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Purpose: Real-time monitoring of dynamic magnetic fields has recently become
a commercially available option for measuring MRI k-space trajectories and
magnetic fields induced by eddy currents in real time. However, for accurate
image reconstructions, sub-microsecond synchronization between the MRI data
and field dynamics (ie, k-space trajectory plus other spatially varying fields)
is required. In this work, we introduce a new model-based algorithm to auto-
matically perform this synchronization using only the MRI data and field
dynamics.
Methods: The algorithm works by enforcing consistency among the MRI
data, field dynamics, and receiver sensitivity profiles by iteratively alternating
between convex optimizations for (a) the image and (b) the synchronization
delay. A healthy human subject was scanned at 7 T using a transmit-receive coil
with integrated field probes using both single-shot spiral and EPI, and recon-
structions with various synchronization delays were compared with the result
of the proposed algorithm. The accuracy of the algorithm was also investigated
using simulations, in which the acquisition delays for simulated acquisitions
were determined using the proposed algorithm and compared with the known
ground truth.
Results: In the in vivo scans, the proposed algorithm minimized artifacts related
to synchronization delay for both spiral and EPI acquisitions, and the computa-
tion time required was less than 30 s. The simulations demonstrated accuracy to
within tens of nanoseconds.
Conclusions: The proposed algorithm can automatically determine synchro-
nization delays between MRI data and field dynamics measured using a field
probe system.

K E Y W O R D S

delay, eddy currents, field monitoring, field probes, model-based, non-Cartesian,
synchronization
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2 DUBOVAN and BARON

1 INTRODUCTION

Non-Cartesian MRI provides the advantages of increased
SNR due to shortened TEs, robustness to motion, and more
time-efficient data acquisition. However, non-Cartesian
approaches are generally more sensitive to k-space errors
from eddy currents compared with Cartesian sampling,
which ultimately results in blurring and/or geometric
distortions. Many approaches to estimate these k-space
errors have been proposed, which include direct mea-
surement of the trajectory,1–3 calibration based on a gra-
dient impulse response function,4,5 or via retrospective
modeling.6 Alternatively, real-time monitoring using field
probes has recently become a commercially available rapid
option for measuring k-space trajectories and eddy cur-
rent fields in real time, up to second or third order in
space.7–10 These measured field dynamics can be included
together with an off-resonance map in an expanded encod-
ing model based reconstruction that greatly ameliorates
artifacts from off-resonance and eddy currents.7 However,
due to hardware-specific filter delays that differ between
the MRI and field-probe spectrometers and transit time for
the trigger pulse that initiates field probe measurements,
the relative timing between the field-probe measured field
dynamics and the MRI signal is unknown and may vary
on the order of 1 μs between scans. An error in this timing,
which leads to image artifacts, will henceforth be referred
to as a “synchronization delay.”

Gradient delays and their associated artifacts have been
well-described for non-Cartesian acquisitions that do not
use external field monitoring, where there are generally
separate delays for each of the three gradient channels
instead of the single global synchronization delay that
is required to be determined for field-monitored acquisi-
tions. Various approaches for correcting for these delays
have been proposed, which include pulse-sequence mod-
ifications or a separate calibration scan11–13 and retro-
spective methods that are designed for particular tra-
jectories.11,14–17 While these methods could likely be
adapted to determine the synchronization delay required
for acquisitions using field monitoring, the necessity for
either specific pulse-sequence prescans or specific trajec-
tories creates a complicated solution landscape with var-
ious trade-offs, depending on the approach. A promising
self-consistency approach that explicitly determines delays
has been proposed, in which gradient delays and receiver
sensitivity profiles are simultaneously estimated from fully
sampled calibration data using low-rank constraints,18 but
this method is not applicable for situations in which the
receiver-sensitivity calibration data are obtained from a
separate scan, as is typically the case for reconstructions
using field-probe measurements.

In this work, we introduce a general model-based
retrospective approach to determine the synchronization
delay between measured field dynamics and the MRI data
that is applicable to arbitrary trajectories and require no
pulse-sequence modification. Furthermore, we demon-
strate that it can accurately estimate the delay even
when aggressive coil compression is used and propose
an approach to greatly accelerate convergence, making
this method require very little time for computations. We
demonstrate the performance of the algorithm for both
single-shot spiral and EPI acquisitions in the brain of a
healthy human subject and through simulation.

