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Abstract—Energy companies often implement various demand
response (DR) programs to better match electricity demand and
supply by offering the consumers incentives to reduce their
demand during critical periods. Classifying clients according
to their consumption patterns enables targeting specific groups
of consumers for DR. Traditional clustering algorithms use
standard distance measurement to find the distance between two
points. The results produced by clustering algorithms such as K-
means, K-medoids, and Gaussian Mixture Models depend on the
clustering parameters or initial clusters. In contrast, our method-
ology uses a shape-based approach that combines Agglomerative
Hierarchical Clustering (AHC) with Dynamic Time Warping
(DTW) to classify residential households’ daily load curves based
on their consumption patterns. While DTW seeks the optimal
alignment between two load curves, AHC provides a realistic
initial clusters center. In this paper, we compare the results with
other clustering algorithms such as K-means, K-medoids, and
GMM using different distance measures, and we show that AHC
using DTW outperformed other clustering algorithms and needed
fewer clusters.

Index Terms—Load Curve Clustering, Agglomerative Hierar-
chical Clustering, Dynamic Time Warping, Shape-Based Cluster-
ing, Demand Response, Energy Management

I. INTRODUCTION

The estimated number of smart meters in the U.S. and China
in 2016 was 166 million [1], which is anticipated to increase
as International Energy Agency estimates a 90% rise in power
demand by 2040 [2]. The European Union (EU) residential
sector represents 31% of the total energy consumption [3].
Smart meters enabled energy providers to collect energy usage
data more rapidly and accurately, empowering them to analyze
and estimate consumer consumption to provide a more cost-
effective and reliable Demand Response (DR) [4]. DR bal-
ances energy supply and demand by encouraging consumers
to use energy when the power supply is ample and afford-
able. Energy companies apply various marketing strategies to
accomplish DR, commonly through incentive programs that
target customers based on their consumption patterns to adapt
their consumption in response to the change in the prices [5],

This research has been supported by NSERC under grant RGPIN-2018-06222.

such as applying different tariffs during the day (peak vs. off-
peak hours) [6]. Moreover, DR actions contribute to reducing
CO2 emissions where energy production is considered one of
the most significant contributors to global warming producing
two-thirds of human-induced greenhouse gas emissions [2].

Incentive programs aim to segment customers sharing the
same consumption, which requires categorizing customers
into groups based on their consumption patterns. Customer
consumption can be expressed in a load curve representing
the consumption pattern in a given period. Office Buildings
might share similar load curves because they follow the same
daily work routine. In contrast, residential households’ load
curves vary from one customer to another, and patterns might
even differ within the same customer due to changes in device
usage [5], which makes it more difficult to segment customers
into groups based on their consumption.

Clustering is an unsupervised learning technique that groups
similar data instances together [7] that can be used to seg-
ment customers based on their energy consumption. Different
clustering approaches are used to cluster customers based on
their consumption [4], [6], [8]. Some techniques, in addition
to the energy consumption data, include customer data such
as customer demography and the number of occupants, then
apply significance analysis to reduce the number of features
(e.g., Principal Component Analysis (PCA)) and then catego-
rize customers into groups [9], [10]. Other approaches focused
on clustering the energy consumption using only daily load
curves.

K-means and K-medoids are clustering algorithms based on
partitioning: they are used to cluster energy data because of
their simplicity [11]. However, the final results depend on the
quality of the selected initial cluster centers, which means they
might be drawn to a local optimum [12], [13]. Other clustering
algorithms based on density, such as DBSCAN and OPTICS
clustering results, are sensitive to initial parameters and data
density distribution [12].

Recent literature suggests using a shape-based approach to
cluster energy load curves [4]–[6]. Agglomerative Hierarchical
Clustering [14] is a hierarchical-based algorithm suitable for
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arbitrary shapes data. All clustering algorithms, including
shape-based ones, use a similarity-distance to construct clus-
ters, e.g., Euclidean, Manhattan, Cosine, and Dynamic Time
Warping. While metrics such as Euclidean and Manhattan cal-
culate distances between pairs of points (or features), Dynamic
Time Warping (DTW) helps compare load curves based on
shape and detect shifts in consumer consumption patterns.

