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Abstract
Short-ranged connectivity comprise the majority of connections throughout the brain, joining
together nearby regions and contributing to important networks that facilitate complex function
and cognition. Despite constituting the majority of white matter in the brain and their impor-
tance, studies examining short-ranged connections have thus far been limited in part due to
the challenges associated with identifying and validating them. Tractography, a computational
technique for reconstructing axon trajectories from diffusion magnetic resonance imaging, has
been commonly used to identify and study major white matter connections (e.g. corticospinal
tract), which are easier to identify relative to the short-ranged connections. The use of addi-
tional constraints (e.g. geometry, regions of interest) together with tractography has enabled the
ability to identify short-ranged connections of interest, such as the ”U”-shaped tracts residing
just below the cortical surface, and the subcortical connectome tracts found deeper in the brain.

In this thesis, we aimed to quantify the reliability of such techniques for studying the short-
ranged connections and applied them to examine changes to short-ranged connectivity in pa-
tients with first episode schizophrenia. First, the reliability of identifying short-ranged, ”U”-
shaped tracts is examined in Chapter 2, leveraging geometric constraints for identifying the
“U”-shaped geometry together with clustering techniques to establish distinct tracts. Here, we
use two different clustering techniques, applying them to two datasets to study both the reli-
ability of identifying short-ranged, “U”-shaped tracts across different subjects and in a single
individual (across different sessions). In Chapter 3, the reliability for identifying the subcortical
connectome (short-ranged connections between subcortical structures) is evaluated. Connec-
tivity of the deep brain is often hard to recapitulate due to the multiple orientations contribut-
ing to complex diffusion signals. Thus, we leveraged regions of interest determined through
histological data to aid identification of the short-ranged connections in the compact region.
Finally, Chapter 4, uses the techniques from Chapter 2 in combination with quantitative mea-
sures sensitive to microstructural changes to study changes to short-ranged, ”U”-shaped tracts
in the frontal lobes of patients with first-episode schizophrenia (FES). By studying the short-
ranged connections in patients with FES, biomarkers associated with clinical presentation may
be elucidated and may aid the current understanding to improve future treatment. Overall, the
projects presented here quantify the reliability of current techniques for investigating short-
ranged connectivity and provide a framework for evaluating future techniques. Additionally,
the techniques evaluated here can be used to elucidate new findings and improve treatment in
clinical populations.
Keywords: diffusion magnetic resonance imaging, diffusion tensor imaging, tractography,
short-ranged structural connectivity, reliability, schizophrenia
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Summary for Lay Audience

Similar to how roads and highways join nearby cities, basic human functions are made pos-
sible through the structural connections (e.g. roads and highways) that connect different re-
gions of the brain (e.g. cities). Much like the roads (joining local landmarks) and highways
(joining cities far apart), the brain also has both short and long-ranged connections. Using
diffusion magnetic resonance imaging (dMRI), scientists are able to study these connections
non-invasively. As with any technique, especially one that is used to non-invasively study the
brain, confidence of a method improves with reliability. That is, when a method is applied mul-
tiple times, similar results should be produced across different healthy individuals. The current
thesis evaluates the reliability of current techniques to study the short-ranged connections of
the human brain.

Once reliability of the techniques to study connections of the brain has been established, the
same techniques can be applied to examine how such connections can change due to disease.
For example, we can measure properties such as the integrity along the length of the connec-
tion. In a patient, we may see reduced integrity along it’s length, similar to how a pothole may
be encountered along a highway between two cities. Such changes may identify important as-
sociations with experienced symptoms and help us understand the progression of disease. Fur-
thermore, identifying these changes can help to improve the treatment administered through
better understanding of how the brain changes.

Short-ranged connections found just below the surface of the brain demonstrate a unique “U”-
shaped geometry. Using geometric constraints with tractography, reliability of identifying
these connections are evaluated both across different individuals and in the same individual
at different timepoints in Chapter 2. Chapter 3 examines the reliability of short-ranged con-
nections found connecting regions deep below the surface of the brain. Identification of these
deep connections is complicated due to the various crossing connections muddying the sig-
nal in a small, condensed region. After establishing reliability in Chapter 2, we use the same
technique to identify similar connections, examining for changes along its length in patients
with first-episode schizophrenia. Altogether, we quantify the reliability of current methods for
investigating short-ranged connections, while also providing a framework for evaluating new
techniques in the future. Furthermore, we demonstrate how these techniques can be used to
improve our current understanding of changes to the brain’s connections due to schizophrenia
or other diseases.
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Chapter 1

Introduction

1.1 Motivation and overview

The human brain is composed of an abundance of neurons making up the grey matter (GM)
joined together by myelinated axons comprising the white matter (WM). Axons that join the
same regions tend to form bundles (or tracts) [1], facilitating communication between the con-
nected regions. Existence of complex, structurally connected networks of brain regions are
associated with function and cognition [2]. These networks are composed of heterogeneous
tracts varying in length and trajectory. While there have been extensive studies investigating
tracts joining distant brain regions, much less is known about the short-ranged tracts which
make up the majority of connections that can be found throughout the brain [3]. Practical and
technical limitations associated with reconstruction methods pose a challenge in studying the
brain’s structural connectivity. Additionally, individual subject variability adds an additional
degree of difficulty of identifying corresponding tracts across individuals.

In this introductory chapter, a brief review of short-ranged tracts, found below the surface
and in the deep regions of the brain, is provided. Methods of investigating the structural con-
nections are explored with a detailed focus on diffusion magnetic resonance imaging (MRI), a
non-invasive technique. Recent studies investigating short-range connectivity in both healthy
and clinical populations are also reviewed.

1.2 Structural connectivity

Of the structural connectivity found within the brain, the myelinated axons joining the different
brain regions and forming complex networks can be broadly categorized into three groups: (1)

1



Chapter 1. Introduction 2

intracortical, (2) short-ranged, or (3) long-ranged tracts. Intracortical axons are the shortest of
the three axon groups, with a tendency to project within the GM and are difficult to study in
humans with current in vivo methods [1]. Long-ranged tracts are the longest of the three groups,
joining distant brain regions with trajectories projecting between distant regions as well as into
the regions deep below the cortical surface. These tracts also demonstrate similar trajectories
across individuals [4] and have been studied extensively relative to the other two groups. The
final group of axons are the short-ranged tracts, which can be further separated into two sub
groups: cortico-cortical and subcortico-subcortical. Cortico-cortical tracts are between the
intracortical and long-ranged tracts in length and can be found just below the cortical surface,
closest to the GM. These tracts are also referred to as “U”-fibres (after the shape of its trajectory,
following along the gyri and sulci) and comprise the superficial white matter together with
intracortical axons. It has been hypothesized that the tract length of the superficial WM is
inversely proportional to the total density of the group of tracts (e.g. shorter tracts comprise a
larger volume of WM) [1]. Deep below the surface of the brain, subcortico-subcortical tracts
can be found, connecting the structures within the compact region surrounding the ventricles
and near the brainstem [5]. Figure 1.1 displays examples of short-ranged and long-ranged
tracts.

Corpus callosum

Short-range WM
(Superficial WM, "U"-fibre)

Long-range WM

Figure 1.1: Example of long-ranged tracts (blue) and short-ranged, “U”-shaped tracts (red) found within
the brain. Not shown in this figure are the intracortical and subcortico-subcortical tracts.

The following subsections will explore the short-ranged structural connectivities of the brain,
specifically the “U”-fibres and subcortico-subcortical tracts respectively, in more detail.
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1.2.1 “U”-shaped WM

Existence of short-ranged tracts was first acknowledged in the late 19th century, described ini-
tially as short association fibres found immediately below the grey matter of the cortex [3, 6].
The trajectory of the “U”-shaped tracts follow along the cortical folds, starting from one gyrus,
projecting downwards towards the sulcus before curving back upwards toward the nearby gyri.
Theodor Meynert noted the “U”-shaped projections may connect more than adjacent gyri, ex-
tending to nearby gyri that are two or more folds away and having an important role in cogni-
tion [7, 8]. Meynert’s observations led him to believe that short-ranged tracts were not local to
a specific region, but could be found throughout the brain.

Initial studies of “U”-shaped tracts primarily involved the occipital lobe, followed by the frontal
lobe shortly after in post-mortem brains, patient observations and experimental animal stud-
ies [8]. Some of the earliest mappings of “U”-fibres resulted from separating the fibres along
their natural fissures by involving fixed brain tissue and gas-compressed liquid carbon diox-
ide [8, 9]. These early mappings identified the primary trajectory of numerous short-ranged
fibres found throughout the human brain [8]. Of the brain’s WM, “U”-shaped fibres often de-
velop into late adulthood and are amongst the last to be fully myelinated (with some exceptions
in the occipital lobe) [10]. The late maturation relative to the long-ranged tracts tends to re-
sult in thinner myelination encapsulating the axon and may offer less protection as a result,
increasing the vulnerability to disease processes [10]. Studies involving patient populations
with neurological and psychiatric conditions have implicated the “U”-shaped tracts, identi-
fying abnormalities in tract densities and quantitative metrics associated with microstructural
properties [11, 12].

1.2.2 Subcortico-subcortical WM

Deep GM structures are often involved in key cognitive and functional processes, with struc-
tures like the thalamus acting as a hub of information processing [13–15]. These structures,
much like GM structures found more superficially, are also connected by WM tracts that enable
the relaying of information. Deep GM structures can be found connecting to either cortical ar-
eas or to other nearby deep GM structures [5]. Knowledge of the WM tracts connecting deep
GM structures was primarily discovered through studies of animal models and descriptions dat-
ing back to the late 19th century [13]. Through tracer studies involving non-human primates
(NHP), valuable knowledge regarding the terminal ends of the deep subcortical WM tracts has
been gained, but detailed information of associated trajectories have remained elusive [13]. In
studies of the human brain, post-mortem tissue dissection can be performed with Klingler’s
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method, a freeze-thaw technique coupled with careful, time-consuming layer-by-layer peeling
of WM tissue [16]. This technique has been applied to reveal the trajectory of certain WM
tracts, however identification of the specific tract revealed is difficult. Nonetheless, identifica-
tion of the deep WM is important as they form the connections of important functional and
cognitive networks [5] (see example shown in Figure 1.2). Furthermore, it has been shown that
there are important surgical targets, such as for therapeutics, where deep brain stimulation has
been applied in treating some movement disorders [17].

Put
GPe

GPi

ST
N

Put

Thalamus

Figure 1.2: Example of connections between subcortical structures (located in the deep brain). These
connections have been identified as part of the motor circuit and connect to other regions of the brain
(e.g. cerebellum, cortex, brainstem) that are not shown.

Recent advances in imaging techniques may provide non-invasive approaches to studying the
short-ranged, deep subcortical connectivity, as well as the short-ranged “U”-shaped WM.

1.3 Magnetic resonance imaging

Magnetic resonance imaging (MRI) has been widely adopted in the field of neuroimaging to
study the brain’s anatomical structure, function, and connectivity. The history of MRI begins in
the early 20th century with nuclear magnetic resonance (NMR). First described in 1938, Isidor
Rabi observed the ability to detect the magnetic resonance of atomic nuclei in molecular beam
experiments [18] and the same phenomenon was independently observed to occur in liquids
and solids by Felix Bloch and Edward Purcell in 1946 [19, 20]. More than two decades later,
Richard Ernst developed the Fourier transform technique for NMR spectroscopy in 1966, sug-
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gesting the frequency response of an observed signal contained more explicit information and
could be utilized for spatial encoding [21]. Paul Lauterbur and Peter Mansfield independently
described localization of signals using magnetic field gradients in 1973, which form the foun-
dation of present day MRI [22, 23]. In 1975, the application of Fourier transforms for image
formation was described [24], leading to the first human magnetic resonance images captured
in 1977. Another study of note is the foundational work for diffusion MRI described by Erwin
Hahn in 1950 to observe molecular diffusion in liquids [25].

In the following subsections, the fundamentals of MRI, extending to diffusion MRI (dMRI), is
described, along with diffusion models (both statistical models used throughout this thesis and
biophysical models), and tractography, a technique derived from information acquired with
dMRI to investigate brain connectivity.

1.3.1 Basics of MRI

Derived from NMR, magnetic resonance imaging captures the signal emitted from the nucleus
of an atom with a magnetic moment (nuclear spin) causing it to act as a tiny magnet as a
result of an odd number of protons or neutrons [26, 27]. When placed in a static external
magnetic field (B0), such as the main magnetic field of an MRI, the nuclear spins attempt to
align in one of two orientations: parallel (a lower energy state) or anti-parallel (a higher energy
state) [26, 27]. Due to the differences in energy states, the majority of nuclear spins will align
in parallel resulting in a net magnetization ( �M) in the direction of the external field [26,27]. By
convention, the direction of the field is longitudinal along the �z direction. The protons in this
field continue to precess at the Larmor frequency determined by:

f0 = B0 × γ2π (1.1)

The prcession frequency is proportional to the external magnetic field by a gyromagnetic ratio
(γ/2π) for a given atomic nuclei. Found in abundance as water in the human body, hydrogen
has a gyromagnetic ratio of 42.576 MHz/T [26].

In the presence of only the external magnetic field, the net magnetization at equilibrium can be
computed with the following equation:

�M0 =
ργ2��B0

4kBT
(1.2)
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where ρ is the proton density, � is Plank’s constant, kB is Boltzmann’s constant and T is the
temperature (in Kelvin). The net magnetization, as defined by equation 1.2, can be influenced
to improve sensitivity to the emitted signal by increasing the density of protons, increasing the
strength of the external magnetic field, or by decreasing the temperature.

The net magnetization experienced is much smaller than the magnetization of the external
magnetic field, making it difficult to separate the signal from the magnetic field [26]. Instead,
a transmit radiofrequency (RF) coil is used to apply a RF pulse (B1), exciting the spins to a
higher energy state to tip the net magnetization, typically perpendicular to the main magnetic
field, where protons continue to precess in-phase at the Larmor frequency. When the applica-
tion of the RF pulse is stopped, the spins begin to dephase rapidly, returning to its equilibrium
state [26]. As the net magnetization returns to equilibrium, a fading electrical signal is induced.
Rather than record this dampening signal, a receiver RF coil records an echo of this original
signal, created by applying additional RF pulses (described in the following subsection) [26].

In addition to the magnet that produces the main magnetic field and the RF coils, the MRI also
consists of 3 orthogonal gradient coils which aid in spatially localizing the signal by linearly
altering the magnetic field [26, 27]. Relative to the main magnetic field, these perturbations
are much smaller in magnitude. The minor linear changes in field strength spatially encode the
atomic nuclei by altering the frequency and phase of the nuclear spins and also enable selection
of slices of interest of an imaged object [26]. By varying the time and magnitude that gradient
and RF coils are turned on (e.g. MRI sequence), images with particular characteristics can be
produced (Figure 1.3).

A B

Figure 1.3: Two images of the same individual is displayed with different contrasts, acquired by altering
the parameters of the MRI sequence: (A) T1-weighted (B) T2-weighted.
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1.3.2 Diffusion MRI

Diffusion is the motion molecules experience due to thermal agitation, otherwise known as
Brownian motion. In an unconstrained environment, the diffusion process appears isotropic
(i.e. equal in all directions). However, in a constrained environment, such as within the brain,
the diffusion of water molecules is impeded by the barriers created from surrounding cell walls
and axonal fibres [28]. These barriers result in an anisotropic diffusion of water molecules
with a preferential direction parallel to its barriers. An example is shown in Figure 1.4. Us-
ing diffusion-sensitive sequences, MRI can capture 3-dimensional (3D) volumes sensitive to a
particular direction of diffusion, enabling probing of microstructural environments [29].

A B
Constrained DiffusionUnconstrained Diffusion

Figure 1.4: Example of molecule diffusing in an (A) unconstrained environment vs (B) constrained
environment. The red dot indicates the starting position. In the constrained environment, the diffusion
is hindered such that the preferential direction of diffusion is parallel to the barrier (dashed lines).

First developed by Edward Stejskal and John Tanner in 1965, the pulsed gradient spin echo
(PGSE) sequence (also referred to as the Stejskal-Tanner sequence) [30] can be used to observe
diffusion in the form of signal attenuation. An example of a PGSE sequence is shown in
Figure 1.5. Briefly, spin-echo pulse sequences apply two excitation RF pulses: (1) a 90◦ pulse
tipping the net magnetization perpendicular to the main magnetic field and (2) a 180◦ pulse
applied some time following the 90◦ pulse causing the nuclear spins which were dephasing to
rephase, creating an echo [26, 27]. In a PGSE sequence, on either side of the 180◦ RF pulse,
are two identical gradients placed symmetrically to create a diffusion-sensitive signal. The first
gradient induces a unique phase change in the nuclear spins to spatially encode the position
of the atomic nuclei. Following the 180◦ RF pulse, in the absence of diffusion, the second
gradient results in an identical phase change, resulting in no net displacement of the atomic
nuclei and subsequently no signal attenuation [26]. If diffusion occurs, the second gradient
would induce a phase change much different than the first gradient and a signal attenuation
would be observed [26,28,30]. The diffusion-weighted signal can be computed with following



Chapter 1. Introduction 8

equation:
S = S 0e−bD (1.3)

where S0 is the initial signal, D is the diffusion coefficient of the tissue (measured in mm2/s) and
b is the diffusion attenuation factor (measured in s/mm2). The diffusion attenuation factor, also
termed “b-value” is often used to describe the diffusion weighting associated with a particular
diffusion sequence [28].

RF

Difffusion
Gradient

Static
H+

Mobile
H+

90°

G
�

TE

180° Echo

� �

Spins
in-phase

Spins
dephase

Spins remain
dephased

Spins return
to in-phase

Received
signal

Figure 1.5: Example of a PGSE sequence is shown, displaying both apply and receive RF pulses and
diffusion gradients. Not seen are the imaging gradients for slice selection, phase encoding and frequency
encoding. First a 90◦ RF pulse is applied, followed by a 180◦ RF pulse some time later. On either side
of the 180◦ RF pulse are two identical diffusion gradients. In the presence of diffusion, an attenuated
signal (echo).

By manipulating the gradient strength (G), gradient pulse width (δ), and the timing between
the two diffusion gradients (Δ), the diffusion weighting can be altered [28]. The b-value can be
numerically determined by:

b = γ2G2δ2(Δ − δ
3

) (1.4)

Diffusion imaging typically acquires multiple 3D diffusion weighted volumes sensitive to spe-
cific directions interspersed with non-diffusion weighted (b=0 s/mm2) volumes. Early diffu-
sion imaging studies that acquired multiple directions relied on a single diffusion weighting,
referred to as “single-shell” diffusion. This enabled the ability to perform simple diffusion
modelling. In recent years, studies have increasingly employed diffusion sequences acquiring
diffusion volumes with multiple diffusion weightings, referred to as “multi-shell” diffusion,
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in order to perform complex diffusion modelling and can enable separation of different tissue
components (e.g. WM vs GM vs cerebrospinal fluid). Both a simple diffusion model and one
of the complex diffusion models will be explored in detail in the following subsection.

1.3.3 Diffusion models

As noted in the previous subsection, diffusion is anisotropic when impeded. This anisotropy
was observed in 1990 by Michael Moseley, who noted a contrast change in the diffusion
weighted image of the brain dependent on the direction the diffusion measurement was taken
[29]. A year later, Phillip Douek suggested this finding could be used to map the brain’s ax-
onal fibres [31], laying the foundation to what would eventually lead to diffusion tractography
(described in the following subsection). In 1994, Peter Basser proposed the use of tensors
to describe the local diffusivity, coining the term diffusion tensor imaging (DTI) [32]. The
diffusion tensor is described by:

D =



Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


(1.5)

where the off-diagonal terms are redundant (e.g. Dxy = Dyx). The diffusion tensor can be
defined by acquiring diffusion weighted acquisitions along the 3 principal and 3 off-principal
directions with an additional non-diffusion weighted (b=0 s/mm2) acquisition to compute dif-
fusivity. Following determination of the tensor terms, the eigenvalues of the diffusion tensor
can be computed to model the local diffusion as an ellipsoid, describing the ellipsoid’s prin-
cipal axes (see Figure 1.6). If the diffusion is anisotropic, the diffusion ellipsoid’s long-axis
is oriented in the main direction of diffusion. However, if the diffusion is isotropic, the three
eigenvalues of the diffusion tensor are equal and the ellipsoid takes on a spherical shape.
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λ1

λ2

λ3

λ1

λ2

λ3

A B

Figure 1.6: Examples of (A) isotropic and (B) anisotropic diffusion tensors are shown. In an isotropic
tensor, λ1 ≈ λ2 ≈ λ3. In an anisotropic tensor, λ1 > λ2 ≥ λ3, where λ1 describes the primary diffusion
direction.

DTI not only provided a way to model the local diffusivity with an ellipsoid, but also provided
a means to describe the diffusivity with scalar metrics:

Mean diffusivity (MD) describes the average diffusion in the three principal directions:

MD =
λ1 + λ2 + λ3

3
(1.6)

Axial diffusivity (AxD) reflects the magnitude of diffusion in the tensor’s principal direction:

AxD = λ1 (1.7)

Radial diffusivity (RD) describes the average magnitude of diffusion in the tensor’s perpendic-
ular (secondary and tertiary) directions:

RD =
λ2 + λ3

2
(1.8)

Fractional anisotropy (FA) is a value between 0 (completely isotropic) to 1 (completely anisotropic)
reflecting the diffusion’s degree of anisotropy:

FA =

�
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2(λ2
1 + λ

2
2 + λ

2
3)

(1.9)

With its relative simplicity, DTI was adopted for many in vivo studies of the brain and is still
widely used in present day investigations. Scalar metrics are often correlated with cognition
and sometimes identified as potential biomarkers of disease. However, it was also noted early
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on that as a result of its simplicity and assumption of a single diffusion orientation, it may fail
to correctly model the diffusion in regions where barriers are complex [33]. Figure 1.7 demon-
strates examples of complex orientations that can be encountered. One such example are re-
gions where two separate axonal fibre bundles with differing orientations may cross resulting in
either a single principal orientation or the appearance of isotropic diffusion when modelled. In
reality, imaging voxels often contain multiple axonal orientation configurations [34], limiting
the accuracy of the simplistic DTI model.

A B C D
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Figure 1.7: Different possible orientations encountered within the brain are shown and described in
the context of DTI: (A) Parallel, a single coherent orientation forming an anisotropic tensor. (B) Fan-
ning, anisotropic tensor that has increased radial diffusivity due to increased perpendicular diffusion
(C) Bending, anisotropic tensor appearing less anisotropic, similar to fanning. (D) Crossing, a case of
perpendicular crossing results in an isotropic appearing diffusion tensor.

To overcome some of the limitations of DTI, including the orientation assumption, some stud-
ies have adopted the high angular resolution diffusion imaging (HARDI) technique, first de-
scribed in 2002 by Daniel Alexander [35]. A diffusion acquisition is typically considered
HARDI when a large number of unique gradient directions are employed (e.g. > 30 direc-
tions). The HARDI technique enables the ability to model multiple axonal orientations within
an imaging voxel by relying on the signal from the different gradient directions. Each direction-
sensitive diffusion signal can be thought of as a point on a sphere, where a spherical harmonic
series can be used to model the data. One such model used throughout the studies in this thesis
is the constrained spherical deconvolution (CSD) model.

First proposed in 2004 for dMRI, spherical deconvolution models the fibre orientation dis-
tribution (FOD) function, which represent the fraction of fibres along an orientation [36]. The
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spherical harmonic representation of the diffusion signal is modelled as a convolution, com-
puted by the following equation:

S (θ, φ) = R(θ) � F(θ, φ) (1.10)

where R(θ) is the axially symmetric response function and F(θ, φ) represents the FOD function.

To obtain the FOD function, a deconvolution is performed between the diffusion signal and
response function, which can be estimated from the diffusion profile, ideally in regions with
a high degree of anisotropy, which consequently represents a single fibre orientation. Ad-
ditionally, the maximum spherical harmonic order is determined by the number of gradient
directions, with improved angular resolution and a higher sensitivity to noise at higher har-
monic orders [36]. The number of directions required for a given spherical harmonic order can
be computed:

N =
(l + 1)(l + 2)

2
(1.11)

where N is the number of gradient directions and l is the spherical harmonic order.

Contribution from noise may introduce physically impossible, negative valued FODs [36].
The constrained spherical deconvolution model removes negative values by imposing a non-
negativity constraint [37]. Using diffusion phantoms and a HARDI acquisition, the CSD model
has been shown to resolve multiple fibre orientations with crossing angles up to 30◦ [38].