2 THEORY

The signal y𝑗m measured at time tm by receiver element j
originates from a range of locations rn and can be modeled
using7,9

y𝑗m =
∑

n
C𝑗 (rn) x (rn) ei𝜔(rn)tm ei

∑
l kl(tm+𝜏+Δ𝜏)bl(rn), (1)

where Cj is the jth receiver sensitivity profile; x is the
image; kl are the coefficients measured by a field probe
system (ie, the “field dynamics,” which include the nor-
mal definition of the k-space trajectory, zeroth-order main
field fluctuations, and higher spatial orders of fields from
eddy currents) for spherical harmonic basis functions bl (l
indexes the different spherical harmonic terms); 𝜔 is the
off-resonance from B0 inhomogeneity (measured in a sep-
arate scan); 𝜏 is the presumed synchronization delay of
the MRI signal y relative to kl(t); and Δ𝜏 is the unknown
error in 𝜏. The value of 𝜏 might be initially estimated
based on typical trigger delays or the time for the gradi-
ent prephasers required for some trajectories (eg, EPI), for
example, and the purpose of this algorithm is to determine
the net error-free delay, 𝜏 + Δ𝜏. To cast Equation 1 into a
form that enables a convex estimation of Δ𝜏, we first rec-
ognize that for typical delay errors that are on the order of
microseconds, kl (tm) is approximately linear in the vicinity
of each sample m. This approximation allows the substi-
tution kl (tm + 𝜏 + Δ𝜏) = kl (tm + 𝜏) + Δ𝜏k′l (tm + 𝜏) where
k′l (t) = dkl(t)∕dt, yielding

y𝑗m =
∑

n
C𝑗 (rn) x (rn) ei𝜔(rn)tm ei

∑
l kl(tm+𝜏)bl(rn)eiΔ𝜏

∑
l k′l (tm+𝜏)bl(rn).

(2)

Furthermore, for small Δ𝜏, the net phase
Δ𝜏

∑
l k′l (tm + 𝜏) bl (rn)≪ 1, allowing the use of

a Taylor approximation eiΔ𝜏
∑

l k′l(tm+𝜏)bl(rn) ≈ 1 +
iΔ𝜏

∑
l k′l (tm + 𝜏) bl (rn), yields the following:
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DUBOVAN and BARON 3

T A B L E 1 Algorithm for the joint optimization of 𝜏 and x, “Algorithm 1”

Input: Δ𝜏min, 𝜏0, 𝛾0

Output: 𝜏, x

Initialization: Δ𝜏0 = ∞, p = 0

1: while Δ𝜏p > Δ𝜏min do

2: p = p + 1

3: interpolate kl(t) and k′l (t) to time samples tm + 𝜏p−1, and form Ap and Bp

4: xp = argminx
‖‖Apx − Y‖‖

2
2

5: Δ𝜏p = Re
[((

Bpxp
)H (

Bpxp
))−1(

Bpxp
)H (

Y − Apxp
)]

6: if p > 1 and sign
(
Δ𝜏p

)
≠ sign

(
Δ𝜏p−1

)
then

7: 𝛾p = max
(
1, 𝛾p−1∕2

)

8: else

9: 𝛾p = 𝛾p−1

10: end if

11: 𝜏p = 𝜏p−1 + 𝛾pΔ𝜏

12: end while

13: return 𝜏p, xp

y𝑗m =
∑

n C𝑗 (rn) x (rn) ei𝜔(rn)tm ei
∑

l kl(tm+𝜏)bl(rn)

+Δ𝜏i
∑

n
∑

l k′l (tm + 𝜏) bl (rn)C𝑗 (rn) x (rn) ei𝜔(rn)tm ei
∑

l kl(tm+𝜏)bl(rn).