This paper facilitates shape-based clustering while remedy-
ing the challenge of poor initial clusters using Agglomerative
Hierarchical Clustering with Dynamic Time Warping (AHC-
DTW) for residential load clustering. Agglomerative Hierar-
chical Clustering is used as a bottom-up approach for cluster
formation, whereas the DTW similarity metrics allow AHC to
consider shapes as opposed to individual points. The results
show that using the AHC-DTW algorithm outperformed dif-
ferent clustering algorithms such as K-means, K-medoids, and
Gaussian Mixture Models (GMM), resulting in fewer clusters.
Furthermore, this paper shows that using DTW as a similarity
distance with AHC improves clustering results compared to
other distance measures such as Euclidean, Manhattan, and
Cosine.

This paper is organized as the following: Section II provides
an introduction. Section III discuss the related work. Where
Section IV explains how AHC-DTW used to cluster load pro-
files. Section V discuss the results and Section VI concludes
the paper and discuss future work.

II. BACKGROUND

A. Dynamic Time Warping

Dynamic time warping (DTW) was used initially to com-
pare speech patterns in speech recognition [15] and was
then extended to identify the optimal alignment between two
time-series sequences subject to specific constraints [16], as
illustrated in Figure 1. The DTW cost matrix (distance matrix)
must be computed to calculate the DTW value between two
time-series, quantifying the alignment of the two sequences
under specific constraints. The closer the DTW value is to
zero, the more similar the shapes of the curves are.
Consider two time-series X and Y , where X =
{x1, x2, x3, ..., xn} and Y = {y1, y2, y3, ..., ym}, and C` cost
value between two points xi and yj , where xi ∈ X , and
yj ∈ Y . Then, Wi defines a warping path between X and
Y as follows:

Wi =

L∑
`=1

C` ∀ C` ∈Wi (1)

Therefore, for all warping paths WP = {W1,W2, ...,Wp},
DTW is defined as the follows:

DTW (X,Y ) = min{WP} (2)

Equation 2 defines DTW as the minimum of all warping
paths between X and Y , where a warping path represents the
sum of all distances in a distance-matrix path. The solid red
line in Figure 2 shows the minimum warping path between

Fig. 1. DTW optimal alignment between two daily load curves showing how
DTW aligns the points based on similarity

Fig. 2. DTW between two load curves showing the optimal warping path in
red line using a window size of four

the two load curves, and the sum of all points in that path
represents the DTW value.

DTW is capable of capturing the shift in patterns between
two time-series using a defined window size that determines
the number of proceeding points that need to be consid-
ered when aligning a selected point. For example, a DTW
with window size of four considers four consecutive points
yi, yi+1, yi+2, and yi+3 in the curve Y while aligning a
selected point xi in the curve X . On the other hand, a window
size of one considers only the corresponding point (xi, yi),
which is equal to computing the Euclidean distance between
two time-series as shown in Figure 3.

B. Hierarchical Clustering

Hierarchical Clustering is a clustering algorithm that it-
eratively partitions the instances into clusters either using a
bottom-up (Agglomerative) or top-down (Divisive) approach



Fig. 3. DTW between two daily load curves using the window size equal to
one. This alignment is equivalent to using Euclidean distance

[7]. Agglomerative Hierarchical Clustering (AHC) initially
considers each instance as a cluster, and then the clusters
are recursively merged until the desired number of clusters
is achieved, or all clusters are merged into one cluster. In con-
trast, Divisive Hierarchical Clustering (DHC) initially merges
all instances into a single cluster, and then the clusters are
iteratively divided into sub-clusters until the desired number
of clusters is achieved.

AHC first computes the distance matrix, which defines the
distances between all the instances to be clustered. Then it
merges the two instances with the shortest distance, which
requires updating the distance between the newly merged
instances and all other remaining instances. There are different
methods to update the distance matrix, commonly referred to
as the linkage criteria, such as:
Single-linkage clustering computes a distance matrix between
all existing clusters, then merges the two clusters separated
by the shortest distance. The newly merged cluster retains
the minimum distance between the merged cluster and the
remaining clusters.
Let clusters A and B have the shortest distance in the distance
matrix, and K represents the remaining clusters. The function
D(A,B) defines the distance between two clusters, and C
represents the new merged cluster. Then distance values are
defined as:

D(C,Ki) = Min
{
D(A,Ki), D(B,Ki)

}
∀ Ki ∈ K (3)

Complete-linkage clustering, like single-linkage clustering,
computes a distance matrix between all existing clusters, then
merges the two clusters separated by the shortest distance.
However, in complete-linkage clustering, the new merged
cluster retains the maximum distance between the merged
clusters and the remaining clusters, as explained in Equation
4.

