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inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da
listagem de referências incluı́da.

Candidato:

——————————————
(Andriy Mazayev)

i



ii

Copyright ©Andriy Mazayev. A Universidade do Algarve reserva para si o direito, em
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Abstract

The incoming digital revolution has the potential to drastically improve our productivity,
reduce operational costs and improve the quality of the products. However, the realiza-
tion of these promises requires the convergence of technologies — from edge computing
to cloud, artificial intelligence, and the Internet of Things — blurring the lines between
the physical and digital worlds. Although these technologies evolved independently over
time, they are increasingly becoming intertwined. Their convergence will create an un-
precedented level of automation, achieved via massive machine-to-machine interactions
whose cornerstone are event processing tasks.

This thesis explores the intersection of these technologies by making an in-depth ana-
lysis of their role in the life-cycle of event processing tasks, including their creation, pla-
cement and execution. First, it surveys currently existing Web standards, Internet drafts,
and design patterns that are used in the creation of cloud-based event processing. Then, it
investigates the reasons for event processing to start shifting towards the edge, alongside
with the standards that are necessary for a smooth transition to occur. Finally, this work
proposes the use of deep reinforcement learning methods for the placement and distri-
bution of event processing tasks at the edge. Obtained results show that the proposed
neural-based event placement method is capable of obtaining (near) optimal solutions in
several scenarios and provide hints about future research directions.

Keywords: Web standards, Internet of Things, Web of Things, event processing, edge
computing, load balancing, resource placement, deep neural networks, deep reinforce-
ment learning.
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Resumo

A nova revolução digital promete melhorar drasticamente a nossa produtividade, reduzir
os custos operacionais e melhorar a qualidade dos produtos. A concretização dessas pro-
messas requer a convergência de tecnologias – desde edge computing à cloud, inteligência
artificial e Internet das coisas (IoT) – atenuando a linha que separa o mundo fı́sico do digi-
tal. Embora as quatro tecnologias mencionadas tenham evoluı́do de forma independente
ao longo do tempo, atualmente elas estão cada vez mais interligadas. A convergência de-
stas tecnologias irá criar um nı́vel de automatização sem precedentes. Este processo será
alcançado por meio de interações machine-to-machine, cujo elemento fundamental são
as tarefas para processamento de eventos (event processing tasks). Uma event processing

task consiste num processo de três fases: observação do estado dos dispositivos, análise
das alterações dos mesmos e, caso uma condição especı́fica seja satisfeita, envio de co-
mandos para a realização de uma tarefa especı́fica por parte de outro(s) dispositivo(s).

Esta dissertação estuda o papel das tecnologias acima mencionadas no ciclo de vida
das event processing tasks, desde sua criação, colocação e execução. O pilar das event

processing tasks é a interoperabilidade entre os dispositivos, atualmente um tópico cen-
tral do IoT, que está, neste momento, numa fase de uniformização e padronização. O
sucesso e a ubiquidade do protocolo de Internet (IP) e do paradigma representational

state transfer (REST), pilares da Web “normal”, chamaram a atenção da indústria e dos
investigadores, levando-os a querer trazer os mesmos mecanismos para os dispositivos
com reduzida capacidade de processamento. O objetivo é tornar a interação com dispo-
sitivos tão simples como uma interação com uma página Web, criando assim a Web das
coisas.

Uma das organizações que lidera este esforço chama-se Internet Engineering Task

Force (IETF), que trouxe protocolos como IPv6 e o protocolo contrained application

protocol (CoAP) que, tal como hypertext transfer protocol (HTTP) na Web “regular”,
permite criar um modelo de interação e comunicação entre serviços seguindo a arquitetura
REST. Seguindo os passos do IETF, organizações como a World Wide Web Consortium

(W3C), open connectivity foundation (OCF), entre outras, começaram a definir a forma
explı́cita como os dispositivos devem expor informações sobre si e indicar como é possivel
interagir com eles, isto é, começou a desenvolver-se o modelo de dados (data model) para
a interação. Contudo, é importante referir que o processo de padronização ainda está
na sua infância e que, de momento, não existe nenhum modelo de dados universalmente
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aceite por todos os produtores de dispositivos. No momento em que a aceitação ocorrer,
e surgir um padrão de facto, será possı́vel ter uma aplicação capaz de controlar milhões
de dispositivos, tal como acontece na Web, onde um único navegador (browser) consegue
interagir com milhões de páginas Web.

Este trabalho tem como objetivo realizar uma pesquisa aprofundada dos design pat-

terns existentes, padrões e conceitos da Web que podem ser usados na criação das event

processing tasks. A reutilização de design patterns bem conhecidos e comprovados é
importante, pois evita a criação de soluções proprietárias de processamento de eventos,
que representam uma barreira de interoperabilidade. O objetivo final é investigar como
as propostas e padrões atuais podem ser usados na criação das event processing tasks

distribuı́das.
Contudo, a criação das event processing tasks é apenas o primeiro passo, o passo seg-

uinte é a sua colocação e execução. Para tal torna-se necessário ter uma infraestrutura que
consiga fornecer a computação e armazenamento. Até muito recentemente, esta tarefa foi
relegada para a cloud computing. No entanto, a cloud computing não é capaz de satisfazer
os requisitos de novos aplicativos IoT, nomeadamente: sensibilidade a atrasos, custos de
uplink, privacidade, segurança e não interrupção de serviços em ambiente com conectivi-
dade intermitente. Por sua vez, o edge computing que traz computação e armazenamento
para perto dos end-devices, terá um papel importante no processamento de eventos. Este
trabalho tem como objetivo investigar que mecanismos e protocolos podem ser utiliza-
dos por dispositivos edge para expor as suas capacidades computacionais, anunciar a sua
presença, bem como o seu desejo de participar no processamento de eventos.

Outro foco deste trabalho é a otimização, que irá ter um papel importante no pro-
cesso de distribuição das event processing tasks entre os dispositivos. Dada a natureza
heterogénea dos dispositivos edge e os diferentes requisitos dos aplicativos IoT, o posici-
onamento das event processing tasks deve ser feito de acordo com os padrões de tráfego,
satisfazendo ao mesmo tempo os requisitos das aplicações cliente. Este trabalho inves-
tiga as estratégias de posicionamento necessárias para que o processamento distribuı́do
de eventos aconteça de forma eficiente, tomando em consideração as restrições relativas
ao IoT tais como: latência, recursos computacionais e custos de operação do dispositivo.

Por fim, este trabalho investiga também a utilização de técnicas de machine lear-

ning (ML) durante o processo de distribuição das event processing tasks. A necessidade
de utilização de ML surge como consequência da evolução e cresimento rápido das re-
des de comunicação, facto que leva ao surgimento de requisitos para os quais não exi-
stem estratégias/heurı́sticas de distribuição que tenham bom desempenho. As abordagens
clássicas e manuais consomem muito tempo e requerem experiência na área de modo a
terem bom desempenho. Por outro lado, métodos ML que, sem muita engenharia, ofe-
recem a possibilidade de descobrir novas estratégias de distribuição parecem ser uma es-
colha atraente para lidar com tais cenários [1]. Avanços recentes em deep learning (DL)
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mostram um desempenho notável em tarefas como reconhecimento de imagem [2] ou pro-
cessamento de linguagem natural (NLP) [3]. Além disso, o deep learning em combinação
com o reinforcement learning (RL), habitualmente conhecido como deep reinforcement

learning (DRL), está a mostrar resultados promissores em problemas de tomada de de-
cisão como jogos de tabuleiro [4, 5], condução [6], robótica e muito mais [7]. Os resul-
tados obtidos neste trabalho mostram que as redes neurais são capazes de obter soluções
ótimas (ou próximas do ótimo) em vários cenários estudados.

Palavras-chave: Padrões da Web, Internet das coisas, Web das coisas, processamento de
eventos, edge computing, balanceamento de carga, colocação de recursos, rede neuronais,
deep reinforcement learning.
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C H A P T E R 1

Introduction

Abstract: This chapter presents the technological background for this thesis by intro-
ducing the ingredients necessary to enable the ad hoc creation and placement of event
processing tasks at heterogeneous devices. Furthermore, it presents the motivation and
outlines the research goals of this work.

1.1 Background

The Internet of Things (IoT) is the perfect representation of Mark Weiser’s vision of
profound technologies: devices with processing and communication capabilities that are
embedded into the fabric of everyday life at a level that they vanish into the background
[12]. Mark Weiser first coined this concept in 1991 and has, since then, turned into
reality. We are no longer amazed by the smart lights nor watches capable of tracking
our location, steps and heart rate. Checking, in real-time, the weather, pollution levels or
traffic of a place located on the other side of the globe became a banality. These are just a
few examples of what the advances in microelectronics and miniaturization have brought.
Nowadays, millions of constrained devices with wireless communication capabilities are
measuring the environment and sending this information to the Internet. According to
CISCO, in 2021 IoT devices will generate around 850 zettabytes of data and this number
will continue to grow [13]. We are already starting to struggle to integrate and process
such massive amounts of data generated by heterogeneous devices. The struggle is also
exacerbated by device manufacturers that build their entire business models on top of
proprietary communication protocols, data models and closed source applications. As a
result, the IoT environment is now highly fragmented. Figure 1.1 is a good illustration
of the current state of IoT. It has stumbled into vertical data silos, i.e., closed vertical
systems, designed for a single purpose, that are hard to integrate with other systems from
other domains.

Until recently, the integration of multiple devices into a single application, in particu-
lar when different vendors are involved, often required hand crafted solutions, which is an
expensive and time consuming process. Additionally, providing continuous support (e.g.,
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Figure 1.1: The current fragmented state of IoT. One-app to one-device relationship
(adapted from [8]).

bug fixing, migration to newer API versions) involves extremely high costs, an expense
that often does not receive the necessary attention.

To put the cost of fixing a bug in a perspective, consider a 53$ hourly rate which,
according to the U.S. Bureau of Labor Statistics, corresponds to the average value charged
by a software engineer in 2020 [14]. Moreover, consider the findings reported by Jeff
Sutherland, co-creator of Scrum, who stated that, regardless of the project, fixing any
software bug three weeks after its detection takes 24 times longer than if it was fixed on
the same day that it was created [15]. The time increase is mainly due to the need to
remember why the code was written the way it was written, isolating the bug and fixing
it. Providing long-term support for an integration can be seen as the process of solving
old bugs, hence the extremely high costs. As an example, a bug that takes 1 hour to solve,
but is found 3 weeks later, has a cost of 1.272$. Finding one bug per month equals to
15.264$ in yearly expenses.

In order to mitigate the above mentioned limitations and reduce the maintenance costs,
IoT practitioners introduced the Web of Things (WoT) concept, which aims to provide a
set of uniform and standardized interfaces (at the Application layer of the TCP/IP model)
to address the interoperability between heterogeneous devices. Inspired by, and based on,
the experience gained from the development of the World Wide Web, WoT pioneers like
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1.1 Background

the Internet Engineering Task Force (IETF), World Wide Web Consortium (W3C), open
connectivity foundation (OCF), one data model (oneDM) group, connectivity standards
alliance (CSA), among other, started to work on the standardization of the architecture
and data model design for IoT systems, which includes REST API design, M2M protocol
integration and hypermedia controls. The outcomes of these working groups resulted
in several proposals such as WoT Thing description [16], WoT binding templates [17],
OCF core specification [18], IoT schema [19], the matter project [20], oneM2M [21],
oneDM semantic definition format [22], Azure digital twin definition language (DTDL)
[23], lightweight M2M (LWM2M) [24], object linking and embedding for process control
unified architecture (OPC UA) [25]. As part of a research background for this thesis, some
of these proposals were reviewed and analyzed, work that resulted in three publications
[26], [27], [28].

Generally speaking, despite their differences, the above mentioned research groups
agreed on a common set of design patterns in their architectures: IPv6, REST APIs to
interact with the devices (although other interaction models are also supported) and three
main classes to describe their resources and capabilities. These classes correspond to
device’s:

• State values that can be read or set (e.g., temperature value)

• Control entry points to invoke a function (e.g., open a garage door)

• Asynchronous signals that push notifications to the data consumers (e.g., overhea-
ting events)

While there is an agreement on these base concepts, there is still no common way of
describing them. At the moment of writing, there is an ongoing battle between several
competing standards backed by several consortia. Much like happened with the VHS
versus Betamax (won by VHS), Blu-ray versus HD DVD (won by Blu-ray) or protocol
wars that occurred between the 70s and 90s (won by TCP/IP protocol set), each consortia
introduces its own data model, vocabulary and data structure to describe the devices. Ne-
vertheless, these efforts are very important because interoperability between the devices
is not enabled by simply agreeing to use JavaScript object notation (JSON) and hypertext
transfer protocol (HTTP), or any other application protocol and data exchange format. For
example, JSON can be structured in an infinite number of ways while transmitting exactly
the same information. HTTP POST can be used for several different purposes. Automa-
ted device discovery, interaction and machine-to-machine communication requires strict,
structured, machine readable and self-described interface definitions [29]. Therefore, true
machine-to-machine communications and seamless integration will occur when device
manufacturers reach an agreement and start using a common data model, which will be-
come de facto standard. Once it happens, a single application will be able to control
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several devices produced by different manufacturers, as illustrated in Figure 1.2. In addi-
tion to the ease of use, this approach will also bring benefits to the developers. Instead of
learning specialized, complex, and difficult to use protocols (e.g., ZigBee1, Devices Pro-
file for Web Services (DPWS)2), interacting with a WoT-based device will be as simple as
interacting with a “regular” Web page. This will lower the entry barrier into the IoT world
and allow more developers to build new applications. Moreover, from the maintenance
point-of-view this approach is much more effective. Any new software release containing
a bug fix or new feature will automatically work with other devices.