Equation 3 can be cast into a matrix equation over all
receivers as follows:

Δ𝜏Bx = Y − Ax
Ym+jNs = yi

m

Am+jNs ,n = C𝑗 (rn) ei𝜔(rn)tm ei
∑

l kl(tm+𝜏)bl(rn)

Bm+jNs ,n = i
∑

l
k′l (tm + 𝜏) bl (rn)C𝑗 (rn) ei𝜔(rn)tm ei

∑
l kl(tm+𝜏)bl(rn)

(4)

where Ns is the number of samples acquired. If Nr
is the number of receivers and Nx is the number of
object-domain voxels in x, then A and B are matrices of
size NsNr by Nx. Accordingly, Bx and Y − Ax are each col-
umn vectors with length equal to NsNr, and Δ𝜏 can be
determined in a least-squares sense via

Δ𝜏 = Re
[(
(Bx)H(Bx)

)−1(Bx)H(Y − Ax)
]
. (5)

The determination of Δ𝜏 requires knowledge of the image
x. Accordingly, we jointly solve for x and Δ𝜏 by iteratively
alternating between determining x at iteration p using

xp = argminx
‖‖Apx − Y‖‖

2
2, (6)

and solving for Δ𝜏 using direct matrix implementation
of Equation 5. Equation 6 is solved using the conju-
gate gradient method. For every iteration, p, kl

(
tm + 𝜏p

)

is re-interpolated from the original field probe sam-
ples via 𝜏p = 𝜏p−1 + Δ𝜏p−1. Likewise, k′l (t) is estimated

using a 5-point central difference of the field probe data
that is then interpolated to the MRI samples located
at tm + 𝜏p. All interpolations used piecewise cubic Her-
mite interpolation.19 Iterations continue until Δ𝜏p is less
than a user-specified threshold, Δ𝜏min. The net algorithm,
Algorithm 1, is found in Table 1. Notably, this joint
optimization is only required for a single sample slice
because the delay is not expected to change for different
slices.

In practice, Algorithm 1 may converge slowly. To accel-
erate convergence, we propose to scale Δ𝜏p by a factor 𝛾
in every iteration. If the polarity of Δ𝜏p changes from one
iteration to the next, it suggests that 𝛾 is too large; thus,
𝛾 is reduced by a factor of 2 for the next iteration, subject
to 𝛾 ≥ 1. Coil compression performs a compression of the
receiver channels into fewer virtual channels using a linear
transformation determined from singular value decompo-
sition, which can drastically reduce memory requirements
and accelerate image reconstructions.20–23 Accordingly, in
this work the impact of coil compression on the accuracy of
Algorithm 1 will also be evaluated by varying the number
of virtual coils, Nr.

3 METHODS

3.1 Data acquisition
and reconstruction parameters

A healthy patient was scanned on a 7T head-only MRI
(Siemens MAGNETOM Terra Plus) at Western Univer-
sity’s Center for Functional and Metabolic Mapping
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4 DUBOVAN and BARON

(80-mT/m gradient strength and 400-T/m/s max slew
rate), which was approved by the institutional review
board at Western University, and informed consent was
obtained before scanning. The scans used a 32-channel
receive coil with integrated field probes.24 A single-shot
spiral acquisition was performed with an in-plane reso-
lution of 1.5× 1.5 mm2, 3-mm slice thickness (10 slices),
TE/TR = 33/2500 ms, FOV = 192× 192 mm2, an under-
sampling rate of 4, dwell time between samples of
2.5 μs, and a total readout time of 13.2 ms. A single-shot
spin-echo EPI acquisition was acquired in a separate
scanning session with an in-plane resolution of 2 mm2,
3-mm slice thickness (10 slices), TE/TR = 59/2500 ms,
FOV = 192× 192 mm2, an undersampling rate of 3, dwell
time between samples of 2.4 μs, and a total readout time
of 16.9 ms. Noise correlation between receivers was cor-
rected using prewhitening before any reconstructions,25

and the data-based method of Zhang et al was used for
coil compression.23 The B0 field maps were acquired at
the same resolution as the single-shot spiral scan using
Cartesian-sampled dual-echo gradient echo with TE val-
ues of 4.08 and 5.10 ms. The first echo of the same
data was used to estimate C𝑗 via ESPIRiT.26 The spa-
tially varying field dynamics up to second order in space
were measured simultaneously with the MRI data using a
field-monitoring system (Skope Clip-on Camera) consist-
ing of 16 transmit/receive 19F field probes and a sampling
dwell time of 1 μs.24 In all implementations of Algorithm 1,
iterations in p were stopped whenΔ𝜏 < 0.005 μs. The object
domain support (ie, the FOV images that were recon-
structed in Equation 6) was determined by thresholding
the B0 mapping images, which optimizes reconstruction
time.27

The initial guess for the synchronization delay was set
to 45 μs for spiral acquisitions, which includes hard-coded
time allowance for trigger pulse transmission and the field
probe excitation pulses. Moreover, we have developed a
simple algorithm to determine the starting guess for EPI.
In short, this method consists of (a) numerically finding
the first zero crossing of the first-order field probe profile
that corresponds to the readout gradient, and then (b) sub-
tracting half the duration for reading out a single line of
k-space (available from the raw MRI data header) from the
position of the zero-crossing.