D(C,Ki) = Max
{
D(A,Ki), D(B,Ki)

}
∀ Ki ∈ K (4)

Unweighted average linkage clustering is also known as
Unweighted Pair Group Method with Arithmetic mean (UP-
GMA). It is similar to other linkage criteria, except when
merging the two clusters separated by the shortest distance,
it computes the average distance between the merged clusters
and remaining clusters as shown in Equation 5.

D(C,Ki) = AV G
{
D(A,Ki), D(B,Ki)

}
∀ Ki ∈ K (5)

III. RELATED WORK

This section focuses on clustering load curves for residen-
tial households using a shape-based approach that has been
dominant in recent years. Various clustering algorithms have
been used with different similarity distances for comparing the
similarity between two time series such as Euclidean, Manhat-
tan, Squared Euclidean, Mahalanobis distance, and Dynamic
Time Warping. Zhang et al. [17] used the K-means clustering
with Euclidean distance to cluster 24-hour load curves. Jin and
Bi [6] used Affinity Propagation (AP) clustering using DTW
as a distance measure, where data points exchange messages
between each other until a high-quality set of exemplars and
corresponding clusters emanate [18]. Teeraratkul et al. [5]
used K-medoids replacing Euclidean distance with DTW and
produced better quality clusters compared to K-means and
Gaussian-based Expectation-Maximization (EM) algorithms.
Yilmaz et al. [3] considered two approaches and compared
them. The first approach considered the shape of the daily
profiles using the K-means with standard Euclidean distance
to cluster daily load profiles and tried to optimize the K
value using silhouette score [19], while the second approach
used specific features to cluster daily profiles. Zhang et al.
[20] applied hierarchical clustering using DTW to cluster load
profiles of a ground source heat pump system and determined
the best cluster number using the sum of squares of errors,
then analyzed the pattern of each cluster class.

Dynamic Time Warping (DTW) distance is used in some
literature as a replacement for the Euclidean distance [4]–[6]
in clustering load profiles. DTW finds the optimal alignment
between two time-series compared to Euclidean distance,
which measures the distance between two straight points. The
optimal alignment is obtained by stretching or compressing
the series’ segments [5].

Using a shape-based approach to cluster load curves was
not only limited to DTW; for example, Dasgupta et al. [4]
uses elastic shape analysis to cluster and analyze load curves
according to their shapes. On the other hand, Eskandarnia et
al. [21] developed a framework that uses auto-encoders to per-
form dimensionality reduction and provide clustering-friendly
representations that maintain the original data characteristics
before performing clustering using KL divergence.

Our approach is different since it combines Agglomerative
Hierarchical Clustering (AHC) with Dynamic Time Warping.
While AHC provides realistic cluster centers since it uses
actual load curves as initial class centers (prototypes), DTW
assists by comparing the curve shapes and finding the optimal



alignment between two curves rather than the straight distance
and, therefore, detecting shifts in consumption patterns within
predefined sliding-window.

IV. METHODOLOGY

As seen in Figure 4, the proposed clustering process
includes several steps to achieve high-quality clusters and
evaluate the findings. The following subsections discuss each
step in more detail.

Fig. 4. Clustering Methodology performed with various clustering methods,
distances, and linkage criteria

A. Dataset Preparation

The dataset contains hourly energy consumption for 19
households captured between 2014 and 2016. The households’
data provided by London Hydro (London, Ontario, Canada)
has no personal information identifying the customers, only
generic values to identify the hourly energy consumption
reading per household, e.g., House#1.

The data were reformatted so each sample (clustering
instance) would represent a daily load curve containing 24
hourly energy consumption readings for a particular house
during a specific day of the year. Therefore, the household
energy consumption during the day is represented using a
Daily Load Curve (DLC) as shown in Figure 5.

B. Data Normalization

Data normalization is essential for comparing DLCs shapes
using DTW for two reasons: 1) DTW is used to compare the
time-series shapes, not the actual values, and 2) the differences
in the mean or standard deviation (STD) impact any shape
similarity. Therefore, Z-normalization in Equation 6 is applied
to normalize DLC features.

Zi =
Xi −X

σ
(6)

Here Zi represents the normalized value which is the
difference between the actual value Xi and the mean, divided
by the STD. Figure 6 shows the data distribution before and
after normalization. Figure 6a shows some outliers and a high
STD during most of the day before applying normalization. In
contrast, Figure 6b shows that applying normalization reduced
the STD and the outliers.

Fig. 5. Daily Load Curve (DLC) using 24 hourly energy readings

C. Clustering

DLCs are clustered using different clustering methods AHC-
DTW, K-means, K-means++, K-medoids with DTW, and
Gaussian Mixture Model with Expectation-Maximization (EM
GMM).

