problem (BAP) and QCAP using a Tabu Search-based approach. Rodriguez et al. (2014) 
studied the time-invariant robust BACAP under handling times uncertainty. They devised a 
proactive Genetic Algorithm heuristic-based solution method with two objectives: 
maximization of vessel-specific buffer times and minimization of the baseline plan's total 
cost. Li et al. (2015) established a reactive technique for incorporating BAP and QCAP in the 
presence of disturbances, such as a service interruption or a vessel delay. They tackled this 
problem using a heuristic technique based on Squeaky Wheel Optimization (SWO). Shang 
et al. (2016) used a Genetic Algorithm and an insertion heuristic algorithm to tackle the 
problems proactively and offered two robust optimization techniques for BACAP of Meisel 
and Bierwirth (2009) and Iris et al. (2015) to handle data uncertainties in quay crane 
productivity.  Liu et al.  (2016c) split the challenge into two parts by using a behavior 
perception-based reactive technique for combined BAP and QCAP planning. As a solution 
methodology, they used a Mixed Integer Programming (MIP)-based relax-and-fix method 
and a dynamic programming approach. Umang et al. (2017) focused on the real-time 
recovery of the BAP under uncertain vessel arrival and service hours. They developed a 
rolling horizon heuristic to minimize the overall real expenses of the updated baseline plan.  
 Xiang et al. (2018) established the Berth Allocation and Specific Quay Crane 
Assignment Problem (BACASP) with four classes of disruptions that can arise: uncertainty 
of vessel arrival and handling delays, quay crane productivity rate instability, and 
unscheduled vessel calling. They applied a reactive strategy to minimize the total recovery 
costs, solved by a Rolling Horizon-based Optimization Algorithm (RHOA). Iris and Lam 
(2019) provided a recoverable optimization technique for the robust BACAP that 
encompasses both proactive and reactive strategies to deal with vessel arrival and handling 
time unpredictability. An adaptive large neighborhood search heuristic has been used to 
resolve this problem in a two-stage heuristic framework.  
 Several researchers have tackled integrated planning at the container port by analyzing 
the precision of forecasts for the demand for reefer containers and energy usage (Budiyanto 
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& Shinoda, 2017; Pradita et al., 2020); integrating quay crane and internal truck assignment 
with preventive maintenance activities solved by applying a bi-objective optimization 
model  (Liu et al., 2016c; Vahdani et al., 2019; Li et al., 2020); estimation of CO2 emissions 
and their effect on vessel energy efficiency management plan development (Budiyanto et 
al., 2019; Dawangi & Budiyanto, 2021); and the application of Swarm-based Algorithms to 
solve the stochastic optimization problem in container terminal design (Zukhruf et al., 
2020). 
 This research examines a bi-objective recoverable robust optimization model for TBAP 
and QCAP integration based on a model proposed by Iris and Lam (2019). It also applies a 
hybrid method that combines a Rolling Horizon-based Optimization Algorithm and 
Preemptive Goal Programming approaches to obtain good quality results in reasonable 
computational time. 
 
3. Model Development 

 Before discussing the formulation of a bi-objective optimization model for recoverable 
robust BACAP in a Mixed Integer Linear Programming (MILP), the initial stage is to identify 
the current problem. The problem characteristic of recoverable robust BACAP with the 
uncertainty of vessel arrival and handling times is continuous berth allocation for the 
tactical planning horizon. The vessel 𝑖 is allowed to moor at any available place along the 
quay wharf area with a length of 𝐿 meters. The continuous berth is divided into equal berth 
sections, 𝑏, and the planning horizon, 𝐻, is also divided into equal time steps, 𝑡. A set of quay 
cranes, 𝑄, is assigned to serve each vessel’s loading and unloading processes with time-
variant quay cranes assignment while complying with interferences or non-crossing 
constraints and safety space allowance between quay cranes. In this study, the relationship 
between the tactical planning of the seaside container terminal, and the land-side container 
terminal, storage container yard planning, in the proposed bi-objective optimization model 
for recoverable robust BACAP is stated by the expected berth location for each vessel, 𝑏𝑖

0, 
which is the ideal berthing location, resulting in a minimum internal transport distance 
between the vessel berthing position and the container allocation location at the reserved 
storage container yard.  
 Productivity losses at container terminals are significantly influenced by interference 
among QCs with a exponential coefficient, and an increase of the internal transport 
workload due to deviations, ∆𝑏, between the actual berthing location of the vessel, 𝑏𝑖 , and 
the expected berthing location, 𝑏𝑖

