
lable at ScienceDirect

Nuclear Engineering and Technology 54 (2022) 3478e3487
Contents lists avai
Nuclear Engineering and Technology

journal homepage: www.elsevier .com/locate/net
Original Article
Incorporation of anisotropic scattering into the method of
characteristics

Anisur Rahman, Deokjung Lee*

Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
a r t i c l e i n f o

Article history:
Received 30 August 2021
Received in revised form
28 March 2022
Accepted 29 March 2022
Available online 31 March 2022

Keywords:
Neutron transport
Method of characteristics
Spherical harmonics
Legendre functions
* Corresponding author.
E-mail addresses: anisur@unist.ac.kr (A. Rah

(D. Lee).

https://doi.org/10.1016/j.net.2022.03.041
1738-5733/© 2022 Korean Nuclear Society, Published
licenses/by-nc-nd/4.0/).
a b s t r a c t

In this study, we incorporate an anisotropic scattering scheme involving spherical harmonics into the
method of characteristics (MOC). The neutron transport solution in a light water reactor can be signif-
icantly improved because of the impact of an anisotropic scattering source with the MOC flat source
approximation. Several problems are selected to verify the proposed scheme and investigate its effects
and accuracy. The MOC anisotropic scattering source is based on the expansion of spherical harmonics
with Legendre polynomial functions. The angular flux, scattering source, and cross section are expanded
in terms of the surface spherical harmonics. Later, the polynomial is expanded to achieve the odd and
even parity of the source components. Ultimately, the MOC angular and scalar fluxes are calculated from
a combination of two sources. This paper presents various numerical examples that represent the hot
and cold conditions of a reactor core with boron concentration, burnable absorbers, and control rod
materials, with and without a reflector or baffle. Moreover, a small critical core problem is considered
which involves significant neutron leakage at room temperature. We demonstrate that an anisotropic
scattering source significantly improves solution accuracy for the small core high-leakage problem, as
well as for practical large core analyses.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The solution of the neutron transport equation using the
method of characteristics (MOC) is widely used for nuclear reactor
core analysis. A three-dimensional (3-D) neutron transport code
called STREAM [1], based on theMOCwas developed for light water
reactor neutronics analysis. Several methods have been used for the
neutronics analysis of a reactor core. The conventional two-step
method [2] (transport/diffusion based), the coarse mesh diffusion
theory is used in whole core analysis whereas the fine-mesh
neutron transport method is applied for fuel assembly. The
Monte Carlo continuous-energy neutron transport simulation code
[3,4] and the MOC based neutron transport code are also used
worldwide. Transport-corrected cross sections with the MOC are
usually used and numerous methods [5] are applied to correct the
total cross section. Precise modeling of the core geometry for
reactor analysis is difficult because the core geometry in the radial
direction is complicated compared to the axial direction [2].
Therefore, a more realistic geometric discretization is necessary to
man), deokjung@unist.ac.kr

by Elsevier Korea LLC. This is an
acquire the outcomes. Explicit 3-D transport analysis can eliminate
many approximations compared to the two-step method, although
transport/diffusion-based method requires less time.

The earliest reactor analysis code based on theMOCwas CACTUS
[6]. This code was developed by the UK Atomic Energy Authority,
but it was not widely used at the time because of the required
processor speeds and higher memory requirements. However, the
currently available computer capabilities have enabled the wide-
spread use of the transport model for nuclear reactor neutronics
analysis. This model permits an explicit representation of the ge-
ometry and provides reasonably accurate results. Time, energy, and
space-dependent Boltzmann neutron transport equations are used
in the transport model. In the MOC, the multidimensional partial
differential equation is rewritten as an ordinary differential equa-
tion along a characteristic curve. Although flat source approxima-
tion is more widely used than other methods because of its
simplicity, linear and quadratic neutron source approximations
allow larger meshes compared to flat sources. Many codes,
including DECART [7], nTRACER [8], MPACT [9], STREAM [1],
PROTEUS-MOC [10], and OpenMOC [11], were developed based on
the MOC. The 2-D/1-D method was originally developed and
implemented in DECART [7]; it is solved the radial plane by the 2-D
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MOC, and the axial plane is solved by the SP3 or diffusion method.
Later, nTRACER [8], MPACT [9], and PROTEUS-MOC [10] also
adopted the 2-D/1-D method. Upgrading of the 2-D/1-D method
[12e14] to address its limitations is still an ongoing process.
OpenMOC solves the direct 3-D MOC transport equation, but it
requires considerable memory and runtime. In contrast, the 3-D
method of characteristics/diamond-difference method has been
implemented in the neutron transport code STREAM, but it does
not include any axial solvers.