3.2 Convergence and coil-compression
performance

To investigate the speed increases for 𝛾0 > 1, the number
of iterations required to determine 𝜏 was measured for
three cases corresponding to 𝛾0 = {1, 3, 10} using the in
vivo acquisitions. To investigate the performance of the

algorithm with coil compression, 𝜏 was estimated with the
full complement of 32 channels as well as 16, 10, and 6
virtual channels (𝛾0 = 3 for all cases).

3.3 Validation of accuracy

Simulations to validate accuracy were performed by
sampling the image acquired in the B0 mapping scan
(after interpolating to the FOV and resolution of the
field-monitored scan via modified Akima cubic Her-
mite interpolation19) using the forward model defined by
Equation 1 with the kl measured via the field monitoring
system. Various choices of 𝜏 ranging from −2.5 μs to 2.5 μs
were simulated for both the spiral and EPI acquisitions
described previously. Gaussian white noise (SNR∼ 10 in
white matter) was added to the simulated k-space data
before using Algorithm 1.

4 RESULTS

The field dynamics measured using the field probe system
for both spiral and EPI are displayed in Figure 1, where

(A)

(B)

(C)

F I G U R E 1 Field dynamics measured using the field probe
system displayed as the coefficients, kl(t), corresponding to zeroth
(A), first (B), and second (C) order spherical harmonics for each of
the spiral and EPI trajectories. The zoomed-in section highlights a
100-μs span of time during which little variation in fields is
observed. The basis functions corresponding to each index l are
shown above each row of plots
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DUBOVAN and BARON 5

F I G U R E 2 A, Image reconstructions
that result from Algorithm 1 from both
spiral and EPI acquisitions. B,C, The
solution of Equation 6 when 𝜏 is offset from
the result in (A) by 1 μs and 2 μs,
respectively. The right column for each
readout type shows the difference relative to
the result of Algorithm 1, scaled by a factor
of 2. While spiral exhibits blurring due to
delay errors, EPI shows moderate ghosting
artifacts for 1 μs of synchronization error
(eg, circled) and complete reconstruction
failure for an error of 2 μs. Similar results are
observed in other slices

(A)

(B)

(C)

it is observed that the assumption of slowly varying field
changes is valid on time scales of tens to hundreds of μs.

The in vivo images reconstructed from the proposed
algorithm show good quality at the automatically deter-
mined value of 𝜏 (Figure 2A). Substantial artifacts are
introduced for EPI when errors in delay are present, while
blurring is observed for spiral (Figure 2B,C). The SD of syn-
chronization delays determined from Algorithm 1 across
all 10 slices was 34 ns for spiral and 53 ns for EPI.

When 𝛾 = 1, a monotonic convergence of 𝜏 is observed,
which is greatly accelerated with 𝛾 = 3 (Figure 3A). When
the initial 𝛾 is chosen to be much too large at a value
of 10, the convergence is oscillatory, but still faster than
when 𝛾 = 1. When coil compression is used to determine
𝜏 for the in vivo scans, there is negligible degradation in
accuracy (Figure 3B).

Noise was added to the simulated image reconstruc-
tions for both spiral and EPI trajectories to achieve an
SNR of approximately 10 in white matter (Supporting
Information Figure S1). Highly accurate determination of
𝜏 is observed for as low as 10 virtual coils for both spiral
and EPI (Figure 4A). For six virtual coils, a small positive
bias in 𝜏 was observed.

The loss function ‖‖Apx − Y‖‖
2
2 is shown for a range of

starting guesses of 𝜏 in Figure 4B. A local minimum is
observed for the EPI trajectory for extremely large dispar-
ity in the starting guess from the true value, which causes
Algorithm 1 to fail in the proximity of the local minimum.