0 , (Meisel & Bierwirth, 2009). Each vessel’s estimated 
arrival, 𝑎𝑖

𝑒, and total workload, 𝑚𝑖 , are known. However, because quay crane productivity 
rates may be disrupted or unstable within the planning horizon, vessel arrival and total 
workload are unpredictable and represented in discrete scenarios. The recoverable robust 
BACAP model produces a robust baseline schedule and recovery plan to anticipate 
uncertainty by applying buffer times and QCs. 
 A bi-objective robust optimization model is developed based on the single-objective 
recoverable model of Iris and Lam (2019). In addition to minimizing the total cost as in the 
single-objective model of Iris and Lam (2019), To boost the container terminal's 
competitive advantage, we create a first objective function that maximizes the minimal 
service level for all vessels served during the planning horizon. Furthermore, the maximum 
of the minimum service level of all vessels served will positively impact efforts to minimize 
the waiting cost before berthing and the departure delay cost, both of which are cost 
components in the baseline schedule cost. Thus, the bi-objective optimization model is 
constructed to (a) maximize the minimum service level of all vessels served and (b) balance 
the cost efficiency of a robust, proactive baseline schedule with a recoverable reactive plan. 
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The first objective is to maximize the minimum service level of all vessels in the integrated 
plan, as shown in (1).  
Maximize the minimum service level of all vessels served. 

𝑀𝑎𝑥.  𝑆𝐿 = min
𝑖∈𝑉

{𝑆𝐿𝑖}                (1) 

The service level of each vessel, 𝑆𝐿𝑖 , is defined in (2), 

𝑆𝐿𝑖 = 1 −
𝜏𝑖

𝑎++𝜏𝑖
𝑏+

𝑏𝑖
𝑒−𝑎𝑖

𝑒                                                         ∀𝑖 ∈ 𝑉     (2) 

where 𝜏𝑖
𝑎+  and 𝜏𝑖

𝑏+  are waiting time before the vessel 𝑖 begins mooring and tardiness of 
vessel 𝑖 's mooring finish time in the baseline plan, respectively, and the expected handling 
time of vessel 𝑖 is 𝑏𝑖

𝑒 − 𝑎𝑖
𝑒  for 𝑖 ∈ 𝑉. 

The cost efficiency is expressed as the second objective, namely, to minimize the total 
cost of the baseline schedule, 𝑇𝐶𝑏, the total recovery cost from the baseline schedule for 
each scenario, 𝑇𝐶𝑟 , and the expected total cost for all scenario solutions, 𝑇𝐶𝑠 .  

𝑀𝑖𝑛. 𝑇𝐶 =  𝑇𝐶𝑏 + 𝑇𝐶𝑟 + 𝑇𝐶𝑠 (3) 

 The total cost of the baseline schedule, 𝑇𝐶𝑏 , constitutes the waiting cost before 
berthing, the departure delay cost, and the assigned QCs operational cost to all vessels in 
the integrated planning, as shown in (4). 

𝑇𝐶𝑏 = ∑ 𝑐1𝑖. 𝜏𝑖𝑠
𝑎+

𝑖∈𝑉 + ∑ 𝑐1𝑖 . 𝜏𝑖𝑠
𝑏+

𝑖∈𝑉 + ∑ ∑ ∑ 𝑐2𝑞𝑋𝑖𝑡
𝑞

𝑡∈𝑇𝑞∈𝑞𝑖𝑖∈𝑉       (4) 

where: 𝑐1𝑖  and 𝑐2  are penalty cost for waiting of mooring start time of vessel 𝑖  from its 
expected start handling time or delay of completion time of vessel 𝑖  from its designed 
departure time and QC operational cost rate per time step, respectively. The decision 
variable, 𝑋𝑖𝑡

𝑞
, is set to 1, if vessel 𝑖 is served by allocated 𝑞 QCs at time step 𝑡 in the baseline 

plan and 0 otherwise; for 𝑖 ∈ 𝑉, 𝑞𝑖 ∈ [0, 𝑞𝑖
𝑚𝑖𝑛 , … , 𝑞𝑖

𝑚𝑎𝑥  ], 𝑡 ∈ 𝑇. 