Many solution schemes, including discrete ordinate (SN),
spherical harmonics (PN), Monte Carlo, collision probability, and
MOCs [15] have been developed in recent decades to solve the
multi-group neutron transport equation. The development of the
last two advanced reactor design methods is important because of
the transport approximation. The spherical harmonics allow the
strong anisotropic scatter areas to be easily used [16,17]. The
orthonormal property of spherical harmonics enables expansion by
the Legendre polynomial of degree [, which is valid for both real
and complex harmonics.

The coarse mesh finite difference (CMFD) acceleration method,
which is based on the nodal diffusion equation, is used to accelerate
the MOC transport solution in STREAM [1]. The 3-D MOC with pin-
wise CMFD acceleration reduces the effective number of iterations
and computing time. A 72-groups cross section library is used in the
MOC whereas 8-groups is used for CMFD. In the CMFD solver, the
assembly-wise solver is used to accelerate the pin-wise CMFD.

The purpose of this work is to evaluate the performance of
anisotropic scattering and adopt more features in STREAM that
could provide more realistic and accurate results. All simulations in
this study were tested up to order 3. The MOC flat source approx-
imation with a higher-order anisotropic scattering source scheme
might be capable of improving the solution accuracy with respect
to the reference.
2. Methodology

The neutron transport equation in the MOC can be written as a
combination of 2-D radial (x, y) and 1-D axial components. The
angular flux, scalar flux, and source arewrittenwith radial and axial
parts, as follows:

jg
i;j;kðs; zÞzjg

i;j;kðsÞbðzÞ
fgðs; zÞzf

gðsÞbðzÞ
Qg

i;jðs; zÞzQ
g
i;j;mðsÞbðzÞ

(1)

where z is the axial direction coordinate, s is the radial x-y plane
coordinate, i is the index of the azimuthal angle, j is the index of the
polar angle, k is the index for theMOC ray segment, g is the index of
the energy group, and m is the index for the source region.

The components of the angular flux, scalar flux, and source are
written in any axial planewith linear interpolation of the upper and
lower domains. Thus:
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where z0, zþ, and z� are active, upper, and lower regions of the axial
plane, respectively. The average value is defined as follows:
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The steady-state 3-D neutron transport equation [1,18] along the
characteristic line is

cosqj
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where sg
t;m is the total cross section at the flat source region m. The

sine and cosine components indicate the axial and x-y planes.
By inserting the flux and source element from the approxima-

tion equations (1)e(3) into equation (4), the transport equation is
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Integrating equation (5) over the axial domain and dividing by
the axial size (Dz) of the domain yields,
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where the source is the sum of the fission and scattering source
defined as follows:
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Rewrite equation (6) by adding the term 2 sinqj
Dz jg;�

i;j;kðsÞ on both

sides
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The term 2 sinqj
Dz jg;�

i;j;kðsÞ on the right-side acts as a surface source

from the bottom plane, which merges with the fission and scat-
tering sources.
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where j
¼ g;�

i;j;mðsÞ is the average angular flux of the region.

Finally, the general form of the transport equation is
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where ~sg
t;m is the modified total cross section and is defined by
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Total source is defined by
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The analytical solution of equation (10) is
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where jg;0
out;i;j;k is the outgoing angular flux from the ray segment,

jg;0
in;i;j;k is the incoming angular flux to the segment, ti;j;k is the

length of the segment projected on x-y plane, and t0i;j;k is the actual

segment length.
The average angular flux of any track is defined by
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The average angular flux in any region defined by
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where di is the ray spacing, and Am is the analytic area of the flat
source region m.