Despite the benefits of a unified and centralized control, the real value of WoT will be
the ability to create connections between the devices (virtual wires), allowing properties
on different devices to be dependent on each other. For example, in order to prevent an
explosion, a gas leak detector could use virtual connections to send a signal to turn off
all home appliances. Another example of digital wiring is a smartphone that turns on the
home heating system 5 minutes before the owner arrives. The key idea is that the software
at devices should not need to know anything specific about other IoT devices in order to
be able to interact with them without human intervention.

Formally speaking, the creation of virtual wires is achieved via event processing tasks,
which constantly observe state changes at devices, analyze incoming data and, if a certain
condition is satisfied, trigger an actuation. However, the creation and the placement of
such tasks raises several issues/questions that are the focus of this work.

1.2 Motivation and Research Goals

The main motivation behind this work is to investigate and enable event processing in the
new generation of IoT devices. To this end, this work aims to explore several research
topics and to answer the following questions:

Standards – What standards are required for distributed event processing to happen

across heterogeneous devices?

This work aims to perform an in-depth research of existing design patterns, standards
and Web concepts that can be used when creating event processing tasks. Re-using well
known and proven design patterns is important as it avoids the creation of custom made
and proprietary event processing solutions, which pose an interoperability barrier. The
end-goal is to investigate how current proposals and standards can be used in the creation
of distributed event processing.

1https://zigbeealliance.org/wp-content/uploads/2019/11/docs-05-3474-
21-0csg-zigbee-specification.pdf

2http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-1.1-spec.html
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Figure 1.2: Envisioned WoT (adapted from [8]).

Edge Computing – What is the role of edge computing in event processing? How edge

devices can participate in event processing?

Cloud computing is unable to satisfy the requirements of new IoT applications, including
event processing. Some of these requirements are delay sensitivity, uplink costs, privacy,
security, and non-interruption of services in environment with intermittent connectivity.
Edge computing, which brings computation and storage near the end-devices, will play
an important role in event processing. This work aims to investigate what mechanisms
and protocols can edge devices use to expose their computational capabilities, announce
their presence and their desire to participate in event processing.

Optimization – What is the optimal placement of tasks for event processing to happen?

Given the heterogeneous nature of edge devices, and different requirements of IoT ap-
plications, the placement of event processing tasks must be done according to the traffic
patterns while satisfying user’s demands. This work aims to formally investigate the pla-
cement strategies that are required for distributed event processing to happen efficiently,
while taking into account IoT-related restrictions such as latency, computational resour-
ces, and device operation costs.
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Machine Learning – How can machine learning methods help in the distribution of

event processing tasks?

The rapid growth and evolution of communication networks will likely generate require-
ments for which there is no good performing distribution strategies/heuristics. Designing
handcrafted solutions is time consuming and requires expertise in the area to achieve good
performance. On the other hand, data-driven methods that, without much engineering, of-
fer a possibility of discovering new distribution strategies seem to be a compelling choice
to deal with such scenarios [1]. Recent advances in deep learning (DL) show remarkable
performance in tasks like image recognition [2] or natural language processing (NLP) [3].
Moreover, deep learning in combination with reinforcement learning, commonly known
as deep reinforcement learning (DRL), is showing some promising results in decision
making problems like board games [4, 5], driving [6], robotics, and many more areas [7].
This work aims to investigate the use of DRL in the distribution process of the event
processing tasks, which will enable the enhancement of WoT applications.

1.3 Thesis Overview

This work is divided in four chapters that provide answers to the previously outlined
questions. Please note that Chapter 2 and Chapter 3 are based on two independent journal
articles and, as such, some small sections and concepts may overlap.

The remainder of this thesis is organized as follows:
Chapter 2 focuses on standards, optimization and edge computing. This chapter ex-

plores currently existing approaches for event processing. It discusses their advantages,
limitations and unique characteristics. Furthermore, this chapter investigates the “disco-
very” techniques/strategies that edge devices can use in order to announce their desire to
participate in event processing. The overall trend in event processing is also outlined in
here. Following the protocol and standard analysis, a new distributed event processing
mechanism is presented, discussed and its optimal placement is mathematically formula-
ted and studied. The content of this chapter was published in [30].

In Chapter 3 the attention falls on the edge computing, optimization and machine
learning. This chapter investigates how event processing is currently happening at the
cloud and what is necessary for it to smoothly transition to the edge. To that end, this
chapter looks at the architectural and technological similarities between the cloud and
the edge. Additionally, it looks into how edge devices will organize themselves during
the event processing and what are the requirements for load balancing at the edge. After
the analysis, three common load balancing problems are studied, involving the quality of
the service provided, the fair usage of device resources and, finally, the minimization of
operational costs. An attention-based neural network, trained with reinforcement learning
methods, is used to provide a load balancing strategy for the three problems under consi-
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1.3 Thesis Overview

deration. This chapter has been submitted to IEEE IoT special issue on “Empowering the
Future Generation Systems: Opportunities by the Convergence of Cloud, Edge, AI, and
IoT”.

In Chapter 4, the achievements, concluding remarks, and ideas for future research are
outlined.
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C H A P T E R 2

A Distributed CoRE-based Resource
Synchronization Mechanism

Abstract: Representational state transfer (REST) application programming interfaces and
event processing are the cornerstone of dynamic Internet of Things. While the first one
is required for device interoperability, the latter is important for autonomous and respon-
sive systems. In recent years, both topics have received a lot of attention and have been
drastically changing due to the emergence of new applications, which end up working
inefficiently with current standards and architectures. More recently, event processing
started to move down from the top (cloud) to bottom (edge devices). At the same time,
the Internet Engineering Task Force, which normally solves low-layer protocol related
problems, has also started looking at event processing and resource synchronization from
a bottom-up perspective. This chapter explores the intersection of these efforts by making
an in-depth overview of currently existing standards, and Internet drafts, that allow buil-
ding complex event processing chains. Next, a new reusable and scalable event processing
mechanism, which can be distributed across multiple end-devices is introduced. Its opti-
mal distribution across end-devices is mathematically addressed, and results confirm its
effectiveness.

2.1 Introduction

With continuous advances in microelectronics, device miniaturization and reduction of
production cost, an increasing number of devices is being built with wireless communi-
cation modules capable of emitting all kind of data to the Internet. In fact, according to
IoT Analytics, by the year 2025 there will be around 34 billion devices connected to the
Internet [31]. In order to seamlessly integrate the incoming wave of new devices with
the already existing Internet infrastructure, the academics and the industry have made an
enormous effort to bring the existing protocols, design patterns and architectures, used on
the “regular” Web, to Class 1 and Class 2 constrained devices1. In other words, there is

1See “Terminology for Constrained-Node Networks” [32]
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a move towards the creation of the Web of Things (WoT) [16, 18, 33, 34]. One of such
efforts is being done by the Internet Engineering Task Force (IETF) IPv6 over Low power
WPAN (6LoWPAN) [35] and the IETF Constrained RESTful Environments (CoRE) [36]
Working Groups (WG).

The 6LoWPAN WG focused on standards for IPv6 to be used in 802.15.4 networks,
specifying 802.15.4 payload and header compression [37], [38]. Additionally, in [39],
IETF defined the IPv6 routing protocol for low-power and lossy networks (RPL). These
and other low level protocols paved the way to the creation of new application protocols
for constrained devices to adhere to the RESTful architectural style2. The development
of such application protocols is being done by the IETF CoRE WG whose most nota-
ble outcomes are constained application protocol (CoAP) [41] and its extension, CoAP
Observe [42].

CoAP opened the possibility to expose device functionalities using the well-known
(to the developers and users) RESTful principles. CoAP supports standard GET, POST,
PUT and DELETE methods alongside with response codes that are closely related to
HTTP specification. Additionally, CoAP resources are addressable by uniform resource
identifier (URI), it supports multiple Internet media types [43] and offers the possibility
for RESTfull caching and proxying [44]. Overall, CoAP fits the requirements of a scalable
protocol.

While CoAP brought a uniform REST-like request/response interaction pattern into
low-power and lossy networks (LLNs), the CoAP Observe extended it by introducing
the observer design pattern, thus creating the Create, Retrieve, Update, Delete and No-
tify (CRUDN) [18] interaction model. With this extension the client, interested in state
changes of a resource, can subscribe and be notified by the server each time the observed
resource changes its internal state. Such observation pattern plays an important role in
M2M LLN environments as it reduces the usage of network resources by removing the
periodic GET requests (polling) sent by clients interested in observing a certain event.
CoAP’s CRUDN methods can be implemented in Class 1 and 2 constrained devices for
their integration into dynamic and reactive IoT environments. Such interaction model
serves general interoperability goals, allowing flexible and dynamic solutions for event
processing to be implemented. Event processing is considered a fundamental tool to de-
rive real-time (or near real-time) conclusions from data in IoT applications.

In WoT, where every device resource is URI addressable, the event processing can be
seen as a three stage process: observation of one or many endpoints, evaluation
of the data produced and actuation by sending notifications to one or more endpoints.
Together, these elements form the resource synchronization mechanism, where resources
are located at URI addressable endpoints. Over the last decade, the evaluation part of
this mechanism has changed significantly. It has been moving from the cloud down to the

2See “Architectural Styles and the Design of Network-based Software Architectures” [40].
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fog and edge (mobile edge mostly). This transition is being motivated by the continuous
improvement of computing capabilities of smaller devices, and due to the emergence of
applications whose restrictions (e.g., delay sensitivity) cannot be satisfied when using the
cloud. Substantial research has been done to make this transition as smooth as possible.
Many different algorithms, protocols and heuristics, which bring the computation closer
to the data producers, are being proposed, explored and applied with success [45–47].

The general trend is to move towards decentralized and distributed IoT applications,
i.e., distributed observe-evaluate-actuate chains. Despite the promising results,
current research focuses only on the idea that data from IoT applications can be split
for independent evaluation, across multiple devices, and it ignores the possibility of
discovering evaluation blocks (by clients/applications) for re-utilization. The nonreuse
of evaluation blocks becomes critical in constrained environments. Also, most of the
scientific research on distributed processing focus on the optimization part and abstracts
from standardized communication protocols and data models. Such kind of approaches
tend to create custom made solutions and, therefore, present an interoperability barrier. In
our opinion, IoT environment will greatly benefit from a uniform, reusable and distributed
synchronization mechanism that does not rely on external applications/controllers and is
built upon open standards such as CoRE.

The main contributions of this chapter are:

• A study is made on how CoRE-related standards and ongoing research work do-
cumented in Internet-draft proposals can be used to build a robust and reliable IoT
synchronization mechanism. We will take a deep look at their internals, capabilities
and limitations. A close attention will be given to the most recent synchronization
mechanism called Rule that is currently in early stage of development and is now
under evaluation to be a part of open connectivity foundation (OCF) core specifica-
tion3,4,5.

• A decomposition mechanism for Rule is proposed allowing it to be split into a
set of small, chainable and reusable components. A distributed implementation
of the components allows scalable and reliable solutions to be built in constrained
environments.

• Finally, the impact of Rule decomposition and chaining is analyzed by addressing
the rule placement (RP) problem.

The remaining of this chapter is organized as follows: in Section 2.2 the existing fog
and edge-based proposals for distributed resource synchronization are presented together

3See “Rules Definition” [11]
4Original specification: https://github.com/openconnectivityfoundation/core/

pull/129
5Updated specification: https://github.com/openconnectivityfoundation/core-

extensions/pull/29
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with their limitations; in Section 2.3 a deep look at the CoRE-related synchronization pro-
posals, with a special attention to Rule mechanism, is carried out; Section 2.4 discusses
how rules can be chained, reused and distributed across different devices; Section 2.5 in-
troduces the RP problem and presents its mathematical formalization; Section 2.6 studies
the impact of RP while ensuring a fair use of device resources; Finally, in Section 2.7
concluding remarks are outlined.

2.2 Related Work

So far, and to the best of our knowledge, there were no attempts to explore distributed
event processing in CoRE-based IoT synchronization mechanisms. Nevertheless, and
although using different terminology and technologies, many attempts have been made to
build distributed event processing at cloud, fog, edge and sensor networks. This section
takes a look at such related work.

In [48] the authors outline the importance of distributed computation as a critical ena-
bler for a fast and responsive IoT system. The main idea is to share and use the computati-
onal capabilities of the nearby devices and, whenever necessary, use the cloud capabilities
to assist the computation. This workload sharing mechanism assumes that each IoT ap-
plication can be split into independent execution units and, therefore, distributed across
different devices. This is a common approach and similar studies have been done for the
fog in [49] and [50]. In these, authors study a delay-sensitive offloading schema in fog
computing. However, these approaches do not consider that multiple applications can
share similar execution units and, therefore, reuse is not addressed. Also, the possibility
of creating a chained processing is not explored.