The two previously described models (DTI and CSD) describe the behaviour of diffusion (i.e.
describe the orientation) and are also sometimes referred to as statistical models [39]. Statis-
tical models make no assumptions about the underlying tissue structures, but can indirectly
characterize the microstructural environment [39]. Biophysical models have also been derived
from dMRI, providing relevant estimates to biological properties of tissue [39]. Assumptions
are made regarding the orientation of the tissue when applying biophysical models in order to
estimate parameters describing different tissue compartments (e.g. intra-axonal vs extra-axonal
vs CSF). One such example of a biophysical model is the Neurite Orientation Dispersion and
Density Imaging (NODDI) model, which as its name suggests, estimate the neurite density and
orientation dispersion to describe the microstructural environment [40].
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1.3.4 Tractography

The previously described statistical models are two of many developed diffusion models, which
can be used to estimate the local diffusion orientations within an imaging voxel. By following
the local orientations voxel-by-voxel, the trajectory of an axon can be estimated (see Figure
1.8).

Figure 1.8: Simplified example demonstrating tractography processing of following local orientations.
Here two different streamlines are generated (red and blue), each following the primary diffusion orien-
tation in each voxel.

Computationally, the axonal trajectories are represented by a streamline, which are generated
by resolving the curve which join a discrete set of directions. The method of estimating axonal
trajectories from dMRI is known as tractography, where generated streamlines are stored as
tractograms. Additionally, tractography also requires a set of seeds, which represent the spatial
locations where tracking begins, and a set of stopping parameters, in which streamline propa-
gation is terminated. Tractography can be broadly categorized into two groups of algorithms:
deterministic and probabilistic [41].

Deterministic tractography algorithms propagate streamlines in a predictable manner. Com-
monly, streamlines are propagated in the direction most similar to the previous propagation
step [42, 43] until termination criteria are met (e.g. maximum angle, minimum FA). Early
tractography studies adopted deterministic approaches to reconstruct axonal trajectories of the
brain. While these methods are able to reproduce the main trajectory of a tract, it often fails to
capture branching within a tract (e.g. corticospinal tract; Figure 1.9) [44]. Another criticism of
deterministic algorithms include its sensitivity to anisotropic orientation, resulting in a failure
to capture all parts of a tract (i.e. false negatives) due to an inability to capture streamlines that
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follow secondary or tertiary diffusion directions or failing due to apparent anisotropy [45].

A BDeterministic Probabilistic

Figure 1.9: The corticospinal tract reconstructed with tractography using (A) deterministic and (b) prob-
abilistic algorithms using identical parameters. The deterministic algorithm is only able to reconstruct
the main trunk, while the probabilistic algorithm is able to recapitulate the fanning (seen in the superior
portion of the tract).

Similar to deterministic tractography algorithms, probabilistic tractography algorithms also
generate streamlines by propagating trajectories in a step-wise manner. However, instead of
propagation in a predictable manner, the tracking direction is chosen at random based on a dis-
tribution of possible orientations [46, 47]. Since probabilistic algorithms were first introduced,
more studies have opted to adopt a probabilistic approach as it is more robust to noise [46]
and considered to be better at reconstructing axonal trajectories [41, 47]. Spurious streamlines
(i.e. deviation from true trajectory) often stray from the trajectory demonstrated from the main
group of streamlines belonging to a tract and are characterized with lower probability [46]. A
potential pitfall of probabilistic methods lies in the ability to determine whether a streamline is
spurious [47]. Additionally, probabilistic algorithms tend to be more computationally intensive
than its deterministic counterpart [47].

1.3.5 Tract identification

Regardless of the choice of algorithm, tractography can generate the connectivity throughout
the brain. Identification of tracts joining different brain regions (i.e. determine streamlines
belonging to an axonal bundle) poses another challenge. Additional post processing steps,
which can be categorized as supervised or unsupervised [48], need to be taken to identify tracts
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from generated streamlines. The following subsection will describe the different techniques
employed to identify these pathways.

One method of identifying a tract is by employing supervised techniques, which require in-
dividuals to manually place inclusion and exclusion regions of interests (ROI) to retain and
remove streamlines respectively [48]. The ROIs may be manually drawn [49] or can be de-
rived from an existing atlas [50]. Manual placement of ROIs is a time-consuming process and
requires anatomic knowledge to correctly identify and extract a tract of interest [48]. Use of an
atlas with predefined ROIs can partially automate this process following a registration between
subject data and the atlas [48]. However, this process still requires anatomical knowledge in
order to correctly select relevant ROIs to identify a tract of interest, while also necessitating the
need for an adequate registration [48]. These supervised techniques can also be thought of as
targeted tractography, utilizing a priori knowledge to find the tract of interest.

Unsupervised techniques are another method of identifying tracts, relying on the features of
the streamlines for identification of a tract. Often, these methods include examining the tra-
jectory of a streamline and clustering algorithms to group together streamlines with similar
trajectory [51–53]. While these methods eliminate the need to manually draw ROIs, much like
the partially automated supervised techniques, an adequate registration is still required to es-
tablish correspondence of tracts between individual subjects [48]. Additionally, unsupervised
techniques have the difficulty of dealing with streamlines of different lengths and may rely
on incomplete representation of an underlying tract due to premature termination [48]. While
tracts are identified in an unsupervised manner, identified tracts may not represent a true un-
derlying pathway and would require verification from an expert with anatomical knowledge.

Reproducibility (the ability to identify the same tract using different methods) and reliabil-
ity (the ability to identify the same tract using the same methods) are also open challenges
facing tractography. In one tractography reproducibility challenge, which explored different
diffusion models, tractography algorithms, and identification techniques, the authors found
poor overlap of identified tracts in addition to the inability to identify all valid ground truth
bundles [54]. Another tractography reproducibility challenge that specifically focused on as-
sessing reproducibility of differing models, algorithms and parameters, identified algorithmic
differences lead to disagreements between generated tracts [55]. In both challenges, tractog-
raphy was assessed against well-known or generated ground-truth tracts. The reproducibility
and reliability problem is further complicated when assessing “U”-shaped and deep subcortical
WM tractography. Individual differences in cortical gyrification affect the spatial arrangements
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of “U”-shaped WM, whose trajectories tend to follow the cortical folds. Previous studies have
primarily looked at the “U”-shaped WM common to all of a study dataset [56], but have not
explored the significance of bundles which may not be present in all study participants. Deep
subcortical WM presents a different reproducibility challenge than short-ranged, “U”-shaped
WM. Axonal trajectories connecting subcortical structures are in a densely packed area with
multiple fibre orientations, complicating reconstruction of subcortical tracts [57]. As a result,
identification of subcortical tracts has been limited and its reproducibility largely unassessed.

Validation of tractography reconstructed pathways (i.e. confirmation of presence and trajectory
of a tract) is also a non-trivial task due to the lack of ground truth [58]. As noted in previous
sections, some methods of validation include Klingler dissection on post-mortem tissue and
NHP studies involving chemical tracers. Klingler dissections are a time-consuming and del-
icate process, peeling away the layers of tissue to identify axonal trajectories [16]. Invasive
tracer studies face challenges that include the lack of a clear site of injection, complicating
comparisons between different NHPs, and quantification of connections [59]. Validation of
tractography algorithms have been attempted on phantoms by recreating complex geometries
encountered using objects such as glass capillaries in order to assess diffusion models and trac-
tography algorithms [60]. With the advancement of 3D printed technology, recent studies have
also explored the possibility of validating dMRI properties using 3D printed phantoms with
tissue mimicking properties [60]. Despite difficulties of validating trajectories, tractography
is routinely used as it is currently the only means of non-invasively probing WM tissue in

vivo [59].

1.4 Previous work on short-ranged connectivity

Historically, in vivo investigations have focused on long-range tracts to gain a better under-
standing of the connections between distant regions of the brain. While intracortical connec-
tions are still largely inaccessible in vivo, advances in hardware, software, and methodology
have enabled studies to begin probing the short-range connections in recent years. The follow-
ing subsections briefly describe some recent work involving the short-ranged, “U”-shaped WM
and deep subcortical WM.

1.4.1 Short-ranged, “U”-shaped WM

In the past two decades, a number of studies have investigated the short-ranged, “U”-shaped
WM using tractography. While the majority of these studies have explored the short-ranged,
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“U”-shaped WM throughout the whole-brain, a few chose to focus solely on the “U”-fibres in
specific regions (e.g. frontal lobe [61], somatomotor area [62], retinotopic area [63]). Irrespec-
tive of the investigated region, short-ranged, “U”-shaped WM studies can be broadly catego-
rized into two groups: (1) identifying “U”-fibres and (2) assessing changes due to pathology.
To date, a number of studies have been performed whose primary aim was to identify the
short-ranged, “U”-shaped WM (Table 1.1), using different techniques (e.g. clustering, ROIs)
in healthy individuals. Notably, there have also been 3 studies who performed comparisons
with either post-mortem tissue [8, 62] or compared with another species [64]. These stud-
ies provided a methodological framework (e.g. determine shape of tract, limit tract length,
apply clustering or ROIs for identification) to investigate the short-ranged, “U”-shaped WM,
but lacked consensus (e.g. different bounds on tract length [56, 65, 66]) and standardization
(e.g. different types of clustering is performed in different studies [64, 66]). With a number
of different techniques available for future investigations, as well as its use in past studies, the
reliabilities of the available techniques should be assessed.
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Table 1.1: Studies identifying and assessing short-ranged, “U”-shaped WM in healthy human adults
(unless otherwise stated) using the various techniques previously described. Majority of the studies
performed whole-brain examination, with only a few noted studies focusing on specific regions.

Year First Author Dataset Objective

2008 Oishi [4] Healthy (n=81) Map “U”-fibre of gyral blades

2011 Guevara [65]
Healthy (n=12)
Children (n=2)

Create clustering tool for
identification

2012 Guevara [66] Healthy (n=12) Automatic identification
Create atlas of “U”-fibres

2012 Catani [8]
Healthy (n=12)

Post-mortem(n=1)
Map frontal lobe “U”-fibres
Assess lateralization

2013 Pardo [67] Healthy (n=30) Examine tract variability

2014 Zhang [64]
Healthy (n=30)

Fetal (n=21)
NHP (n=35)

Examine across species and
modalities

2014 Vergani [62]
Healthy (n=10)

Post-mortem (n=6)
Study connectivity around
somatomotor area

2016 Rojkova [61] Healthy (n=57)
Map frontal lobe
Assess effects of age and education

2017 Guevara [56] Healthy (n=79)
Highly reproducible automatic
identification
Create new atlas

2018 Oyefiade [68] Healthy (n=104) Study development of “U”-fibres

2019 Román [69] Healthy (n=1) Study effects of streamline count

2020 Movahedian Attar [63] Healthy (n=17)
Investigate “U”-fibres in
retinotopic areas

2021 Pron [70] Healthy (n=100) Examine tracts around central sulcus

In addition to the reliability of the applied techniques, the study of short-ranged, “U”-shaped
WM itself could elucidate key findings associated with neuropsychiatric disorders and neuro-
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logical conditions (Table 1.2). The investigation of “U”-fibres in vivo is still in its infancy when
compared to studies of the brain’s long-range tracts, with only a handful of studies having ex-
plored the association of short-ranged, “U”-shaped WM with neuropsychiatric disorders and
neurological conditions. A number of these studies made use of previously created WM atlases
or GM regions to identify the “U”-fibres to study epilepsy [12, 71], autism spectrum disorder
(ASD) [11], Alzheimer’s disease (AD) [72,73], mild cognitive impairment (MCI) [73] multiple
sclerosis (MS) [74], Parkinson’s disease (PD) [75], and psychosis [76]. These studies evalu-
ated either the tract density [12] or investigated changes to diffusion metrics (e.g. FA, MD),
relating metric changes to clinical observations (e.g. symptom severity) [11, 72, 74, 76]. With
the ability to identify the short-ranged, “U”-shaped WM, additional insights can be gained to
improve understanding of the functional role these groups of tracts may have and how they
may change due to pathology.
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Table 1.2: Tractography studies investigating short-ranged, “U”-shaped WM changes associated with
pathology.

Year First Author Dataset Findings

2016 Reginold [72]
Healhy (n=24)

AD (n=16) Increased diffusivity associated with AD

2017 O’Halloran [12]
Healthy (n=8)
Epilepsy (n=8) Decreased tract density in patients

2018 d’Albis [11]
Healthy (n=40)

ASD (n=30)
Reduced connectivity with social
cognitive deficits

2019 Ostrowski [71]
Healthy (n=14)
Epilepsy (n=20)

Increased quantitative metrics in
children with epilepsy
Associated with seizure onset zone
and sensorimotor deficits

2019 Ji [76]
Healthy (n=40)

Schizophrenia (n=31)
Bipolar disorder (n=32)

Reduced FA in affected regions
Increased FA believed to be
compensatory

2020 Bigham [73]
Healthy (n=24)

AD (n=24)
MCI (n=24)

Increased diffusivity in patients
Diffusivity differences can differentiate AD
and MCI

2022 Buyukturkoglu [74]
Healthy (n=31)

MS (n=29)

Increased MD in early stages of MS
Metrics correlated with symptom
severity

2022 Zhang [75]
Healthy (n=29)

PD (n=34)

Correlation with FA and
cognitive performance
Affected tracts in sensorimotor region

1.4.2 Deep subcortical WM

Studies using tractography to study the connectivity between subcortical structures have been
more limited compared to those of the short-ranged, “U”-shaped WM, in part due to the com-
plexity of the diffusion signal in the deep brain. Nonetheless, studies (Table 1.3) have en-
deavored to study these deep-rooted tracts in both in vivo [77–80] and ex vivo [17] samples,
primarily leveraging the ROIs with tractography. These studies often examined specific subcor-
tical tracts and in some instances the therapeutic effects of stimulating such tracts. In addition
to studies of long-range and short-ranged, “U”-shaped tracts, identification of the deep sub-
cortical tracts are also important for both individually examining tracts and for completing the
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circuitry involved with function and cognition (e.g. motor circuit). Similar to the short-ranged,
“U”-shaped WM, it is also critical to evaluate the reliability of techniques for identifying this
group of tracts and investigate associated changes with pathology.

Table 1.3: Studies of subcortico-subcortical connectivity using tractography

Year First Author Dataset Objective

2017 Rozanski [77] Dystonia (n=10)
Role of pallidothalamic tract in
deep brain stimulation

2020 Avecillas-Chasin [78] Parkinson’s Disease
(n=55)

Assess pathways associated with
symptom improvements from
deep brain stimulation

2020 Bertino [79] Healthy (n=100)
Characterize connectivity of
globus pallidus

2020 Oishi [17] Post-mortem (n=1) Create MRI atlas
Evaluate MRI identified trajectories

2021 Raghu [80] Dystonia (n=19)
Assess predictive capability of
putamen connectivity

1.5 Short-ranged WM in psychosis

As noted in the previous section, there have been few studies performed investigating the short-
ranged connections of the human brain, particularly in clinical populations. One such clinical
population is psychosis, which has long been hypothesized to arise from disrupted connec-
tivity and consequently abnormal interactions between brain regions [81–83]. Large cohort
studies have supported the neurodevelopmental theory associating progression of psychosis,
and in particular schizophrenia, with early life events [84]. Furthermore, imaging studies of
long-ranged WM tracts have implicated WM changes throughout the brain in patients with
schizophrenia [85,86]. Due to the late maturation of short-ranged “U”-shaped WM, these tracts
may be vulnerable to developmental abnormalities [10] associated with psychosis. Moreover,
the deep subcortical WM have an important role in function and cognition [15] and are also
likely to be affected in psychosis. Given the link between short-ranged connections, matura-
tion, importance to neurocircuitry and psychosis, subsequent investigations may look into such
connections for biomarker discovery and disease stratification in psychosis.
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1.6 Thesis outline

Despite the growth of dMRI and tractography, both in its use and development of tools to study
the brain’s structural connectivity, there is an absence of consensus stemming from various
sources (e.g. lack of anatomical definition, group preferences) [87]. This is often seen by
the differences in the steps taken and choices made during processing and analysis in different
studies. While complete agreement may be difficult to reach, efforts should be made to evaluate
developed tools or techniques in order to establish confidence in its application for future stud-
ies. This is particularly important as new frameworks are developed to study the short-ranged,
“U”-shaped and deep subcortical WM, two groups of tracts that have largely been disregarded
in studies of structural connectivity until recently.

Broadly, the objective of this thesis was to apply dMRI and tractography to study the short-
ranged, “U”-shaped and subcortico-subcortical WM associated with pathology. To that end,
this thesis first aimed to assess the reliability of techniques to be applied for studying each
group of tracts in patient populations. Not only does this provide a level of confidence in the
application of the technique, it also establishes a framework to evaluate newly developed tech-
niques. Following assessment of reliability, short-range connectivity was examined in a patient
population with psychosis. We hypothesized that a difference would be seen in the scalar mea-
surements in patients relative to healthy individuals and that such a change would be associated
with clinical symptoms experienced.

Chapter 2 aimed to quantify the reliability of template-based clustering applied to both whole-
brain tractography and to only the short-ranged, “U”-shaped WM. Specially, we sought to
evaluate the reliability of spectral clustering and QuickBundles [53], two techniques that have
been used previously to identify tracts from whole-brain tractography. Here, we leveraged two
publicly available, high quality datasets of (1) different individuals and (2) the same individual
scanned over multiple sessions. This assessment of template-based clustering highlighted its
validity for identifying short-ranged, “U”-shaped WM, while also identifying the shortcomings
of reliability measures.

Chapter 3 investigated the ability to identify the deep subcortical WM, a challenging task due
to the complexity of the compact region. To that end, tractography and ROIs were used to
aid identification of connections. As was performed in Chapter 2, a reliability assessment was
also performed here, again leveraging a publicly available, high quality dataset of individuals
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scanned at two different time points. Furthermore, an additional validation of findings was
performed on a separate dataset of individuals acquired at a single time point. In addition to
evaluating the reliability of the technique, we also visually inspected identified connections
making comparisons with those previously described in tract-tracing literature from NHPs.
This work demonstrated the capability of tractography to recapitulate known connections in
the complex region of the deep brain.

Chapter 4 uses the techniques evaluated in Chapter 2 to identify and investigate the short-
ranged, “U”-shaped WM in a patient cohort diagnosed with first episode schizophrenia (FES).
This chapter aimed to identify changes of the short-ranged, “U”-shaped WM related to FES,
specifically investigating changes to “U”-shaped tracts of the frontal lobe, a region where past
studies have identified abnormalities in patients with psychosis. Here, DTI was performed
along with tractography, noting differences in scalar metrics from patients with FES and cor-
relating findings with clinical symptoms. We detected a number of tracts exhibiting abnor-
mal scalar measurements in patients with FES, which suggests potential malformation of the
myelin.

In Chapter 5 of this thesis, the findings and implications of the previous three chapters are
discussed and summarized. These discussions lead to suggestions for future directions.
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This chapter is based on the following manuscript:

• Kai, J. & Khan, A.R. (2022). Assessing the reliability of template-based clustering
for tractography in healthy human adults. Frontiers in Neuroinformatics. 16. 777853.
https://doi.org/10.3389/fninf.2022.777853

2.1 Introduction

The brain consists of numerous regions connected together by axonal bundles which form
the structural pathways (also referred to as tracts) [41, 47] of a highly connected network that
enables function and cognition [59,88–90]. Although the gold standard for investigating struc-
tural connectivity are chemical tracers, these techniques are invasive and performed only in
animal studies and post-mortem samples [41, 59]. Alternatively, the brain’s connectivity can
be studied non-invasively, in vivo with diffusion magnetic resonance imaging (dMRI). Briefly,
dMRI acquires directionally-sensitive information about the diffusion of water molecules [91],
which preferentially diffuses in parallel to the axonal trajectory [92]. Using information from
dMRI, an estimation of the pathway trajectories can be reconstructed as a streamline with trac-
tography by (1) estimating the diffusion orientation within all image voxels and (2) following
along an orientation voxel-to-voxel until a termination criterion is met [41]. Past studies have
examined how long-range tracts connecting distant brain regions [93–97] and short-range, “U”-
shaped tracts comprising the superficial white matter [48,56,66,98] are affected in neurological
or psychiatric disorders. Furthermore, quantitative differences identified in the structural path-
ways of patient groups have been correlated with clinical symptoms [95]. An understanding of
how tracts are affected in patient cohorts could provide key insights for diagnosis and improve
treatment.

To identify different tracts from tractography, either manual or automated techniques can be
employed. Manual techniques require users to place inclusion and exclusion regions of interest
(ROI) to extract tracts for further investigation, a laborious and time-consuming task requiring
anatomical knowledge with results that can vary between different users or sessions [48]. An
alternative to manual ROIs is to leverage atlas-based ROIs, which require an adequate registra-
tion with an individual’s data [48,56,66,98] to automate identification of ROIs to extract tracts.
However, this still requires anatomical knowledge to select the ROIs needed to isolate each tract
of interest. One automated alternative that does not require ROIs is TRACULA, which instead
uses information of surrounding anatomical structures to identify tracts [98]. While the de-
scribed approaches can aid in tract identification with a high degree of anatomical accuracy,
they rely on and are limited by a priori knowledge [55]. Other automated techniques attempt to
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identify tracts with a data-driven approach, employing unsupervised clustering algorithms that
commonly rely on the similarity of streamline trajectories [48]. These clustering approaches,
which are not dependent on a priori knowledge, may identify previously unnamed or unidenti-
fied tracts and have been shown to produce known pathways with high confidence [48, 99]. To
identify the same tracts across individuals, a labelled template is first created from clustering
together streamlines by similarity. Clusters are arbitrarily labelled for identification with no
anatomical reference. The template is then registered to different individuals to identify similar
tracts in a template-based clustering approach. While automated clustering techniques may
include incomplete or false positive streamlines [48], user biases from manual intervention are
avoided [99]. A number of studies have taken a template-based clustering approach to identify
tracts of interest, including Tunç et al. [48], Guevara et al. [66], Guevara et al. [56], O’Donnell
and Westin [52], Garyfallidis et al. [100], Zhang et al. [101], and Román et al. [102] to name
a few. Although both template-based and atlas-based approaches have been used to identify
tracts, the primary difference between the two approaches is the use of predefined ROIs from
anatomical atlases and a priori anatomical knowledge for atlas-based approaches to identify
and name tracts, while template-based approaches uses the similarity of tract features to iden-
tify corresponding tracts.

Reliability of template-based clustering approaches, that is, the ability to extract corresponding
tracts successfully when applying the same methodology to multiple scans of the same sub-
ject or multiple subjects, is critically important and increases confidence applying the same
approach to study tracts of interest. In the previously mentioned studies, Tunç et al. [48]
used a template created from the same individuals studied, while O’Donnell and Westin [52]
and Garyfallidis et al. [100] highlighted clustering techniques to identify tracts. Zhang et

al. [103] used the same atlas previously developed by their group to compare the perfor-
mance of template-based clustering against an ROI-based technique using 3 different test-retest
datasets across varying age groups, highlighting the benefits of a template-based approach.
Guevara et al. [66] proposed a template-based clustering method to extract “U”-shaped tracts
and created a superficial white matter atlas. Later, Guevara et al. expanded the technique to ex-
amine “U”-shaped tract reliability and produce a new superficial white matter atlas containing
tracts present in at least 30% of the subjects within the dataset, producing the most common
“U”-shaped tracts across those individuals [56]. Despite the use of these techniques in studies
of structural connectivity, in-depth comparisons have yet to be performed to evaluate the paral-
lels between different template-based approaches. Further, the effect of individual differences
on reliably identifying tracts has not yet been examined. Lastly, an investigation of the use
of template-based approaches to reliably identify and examine superficial white matter, where
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individual differences can be found due to varying cortical folding, has yet to be extensively
studied.

In this work, we evaluate the reliability of template-based clustering of whole-brain tractog-
raphy applied to both different subjects and within a single subject using two clustering ap-
proaches - spectral clustering and QuickBundles. Both clustering approaches are applied to
two open source datasets of healthy individuals: (1) Human Connectome Project, and (2) My-
Connectome Project, examining all identified tracts. While the goal of tract identification is to
enable investigations of tracts and study changes in patient populations, reliable identification
is a non-trivial task, even amongst healthy individuals. Pathology can complicate the ability to
quantify reliability by introducing heterogenous changes to the structural connectivity in dif-
ferent individuals. First, we assess the reliability of template-based clustering of whole-brain
tractography. We follow-up by separately assessing the reliability of clustering short-range,
“U”-shaped pathways, where greater intersubject variability is expected than in long-range
tracts due to differing cortical folding patterns, different clustering parameters and the use of
constraints are required.

2.2 Materials and methods

All processing and analysis was performed within containerized environments on high perfor-
mance compute clusters hosted by Compute Canada. Environments contained installations of
Nipype [104], for creating reproducible pipelines, and MRtrix3 [105] for tractography process-
ing1 and implementation of spectral clustering2. Additionally, QuickBundles [53] clustering,
as implemented within the DIPY library [106], was also used as a secondary clustering tech-
nique. An overview of the general workflow applied is shown in Figure 2.1. Briefly, a labelled
population template was created from minimally preprocessed data and template-based cluster-
ing was applied to two separate datasets. Subsequent analysis was performed on the identified
tracts, assessing the metrics across identified tracts within each dataset.