(A)

(B)

F I G U R E 3 A, Convergence of 𝜏 for various choices of 𝛾0,
where p is the iteration number and 𝜏0 is the initial guess, for both
spiral and EPI prospective scans (results from the same slices
shown in Figure 2A). B, Error in 𝜏 determined from Algorithm 1 as
the number of virtual coils used in coil compression is decreased
from the full number of 32 coils, where the result from 32 coils is
used as the reference. For both spiral and EPI, negligible error is
observed for as few as six virtual coils (< 100 ns). Similar results are
observed in other slices
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6 DUBOVAN and BARON

(A) (B)

F I G U R E 4 Simulations when various synchronization delays (𝜏true) are used to simulate data sampling via Equation 1. After sampling,
noise is added to the simulated signal data (SNR∼ 10) and Algorithm 1 is used to estimate the delay, 𝜏auto. A, Performance of Algorithm 1 for
differing numbers of virtual coils (Nr) used in coil compression (initial guess 𝜏0 = 0 μs, std = standard deviation of 𝜏auto − 𝜏true). The solid line
depicts where 𝜏auto = 𝜏true. Example images from the simulations are shown in Supporting Information Figure S1. B, Loss function (red
dashed, right vertical axis) and the result of Algorithm 1 (blue solid, left vertical axis), where 𝜏0 is the initial guess used in Algorithm 1. The
loss function was computed as ||Ax − Y ||22, where A used 𝜏 = 𝜏0 (see Equation 4) and x was found via Equation 6 assuming 𝜏 = 𝜏0. While the
shown plot used 𝜏true = 0 μs, similar results were obtained for other choices of 𝜏true. For an initial guess of the synchronization delay more
than 5 μs from the true value, Algorithm 1 is attracted to a local minimum for EPI

5 DISCUSSION

In this work, we have developed a new algorithm for the
accurate and rapid determination of the delay between
MRI data samples and field dynamics. While we demon-
strated the algorithm using data from NMR field probes,
it is generalizable to other methods for acquiring field
dynamics.28 Consistent delays were determined for dif-
ferent slices, which suggests that the delay only needs to
be calculated once at the beginning of the reconstruction
pipeline for a single sample slice. This single-joint fit for
𝜏 and x can be performed with strong coil compression
because this was shown to result in little error in 𝜏. How-
ever, the image obtained from this joint fit of x and 𝜏 in
the sample slice could have artifacts from coil compres-
sion (see Supporting Information Figure S2), and should
therefore be discarded before reconstructing all slices via
Equation 6 with the automatically determined 𝜏 and a
more conservative choice of virtual coils. For our GPU
implementation, the total time for determination of 𝜏 via
Algorithm 1 was 14 s for spiral and 22 s for EPI when using
10 virtual coils and 𝛾0 = 3 (most time was spent on image
formation via Equation 6). The longer time for EPI is due
to additional k-space samples as well as additional itera-
tions (Figure 3). The need for additional iterations likely
stems from delays causing more substantial image artifacts
for EPI (Figure 2), which leads to a poor estimate for the
image in early iterations.

The proposed approach was proven to be effective for
both single-shot spiral and EPI trajectories. When only six
virtual channels are used, the accuracy in 𝜏 for the spi-
ral case is slightly lower than for the EPI case (Figure 4),
which likely occurs because an error in the delay only
causes very subtle artifacts for spiral trajectories that may
be difficult for the algorithm to detect in the presence of
noise (eg, Figure 2).

When the initial guess for the delay is far from the true
value, several starting guesses for 𝜏 may be required to
find the global minimum, as Algorithm 1 is not globally
convex (eg, for EPI as in Figure 4B); that said, the sub-
problems defined by Equations 5 and 6 are each convex.
However, for all scans used on our system so far (resolu-
tions of 1.1 mm to 2 mm, accelerations by factors of 2–5),
the initial guess has been within approximately 1 μs from
the optimum value determined from Algorithm 1 for both
EPI and spiral.