AHC was performed utilizing various linking criteria, in-
cluding complete, average, and single linkage. Furthermore,
to determine the influence of DTW on AHC and how it
enhances the clustering quality, AHC was performed using
several similarity-distances such as DTW, Euclidean, Cosine,
and Manhattan.

Despite occasional claims that DTW could add a shape
distortion (pinching effect [22]), [4]; DTW is used here to
detect similar energy consumption within four hours period,
which would not cause DLC shape distortion while finding the
optimal alignment as shown in the experiments. Therefore,
DTW is strictly applied with Window = 4 and was not
optimized for better clustering results. Note that the approach
still clusters the daily load curves and this Window = 4 only
characterizes the alignment in DTW. The window size of four
is an appropriate setting to spot shifts in daily consumption
patterns while still not allowing overly high distortions.

D. Clusters Evaluation

Several clustering evaluation metrics may be used to assess
the quality of clustering, including the Silhouette Coefficient
[19] and Dunn’s Index [23]. The quality of clusters is deter-
mined in this study using the ratio of within-cluster distances
to between-cluster distances (WCBCR) [5], [24], as denoted in
Equation 7 because it takes into account both the similarity of
the instances within each cluster (individual cluster quality)
and the dissimilarity between clusters (all clusters quality).
WCBCR is calculated as follows:

WCBCR =

K∑
k=1

∑
X∈Ck

d(X,µk)

K∑
i 6=j

d(µi, µj)

(7)

WCBCR represents the ratio of the sum of the distances
between all DLCs (X ∈ Ck) in a cluster (Ck) and their
corresponding cluster’s prototype (µk) to the sum between all
clusters’ prototypes d(µi, µj) ∀ i 6= j ∈ K. In other words, it
measures the ratio between the similarity within clusters to the



(a) Data Before Normalization (b) Z-Normalized Data

Fig. 6. Data visualization before and after applying normalization shows that applying normalization reduced the STD and the outliers

Fig. 7. WCBCR results using different clustering methods. The figure shows
that using AHC with DTW and average linkage criteria outperformed other
clustering methods

diversity between clusters, where a smaller value of WCBCR
indicates a better clustering quality.

Clustering evaluation is a challenging task since the eval-
uation metrics depend on the similarity distance used for
evaluation, and using different distance similarity measures
makes it even harder to compare. Therefore, we decided to
use the same similarity distance and metric for clustering
evaluation to overcome this challenge, i.e., Euclidean distance.

V. RESULTS AND DISCUSSION

WCBCR is computed using various clusters’ numbers for
AHC-DTW with average linkage criteria and compared to
other clustering methods as shown in Figure 7. The WCBCR
value drops as the number of clusters increases for all
clustering methods, with AHC-DTW outperforming all other
clustering methods by achieving a smaller WCBCR value for
the same number of clusters.

Using the Elbow method that utilizes the curve’s elbow to
decide on the best number of clusters, we can infer that ACH-
DTW outperformed other clustering methods, including K-
medoids using DTW. ACH-DTW requires fewer clusters (ap-

proximately 27 clusters) while providing a smaller WCBCR
value as indicated by the highlighted green cell in Table I.

TABLE I
WCBCR VALUE USING VARIOUS CLUSTERING METHODS. THE GREEN

HIGHLIGHTED CELL PERTAINS THE BEST WCBCR 13.33 FROM
AHC-DWT USING AVERAGE LINKAGE CRITERIA WITH THE OPTIMAL
NUMBER OF CLUSTERS 27 DETERMINED USING THE ELBOW METHOD.

Clusters
#

K-
medoids

K-
means

K-
means++ GMM AHC-DTW

Avg
20 49.89 47.16 46.89 86.93 30.85
21 53.99 45.09 42.96 37.71 27.78
22 50.42 37.25 38.35 71.15 25.81
23 38.28 35.92 35.18 55.47 24.21
24 46.44 32.29 21.31 52.47 22.55
25 33.91 30.05 19.64 47.61 20.98
26 31.59 29.01 27.35 42.70 19.17
27 34.23 24.70 17.65 40.75 13.33
28 25.57 23.45 22.82 21.77 12.47
29 27.43 21.57 15.61 20.82 11.63
30 22.46 20.80 14.31 30.66 11.01

While Table I and Figure 7 compare AHC-DTW with
average linkage, Table II and Figure 8 are strictly using
AHC with different similarity distances and linkage criteria.
The linkage criteria in Table II are labeled as single-linkage
S, complete-linkage C, and unweighted-average labeled A.
We can conclude that AHC using Complete linkage criteria
achieved better WCBCR results when the number of clusters
used was less than 23. However, when clusters were more than
26, AHC using the Average Linkage criteria provided better
WCBCR values. Furthermore, using the Elbow method, we
infer that AHC using Average Linkage requires fewer clusters
(27 clusters) with the best WCBCR value of 13.33.