 Total recovery costs, 𝑇𝐶𝑟 , consist of the total cost of postponement due to recovery 
plan, the total cost of operations lateness after the end of buffer time, and the total cost of 
QC setup due to recovery plan, as shown in (5). 

𝑇𝐶𝑟 = ∑ 𝑝𝑠{∑ 𝑐1𝑖𝑖∈𝑉 (𝛾𝑖𝑠 + 𝛿𝑖𝑠) + ∑ ∑ 𝑐3𝜆𝑖𝑡𝑠𝑡∈𝑇𝑖∈𝑉 }𝑠∈𝑆        (5) 

where: 𝑐3  is the setup cost of additional QC assigned to the recovery plan. The decision 
variables, 𝛾𝑖𝑠 , 𝛿𝑖𝑠, and 𝜆𝑖𝑡𝑠  are vessel 𝑖's relative tardiness in comparison to the baseline plan 
in scenario 𝑠, vessel i's handling time duration exceeds the buffer time in scenario 𝑠, and 
number of additional QCs setup for a vessel 𝑖 at time step 𝑡 as a recovery plan in scenario 𝑠 
compared to the baseline plan for  𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, respectively.  
 The total expected cost of all scenarios, 𝑇𝐶𝑠 , consists of the expected cost of waiting 
time before berthing costs, the departure delay costs, and the QC operation costs for all 
scenarios as shown in (6). 

𝑇𝐶𝑠 = ∑ 𝑝𝑠{∑ 𝑐1𝑖. 𝜏𝑖𝑠
𝑎+

𝑖∈𝑉 + ∑ 𝑐1𝑖 . 𝜏𝑖𝑠
𝑏+

𝑖∈𝑉 + ∑ ∑ ∑ 𝑐2𝑞𝑋𝑖𝑡𝑠
𝑞

𝑡∈𝑇𝑞∈𝑞𝑖𝑖∈𝑉 }𝑠∈𝑆      (6) 

where: 𝑝𝑠 is the scenario's probability of being realized, for scenario 𝑠 ∈ 𝑆. 
Some constraints are considered in the proposed model. Each vessel must moor along 

with the quay wharf range and within its feasible time windows, without overlapping each 
other in the berth plan. The number of allocated QCs must fulfil the QC capacity 
requirements and consider the QC productivity losses caused by the discrepancy, ∆𝑏 , 
between berthing location, 𝑏𝑖  and its expected berthing location, 𝑏𝑖

0, with 𝛽 coefficient and 
QC interferences, with 𝛼  exponential coefficient. The total number of allocated QCs and 
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buffer QCs for each vessel cannot exceed the maximum allowable number of allocated QCs. 
In addition, the total amount of allocated QCs included buffer QC for all vessels cannot 
exceed the total available QCs in each time step. The recovery plan occurs if there is a delay 
after the end of the buffer time and the minimum setup QCs are carried out in addition to 
the allocated QCs in the baseline plan. The complete model and its explanation of the 
proposed bi-objective recoverable robust BACAP optimization model are presented in the 
Supplementary Material (https://bit.ly/3b6VEC0). 
 
4.  Rolling horizon-based Optimization Algorithm 

 We apply a rolling horizon-based optimization algorithm based on the RHOA 
developed by Xiang et al. (2018) with some adjustments to obtain computational time 
efficiency in solving large-scale problems. Xiang et al. (2018) applied RHOA using the 𝑢t and 
𝑔𝑡 parameters as time durations after the expected arrival time of the last vessel and before 
the expected arrival time of the first vessel in a sub-problem, as the overlapping time 
between iterations, where each iteration may consist of a different number of vessel 
arrivals. Each sub-problem consists of 𝑛𝑣  vessel arrivals being scheduled. Thus, each 
iteration has a different number of vessel arrivals with a fixed overlapping time range. 
While in this study, each iteration 𝑖 has a fixed number of vessel arrivals, namely 𝑛𝑣 +
 𝑜𝑣𝑒𝑟𝑙𝑎𝑝, where the overlap parameter is expressed as a number of vessel arrivals from the 
next sub-problem (𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≤ 𝑛𝑣), which is considered in optimizing the sub-problem with 
different time ranges among iterations. In addition, Xiang et al. (2018) used RHOA to solve 
a single objective optimization problem, while in this study, RHOA was combined with the 
Pre-emptive Goal Programming approach for solving the proposed bi-objective 
optimization model by using the optimal solution result of the first objective function as a 
goal constraint to solve the second objective function in each iteration. The following 
explanation discusses the detailed steps of the Rolling Horizon-based Optimization 
algorithm for solving the bi-objective optimization model for a recoverable robust BACAP 
model. 
1. Step 1: Initialize model parameters 