In [51] the authors introduce the concept of virtual sensor, which is an abstraction of
real sensors extended with computational capabilities. Different types of virtual sensors
are defined, such as aggregator, qualifier, selector, etc. The authors study the perfor-
mance of virtual sensors in a cluster of web servers. This approach is similar to flow
programming applications such as Node-RED [52] or Eclipse Kura [53]. Although al-
lowing virtual sensor chaining, at the moment of writing these services do not support
WoT standards [18], [54], [55]. These and other applications, such as if-this-then-that
(IFTTT) [56] [57], rely mostly on centralized solutions (e.g., cloud and edge), and fair
distribution of virtual sensors across devices is yet to be tackled.

In [58] the authors explore the use of virtual sensors in body sensor networks and how
they can be chained together in signal processing tasks. The virtual sensor presented is a
computational component that has a set of inputs, a processing task and an output, which
can be further used as input by other, higher level, virtual sensors. The components create
distributed, fault tolerant graph, enabling efficient utilization of resources and applica-
tion interoperability. Authors show the feasibility of their approach by creating a virtual
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sensor graph capable of recognizing events from a walking person. However, the presen-
ted approach was only implemented in SPINE software, not used for the assessment of
protocols.

Countless solutions proposed by academics [59–61] and commercial projects such as
Amazon IoT [62], Azure IoT Hub [63] and cloudMQTT [64] use message queuing te-
lemetry transport (MQTT) [65] protocol, which was first introduced in 1991, as a basis
for IoT applications. Despite their differences, they are all based on publish/subscribe
paradigm. In this paradigm, constrained devices (clients) connect to a server, also known
as broker, and use it to publish or to subscribe/receive messages. This way of commu-
nication decouples completely the client that sends a message (the publisher) from the
client(s) that receive it (the subscribers). For this reason, event processing is simple to
achieve: sensors will publish data that an application (e.g., rule engine) subscribes; then
if the data satisfies the triggering condition, the application publishes another message
that an actuator is listening to. However, the flexibility that MQTT provides has also
some drawbacks. For example, the upper bound of network traffic is limited by the capa-
city that a local broker or brokers can handle. Additionally, the broker is a single point
of failure meaning that clients would keep working and wasting energy despite broker’s
unavailability, which is critical in battery powered devices. MQTT has also no content ne-
gotiation mechanism meaning that all the devices must know a priori the message formats
to be able to communicate [66], [67].

2.3 CoRE-based Resource Synchronisation Mechanisms

IETF started looking at CoRE-based synchronization mechanisms in a bottom-up manner,
i.e., from Access, to Find, Share and Compose layers6, which can be seen as sublayers of
the application layer (Internet Protocol stack). IETF’s effort was motivated by the need
of providing more autonomy to constrained devices in M2M synchronization tasks and to
ensure seamless and uninterrupted service in environments with intermittent connectivity.

2.3.1 Conditional Observe in CoAP

One of the first IETF attempts to achieve this was presented in 2012 [68]. The authors
propose to extend CoAP with an additional Condition header option that is used to
specify up to 32 different conditions for notification triggering. This mechanism offers
means for a direct conditional notification between clients and servers. In their work the
authors show that conditional observation reduces the energy consumption by elimina-
ting the transmission of unnecessary packets. While being energy advantageous, such
direct resource observation is not enough by itself as it can only convey one condition

6See Web of Things Architecture in “Building Web of Things” [8]
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per CoAP request. For example, if a client is interested in receiving a notification whe-
never temperature goes below 17ºC or beyond 23ºC then it would be necessary to send
two separate Observe requests. Additionally, embedding these conditions directly into the
CoAP header means that the condition types must be predefined (32 types of conditions
are proposed in [68]). Due to such limitations this proposal became stale and was replaced
by CoRE dynamic linking.

2.3.2 CoRE Dynamic Linking

Current IETF CoRE WG effort to introduce a synchronization mechanism, that can be
directly executed on constrained devices, is called CoRE dynamic linking [9] and it first
appeared in 2016. The state updates between the endpoints are exchanged using the link
binding concept. A link binding is a unidirectional (virtual) connection between two
resources whereby state updates at the source resource are sent to the destination resource.
A binding allows to exchange the updates between the resources in a direct and distributed
manner, i.e., without relying on any external application or data aggregation service. For
the management of binding instances, the CoRE WG defined the binding table where
bindings can be created, updated and removed. Current draft specification defines three
different binding methods:

• Polling - Located at the destination device performing periodic GET requests in
order to obtain the source resource representation.

• Observe - Located at the destination device that makes a GET Observe request in
order to obtain the source resource representations.

• Push - Located at the source device performing PUT requests in order to notify the
destination resource about state changes at the source.

That is, binding instances will be stored either on a source or destination device depen-
ding on the binding method used. In addition, current CoRE dynamic linking specification
defines the following binding attributes:

• pmin - Minimum time between notifications.

• pmax - Maximum time between notifications.

• st - Threshold indicating how much the value of a resource should change, com-
pared to the value from the last notification, before triggering a new notification.

• gt - Upper limit value that the resource should cross for notification triggering.

• lt - Lower limit value that the resource should cross for notification triggering.
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Figure 2.1: CoAP dynamic linking conditional observation (Adapted from [9]).

• band - A boolean value that acts as a behavior modifier of gt or lt. Without the
band parameter, the lt and gt convey only one notification, when these values
are exceeded. On the other hand, with the band in place the notifications are sent
as long as the value of the observed resource exceeds the lt and gt limits.

Figure 2.1 shows an example of a binding process. In this case, the client performs a
conditional observation of temperature resource. The condition (gt=25) is passed to the
server as a URI query in the observation request.

While providing means for a direct resource synchronization, the dynamic linking
specification does not define the ability to customize notifications. As an example, let us
consider the descriptions for the presence sensor (PIR) [69] and a lock [70] (defined by
OCF) where the first produces a boolean value as output and the latter accepts “Locked”
or “Unlocked” string as input. Creating a simple sensor-actuator binding if presence
detected then send “Unlocked” else send “Locked” would be impossible by relying
on dynamic linking mechanisms only. Either client side processing and filtering or an ad-
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Figure 2.2: Monitor components and synchronization flow (Adapted from [10]).

ditional middleware service performing the translation of PIR output into lock acceptable
input would be necessary in order to enable the desired interaction.

2.3.3 Monitor

A solution to dynamic linking limitation was proposed, in 2016, to IETF Thing-2-Thing
Research Group by one of the co-authors of CoRE dynamic linking. The author intro-
duced the Monitor resource [71], an extension of dynamic linking that encompasses the
possibility to customize the notification that is sent. The Monitor instance, represented in
Figure 2.2, is composed of three components:

1. Observer - Set of parameters indicating how the state representation of the source
resource should be obtained.

2. Processor - Set of parameters informing how to evaluate the observed state of a
resource. This component can be further decomposed in three different stages:

(a) Decoder - Uses accept-schema (discussed below) to interpret the ob-
served resource, i.e, to extract the value from the notification.

(b) Rule - Conditional expression evaluating the data extracted from the previous
step. Currently, the conditional parameters are the ones defined in Dynamic
Linking draft specification.

(c) Encoder - Uses the transfer-schema (discussed below) to build the
desired notification.

3. Notifier - Set of parameters indicating how the destination resource should be
notified.

These components are specified through the use of the following parameters:

• anchor - URI of an observable resource.
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• accept - Content format for observable resource response.

• accept-method - Transfer method from the observed resource to the Monitor.

• accept-schema - Schema used to interpret the observed resource payload.

• href - URI of the destination that will receive notifications.

• content-type - Content format that will be used to build notifications.

• transfer-method - Transfer method used to send notification.

• transfer-schema - Schema to use when building the notification payload.

As an extension of dynamic linking, the Monitor can be placed at the source or des-
tination. Moreover, the explicit declarations of observation, evaluation and notification
parameters allow Monitor to be outsourced to a third-party device, allowing for distribu-
ted, reliable and scalable solutions to be implemented. In such outsourced scenario, the
Monitor acts as a man-in-the-middle, just as a MQTT broker does in a publish/subscribe
architecture. However, their behavior is different. The latter acts only as a hub, responsi-
ble for reception and efficient delivery of the data, while the Monitor accepts the incoming
data, processes it and, if triggering parameters are satisfied, sends a notification to the des-
tination. However, although a description for Monitor’s functionality is provided, the aut-
hor does not specify how to interpret the accept-schema and transfer-schema
parameters. Also, the current Monitor specification does not specify the possibility of
observing or notifying multiple resources, i.e., many-to-one or one-to-many notifications.
Thus, at the moment of writing, the Monitor is a concept, in draft stage, without internal
behavior specification.

2.3.4 Rule

The most recent proposal to overcome the limitations of CoRE dynamic linking and Mo-
nitor mechanisms appeared in 2018 and is under research in [11]. The proposed solution
is a many-to-many synchronization mechanism built upon well-known CoRE standards
and drafts such as CoAP [41], CoRE interfaces [72], CoRE dynamic linking [9] and CoRE
link format [73]. Although still a draft, it is under evaluation for inclusion into the core
framework of OCF core specification. The proposal introduces a Rule resource, repre-
sented as a collection, for autonomous decision logic to be performed following a simple
observe-evaluate-actuate pattern. The Rule collection has the following main
components:

• A set of Rule Inputs. A Rule Input is a local copy of an external source
resource. This resource stores the last known state (snapshot) of a source resource.
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{
"rule": "(humid:humid > set-humid:humid) and (temp:temp > set-temp:temp)",
"ruleresult": false,
"ruleenable": true,
"actionenable": true
}

Listing 1: Rule Expression syntax and Rule’s control variables.

• A Rule Expression that evaluates the Rule Input values and produces a
boolean as output. The Rule Expression is a conditional logic string that sup-
ports simple operators, such as <, >, =, and, or, contains, exists, etc.

• A set of Rule Actions. A Rule Action is a local and pre-configured notifi-
cation template that is used to notify destination resources. This effectively solves
the client side notification filtering/processing problem, occurring in Dynamic Lin-
king, as messages are sent in a pre-configured and client acceptable form.

Every element of the Rule collection supports CRUD operations meaning that Rule’s
behavior, inputs and outputs can be modified on-the-fly with a single client request.

The overall execution logic of the Rule resource is as follows: every time a Rule
Input is updated, either by an external call or by an internal push Dynamic Link (see
Figure 2.3) instance, the rule evaluation expression is executed. If the Rule Expression

changes its state from False to True then all Rule Action instances are executed
and, as a result, notifications are send to the destination resources. Figure 2.3 is a graphi-
cal representation of the internal building blocks of a Rule resource. The actual syntax of
a rule and its control variables are shown in Listing 1. The ruleresult contains the last
evaluation result produced by a rule expression. When this variable changes its state from
False to True the processing of Rule Actions is triggered. The actionenable
allows to control if Rule Actions are to be executed. That is, allows rules to be
tested prior to execution of Rule Action instances. The ruleenable allows rule
enabling/disabling. Finally, the rule variable contains the actual expression that is to be
evaluated. In this case, checks if temperature and humidity values do not exceed the user-
defined (set-humid and set-temp) ones. Note that the syntax of the evaluation ex-
pression (see [11]) is almost identical to the one used in content directory service defined
by UPnP [74]. It also shares some similarities with the NGSI-LD Query Language used
in NGSI-LD’s context information management (CIM) and application programming in-
terface (API) [75]. However, Rule’s syntax is more complete as it defines operators
(e.g. contains, doesNotContain, startsWith, etc.) that the NGSI-LD Query
Language does not have.

Taking everything into account the Rule resource is a synchronization mechanism
that effectively solves the endpoint-to-endpoint conditional notification between multiple
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Figure 2.3: Rule resource internal components and their relations (Adapted from [11]).

devices. Also, it is a scalable and simple one-to-one synchronization that can be executed
in devices with limited resources, while allowing complex many-to-many synchronization
scenarios involving multiple devices. Moreover, since it is built upon REST principles and
CoRE standards it can benefit from already existing discovery mechanisms (e.g., registra-
tion at CoRE resource directory [76] or at Thing directory [77] or use CoAP broadcast to
inform clients) that facilitate Rule discovery and consumption. Overall, Rule resource
can be seen as a robust and flexible mechanism capable of creating rich M2M interactions
that can be easily integrated into already existing infrastructures and WoT applications
following similar principles.

Although using different nomenclature and structure, Google’s experimental simple
monitoring and control protocol (SMCP) in combination with splot object model (SOM)
[78], also introduced in 2018, defines very similar resource synchronization mechanisms
to those defined in Rule.