2.2.1 Data acquisition and pre-processing

2.2.1.1 Template dataset

Minimally pre-processed dMRI data, as described in Glasser et al. [107], from the HCP1200
release of the Human Connectome Project (HCP) [108] of 100 unrelated subjects (46 male, 54

1www.github.com/khanlab/mrtpipelines
2www.github.com/khanlab/neurobeer
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female; aged 22-35), here-on defined as HCPUR100, was used to first create a clustered trac-
tography template. Structural T1w data of these subjects were also used to create an anatomical

Figure 2.1: General diffusion processing workflow using minimally preprocessed HCP and unprocessed
MyConnectome data. (A) HCP unrelated subjects were used to create the population-based FOD tem-
plate. Whole-brain and “U”-shaped tractography was created from the FOD template and streamlines
were assigned labels via clustering, creating labelled tractography templates. A subset of each identified
tract is extracted and used to propagate labels to the analysis datasets. (B) MyConnectome data was first
preprocessed using in-house pipelines. Together with the minimally preprocessed HCP dataset, individ-
ual FODs were computed and warped to the previously created template. Tractography was performed
for each subject / session in the template space. Additionally, DTI fitting was performed and mapped
along the generated streamlines. Labels from the tractography template were propagated to subject / ses-
sion’s tractography. (C) Analysis was performed on the identified tracts, evaluating Euclidean distances
and tract overlaps both within each dataset and against the labelled template. In addition, streamline
counts and along-tract agreement of FA were assessed within each dataset.

template for cortical parcellation and for lobular assignment via FreeSurfer [109]. dMRI
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data was acquired on a customized Siemens Skyra 3T scanner [110, 111] with the follow-
ing scanning parameters: repetition time/echo time (TR/TE) = 5520 / 89.50 ms; resolution
= 1.25 × 1.25 × 1.25 mm3; b-values = 1000, 2000, 3000 s/mm2 (90 directions each) with
18 b-value = 0 s/mm2 images. Full acquisition details can be found in the HCP1200 subject
reference manual3.

2.2.1.2 Analysis datasets

Two separate datasets from HCP and the MyConnectome Project [112] were used to assess
reliability of template-based clustering, here-on referred to as the analysis datasets. From the
HCP analysis dataset, an additional 15 subjects (8 male, 7 female; aged 22-35) were randomly
selected from the HCP1200 release for analysis, matching the number of available sessions
available in the MyConnectome analysis dataset. Acquisition parameters were previously de-
scribed in the template dataset subsection.

From the MyConnectome Project, a single male subject (aged 45 at onset of data acquisition),
scanned on multiple occurrences acquired over a 3 year period as a part of the MyConnec-
tome Project was used for analysis. Data acquisition was performed on a separate Siemens
Skyra 3T scanner. Out of 94 production sessions, 15 had dMRI acquisitions available for as-
sessment, excluding a follow-up session acquired on a separate imaging system. Scanning
parameters are as follows: repetition time/echo time (TR/TE) = 5000 / 108 ms; resolution =
1.74 × 1.74 × 1.7 mm3; b-values = 1000, 2000 s/mm2 (30 directions each) with 4 b-value =
0 s/mm2 images. Detailed information on data collection can be found in the study protocol4.
Using an in-house developed pipeline, prepdwi [113], dMRI acquisitions were pre-processed.
Briefly, principal component analysis based denoising [114, 115] was performed followed by
unringing of the dMRI data to minimize the effects of Gibbs ringing [116]. Afterwards, FSL’s
topup [117, 118] and eddy ( [119] were applied to correct for distortions induced by suscepti-
bility, eddy currents, and subject motion.

2.2.2 Tractography processing

The following sections describe the processing steps performed for generated tractography,
including clustering and assignment of labels to streamlines.

3https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
4http://myconnectome.org/wp/53-2
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2.2.2.1 Fiber orientation distribution

A fiber orientation distribution (FOD) template was created with the HCPUR100 using the
MRtrix3 software suite [105]. Briefly, a tissue-specific (white matter, gray matter, and cere-
brospinal fluid) response function was estimated for each HCPUR100 subject using the Dhol-
lander algorithm [120], before averaging the computed response functions. Utilizing the av-
erage response function, FODs were estimated for each HCPUR100 subject using a multi-
shell, multi-tissue constrained spherical deconvolution (MSMT-CSD) algorithm [121] and nor-
malised with a multi-tissue informed log-domain intensity normalization (Raffelt et al., 2017).
Normalised FODs were transformed using a multi-resolution pyramid structure to create an
FOD template [122]. Registrations were optimized with 6 iterations of rigid and affine trans-
formations each, and 15 iterations of non-linear transformation. The FOD template was utilized
to transform analysis data to a common midway space (defined as the template space).

Similar steps were taken to compute FODs for data from the MyConnectome Project and
HCP datasets. For each session / subject, a response function was estimated with the Dhol-
lander algorithm, however as acquisition protocols differed between the two datasets, no aver-
age response function was derived. FODs were again estimated with MSMT-CSD, using the
individual response functions and followed by FOD normalisation. Normalised FODs were
transformed and reoriented to the template space.

2.2.2.2 Streamline tracking and qualification

Whole-brain probabilistic tractography was performed for the template and analysis datasets
with MRtrix3, using the iFOD2 probabilistic algorithm [123] with default parameters. Ran-
dom seeding of tractography was performed throughout the brain until targets of 100, 000 and
10, 000, 000 streamlines have been selected for the template and analysis datasets respectively.
Tractography was then filtered to fit the amplitudes of the associated FODs using spherical-
deconvolution informed filtering of tractograms (SIFT) [124] until streamline counts of 50, 000
and 1, 000, 000 remained for template and analysis datasets respectively. The combination of
constrained spherical deconvolution (CSD), iFOD2 generated tractography, and SIFTing has
previously been shown to improve tracking of streamlines, particularly in regions of multiple
fiber orientations, while preserving tract densities reflective of the underlying diffusion signal.

Tensor images were additionally computed on intensity normalised diffusion weighted images
(DWI) of the analysis datasets, which had also been transformed to template space. Diffusion
tensor images (DTI) were estimated using an iteratively reweighted linear least squares esti-
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mation [125]. Fractional anisotropy (FA) measurements were derived from DTI and mapped
to corresponding streamlines, enabling further quantitative analysis following clustering.

2.2.2.3 Spectral Clustering (Method 1)

Using spectral clustering [126], bundles of streamlines (tracts) were initially identified on the
SIFTed tractography template before propagating cluster labels to tractography from analysis
datasets based on similarity of streamline trajectory. First, individual streamline similarity was
assessed with comparisons to all other streamlines of the template. 20 equispaced samples,
inclusive of endpoints, were taken along the length of each streamline and a minimum aver-
age, direct-flip (MDF) distance was used to compute between corresponding samples across
streamlines [53, 66, 127, 128] and generate a distance matrix. Streamlines whose distances
were greater than two standard deviations from the average whole-brain streamline distance
were deemed to be outliers and discarded, similar to O’Donnell et al. [129]. An affinity matrix,
characterizing similarity between streamlines, was created with the application of a Gaussian
kernel with a width of 8 mm to the distance matrix.

Spectral clustering, which has been previously employed in tractography clustering [52, 101,
130], utilizes Laplacian matrices as one of the primary tools [126]. Following the implemen-
tation described by Ng et al. [131], spectral clustering was performed on the template tractog-
raphy to label and assign streamlines to a cluster. A selection of k = 800 clusters was chosen
following qualitative assessment of clusters ranging from k = 400 to k = 1400. The qualitative
assessment involved visual inspection of identified tracts for each chosen number of clusters
and was performed to assess the ability to discern tracts with noticeably different trajectories.
This selection of 800 clusters was also determined to be the optimal number of clusters by
O’Donnell and Westin [52], and later employed by Zhang et al. [101]. Established clusters
were coloured according to the coordinates of the cluster centroids, as described by Brun et

al. [132].

2.2.2.4 QuickBundles (Method 2)

For comparison, the template tractography was also clustered utilizing QuickBundles [53] be-
fore sub-sampling and propagating labels to tractography of analysis datasets as before to
establish tract correspondence. Briefly, QuickBundles computes the MDF distance between
unassigned streamlines with a centroid streamline from existing clusters, updating the cluster
centroid as new streamlines are added. The computed distance is compared against a user-
chosen distance threshold and if the distance is within the threshold, it is assigned to the cluster
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with the smallest distance, otherwise it is assigned as a new cluster. Per Garyfallidis et al., uti-
lizing lower thresholds result in more detailed representations of underlying trajectories, while
higher thresholds result in the merging of bundles which may have similar trajectories [53].
Additionally, the user can choose to set the maximum number of clusters, such that once the
maximum number of clusters is reached, new streamlines are only assigned to existing clusters.

As was done for spectral clustering, streamlines were resampled to 20 equispaced samples
in order to compute the MDF distance for QuickBundles, selecting a maximum of k = 800
clusters and a distance threshold of 8 mm was chosen to match the number of clusters and
kernel width respectively from spectral clustering. Following cluster assignment, streamlines
were coloured using the cluster centroid as was done for spectral clustering.

2.2.2.5 Labelling analysis datasets

Both spectrally clustered and QuickBundles clustered methods used a labelled sub-sample con-
taining 20, 000 streamlines of the template tractography to assign labels to streamlines identi-
fied in the analysis datasets. A sub-sample of the labelled template was required due to compu-
tational memory limitations. Streamline similarity between the sub-sampled tractography tem-
plate and the tractography from analysis datasets was also computed using the MDF method as
previously described. Labels from template streamlines were propagated to the tractography
from analysis datasets based on maximum similarity, establishing correspondence between the
most similar tracts.

2.2.2.6 Short range, “U”-shaped streamlines

Streamlines comprising short-range, “U”-shaped tracts were identified and extracted from
whole-brain tractography using adapted parameters [12, 56] to extract from whole-brain trac-
tography. Identification of “U”-shaped streamlines utilized the Euclidean distance between
streamline endpoints (D), computed as the Euclidean distance between the terminal ends of a
streamline, and streamline length (L), computed as the arc length of the sample points (si).

L =
N�

i=1

|S i − S i−1| (2.1)

D = |S N − S 1| (2.2)

To extract streamlines with the expected “U”-shaped curvature, the end point distance was
constrained to approximately one-third of the streamline length (D < L/π), as employed by
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O’Halloran et al. [12]. Additional streamline length constraints of 20 mm (minimum) and
80 mm (maximum) were imposed (20 mm ≤ L ≤ 80 mm). Streamlines which crossed across
brain hemispheres were removed.

2.2.3 Analysis

In the following subsection, we describe the metrics used to assess reliability of template-
based tractography clustering. Briefly, we computed the centroid distances between the average
dataset centroid and individual subject or session centroid within the respective datasets, com-
pared the voxel-wise spatial overlap of identified tracts, and examined the streamline counts
of identified tracts. Analysis was performed on corresponding tracts within each dataset. An
unpaired t-test was also performed to determine whether there was a difference in the resulting
metrics from the two cluster algorithms.

2.2.3.1 Distance from average centroid

Tract centroids were computed for all tracts identified in both analysis datasets by averaging
spatial components of corresponding sample points across streamlines. A dataset average tract
centroid (here-on referred to as the average centroid) was also computed by averaging the
centroids computed across the subjects and sessions within the respective analysis datasets.
An Euclidean distance was computed for corresponding tracts between the average centroid
and centroids from the analysis datasets by employing the MDF distance previously described.

2.2.3.2 Voxel-wise spatial overlap of tracts

First, a tract density map for each cluster was created by identifying streamline counts pass-
ing through each voxel. Then, the fraction of each tract (a value between 0 and 1) passing
through a voxel was determined from the tract density map to assess the weighted Dice simi-
larity coefficient (wDSC) [133]. Briefly, the wDSC is a modified version of the conventional
Dice similarity coefficient [134] for assessing overlap of tractography, weighting more heav-
ily the denser regions of a tract instead of penalizing streamlines further from the core as is
done by conventional Dice [133]. The wDSC was computed with the following equation (eq.
2.3), where Av and Bv represent the fraction of streamlines passing through a voxel of two
corresponding tracts and v� represents a voxel within the intersection of A and B.

wDS C(A, B) =
�

v� Av� +
�

v� Bv��
v Av +

�
vBv

(2.3)

Average wDSC within the analysis datasets were computed across corresponding tracts.
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2.2.3.3 Along-tract fractional anisotropy similarity

To assess reliability of quantitative scalar metrics along identified tracts, intraclass correlation
(ICC) of along-tract fractional anisotropy (FA) was computed. Here, FA was chosen due to its
widespread use and interpretation in a number of diffusion studies. Cousineau, Descoteaux,
and Takemura previously highlighted the benefits of examining quantitative metrics along the
length of a tract for examining reliability [135]. A two-way, random effects model [136] was
employed to evaluate absolute agreement of FA at corresponding samples along the length of
a tract. Utilizing this model, the column factor (“raters”) were the samples along the tract, and
the row factor (“targets”) were the individual subjects or sessions of the analysis dataset.

2.2.3.4 Streamline count and variation

Streamline counts comprising each tract were extracted and compared across corresponding
tracts and the subjects and sessions within the respective analysis datasets. Streamline counts
enabled assessment of reconstruction consistency and importantly, may be used to determine
tracts which may not be reliably identified. The extent of streamline count variability of each
identified tract was also evaluated by computing the coefficient of variation (CV). Here, the CV
was calculated as the standard deviation of the streamline count (σ) over the average streamline
count (µ) for corresponding tracts within each analysis dataset (CV = σ/µ × 100%).

2.2.3.5 Relationship between metrics

To determine whether a relationship existed between the different reliability metrics examined,
a Spearman correlation is computed between the described metrics used for reliability analysis.
After computing the Spearman correlation between all metrics, false discovery rate correction
was performed following the Benjamini-Hochberg procedure [137].

2.3 Results

2.3.1 Distance from average centroid

The mean Euclidean distances were observed to be 2.16± 1.10 mm and 2.51± 0.90 mm for the
MyConnectome and HCP datasets respectively when compared against the average centroid
identified from the spectrally clustered template. From the QuickBundle clustered template, an
average Euclidean distance of 1.96 ± 0.73 mm and 2.31 ± 0.62 mm was observed for the My-
Connectome and HCP datasets when compared against the average centroid. Across datasets,
the average Euclidean distances of tracts to the corresponding average centroid was around
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2 voxels (about 2.5 mm). In both datasets, a difference was observed in the computed Eu-
clidean distance for tracts identified using the two clustering algorithms. Figure 2.2A displays
a boxplot with individual points indicating the observed Euclidean distances for a given tract
for each dataset. Distributions of Euclidean distances were similar across datasets, with the
MyConnectome dataset exhibiting a lower Euclidean distance against the average centroid for
both clustering methods than the HCP dataset. Supplementary table A.1 details the average
Euclidean distances and standard deviations for all tracts identified.

p > 0.9999

Figure 2.2: Individual observations for a given metric are overlaid on a box plot for each dataset and
clustering method employed by the template. (A) Mean Euclidean distance of tracts relative to the cor-
responding average tract centroid. (B) Average voxel-wise spatial overlap across corresponding tracts.
(C) Along-tract absolute agreement of fractional anisotropy across corresponding tracts. (D) Variability
of streamline counts across corresponding tracts.

2.3.2 Weighted voxel-wise spatial overlap

Spatial overlap of identified tracts were computed between corresponding tracts identified with
both spectrally clustered and QuickBundles clustering algorithms within the analysis datasets.
Overlap within analysis datasets demonstrated good overlap in both datasets with wDSC of
0.729 ± 0.129 and 0.661 ± 0.115 for spectral clustering identified tracts in MyConnectome
and HCP analysis datasets respectively. As with the computed overlaps computed in tracts
identified via spectral clustering, QuickBundle clustered identified tracts also demonstrated
good overlap in both datasets with an average wDSC of 0.683 ± 0.174 and 0.639 ± 0.141
for MyConnectome and HCP analysis datasets respectively. A difference in resulting tract-
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overlaps observed for both datasets when using the two different clustering algorithms. Figure
2.2B displays for each dataset, a box plot with individual points indicating the observed average
overlap for a given tract. Full details of computed wDSCs for identified tracts within analysis
datasets are provided in supplementary table A.1.

2.3.3 Along-tract fractional anisotropy agreement

Intraclass correlation (ICC) was computed for each analysis dataset by comparing the along-
tract FA at corresponding samples across subjects and sessions. For tracts identified from the
spectral clustered template, good absolute agreement was observed with computed average
ICCs of 0.792 ± 0.218 and 0.742 ± 0.207 for the MyConnectome and HCP analysis datasets
respectively. The QuickBundle clustered template also demonstrated high agreement of along-
tract FA, with average ICCs of 0.841±0.190 and 0.769±0.190 in the MyConnectome and HCP
datasets respectively. For both datasets, ICCs demonstrated a difference when using the two
different clustering algorithms. However, with both clustering algorithms, the MyConnectome
dataset demonstrated better along-tract agreement. Figure 2.2C displays for each dataset, a box
plot with individual points indicating the observed along-tract FA agreement for a given tract.
Supplementary table A.1 provides full details of computed ICC for all tracts, including 95%
confidence intervals.

2.3.4 Streamline count and variation

Within the analysis datasets, streamline counts were determined for each subject or session
and averaged across corresponding tracts. Tracts lacking streamlines for at least one subject
or session of the analysis datasets were identified. 13 of 800 (spectral clustering) and 5 of
800 (QuickBundles) tracts of the MyConnectome dataset contained no streamlines across the
available sessions, while all tracts of the HCP dataset contained at least a single streamline
for the analysed subjects. No difference in streamline count variability was observed between
the two algorithms for either dataset. Figure 2.2D displays for each dataset, a box plot with
individual points indicating the observed streamline count variance of a given tract. Full details
regarding streamline counts for each tract and associated dataset information can be found in
Supplementary table A.1.

Furthermore, the extent of the variability for each of the identified tracts were examined. The
tracts identified via spectral clustering in the MyConnectome dataset exhibited lower average
variability (50%) compared against the HCP dataset (53%). However, the range of the variabil-
ity exhibited was smaller in the HCP dataset (16 − 109%) than in the MyConnectome dataset
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Figure 2.3: Spearman correlations are computed to explore relationships of metrics employed to assess
reliability of spectral clustered (blue circles) and QuickBundle clustered (orange circles) identified tracts
via whole-brain tractography. Relationships between different metrics used for assessment are shown
in pairplots for (A) MyConnectome and (B) HCP datasets. Relationships between various metrics and
average Euclidean distance from an average tract centroid (left-most), relationships with along-tract
absolute agreement (ICC; middle-left column), relationships with streamline count variability (middle-
column), and with voxel-wise spatial overlap (middle-right column) are displayed. Distribution of ob-
served points for a given metric (matching the x-axis) are plotted along the diagonal.
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(10 − 203%). Similarly, tracts identified via QuickBundles demonstrated lower variability
(50%) in MyConnectome than in HCP (54%), but again showed a smaller range of variability
in HCP (14−97%) than in MyConnectome (11−156%). A full summary of average streamline
counts and CV can be found in Supplementary table A.1.

2.3.5 Relationships between reliability metrics

Relationships between employed metrics were explored to examine common features in re-
liable tracts. First, a significant negative correlation was observed between the average Eu-
clidean distance from the average centroid and tract overlap, streamline count variability, while
a significant positive relationship was observed between Euclidean distance and streamline
count variability (Figure 2.3, left column). Further, a significant negative correlation was iden-
tified between the along-tract agreement of fractional anisotropy and both streamline count
variability (only for the MyConnectome dataset) and the average log-transformed streamline
count (Figure 2.3, middle-left column). Finally a significant negative relationship was ob-
served between the tract spatial overlap and streamline count variability (Figure 2.3, middle
column), while a positive relationship was observed between tract overlap and the average log-
transformed streamline count (Figure 2.3, middle-right column). No significant relationship
was identified between the tract spatial overlap and the along-tract agreement or between the
log-transformed streamline count and average Euclidean distance. Additionally, no signifi-
cant relationship was identified between streamline count variability and tract overlap in the
HCP dataset. Relationships were similar for both tracts identified via spectral clustering and
the QuickBundles algorithm. For the majority of identified relationships, the correlation was
stronger in the single-subject MyConnectome dataset than in HCP datasets for both algorithms.

2.3.6 “U”-shaped tract reliability

Assessment of short-range, “U”-shaped tracts was performed with the same metrics used to
examine reliability of whole-brain tractography. The average Euclidean distance from the av-
erage centroid for identified “U”-shaped tracts via the spectrally clustered template was similar
as previously observed, with distances of 2.53 ± 0.75 mm and 2.99 ± 0.67 mm in MyCon-
nectome and HCP datasets respectively. From the QuickBundle clustered template, a slightly
greater distance is observed - 2.66 ± 0.92 mm and 3.05 ± 0.82 mm for MyConnectome and
HCP datasets respectively. Figure 2.4A and 2.4B display the identified tracts from spectral
clustering and QuickBundles respectively (see supplementary video A.6 and A.7 for individu-
ally identified tracts for the respective algorithms), while Figure 2.4C displays a box plot with
individual Euclidean distance observations against the average tract centroid for each dataset.
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Figure 2.4: “U”-shaped tracts identified in the HCPUR100 template viewed from axial superior (left),
sagittal right (middle), and coronal anterior (right) via (A) spectral clustering and (B) QuickBundle clus-
tering. Colours of identified tracts do not correspond across clustering methods. Individual observations
in “U”-shaped tracts for a given metric are overlaid on a box plot for each dataset and clustering method
employed by the template. (C) Mean Euclidean distance of tracts relative to the corresponding aver-
age tract centroid. (D) Average voxel-wise spatial overlap across corresponding tracts. (E) Along-tract
absolute agreement of fractional anisotropy across corresponding tracts. (F) Variability of streamline
counts across corresponding tracts.

Spatial overlap of identified “U”-shaped tracts from spectral clustering and QuickBundles
were also computed. Overlap within analysis datasets demonstrated moderate overlap in both
datasets with wDSC of 0.606 ± 0.155 and 0.517 ± 0.123 for spectral clustering identified
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tracts in MyConnectome and HCP analysis datasets respectively. With QuickBundle clustered
identified tracts, similar overlaps were observed with an average wDSC of 0.598 ± 0.199 and
0.515± 0.152 for MyConnectome and HCP analysis datasets respectively. Full details of com-
puted wDSCs for identified “U”-shaped tracts compared for the analysis datasets are provided
in Supplementary table A.2.

As with whole-brain tractography reliability, the absolute agreement of along-tract FA was
also computed for “U”-shaped tracts identified in the analysis datasets, comparing the met-
rics mapped at corresponding samples across subjects and sessions. For tracts identified from
the spectral clustered template, good absolute agreement was observed with computed average
ICCs of 0.938 ± 0.081 and 0.883 ± 0.076 for the MyConnectome and HCP analysis datasets
respectively. The QuickBundle clustered template also demonstrated high agreement of along-
tract FA, with average ICCs of 0.900 ± 0.162 and 0.847 ± 0.147 in the MyConnectome and
HCP datasets respectively. Similar to whole-brain clustering, a difference was observed be-
tween the two clustering algorithms applied to both datasets. As before, the MyConnectome
dataset demonstrated better along-tract agreement irrespective of the clustering method applied
to the template. Supplementary table A.2 provides full details of computed ICC for all “U”-
shaped tracts, with 95% confidence intervals.

Similarly, as previously observed, not all analysis datasets contained streamlines for all tem-
plate identified tracts. 6 tracts in both the MyConnectome and HCP datasets contained no
streamlines when tracts were identified with the spectrally clustered template, while 32 and 24
tracts respectively was found to contain no streamlines when identified with the QuickBundle
clustered template. Variability of tract streamline counts was also comparable, ranging from
13 − 81% and 16 − 122% (averaging 37% and 50%) for MyConnectome and HCP datasets
respectively identified via the spectrally clustered template. Similarly, variability of identi-
fied tract streamline counts from the QuickBundle clustered template ranged from 11 − 84%
and 14 − 110% (averaging 38% and 49%) for MyConnectome and HCP datasets. Figure 2.4
displays for each dataset, a box plot with individual points indicating the observed values of
a given tract for each described metric. A full summary of evaluated metrics of short-range,
“U”-shaped tracts, inclusive of streamline counts can be found in Supplementary table A.2

The relationships between different reliability metrics were also similar to the relationships
observed for whole-brain tractography clustering. Negative correlations were observed with
the Euclidean distance for all metrics except for streamline count variability, which exhibited
a positive relationship (Figure 2.5, left-most column). As with whole-brain
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Figure 2.5: Spearman correlations are computed to explore relationships of metrics employed to as-
sess reliability of spectral clustered (blue circles) and QuickBundle clustered (orange circles) identified
tracts in short-ranged, “U”-shaped tracts. Relationships between different metrics used for assessment
are shown in pairplots for (A) MyConnectome and (B) HCP datasets. Relationships between various
metrics and average Euclidean distance from an average tract centroid (left-most), relationships with
along-tract absolute agreement (ICC; middle-left column), relationships with streamline count variabil-
ity (middle-column) and with voxel-wise spatial overlap (middle-right column) are displayed. Distribu-
tion of observed points for a given metric (matching the x-axis) are plotted along the diagonal.

tractography, negative correlations were identified between along-tract agreement of fractional
anisotropy and both streamline count variability and the average log-transformed streamline
count (Figure 5, middle-left column). Lastly, a significant positive relationship was once



Chapter 2. Template-based clustering reliability of tractography 42

again identified between the log-transformed streamline count (Figure 2.5, middle column) and
voxel-wise spatial overlap (Figure 2.5, middle-right column). As before, the relationships were
similar for “U”-shaped tracts identified via spectral clustering and the QuickBundles algorithm.