2. 𝑛𝑣  the number of new vessels to be considered in each iteration 

3. 𝑛𝑖𝑡𝑒𝑟  number of iterations, 𝑛𝑖𝑡𝑒𝑟 =  ⌈𝑉/𝑛𝑣⌉   𝑉 = number of vessels 

4. 𝑜𝑣𝑒𝑟𝑙𝑎𝑝  number of vessels to be considered to the next iteration 

5. Step 2: sort total vessels in ascending order of vessel arrival time expectation 

6. Sort all vessels by expected arrival times in ascending order. 

7. Step 3: optimize the first iteration with 𝒏𝒗 +  𝒐𝒗𝒆𝒓𝒍𝒂𝒑, as the number of vessels  

8. Solve the first iteration using the first objective function to obtain the optimal schedule 

for the first (𝑛𝑣 +  𝑜𝑣𝑒𝑟𝑙𝑎𝑝)  vessels, then use the value of the first objective function 

as a goal constraint for optimizing the second objective function (apply Pre-emptive 

Goal Programming approach). 

9. Step 4: Fix optimal schedule of the first 𝒏𝒗 vessels  

10. Fix the optimal schedule of the first 𝑛𝑣 vessels 

11. Step 5: Iterative process 

12. For 𝑖𝑡𝑒𝑟 ==  2 ∶  𝑛𝑖𝑡𝑒𝑟 − 1, do: 

13. Solve the iter-th iteration to get the optimal schedule of the first (𝑖𝑡𝑒𝑟 ×  𝑛𝑣 +

 𝑜𝑣𝑒𝑟𝑙𝑎𝑝) vessels using a fixed optimal schedule of the first (𝑖𝑡𝑒𝑟 –  1)  ×  𝑛𝑣 vessels. 

14. Fix the optimal schedule of the first 𝑖𝑡𝑒𝑟 ×  𝑛𝑣 vessels. 

15. end 
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16. Step 6: solve the last iteration 

17. For the last iteration (niter-th iteration), optimize the schedule of all vessels, 𝑉, using a 

fixed optimal schedule of the first (𝑛𝑖𝑡𝑒𝑟 –  1)  ×  𝑛𝑣 vessels. 

 In addition, the steps of the rolling horizon-based optimization algorithm can be 
described in Figure 1, where “fix” means that all decision variables in these time steps use 
the optimal results from the previous iterations. Meanwhile, “optimize” is referred to as the 
decision variables in these time steps are optimized by considering the fixed optimal values 
from the previous iterations. “Release” is defined as the values of the decision variables in 
these time steps, that are still free. 

0
Horizon Time

0

0

0

a1 a3 a4 a5 a6a2 a7 a8 a9 a10 a11a12 a13 a14 a15

Sub problem #1 Sub problem #2 Sub problem #N

   

Optimize Release

Optimize

Arrival of vessel 1

Iteration #1

Iteration #2

Iteration #N

Fix Release

Fix Optimize

Overlap .
.
.
.
.

 

Figure 1 The steps of the rolling horizon based optimization algorithm 

 
5. Experimental Setting, Results, and Discussion 

The proposed bi-objective recoverable robust optimization model for integrated 
tactical planning in seaside container terminals under environmental uncertainty is applied 
to 30 cases. Each case has 10 discrete scenarios that have an equal probability of 
occurrence.  The parameter settings, data generation, and scenario uncertainty information 
for numerical experiments are based on Iris and Lam (2019). 