2.4 Rule Decomposition, Chaining and Distribution

2.4.1 Decomposition and Chaining

The Rule’s ability to customize notifications, through Rule Actions, coupled with
an expressive conditional logic syntax can model rich and complex interactions between
multiple devices. Due to loose coupling of components included in rule collections, de-
composing mechanisms can be developed in order to replace a rule requiring high proces-
sing by a set of smaller and lighter ones. This has the advantage of allowing distributed
processing among nodes, without losing the original logic, while increasing the potential
reuse of rule collections. Since rules are regular URI addressable resources, these can
also be chained to achieve multiple levels of abstraction and, therefore, model complex
situations and interactions. To clarify rule decomposition and chaining, let us consider
a simple illustrative example. Consider a scenario with three resources on a network:
Temperature, Humidity and an Air Conditioner (AC). The first two produce
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integer values, between 0 and 100, as output while the latter accepts either “On” or “Off”
as input string. Assume also a user defined demand with the following information:

• Input Resources:

– Temperature

– Humidity

• Task/Evaluation Expression:

– temperature > 27 and humidity > 47

• Output Resource:

– Air Conditioner

• Notification Template:

– “On” string

This means that the user wants to observe the state of Temperature and Humidity
resources and if these are higher than 27 and 47, respectively, then the AC must be noti-
fied with an “On” message, which is a notification template. This resource synchroniza-
tion can be achieved in two ways. The first one, presented in Figure 2.4a, is by directly
mapping the demand into a single Rule resource. An alternative, since the evaluation
expression is a set of conditions connected by “and” or “or” operators, is to split the
evaluation expression into a set of smaller, generic and reusable evaluation expressions.
These smaller expressions can be mapped into two separate Rule resources, as presented
in Figure 2.4b. In this case, an additional Collecting Rule, with source resour-
ces Rule “Temp” and Rule “Humid”, would be required in order build the logic of
the original expression. These would notify the Collecting Rule with a boolean
value, indicating whether their condition has been satisfied or not. The evaluation expres-
sion of Collecting Rule would look like: Rule "Temp" = True and Rule

"Humid" = True. Finally, its notification template would be “On” string that would
be sent to the AC each time its evaluating expression transits from False to True state.

2.4.2 Distributed Placement

In addition to decomposition and chaining, rules can be distributed across multiple de-
vices. The device’s ability to participate in rule processing is done by exposing a Rule
Collection Resourcewith a createCoRE interface7,8 (if="oic.if.create")

7See “Create, Delete, and Link Update Interface Definitions” [79]
8See “Reusable Interface Definitions for Constrained RESTful Environments” [72]
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Figure 2.4: A user demand expressed through a single or multiple rules.
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and a resource type9 array (rts=["oic.r.rule"]) entry indicating that it supports
creation of Rule instances [11]. Note that, the device may also use active methods (e.g.,
registration at resource directories or broadcast messages) to inform clients about its pre-
sence and ability to process rules. Although these rules can be placed at any CoAP-based
device, some devices may choose not to accept and process a rule instance due to some
limitation. In that case, they should simply return an appropriate status code (e.g., 4.13
Request Entity Too Large or 4.22 Unprocessable Entity)10 informing
the client that it refuses to process the request.

To illustrate how a Rule can be decomposed, let us assume a local network with
three devices (Thing A, B and C) available for rule processing. Assume also that the
rule illustrated in Figure 2.4a is being executed at Thing A. Moreover, assuming that
for network optimization purposes (e.g. network lifetime increase) a move from scenario
in Figure 2.4a to scenario in Figure 2.4b should take place. Finally, assume that a Rule
Configuration Tool is being executed at smartphone, or any other capable device
with enough computational capabilities, and that it has no prior knowledge about the re-
sources nor rules available on network. Figure 2.5 illustrates the steps required to achieve
the desired changes.

Resource Discovery and Computation Phase

Initially, the Rule Configuration Tool must discover the resources available on
the network. The discovery can be done through a request to an HSML [71] server located
at local network, which acts as a central point where devices register their resources to
ease their discovery. Due to HSML’s capability to store both data (HSML items) and
meta-data (HSML links) about web resources the Rule Configuration Tool can
obtain, with a single request, information regarding the existing web resources, including
the rule presented in Figure 2.4a, and computational resources (e.g. CPU, RAM, etc.) of
Thing A, B and C. This information is used to compute an optimal rule configuration
in terms of resource usage. In this case, the optimal solution is to decompose the rule in
Figure 2.4a into a multi-rule scenario as presented in Figure 2.4b.

Rule Configuration Phase

Once the discovery and computation is completed, the Rule Configuration Tool

makes two requests to Thing B and C in order to create two rules - one for evaluation
of Temperature and another for Humidity. Both requests provide a confirmation
response containing the URL addresses of newly created rules. These URL addresses are

9See “Constrained RESTful Environments (CoRE) Link Format” [73]
10See Error Handling in “PATCH and FETCH Methods for the Constrained Application Protocol

(CoAP)” [80]
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2.5 Rule Placement Problem

used as inputs to an aggregation rule called Collecting Rule, which is created when
the Rule Configuration Tool makes a request to Thing A. When Thing A

receives the request to create the Collecting Rule it automatically sends two Obser-
vation requests to the Temp and Humid rules, located at their respective URI addresses,
in order to be notified about state changes. Finally, after chain creation, the original rule
is safely deleted. The discovery of newly created rules is facilitated by their automatic
registration at HSML server.

Rule Execution Phase

During the rule execution phase, temperature notifications are sent to the “Temp” rule for
evaluation and, when the condition is satisfied, a notification is passed up in the chain to
the Collecting Rule that is responsible for interacting with the AC.

The presented approach leaves the device operation unmodified, and, in theory, it can
be executed at any CoAP-capable device. The only constraint is the computational com-
plexity associated with the rule’s conditions. Regarding the computation of the optimal
rule placement, it can always be outsourced to more powerful devices (e.g., smartphone).

The scenario presented in Figure 2.4b can be seen as a mesh of small processing units
that can be organized and, when needed, rearranged in an efficient way. This distributed
resource synchronization mechanism does not have a single point of failure and thus it
improves the overall reliability and availability. However, distributing rules over multiple
devices may have multiple challenges related with security, privacy and delay. Distribu-
tion of rules on a local (trusted) network, instead of relying on external services (e.g.,
cloud or edge computing) can increase user’s security and privacy as compartmentali-
zed and locally distributed data is harder to eavesdrop by malicious users. On the other
hand, distribution in public networks may pose a serious threat. However, since the pre-
sented approach is based on Web protocols, security and privacy mechanisms currently
applied to the Web can always be used. For example, secure CoAP (CoAP + DTLS)
was standardized in [41]. Additionally, IETF CoRE-WG is currently working on other
encryption, authentication and end-to-end protection mechanisms such as COSE [81] and
OSCORE [82] for CoAP-based devices.

2.5 Rule Placement Problem

2.5.1 Terminology and Notation

Generally speaking, any device built upon REST and CoRE standards could, in theory,
perform rule processing and, therefore, play a role in resource synchronization. However,
due to the large plethora of heterogeneous devices, each with different computational
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2.5 Rule Placement Problem

capabilities and resources, a careful placement of rule instances is required in order to
ensure fair device loads and to provide a fast sensing-actuation response. Overall, this
problem can be seen as a Rule Placement (RP) problem. For clarity, terminology and
notation are summarized prior to problem formulation.

Node Constrained device inside the network. The overall set of heterogeneous nodes is
denoted by N .

Computational Resource Hardware resource (e.g., CPU, RAM, storage) of a node n ∈
N . A node n has an amount/capacity for M computational resources, given by vector
cn = [cn,m], m ∈ {1, ...,M}.

Web Resource URI addressable endpoint storing the internal state of one or more pro-
perties (e.g., sensed temperature, battery level, etc). The set of resources available at node
n ∈ N is denoted byRn.

State Set Universe of states that a resource r ∈ Rn, n ∈ N , can accept/return. The
state set for r is denoted by Snr , and a state s ∈ Snr is a tuple including as many elements
as the number of properties referenced by resource r.

Task An evaluation expression (task), defining some logic on the inputs and returning
a boolean value. Besides simple logic, complex processing on the inputs (eventually
integrating other info; e.g., historical info) can be performed. The overall set of possible
tasks is denoted by T .

Notification A tuple including an evaluation expression (task) t ∈ T and an element s
from

⋃
{n∈N ,r∈Rn}

Snr , denoted by < t, s >. That is, s is used for the update of a resource

and is a result from task t.

Rule Defines a set of inputs, which are resources, along with a set of notifications. More
specifically, assuming X = {x1, x2, ..., x|X |} to be a set of rules, each xi:

- Requires a set of resources as input, denoted by Ixi . Each element j of Ixi is a
tuple denoted by j =< nj, rj >, nj ∈ N , rj ∈ Rnj .

- Produces a set of one or more notifications, denoted by Oxi . Notifications are
triggered by a task.

- Has a demand vector dxi = [dxi,m], m ∈ {1, ...,M} containing computational
resource requirements.
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- Has special hardware/software requirements that restrict the set of nodes where it
can be executed, denoted by N xi ⊆ N .

Whenever a resource r ∈ Rn is to be updated by a notification, one or more rules from
X may be activated. That is, one possibility is to activate a single rule that performs the
requested task, processes all required inputs, and returns the right state. Another possibi-
lity, for rule reuse and, therefore, network optimization, is to use more elementary rules,
also defined in X , that would perform part of the logic/processing. These can then feed
their notifications into collecting rules that perform the additional logic. Therefore, col-
lecting rules can be defined as having input < t, s > tuples, this is, notifications provided
by rules in X .

Collecting Rule Defines a set of inputs, which are notifications. More specifically,
assuming C = {c1, c2, ..., c|C|} to be a set of collecting rules, each ci:

- Requires a set of inputs, denoted by Ici . Each element j of Ici is a notification
denoted by j =< t, s >, t ∈ T , s ∈

⋃
{n∈N ,r∈Rn}

Snr .

- Produces a set of one or more notifications, denoted by Oci .

- No computational resource requirements are assumed, as these will implement ba-
sic logic over the inputs.

- Has no special hardware/software requirements that limit the set of nodes where it
can be executed, meaning that N ci = N .

Dominant Resource Given a rule xi ∈ X to be executed at n ∈ N xi , the dominat re-
source (see [83]) of xi at n will be the resource m ∈ {1, ...,M} with the highest allocated
percentage share. That is, ∆(xi, n) = arg maxm∈{1,...,M}{

dxi,m
cn,m
}. This is the resource

that most limits the allocation of the rules to nodes. The dominant resource of xi can be
different at each n, as computational resources of nodes may not be the same.

2.5.2 Problem Definition and Formalization

Since rule notifications may serve as input to collecting rules, or may flow directly towards
nodes for resource update, a virtual graph will be defined for the required flow to be
ensured in the following formalization. This is denoted by G(V ,L), where V = X∪C∪N .
Regarding L, there will be the following virtual links:

- (x, c), ∀x ∈ X , c ∈ C;

- (x, n), ∀x ∈ X , n ∈ N ;
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2.5 Rule Placement Problem

- (ci, cj), ∀ci, cj ∈ C;

- (c, n), ∀c ∈ C, n ∈ N .

Let Dn, ∀n ∈ N , denote a set of demands for the update of resources at n. A demand
d ∈ Dn is a tuple < r, t >, stating that resource r ∈ Rn is to be updated with the result
of task t ∈ T . Let us also assume the following variables:

ωv One if rule v ∈ X ∪ C is to be executed, requiring some place to be
determined, zero otherwise.

γdv One if rule v ∈ X ∪ C is to used by demand d ∈ Dn,∀n ∈ N , zero
otherwise.

βnv One if rule v ∈ X ∪ C is to be placed at node n ∈ N v, zero otherwise.
εdl Real value that when greater than 0 indicates that there is flow through

link l ∈ L for the update of resource r in d’s tuple < r, t >, d ∈ Dn,
zero otherwise.

ϑdxi One if the update of resource r in d’s tuple < r, t >, d ∈ Dn has
xi ∈ X as a source of the rule chain, zero otherwise.

πd,lni,nj One if εdl > 0 and l’s endpoints are placed at nodes ni, nj ∈ N , zero
otherwise.

ϕdxi,n One if the update of d ∈ Dn, has xi ∈ X as feeder/source placed at
n ∈ N , zero otherwise.

αxi,∆(xi,n) Percentage of dominant resource that is allocated to rule xi ∈ X , if
placed at node n ∈ N xi .

∆MIN Lowest percentage of dominant resource allocated to rules.

Having these definitions and notation in mind, the RP problem can be formulated as
follows.

Objective Function

Maximize ∆MIN (2.1)

This goal ensures fairness among rules, regarding assigned resources, because an over-
all lower bound on the percentage of allocation resource is being maximized. That is, rules
will have similar working conditions.
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Placement of Rules

∑
n∈N v

βnv = ωv,∀v ∈ X ∪ C (2.2)

ωv ≥ γdv , n ∈ N ,∀d ∈ Dn,∀v ∈ X ∪ C (2.3)

These constraints ensure that placement must be defined whenever a rule (collecting
or not) is to be executed. Constraints (2.2) ensure single placement, if the rule is to be
executed (wv = 1), while Constraint (2.3) force the execution of any rule under utilization
by at least one demand.

Filling Demand’s Content

∑
l∈L:dst(l)=v

εdl −
∑

l∈L:src(l)=v

εdl =

{
1, if v = n

0, if v ∈ C
, n ∈ N ,∀d ∈ Dn,∀v ∈ C ∪ {n} (2.4)

∑
{l∈L:dst(l)=c∧j∈Osrc(l)}

εdl > γdc − 1, n ∈ N ,∀d ∈ Dn,∀c ∈ C,∀j ∈ Ic (2.5)

Constraints (2.4) implement the flow conservation law from rules towards the resource
to be updated using, if necessary, collecting rules for intermediate processing, while Con-
straints (2.5) ensure that all inputs are fulfilled.