The region-wise scalar flux (each flat source) is calculated as

f
g;0
m ¼4p

X
j

X
i

j
g;0
i;j;muiuj; (16)

whereui anduj are the weights for the azimuthal and polar angles,
respectively.

The Legendre polynomials [19] were applied to enlarge the
angle dependent on the scattering cross sections. The scattering
source is a combination of incoming and outgoing flight directions
or the cosine of the angle between them, and it can be expanded in
terms of the scattering angle:

ssðr; E0 /E;mÞ¼ 1
4p

XN
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From equation (7), the total source is the sum of the fission and
scattering sources. The scattering source term is defined as follows:
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The normalized spherical harmonics functions Yl;mðuÞ are
defined by
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where Pml ðmÞ is the associated Legendre function, and m and f are
the cosines of the polar and azimuthal angle of the direction of
vector U, respectively.
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The modified scattering source term, equation (18), is now
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By identifying the real and imaginary part of each component
then we can write,
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and the angular flux (PN flux) moments are defined by



Table 1
Specification of fuel assembly.

Input Value

Pellet radius 0.4096 cm
Inner clad radius 0.4180 cm
Outer clad radius 0.4750 cm
Rod pitch 1.26 cm
Assembly pitch 21.50 cm
Pellet material UO2 (3.1% w/o U235)
Clad material Zircaloy-4
Fill gas material Helium

Table 2
Summary results of a single lattice.

Problem PN order k-effective Pin Power
Distribution diff.b

calculated diff.(pcm)a PW.(%) Max.(%)

2A P3 1.18217 �0.5 0.20 �0.36
P0c 1.18114 �103 0.24 0.60
TCP0d 1.18164 �53 0.20 �0.36

2B P3 1.18292 �44 0.14 �0.26
P0 1.18216 �120 0.27 0.63
TCP0 1.18253 �83 0.17 �0.36

2C P3 1.17221 �164 0.09 0.21
P0 1.17141 �234 0.26 0.64
TCP0 1.17159 �216 0.11 �0.25

2D P3 1.16282 �277 0.08 0.18
P0 1.16210 �349 0.27 0.63
TCP0 1.16230 �329 0.10 �0.23

2E P3 1.06916 �46 0.13 0.23
P0 1.07304 341 0.65 1.18
TCP0 1.06936 �26 0.13 0.25

2F P3 0.97554 �47 0.07 0.14
P0 0.98221 619 1.05 2.03
TCP0 0.97606 4 0.11 �0.28

2G P3 0.84820 50 0.13 0.24
P0 0.86413 1643 1.98 3.53
TCP0 0.85038 268 0.17 0.50

2H P3 0.78733 �89 0.16 0.26
P0 0.80855 2032 2.77 4.85
TCP0 0.79051 228 0.19 0.55

2I P3 1.17970 �21 0.14 0.19
P0 1.17869 �122 0.29 0.71
TCP0 1.17914 �77 0.17 0.32

2J P3 0.97466 �53 0.11 0.14
P0 0.98130 610 1.07 2.21
TCP0 0.97515 �4 0.11 �0.27

2K P3 1.01915 �91 0.11 �0.35
P0 1.02532 525 1.00 2.22
TCP0 1.01958 �48 0.11 �0.27

2L P3 1.01822 �69 0.24 �0.52
P0 1.01823 �68 0.69 �1.59
TCP0 1.01782 �109 0.30 �0.70

2 M P3 0.93855 �24 0.28 �0.54
P0 0.93789 �90 0.58 �1.22
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fl;mðr; E0Þ ¼
ð4p
0

dU0Rl;mðuÞjl:mðr; E0;u0Þ; (24)

where Rl;mðu0Þ is part of the spherical harmonics.

3. Verification

All the studies were performed with the MOC ray spacing of
0.05 cm, 48 azimuthal angles, and 6 polar angles. The black
boundary was applied at the top and bottom in the 3-D problem,
and the boundary conditions at the other sides depended on the
problem. The mesh for each pin cell consisted of five radial rings for
the inner zone, and three radial rings for the outer zone. In 3-D, 170
and 64 axial planes were used in the VERA and Babcock & Wilcox
(B&W) problems, respectively. Transport-corrected (PCP0) results
and results that are not transport-corrected (P0) were added to
each problem to realize a comparative study.