Numerical experiments are performed using a combination of the number of calling 
vessels (𝑉 = 20, 30, and 40 vessels), the length of quay wharf (𝐿 = 1000 m and 1500 m), and 
the number of available QCs (𝑄 = 10 QCs). Quay wharf is divided into equal length of berth 
section with a length of 20 m. The planning horizon is a weekly period that is divided into 
time steps (𝑡𝑠) of 4 hours (𝐻 = 42-time steps). There are two scenarios of uncertainty level 
(UL), namely highly uncertain (HU) and slightly uncertain (SU). In highly uncertain (HU) 
cases, vessel arrival times and QC capacity demand can vary significantly from the expected 
parameters of the initial schedule, while in slightly uncertain cases, delays from expected 
arrival times are up to 1 time-step (ts). The QC capacity demand for each vessel is in the 
range of 0 to 2 QC-ts difference between the two scenarios' uncertainty levels. We randomly 
generate 5 datasets for each scenario of uncertain level (UL) of the slightly and highly 
uncertain QC capacity demand (SU and HU). In each case, three-vessel types consist of 
Feeder, Medium, and Jumbo vessels with a composition of 90%, 30%, and 10%, 
respectively. The vessels’ length, 𝑙𝑖 , QCs capacity demand, 𝑚𝑖 , the minimum and the 
maximum number of assigned QCs, 𝑞𝑖

𝑚𝑖𝑛 , 𝑞𝑖
𝑚𝑎𝑥 , QCs capacity demand for each scenario of 

uncertain level, 𝑚𝑖𝑠, and the penalty cost per time step for waiting and delay times, 𝑐2 are 
shown in Table 1. Table 2 presents the parameters setting of the expected and feasible 
arrival and depart times and their uncertain times for each vessel type.  
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Table 1 Data for each of vessel type 

Vessel 
Type 

Proportion 𝑙𝑖  (m) 
𝑚𝑖   

(QC-ts) 
[𝑞𝑖

𝑚𝑖𝑛 , 𝑞𝑖
𝑚𝑎𝑥] 

(QCs) 

𝑚𝑖𝑠  (QC-ts)  
𝑐1𝑖  SU     HU 

Feeder 60% U[70,200] U[2,5] [1,3] U[2,7]                U[3,9] 4 
Medium 30% U[200,300] U[6,14] [2,4] U[6,17]           U[7,19] 8 

Jumbo 10% U[300,400] U[15,20] [3,6] U[15,23]      U[16,24] 12 

 
Table 2 Parameters setting of the expected vessel arrival and depart times and their 
uncertainties 

Vessel 
Type 

𝑎𝑖
𝑒  𝑏𝑖

𝑒 𝑎𝑖𝑠
𝑒  𝑏𝑖𝑠

𝑒  

Feeder U[1,𝐻-U[2,4]] min {𝐻, 𝑎𝑖
𝑒 + 𝑈[4,8]} 𝑎𝑖

𝑒 + 𝑈[0,3] min {𝐻, 𝑎𝑖𝑠
𝑒 + 𝑈[4,8]} 

Medium U[1,𝐻-U[3,5]] min {𝐻, 𝑎𝑖
𝑒 + 𝑈[5,9]} 𝑎𝑖

𝑒 + 𝑈[0,3] min {𝐻, 𝑎𝑖𝑠
𝑒 + 𝑈[5,9]} 

Jumbo U[1,𝐻-U[4,6]] min {H, 𝑎𝑖
𝑒 + 𝑈[6,10]} 𝑎𝑖

𝑒 + 𝑈[0,3] min {𝐻, 𝑎𝑖𝑠
𝑒 + 𝑈[6,10]} 

 
Parameters setting of the feasible vessel arrival and departure times are generated 

using 𝑎𝑖
𝑓

= max {1, 𝑎𝑖
𝑒 − 𝑈[2,6] }  and 𝑏𝑖

𝑓
= min {𝐻, 𝑏𝑖

𝑒 + 𝑈[2,6] } . Furthermore, their 

associated time in each scenario 𝑠 are obtained from 𝑎𝑖𝑠
𝑓

= max {1, 𝑎𝑖𝑠
𝑒 − 𝑈[2,6] } and 𝑏𝑖𝑠

𝑓
=

min {𝐻, 𝑏𝑖𝑠
𝑒 + 𝑈[2,6] }. The expected berthing location of each vessel 𝑖 is obtained from 𝑏𝑖

𝑜 =

𝑈[
𝑙𝑖

2
, 𝐿 −

𝑙𝑖

2
] meters. Productivity losses of QCs use coefficients of 𝛼 = 0.9 and 𝛽 = 0.01. The 

cost of QC operational per time step and QC setup cost are 𝑐2 = 0.4 , and 𝑐3 = 0.06 , 
respectively, as used in Iris and Lam (2019). The numerical experiment was accomplished 
with the following RHOA setting parameters: each iteration is comprised of sub-problems 
with the number of vessels, 𝑛𝑣 =  5, and the number of vessels from the next sub-problem, 
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =  2. The numerical experiments are conducted on processor Intel core i7-8550U, 
1.80GHz, and 8 GB RAM. Python programming-Gurobi 9.0 optimization with the 
configuration of eight threads is applied to the proposed rolling horizon-based optimization 
algorithm as the solution methodology for solving the recoverable robust optimization 
model.  