ϑdxi ≥ εdl , n ∈ N ,∀d ∈ Dn,∀xi ∈ X ,∀l : src(l) = xi (2.6)

γdv ≥ εdl , n ∈ N , ∀d ∈ Dn, ∀v ∈ X ∪ C,∀l ∈ L : src(l) = v (2.7)

Constraints (2.6) determine which rules in X will be at the beginning of the flow
chain. These are required to compute latency. These constraints (2.7) to activate the
required rules (collecting or not) according to the existing flow defined by Constraints
(2.4).
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Final Step of Rule Chain

εdl = M
src(l)
d γdsrc(l), ∀n ∈ N ,∀d =< r, t >∈ Dn,∀l ∈ L (2.8)

where M src(l)
d is known information: M src(l)

d = 1, if {o =< t′, s >∈ Osrc(l) : t′ = t∧ s ∈
Snr } is non empty, 0 otherwise. Constraints (2.8) force rules (collecting or not) to provide
the notification that is being required.

Bound on Latency

πd,lni,nj ≥ βnisrc(l) + β
nj
dst(l) + εdl − 2,∀n ∈ N ,∀d ∈ Dn,∀l ∈ L,∀ni, nj ∈ N (2.9)

ϕdxi,ni ≥ βnixi + ϑdxi − 1,∀n ∈ N ,∀d ∈ Dn,∀xi ∈ X ,∀ni ∈ N (2.10)

∑
xi∈X

∑
j=<nj ,rj>∈Ixi

∑
ni∈N

ϕdxi,ni × L[ni, nj] +

+
∑
l∈L

∑
ni∈N

∑
nj∈N

πd,lni,nj × L[ni, nj] ≤ LB,

,∀n ∈ N ,∀d ∈ Dn (2.11)

Constraints (2.9) allow to determine if the latency of virtual link l, assuming its end-
points are placed at ni and nj , is to be considered. Constraints (2.10) determine if a rule
is both a feeder and placed at a specific place, so that the latency associated with rule
inputs can be accounted in the next set of constraints. The total latency is accounted at
Constraint (2.11), where an upper bound LB is imposed. The LB is given information.

Lower Bound on Dominant Resource

αxi,∆(xi,n) + (1− βnxi) ≥ ∆MIN,∀xi ∈ X ,∀n ∈ N (2.12)

where ∆MIN
n represents the lowest percentage of dominant resource allocated to rules

being executed at node n. This is maximized by the objective function for fairness (regar-
ding allocated resources) among rules.
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Computational Resource Limitation

∑
xi∈X

αxi,∆(xi,n) × dxi,m ≤ cn,m,∀n ∈ N ,∀m ∈ {1, ...,M} (2.13)

These constraints avoid exceeding the available resources at processing nodes. All re-
sources required by a rule are assumed to get the same percentage share as the dominant
resource.

Non-negativity assignment to variables

0 ≤ εdl , αti,∆(x,n),∆
MIN ≤ 1

γdv , β
n
v , ϑ

d
x, π

d,l
ni,nj

, ϕdx,n ∈ {0, 1} (2.14)

The RP problem can be seen as rule selection process, followed by their placement in a
way that ∆MIN is maximized across all the devices available on the network. ∆MIN less that
1 indicates that at least one of the demands did not obtained the required computational
resources and, therefore, normal execution of demands is compromised. ∆MIN equals 1 if
all demands can be fully satisfied.

2.6 Performance Analysis

Dataset generation and scenario setup will be described prior to performance analysis.

2.6.1 Dataset Generation

Web Resource Pool

Each generated resource has a unique identifier and a state set, including all states it can
take.

Node Pool

Each node has a unique identifier, a vector of available computational resources, a set of
Web resources and a two-dimensional position. Node’s computational resources and the
position values are generated randomly11 within defined lower and upper bounds. The
distance between any two nodes is given by the Euclidean distance. Web resources are
randomly selected from the resource pool generated in Section 2.6.1.

11Uniform distribution is used in every random generation/selection.
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Atomic Task Pool

This is a pool of atomic tasks. Atomic task is the most basic computation function. Each
atomic task has a unique identifier and a vector that indicates the amount of computational
resources required to perform the task. These atomic computation functions are used to
generate demands.

Demand Pool

A demand is intended to request the update of a Web resource with the output of a task,
where a task includes one or more atomic tasks. Therefore, each demand will have an
identifier, an array of atomic tasks and a <node, resource> destination tuple. These
elements are extracted from the respective pools.

Rule Pool

This pool is generated having the demand pools as a basis. That is, the power set on the
array of atomic tasks is generated with js-combinatorics12, a Node.js package. The rule’s
demand vector is built by summing the corresponding atomic tasks’s demand vectors.

Collecting Rule Pool

Any rule combination matching a demand will give rise to one or more Collecting
Rules.

2.6.2 Scenario Setup

To assess the impact of Collecting Rules, a set of RP problem instances is ge-
nerated and solved using CPLEX13. The following parameters are used to generate the
problem instances.

• Resource related parameters:

– Resource pool size: 15

• Task related parameters:

– Atomic task pool size: 30

– Lower bound of an element in the demand vector of an atomic task: 40

– Upper bound of an element in the demand vector of an atomic task: 50
12https://github.com/dankogai/js-combinatorics
13IBM ILOG CPLEX Optimizer
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• Node related parameters:

– Number of nodes: 10

– X-axis position range 0-100

– Y-axis position range 0-100

• Demand related parameters:

– Minimum number of atomic tasks: 2

– Maximum number of atomic tasks: 3

– Number of demands: 5

A total of 50 datasets is generated resulting into 30 Rules and 25 Collecting

Rules each (in average). To assess the impact of computational resource, each dataset
is tested for different resource computational ranges. For the required computations re-
sources, associated with tasks, a multiplicative factor is also tested. This is intended to
model the overall reduction of the required computational resources when complex tasks
are not fragmented. That is, aggregated computation requires fewer hardware resources
in total. Finally, since the nodes in all datasets are scattered across a 100 by 100 square,
the latency value selected is set to 150 units in order to ensure that each dataset is feasible.
Overall, the tests consisted in observing the performance, under different computational
resources and multiplicative factors, of two approaches called:

• Rules-only, where every demand is satisfied by a single Rule instance that per-
forms all required tasks. Since no Collecting Rules are used, fragmentation
into smaller rules is not allowed.

• Collecting approach, an extension of Rules-only, where a demand can be
satisfied either by a single Rule instance, performing all required tasks, or a com-
bination of smaller Rules and Collecting Rules. Such smaller Rules are
called Feeder Rules because they feed (are inputs to) Collecting Rules.
Contrarily to a Rule, a Feeder Rule does not perform all tasks requested by
the demand.

2.6.3 Results and Discussion

Overall Performance

Table 2.1 shows the performance of Collecting and Rules-only approaches for the
scenarios described previously. Table includes the corresponding ∆MIN average value,
denoted by (∆MIN

C ) and (∆MIN
R ), and difference between them, for each tested parameter
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Table 2.1: Average ∆MIN of Collecting (∆MIN
C ) and Rules-only (∆MIN

R ) approaches
for different computational ranges and multiplicative factors. Green highlighted rows
represent parameter configurations where ∆MIN achieved 100%, i.e., the demands are
satisfied in all tested datasets. Red rows indicate that network’s computational resources
are not enough to match demand needs.

Factor: 0.7 Factor: 0.8 Factor: 0.9 Factor: 1.0
Compute

Range ∆MIN
R ∆MIN

C
Difference ∆MIN

R ∆MIN
C

Difference ∆MIN
R ∆MIN

C
Difference ∆MIN

R ∆MIN
C

Difference

1-50 40.80% 50.99% 10.19% 35.70% 48.76% 13.06% 31.73% 47.08% 15.35% 28.56% 45.63% 17.07%
11-60 52.09% 68.35% 16.26% 45.58% 65.29% 19.71% 40.52% 62.39% 21.87% 36.58% 60.89% 24.31%
21-70 64.75% 87.50% 22.75% 56.69% 83.14% 26.45% 50.39% 79.67% 29.28% 45.35% 78.14% 32.79%
31-80 76.36% 98.11% 21.75% 67.36% 96.57% 29.21% 59.87% 94.20% 34.33% 53.89% 92.88% 39.00%
41-90 85.68% 100.00% 14.32% 76.13% 100.00% 23.87% 68.02% 99.71% 31.70% 61.24% 99.48% 38.24%
51-100 95.26% 100.00% 4.74% 86.44% 100.00% 13.56% 78.02% 100.00% 21.98% 70.48% 100.00% 29.52%
61-110 98.01% 100.00% 1.99% 91.63% 100.00% 8.37% 83.70% 100.00% 16.30% 76.46% 100.00% 23.54%
71-120 99.98% 100.00% 0.02% 97.59% 100.00% 2.41% 91.91% 100.00% 8.10% 84.85% 100.00% 15.15%
81-130 100.00% 100.00% 0.00% 99.63% 100.00% 0.37% 96.44% 100.00% 3.56% 90.17% 100.00% 9.83%
91-140 100.00% 100.00% 0.00% 99.71% 100.00% 0.29% 98.70% 100.00% 1.30% 94.84% 100.00% 5.16%
101-150 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 99.79% 100.00% 0.21% 98.27% 100.00% 1.73%
111-160 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 99.74% 100.00% 0.26%
121-170 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00%
131-180 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00%
141-190 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00%
151-200 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00%

Table 2.2: Computational range gap

Factor: 0.7 Factor: 0.8 Factor: 0.9 Factor: 1
Gap 37.91% 47.81% 44.28% 48.11%

configuration. In general, the table shows that in every tested scenario the Collecting
approach presents much better performance, given that it is able to achieve ∆MIN equal
to 100% using considerably less computational resources, when compared to Rules-
only approach. Furthermore, results in Table 2.1 indicate that the multiplicative factor
has direct impact over the performance of both approaches: a higher multiplicative factor
implies that more computational resources are needed to satisfy the demands.

Let us use ρ∗C and ρ∗R to denote the computational ranges where Collecting and
Rules-only approaches achieve 100% ∆MIN for the first time, and let X̄(ρ∗C) and X̄(ρ∗R)

denote the mid value of such ranges. When looking at the gap given by

Gap =
X̄(ρ∗R)− X̄(ρ∗C)

X̄(ρ∗C)
, (2.15)

it is possible to see that the Collecting approach is able to satisfy the demands using
44.53% less computational resources than Rules-only approach. Table 2.2 summarizes
such gaps for the tested multiplicative factors.

The performance of the Collecting approach can be explained by analyzing Fi-
gure 2.6 in combination with Figure 2.7. Figure 2.6 is a plot showing the ∆MIN values
produced by Collecting and Rules-only approaches for the tested multiplicative fac-
tors and node’s computational resources. On the other hand, Figure 2.7 shows the type of
rules chosen by the Collecting approach for the solutions plotted in Figure 2.6. To be
precise, it shows how many Rules, Collecting Rules and Feeder Rules are
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Figure 2.6: Evolution of ∆MIN for different computational ranges and rule multiplicative
factors. Each dot in the plot depicts the solution value of each test, while the line repre-
sents the overall trend. Light green colored area outlines the computational ranges where
the Collecting approach achieve ∆MIN equal to 100% in all tested datasets. Darker
green corresponds to the Rules-only approach.

used to satisfy the demands in each test.
Looking at both plots it is visible that the performance improvement, in networks

with limited computational resources, of the Collecting approach over the Rules-
only approach is due to the use of Feeder Rules (blue dots in Figure 2.7), which
require less computational resources and, therefore, give more freedom for CPLEX to
optimize their placement across the available nodes. As the node’s computational capa-
bilities increase, the optimization process leans towards the use of Rules (green dots
in Figure 2.7). By using these rules, data goes through a single node, for processing,
reducing the overall latency involved in data delivery, when compared with the use of
Feeder Rules. Hence, more processing places can be explored by Constraint (2.11)
for a higher ∆MIN to be achieved. The shift to Rules is mostly visible at the beginning
of the highlighted area in Figure 2.7, i.e., area where all tested datasets are capable to
achieve ∆MIN equal to 100%.

Network Usage

Let us consider a 802.15.4 network with a Maximum Transferable Unit (MTU) of 127
bytes and CoAP’s minimal packet header structure of 12 bytes (fixed size 4-byte header
and a 8-byte token), leaving only 115 bytes for the payload. Let us also assume the
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Figure 2.7: Type of rules chosen by the Collecting approach, for solutions plotted
in Figure 2.6. For each dot in Figure 2.6, there are three dots representing the number
of different rules that are used to obtain the actual solution. Color intensity of the dots
reflects the frequency of occurrences, while the line represents the overall trend.

use of CoAP block-wise transfer mechanism [84] when the payload size is bigger than
115 bytes, and use of 12 byte acknowledgement (ACK) packets to acknowledge block
reception. Finally, assume that all nodes are one-hop away from each other. Given these
assumptions, the total number of transmitted bytes by each synchronization approach can
be expressed as:

TxBytes = Φinit|S|+ Φinter|M|+ Φfinal|D|+ 12|A| (2.16)

where:

• Φinit is the average size (in bytes) of the payload at input resources.