3.1. Two-dimensional problem

3.1.1. Single lattice
A pressurized water reactor fuel assembly (Westinghouse

designed) was selected to test the accuracy of the anisotropic
scattering source scheme and compare it to Monte Carlo reference.
The assembly consisted of a 17� 17 fuel array with 264 fuel rods, 24
guide tubes, and one instrument tube. The geometry and number of
the flat source regions of the fuel pin are shown in Fig.1. A summary
of the assembly parameters is presented in Table 1. Detailed tech-
nical specifications and reference solutions were obtained from the
VERA core physics benchmark progression problem [20]. The fuel
and cladding material were 3.1 wt% UO2 and Zircaloy-4, respec-
tively. Identical temperatures were used for all regions [20].

The results in Table 2 demonstrate the situation of the lattice in a
typical reactor startup and at full power operation in unrodded and
rodded conditions, including different burnable poisons. The tem-
perature range of the fuel is commonly observed under hot zero
power (HZP) or full power reactor operation. It is common to
observe a higher error when an anisotropic scattering source is not
used. On the other hand, the eigenvalue differences are below 100
pcm when using scattering source order 3, except 2C (�164 pcm),
2D (�277 pcm), and 2 N (�144 pcm). Furthermore, lower pin power
differences were observed in order 3 compared to that in P0.

3.1.2. B&W simple experiments
The Babcock & Wilcox (B&W) [21] series 1484 core I and II ex-

periments consisted of two very simple cores (one circular and one
square), as shown in Fig. 2. These two cores were not
Fig. 1. Geometry of single pin (a) Materials, and (b) Flat source regions.

TCP0 0.93810 �69 0.36 �0.67
2 N P3 0.86836 �144 0.15 �0.33

P0 0.87401 502 1.66 �2.77
TCP0 0.86854 �123 0.25 �0.49

2O P3 1.04728 �44 0.15 0.44
P0 1.05290 517 0.47 �2.50
TCP0 1.04710 �62 0.16 0.37

2P P3 0.92699 �42 0.18 0.37
P0 0.93625 884 0.51 �2.78
TCP0 0.92754 13 0.20 �0.43

2Q P3 1.17162 �32 0.20 �0.77
P0 1.17079 �115 0.56 �1.11
TCP0 1.17108 �86 0.21 �0.64

a Difference ¼ (keff - keffref.) � 10�5.
b Difference of pin power: PW.: power weight difference; Max.: maximum

difference.
c Without transport correction.
d Transport corrected using the inflow method.
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Table 3
Summary results of 2-D B&W 1484 core I.

PN order k-effective Reference Diff. (pcm) Pin Power
Distribution diff.

PW.(%) Max.(%)

P3 1.01568 1.01560
±0.000036

8 0.49 1.50
P2 1.01582 22 0.81 1.59
P1 1.01516 �44 1.01 2.09
P0 1.11986 10426 3.87 10.73
TCP0 1.01692 132 0.21 0.63

Table 4
Summary results of 2-D B&W 1484 core II.

PN order k-effective Reference Diff. (pcm) Pin Power
Distribution diff.

PW.(%) Max.(%)

P3 1.01714 1.01592
±0.000036

122 0.16 0.99
P2 1.01745 153 0.18 1.67
P1 1.01876 284 0.60 4.02
P0 1.05776 4184 3.20 22.78
TCP0 1.01582 �10 0.38 1.75

Fig. 3. 3 � 3 core assembly, poison, and control layout (Colorset).
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heterogeneous in any way (e.g., water holes, absorber holes,
enrichment splits). Both cores had identical fuel pins and differed
only in size and shape. Core I contained 458 pins (2.459 wt%) ar-
ranged in a circle whereas core II had 1764 fuel pins (2.459 wt%)
arranged in a square. The configuration of core I shows a very high
neutron leakage issue compared to that of core II. However, cores I
and II offer a good indication of the accuracy of radial leakage and
anisotropic scattering.