Lobular connectivity of “U”-shaped tracts was identified and summarized. The majority of
tracts identified in both hemispheres were found within the frontal lobes, followed by the pari-
etal lobes. A number of tracts were also identified to connect between the frontal and parietal
lobes. A full summary of the lobular connectivity of “U”-shaped tracts can be found in Sup-
plementary table A.3.

2.4 Discussion

2.4.1 Clustering reliability

Reliable identification of white matter pathways is crucial for increasing confidence in the sub-
sequent analysis. In this work, we investigated the reliability of template-based clustering by
identifying and evaluating metrics of reliability in identified tracts. On average, we observed
identified tracts to exhibit a Euclidean distance around 2.5 mm (or 2 voxels) from the average
centroid. A deviation from the average tract trajectory could result in an increasing Euclidean
distance. Other factors, such as dispersion of streamlines (e.g. fanning in the corticospinal
tract), could also contribute to an increased Euclidean distance.

Another reliability metric evaluated was the voxel-wise spatial overlap of corresponding tracts.
Previous studies have used a Dice similarity coefficient to compute tract overlap [55, 138],
but wDSC was chosen as it better reflects the overlap of streamlines by minimizing the pe-
nalization of those far from the core [133]. In healthy individuals, corresponding tracts are
generally found in similar regions of the brain with comparable trajectories (more variability is
expected in the superficial white matter). The wDSC reflects this similarity by comparing and
identifying the voxels traversed by the two tracts being compared. If two tracts have similar
trajectories, presumably also traversing similar voxels, this is reflected by a higher degree of
spatial overlap when brought into the same space (e.g. template space). In the study by Zhang
et al. [103], clustering demonstrated greater reliability than ROI-based techniques in a study
of test-retest datasets, exhibiting a minimum tract overlap of 0.593 from a clustering approach
compared to 0.362 with a ROI-based approach. Here, we provide further support for template-
based clustering approaches, demonstrating an average wDSC across the two techniques and
datasets evaluated that is greater than reported by Zhang et al., indicating a high degree of
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overlap.

Along-tract quantitative measurements can also be a good indicator of tract reliability, as noted
by Cousineau, Descoteaux, and Takemura [135]. Corresponding tracts are expected to have
similar along-tract profiles and deviation from this profile could indicate an incorrect tract was
identified. In this study, the absolute agreement of along-tract fractional anisotropy was as-
sessed between corresponding samples of tracts across subjects and sessions. The majority of
identified tracts within a given dataset and technique exhibited good agreement between their
tract profiles.

Tract streamline counts and the variability across subjects and sessions were also evaluated.
While the method of tractography seeding can influence the resulting streamlines, methods
such as SIFT, were developed to filter and retain streamlines such that streamline counts are
reflective of the underlying diffusion profile. Further, different individuals may also contribute
to this variability due to underlying anatomy. However, within a single healthy adult individ-
ual with developed brain, tract streamline counts should be similar (i.e. on the same order of
magnitude). In this study, a slightly smaller variability was observed in the MyConnectome
dataset relative to the HCP dataset, but a high variability was still demonstrated in the majority
of identified tracts. The observed variability could suggest streamline counts and the associated
variability may not be a dependable indicator of reliability. Nonetheless, if streamline counts
are to be assessed, careful processing should be performed to ensure they are comparable, such
as applying post processing techniques to correspond to the underlying diffusion signals, such
as with SIFT [124].

2.4.2 Reliability metric relationships

While the chosen metrics evaluated can all be used individually to characterize the reliability of
tract identification, certain relationships were observed between different metrics of reliability.
We have shown that the spatial overlap of identified tracts demonstrated good reliability across
other metrics, such as low streamline count variability demonstrating the need for filters like
SIFT that attempt to match the streamline counts to underlying diffusion signals. Similarly, a
low Euclidean distance was also observed with low streamline count variability, as well as high
tract overlap. However, along-tract agreement (ICC), did not demonstrate such a relationship
with other reliability metrics. Instead both high and low reliability across other metrics were
observed when ICC suggested good reliability. Lastly, similar relationships were observed for
both whole-brain tractography and “U”-shaped tractography, suggesting that template-based
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clustering may be appropriate for both.

2.4.3 “U”-shaped tract clustering

Clusters identified from whole-brain tractography can contain multiple “U”-shaped tracts clus-
tered together and affecting the evaluated metrics described previously. One such example was
in clusters with a large number of streamlines (> 1000). The close proximity of these stream-
lines could contribute to a smaller Euclidean distance and a high degree of overlap observed.
As such, it is important to separate evaluation of “U”-shaped tracts from whole-brain tractog-
raphy, which is possible by lowering the Gaussian kernel width for spectral clustering and the
distance threshold for QuickBundles.

We separately assessed the clustered “U”-shaped tracts with the same metrics used to study
whole-brain tractography. Much of the same observations noted previously in whole-brain
tractography were also seen in these “U”-shaped tracts. The use of a template may alleviate
some of these issues, capturing tracts that have similar trajectories across individuals. Con-
versely, “U”-shaped tracts specific to an individual may be missed. Notably, a slight increase
in the computed Euclidean distance was observed for QuickBundle identified tracts. Further,
a decrease in spatial overlap was observed in “U”-shaped tracts irrespective of the algorithm
chosen. Additionally, the QuickBundles clustered template resulted in the lack of stream-
lines in more tracts of both datasets, which could be due to clusters of outlier streamlines in
the template. It has been previously noted that the QuickBundles method may capture outlier
streamlines in small clusters [128] as it uses a distance threshold for cluster assignment without
discarding any streamlines. While discrepancies observed between clustering algorithms may
be attributed to implementation differences of evaluated algorithms or the choice of parame-
ters, an overall decrease in reliability (as seen from tract overlap), indicates that improvements
still need to be made to improve the reliability of identifying “U”-shaped tracts.

2.4.4 Inter- vs intrasubject

In this work, we utilized two unique datasets: an intersubject dataset acquired to investigate
the human brain in the Human Connectome Project and an intrasubject dataset acquired over
a 3-year period to similarly investigate the human brain using similar acquisitions. In assess-
ing template-based clustering reliability, similar observations were made across both datasets.
While minimal change would be expected in the developed brain of a single subject, some
variation is expected across different individuals [133], which may contribute to the differ-
ences observed between the two datasets. When examining “U”-shaped tracts, this expectation
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appeared to be reflected in the evaluated metrics, with tracts identified in the single subject
dataset demonstrating slightly less variability as previously noted.

2.4.5 Template-based clustering

In addition to the use of two unique datasets, the processing was also performed with two dif-
ferent clustering tools using similar parameters: spectral clustering and QuickBundles [53].
Analysis was performed on both for comparison of reliability in two different template-based
clustering tools. Differences between the two clustering algorithms were observed, particularly
when performing whole-brain clustering. These differences may be attributed to disparities in
the implementation of the two algorithms, including the handling of outlier streamlines as pre-
viously mentioned. Further, while the clusters may not correspond across these two different
techniques, and the relationships observed from the results of both techniques were similar,
suggesting the robustness of a template-based approach in reliably identifying tracts. A pre-
vious study had explored the challenges of tractography, assessing the pathways identified by
various different methods [54]. Here, we explored the reliability of template-based clustering
algorithms. As tools and techniques are developed and refined to automate tract identification,
the importance of assessing the reliability of these methods should be emphasized.

2.4.6 Limitations

Clustering of tractography, both with spectral clustering and using QuickBundles, required
streamlines to be resampled to N equispaced samples. Subsequent analysis was also performed
on these samples along a given tract. However, streamlines comprising a tract may be of differ-
ent lengths, with some streamlines terminating earlier than others due to meeting cutoff criteria.
Despite differing lengths, correspondence is assumed between two samples. One method of re-
solving this is to set terminal ROIs at the ends of a tract such that all streamlines are guaranteed
to terminate or be cutoff at the ROIs. As previously noted when discussing manual placement
of ROIs, this requires some anatomical knowledge [48]. Alternatively, Chandio et al. [139]
mapped samples from streamlines to a corresponding segment of a representative centroid.
This eliminates the need for ROIs, but still requires an adequate registration. Further evalu-
ation of this method is also required to determine its accuracy in mapping superficial white
matter.

Clustering performed in this study also used a template to identify corresponding tracts in the
analysis datasets. While clustering does not explicitly require registration, the template-based
techniques examined here require an adequate registration between the template and the sub-
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ject of interest [11,48,66,98] to identify corresponding tracts across subjects and sessions. Ad-
ditionally, template-based techniques can only identify tracts with similar trajectories to those
already defined by the template. ROI-based techniques can be used to identify tracts of interest,
but as mentioned in the introduction, these methods can be laborious and require anatomical
knowledge. A combination of the data-driven approaches taken here complemented by the use
of ROIs for refinement to ensure proper termination of pathways may be better suited to aid
discovery of new tracts in vivo.

As previously mentioned, the clustering performed utilized two different techniques and com-
parison of tracts across these two methods was not possible due to lack of correspondence of
identified tracts. Differences include how streamlines were clustered, where spectral clustering
performs k-means clustering in a spectral space to identify tracts, QuickBundles identifies sim-
ilar streamlines by directly employing the MDF distance and adding the streamline to a cluster
if the distance threshold is satisfied. Differences in the algorithm are likely the cause behind
the differences observed. Nonetheless, the metrics used to evaluate the identified tracts and the
comparison of the metrics can be applied generally to assess reliability regardless of the tract
identification technique chosen.

Despite the influence of the HCP acquisition protocol on the MyConnectome acquisition pro-
tocol, there are notable differences between the two datasets. HCP dMRI was acquired with
3-shells and 270 total directions (90 directions/shell), while MyConnectome dMRI was ac-
quired with 2-shells and 60 total directions (30 directions/shell). Additionally, preprocessing
of data may slightly differ, with the HCP data preprocessed with the HCP minimal prepro-
cessing pipeline [107] and the MyConnectome data preprocessed using an in-house pipeline
to apply standard preprocessing steps. Preprocessed HCP dMRI data was also corrected for
gradient field inhomogeneities, whereas the correction for gradient field inhomogeneities was
not possible for the MyConnectome dataset due to the lack of a proprietary scanner-specific
file required. Data harmonization - an active area of research - is one possible method to im-
prove comparability between different datasets, as such, future work should also explore the
reliability of harmonized datasets.

To match the number of diffusion acquisitions available in the MyConnectome dataset, n=15
subjects were selected from the HCP dataset to keep analysis as similar as possible between
the two datasets. As previously mentioned, variability within a single, healthy adult individual
is expected to be minimal, there may be more variability in the larger population. In particu-
lar, more variability may be expected in the superficial white matter due to differing cortical
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folding patterns across individuals. In this study, we have shown the ability of template-based
clustering to identify corresponding tracts across individuals in the limited sample size. Future
studies should explore and quantify the amount of variability, in particular to the superficial
white matter, across a larger population.

With regards to clinical applications, such as in neurological and psychiatric disorders, which
have been recognized as disorders of the network (e.g. epilepsy as a network disorder [140],
abnormal networks in schizophrenia [141], and more), the capability to identify connectivity
throughout the brain, including previously unnamed and unidentified tracts in a reliable man-
ner has important clinical implications. The techniques applied in this study may be able to
provide biomarkers indicative pathological changes if tracts can be identified in the presence
of disease. However, one of the current limitations of the template-based approach is the re-
quirement of adequate registration, which may be non-trivial with the occurrence of substantial
morphological change (e.g. due to tumors). The current study suggests that while template-
based approaches are reliable for identifying connectivity and may be a critical approach in
expanding current knowledge of the human connectome with potential future clinical impact,
improvements are required to tackle the challenges of identifying connectivity in the presence
of disease.

2.5 Conclusion

In this work, we performed whole-brain tractography on two unique datasets, assessing the
reliability of template-based clustering approaches and identifying relationships between re-
liability metrics. Similar relationships were observed irrespective of the clustering algorithm
chosen suggestive of the robustness of template-based approaches. Furthermore, streamline
count on its own may not be a good indicator of reliability, though the evaluation of the metric
relationships suggest that certain metrics may be in agreement with other measures, providing
a better indicator of reliability. We further identified the superficial white matter (“U”-shaped)
tracts using the same clustering algorithms to assess reliability of a template-based approach,
observing similar relationships as in whole-brain tractography. Data-driven, template-based
approaches can reliably identify and investigate pathways, including those previously unnamed
or unidentified such as the superficial white matter.

Future work should look to examine reliably identified “U”-shaped tracts to improve under-
standing of its biophysical properties, the relationship with cortical measurements (e.g. gyrifi-
cation), and how the short-range pathways are affected in patient populations.
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This chapter is based on the following manuscript:

• Kai, J., Khan, A.R., Haast, R.A.M., Lau, J.C. (2022). Mapping the subcortical connec-
tome using in vivo diffusion MRI: feasibility and reliability. Terra incognita: diving into
the human subcortex, special issue of NeuroImage.
https://doi.org/10.1016/j.neuroimage.2022.119553

3.1 Introduction

A brain network is comprised of bundles of axons, which form the structural pathways (also
referred to as tracts or connections), that allow transfer of information between the different
regions [41] and facilitate the performance of complex functions [88, 89]. Axons can be com-
putationally reconstructed (represented as a streamline) using diffusion magnetic resonance
imaging (dMRI), a non-invasive technique sensitive to the direction of water motion [91, 92].
As axons are bundled together, water molecules will preferentially diffuse parallel to the axonal
trajectory, which can then be detected using dMRI to enable an in vivo estimation of tract tra-
jectories. This process, known as tractography, first estimates the diffusion orientations within
all imaging voxels before traversing from a starting seed location until termination criteria are
met (e.g. quantitative value drops below defined thresholds) [41]. Additionally, regions of in-
terest (ROI) can be used to define inclusion and exclusion criteria to constrain tract trajectories
and facilitate identification of connections between terminal regions.

Mapping the human connectome is an important, non-trivial task that contributes to disentan-
gling the network organization of the brain and increased understanding of changes in healthy
aging or due to disease [142, 143]. To date, much of the work studying structural connectivity
using dMRI has focused on the cortico-cortical (between regions of the cortex) and cortico-
subcortical (between cortex and subcortex) tracts, resulting in the development of a number of
structural connectivity atlases. Such connectivity can be described as the cortical connectome.
Examples of such atlases include the Johns Hopkins University white matter atlas, which iden-
tified a number of cortico-cortical white matter tracts [50, 144, 145] and the Oxford thalamic
connectivity atlas, which aimed to identify cortico-subcortical connectivity between regions of
the thalamus and the cortex [46, 146]. These atlases have been extensively used to attain an
understanding of changes associated with aging as well as disease (e.g. thalamic changes in
Alzheimer’s disease; [147]). Validation of some of these connections have also been performed
previously in studies of non-human primates (NHPs; [148–150]).

Just as there are cortical connections, there is also connectivity between subcortical structures
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(e.g. the thalamus and basal ganglia), forming the subcortical connections, which can also be
referred to as subcortico-subcortical connections. These subcortical structures are important
to motor control [13, 14] as well as cognition and emotion [15]. Accordingly, connections be-
tween the subcortical structures are integral and have been studied extensively in non-human
primate (NHP) studies of the motor network [5, 13, 151], as well as associative and limbic
networks [5, 152–154]. Previous studies have examined subcortical connections with the use
of anatomical tracers, which involve injection of either anterograde or retrograde tracers at a
structure of interest to map its connections. One such example involved the injection of an
anatomical tracer at the ventral pallidum, which determined projections to the subthalamic nu-
cleus (STN), as well as the hypothalamus and brainstem [155].

Studies that attempt to more comprehensively identify the subcortical connections non-invasively
via tractography, that is to map the subcortical connectome, have been limited. The scarcity of
subcortical connectome studies is in part due to the difficulty of tracking the connections in a
compact region where the underlying diffusion signal is complicated by multiple diffusion ori-
entations arising from numerous intersecting connections and structures with low anisotropy.
One previous study demonstrated the ability to map connections between the basal ganglia
and thalamus in vivo using manual segmentations before leveraging connectivity strength to
parcellate the basal ganglia and thalamus into subregions [156]. Recently, in vivo studies have
primarily focused on individual connections that comprise specific subcortical connections and
have been identified as putative targets for surgical neuromodulation [77,78]. In one study, the
pallidothalamic tract was delineated in order to study its role in the treatment of dystonia with
deep brain stimulation (DBS) [77], while another study examined the importance of pallidop-
utaminal connectivity to predict DBS outcomes also for dystonia [80]. With the aid of a number
of atlas-based inclusion and exclusion ROIs, as well as extensive manual refinement, tractog-
raphy has been used to identify the nigrofugal and pallidofugal subcortical connections [78].
Recently, an attempt was made to map subthalamic tracts using ex vivo data, using ROIs to
guide and identify specific subcortical connections [17]. All of these studies employed tractog-
raphy to identify the trajectory of the connections using non-invasive techniques, highlighting a
potential for tractography-guided treatment. Reliable and accurate identification of these con-
nections has the potential to improve diagnosis and treatment options.

With reliability studies having been previously performed in tractography studies of cortical
connectivity (including, but not limited to [56, 133, 157, 158]), an evaluation of the reliability
of the subcortical connectome is also warranted. Despite examination of individual subcorti-
cal connections, to our knowledge, there has yet to be a study assessing the reliability of the
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subcortical connectome. Briefly, reliability is defined as the agreement of the results (e.g. sim-
ilar connectivity) when applying the same methodology to different acquisitions of the same
subject or to data acquired from different subjects. Not to be confused with reproducibility,
another term that often gets used interchangeably, which is defined as the ability to produce
similar results when using an entirely different methodology. Both are important and can pro-
vide valuable insight regarding a method or result. Reliability studies can evaluate and increase
the confidence of methodological approaches used to study structural connectivity, while repro-
ducibility studies can validate findings by comparing results produced with other techniques. In
this work, we recapitulate pathways of the subcortical connectome in the Human Connectome
Project (HCP) test-retest dataset. We aimed to assess the feasibility and reliability of mapping
the subcortical connectome, with a specific goal of recapitulating known connections, through
application of subcortical structure segmentations and probabilistic tractography. Furthermore,
we sought to develop a framework that enabled evaluation of reliability for the subcortical con-
nectome moving forward. Additional validation was performed using the unrelated subjects
dataset of the HCP.

3.2 Materials and methods

Processing of the data was performed in containerized computing environments on a high
performance compute cluster. An overview of the general workflow is shown in Figure 3.1.
Briefly, publicly available minimally pre-processed test-retest data from the Human Connec-
tome Project was used to assess reliability of connections (identified via tractography) between
subcortical structures and feasibility of identifying connections of known subcortical circuits.
Analysis included evaluating tract overlap, changes in tract density, and examining identified
connections with trajectories previously described in the literature. Furthermore, processing
and analysis was replicated on an unrelated subset from the Human Connectome Project.

3.2.1 Dataset

Minimally pre-processed subjects as part of the test-retest dataset (n=36; 11M/25F, aged 22-
35) of the Human Connectome Project (HCP) [107, 108] were used to assess the reliability
of subcortical connections identified via tractography. Briefly, T1-weighted (T1w) MRI scans
were acquired with a 3D MPRAGE sequence [159]: resolution = 0.7 mm isotropic voxels; rep-
etition time/echo time (TR/TE) = 2400 / 2.14 ms, while dMRI scans were acquired in opposite
anterior-posterior phase-encoding directions with a pulsed gradient spin-echo sequence [30]:
resolution = 1.25 mm isotropic voxels; TR/TE = 5520 / 89.50 ms; b-values = 1000, 2000, 3000
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s/mm2 (90 directions per shell) with 18 b-value = 0 s/mm2 images. All data was acquired on
customized Siemens Skyra 3T MRI systems [110, 111]. Full acquisition details are described
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Figure 3.1: General subcortical tractography processing workflow using the minimally preprocessed
HCP datasets. (A) An average response function was created from individual response functions
from each acquisition (per dataset) and to estimate the FODs in each MRI session. Additionally,
FreeSurfer was employed to parcellate the thalamus and obtain a cortical ribbon. Inclusion and ex-
clusion masks were created, combining subcortical parcellations (transformed to the subject’s native
space) with FreeSurfer parcellations to perform tractography on the subcortical connectome. (B) Ex-
amples of assessments performed, comparing test vs retest sessions, as well as the use of an additional
unrelated dataset for further comparison.
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in the HCP1200 reference manual1. As part of the minimal pre-processing pipeline data re-
lease, all subjects underwent FreeSurfer processing (v5.3.0-HCP; [109]), where the cortical
ribbons were retained for further processing.

Further, subjects part of the HCP unrelated dataset that did not overlap with test-retest dataset
were selected (n=85; 35M/50F; aged 22-35) for validation. Acquisition and minimal pre-
processing steps from the HCP release of the unrelated dataset were identical to the test-retest
dataset.

3.2.2 Regions of interest

To evaluate connections of interest, structural segmentations were used as ROIs to assist trac-
tography generation. As previously mentioned, cortical reconstruction from FreeSurfer [109]
was first performed, retaining the cortical ribbon as an exclusion mask. In addition, subcorti-
cal structures where connections terminated were identified. Subnuclei of the thalamus were
segmented using FreeSurfer (v7.1.0; [160]), while other subcortical structures (excluding the
hippocampus, which is considered part of the archicortex; [161, 162]) were identified from the
BigBrain subcortical atlas [163] first registered to the MNI2009bAsym template [164]. Vol-
umes of all subcortical structures were computed for each subject. A second exclusion mask
was created from an inverted convex hull surrounding the subcortical structures to discard
streamlines outside of the convex hull. FreeSurfer processing was performed in the subject’s
native space, while the atlas was transformed to subject’s native space using the Advanced
Normalization Tools (ANTS v2.1.0; [165]). Briefly, the atlas was transformed to the subject’s
native space in a 3-step process: (1) linear affine transformation (2) non-linear symmetric nor-
malization (SyN), and (3) HCP provided subject-specific transformations. The first two steps
transform the labels from MNI2009bAsym space to MNI152NLin6Asym space, while the fi-
nal step transforms the labels to the subject’s native space. Transformations between the two
spaces can be found in the available repository (see data availability).

3.2.3 Tractography

All tractography processing was performed using the MRtrix3 software suite (v3.0 RC3; [105]).
First, individual tissue-specific response functions were estimated for each subject in both test
and retest sessions using an unsupervised approach [120]. From here, an averaged group re-
sponse function was computed from the individual response functions. Fiber orientation distri-
bution (FOD) maps were estimated for each subject with a multi-shell, multi-tissue constrained

1https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
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spherical deconvolution (MSMT-CSD) algorithm [121], with group average response functions
independently computed for the test-retest and unrelated datasets. The use of a group average
response function minimizes biases in FOD maps [166], improving the comparability of trac-
tography within datasets with observed differences attributed to the underlying diffusion data of
an individual. Prior to performing tractography, multi-tissue informed log-domain transformed
normalization was performed [167] on the FOD maps.

As the primary diffusion orientation is also reflected in FODs, major white matter connec-
tions (e.g. the corticospinal tract (CST)) passing through the subcortical region will hinder
the ability to identify subcortical trajectories. To traverse trajectories along non-primary dif-
fusion orientations, the iFOD2 probabilistic algorithm [123] with a step-size of 0.35 mm and
maximum angle of 45◦ between successive steps was used. Random seeding was performed
throughout the brain until 20 million streamlines, constrained to the subcortical region with the
previously created exclusion mask, were selected. The chosen parameters are comparable to
what is typically used in iFOD2 algorithms to perform whole-brain tractography with a noted
decrease in step-size (from 0.5 × voxel size to 0.25 × voxel size) to sample more frequently
along a streamline’s trajectory.