In addition to minimizing the total cost as in the single-objective model of Iris and Lam 
(2019), we add an objective function to maximize the minimum service level of all vessels 
served in the planning horizon as the first objective function to increase the competitive 
advantage of the container terminal. Furthermore, the maximum of the minimum service 
level of all vessels served will positively impact efforts to minimize the waiting cost before 
berthing and the departure delay cost, both of which are cost components in the baseline 
schedule cost. Moreover, the application of the RHOA and Pre-emptive Goal Programming 
approaches by using the optimal solution results from the first objective function, namely, 
maximizing the minimum service level of all vessels served as a goal constraint in 
minimizing the total cost, can help ease the burden of calculations to minimize the total 
costs, which, in the end, will shorten the computation time, as shown in the comparison of 
the solution results between the bi-objective and single-objective optimization models in 
Table 3, as follows. 

Table 3 demonstrates that the bi-objective optimization model is superior to the single-
objective optimization model in terms of both the quality of the solution results and the 
solution's runtimeIn terms of service level, overall cost-efficiency, and average runtime, the 
findings of the bi-objective optimization model appear to be superior to those of the single-
objective optimization model in 90 percent of all cases for both low and high uncertainty 
level situations. This is because the solution result from the bi-objective optimization model 
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uses lower buffer times allocation and higher buffer QCs than the solution from the single-
objective optimization model. The average runtime completion for the bi-objective 
optimization model is more efficient because the completion of the bi-objective 
optimization model using the Pre-emptive Goal Programming approach generates a lower 
calculation burden than combining the objective functions into a single-objective 
optimization model. In addition to providing a more efficient average runtime solution, the 
bi-objective optimization model for recoverable robust BACAP under unpredictable vessel 
arrival time and service time yields a higher quality solution.  

Table 3 The results comparison between bi-objective and single-objective optimization 
models for the recoverable robust BACAP that are solved using RHOA 

No. V 
L 

(m) 
UL 

Bi-objective model Single-objective model 

SL TC 
Runtime 

(s) 
SL TC 

Runtime 
(s) 