• |S|, where S = {(j, x) : ∀j ∈ Ix,∀x ∈ X}, is the number of input links
(input resource→ rule).

• Φinter is the size (in bytes) of payload exchanged between Feeder and Collecting
rules. The packets containing this payload are of constant size as they only indicate
whether a rule is satisfied or not. Assuming a CBOR encoded SenML notification
({"vb": true} or {"vb": false}) with a size of 5 bytes, the total size of
inter rule packets is of 17 bytes.
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• |M|, whereM = {(x, cj), (ci, cj) ∈ L : ∀x ∈ X ,∀ci, cj ∈ C}, is the number of
inter rule links (feeder → collecting).

• Φfinal is the average size (in bytes) of notifications to be sent to the destination
resources.

• |D|, where D = {(x, n), (c, n) ∈ L : ∀x ∈ X ,∀n ∈ N ,∀ci, cj ∈ C}, is the number
of final links (rule/collecting → destination resource).

• |A| is the total number of acknowledgement (ACK) packets involved in the syn-
chronization process.

Overall, the difference between the number of bytes sent by each approach can be
expressed as:

Diff = TxBytesRules − TxBytesCollecting (2.17)

In both resource synchronization approaches the |D| and the Φfinal are the same, as the
notifications sent to the destination resources do not change. Therefore, the only factors
that affect the Diff value are the number of |S| and |M| links and the size of the Φinit

payload. To assess how these elements impact the utilization of network resources, a set
of tests are performed. The tests consist in extracting the number of |S| and |M| links
(summarized in Table 2.3) from the solutions obtained in Section 2.6.3 and vary the value
of Φinit. Due to similarity and for brevity purposes, only the results for the multiplicative
factor equal to 1 are shown.

The Figure 2.8 is a surface plot showing the relationship between the payload size sent
by source resources (Φinit), the computational ranges and the difference in bytes between
Collecting and Rules-only approaches, as expressed in Expression 2.17. For small
computational ranges and Φinit values the Rules-only approach requires less bytes that
the Collecting approach. However, as the Φinit becomes larger and approaches the
100 bytes per notification, the Collecting approach becomes more efficient. This ef-
fect becomes especially visible when the Φinit is equal to 150 bytes, as is causes a spike
on plot’s surface. On the other hand, higher values of compute range cause a shift in the
Collecting approach by making it give preference to Rule instances to satisfy de-
mands (as described in Section 2.6.3). This shift leads to a reduction of |M| and increase
of |S| links causing the decrease of the Diff value, which ultimately becomes equal to
zero meaning that both approaches satisfy demands using the same rule resources. Taking
everything into account, the optimal location for the Collecting approach is when the
compute range is equal to 51-100 and Φinit ≥ 150 bytes as, under these circumstances,
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Table 2.3: Average number of initial (|S|) and inter rule (|M|) links used by
Collecting and Rules-only approaches to obtain solutions in datasets with an mul-
tiplicative factor equal to 1. Green highlighted rows represent parameter configurations
where ∆MIN achieved 100%, i.e., the demands are satisfied in all tested datasets. Red rows
indicate that network’s computational resources are not enough to match demand needs.

Rules-only Collecting
Compute Range |S| |M| |S| |M|

1-50 12 0 9 11
11-60 12 0 9 11
21-70 12 0 9 12
31-80 12 0 9 12
41-90 12 0 10 11

51-100 12 0 11 8
61-110 12 0 11 6
71-120 12 0 11 4
81-130 12 0 12 3
91-140 12 0 12 3

101-150 12 0 12 1
111-160 12 0 12 1
121-170 12 0 12 1
131-180 12 0 12 0
141-190 12 0 12 0
151-200 12 0 12 0

the Collecting approach is able to satisfy all the demands (∆MIN equals 100%) while
transmitting less bytes that Rules-only approach.

In general, the Collecting approach becomes a more attractive option when the
size of the payload flowing through the extra initial links (S) in Rules-only approach
is larger than the payload flowing through the inter rules links (M) in Collecting

approach.

2.6.4 Rule-based vs Broker-based Event Processing

At the moment of writing the Rule mechanism is still an ongoing effort while MQTT-
based approaches are the most common way of building dynamic and reactive IoT ap-
plications14. For this reason it becomes necessary to compare CoRE-based Rule and
MQTT-based event processing. Note that MQTT-based applications use the same observe-
evaluate-actuate execution logic and, therefore, these approaches can be compared.
However, while both synchronization mechanisms share the same execution chain, they
operate over different transfer protocols (CoAP and MQTT) that follow different com-
munication patterns (request/response and publish/subscribe), which ends up determining
the execution flow during resource synchronization. Being broker-based, where direct

14See ”Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP” [85]
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Figure 2.8: Difference of total transmitted bytes of Collecting and Rules-only ap-
proaches during the resource synchronization with an multiplicative factor equal to 1.
Positive values indicate areas where the Collecting approach uses less bytes than
Rules-only approach.
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client-to-client communication is not supported, MQTT applications usually require the
exchange of more messages, when compared with CoAP-based approaches, to achieve
the same goal. However, despite the theoretical superiority of CoAP over MQTT, the
existing research shows that MQTT can outperform CoAP in certain scenarios. For ex-
ample, in [86] authors show that when the payload size is larger than 300 bytes and the
packet loss rate is 25% MQTT generates less overhead than CoAP. On the other hand, for
high packet loss rate CoAP performs better in terms of delay. Similar conclusions were
obtained in [85, 87–89]. This may show that the main advantage of CoAP over MQTT is
its flexibility. CoAP has built-in support for content negotiation allowing devices to probe
each other prior to data exchange and, therefore, it is better suited for ad hoc interactions.
Also, in addition to request/response pattern, CoAP has Observe mechanism that opens
the possibility to create CoAP brokers and, therefore, provide all the benefits of broker-
based communications. IETF’s CoAP Publish-Subscribe Broker protocol draft [90] is the
first step in this direction. Preliminary results [91] show that CoAP broker has greater
packet delivery rate than MQTT in scenarios where the packet loss equals to 40%. Ho-
wever, further research is required to confirm this findings. In summary, there is no clear
winner between CoAP-based and MQTT-based approaches and the choice will depend on
the scenario in question.

2.7 Conclusions

This chapter presents a deep overview of current CoRE-related standards and Internet-
Drafts for resource synchronization and event processing in constrained networks. It
also proposes a distributed, scalable and resilient resource synchronization mechanism,
called Collecting Rule approach, that is based entirely on the existing standards
and drafts. The latter is a relevant issue as most of the literature on event processing
omit the underlying protocol stack. Furthermore, the Rule Placement (RP) problem is
presented and is mathematically formulated, ensuring proper rule execution and a fair
utilization of device resources. Mathematical results show that in some scenarios the
proposed Collecting Rule approach is capable of satisfying user’s demands using
44.53% less computational resources when compared against its centralized counterpart,
currently under evaluation to be a part of OCF core specification, called Rules-only ap-
proach. Additionally, results show that the proposed synchronization mechanism uses less
network resources than the Rules-only approach when the payload of resources at the
beginning of synchronization chain (source) is bigger than 150 bytes. In summary, results
obtained from mathematical model show that the proposed distributed synchronization
mechanism is a viable alternative to Rules-only approach in constrained environments.
In less constrained environments, the model gives preference to Rules in order to avoid
sending the data through multiple processing points. Thus, the Collecting approach
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can be seen as a complement and not a replacement of Rules-only approach.
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C H A P T E R 3

Attention-Based Model and Deep
Reinforcement Learning for Distribution of

Event Processing Tasks

Abstract: Event processing is the cornerstone of the dynamic and responsive Internet of
Things (IoT). Recent approaches in this area are based on representational state transfer
(REST) principles, which allow event processing tasks to be placed at any device that fol-
lows the same principles. However, the tasks should be properly distributed among edge
devices to ensure fair resources utilization and guarantee seamless execution. This chap-
ter investigates the use of deep learning to fairly distribute the tasks. An attention-based
neural network model is proposed to generate efficient load balancing solutions under dif-
ferent scenarios. The proposed model is based on the Transformer and Pointer Network
architectures, and is trained by an advantage actor-critic reinforcement learning algorithm.
The model is designed to scale to the number of event processing tasks and the number of
edge devices, with no need for hyperparameters re-tuning or even retraining. Extensive
experimental results show that the proposed model outperforms conventional heuristics
in many key performance indicators. The generic design and the obtained results show
that the proposed model can potentially be applied to several other load balancing pro-
blem variations, which makes the proposal an attractive option to be used in real-world
scenarios due to its scalability and efficiency.

3.1 Introduction

Event processing is a crucial element in dynamic and reactive Internet of Things (IoT)
applications, as it allows to derive real-time (or near-real-time) conclusions from data. An
event processing task, usually mapped into a web request (e.g., HTTP), follows a simple
observe-evaluate-actuate pattern. As the name suggests, this pattern involves
performing three tasks: observe one or many devices/sensors, evaluate the produced data
and, if the user-defined condition is satisfied, notify one or many actuators. With the recent
emergence of the Web of Things (WoT) [16,18,33,34] concept, where every device has its
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own internet protocol (IP) address and every device resource is addressable by uniform
resource identifier (URI), the observe-evaluate-actuate chain operates over a
set of URI endpoints.

Event processing has relied primarily on cloud computing, which virtually has an unli-
mited amount of storage and computational resources. Centralized processing, alongside
with the virtualization of both storage and computational resources, offers flexibility and
efficiency by scaling up and adapting the system to different situations. However, with
the ever-increasing amount of data being produced and consumed directly at the network
edge, centralized (cloud) computing ends up becoming a limitation because additional
IoT application requirements can not be satisfied. These requirements are related with
delay sensitivity, data volume, uplink costs, non-interruption of service in environments
with intermittent connectivity, privacy, and security [92].

The need to satisfy the above-mentioned requirements led to the emergence of a dis-
tributed computing paradigm, called edge computing. In this new paradigm, substantial
computational and data storage resources are located near the mobile devices, sensors
and actuators. Edge computing can be seen as a strategy to provide a uniform compu-
tation/storage environment all the way from the core data centers to physical locations
near users and data. However, unlike the cloud, edge computing has a more dynamic and
distributed computing nature, which results in distributed and ad-hoc event processing
chains.

Despite the above-mentioned differences, edge and cloud will have a common back-
ground in the underlying technologies. In an Internet-Draft called “IoT Edge Challenges
and Functions” [93] Internet Engineering Task Force (IETF) emphasizes that “virtualiza-

tion platforms enable the deployment of virtual edge computing functions, including IoT

gateway software, on servers in the mobile network infrastructure, in edge or regional

data centers”. At the moment of writing, there are several initiatives that are moving in
this direction. As an example, Edge Virtualization Engine (EVE) [94] aims to create an
open edge computing engine that enables the development, orchestration and security of
cloud-native and legacy applications on distributed edge computing nodes. It also aims to
provide support for containers and clusters (e.g., Docker, Kubernetes), virtual machines,
unikernels and offer a flexible foundation for IoT edge deployments with choice of any
hardware, application and cloud. Another example is the EdgeX Foundry [95] service
platform that also aims to provide management, data persistence or streaming near the
edge. This project also provides a dedicated rule engine API for the creation of event
processing chains. MobiledgeX [96] is an edge-cloud platform that provides an environ-
ment for the developers to deploy software (e.g., as software containers) on the edge. All
these initiatives seek to bring orchestration, virtualization, load balancing techniques and
technologies from the cloud to the edge. This means that in order to understand how event
processing tasks will be handled and distributed across the edge, it is important to see how
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Figure 3.1: An overview of reverse proxy.

this is currently being handled by the cloud.

3.1.1 Adequate Resource Placement and Load Balancing

In typical application deployments, devices/servers (virtual or physical) are placed behind
reverse proxies like NGNIX [97], Traefik [98] or Moleculer API Gateway [99]. A reverse
proxy, illustrated in Figure 3.1, is a type of server that typically sits behind the firewall in a
private network and distributes the incoming client requests among the available back-end
servers. Common features that reverse proxies provide include load balancing, web acce-
leration (e.g., caching, SSL encryption), security and anonymity. In case of load balancing
there are several balancing strategies that can be used, each focusing on a specific aspect
of Quality-of-Service (QoS). NGNIX, for example, offers round-robin, least-connected,
ip-hash [100]; Traefik at the moment only supports round-robin method [101]; Moleculer
API Gateway offers round-robin, random, CPU-usage based and sharding [102]. These
load balancing strategies do not provide optimal solutions because these are prohibitively
expensive to obtain in real-time. Instead, these strategies trade the quality of solution for
the response time, i.e., these strategies are fast but the solutions that they provide can
be sub-optimal. Moreover, static optimization strategies are not adequate because the
environment is dynamic in terms of available servers and user requests.