Following tractogram creation, each streamline was assigned a weighting to reflect its con-
tribution to the underlying diffusion signal using the updated spherical deconvolution informed
filtering of tractograms (SIFT2) technique enabling the assessment of tract densities [168]. Us-
ing MRtrix3, structural connectivity was established by identifying the nearest subcortical label
within a 1.5 mm radius at each terminal end of a given streamline. Due to the low anisotropy
within gray matter, streamlines whose trajectories intersect other subcortical labels prior to
reaching the terminal structures were discarded (see section 3.4). Furthermore, the CST, which
represents a dominant tract passing in proximity to many subcortical connections, was sep-
arately identified in order to visually assess its influence on derived tracts. Identification of
the CST was performed using the brainstem and segmentations of both pre- and post-central
gyri identified by FreeSurfer as inclusion regions of interest. Generation of the CST was per-
formed until 500 streamlines were identified in each hemisphere. Similar to the connectivity
of the subcortical connectome, streamlines had to terminate within a 1.5 mm radius of these
segmentations to be considered a part of the CST.
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3.2.4 Assessment of reliability and accuracy

An investigation into known subcortical connections of the motor, limbic, and associative net-
works was performed, quantitatively assessing reliability of tract densities and spatial overlaps
of identified connectivity. Connectivity between structures associated with the networks were
identified and extracted [5, 13, 151], with both ipsilateral self-connections (i.e. tracts that start
and end in the same ROI) and inter-hemispheric connections excluded from analysis. Fur-
ther, subcortical connections that connect to thalamic nuclei on both terminal ends were also
excluded. Visual inspection of known connections of the subcortical connectome was also per-
formed to evaluate accuracy of tractography-produced trajectories with previously described
literature.

3.2.5 Anatomical assessment

Using the method employed to identify connectivity between subcortical structures, a large
number of potential connections were found. Since our goal was to recapitulate known subcor-
tical connections with in vivo tractography, we focused on those that have been well described
in the literature depicting motor, associative, and limbic subcortical circuitry [5,13,151]. Con-
nectivity between subcortical structures of the basal ganglia and thalamus were both visually
and quantitatively examined, evaluating tract trajectories, densities, and overlap.

3.2.6 Tract density

Streamlines weighted by their contribution to the underlying diffusion signal were summed
to calculate the tract density (also referred to as apparent fibre density (AFD); [166]) of the
connection between two subcortical structures. A connectivity matrix for each subject was
created with the AFD representing the edge strength between two ROIs (nodes). Further, the
percent change in AFDs were calculated between test and retest sessions using equation 3.1:

AFDDi f f =
AFDTest − AFDRetest

AFDTest
× 100% (3.1)

Additionally, intraclass correlation (ICC) was computed for the tract densities between the
two datasets as a metric of consistency using a two-way, mixed effects model [136]. Prior to
computing an ICC, an analysis of covariance (ANCOVA) was first performed to identify and
account for covariates (age, subject motion, brain volume) with a significant effect on the tract
density via linear regression. In this model, the “raters” (column factor) were the corrected
tract densities and the “targets” (row factor) were the test and retest session connectivity. A
paired t-test was also conducted between average AFDs of the test and retest sessions. To
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compare average connectivity of the basal ganglia with average connectivity between the basal
ganglia and thalamus, an one-way ANOVA was performed. The impact of ROI volume on
AFD was assessed using ordinary least squares multiple regression, treating the average ROI
volume across subjects as an independent variable and average AFD as the dependent variable.
Further, Spearman’s correlation was performed between average AFD and the absolute percent
change between test and retest sessions.

3.2.7 Voxel-wise spatial overlap

A AFD map was first created for each tract identified in the test and retest sessions by identify-
ing streamlines passing through each voxel. The sum of streamline weights were assigned
to corresponding voxels. Following assignment of streamline weights, the fraction of the
tract (a value between 0 and 1) passing through a voxel is determined from the AFD map
and used to compute the overlap between tracts from the weighted Dice similarity coefficient
(wDSC; [133]). Briefly, the wDSC is a modified Dice similarity coefficient for assessing trac-
tography overlap, minimizing the penalization applied to streamlines further from the core of
the tract [133]. The wDSC is computed from equation 3.2:

wDS C(A, B) =
�

v� Av� +
�

v� Bv��
v Av +

�
vBv

(3.2)

where A and B represent the fraction of streamlines (between 0 and 1) passing through a voxel
and v’ represents a corresponding non-zero voxel in A and B. The numerator of equation 2
computes the sum of overlapping non-zero voxels between A and B, while the denominator
calculates the total sum of non-zero voxels in A and B respectively. Computed overlaps from
wDSC follow similar indicators of agreement as the conventional Dice similarity coefficient:
poor (< 0.2), fair (0.2–0.4), moderate (0.4–0.6), good (0.6–0.8) and excellent (> 0.8; [169]).

In addition to comparing the tract overlap, a Spearman’s correlation was also computed be-
tween the average AFD across the two datasets. Similar to AFD, a one-way ANOVA was
performed to compare the wDSC for connectivity of the basal ganglia with connectivity be-
tween the basal ganglia and thalamus.

3.2.8 Identifying a connectivity threshold

A threshold was defined, such that connections which meet the threshold could be considered
reliable. This threshold was then applied to determine the reliability of the known connections
as defined by previous literature and identified with tractography. As noted in previous studies,
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defining a threshold is a non-trivial task [170, 171]. If the chosen threshold is too low, tracts
that are not reliably identified may remain, including those that do not exist in reality, but if it
is too high, legitimate connections may be discarded. Common approaches include choosing
an arbitrary threshold such that the majority of the subjects to be analyzed retain the same
connections [172] or by sweeping through a range of thresholds [173]. More recently, a test-
retest metric was proposed, wherein reliability was evaluated across a range of thresholds and
a final threshold was selected where the change was at a minimum [171]. Here, we selected
our threshold by following a similar test-retest reliability procedure, using the tract overlap
(wDSC) as the reliability measure. We first stepped through a range of AFD values to threshold
the connectivity matrix before calculating the wDSC for each thresholded matrix. Additionally,
we computed the change in average wDSC between each step across the range of AFD values.
The wDSC threshold is selected at the first occurrence where the change between steps is 0 and
identified the corresponding average AFD threshold. Supplementary Fig. B.1 demonstrates
examples of the connectivity matrix at different thresholds of tract overlap.

3.2.9 Validation with unrelated dataset

Processing and analysis of the HCP unrelated dataset followed the same workflow as before
with the test-retest dataset. As before, known connectivity of the subcortical connectome was
both visually and quantitatively assessed. AFD matrices were computed for each subject as
before, and further separated by hemispheric connectivity to compare with previous findings.
With only a single acquisition session in the unrelated dataset, an average AFD matrix was
computed across subjects, and a Pearson’s correlation was performed against the average AFD
matrices of the test and retest sessions to evaluate the similarity of the subcortical connectome.
As with the test-retest dataset, the relationship between AFD and the size of the subcortical
structures was also evaluated.

3.3 Results

3.3.1 Networks of the subcortical connectome

We investigated the ability of in vivo tractography to both identify and reliably reproduce the
connectivity between different acquisitions of the same human subject, focusing on known
subcortical connections of the motor, associative, and limbic circuits [5, 13, 151].
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3.3.1.1 Identification of known subcortical connections

Motor network connectivity using the described tractography methods could successfully re-
capitulate known connections as previously described in the literature (Figure 3.2). Similarly,
known connections of both the associative and limbic network connectivity were also success-
fully captured (Supplementary Figure B.2A and Supplementary Figure B.2B respectively). A
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Figure 3.2: Diagram of known anatomical subcortico-subcortical connections (in red) of the motor net-
work. (A) Connections identified from literature are depicted in a diagram (left) and chord plot (right).
(B) Chord plots exhibiting average log-transformed tract densities from tractography derived connec-
tions are displayed for test-retest (top-left, top-right) and unrelated (bottom) datasets from the Human
Connectome Project. Coloured lines represent known connections, with dashed coloured lines specif-
ically indicating known connections that did not meet the selected tract density threshold. Grey lines
denote connections identified from tractography, but not identified in tract-tracing literature. Pearson
correlations between datasets are shown next to the comparison indicators.
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wDSC of 0.58 was selected as the final overlap threshold, which corresponded to a AFD thresh-
old of 6.5 AFD. Of the known connectivity comprising the motor network, 78% (14 out of 18)
of the identified connections met the threshold. In the associative and limbic networks, 100%
and 79% (11 out of 14) of the observed connectivity met the AFD threshold respectively.
Connectivity failing to meet this threshold was commonly found between a thalamic nucleus
(which was often small) and another subcortical structure (see Supplementary Table B.5 for full
details), for example, between the putamen and the centromedian and parafascicular nuclei of
the thalamus in both test and retest sessions. Connectivity between the globus pallidus internus
(GPi) and either division of the mediodorsal nucleus of the thalamus failed to meet the AFD
threshold in both test and retest sessions (both hemispheres for the magnocellular division and
left hemisphere for the parvocellular division).
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Figure 3.3: A single subject example of a connection found between the internal segment of the globus
pallidus (GPi) and ventrolateral posterior nucleus of the thalamus (VLp). Manual refinement of tractog-
raphy and construction of full corticospinal tract trajectory was performed for visualization purposes.
(A) Depiction of ansa lenticularis (AL) from the tract tracing literature (left), compared with tractog-
raphy identified trajectory (right) viewed from coronal anterior. The CST is also displayed to demon-
strate the major WM tract passing through. (B) Three views (from left to right): superior, sagittal
left, and coronal anterior exhibiting the trajectories of AL and corticospinal tract (CST) overlaid on a
T1-weighted anatomical image.

Identified connections were also visually inspected, examining the connected structures and
their trajectories. In observations of tract density, it was previously noted that basal ganglia
connections (e.g. non-thalamic ROI to non-thalamic ROI) were denser, while connections be-
tween the basal ganglia and thalamus (e.g. non-thalamic ROI to thalamic ROI) were sparser.
Visual inspection of the known trajectories, reflected the previous observation of denser con-
nectivity between basal ganglia structures, which are also shorter and more direct. Conversely,
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Figure 3.4: A single subject example of a connection found between the globus pallidus internal seg-
ment (GPi) and subthalamic nucleus (STN). For visualization purposes, refinement of tractography was
performed and opacity was reduced to 20% to highlight the different segments observed. (A) Depiction
of the approximate regions associated with different networks (e.g. motor, associative, limbic), identi-
fied from the literature (left) is shown for the STN and both internal and external segments of the globus
pallidus: motor (red), associative (green), limbic (blue). Tractography identified trajectories (right)
between the STN and GPi are shown from an inferior-to-superior (ventral) view, highlighting the dif-
ferent components associated with each network. (B) Three views (from left to right): superior, sagittal
left, and coronal anterior exhibiting the connectivity between GPi and STN overlaid on a T1-weighted
anatomical image.

connections between the basal ganglia and thalamus were sparser with longer and more curved
trajectories. These longer trajectories increased the potential for intersecting GM structures
between the basal ganglia and thalamus as was the case for connections between the ventrolat-
eral anterior nucleus of the thalamus (VLa) and GPi (Figure 3.3), as well as between STN and
globus pallidus externa (GPe) / GPi (Figure 3.4). It was observed that certain thalamic nuclei
were more difficult to reach, as trajectories would have to pass through other surrounding tha-
lamic nuclei. Some spurious streamlines were also noted (e.g. streamlines that looped in the
brainstem). Full descriptions of known subcortical connections can be found in Supplementary



Chapter 3. Subcortical connectome tractography: feasability and reliability 62

Table B.5.

3.3.1.2 Reliability of known subcortical connections

The reliability of identified connections was evaluated via tract overlap within motor, asso-
ciative, and limbic networks. Connections between basal ganglia structures exhibited good
overlap (average wDSC = 0.751 and 0.722 for left and right hemispheres respectively), while
connections between the basal ganglia and thalamus demonstrated moderate to good overlap
with the VLa (average wDSC = 0.543 and 0.560 for left and right hemispheres), ventrolateral
posterior nucleus of the thalamus (VLp; average wDSC = 0.527 and 0.451 for left and right
hemispheres), and the ventroanterior nuclei of the thalamus (VA; average wDSC = 0.576 and
0.629 for left and right hemispheres), which all had boundaries in the easier to reach lateral re-
gion of the thalamus. Some of the connections to the thalamus in each network exhibited poor
overlap (average wDSC = 0.176 and 0.167 for left and right hemispheres), coinciding with the
same ones that demonstrated a low AFD. For connections between basal ganglia structures, a
poor to moderate overlap was only found between the caudate and amygdala (average wDSC
= 0.354 and 0.152 for left and right hemispheres), where the tract was sparse and trajectories
would have had to pass through other GM structures (e.g. putamen, GPe, GPi). Additionally,
lower overlap was observed in the connections between the basal ganglia and thalamus, in par-
ticular connections to the mediodorsal nuclei of the thalamus (MD), which was more difficult
to reach and in which trajectories also had to potentially traverse other nuclei of the thalamus.
Despite the overlap observed in a few connections, good overall reliability was demonstrated
for connectivity of each network, with similar measurements for each hemisphere.

3.3.2 Evaluation of subcortical connectivity matrices

Connectivity matrices were created for both test and retest sessions between subcortical struc-
tures for all subjects. Visual assessments were first performed, followed by quantitative evalua-
tion of all intra-hemispheric subcortical connections. Reliability of the subcortical connectome
was also evaluated and noted to be similar to what was previously assessed for known connec-
tions.

3.3.2.1 Tract density of all intra-hemispheric connections

Connectivity matrices for test and retest sessions were created from the computed AFD be-
tween subcortical structures for all subjects. A visual assessment of the computed matrices
was first performed, followed by a quantitative evaluation of the computed AFDs. Matrices
were observed to be similar across subjects and test-retest sessions (Supplementary Figure
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B.3). Connections between basal ganglia structures were often denser (AFD = 2.33 log(AFD)
and 2.24 log(AFD)) in left and right hemispheres respectively, averaged across test and retest
sessions) than connections between the basal ganglia and thalamus (AFD = 1.34 log(AFD) and
1.26 log(AFD)) in left and right hemispheres respectively, averaged across test and retest ses-
sions). The difference between the two groups was also corroborated with a one-way ANOVA
for both the left (F = 19.19, p < 0.05) and right (F = 3.75, p < 0.05) hemispheres. Figure
3.5A demonstrates the average tract densities across the test-retest session.

The influence that the volume of terminal subcortical structures had on AFD was also assessed.
By plotting the average AFD against the volume of the two terminal subcortical structures (Fig-
ure 3.5B), the average tract density was observed to increase as the volume of one of the two

A B

Figure 3.5: Averaged log-transformed tract densities across the test-retest dataset. (A) Connectivity
matrix highlighting the two groups of connections observed: basal ganglia (red) and basal ganglia -
thalamus (blue). (B) The relationship between the average tract density of connections and the volume
of the terminal nodes is shown in a scatterplot. Tract density was noted to increase with an increase in
volume of at least one terminal structure.

structures increased. Performing an ordinary least squares regression, we identified a positive
linear relationship between the AFD and the size of the two subcortical structures (r2 = 0.210,
p < 0.05).
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3.3.2.2 Reliability of all intra-hemispheric connections

Using the previously computed connectivity matrices, an average AFD matrix across subjects
was created for the test and retest sessions independently (Figure 3.6A). Individual subject
matrices, as well as average session matrices were visually inspected, and minimal differences
were observed between test and retest sessions. A linear relationship was identified between
the AFDs of the test and retest sessions (Supplementary Fig. 3A; ρ = 0.997, p < 0.05), with
greater variability observed between sessions when the AFD was low. Connectivity was fur-
ther divided by hemisphere (i.e. intra-hemispheric left vs right) and a box plot was created
to visually compare test and retest tract densities (Fig. 3.6B). No differences in hemispheric
connectivity were observed between test and retest sessions, which was further corroborated
after performing a paired t-test between average test and retest AFDs (t = 1.52, ρ = 0.264 and
t = 1.06, ρ = 0.293 for left and right hemispheres respectively).

To quantify the consistency of AFD between test and retest sessions, we computed the per-
cent change of corresponding subcortical connections between sessions finding on average a
percent change of 36% and 32% for the left and right intra-hemispheric AFD respectively (Fig-
ure 3.6C). As previously noted, in test-retest pairs where AFD was low, greater variability was
observed. Correspondingly, a greater absolute percent change was more likely to be associated
with a sparser connection. A Spearman’s correlation between the absolute percent change of
AFD and the average density across test-retest sessions demonstrated a negative correlation
(Supplementary Figure B.3B; ρ = −0.240, p < 0.05), indicating decreasing percent change
as tract density increased. Further, an average intraclass correlation (ICC) of 0.50 and 0.48
was computed for left and right hemispheric connectivity respectively between test and retest
AFDs after performing a linear regression to account for brain volume, a covariate identified to
demonstrate a significant effect (F = 7.068, p < 0.05) after performing an ANCOVA (Figure
3.6D). As observed in the tract density, ICC was noted to be greater in connections between
basal ganglia structures (ICC = 0.58 and 0.49 for left and right hemispheres respectively) than
between the basal ganglia and thalamus (ICC = 0.46 and 0.47 for left and right hemispheres
respectively).

Voxel-wise spatial overlap of tracts (calculated via wDSC), was also computed between test-
retest pairs as another measure of reliability. We observed an average wDSC of 0.46 and 0.45
for the left and right intra-hemispheric connectivity respectively. We also plotted and per-
formed a Spearman’s correlation between wDSC and average AFD across both sessions where
wDSC is expected to increase with AFD before plateauing. As expected, we identified a sig-
moid relationship (Supplementary Figure B.3C; ρ = 0.950, p < 0.05) between the two (Figure.
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3.6E), with good overlap achieved at a AFD around 2.0 log(AFD) and reaching
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Figure 3.6: (A) Test (left) and retest (right) connectivity matrices are shown, visualizing the log-
transformed tract densities between subcortical structures. (B) Log-transformed tract densities of the
basal ganglia and between basal ganglia and thalamic connectivity are plotted, separated by hemisphere
and session. (C) Percent change of tract densities between test and retest sessions, separated by hemi-
sphere. (D) Intraclass correlations, measuring consistency between sessions, are shown, separated again
by hemisphere. (D) wDSC, assessing spatial overlap between sessions, plotted by hemispheric connec-
tivity. For all boxplots, the middle line marks the median metric, while whiskers define the maximum
and minimum values of each metric, excluding outliers.

maximum overlap at approximately around 2.5 log(AFD). The overlap remained low while
the AFD was less than 0 log(AFD) before slowly increasing until the overlap began to peak
at a log-transformed AFD of around 2 log(AFD). As wDSC was highly correlated with AFD,
we further separated and evaluated the wDSC to the two previously identified groups. As
with observations from known subcortico-subcortical connections, we noted better overlap in
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basal ganglia connectivity (average wDSCs = 0.75 and 0.72 for left and right hemispheres
respectively) than in connectivity between the basal ganglia and thalamus (average wDSCs =
0.46 and 0.44 in left and right hemispheres respectively). The difference observed between the
two groups was also supported with a one-way ANOVA for both the left (F = 33.53, p < 0.05)
and right (F = 41.64, p < 0.05) hemispheres.

3.3.3 Observations in HCP unrelated dataset

An identical analysis was performed on a subset of the HCP unrelated dataset, where similar
observations were noted. An average connectivity matrix was computed and compared against
the test-retest dataset, where notably a Pearson’s correlation coefficient of 0.99 was demon-
strated against both the test (p < 0.05) and retest (p < 0.05) sessions, indicative of highly
similar AFDs with the unrelated dataset. Full details of the results from this validation can be
found in the Supplementary Material B.6.

3.4 Discussion

In this study, we evaluated both the feasibility and reliability of identifying the subcortical
connectome using in vivo tractography data, specifically evaluating the possibility of recapit-
ulating known connections from classic studies of the subcortex. We demonstrated the ability
to identify most of the subcortico-subcortical connections (39 out of 46, 85%) described in
the literature. Furthermore, we were able to demonstrate test-retest reliability and replicate
this analysis on a separate HCP subset, observing near identical results (see Supplementary
Data) and again recapitulating most known connections (38 out of 46, 83%). In the follow-
ing subsections, we compared our observations with the existing literature. Importantly, we
also recount the challenges that were faced in studying the subcortical connectome in vivo and
suggest possible solutions.

3.4.1 Identification of known subcortical connections

Tract-tracing studies have been performed in NHPs to identify and study networks of the sub-
cortical connectome [5,13,151,155,174–176]. A few of these tracts that comprise the networks
have also been identified as potentially important neuromodulatory targets [77,78,80,177,178]
and may also be critical biomarkers in aging or disease progression [179]. In the present study,
we identified and investigated connections of the motor, associative, and limbic networks ob-
serving that most known subcortical connections could be recapitulated with a data-driven
probabilistic tractography approach. The identified connections were visually inspected to
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evaluate the trajectories and their plausibility, comparing our observations with the literature.
The ease of identifying trajectories between structures varied, with proximity between terminal
structures and density playing a factor. Some notable observed trajectories included connec-
tions between the GPi and both the VLa and VLp nuclei of the thalamus, as well as between
the STN and both GPe and GPi (Figure 3.3 and Figure 3.4), which have both been well studied.
Full details regarding our observations are found in Supplementary Table B.5.

First, focusing on the connection between GPi and VLa/VLp, one plausible trajectory observed
was the ansa lenticularis (Figure 3.3). Similar origins of the ansa lenticularis observed in this
study from tractography reconstruction have been previously described from tract-tracing stud-
ies in NHPs, with similar projections from the GPi to the VLa and VLp [13]. The connection
has also been described by [174], noting a trajectory that “forms a well-defined bundle on the

ventral surface of the pallidum. . . ” curving around the posterior limb of the internal capsule
before continuing posteriorly. Along this trajectory, the ansa lenticularis is known to converge
with the lenticular fasciculus in the fields of Forel to form the thalamic fasciculus, which con-
tinues to VLa and VLp. While we were able to note the termination in the VLa and VLp in our
observations, we were unable to delineate the transition from ansa lenticularis to thalamic fas-
ciculus. Further, sparse connections were observed to cross the region of the internal capsule
to connect the GPi with VLa and VLp, which may be part of the lenticular fasciculus.

Another notable connection observed was between the STN and globus pallidus, including
both the internus (GPi) and externus (GPe) segments (Figure 3.4). Direct trajectories were
seen, with noticeable separation differentiating trajectories between the motor, associative, and
limbic regions of each structure. Similar separations were also observed in a connectivity-
based segmentation by [79], who noted an anteroposterior axis arrangement of the limbic,
associative, and sensorimotor regions to the GPi and GPe. We observed sparse connections to
the associative region of the GPe, attributed to a combination of the presence of the GPi and
the constraints imposed on tracts going through wayward GM structures. Nonetheless, similar
termination was not only observed in the previously mentioned study [79], but also in tract-
tracing studies, with limbic areas of the STN forming connections with the limbic region of the
pallidum and likewise for associative and sensorimotor connections [180]. Other tract-tracing
studies have noted similar connections [174–176], suggesting projections from STN to GPe,
such as those observed from tractography.

Constraints were imposed to minimize the presence of false positive connections including the
use of a convex hull and exclusion of wayward GM structures. While these constraints did not
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completely eliminate false positive connections, only a small number were observed relative
to the total AFD between subcortical structures (see section 3.3.1 and Supplementary Table
B.5). In the context of evaluating trajectories, false positives were identified as streamlines
with implausible trajectories (e.g. crossing the mid-sagittal plane or coursing into the CSF)
or those part of major white matter connections (e.g. CST). We noted spurious tracts of the
CST, the dominant wayward tract traversing the subcortex [181], which was falsely included
as streamlines in a number of connections between subcortical structures. The presence of the
CST is a result of the dominant diffusion signal, complicating the ability to accurately identify
subcortical connections. Consequently, some streamlines predominantly follow the orientation
of the dominant diffusion signal until reaching the boundary of the convex hull, where they
continue by following its boundary due to the imposed exclusion criteria. Spurious stream-
lines were also observed to form a loop projecting back towards the cortex after entering the
brainstem, where connectivity is expected to traverse from subcortical structures [155]. This
is likely caused by a combination of the convex hull exclusion mask and the lack of meeting a
termination criteria as the streamline traverses down towards the brainstem. Careful inclusion
of additional constraints, such as segmentations from a priori anatomical knowledge, may be
useful to aid in the removal of these spurious streamlines. Truncation of a streamline once it
reaches the boundary is one possible solution instead of waiting for a termination criteria to be
met.