The B&W series 1484 core I and II results are shown in Tables 3
and 4, respectively. The core I eigenvalue difference at P0 was more
than 10000 pcm. Inversely, the values compensate from 10426 pcm
to�44 pcm and 8 pcm at P1 and P3, respectively. In contrast core II
compensates 4184 pcme284 pcm and 122 pcm at P1 and P3,
respectively. The average root mean square (RMS) errors of cores I
and II were 1.01 and 0.60, respectively at P1, whereas the average
RMS errors of cores I and II were 0.49 and 0.16, respectively at P3. In
contrast, the relative maximum pin power differences were 1.5%
and 0.99%, respectively at P3. However, the pin power error
increased from 1.5% to 10.73% and from 0.99% to 22.78% at P0.

3.1.3. 3 � 3 core (Colorset) and quarter core problems
A detailed description of these two problems is similar to the

VERA problem [20]. The Colorset problem, as shown in Fig. 3,
consists of 3 � 3 core at the beginning of life (BOL) and in HZP
isothermal conditions. This problem also tests the rod cluster
control assembly (RCCA) parameter (SilvereIndiumeCadmium
control rods (AIC), and B4C) ability in the assembly guide tubes. The
loading pattern uses 2.11% and 2.619% enrichment with the center
control rod assembly and run octant symmetry, respectively.

On the other hand, the quarter-core problem has a design
similar to that of a commercial reactor. The fuel assembly, number
of Pyrex rods (PY), and control rod configuration are shown in Fig. 4.
This problem tests the ability of Pyrex, AIC, and B4C absorbers in the
assembly guide tubes and models the core baffle and other core
structures.

Table 5 shows the Colorset problem results, showing three types
of parameters. The difference in the effective multiplication factor
for the three cases was below 100 pcm, and this difference was
below 50 pcm at P2 and P3. The control rod worth and pin power
distribution were in good agreement with reference [20].

Table 6 presents the results of the 2-D large-core analyses. The
overall performances of P1, P2, and P3 with Pyrex, AIC, and B4C
absorbers were satisfactory. In the Pyrex case (5A), the maximum
eigenvalue difference was �154 pcm, �104 pcm, and �110 pcm at
P1, P2, and P3, respectively. However, in terms of the power
Fig. 2. Geometry (2-D) of B&W series 1484 (
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difference, P1 was more precise than P2 and P3 (maximum 1.11%
and 0.598% power weight difference (PWD)). On the other hand,
the combined performance of Pyrex and control rod improves
when the number of PN orders increases in terms of the eigenvalue
difference and pin power distribution. The eigenvalue difference
simple critical) (a) core I, and (b) core II.



Fig. 4. Quarter core assembly: poison (left) and control rod layout (right).

Table 5
Results of 2-D 3 � 3 core (Colorset) analyses.

Problem PN order k-effective Rod worth (pcm) Pin power distribution diff.

calculated diff.(pcm) calculated diff. PW.(%) Max.(%)

4A P3 1.00982 �41 e e 0.14 0.42
P2 1.00979 �38 e e 0.15 0.42
P1 1.00949 �74 e e 0.16 0.41
P0 1.01332 308 e e 2.40 4.88
TCP0 1.00973 �50 e e 0.17 0.55

4B P3 0.98311 �33 2690 �7 0.15 0.46
P2 0.98309 �29 2688 �9 0.16 0.46
P1 0.98260 �85 2711 14 0.17 0.46
P0 0.99200 855 2121 �576 6.68 �20.78
TCP0 0.98317 �28 2675 �22 0.24 1.24

4C P3 0.97990 �39 3023 �1 0.17 �0.76
P2 0.97995 �34 3021 �3 0.19 �0.89
P1 0.97932 �97 3052 28 0.23 �1.05
P0 0.98996 967 2329 �695 7.23 �23.73
TCP0 0.97997 �32 3008 �16 0.24 1.26

A. Rahman and D. Lee Nuclear Engineering and Technology 54 (2022) 3478e3487
was below 100 pcmwith the combination of Pyrex and the control
rod (AIC or B4C) at P2, and P3. However, the maximum power
difference was in the range 0.92%e1.55% and 0.443%-0.492 PWD in
the pin power distribution at P1, P2, and P3. A summary of the 2-D
quarter-core calculation results at beginning of cycle is provided in
Table 6, and a comparison of the fuel assembly (FA)-wise powers is
shown in Figs. 5e7.
Table 6
Results of 2-D large quarter-core analyses.