In other tests, we found that this method fails when
only a single receiver channel is used (data not shown).
Accordingly, the ability to estimate 𝜏 likely stems from
consistency between the data and receiver sensitivity pro-
files (ie, C𝑗 in Equation 1). The nature of this approach
can be intuitively understood by considering the effect
of synchronization delays on the solution of Equation 6.
For single-shot spiral, a delay primarily causes blurring
and a slight rotation of the multichannel image data rel-
ative to the coil sensitivities, which increases the residual
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DUBOVAN and BARON 7

in the loss function ‖‖Apx − Y‖‖
2
2; accordingly, an optimal

choice of 𝜏 from Equation 5 will minimize this incon-
sistency. Other trajectories would have similar effects.
For example, a timing delay for EPI creates ghosting29

and for a radial acquisition creates streaking artifacts,15

which are both inconsistent with the sensitivity profiles.
Moreover, because other less-general approaches enforc-
ing self-consistency have been effective for radial trajec-
tories,15 it is likely that Algorithm 1, which is also based
on self-consistency, would also be successful for this and
likely other trajectories. Notably, the algorithm would not
be successful for trajectories in which delays only cause a
benign phase ramp in the object domain (eg, basic mul-
tishot Cartesian trajectories), because there would be no
inconsistency with the receiver sensitivities created by the
delay error; however, there is also likely little need to
accurately determine the synchronization delay in these
cases because the delay would not cause any harmful
artifacts.

There are two user-defined parameters for this
algorithm: the number of virtual coils and the conver-
gence acceleration parameter 𝛾 . Even though we saw
minimal image artifacts even when using as low as six
virtual coils (Supporting Information Figure S2), the large
increase in error in 𝜏 when moving from 10 to 6 coils
(Figure 4) suggests that there may be individual cases in
which image artifacts are encountered. Accordingly, we
recommend a somewhat conservative choice of coils for
all cases, such as 8 to 12 virtual coils for a 32-channel
receiver. Also, while a suboptimal choice of 𝛾 length-
ens the time for convergence, it has no impact on the
accuracy aside from the unlikely event that it is so large
that it brings the delay to a basin of attraction for a local
minimum.

While Algorithm 1 only considers a single synchro-
nization delay, it could easily be adapted to estimate differ-
ent delays on the different gradient channels (ie, 𝜏 becomes
a vector in Equation 5). This adaptation of the algorithm
would be appropriate for acquisitions that do not use field
monitoring. However, for these cases it would likely be
preferred to account for the relative delays between chan-
nels and other trajectory errors from eddy currents via a
gradient impulse response function.4 Notably, it is pos-
sible that there may still exist a global synchronization
delay error even after correction with a gradient impulse
response function, and, accordingly, Algorithm 1 may be
applicable for such situations as well. Finally, Algorithm
1 could likely be extended to multishot sequences
(notably, the synchronization delay is not expected to
vary with shots); however, echo-time shifting such as that
used for interleaved EPI would need to be accounted
for.

6 CONCLUSIONS

This work introduced a new model-based retrospective
approach to automatically determine the synchronization
delay between field dynamics and MRI data, which obvi-
ates the need for pulse sequence modifications or manual
tuning to determine delays.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Simulation results for no noise (A), noise added
(SNR∼ 10) for 1-μs error in 𝜏 (B), and the result of using
Algorithm 1 for noise added (SNR∼ 10) and an initial
error in 𝜏 of 1 μs (C). The right column for each read-
out type shows the difference relative to the ground truth,
scaled by a factor of 2. Simulated data, Y, was determined
from Equation 1 using an image from the B0 mapping
scan as x. Mild artifacts are visible for spiral, whereas
substantial artifacts are observed for EPI. Nr = 32 for
all cases
Figure S2. Image reconstructions performed using in vivo
data in a two-step process, where in step 1 the synchroniza-
tion delay 𝜏 is determined via Algorithm 1 using Nr,delay
virtual coils, and then in step 2 that value of 𝜏 is used in
Equation 6 with Nr,image virtual coils to determine the final
image. The right half of each image shows the difference
from the reference image in the top row, scaled by a fac-
tor of 5. The error in 𝜏 is computed as the difference in 𝜏
relative to the case where all 32 coils were used for both
steps. Although the solution to Equation 6 exhibits errors
for a low number of virtual coils, Algorithm 1 produces rel-
atively accurate estimations of 𝜏 for all cases. This suggests
that the subproblem defined by Equation 5 (determination
of 𝜏) is better conditioned than the subproblem defined
by Equation 6 (determination of the image), which is
expected due to many orders of magnitude fewer unknown
variables to solve for in the former case. Similar results are
obtained in other slices
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