3.4.2 Reliability of the subcortical connectome

Upon visual inspection, the connectivity matrices demonstrated subjectively similar tract densi-
ties (AFDs), that is the sum of weighted streamlines that comprise a connection, across subjects
and datasets. For a given subject in the test-retest dataset, the tract density was expected and
observed to be similar across sessions. This was reinforced quantitatively, where no significant
difference was identified between test-retest subjects and an average ICC of 0.49 and 0.48 was
observed for left and right hemispheric connectivity respectively, with a noted higher reliabil-
ity in connections between basal ganglia structures (see section 3.3.1.2). While AFDs were
not perfectly identical between sessions, changes in AFD were likely due to differences in the
acquired data between sessions. Furthermore, tractography seeding was performed randomly
within the brain mask until the desired number of streamlines were met. The SIFT technique
employed in the present study helped to minimize the differences between observations by
weighting each streamline to best match the underlying diffusion signal [168]. Comparison
of AFD reliability with other studies was difficult as different metrics of density are often
employed (e.g. raw streamline count) and further compounded by the limited number of sub-
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cortical connectome studies [156]. In a comparison with a study of the cortical connectome,
AFDs weighted by length were employed to examine the consistency of connections of inter-
est [157]. In their assessment, a similar average ICC of 0.62 was demonstrated, suggesting our
findings within the subcortical connectome are comparable.

To validate our findings, we also replicated the analysis on the HCP unrelated dataset, observ-
ing similarities between the two datasets from visual inspection and quantitative comparison.
We demonstrated high similarity of connectivity matrices across datasets, with a Pearson’s cor-
relation coefficient of 0.99 between the averaged connectivity matrix of the unrelated dataset as
well as test and retest connectivity matrices. Due to a lack of subcortical connectome reliability
studies, direct comparison of our findings was challenging as often different connectomes were
investigated, typically focused on cortico-cortical or cortico-subcortical connections. However,
in an investigation of cortical connectome reliability across different different resolutions, Pear-
son’s correlation coefficients between 0.724 (high resolution) to 0.958 (low resolution) were
computed between connectivity matrices of different subjects [182]. While we acknowledge
there were differences in the acquisition and protocol, our observations suggest that the subcor-
tical connectome can be reliably reconstructed to a similar degree as the cortical connectome.

In addition to being able to reliably reconstruct similarly dense connections, it is also important
to be able to capture the trajectory of the connections in a reliable manner. To that end, we com-
puted the wDSC to measure the voxel-wise overlap of identified connectivity between test and
retest sessions, minimizing the penalty on streamlines further from the tract core. Connections
with similar trajectories would traverse the same voxel space and consequently demonstrate
higher wDSCs. To our knowledge, while no previous work has evaluated tract overlap of the
subcortical connectome, wDSC has been used to demonstrate the reproducibility in the cortical
connectome [133, 183]. Our observed wDSC in connectivity between basal ganglia structures
was within the reported range (wDSC = 0.71 to 0.82) of four examined cortico-cortical tracts
identified using similar techniques [183]. Similarly, wDSC has been employed to examine
test-retest reliability of cortico-cortical tractography in the Parkinson’s Progression Markers
Initiative dataset, where a wDSC of 0.72 was identified as a threshold for good overlap in
their study [133]. The same study also examined reliability of cortico-subcortical connections
using an ROI defining a general cortical region (e.g. sensorimotor cortex, associative cortex,
limbic cortex) to an ROI defining a subcortical structure (e.g. caudate, putamen, thalamus),
where poor reliability of cortico-subcortical connectivity was noted. The poor reliability was
attributed to a combination of the quality of atlas used to define ROIs, partial volume effects,
motion and the low resolution of the data, as well as the difficulty of performing tractography
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to the subcortical brain regions where structures are generally smaller [133].

Overall, we demonstrated that the methods employed in the present study can produce sub-
cortical connectomes with comparable reliability to those that have been used to study cortico-
cortical and cortico-subcortical connectomes. Although we observed worse reliability in con-
nectivity between the basal ganglia and thalamus, we believe this is primarily attributed to the
sparse connections resulting from imposed GM constraints. Further some nuclei of the thala-
mus were more difficult to reach, with other nuclei present along the expected trajectory, while
others were smaller in size. Some changes to the tractography algorithm (e.g. angle, maximum
streamline length, etc.) or further optimization of constraints may be required to improve the
overall connectivity with the thalamus. In subsequent work, the described framework can be
leveraged to evaluate the impact of modifications to the original algorithm and their impact on
the resultant tractography.

3.4.3 Clinical significance

The ability to reliably identify subcortical connections has important clinical implications
for diagnosis and treatment planning, potentially improving targeting of specific subcortical
structures. Previous studies have examined neuromodulation of specific subcortical connec-
tions [77, 78]. Accurate and robust identification of the subcortical connectome can facilitate
and enhance the ability to study pathologic changes due to disease. Furthermore, the ability
to reliably identify subcortical connections also increases the likelihood of avoiding collateral
connections, which can result in undesirable side effects. One consideration for clinical trans-
lation is the acquisition protocol and scan time. While clinical data is typically collected at
lower angular and spatial resolutions than that of the data in this study, recent advancements in
parallel imaging will help to make higher quality diffusion MRI feasible in a clinically-feasible
time frame.

3.4.4 Implementation choices for the tractography algorithm

Tractography involves choices that need to be made at each step of the workflow that affect
downstream steps and analysis. One such decision was the choice of segmentations used
to identify connectivity of the subcortical connectome. As we were interested in the con-
nectivity between specific subcortical structures, we pooled together existing atlas-based seg-
mentations [160, 163, 184] to serve as terminal ROIs and to minimize variability that may be
introduced by manual segmentation. Choice of atlas-based segmentation was influenced by
convenience and familiarity, with a focus on tools that are openly available. The thalamus la-
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bels used are readily available through a commonly used neuroimaging software package (i.e.
FreeSurfer; [160]). Openly available segmentations of other subcortical structures were prop-
agated from a single high-resolution template [163]. Different approaches to identifying ROIs
can lead to varying shapes and boundaries, which would have some downstream effects on
identified connectivity. For example, in histology-based segmentations, ROIs may be defined
by the underlying nuclei, whereas in structural connectivity-based segmentations, ROIs may be
related to regional connectivity. Furthermore, certain structures, including the caudate or puta-
men can also be subdivided into different components [185–187], similar to the thalamus. With
many segmentation schemes readily available and multiple considerations to contemplate, it is
important to note that choice of segmentation is often dependent on the aims of the specific
study [188].

Segmentation accuracy is also important for capturing the true underlying subcortical struc-
ture, with size influencing the reconstructed connectivity as has been previously noted [41] and
also observed in this study. An ROI larger than the structure, especially in the small subcortical
region, may overlap with other structures or extend into the WM or CSF. On the other hand,
an ROI smaller than the structure may exclude connectivity that does not reach the bound-
aries, although some of this is alleviated by using the radial search strategy employed. Due
to the relationship between ROI size and tract density (see Figure 3.5B), the ability to iden-
tify connections in small structures is challenging and some expected connections may remain
unidentified. Nonetheless, the segmentations present incorporated data from histology and
largely reflect the underlying anatomy.

We chose to include a GM exclusion criteria in our tractography algorithm, removing con-
nectivity passing through other subcortical structures along its trajectory. This choice was
made in part to limit the number of false positives passing through GM structures where mul-
tiple diffusion orientations and low anisotropy are often observed that result in a significant
increase in spurious streamlines. However, it is known that subcortical connections can pass
through other structures [175,176]. As a result of this constraint, we noticed sparse connectiv-
ity between regions where another GM structure is along the expected trajectory. One possible
solution is to make use of anatomical priors to allow for the traversal of GM structures in
cases where connections are known to pass through (e.g. allowing connections to pass through
GPi when connecting GPe and STN). Such a solution has been previously implemented for
cortico-cortical connectivity in the White Matter Query Language, where predefined regions
(inclusion and exclusion) and endpoint ROIs are used to identify connections of interest [189].
To implement this for the subcortical connectome would require detailed curation of anatom-
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ical knowledge to identify the necessary inclusion and exclusion wayward ROIs required in
addition to the terminal regions. Unfortunately, even without explicit exclusion of wayward
GM ROIs, the ability for tracts to pass through GM will be challenging due to the reduced
anisotropy in GM (e.g. in the pallidum).

In a similar manner, the inclusion of WM priors as wayward ROIs may improve anatomi-
cal accuracy. With a data-driven approach to identifying the subcortical connectome, we had
observed the presence of major tracts (e.g. CST), spurious streamlines, and in some instances,
multiple trajectories between two subcortical structures. By using a WM prior, trajectories
from major tracts and spurious streamlines could be filtered, while individual trajectories can
be isolated. In a previous study of tractography reproducibility, a suggestion was made to in-
clude the use of anatomical priors as guidance to improve identification of connectivity [54].
One such possibility is to leverage the segmentations of subcortical connections surrounding
the zona incerta that have been previously identified with high resolution, in vivo anatomical
MRI [184] to help differentiate observed connections from a data-driven approach. Addition-
ally, drawing anatomical knowledge from NHP and post-mortem studies can help to establish
priors that can improve anatomical accuracy by minimizing the number of false positive con-
nections and help to discern trajectories. However, optimizing the use of anatomical priors
remains an open challenge even for well understood tracts like the CST [138,158]. Ultimately,
moving forward, our described framework would allow for the evaluation of different imple-
mentation choices and their impact on both identification and reliability of mapping the sub-
cortical connectome.

3.4.5 Application of connectivity thresholds

As previously described, defining a threshold is a non-trivial task (see section 3.2.8). While
there are different methods for defining a threshold, including selection of an arbitrary value
or by sweeping through a range of values, the present study uses a test-retest technique to
determine an appropriate threshold value. Such an approach is limited to test-retest datasets.
However, the threshold can be applied to other datasets processed with the same techniques,
as was performed on the HCP unrelated dataset. To apply the threshold to other datasets, an
analysis should first be performed to assess whether the defined threshold is appropriate.

3.4.6 Limitations

Several limitations are worth noting beyond those related to choices made in the implemen-
tation of the trajectory algorithm (see previous section). Validation of tractography identi-
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fied connections in vivo is a known challenge, given the limited ability to compare to ground
truth trajectories, which have been conventionally identified using tract-tracing in experimen-
tal animals. While the most accurate comparisons would be performed between tract-tracing
and tractography on the same brain, this is not feasible in humans. Fortunately, connections
between regions are highly similar across different primates [190]. In the current study, we
limited our investigation to known connections between ROIs of the basal ganglia and the tha-
lamus in order to compare our observations with previously described trajectories. As a result,
we did not explore the complete network circuitry to other regions of the brain (e.g. brain-
stem, cerebellum, cortex, etc). Some of these unexplored regions contain important nodes,
such as connectivity with the hypothalamus [155] and pedunculopontine nucleus of the brain-
stem [151]. Other connections of interest, including between the sensory thalamus (e.g. medial
and lateral geniculate nuclei) and the striatum, have been previously examined in experimental
animals [191]. Future work should explore the network circuitry more comprehensively, which
should be increasingly feasible with increasing availability of brain atlases.

3.5 Conclusion

In this study, we demonstrated that identifying the subcortical connectome using a data-driven
probabilistic approach with in vivo tractography was both feasible and reliable, with a par-
ticular focus on the assessment of known connections that have been previously described.
Quantitative evaluation of the subcortical connections demonstrated similar tract densities and
overlap comparable to what has been shown in existing studies focussed on cortico-cortical
and cortico-subcortical networks. Performing this assessment also highlighted areas requiring
improvement to address the challenges of tractography in the subcortex. The methods used in
this study can serve as a framework for evaluating the impact of modifications to the tractog-
raphy workflow, with the goal of increasingly accurate and reliable mapping of the subcortical
connectome.
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This chapter is based on the following manuscript:

• Kai, J., MacKinley, M., Khan, A.R., Palaniyappan, L. (Submitted). Aberrant frontal
lobe “U”-shaped association fibres in first-episode schizophrenia: A 7-Tesla diffusion
imaging study.

4.1 Introduction

Schizophrenia is a neuropsychiatric disorder with a diverse range of symptoms which can
present differently amongst individuals [82]. Characterization of symptoms can be largely de-
fined into three groups: (1) positive / psychotic (altered perception; eg. delusions), (2) negative
/ deficit (reduced or lack of normal function; eg. loss of motivation), or (3) cognitive (eg. im-
paired attention or memory) [84, 141]. First proposed by Wernicke, it has been suggested that
psychosis, commonly experienced by those diagnosed with schizophrenia, may arise from ab-
normal interactions resulting from disrupted brain connectivity [81–83], specifically between
the prefrontal cortex and other brain regions [192]. While many regions of the brain may be
associated with schizophrenia, the frontal lobe is one of the most studied cortical regions with
findings including physiological, morphological, and metabolic changes [193].

Diffusion tensor imaging (DTI), a model commonly derived from diffusion magnetic reso-
nance imaging (dMRI), can be used to evaluate quantitative changes in white matter and is
sensitive to changes to the microstructural environment [32]. In previous studies of psychosis,
DTI has been mostly applied to study major white matter tracts connecting distant brain re-
gions. The Schizophrenia Working Group of the Enhancing Neuroimaging Genetics through
Meta-Analysis consortium (ENIGMA-Schizophrenia) studied DTI-derived measures in ma-
jor white matter tracts, comparing differences between healthy controls and participants with
schizophrenia [85]. In this study comparing over 4000 individuals, WM changes in patients
with schizophrenia were found throughout the brain [85]. Regional abnormalities in white
matter has also been reported from one meta-analysis of DTI studies in schizophrenia [194],
while a recent meta-analysis noted more widespread abnormalities of white matter, along with
significant associations with age, duration of illness, and gender [86].

Recently, studies have also used dMRI to investigate short-ranged association tracts, also re-
ferred to as “U”-shaped tracts (or “U”-fibres), which reside just below the cortical surface and
comprises part of the superficial white matter together with intracortical axons [11, 195, 196]
in neurological and psychiatric disorders. Functionally, the “U”-fibres have been proposed to
play an important role in cognitive function [8]. Structurally, these tracts follow a “U”-shaped
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trajectory, coursing underneath the sulcus and connecting nearby gyri. Developmentally, “U”-
fibres are some of the last to reach full maturation, often developing late into adulthood, with a
thinner myelin sheath relative to the brain’s deep white matter [10]. Consequently, these tracts
offer less protection and may be vulnerable to aberrations during development [10]. In particu-
lar, if a disorder involves generalized reduction in myelin content, then “U”-fibres may be one
of the earliest to be affected, given their sparse myelination with one oligodendrocyte wrapping
many “U”-fibres axon segments [197, 198]. One of the challenges of examining the “U”-fibre
tracts arise from the morphological differences between individuals [199]. As the tracts follow
closely with the gyrification of an individual, morphological differences across individuals can
introduce varying spatial arrangements of the “U”-fibres, complicating the ability to identify
corresponding tracts across individuals. Previous studies have used clustering methods to first
create a template of the most common “U”-fibres (e.g. those that are present in the majority of
the study sample) from a sample of healthy individuals [56,66,101]. The created template can
then be applied to identify the same “U”-fibres in other individuals, enabling the evaluation of
similar short-ranged tracts.

While there has been an extensive number of studies investigating schizophrenia and asso-
ciated changes using DTI, in particular the major white matter pathways, assessment of the
“U”-fibres is still in its early days. In this work, we utilized a template of “U”-shaped tracts
we previously created [200] to identify and examine tracts present in the majority of patients
with first-episode schizophrenia (FES) with a focus on those localized to the brain’s frontal
lobe. We assessed differences in tract density, changes both along the length and in the entirety
of the identified U-fibre tract, evaluated relationships with clinical symptoms, and identified
associated networks with aberrant “U”-fibres. Due to the vulnerability of “U”-fibres from the
late maturation, we hypothesized that untreated patients with FES would exhibit compromised
frontal “U”-fibres in the form of reduced integrity that are associated with symptom severity
at the time of first presentation. Such aberrations may be more sensitive to localized changes,
providing key insights into how the “U”-fibres are affected along its trajectory in FES. We also
expected the affected “U”-fibres to be restricted to key functional networks relevant for cog-
nitive control function (see [201]) at such an early stage of psychosis, rather than affecting all
of the frontal lobe. Finally, given the mounting evidence supporting a role for oligodendrocyte
dysfunction in schizophrenia (see [202]), we expected the “U”-fibre aberration to demonstrate
changes to diffusivity measures related to tissue microstructure which is affected due to myelin
related abnormalities.
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4.2 Materials and methods

All participants provided written, informed consent according to the guidelines provided by the
Human Research Ethics Board for Health Sciences at Western University, London, Ontario.

4.2.1 Participants

Untreated patients with FES (n=53; 44M/9F, ages 16-39) were recruited from referrals received
by the Prevention and Early Intervention Psychosis Program (PEPP) at the London Health
Sciences Center (LHSC) with an inclusion criteria of lifetime antipsychotic exposure of less
than 14 days. Participants with suspected drug-induced psychosis were excluded from the
study. FES participants were diagnosed with schizophrenia according to the DSM-5 criteria,
using the consensus procedure described by Leckman and the Structured Clinical Interview for
DSM-5 to confirm diagnosis 6 months after the first presentation [203]. We used a consecutive
referral strategy for patient recruitment whereby all patients referred to the only first episode
clinic in the catchment area between April 2017 and June 2019 were approached, if deemed to
have the capacity to consent for the study by the clinicians. Healthy controls (n=31; 19M/12F,
ages 16-29) were recruited through posters and word-of-mouth advertising, with no personal
or family history of mental illness or psychotic disorders, and no current use of medications,
as well as the same criteria as patients (e.g. no known neurological disorders). The healthy
controls were matched for age and parental socio-economic status with the patient group. All
participants were screened to exclude significant head injuries, major medical illness, or MRI
contraindications. Table 4.1 describes the demographics and clinical characteristics for study
participants. Participants for this study underwent a clinical assessment and imaging on the
same day. Part of this sample has been reported in our prior studies [203–205].

4.2.2 Clinical measures

A clinical assessment was performed by a research psychiatrist (for patients) or trained rater
(for healthy controls) using the clinical battery that assessed for patient symptom severity,
substance use and to confirm healthy controls had no history of psychotic illness or neuro-
logical disorder. Symptoms of psychosis were assessed using the Positive and Negative Syn-
drome Scale - 8 Items (PANSS-8; [206]). The abbreviated version of the assessment has been
shown to be highly consistent and correlated with the full PANSS assessment consisting of 30
items [206]. Items within the PANSS-8 are scored from 1 (absent) to 7 (extreme) to evaluate
both positive (P1 - delusions, P2 - conceptual disorganization, P3 - hallucinations) and negative
(N1 - blunted affect, N4 - passive social withdrawal, N6 - lack of spontaneity and flow of
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Table 4.1: Demographic and clinical characteristics of healthy controls and patients with first-episode
schizophrenia.

Variable Controls Patients Controls vs Patients
(n=31) (n=53)
Demographic

Sex (M/F) 19/12 44/10 χ2 = 2.47, p = 0.17
Age [Mean (SD)] 21.55 (3.50) 23.06 (4.76) t = −1.80, p = 0.077

Clinical
DUP [Mean (SD)] N/A 8.20 (14.70)
Antipsychotic Defined Daily Dose N/A 1.99 (3.10)
(cumulative*)
SOFAS [Mean (SD)] 83.11 (4.20) 39.22 (12.19) t = 16.4, p < 0.001
PANSS-8 Total [Mean (SD)] 8.0 (0.0) 26.39 (7.12) t = −13.0, p < 0.001
PANSS-8 Positive [Mean (SD)] 3.0 (0.0) 11.81 (4.10) t = −14.1, p < 0.001
PANSS-8 Negative [Mean (SD)] 3.0 (0.0) 7.36 (4.78) t = −5.50, p < 0.001
CGI-S [Mean (SD)] 1.0 (0.0) 5.22 (1.01) t = −20.6, p < 0.001

Cognitive
Trail Making Time (s) [Mean (SD)] 52.43 (15.23) 77.73 (34.82) t = −2.69, p = 0.013
Trail Making Errors [Mean (SD)] 0.48 (0.85) 0.61 (1.1) t = −0.47, p = 0.65
Category Fluency 23.74 (7.65) 17.46 (4.33) t = 3.48, p = 0.0017

p-values for differences between groups were calculated using chi-square for categorical
variables and independent t tests for continuous variables.
SD: standard deviation; DUP: Duration of Untreated Psychosis (in months); SOFAS: Social
and Occupational Functioning Assessment Scale; PANSS-8: Positive and Negative Syndrome
Scale - 8 Item Scale; PANSS-8 Positive: PANSS-8 total score for positive symptoms;
PANSS-8 Negative: PANSS-8 total score for negative symptoms; CGI-S: Clinical Global
Impressions Scale - Severity; *total lifetime dose exposure, calculated as Daily Defined Dose
x days of exposure

conversation) symptoms. Additionally, the severity of the illness was assessed using a subscale
of the Clinical Global Impression Scale (CGI-S) [207]. The subscale is scored between 1
(normal, not ill) to 7 (most severely ill). Furthermore, the Social and Occupational Functioning
Assessment Scale (SOFAS) was conducted at the time of first presentation [208] independent
of symptom severity. SOFAS is a single-item scale scored between 1 (persistent inability to
maintain minimum functioning without external support) to 100 (superior functioning in a wide
range of activities). Lastly, the duration of untreated psychosis (DUP) and approximate age of
onset was recorded.



Chapter 4. Aberrant frontal lobe “U”-fibres in first-episode schizophrenia 79

4.2.3 Cognitive measures

Cognitive tests were also performed to assess different cognitive abilities for each study par-
ticipant. Trail Making Test (TMT-B) was conducted, testing for the participants ability for
planning, self-control, and attention. In this task, participants are asked to draw a line follow-
ing a number-to-letter pattern (e.g. 1 to A, 2 to B, etc.), recording the time to completion and
number of errors made during the uninterrupted task. In addition, a category fluency test was
performed, testing for semantic knowledge, retrieval ability, and executive function. For this
test, study participants were asked to list as many items as they could think of within a category
(animals) in 60 seconds. The number of items listed were recorded and corrected for any repeat
or non-categorical items.

4.2.4 Imaging

Imaging was performed for all study participants on a 7-Tesla (7T) Siemens Magnetom head-
only MRI system at Robarts Research Institute in London, Canada. Anatomical data was
collected using a MP2RAGE sequence [209] with the following scanning parameters: repeti-
tion time/echo time (TR/TE) = 6000 / 2.83 ms; inversion time 1 (T I1) = 800ms; inversion time
2 (T I2) = 2700ms; 0.75 mm isotropic resolution; field of view (FOV) = 156mm × 240mm ×
240mm. Diffusion data was acquired twice with opposite phase encoding directions using the
following scanning parameters: TR/TE = 5100 / 50.2 ms; 2.00 mm isotropic resolution; FOV
= 208mm× 208mm× 144mm; b-value = 1000 s/mm2 (64 directions) with 2 b-value = 0 s/mm2

(non-diffusion weighted) acquisitions; multiband acceleration factor of 2.

4.2.5 Processing

Image data processing was performed in containerized computing environments on high per-
formance compute clusters. The following subsections detail the processing steps performed.
An overview of the general workflow performed is shown in Figure 4.1. Briefly, data collected
using an MRI was used to identify and assess “U”-fibres of the frontal lobe using tractography.
Analysis included assessment of both tract density and along-tract differences from DTI de-
rived measures, as well as evaluation of the relationship of clinical measures and DTI derived
measures. Furthermore, affected tracts were mapped to the associated anatomical regions and
functional networks.
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Figure 4.1: Overview of processing and analysis workflow. (A) A population SWM template was
registered to each subject’s native space to aid identification of corresponding tracts across subjects.
“U”-shaped tracts constrained to the frontal lobe was mapped to anatomical (Desikan-Killiany) and
functional (Schaefer - 100 parcels, 7 networks) parcellations. (B) Data collected from healthy controls
and patients with FES were preprocessed before performing tractography to identify frontal lobe SWM
and deriving quantitative maps from DTI. Derived metrics were mapped along the length of the identi-
fied frontal lobe SWM. (C) Analysis was performed on clusters that were present in 70% of each group,
evaluating for tract density and quantitative differences. Correlations between clinical measures and
derived metrics was performed to identify relationships in patients.
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4.2.5.1 Anatomical T1-weighted

Data was preprocessed by first applying a correction to unwarp distorted anatomical volumes
due to gradient field inhomogeneities (gradient non-linearity correction). Data was prepro-
cessed by first applying a correction to unwarp distorted anatomical volumes due to gradient
field inhomogeneities (gradient non-linearity correction). This was performed using a modified
version of publicly available code1 to work with proprietary scanner-specific file. Following
gradient non-linearity correction, fMRIprep (v1.5.4) was applied to each subject’s anatomi-
cal data [210, 211] for further preprocessing. The preprocessing includes the correction for
intensity non-uniformity, and skull stripping. As part of the fMRIprep pipeline, cortical seg-
mentations were derived with FreeSurfer [212].