As seen from Table I, for 27 clusters, AHC with Cosine
distance achieved the worst performance irrelevant of which
linkage criteria were used. Results obtained with Manhattan
and Euclidean distances are close to results of DTW for
the same linkage criteria. However, using complete linkage,
Euclidean distance achieved a slightly better WCBCR value
of 15.59 than DTW’s value of 15.72. Nevertheless, the best
clustering was achieved with DTW with average linkage.

VI. CONCLUSION AND FUTURE WORK

Energy companies aim to provide an efficient and reliable
Demand Response (DR). Therefore, it is imperative to under-



(a) AHC clustering using different distances and linkage methods (b) AHC clustering with zoom into lower cluster numbers

Fig. 8. WCBCR results using AHC with different similarity distances. The figure shows that using AHC with DTW and average linkage criteria outperformed
other clustering methods with the optimal number of clusters 27 determined using the elbow method

TABLE II
WCBCR USING AHC WITH DIFFERENT DISTANCES AND LINKAGE CRITERIA: SINGLE-LINKAGE (S), COMPLETE-LINKAGE (C), AND

UNWEIGHTED-AVERAGE (A). THE GREEN HIGHLIGHTED CELL PERTAINS TO THE BEST WCBCR 13.33 FROM AHC-DWT USING AVERAGE LINKAGE
CRITERIA WITH THE OPTIMAL NUMBER OF CLUSTERS 27 DETERMINED USING THE ELBOW METHOD.

Clustering
#

DTW
S.

DTW
C.

DTW
A.

Manhattan
S.

Manhattan
C.

Manhattan
A.

Euclidean
S.

Euclidean
C.

Euclidean
A.

Cosine
S.

Cosine
C.

Cosine
A.

20 31.91 26.51 30.85 31.57 28.43 33.10 29.45 28.18 27.75 221.52 84.15 84.58
21 29.45 24.31 27.78 29.15 25.99 30.20 27.33 26.06 25.60 202.14 73.86 77.27
22 27.10 22.63 25.81 26.62 24.19 27.94 24.77 23.78 23.64 165.57 67.61 71.86
23 25.21 20.91 24.21 24.80 22.05 25.43 22.87 22.31 22.10 139.30 61.18 67.06
24 23.48 19.49 22.55 23.09 20.68 23.67 21.36 20.74 20.41 130.07 56.95 62.36
25 21.39 18.19 20.98 21.67 19.23 21.97 19.60 18.61 18.93 121.26 52.55 58.22
26 20.05 17.09 19.17 19.84 18.02 20.28 18.17 17.36 17.63 113.46 47.97 53.63
27 18.79 15.72 13.33 18.54 16.36 18.90 17.01 15.59 16.64 103.08 44.31 49.62
28 17.55 14.94 12.47 17.34 15.46 17.68 15.92 14.13 15.62 90.27 41.08 46.36
29 16.63 14.04 11.63 16.18 14.21 16.62 15.02 13.35 14.64 85.33 38.45 43.89
30 15.75 13.19 11.01 15.07 13.33 15.52 14.11 12.52 13.74 80.71 35.02 41.33

stand and categorize customers’ consumption patterns to help
energy companies reduce consumption during peak hours by
creating incentive programs to target customers based on their
consumption patterns. Targeting the right customer group to
reduce energy consumption requires placing the customers into
categories based on their similarity of consumption patterns.
Grouping residential-households load curves are challenging
since load curves vary between customers and within the same
customer.

This paper proposed AHC with DTW to categorize DLCs
based on shape similarity. AHC provides a better starting
point for clusters since each cluster prototype is initiated by
an actual load curve, compared to K-means and K-medoids,
where initial cluster centers are randomly selected. On the
other hand, DTW tries to find the optimal alignment between
two curves by detecting shifts in the patterns, making DTW a
better measurement distance than other distance measures.

All clustering methods quality was evaluated using
WCBCR. The optimal number of clusters was determined

using the Elbow method at 27, with the best WCBCR value of
13.3 obtained from AHC-DTW using average linkage criteria.
Future work will examine the optimal number of clusters using
Davies–Bouldin index and evaluate results on a large dataset
and perform detailed cluster analysis.
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