Problem PN order k-effective Assembly power
diff.

calculated diff.(pcm) PW.(%) Max.(%)

5A P3 1.00298 �110 0.912 �1.60
P2 1.00304 �104 0.924 �1.60
P1 1.00254 �154 0.598 �1.11
P0 1.01604 1195 44.44 103.01
TCP0 1.00279 �129 0.704 1.39

5B P3 0.99084 �65 0.450 �0.92
P2 0.99091 �58 0.453 �0.94
P1 0.99029 �120 0.443 �1.43
P0 1.00870 1720 58.17 160.07
TCP0 0.99061 �88 0.384 0.81

5C P3 0.98953 �69 0.492 �1.11
P2 0.98960 �62 0.492 �1.14
P1 0.98896 �126 0.493 �1.55
P0 1.00914 1891 59.57 166.64
TCP0 0.98930 �92 0.382 0.76

Fig. 5. Difference in assembly power distribution (Problem 5A, unit: %).
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Fig. 6. Difference in assembly power distribution (Problem 5B, unit: %).

Fig. 7. Difference in assembly power distribution (Problem 5C, unit: %).
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3.2. Three-dimensional problem

3.2.1. VERA 3-D HZP Assembly
The three-dimensional single-assembly problemwas taken from

the VERA [20] specification. The geometry of the assembly consists
of a Westinghouse 17 � 17 array with BOL and HZP conditions. The
axial layout of the assembly is shown in Fig. 8. Problem 3A uses a
boronconcentrationof1300ppm,3.1%w/oenrichmentofUO2, anda
temperature of 600 K, whereas problem 3B uses a boron concen-
tration of 2250 ppm, 2.619% w/o enrichment of UO2, and a temper-
ature of 565 K. In addition to being close to critical 3B uses 16 Pyrex
rods. The active fuel height of the assemblywas 365.76 cmexcluding
the plate (5.0 cm), and nozzle (6.053 cm) at the bottom and the
plenum (16.0 cm), nozzle (8.827 cm), and plate (6.6 cm) at the top.

Table 7 shows the results of the 3-D single assembly analyses. In
all cases, the eigenvalue difference was less than 50 pcm, less than
1% of PWD, and nearly 2.50% maximum pin power difference in 3A.
Fig. 8. Single assembly axial geometry [20].



Table 7
Summary of single assembly results.

Problem PN order k-effective Pin Power
Distribution diff.

calculated diff.(pcm) PW.(%) Max.(%)

3A P3 1.17562 �10 0.91 2.56
P2 1.17551 �21 0.93 2.57
P1 1.17539 �33 0.94 2.52
P0 1.17427 �145 0.84 2.74
TCP0 1.17319 �253 0.95 2.71

3B P3 1.00072 57 0.791 2.10
P2 1.00079 64 0.804 2.10
P1 1.00019 5 0.794 2.10
P0 1.00650 635 1.339 3.60
TCP0 0.99970 �45 0.83 2.28

Fig. 9. Axial power distribution.

Fig. 10. Fuel radial pin power percent error distribution (a) 3A, and (b) 3B.

Table 8
Results of 3-D B&W cores I and II.

Problem PN order k-effective Pin Power
Distribution diff.

calculated diff.(pcm) PW.(%) Max.(%)

1484 core I P3 1.00015 89 0.73 1.83
P2 1.00028 102 0.96 1.99
P1 1.00591 665 1.17 2.48
P0 1.10891 10965 4.71 11.56
TCP0 1.00035 109 0.76 1.45

1484 core II P3 1.00024 266 1.12 4.46
P2 1.00025 267 1.12 4.46
P1 1.00488 730 1.30 6.10
P0 1.04560 4802 5.16 26.32
TCP0 0.99935 177 0.98 3.10
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Fig. 11. B&W core I 2-D pin power percent error distribution.