1 20 
 

1000 SU 
 

100% 84.66 264.95 100% 84.66 181.67 

2  100% 133.18 541.16 17% 251.03 772.64 

3 94% 165.22 1224.23 59% 255.30 1200.71 

4 100% 100.05 170.21 100% 100.05 183.97 

5 100% 119.02 391.06 100% 121.43 403.88 

6 HU 
 

100% 100.13 987.78 100% 99.72 990.59 

7 88% 203.47 927.96 56% 299.86 908.13 

8 100% 162.86 646.52 33% 368.23 1200.83 

9 92% 158.28 479.62 100% 113.98 221.18 

10 100% 136.09 416.23 100% 131.26 690.22 

11 30 
 

1000 
 

SU 
 

100% 151.44 41.88 100% 151.85 387.78 

12 100% 171.92 146.50 100% 179.12 618.54 

13 75% 274.19 816.31 80% 234.88 1323.06 

14 82% 263.06 457.72 60% 396.87 944.91 

15 94% 178.12 137.14 88% 191.72 675.42 

16 HU 
 

100% 167.88 71.20 69% 259.88 1451.66 

17 100% 188.84 234.17 47% 539.99 1990.29 

18 73% 238.88 691.65 80% 373.85 1419.86 

19 78% 317.95 1116.67 78% 341.69 1366.82 

20 94% 196.36 99.50 73% 235.57 662.80 

21 40 
 

1500 
 

SU 
 

89% 241.48 198.23 85% 291.61 713.18 

22 100% 219.13 908.91 95% 224.34 1517.04 

23 83% 327.39 672.62 63% 532.81 1765.88 

24 100% 194.05 160.85 88% 256.84 843.22 

25 100% 227.62 342.83 71% 423.49 1820.16 

26 HU 
 

95% 260.61 603.01 85% 358.81 1323.98 

27 100% 233.85 655.49 73% 254.67 1707.29 

28 39% 626.21 2756.60 22% 667.78 2030.17 

29 100% 218.57 479.28 94% 237.49 965.85 

30 100% 248.94 657.77 80% 302.46 1619.79 

 
Figure 2 shows the comparison between the results of the bi-objective optimization model 
for recoverable robust BACAP and the single objective optimization model to minimize the 
total costs. In the bi-objective optimization model, the objective function to maximize the 
service level is more priority than minimizing the total cost. Therefore, the average service 
level in the bi-objective optimization model is higher than in the single-objective 
optimization model. In addition, the average total cost in the bi-objective optimization 
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model is more efficient than the single-objective optimization model for the various 
number of calling vessels in slightly and highly uncertain conditions. This is due to the cost 
weights of the waiting time for berthing and the lateness in operating time, which 
significantly contributes to the expected total cost. 

 
(a) 

 
(b) 

 
(c) 

Figure 2 Comparison between bi-objective (BO) and single objective (SO) results for: (a) average 
of the service level, (b) average of the total cost, and (c) average of the runtime for various in the 
number of vessels and the uncertainty levels 

The experimental results show that the bi-objective optimization model results in an 
increase in the average service level under conditions of slightly uncertainty - SU by 5% to 
25% and for highly uncertainty - HU by 16% to 20% for cases with 20 to 40 vessels. While 
the comparison of the total costs between the results of the bi-objective solution and the 
single-optimization model shows the total cost-efficiency generated by the bi-objective 
optimization model for conditions of slightly uncertainty - SU of 10% to 30% and for highly 
uncertainty - HU of 13% to 37%. for cases with 20 to 40 vessels. 

Figure 3 demonstrates that the bi-objective optimization model reduces the need of 
buffer times to predict the uncertainty of the vessel's arrival and handling time by an 
average of 19 percent compared to the single-objective optimization model. In contrast, the 
use of buffer QCs in the bi-objective optimization model solution is 6 percent higher on 
average than in the single-objective optimization model solution. 
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(a) (b) 

Figure 3 Comparison between bi-objective (BO) and single objective (SO) results for: (a) average 
of the buffer times, and (b) average of the buffer QCs for various in the number of vessels and the 
uncertainty levels 

Bi-objective optimization models typically require less time to solve than single-
objective optimization models.This is because the computational time for the first objective 
function, which is to maximize service levels, has a lower computational burden compared 
to the objective function of minimizing total costs. Consequently, when we solve the second 
objective function, which is to minimize the total costs in the bi-objective optimization 
model by using maximum service levels as goal constraint will give more efficient 
computational time compared to the single-objective optimization model. The example of 
a berth plan of the baseline plan for 20 vessels in the highly uncertain condition is shown 
in Figure 4. 

 
Figure 4 Illustration for berth plan for 20 vessels in the highly uncertain condition 

The proposed bi-objective recoverable and robust BACAP model's solution can be used 
as a reference for container terminal operators, shipping liner owners, and logistics service 
providers in making decisions to increase competitive advantage and balance cost 
efficiency, recoverability, and robustness planning in seaside container terminal 
operations. In uncertain conditions, a baseline schedule resulting from proactive and 
reactive strategies with optimal buffer times and buffer QCs allocation can produce 
recoverable, robust planning for container port management in providing reliable logistics 
services. 
 
6. Conclusions 

This paper presents a proposed bi-objective recoverable robust optimization model for 
integrated tactical planning in seaside container terminals with uncertain vessel arrival 
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and handling times. We consider two objectives: maximizing the minimum service level of 
all vessels served and minimizing the total costs of the baseline schedule, recovery plan, 
and expected total costs for all scenarios such that the container terminal has a competitive 
advantage. The rolling horizon-based optimization algorithm and Pre-emptive Goal 
Programming approaches are proposed as a solution method to solve the bi-objective 
recoverable robust BACAP model, resulting in good quality solution for a large-scale 
problem in reasonable computation time. For further research development, recoverable 
robust optimization can be considered for integrated planning with storage container 
yards under uncertainty and effective solution methods for real-time disruption recovery. 
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