The arrival of new user requests is usually irregular. That is, bursts of requests during
short periods of time can be followed by periods of slowdown. To address this, containe-
rized environments have a container manager (e.g., Kubernetes) that provides autoscaling
of the number of servers, ensuring the creation (or removal) of replicas according to the
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system load [103]. Similar dynamics are expected at the network edge, and projects like
StarlingX [104] solve them by providing tools for management, orchestration and scaling
of distributed edge-cloud computing devices.

From the above discussion, it is clear that load balancing and resource planning strate-
gies will play a crucial role in edge computing, together with strategies for the appropriate
placement of event processing tasks. Any strategy should be scalable and adaptable to the
dynamics of the system: number of incoming requests, number of servers and resour-
ces available at that time. In general, the problem of distributing event processing tasks
boils down to the multiple knapsack problem, which is known to be NP-hard [105]. De-
veloping handcrafted heuristics for such problems can be challenging, especially under
dynamic environments and heterogeneous key performance indicators (KPIs). On the ot-
her hand, machine learning (ML) solutions are envisioned as the right answer to an ever
increasing complexity of networks and the web [1]. ML approaches are able to learn new
distribution strategies which makes them a compelling choice.

3.1.2 Reinforcement Learning as a Solution Framework

The most successful applications of ML methods (e.g. natural language processing (NLP),
computer vision) fall under the umbrella of supervised learning (SL), a process that con-
sists in learning to map a set of inputs to output labels. However, applying supervised ML
methods to placement problems, or any other combinatorial problem, is troublesome as it
is almost always impossible to obtain the output labels. Moreover, even if the labels are
provided and a neural network model is trained in a supervised way, it usually has poor
generalization to other problem instances [106].

Reinforcement learning (RL), on the other hand, is an attractive approach to solve
combinatorial problems because, unlike SL, it does not require labels. RL can be seen as
a trial and error process in which an agent interacts with an environment via a sequence
of actions and, in return, receives feedback in the form of reward signals. The goal of the
agent is to learn an action selection strategy in a way that the total reward is maximized. A
continuous interaction with the environment allows the agent to explore several (millions
of) possible environment configurations and to develop a strategy that ensures that the
maximum reward is obtained in every possible situation, i.e., to generalize.

Recent attempts in integrating deep learning (DL) with RL showed breakthrough re-
sults in video games [107], board games [4, 5], robotics and many more areas [7]. This
new learning paradigm is widely known as deep reinforcement learning (DRL). In this
work we investigate how DRL can be used by reverse proxy servers to distribute event
processing tasks among heterogeneous edge devices available for processing.
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3.1.3 Motivation and Contributions

The idea of using DRL to solve load balancing and distribution problems has recently
attracted many researchers. Surveys show that there are several attempts, with different
levels of success, to solve these kind of problems [108, 109]. However, the vast majority
of these attempts do not solve problems of variable sizes. The problem is treated as
a fixed-sized optimization problem where a neural network is trained to map problem
instances to solutions. For instance, in the distribution problem illustrated in Figure 3.1,
the number of incoming requests and the number of available servers are assumed to
be fixed. Then, during the development (design and training), the model is trained to
learn to map the inputs to outputs. This is followed by testing, where the network’s
performance is measured on solving problems of the same size that it was trained upon
and, finally, reporting the obtained results. However, despite the results reported in the
above mentioned surveys, the majority of those models have little practical use in real life
deployment because a simple change in input size would make those models invalid.

We argue that the assumption of a fixed problem size is problematic and, usually,
does not hold true in dynamic environments like IoT and edge. The number of incoming
requests and available nodes is dynamic and changes over time. Therefore, the main
limitation of the existing literature that involves DRL, load balancing and distribution
problems is the inability of the proposed neural networks to adapt to the dynamics of
the environment without retraining. In other words, the problem is the scalability of the
proposed neural networks.

This works focuses on developing a scalable DRL model that is able to solve problem
instances of variable size without retraining. The main contributions of this chapter are as
follows:

1. A study is made on how event processing tasks can be distributed across edge devi-
ces. Three different distribution criteria are studied, each being formalized mathe-
matically.

2. A new neural network architecture is proposed for the distribution of event proces-
sing tasks, while ensuring load balancing. The key feature of the proposed model is
its scalability, which means that it does not require retraining every time the number
of incoming requests or servers, available for processing, change.

3. A comparative study against the optimal solutions and several baseline heuristics
is carried out. Obtained results indicate that the proposed model can generate high
quality solutions to problems up to five times larger that the ones it was trained
upon.

The remainder of this chapter is organized as follows. In Section 3.2, existing attempts
of using RL in load balancing problems are discussed. A review of neural combinatorial
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optimization is also carried out. The event task distribution problem is mathematically
formulated in Section 3.3. Section 3.4 presents the proposed neural network architecture
and is organized as follows: i) Section 3.4.1 presets a brief RL and DNN background; ii)
Section 3.4.2 presents the Markov decision process (MDP) representation of the problem;
iii) Section 3.4.3 describes the detailed design of the proposed neural network architec-
ture. Section 3.5 describes the training method alongside with the hyperparameters used
to obtain the model and evaluates its performance. Finally, in Section 3.6 conclusions are
drawn.

3.2 Related Work

RL has been applied in several areas of IoT and edge computing for different purpo-
ses, which range from the actuation control (e.g, greenhouse climate control) to resource
control (e.g., minimization of communication delay, energy consumption, hardware re-
sources) [108, 109]. However, most of the literature uses deep neural network (DNN)
architectures that are not able to scale or adapt to the dynamics of the environment, e.g.,
increase in the number of edge devices, base stations, sensors or number of requests. That
is, the action space is fixed, which limits the practical use of DNNs in realistic scenarios.
The following subsections provide an overview of the application of RL to IoT, edge com-
puting and load balancing. Then, ongoing research to tackle combinatorial optimization
problems, using RL, is presented [110, 111].

3.2.1 Reinforcement Learning in Edge Computing

In [112] authors propose a DRL solution to minimize the total cotask completion time.
A cotask is a task, generated by an IoT device, that can only be completed when all of
its constituent sub-tasks are finished. Authors use a DNN architecture with two heads,
one that predicts the offloading location of the task and another for the prediction of
the cotask completion time. The obtained results show that the proposed model is able
to outperform several baseline heuristics. However, the proposed architecture requires
retraining whenever the network or the input size changes.

In [113] an RL method is used to distribute the tasks, produced by different user
devices, among a set of edge servers. To deal with the combinatorial action space (any
task can be placed at any available edge server), authors introduce a multi-agent algorithm
where each Deep Q-Network (DQN) [107] agent makes an action that corresponds to the
location where the task will be offloaded. The DQN architecture, used in this work,
requires retraining once the state or action space changes, i.e., once an additional edge
server is connected to the system.

In [114] mobility load balancing in self-organizing networks is investigated. The goal
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is to design a handover scheme that transfers a mobile user from its service cell to a neig-
hbor cell that can handle the incoming traffic. The authors use an off-policy deterministic
policy gradient (OPDPG) method [115] and propose an asynchronous parallel learning
framework to improve the training efficiency in a collaborative manner. The obtained re-
sults show that the RL method is able to outperform several baseline heuristics. However,
once again, this architecture is designed for fixed-size communication networks, i.e., any
change in the number of cells requires retraining the network.

In [116] the authors propose an RL agent to offload computationally intensive tasks,
generated by user equipment (UE), to mobile edge computing (MEC) servers, while max-
imizing the mobile operator revenue and minimizing the energy consumption and time-
delays. In the investigated environment the authors considered a queuing model, states
of energy harvesting batteries and down-link transmit power costs. The authors conclude
that their approach has better performance than the policy-gradient and Q-learning algo-
rithms. The main limitation of this work is the fact that the authors only studied a scenario
with a fixed number of MEC servers, which is not always the case in reality. Moreover,
any change in the number of MEC servers requires retraining the agent.

Several other works [117–121] used DQN-based models in offloading and load ba-
lancing problems. Despite the obtained results, all of these proposals have a common
weakness that drastically limits their use in real world deployments. Any change in the
state or action space sizes imply retraining the network from scratch. Overall, DQN and
its variants are more suitable for static environments with fixed state and action spaces but
they have limited uses in dynamic environments

3.2.2 Combinatorial Optimization with Reinforcement Learning

One of the first attempts to solve combinatorial problems with neural networks was pre-
sented in [122]. The authors propose a neural architecture, called Pointer Networks (Ptr-
Net), which is based on sequence-to-sequence (seq2seq) [123] models with attention
mechanisms [124, 125] that are commonly used in NLP. Ptr-Net is an encoder-decoder
architecture where recurrent neural networks (RNNs), usually long short-term memory
network (LSTM) [126] or gated recurrent unit (GRU) [127], are used to process the input
sequence at the encoder and to generate the output sequence at the decoder. Although
in this work the Ptr-Net was trained in a supervised way, authors showed that a single
architecture with the same hyperparameters can be used to solve different combinatorial
problems. The fundamental breakthrough of Ptr-Net is its ability to deal with variable
output space without the need for retraining the network. Moreover, the authors showed
that the Ptr-Net trained on combinatorial problems of small size is capable to generalize
to much larger problems without considerable degradation in the quality of generated
solutions.
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In [106] the authors used Ptr-Net in combination with RL to solve combinatorial pro-
blems, such as the traveling salesman problem (TSP) and the knapsack problem. Authors
use RL methods because it is difficult to have access to labels (associated with optimal
solutions), as combinatorial problems are usually NP-Hard. The obtained results show
that the developed RL agent is capable of finding near-optimal solutions for TSP with
up to 100 nodes and for up to 200 items in knapsack problem. In this work the authors
also made an empirical analysis between supervised training and RL and reached the con-
clusion that Ptr-Net networks trained in a supervised way have poor generalization when
compared to a Ptr-Net-based RL agent that explores different solutions and observes their
corresponding rewards.

In [128] the authors proposed a model, inspired on Ptr-Nets and seq2seq, to solve
vehicle routing problem (VRP). Authors removed LSTM from the encoder as they argue
that LSTM, and other RNNs, are only necessary when dealing with sequential data. After
training, the proposed model was able to generalize well and generate high-quality solu-
tions for all problems sampled from the same distribution that was used during training.
Moreover, authors tested the model’s ability to handle variable problem sizes. They con-
clude that their model performs well when training and testing problem sizes are close
to each other. However, they report a degradation in performance when the sizes of the
testing instances are substantially different from the ones used for training.

The work in [128] is extended by [129], where a model capable of solving several
variations of VRP and TSP is proposed. The authors replace LSTM networks by the
Transformer [130] and results show that the proposed model is able to achieve (near)
optimal solutions for problems of size 20, 50 and 100 nodes.

3.3 The Problem of Event Processing

Prior to presenting the proposed DRL solution, it is necessary to clearly define the pro-
blem. This section briefly describes the technological background of event processing,
which is then followed by its mathematical formalization.

3.3.1 Rule Synchronization Mechanism

There are multiple Internet-Drafts that attempt to standardize event processing in WoT,
many of them have been reviewed and analyzed in our previous work [30]. In this chapter
the focus will be on the most recent proposal, called Rule, which was also discussed
in [30].

A Rule, illustrated in Figure 3.2, is a regular web resource, based on RESTful prin-
ciples, that allows to create complex many-to-many event processing chains. Multiple
sources can be observed (e.g., sensors) and, after condition evaluation, multiple destina-
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Rule

Value: Unlocked

Video Stream
Value: On

Value: 23ºC

Security Camera

Lock

Light

Heating

Figure 3.2: An example of a Rule with two inputs and two outputs.

tion endpoints can be updated (e.g., actuators). Being a regular web resource means that
Rules can be placed at any device that supports a Rule API and is available for proces-
sing. The Rule is a continuously running task that is constantly observing resources and
processing the data being sent. To stop it, and to release the resources that it is consuming,
the user must send an appropriate request (e.g., HTTP DELETE).

End-users are not expected to create Rules by hand. Applications are expected to
be available (e.g., Rules store) where users can find pre-defined Rules, together with
related meta-data (e.g., CPU, RAM and storage requirements), i.e., Rule profiles. The
inputs and outputs of a pre-configured Rule will have to be defined according to user’s
need.

Running Rules at the edge, where there will be physical, virtual, and containerized
nodes with different computational capabilities, which means that these tasks must be
carefully distributed.

Definition 1 (Rule Distribution (RD) Problem) Given a set of Rule profiles, decide

for the best Rule distribution across devices while taking into account randomly arri-

ving Rule requests, random number of available edge devices (each having its random

amount of available CPU, RAM and storage resources) and QoS requirements.

3.3.2 Assumptions and Notation

To have a clear understanding of how to solve the RD problem optimally, assumptions
and notation have to be clarified. This is followed by the mathematical formalization of
the RD problem considering three variants. Such mathematical formalization is important
not only to clearly define the problem, but also to have a reference when evaluating the
proposed RL-based agent.
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Definition 2 (Node) A virtual, containerized or physical device exposing a Rule API,

being capable of processing a specific set of Rules. The set of nodes able to host Rule

x is denoted by N x, while the overall set of heterogeneous nodes is denoted by N .

Definition 3 (Computational Resource) Hardware resource (e.g., CPU, RAM, memory)

available at nodes. The amount/capacity of n’s computational resources, n ∈ N , is given

by vector cn = [cn,m], where m ∈ {1, ...,M} and M is the total number of computational

resources considered.