4.2.5.2 Diffusion MRI (dMRI)

First, distortion correction due to gradient field inhomogeneities was performed using a mod-
ified version of publicly available code with a proprietary scanner-specific file, similar to the
anatomical preprocessing step. Then, dMRI data was preprocessed with prepdwi [113],

a pipeline developed in-house consisting of principal component analysis based denoising
[114, 115] and minimization of Gibbs ringing effects [116] followed by correcting for distor-
tions induced by susceptibility, eddy currents, and subject motion through application of FSL’s
topup [117, 118] and eddy [119]. The preprocessed dMRI data was rigidly registered with the
subject’s anatomical data using Niftyreg2 as part of the in-house preprocessing pipeline. Us-
ing Mrtrix3, diffusion tensors were estimated from the preprocessed dMRI data and fractional
anisotropy (FA), radial diffusivity (RD), axial diffusivity (AxD), and mean diffusivity (MD)
maps were derived using an iteratively reweighted linear least squares estimator [125].

4.2.5.3 Tractography

Following dMRI preprocessing, Mrtrix3 [105] was used to further process the data for trac-
tography. First, individual subject response functions were estimated using the Dhollander
algorithm [120] and group average response functions were estimated from healthy controls.
Individual subject fibre orientation distribution (FOD) maps were computed from the average
response functions using the multi-shell, multi-tissue algorithm [121] while excluding the GM
response function for single-shell data, enabling comparison of corresponding tracts between
individuals [166]. By excluding the GM response function, the multi-shell, mutli-tissue algo-
rithm could still be used for single-shell data in order to suppress signal from the cerebrospinal

1https://www.github.com/kaitj/gradunwarp
2http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
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fluid. A population template previously created from unrelated subjects, including FOD maps
and labeled “U”-fibre tractography [200] was used to aid identification of “U”-shaped tracts.
To do so, individual subject FOD maps were first registered to the population FOD template
using a multi-resolution pyramid structure to determine transformations between the template
and subject spaces. Using the transformation from the template to the subject’s native space,
the population template was transformed to identify and establish correspondence of tracts be-
tween subjects.

Whole-brain probabilistic tractography was performed for each subject using a tensor-based
algorithm [44] identifying streamlines of all tracts, including “U”-fibres and other major tracts,
again using the Mrtrix3 software suite [105]). Seeding of the tractography was performed at
random within the brain until a target of 10,000,000 streamlines had been selected. Follow-
ing creation of the tractogram from the tensor-based algorithm, streamlines were filtered via
spherical-deconvolution informed filtering (SIFT) to match WM FOD amplitudes until a target
of 1,000,000 streamlines remained for each subject [124].

Short-ranged, U-shaped streamlines were identified from whole-brain tractography using es-
tablished parameters for determining a “U”-shaped trajectory (streamline length between 20mm

and 80mm and the distance between streamline endpoints was approximately 1/3 of the stream-
line length) [12]. Streamlines with “U”-shaped trajectories were clustered into tracts through
label propagation from the previously labeled template with streamlines assigned to the clus-
ter of the most similar template tract. Additionally, streamlines were mapped to the nearest
Freesurfer-based lobar parcellation within a 4mm radius of the terminal ends. For tracts with
streamlines connecting more than two nodes, tracts were assigned to the two nodes where the
majority of the streamlines terminated. From here, “U”-fibres residing in the frontal lobe were
identified for further analysis. Moreover, quantitative values derived from DTI were mapped
to 20 equidistant samples on each streamline of frontal lobe “U”-shaped tracts and averaged to
create a mean along-tract measurement for tractometry analysis. Furthermore, a single mean
quantitative measurement was also computed for each identified tract by averaging the sampled
measurements in associated streamlines to evaluate overall tract changes.

4.2.5.4 Surface and parcellation mapping

Each template “U”-shaped tract was mapped to a standard symmetric brain surface with ap-
proximately 32k vertices (fs LR32k). First, the centroid of each terminal end was identified
and the Euclidean distance to the surface vertices was computed. A labeled surface map was
created by assigning the label of the nearest tract to each vertex. To identify associated brain



Chapter 4. Aberrant frontal lobe “U”-fibres in first-episode schizophrenia 83

regions, anatomical and functional atlases were used. Specifically, the Desikan-Killiany [213]
and the Schaefer atlases ( [214]; 100 parcellations, 7 networks) were used to determine the
associated anatomical parcels and functional networks respectively for each identified “U”-
shaped tract.

4.2.6 Analysis

For analysis, identified frontal lobe tracts were discarded if fewer than 5 streamlines were
present. Furthermore, individual variability may reduce the capability of identifying corre-
sponding “U”-fibres across study participants from the previously created template. As such,
tracts were only considered for analysis if they were determined to be present in at least 70%
of the healthy control and patient groups respectively.

4.2.6.1 Tract Density

Individual streamlines were extracted and summed to determine the tract density of identified
tracts meeting analysis criteria. A Bartlett test was first performed to determine whether the
variance of the two groups were equal, followed by a two-sided, Welch’s t-test [215] to test
for differences in density of individual tracts between groups (due to unequal variance be-
tween healthy controls and patients). False discovery rate correction was performed with the
Benjamini-Hochberg procedure for multiple comparisons [137]. Furthermore, a Welch’s t-test
was performed to compare the total density comprising frontal lobe “U”-fibres.

4.2.6.2 Microstructural changes

Measures of FA, RD, AxD, and MD sampled equidistantly along the length of tract were re-
gressed to control for age and sex covariates prior to analysis and a Welch’s t-test was per-
formed to compare measured samples between groups. To account for the numerous com-
parisons carried out between samples, as well as across tracts, a permutation-based multiple
comparison correction approach with 10,000 repetitions was applied to adjust the significance
threshold [216], similar to [217] and [218]. Using this procedure, an adjusted threshold of
p < 0.005 was determined to be significant for along-tract measures in this study.

4.2.6.3 Relationships with clinical and cognitive measures

An average quantitative measure (i.e., mean FA, RD, AxD, MD) was computed from the seg-
ments identified with differences along the length of the tract between the two groups and the
relationships with included clinical measures of PANSS-8, SOFAS, DUP, CGI-S, and age of
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onset were evaluated using Pearson’s correlation in the patient cohort. Additionally, relation-
ships with cognitive measures of TMT-B completion time, error rate, and category fluency
score were also evaluated using Pearson’s correlations in the patient cohort. As with tract den-
sity, false discovery rate correction was performed using the Benjamini-Hochberg procedure
to correct for multiple comparisons.

4.3 Results

Comparing demographic and clinical measures between healthy controls and patients with
FES, no statistically significant differences were observed for sex or age. However, within
the patient group, males were over-represented (χ2=15.364, p < 0.001). Patients were also
observed to demonstrate a statistically significant difference in SOFAS scores (t=16.4, p <

0.001), PANSS-8 Total (t=-13.0, p < 0.001), PANSS-8 Positive (t=-14.1, p < 0.001), PANSS-
8 Negative (t=5.50, p < 0.001), and CGI-S (t=-20.6, p < 0.001) scores. Differences were
also observed for cognitive measures of trail making completion time (t=-2.69, p < 0.05) and
category fluency (t=3.48, p < 0.05).

4.3.1 Tract density of frontal lobe “U”-fibres

After applying the previously mentioned constraints (“U”-shaped trajectory residing within the
frontal lobe; see section 4.2.5.3), 63 out of 122 frontal lobe “U”-shaped tracts across both left
and right hemispheres were retained. Average streamline counts from these tracts throughout
the frontal lobe were assessed between controls and patients with FES. Performing a Welch’s
t-test yielded no significant differences between the two groups following correction for mul-
tiple comparisons, indicating that in schizophrenia, the density (in this case the overall volume
inferred from diffusion-based streamline count) was unaffected in frontal “U”-fibres. Fig. 4.2
exhibits the assessed tract densities described (log-transformed for visualization).

4.3.2 Affected “U”-fibres and associated structural and functional par-
cellations

From the frontal lobe “U”-fibres that met the defined analysis criteria, tractometry analysis
identified 3 tracts (2 in the left hemisphere, 1 in the right hemisphere) with significant along-
tract DTI derived differences after performing a permutation-based multiple comparisons cor-
rection. All 3 tracts (Fig. 4.3) demonstrated a significant decrease in FA (p < 0.005), together
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(A) (B)

Figure 4.2: (A) Log-transformed distribution of frontal lobe SWM streamline counts from tracts present
in 70% of healthy controls and patients with FES. No differences were observed. (B) Log-transformed
distributions of individual frontal lobe “U”-shaped tracts in the right (top) and left (bottom) hemispheres
for controls and patients. Following correction for false discovery (via Benjamini-Hochberg), no differ-
ences were observed.

with a significant increase in RD along similar segments (p < 0.005) in patients with FES,
indicating localized deficits in regards to tissue microstructure. More details related to these
affected segments can be found in Supplementary Figure C.1. and Supplementary Table C.1.
The affected segments were detected adjacent to the midpoint of the tract, nearest to the sulci. A
slight increase in MD was also observed along similar segments in patients with FES, however
these observations were not determined to be statistically significant. No significant differences
in AxD were identified for any analyzed tracts.
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Along Tract Location (%)

Figure 4.3: DTI-derived measures (top: FA, middle-top: RD, middle-bottom: AxD, bottom: MD)
mapped along frontal lobe tracts of controls (blue) and patients (orange). Segments with observed
differences between groups are highlighted (in red). 3 tracts were identified (2 in left hemisphere, 1 in
right hemisphere) with increased FA and decreased RD.
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Each affected tract was also mapped (Fig. 4.4) to both anatomical parcellations (from the

Cluster 9 Cluster 46 Cluster 65

Desikan-Killiany

Schaefer (100 parcels, 7 networks)

Figure 4.4: Frontal lobe SWM mapped to the fs LR32k white matter surface (top). Identified frontal
lobes with decreased FA and increased RD are outlined in black on flat maps of anatomical (middle;
Desikan-Killiany) and functional (bottom; Schaeffer) parcellations. The “U”-shaped tracts were associ-
ated with default mode, frontoparietal, and ventral attention functional networks

Desikan-Killiany atlas) and functional network parcellations (from the Schaefer atlas contain-
ing 7 networks, 100 parcels). Tract 9, one of the identified affected frontal lobe tracts in the left
hemisphere, was found to connect the superior frontal and caudal middle frontal brain parcels
and associated with the default mode (DMN) functional network. The other identified frontal
lobe connection of the left hemisphere, Tract 46, resided entirely within the caudal middle
frontal brain parcel, interconnecting with the frontoparietal (FPN) and ventral attention (VAN)
functional networks. Lastly, Tract 65 was identified to reside within the superior frontal parcel
of the right hemisphere, and also associated with the DMN.
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4.3.3 Correlations between DTI and clinical measures

Segments along the tract where differences were observed for each tract were averaged to
obtain a single measure and correlated with clinical measures (e.g. PANSS-8, CGI-S, SOFAS,
DUP, approximate age of onset). Table 4.2 outlines the correlations of measures from affected
tract segments and the clinical measures. No significant correlations were identified between
DTI measures (FA, RD, MD) and clinical measures. Correlations were not performed against
MD for tract 9 or AxD as there were no significant segments identified.

4.3.4 Correlations between DTI and cognitive measures

Similar to 4.3.3, correlations were performed between an average of the aberrant segments and
cognitive measures (e.g. trail making completion time, trail making errors, category fluency).
Correlations between measures from affected tract segments and cognitive measures can be
found in Supplementary Table C.2. A significant correlation was identified between the number
of errors made during the trail making task and FA from tract 46 prior to multiple comparisons
correction. No other significant correlations were identified both prior to and after multiple
comparisons correction.
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4.4 Discussion

4.4.1 Frontal lobe “U”-fibre DTI abnormalities

As part of our study focused on frontal lobe “U”-fibres, we examined changes of DTI derived
metrics along the tract trajectory in patients with FES, which enabled detection of a reduction
to FA and increased RD (Fig. 4.3). In 3 other studies of “U”-fibres using DTI, a similar re-
duction, but for tract-averaged FA was observed in patients with schizophrenia [76, 219, 220].
While there are differences between the current study and the studies mentioned (e.g. exami-
nation localized to the frontal lobe along tract trajectories, assessment of patients with FES),
our findings are in agreement with these previous studies. Tract density differences were also
evaluated, but no differences between patients and healthy controls were identified. The com-
bination of reduced FA (indicative of less restricted diffusion), and increased RD (implying
more diffusion in secondary and tertiary directions to axons), but preserved apparent density
(streamline count) may relate to affected tissue microstructure in the frontal lobe “U”-fibres
of patients with FES. Localized aberrations in myelin content may be a potential explanation,
but this inference is tentative given the lack of direct correspondence between DTI measures
and myelin [221]. While our analysis is unable to specifically identify or determine the timing
of the phenomena that is occurring with respect to the onset of psychosis in the three affected
“U”-shaped tracts in the frontal lobe, given the nature of our sample, we can conclude this
effect precedes prolonged exposure to antipsychotics and other secondary physical and social
effects of chronic illness.

The development of the short-ranged connections have also been observed to lag behind typical
maturation in patients with schizophrenia relative to healthy individuals [222]. Furthermore, a
lack of association with attention, working memory, and processing speed has been noted in
“U”-fibres, which are thought to be associated with higher-order cognitive functions [222,223],
with schizophrenia when compared against healthy controls [219]. In the present study, a mod-
est association was found between FA of a frontal lobe “U”-fibre and the number of errors
made during the TMT-B (which tests for planning, self-control and attention), but this did not
withstand multiple comparisons correction. The degree of noted abnormalities (increased FA,
reduced RD) observed in the present study, examined only in frontal “U”-fibres, may be insuf-
ficient to influence higher-order cognitive functions or be an invariant, albeit modest change
irrespective of cognitive deficits in patients with schizophrenia. Our observations, in addition
to previous studies of “U”-fibres in schizophrenia, may provide support for the hypothesis of
developmental abnormalities due to the late maturation of “U”-fibres [10].
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4.4.2 Localized aberrations in frontal lobe “U”-fibres

Irregularities observed along the affected tracts may be a contributing factor to abnormal in-
teractions between brain regions, one of the hypotheses underpinning symptoms of psychosis
[81–83]. Studies of functional networks, associated with brain activity and identified by statisti-
cal correlation of neurophysiological time series data, have corroborated abnormal interactions
between brain regions identifying differences in networks of patients with schizophrenia when
compared against healthy controls (e.g. [224–226]). Widespread regional DTI abnormalities
have also been previously observed in studies of psychosis [85, 86]. As part of the current
study, we mapped the identified frontal lobe “U”-fibres to both the nearest anatomic parcels
(Desikan-Killiany atlas) and functional networks (Schaefer atlas - 100 parcels, 7 networks).

In this study, 3 frontal lobe “U”-shaped tracts were identified with localized abnormalities
related to tissue microstructure, with 2 tracts residing in the left hemisphere: (1) Tract 9 - asso-
ciated with the superior frontal and caudal middle frontal parcels and functionally associated
with DMN and (2) Tract 46 - associated with the caudal middle frontal parcel and functionally
associated with both the FPN and VAN. In the opposite hemisphere, (3) Tract 65 was observed
to be associated with the superior frontal parcel and functionally associated with DMN. More-
over, the associated functional networks of the affected tracts have been previously shown to
have altered activity in schizophrenia [220, 227, 228].

Previous post-mortem studies have demonstrated a significant reduction of oligodendrocytes,
responsible for the formation of myelin, in patients with schizophrenia [229–232]. Specifi-
cally, a decrease in the number of oligodendrocytes, as well as altered spatial arrangement was
observed in the superior frontal gyrus in patients with schizophrenia [230]. Oligodendrocyte
abnormalities and ultimately the myelin anomalies may be related to oxidative stress, which
have a downstream effect on oligodendrocyte precursor cells [233]. Increased oxidative stress
can lead to the inability to produce myelin due to apoptosis of oligodendrocyte precursor cells
that are transitioning to oligodendrocytes and has been suggested to be a likely cause of lack
of myelination in schizophrenia [233]. The late maturing “U”-fibres is likely affected by the
consequences of increased oxidative stress during its development and may be related to the
observed anomalies in affected frontal lobe “U”-fibres.

Another circumstance of the observed DTI characteristics may be due to cell swelling, which
has been observed in the prefrontal brain region of patients with schizophrenia [234]. Such
phenomena has been associated with increased radial diffusivity [235], which was suggested
in the observed DTI anomalies that were identified along the tract length (see section 4.3.2).
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Other possibilities include a change in membrane permeability or due to a change in axon di-
ameter. Aberrations, such as those observed in the present study, may be linked with abnormal
interactions between the different brain regions and lead to a deficit of higher order cognitive
functions.

4.4.3 Imaging and non-imaging confounds

The present study recruited participants age and socio-economically matched with no history
of psychotic disorders or known neurological disorders and no current use of medications.
However, other confounding factors may have contributed to noted observations such as use
of recreational drugs (e.g. cannabis), smoking, and drinking. Moreover, environmental risk
factors (e.g. birthing complications, parental age) and genetic factors that have been associated
with schizophrenia were not considered in the present study and may have had an influence on
observations. Previous studies have provided evidence of substance use inducing psychosis, as
well as association of schizophrenia with other risk factors [236, 237].

In addition to non-imaging confounds, models such as DTI, which is commonly applied to
investigate changes of the microstructural environment also suffer from limitations. Measures
derived from DTI can be confounded by multiple tract orientations within a voxel (e.g. cause
a reduction in FA), as well as be influenced by partial volume effects (e.g. more than a single
tissue type within a voxel). The latter may affect “U”-fibre studies and associated along-tract
measures as these tracts are found near the cortical surface with trajectories that follow gy-
ral patterns. Future studies of “U”-fibres in FES may benefit from using stronger diffusion
gradients and multiple diffusion shells to perform higher order modeling (e.g. neurite orienta-
tion dispersion and density imaging [40]), potentially allowing for probing of different tissue
compartments to gain further insight on changes to “U”-fibres.

4.4.4 Limitations

This study of frontal lobe “U”-fibres in patients with FES is not without limitations. One chal-
lenge was the identification of corresponding “U”-shaped tracts while accounting for variations
for morphological differences across individuals. To address this, we used a population-based
template, examining frontal lobe tracts with similar trajectories as those from the template. An
arbitrary threshold of 70% was used to identify frontal lobe “U”-shaped tracts as possible in
the majority of both healthy control and patient groups. Consequently, this resulted in evalua-
tion of just over half of all identified frontal lobe tracts, leaving out other potentially important
“U”-fibres both in the frontal lobe and in other regions of the brain. In previous psychosis
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studies of “U”-fibres, similar approaches have been used, examining tracts present in either all
or the majority of the study participants [56, 76]. As knowledge of “U”-fibres is gained, future
work may be able to identify corresponding “U”-fibres across individuals irrespective of mor-
phological differences, relying on functional characterization of the “U”-shaped tracts. One
such promising method was recently presented, using surface-based tractography techniques
to identify the “U”-shaped tracts [238]

It has been noted that schizophrenia, which typically develops in early adulthood, tends to
have a higher clinical prevalence in men than in women [84]. While there was no significant
imbalance in sex distribution when comparing healthy controls and FES patients (χ2 = 2.47,
p = 0.116), males were over-represented within the sample of patients (χ2 = 15.36, p < 0.001)
in the present study. Consequently, observed differences may be biased towards male patients.
Future studies should explore potential differences in “U”-fibres between males and females in
FES.

In the present study, we performed a correlation of derived DTI measures from the affected seg-
ments of the frontal lobe “U”-fibres with clinical measures, where we did not observe any sig-
nificant correlations following multiple comparisons correction. In contrast, a previous study
of “U”-fibres in patients with schizophrenia determined a single “U”-shaped tract connecting
the postcentral and supramarginal gyri to be correlated with negative symptoms [76]. Further-
more, meta-analyses have identified widespread DTI anomalies in patients with schizophre-
nia [85, 86]. Our observation of a lack of symptom correlations of frontal lobe “U”-fibres with
clinical measures may be attributed to integrity of “U”-fibres being an invariant feature irre-
spective of symptom severity in patients with FES. Another possibility is the lack of sufficient
power to identify a relationship between the DTI and clinical features due to the sample size of
the present study.

4.5 Conclusion

We demonstrated quantitative changes that occur irrespective of symptom severity to the frontal
lobe “U”-fibres in schizophrenia. The simultaneous decrease in FA and increase in RD sug-
gest abnormalities in regards to the tissue microstructure of frontal lobe “U”-fibres, disrupting
normal brain connectivity in patients with FES. Factors such as decreased oligodendrocytes
(responsible for myelin formation) may contribute to the observed changes in patients with
FES. Our observations from early stages of illness support the primary role for prefrontal dis-
connection and highlight the potential of tracking the progression of measures related to the
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tissue microstructure in the short-ranged “U”-shaped fibres in patients with schizophrenia to
establish their utility in marking the course of illness. Future work should explore the phe-
nomena underlying the differences in DTI measures, identify affected “U”-fibres in other brain
regions, assess longitudinal changes to the “U”-fibres, and further investigate the function of
“U”-fibres and its relationship to cognition.



Chapter 5

Conclusions and future directions

5.1 Summary

Diffusion MRI (dMRI) has enabled the ability to probe the brain through the modelling of
water movement, providing a method of approximating axonal trajectories and enabling ex-
amination of changes during healthy aging or as a consequence of pathology. Although there
are a number of different diffusion models (as alluded to in section 1.3.3), as well as tractogra-
phy techniques that can be broadly classified into two groups (section 1.3.4), the information
gained has potential value in characterizing the human brain and clinical applications, such
as treatment of patient populations with neuropsychiatric disorders. Furthermore, tractogra-
phy techniques have the unique capacity to identify tracts of interest (e.g. corticospinal tract).
There are many different groups of myelinated axons throughout the brain (section 1.2), with
long-ranged tracts having been the most commonly examined. More recently, tractography
of short-ranged connections, both “U”-shaped and residing in the deep-brain have garnered
increased attention in an effort to gain a better understanding of the complex network of the
structural connectivity. The work in the thesis examined the reliability of applying tractog-
raphy techniques for studying these short-ranged connections and evaluated changes of such
connections in a patient population with first episode schizophrenia (FES).

In chapter 2, we assessed the reliability of a template-based clustering approach in order to
identify similar tracts across different individuals. This study additionally evaluated the same
technique for identifying only the short-ranged, “U”-shaped tracts of the human brain, which
required different parameters to identify the shorter and more compact tracts. Clustering tech-
niques are used to identify tracts without requiring a priori knowledge and have been used in
studies to identify tracts of interest (e.g. [101]). Applying two different clustering methods
to a tractography template before using the clustered template, we evaluated the reliability of

95
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template-based clustering approaches in identifying similar tracts in two unique datasets - (1)
across different individuals, and (2) across the same individual. We demonstrated that template-
based clustering approaches were able to reliably identify tracts throughout the brain and for
the short-ranged, “U”-shaped tracts irrespective of the techniques chosen. Furthermore, we
determined the use of a single evaluation metric (e.g. streamline count) on its own may not be
a good indicator of reliability and should be used in conjunction with other metrics (e.g. spa-
tial overlap, intraclass correlation) to corroborate reliability. Such indicators would improve
overall confidence of such methods in identifying tracts of interest for further evaluation and
clinical applications.

In chapter 3, we evaluated the reliability of identifying the short-range connections between
structures of the deep brain, employing a targeted tractography approach that relies on ROIs
(i.e. a priori knowledge) in the complex and compact region. With multiple tracts, including
long-ranged tracts, traversing the region and contributing to the diffusion signal, performing
tractography is difficult in deep brain. However, many of the tracts residing in the deep brain
are also a part of important neural circuits responsible for function and cognition [13–15].
Most of the work studying the subcortical connectome have been in experimental animal stud-
ies using invasive means (e.g. anatomical tracers), with few tractography studies which focused
on identifying and examining individual tracts. This work sought to identify the tracts of the
subcortical connectome, comparing trajectories with those previously described in the litera-
ture. Focusing on well-described subcortical circuitry (e.g. motor, associative, and limbic),
connections between subcortical structures of interest were identified relying on inclusion and
exclusion regions of interests determined through histology-influenced atlases and probabilistic
tractography. Through comparison with described trajectories in literature, we demonstrated
the use of targeted tractography was able to reliably identify connections of interest in the sub-
cortical connectome. In particular, connections between structures of the basal ganglia, as well
as between the basal ganglia and peripheral thalamic nuclei demonstrated good reliability.

Chapter 4 combines the tractography techniques from chapter 2 and DTI to study changes
of “U”-shaped tracts in patients with FES. One long-standing hypothesis underlying the symp-
toms of psychosis (and consequently schizophrenia) is the abnormal interaction of brain re-
gions stemming from disrupted brain connectivity [81–83]. Previous studies have examined
major white matter (WM) tracts, reporting abnormalities throughout the brain with DTI-derived
measures [85,86]. With limited studies of short-ranged “U”-shaped connections in FES, we fo-
cused on those connections residing in the frontal lobe, one of the most studied cortical regions
in schizophrenia [193]. Applying DTI-derived measures together with a template-based clus-
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tering approach to identify frontal-lobe “U”-fibres, we identified three aberrant tracts where
anomalies were detected along their lengths. All three tracts exhibited a decrease in fractional
anisotropy and an increase in radial diffusivity. While unable to determine the exact cause of
such observations, previous studies have identified decreased oligodendrocytes in similar brain
regions, which are responsible for myelin formation [230].