Fig. 12. B&W core II 2-D fuel pin power

A. Rahman and D. Lee Nuclear Engineering and Technology 54 (2022) 3478e3487

3486
However, 64 pcmmaximum eigenvalue difference was found at P2,
and the lowest value of 5 pcmwas found at P1 in the core critically
problem (3B). An identical maximum pin power difference (2.10%)
was observed with an average pin power difference of 0.791%e
0.804%. The axial shape of the normalized power distribution is
shown in Fig. 9, and the details of the percent pin power distribu-
tion error are shown in Fig. 10.

3.2.2. B&W simple experiments
The B&W [21] series 1484 core I and II 3-D problems were also

analyzed. A detailed description of the benchmark problem is
provided in Ref. [21], and the 2-D configuration of the core is shown
in Fig. 2. However, the size of the corewas still smaller than that of a
conventional light water reactor. The total height of the core was
171.36 cm including 21.42 cm top and bottom water reflectors.

Table 8 summarizes the results of these analyses. The differ-
ences in the eigenvalues were relatively large compared to those of
the 2-D problem (Tables 3 and 4). P1 shows a large difference in the
eigenvalues and pin power distribution compared to P2 and P3 in
both cases. On the other hand, core II shows a higher difference in
both eigenvalues and pin power distribution compared to core I.
the maximum pin power differences were 1.83%, 1.99%, and 2.48%
at P3, P2, and P1, respectively, in core I and 4.46%, 4.46%, and 6.10%
at P3, P2, and P1, respectively, in core II. The eigenvalue differences
were 10965 pcm and 4802 pcm in cores I and II, respectively, at P0.
percent error distribution (Octant).



Table 9
Computing time of the 2-D and 3-D numerical problems.

Problem PN order Number of Threads (mins)

1 8 16

1484 core I (2-D) P3 10.61 3.65 4.53
P2 8.46 3.60 4.15
P1 6.81 3.36 3.86
TCP0 2.11 0.37 0.25

3A (3-D) P3 206.40 28.06 14.80
P2 165.00 22.76 11.36
P1 121.80 16.59 8.97
TCP0 68.40 9.18 5.17
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The detailed pin power differences of cores I and II are shows in
Figs. 11 and 12, respectively.
4. Parallelization

To study the acceleration of parallelization, different numbers n
of threads (n ¼ 1, 8,16) were used to execute the numerical prob-
lem. Table 9 shows the execution time versus the number of
threads. This shows that, as the number of threads increases, the
acceleration factor increases almost linearly in the case of the 3-D
problem. In 2-D, the execution time increases when 16 threads
are used owing to the small numerical problem. However, the
performance of the transport-corrected (TCP0) problem is faster
than that of the higher order (two to three times that of P1). In
conclusion, further simulations and code development are required
to reduce the computing time.
5. Conclusions

The MOC using a higher-order scattering source yields
comparatively accurate results. Most of the improvement results
from the first order (P1), but increasing the number of scattering
sources leads to a smaller error, except for 3B. There was no
significant bias observed in different geometries with the pres-
ence of a reflector or baffle, number of Gd pins, number of
control rods (AIC and B4C), and boron concentration. Less than
100 pcm eigenvalue differences with not more than 1% maximum
pin power difference were observed in most of the problems.
However, in the lattice analysis, the eigenvalue difference was
slightly higher with a change in temperature, but this change is
not significant. On the other hand, the calculated control rod
worth completely matched (<10 pcm) the reference. In the case
of large quarter-core 2-D problem, the average assembly power
distribution errors of uncontrolled core (no control rods were
used) were 0.912%, 0.924%, and 0.598% at P3, P2, and P1,
respectively. Whereas the average assembly power distribution
errors of controlled core (AIC control rods were used) were
0.450%, 0.453%, and 0.443% at P3, P2, and P1, respectively and
0.492%, 0.492%, and 0.493% at P3, P2, and P1, respectively when
B4C control rods were used. A similar trend was found in the 3-D
problems, except for B&W core II. A higher pin power (4.46%
maximum pin power) was recorded on the peripheral pin (low
power) of the core as a result of the rectangular arrangement of
the core. We believe that this work makes a valuable contribution
to the verification of the methods used in STREAM.
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