5.2 Limitations of tractography

5.2.1 Resolving trajectories

The process of tractography requires a number of steps, including the selection of a model for
estimating the underlying diffusion orientations within an imaging voxel (see section 1.3.3), as
well as the choice of algorithm by joining together a discrete set of directions. Consequently,
tractography is inherently limited by the shortcomings of the diffusion model chosen (e.g.
DTI’s ability to resolve crossing fibres), which can be partially attributed to the limitations of
spatial and angular resolution. To combat this, the use of models such as constrained spherical
deconvolution (CSD), which relies on improved angular resolution (e.g. information from more
diffusion directions) has aided improvement of resolving different orientations. Despite the
improvement to resolve multiple orientations with CSD, the model used primarily throughout
this thesis, the ability to resolve multiple orientations has been limited to a crossing angle of
approximately 30◦ [38]. With advances to hardware, improvements to acquire higher spatial
and angular resolution can be gained and progress the ability to resolve the complex fibre
orientations.

5.2.2 Validation

One of the shortcomings of tractography is the validity of the estimated trajectory, in partic-
ular when applied in vivo. Different techniques have been applied to confirm the presence
and trajectory of major pathways (see section 1.3.5). However, such studies rely on invasive
techniques and are performed in animal studies (e.g. non-human primates) or post-mortem
tissue. Due to the sheer volume of “U”-shaped tracts (comprising the majority of the brain’s
WM axons), as well as morphological differences between individuals, validation of exact “U”-
shaped tract trajectory would be difficult. Nonetheless, Klingler dissections have confirmed the
presence of such connections. With respect to the subcortical connectome, tracer studies have
confirmed the presence and trajectory of such connections in NHPs. With tracer examinations
limited to animal models, combining information from tractography and tracers in NHPs may



Chapter 5. Conclusions and future directions 98

provide the information necessary for inferring results of tractography applied to the human
brain [190]. More recently, studies have started to examine the commonalities between the two
techniques [190].

5.3 Future directions

5.3.1 Reproducibility and generalizability

In chapter 1, we defined reliability as the ability to produce the same results using the same
techniques. In the subsequent chapters (2 and 3), we evaluated the reliability of tractography for
two different techniques. With various methods used for identifyng tractography, each likely
employed to meet the needs of a study, consensus of a single, optimal pipeline is unlikely to
be reached. As such, there is an importance in assessing the reliability of each introduced
technique. However, reliability is only one aspect that should evaluated for general adoption of
a technique. Other important aspects to be emphasized include reproducibility of tractography
(or the ability to produce similar results using different techniques on the same dataset), as well
as generalizability (or ability to produce similar results using the same techniques on different
datasets). Positive evaluations in all three aspects would greatly contribute to the adoption of
tractography techniques and increase confidence of its use in other studies.

5.3.2 Applications of tractography

Tractography, as was used in chapter 4, can be used to identify and examine tracts of interest,
assessing for changes in the WM (e.g. reduced FA, increased RD in FES). By examining quan-
titative measures along the length of a tract improves spatial precision in the detection of WM
changes. The combination of quantitative measures and tractography can aid identification of
important biomarkers related to aging or progression of disease. Such observations can lead to
enhanced understanding of how the brain changes and can lead to improvement in treatment
for patient populations. Moreover, the ability to identify notable tracts, as was done in Chapter
3, can benefit applications such as presurgical planning. Future studies can apply tractography
techniques to study both the long-ranged and short-ranged connections of the human brain in
order to gain further insights.
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5.4 Conclusions

This work primarily assessed the reliability of identifying and examining short-ranged con-
nections (e.g. “U”-shaped fibres and subcortico-subcortical) of the human brain, applying the
technique to assess for changes in patients with FES. We demonstrated tractography techniques
are not only reliable in identifying long-ranged tracts, but also for detecting short-ranged con-
nections and associated anomalies. The ability to examine all the different types of tracts in the
human brain will benefit the understanding of the complex WM network that enables interac-
tions between brain regions and how it can change due to aging or pathology. Advancements in
hardware (see section 5.2.1) will only serve to improve the ability to delineate tracts of interest
at finer resolutions. Furthermore, evaluations of reliability, reproducibility, and generalizability
(see section 5.3.1) will strengthen the confidence in tractography and increase adoption of such
techniques for future studies.
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M. Chamberland, F.-C. Yeh, Y.-C. Lin, Q. Ji, and others, “The challenge of mapping the
human connectome based on diffusion tractography,” Nature communications, vol. 8,
no. 1, pp. 1–13, 2017.

[55] K. G. Schilling, A. Daducci, K. Maier-Hein, C. Poupon, J.-C. Houde, V. Nath, A. W.
Anderson, B. A. Landman, and M. Descoteaux, “Challenges in diffusion mri tractogra-
phy – lessons learned from international benchmark competitions,” Magnetic Resonance
Imaging, vol. 57, pp. 194–209, 2019.

[56] M. Guevara, C. Román, J. Houenou, D. Duclap, C. Poupon, J. F. Mangin, and P. Gue-
vara, “Reproducibility of superficial white matter tracts using diffusion-weighted imag-
ing tractography,” NeuroImage, vol. 147, pp. 703–725, Feb. 2017.

[57] S. Mori and J.-D. Tournier, Introduction to Diffusion Tensor Imaging: And Higher Order
Models. Academic Press, Aug. 2013.

[58] D. B. Aydogan, R. Jacobs, S. Dulawa, S. L. Thompson, M. C. Francois, A. W. Toga,
H. Dong, J. A. Knowles, and Y. Shi, “When tractography meets tracer injections: a
systematic study of trends and variation sources of diffusion-based connectivity,” Brain
structure & function, vol. 223, pp. 2841–2858, July 2018.

[59] S. Jbabdi, S. N. Sotiropoulos, S. N. Haber, D. C. Van Essen, and T. E. Behrens, “Mea-
suring macroscopic brain connections in vivo,” Nature neuroscience, vol. 18, no. 11,
p. 1546, 2015.

[60] F. N. Mushtaha, T. K. Kuehn, O. El-Deeb, S. A. Rohani, L. W. Helpard, J. Moore,
H. Ladak, A. Moehring, C. A. Baron, and A. R. Khan, “Design and characterization of a
3d-printed axon-mimetic phantom for diffusion mri,” Magnetic Resonance in Medicine,
vol. 86, no. 5, pp. 2482–2496, 2021.

[61] K. Rojkova, E. Volle, M. Urbanski, F. Humbert, F. Dell’Acqua, and M. Thiebaut de
Schotten, “Atlasing the frontal lobe connections and their variability due to age and
education: a spherical deconvolution tractography study,” Brain Structure and Function,
vol. 221, pp. 1751–1766, Apr. 2016.



BIBLIOGRAPHY 105

[62] F. Vergani, L. Lacerda, J. Martino, J. Attems, C. Morris, P. Mitchell, M. T. d. Schotten,
and F. Dell’Acqua, “White matter connections of the supplementary motor area in hu-
mans,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 85, pp. 1377–1385, Dec.
2014.

[63] F. Movahedian Attar, E. Kirilina, D. Haenelt, K. J. Pine, R. Trampel, L. J. Edwards, and
N. Weiskopf, “Mapping Short Association Fibers in the Early Cortical Visual Processing
Stream Using In Vivo Diffusion Tractography,” Cerebral Cortex (New York, N.Y.: 1991),
vol. 30, pp. 4496–4514, June 2020.

[64] T. Zhang, H. Chen, L. Guo, K. Li, L. Li, S. Zhang, D. Shen, X. Hu, and T. Liu, “Char-
acterization of u-shape streamline fibers: Methods and applications,” Medical Image
Analysis, vol. 18, pp. 795–807, July 2014.

[65] P. Guevara, C. Poupon, D. Rivière, Y. Cointepas, M. Descoteaux, B. Thirion, and J. F.
Mangin, “Robust clustering of massive tractography datasets,” NeuroImage, vol. 54,
pp. 1975–1993, Feb. 2011.

[66] P. Guevara, D. Duclap, C. Poupon, L. Marrakchi-Kacem, P. Fillard, D. Le Bihan,
M. Leboyer, J. Houenou, and J. F. Mangin, “Automatic fiber bundle segmentation in
massive tractography datasets using a multi-subject bundle atlas,” NeuroImage, vol. 61,
pp. 1083–1099, July 2012.

[67] E. Pardo, P. Guevara, D. Duclap, J. Houenou, A. Lebois, B. Schmitt, D. L. Bihan,
J. Mangin, and C. Poupon, “Study of the variability of short association bundles on
a HARDI database,” in 2013 35th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC), pp. 77–80, July 2013.

[68] A. A. Oyefiade, S. Ameis, J. P. Lerch, C. Rockel, K. U. Szulc, N. Scantlebury, A. Decker,
J. Jefferson, S. Spichak, and D. J. Mabbott, “Development of short-range white matter in
healthy children and adolescents,” Human Brain Mapping, vol. 39, no. 1, pp. 204–217,
2018.

[69] C. Román, N. Cárdenas, C. Poupon, J.-F. Mangin, and P. Guevara, “The effect of the
number of fibers in tractography reconstruction of white matter bundles,” in 2019 41st
Annual International Conference of the IEEE Engineering in Medicine and Biology So-
ciety (EMBC), pp. 2825–2829, July 2019.

[70] A. Pron, C. Deruelle, and O. Coulon, “U-shape short-range extrinsic connectivity or-
ganisation around the human central sulcus,” Brain Structure and Function, vol. 226,
pp. 179–193, Jan. 2021.

[71] L. M. Ostrowski, D. Y. Song, E. L. Thorn, E. E. Ross, S. M. Stoyell, D. M. Chinap-
pen, U. T. Eden, M. A. Kramer, B. C. Emerton, A. K. Morgan, S. M. Stufflebeam, and
C. J. Chu, “Dysmature superficial white matter microstructure in developmental focal
epilepsy,” Brain Communications, vol. 1, Jan. 2019.



BIBLIOGRAPHY 106

[72] W. Reginold, A. C. Luedke, J. Itorralba, J. Fernandez-Ruiz, O. Islam, and A. Garcia,
“Altered Superficial White Matter on Tractography MRI in Alzheimer’s Disease,” De-
mentia and Geriatric Cognitive Disorders Extra, vol. 6, no. 2, pp. 233–241, 2016.

[73] B. Bigham, S. A. Zamanpour, F. Zemorshidi, F. Boroumand, H. Zare, and f. t. A. D. N.
Initiative, “Identification of Superficial White Matter Abnormalities in Alzheimer’s Dis-
ease and Mild Cognitive Impairment Using Diffusion Tensor Imaging,” Journal of
Alzheimer’s Disease Reports, vol. 4, pp. 49–59, Jan. 2020.

[74] K. Buyukturkoglu, C. Vergara, V. Fuentealba, C. Tozlu, J. B. Dahan, B. E. Carroll,
A. Kuceyeski, C. S. Riley, J. F. Sumowski, C. G. Oliva, R. Sitaram, P. Guevara, and
V. M. Leavitt, “Machine learning to investigate superficial white matter integrity in early
multiple sclerosis,” Journal of Neuroimaging, vol. 32, no. 1, pp. 36–47, 2022.

[75] Y. Zhang, B. Huang, Q. Chen, L. Wang, L. Zhang, K. Nie, Q. Huang, and R. Huang, “Al-
tered microstructural properties of superficial white matter in patients with Parkinson’s
disease,” Brain Imaging and Behavior, vol. 16, pp. 476–491, Feb. 2022.

[76] E. Ji, P. Guevara, M. Guevara, A. Grigis, N. Labra, S. Sarrazin, N. Hamdani, F. Bellivier,
M. Delavest, M. Leboyer, R. Tamouza, C. Poupon, J.-F. Mangin, and J. Houenou, “In-
creased and decreased superficial white matter structural connectivity in schizophrenia
and bipolar disorder,” Schizophrenia Bulletin, vol. 45, pp. 1367–1378, Oct. 2019.

[77] V. E. Rozanski, N. M. d. Silva, S.-A. Ahmadi, J. Mehrkens, J. d. S. Cunha, J.-C. Houde,
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B.1 Supplementary Figure 1
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Supplementary Figure B.1. Example of connectivity matrices at difference spatial overlap
(wDSC) thresholds. Connections unable to meet the thresholds are discarded and are shown in
the connectivity matrices as black boxes.
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B.2 Supplementary Figure 2

Tract Density [log(AFD)]

Supplementary Figure B.2. Known subcortical connections (in red) of the (A) associative
network and (B) limbic network. For each network, connectivity identified from literature was
depicted in a diagram (top-left) and chord plot (top-right), while chord plots exhibit the average
log-transformed tract densities for test-retest (middle-left, middle-right) and unrelated (bottom)
datasets of the Human Connectome Project. Dashed lines represent connections that did not
meet the selected tract density threshold. Pearson correlations between datasets are shown next
to the comparison indicators.
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B.3 Supplementary Figure 3

Test Retest

S
ub

je
ct

 1
S

ub
je

ct
 2

S
ub

je
ct

 3
S

ub
je

ct
 4

S
ub

je
ct

 5

Basal Ganglia Basal Ganglia - Thalamus

Supplementary Figure B.3. Examples of connectivity matrices exhibiting tract density are
shown for 5 different subjects, with connectivity from the test session on the left and retest
session on the right. Outlined boxes highlight the connectivity of the basal ganglia (red) and
between the basal ganglia and thalamus (cyan).
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B.4 Supplementary Figure 4
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Supplementary Figure B.4 Relationships exhibited between different computed metrics. (A)
Linear relationship between the average log-transformed tract density of test vs retest sessions,
separated by hemispheric connectivity (B) Negative logarithmic relationship between the abso-
lute percent change of tract density between the two sessions vs the average tract density of the
two sessions. (C) Sigmoid relationship identified between the average spatial overlap (wDSC)
and the average log-transformed tract density, separated by hemisphere.
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B.5 Supplementary Table 1

Supplementary Table B.5. Visual observations of tract trajectories between subcortical struc-
tures.

Nodes Node 1 Node 2 Hemi Notes

3-9 left substantia 
nigra

left putamen Left

- Geting most anterior and posterior tracts; 
missing trajectory through middle which would 
have to cut through pallidum
- Loop of streamlines going into brainstem; 
ventral-lateral connectivity to striatum in right 
hemisphere of some subjects; may be driven by 
CST
- A few streamlines cross mid-plane

5-11
left subthalamic 

nucleus
left globus 

pallidus externa Left

- Projections to limbic (medial; more dense), 
associative, and motor (lateral)
- Some assoc. connectivity may be lost due to 
GPi presence
- Brain stem loop seen

5-13 left subthalamic 
nucleus

left globus 
pallidus interna

Left - Similar projections to GPe
- Some brainstem projections again seen

7-11 left caudate
left globus 

pallidus externa Left

- Fans onto dorsal surface of GPe, direct 
connections are plausible
- Abherrent projections into brain stem loop
- Some cross mid sagittal, go into ventricle 
(medial to caudate)

7-13 left caudate
left globus 

pallidus interna Left

- Direct connections plausible
- CST may impact shape
- Less dense
- Medial to caudate streamlines going into 
ventricle
- Abherent midline projections into brain stem 
loop

7-19 left caudate left amygdala Left

- Direct connection to posterior amygdala
- Some projections curve medially to anterior 
amygdala
- Largely driven by CST 
- Sparse in majority of subjects
- Gap seen in some subjects in the middle
- Brainstem loop

9-11 left putamen left globus 
pallidus externa

Left - Very dense, plausibility high
- Some abherrent projections

9-13 left putamen left globus 
pallidus interna

Left

- Not as dense (likely having to deal with GPe)
- Some loops and abherent projections
- May be running into CST when it loops around 
GPe

9-19 left putamen left amygdala Left - May be following uncinate fasciculus
- Extremely dense

11-13 left globus 
pallidus externa

left globus 
pallidus interna

Left

- Direct connectivity
- Some loops that are likely false
- Brain stem
 projections

13-37 left globus 
pallidus interna

left thalamus 
ventral lateral 

anterior
Left

- Capturing some of the ansa curvature
- FP of brainstem loop and capturing some CST 
(dense)
- Abherent connectivity crossing midline

13-41
left globus 

pallidus interna

left thalamus 
mediodorsal 

medial 
magnocellular

Left

- Sparse. medial GPi to ventroposterior aspect 
MD (looks like portion of ansa)
- Spurious tracts into brainstem
- Does not meet tract density threshold in HCP 
unrelated dataset
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Nodes Node 1 Node 2 Hemi Notes

13-47 left globus 
pallidus interna

left thalamus 
mediodorsal 

lateral 
parvocellular

Left
- Very sparse, even for those found in subjects
- Does not meet tract density threshold in any 
dataset

13-51
left globus 

pallidus interna
left thalamus 

ventral anterior Left
- More associative / limbic (in GPi)
- Still capturing some CST (less dense)
- Brain stem and some crossing of midline

13-69 left globus 
pallidus interna

left thalamus 
ventral lateral 

posterior
Left

- Medial bend likely real
- Some integration of CST, difficult to pinpoint
- Abherrent dorsal-lateral loops
- Brainstem loops

9-35 left putamen left thalamus 
centromedian

Left

- Capturing most lateral and medial aspects
- Sparse, could be due to structures in between
- Does not meet tract density threshold in any 
dataset

9-43 left putamen left thalamus 
parafascicular

Left

- Very sparse, again could be due to inbetween 
structures
- Does not meet tract density threshold in any 
dataset

4-10 right substantia 
nigra

right putamen Right

- Geting most anterior and posterior tracts; 
missing middle which would have to cut through 
GP
- Loop of streamlines going into brainstem; 
ventral-lateral connectivity to striatum in right 
hemisphere of some subjects (185442); may be 
driven by CST
- A few streamlines cross mid-plane

6-12
right 

subthalamic 
nucleus

right globus 
pallidus externa Right

- Projections to limbic (medial; more dense), 
associative, and motor (lateral)
- Some assoc. connectivity may be lost due to 
GPi presence
- Brain stem loop seen

6-14
right 

subthalamic 
nucleus

right globus 
pallidus Interna Right

- Similar projections to GPe
- Some brainstem projections again seen

8-12 right caudate
right globus 

pallidus externa Right

- Fans onto dorsal surface of GPe, direct 
connections are plausible
- Abherrent projections into brain stem loop
- Some cross mid sagittal, go into ventricle 
(medial to caudate)

8-14 right caudate
right globus 

pallidus Interna Right

- Direct connections plausible
- CST may impact shape
- Less dense
- Medial to caudate streamlines going into 
ventricle
- Abherent midline projections into brain stem 
loop

8-20 right caudate right amygdala Right

- Direct connection to posterior amygdala
- Some projections curve medially to anterior 
amygdala
- Largely driven by CST 
- Sparse in majority of subjects
- Gap seen in some subjects in the middle
- Brainstem loop

10-12 right putamen right globus 
pallidus externa

Right - Very dense, plausibility high
- Some abherrent projections
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Nodes Node 1 Node 2 Hemi Notes

10-14 right putamen right globus 
pallidus Interna

Right

- Not as dense (likely having to deal with GPe)
- Some loops and abherent projections
- May be running into CST when it loops around 
GPe

10-20 right putamen right amygdala Right - May be following uncinate fasciculus
- Extremely dense

12-14 right globus 
pallidus externa

right globus 
pallidus Interna

Right

- Direct connectivity
- Some loops that are likely false
- Brain stem
 projections

10-36 right putamen right thalamus 
centromedian

Right

- Capturing most lateral and medial aspects
- Sparse, could be due to structures in between
- Does not meet tract density threshold in any 
dataset

10-44 right putamen right thalamus 
parafascicular

Right

- Very sparse, again could be due to inbetween 
structures
- Does not meet tract density threshold in any 
dataset

14-38 right globus 
pallidus Interna

right thalamus 
ventral lateral 

anterior
Right

- Capturing some of the ansa curvature
- FP of brainstem loop and capturing some CST 
(dense)
- Abherent connectivity crossing midline

14-42
right globus 

pallidus Interna

right thalamus 
mediodorsal 

medial 
magnocellular

Right

- Sparse. medial GPi to ventroposterior aspect 
MD (looks like portion of ansa)
- Spurious tracts into brainstem
- Does not meet tract density threshold in HCP 
unrelated dataset

14-48 right globus 
pallidus Interna

right thalamus 
mediodorsal 

lateral 
parvocellular

Right
- Very sparse, even for those found in subjects
- Does not meet tract density threshold in any 
dataset

14-52
right globus 

pallidus Interna
right thalamus 
ventral anterior Right

- More associative / limbic (in GPi)
- Still capturing some CST (less dense)
- Brain stem and some crossing of midline

14-70 right globus 
pallidus Interna

right thalamus 
ventral lateral 

posterior
Right

- Medial bend likely real
- Some integration of CST, difficult to pinpoint
- Abherrent dorsal-lateral loops
- Brainstem loops
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B.6 Supplementary Materials - Results from HCP unrelated
dataset

B.6.1 Networks of the subcortical connectome
Known connections within the networks of interest (i.e. motor, associative, and limbic) were
examined for the HCP unrelated dataset. Figure 3.2 demonstrated the connectivity and the
associated AFDs for the assessed motor network (see Supplementary Figure B.2A and Sup-
plementary Figure B.2B for associative and limbic network). Using the same threshold of
6.5 AFD previously determined, connectivity was observed to be similar to both sessions of
the test-retest dataset. 78% (14 out of 18) of the known connections of the motor network
met the previously determined threshold, while 100% and 71% (10 out of 14) connections of
the associative and limbic networks satisfied the threshold respectively. Moderate density be-
tween subcortical structures of interest were observed except with certain thalamic nuclei as
before. The same subcortical connections which had previously failed to meet the tract density
threshold also failed to meet the threshold for the HCP unrelated dataset. Visual inspection of
connectivity noted identical observations as with the test-retest dataset with shorter, more di-
rect connections between basal ganglia structures, and longer connections with a more curved
trajectory between the basal ganglia and thalamus.

B.6.2 Reliability of the HCP unrelated dataset
Connectivity matrices were first created for subjects of the HCP unrelated dataset, before an av-
erage AFD matrix across subjects was computed and examined (Supplementary Figure B.6A).
Furthermore, a box plot of the AFD exhibited in each hemisphere was created and overlaid by
a swarmplot of individual AFDs between subcortical structures of interest (Supplementary Fi-
bre B.6B). A visual comparison with similar plots created for the test-retest dataset suggested
comparable connectivity being demonstrated in the unrelated subjects. A Pearson’s correlation
was performed between the average AFD of the unrelated dataset and the average AFD for
the test and retest sessions respectively, where a Pearson’s correlation coefficient of 0.99 was
exhibited against both test (p < 0.05) and retest sessions (p < 0.05).
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Supplementary Figure B.6 (A) Log-transformed average tract density of the HCP unrelated
subjects are shown in a connectivity matrix, visualizing connectivity between subcortical struc-
tures of known subcortical networks. (B) The tract density, exhibited in a box plot and overlaid
with a swarmplot to exhibit individual AFDs, is separated by hemispheric connectivity. The
middle line of the boxplot marks the median metric, while whiskers define the maximum and
minimum values of each metric, excluding outliers. Average tract densities similar to those
previously exhibited in both HCP test and retest sessions. (C) A 3-dimensional scatterplot is
shown, observing the relationship between the average tract density of connections and the
volume of the terminal nodes. A similar relationship to that from the test-retest dataset was
observed.

The AFD was evaluated against the size of the two connecting subcortical structures for the
unrelated dataset. A positive linear relationship was observed (Supplementary Figure B.6C;
r2 = 0.232, p < 0.05), with an increase in average TD associated with an increase in size of
one or both subcortical structures, demonstrating a positive linear relationship when an ordi-
nary least squares regression was performed.
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Chapter 4 Supplementary Material

The following document provides a more in-depth statistical analysis of the segments demon-
strating significant differences between controls and patients with first-episode schizophrenia
(FES) along the length of identified aberrant tracts.

Supplementary Figure C.1. Along-tract measures for fractional anisotropy (FA) and radial
diffusivity (RD) for controls and patients with FES. Segments exhibiting differences in both FA
and RD are indicated by the number above, corresponding with segments from Supplementary
Table C.1.
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Supplementary Table C.1. Observed t-statistic and p-value from segments demonstrating
differences from both along-tract FA and RD. Segment numbers correspond with the
segments shown in Supplementary Figure C.1.

Cluster 9 Cluster 46 Cluster 65
Metric Segment t-stat p-val t-stat p-val t-stat p-val
FA 1 3.337 0.00164 3.092 0.00323 3.600 0.00110

2 2.962 0.00472 3.443 0.00170
MD 1 -3.638 0.000667 -3.126 0.00273 -3.284 0.00221

2 -3.469 0.00113 -3.555 0.000943
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