Definition 4 (Rule) Web resource able to evaluate an expression or performing complex

processing over certain inputs. Assuming X = {x1, x2, ..., x|X |} to be a set of Rules,

each xi has a demand vector dxi = [dxi,m], m ∈ {1, ...,M}, containing computational

resource requirements.

Definition 5 (Critical Resource) Given a set of rules X ′ ⊂ X under execution at node

n ∈ N , n’s critical resource is given by Ωn = arg maxm∈{1,...,M}{
∑
x′∈X′ dx′,m
cn,m

}.

In the following section three variants of the RD problem are formalized. Each vari-
ant tries to optimize specific performance indicators: number of allocated Rules, critical
resource and/or number of active nodes. The variables that may be involved are the follo-
wing:

ωx One if Rule x ∈ X is to be executed, which requires finding a node
to place it; zero otherwise.

βnx One if Rule x ∈ X is to be placed at node n ∈ N x; zero otherwise.
Ωn Critical resource at node n ∈ N .
ΩMAX Most critical resource among all nodes at the network.
Θn One if node n ∈ N is in use; zero otherwise.

3.3.3 Mathematical Formalization

Greedy Optimizer

The performance indicator to be optimized is the number of Rules placed/distributed
across nodes, which should be maximized. This is expressed as follows.

– Objective Function:

Maximize
∑
{x∈X}

ωx (3.1)

– Placement of Rules:
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∑
{n∈Nx}

βnx = ωx,∀x ∈ X (3.2)

These constraints ensure that there is a single location for each Rule that is to be
executed.

– Computational Resource Limitation:

∑
{x∈X}

dx,m × βnx ≤ cn,m,∀n ∈ N ,∀m ∈ {1, ...,M} (3.3)

where dx,m is known information. These constraints avoid exceeding the available com-
putational resources of nodes.

– Non-negativity assignment to variables:

ωx, β
n
x ∈ {0, 1}. (3.4)

Critical-Aware Greedy Optimizer

The main performance indicator to be optimized is the number of Rules that are place-
d/distributed across nodes, which should be maximized while ensuring that load is fairly
distributed (most critical resource as a reference). Thus, fair distribution is the secon-
dary performance indicator to be optimized. This kind of optimization is important in
cooperative scenarios when edge devices are provided by different owners that trade their
computational resources for some reward (e.g., financial benefits). Service providers hold
reverse proxy servers, which exposes the Rule API to the end-users. The computational
resources are provided by the device owners.

– Objective Function:

Maximize
∑
{x∈X}

ωx + ΩMAX (3.5)

This objective function ensures that the largest number of Rules is placed/distributed
and, at the same time, that it is done in a fair way, so that Rules have the best (and
similar) working conditions.

– Placement of Rules: Expression (3.2).
– Computational Resource Limitation: Expression (3.3).
– Obtaining Critical Resource:
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Ωn ≤ cn,m −
∑
{x∈X}

dx,m × βnx ,∀n ∈ N , ∀m ∈ {1, ...,M} (3.6)

where dx,m is known information. These constraints finds the critical resource at each
node. Finding the most critical resource among all nodes requires:

ΩMAX ≤ Ωn,∀n ∈ N (3.7)

– Non-negativity assignment to variables:

ωx, β
n
x ∈ {0, 1}; 0 ≤ Ωn,ΩMAX ≤ 1. (3.8)

Cost-Aware Greedy Optimizer

The main performance indicator to be optimized is the number of Rules that are place-
d/distributed across nodes, which should be maximized while ensuring that the number of
nodes in use (hardware cost) is minimized. Thus, the cost is the secondary performance
indicator to be optimized. This optimization is important when the Rule API provider is
responsible for both the reverse proxy and nodes, but is using rented hardware to offer its
services. This is a very common scenario in cloud computing, so rental cost minimization
ends up being also a relevant performance indicator.

– Objective Function:

Maximize
∑
{x∈X}

ωx −
∑
{n∈N}Θn

|N |
(3.9)

This goal ensures that the largest number of Rules is placed/distributed using the
lowest number of nodes, for cost minimization.

– Placement of Rules: Expression (3.2).
– Computational Resource Limitation: Expression (3.3).
– Obtaining nodes in use:

Θn ≥ βnx ,∀n ∈ N ,∀x ∈ X (3.10)
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∑
x∈X

dx,m × βnx ≤ cn,m,∀n ∈ N ,∀m ∈ {1, ...,M} (3.11)

Constraints (3.11) avoid exceeding the available resources at nodes.
– Non-negativity assignment to variables:

ωx, β
n
x ,Θ

n ∈ {0, 1}. (3.12)

The above-mentioned optimization problems provide the optimal solution for each
problem instance. However, solvers (e.g., CPLEX [131], Gurobi [132]) that rely on these
formalizations to compute optimal solutions can only find results, in a reasonable amount
of time, if the problem instance is very small. For this reason an RL-based solution is
proposed. RL methods have the ability to understand the system dynamics and, after
trained, make appropriate placement decisions in real-time.

3.4 Proposed DRL Framework

Prior to presenting the proposed DRL solution designed to tackle the RD problem, for-
malized in Section 3.3, this section first presents a brief RL and DNN background, which
is then followed by the MDP formulation of RD problem.

3.4.1 Deep Reinforcement Learning Background

Reinforcement Learning

In RL, sequential decision problems can be modeled using Markov decision processes
(MDPs). An MDP can be represented by the tuple (S,A, p, r), where S is the state space
andA is the action space. The p : S×A×S → [0, 1] is the probabilistic transition model
(matrix), where p(s′|s, a) is the probability of arriving at state s′ from s after taking action
a, of which s′, s ∈ S and a ∈ A; r : S ×A× S → R is the reward function.

An agent learns by interacting with the environment. At time step t, the agent observes
a state st and takes an action at. The environment returns a reward signal r(st, at) to the
agent and makes a transition to a next state st+1. The objective of the agent is to maximize
the collected reward (outcome):

Gt =

[
∞∑
k=0

γkr(st+k, at+k)|s0 = st

]
(3.13)
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where γ is a discount factor used to balance the importance of immediate and long-term
rewards.

For the agent to decide which action to take at a given state, it needs to follow a policy.
Therefore, the objective of training an agent is to find a policy π that maximizes Gt. A
policy is optimal π∗ if following it produces the maximum outcome. In addition, a policy
π can be deterministic i.e., π(s) = a, or stochastic i.e., a probability distribution over the
action space A.

There are two ways to learn π: value-based and policy-gradient. This work focuses
only on the latter.

In value-based learning, π is calculated from a state-value function Vπ(s) which mea-
sures how good it is to be at a given state s:

Vπ(s) = E [Gt|st = s] (3.14)

In policy gradient learning, π can be modeled by a parametric function where the
objective is to learn a set of parameters θ that maximizes an objective function J . Assume
an episodic setting with episode length T and let τ be a sequence of transitions (trajectory)
τ = s0, a0, . . . , sT−1, aT−1. Following the probability general product rule, π can be
defined as:

π(τ ; θ) = p(s0)
T−1∏
t=0

π(at|st; θ)p(st+1|st, at) (3.15)

where p is, again, the transition probability density function and θ is the set of parameters.
From Expression (3.15), it is possible to see that the transition from s to st+1 depends

on the action taken, at, and the probability of reaching st+1 from st when taking at.
Furthermore, following the original assumption about π∗: π∗ will generate the optimal

trajectory τ ∗ that collects the maximum accumulated reward, the objective function J

can be formulated as:

J(θ) = Eτ∼πθ [r(τ)] =

∫
π(τ ; θ)r(τ), (3.16)

and the optimal set of parameters can be found using:

θ∗ = arg max J(θ) (3.17)

To find θ, the product in Expression (3.15) has to be simplified and differentiated with
respect to θ. Both can be done using the logarithmic differentiation:

∇θJ(θ) = Eτ∼πθ [∇ log(π(τ ; θ))r(τ)] (3.18)
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Moreover, since r does not depend on θ, we have:

∇θJ(θ) = Eτ∼πθ

[
T−1∑
t=0

∇ log(π(at|st; θ))Gt

]
(3.19)

Following the gradient ascent rule, the update step is:

θk+1 = θk + α∇θJ(θk) (3.20)

where α is the learning rate.
The steps of: i) sampling a trajectory τ ∼ πθ; ii) differentiating with respect to θ

(Expression (3.19)); iii) updating θ (Expression (3.20)); are known as the REINFORCE
algorithm [133, 134]. This method, however, can suffer from high gradient variance due
to trajectory sampling. A common way to reduce the variance is by subtracting a baseline
value from the reward term in Expression (3.18). When the baseline is used, Expression
(3.19) can be rewritten as:

∇θJ(θ) = Eτ∼πθ

[
T−1∑
t=0

∇ log(π(at|st; θ))A(st, at)

]
, (3.21)

where A(st, at) is known as the advantage function [135]:

A(st, at) ≈ r(st, at) + γVπθ(st+1)− Vπθ(st) (3.22)

and Vπθ(st) is the actual baseline value (Expression (3.14)).
The method using the Expression (3.21) is called advantage actor critic (A2C) [136].

As the name suggests, this algorithm relies on an actor to learn the πθ and on the critic
to learn the baseline values. An efficient way to model both the actor and the critic is by
using DNNs. In this case, their losses can be defined as follows:

actor loss: −
T−1∑
t=0

log(π(at|st; θ))A(st, at) (3.23)

entropy: −
T−1∑
t=0

π(at|st) log(π(at|st)) (3.24)

where the entropy term is used to encourage exploration by penalizing agents’ overconfi-
dence. For the critic loss, the following expression is used:
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critic loss:
1

2

T−1∑
t=0

A(st, at)
2 (3.25)

Deep Neural Networks

As noted in Section 3.2, the models and architectures that are currently used by the RL
community to tackle combinatorial problems are well-suited for handling problems with
variable state and action spaces. Therefore, this work relies on the Ptr-Net and the Trans-
former, which are robust and flexible architectures. For brevity purposes, and due to space
limitation, most of the mathematical foundations of these architectures are omitted and a
quick overview is presented next. For further details please refer to [122] and [130].

Pointer Network Architecture The main idea of Ptr-Net is that the output sequence
is obtained by pointing at elements in the input, hence the name of the architecture. In
other words, the output is a sequence of input selections, which makes Ptr-Net suitable for
modeling selection problems. For example, this architecture was used to solve classical
problems like the TSP and knapsack problem [122, 137]. In both cases, the solution is
built by selecting the sequence by which cities are visited (in case of TSP) or sequence by
which items will be placed into the backpack (in case of knapsack).

This architecture has two main components: the encoder and the decoder. The enco-
der’s role is to map the input into a feature space, while the decoder generates the pointers.
In the encoding mode, the encoder reads the input data, one element at a time, and ge-
nerates a set of fixed-dimensional vector representations, known as encoder hidden states
(e1, ..., en) where n is the number of input elements. After reaching the end of the input
sequence, Ptr-Net switches into a decoding mode. In this mode, the decoder is initialized
by the encoder’s last hidden state en and a user-defined start of sequence (SoS) symbol.
The decoder then produces the first hidden state d1, which is used to generate the first
pointer (i.e., index) to an element in the input sequence. In the next decoding step, d1

and the previously pointed element are fed to the decoder to generate a subsequent poin-
ter. This process repeats itself until the decoder points to a user-defined end of sequence
(EoS) symbol or a predefined number of pointers is reached. The decoder’s hidden states
are represented by (d1, ..., dm) where m is the size of the output sequence.

The actual pointing mechanism, which we call Ptr-Net head, is computed as follows.
First, at any decoding step i the unnormalized log probabilities (logits) ui are calculated:

uji = vT tanh(W1ej +W2di), j ∈ (1, ..., n) (3.26)
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where vT ,W1,W2 are learnable parameters of the model.
Next, ui is fed to a softmax layer to calculate the probabilities of pointers selection:

pi = softmax(ui) (3.27)

where pi is the softmax distribution with dictionary size equal to the length of the input.
Finally, a pointer is selected by sampling from pi via a sampling strategy (e.g., greedy,
stochastic). In greedy sampling, for example, the selected pointer is the index of the
element with the highest probability in pi.

It is worth to note that in the original Ptr-Net proposal [122] both the encoder and the
decoder use LSTMs. However, the authors of Ptr-Net have shown later (same year) that
RNNs, including LSTM and GRU, are not suited for solving problems where the order
of the input does not matter [138]. The main limitation of RNNs is that they are order-
sensible, an undesired behavior when working with sets of data. Moreover, these networks
are ineffective in learning long distance relationships between the elements in the input,
i.e., finding dependencies between elements that are located far apart in the input sequence
[139]. Since RNNs pass the information sequentially, the longer the input sequence, the
more likely it is that some information will be lost during sequence processing.

Transformer Architecture This architecture, introduced in 2017, presents a new way
of computing relationships between the elements in the input. It completely abandons the
use of RNNs and, instead, relies entirely on the attention mechanisms [130]. Dropping
the recurrence removed the constrains of sequential computation, allowing larger models
to be built and a faster training to be achieved. Current state-of-the-art NLP solutions
(e.g., GPT-3 [3]) use the Transformer or one of its variants [140].

The core idea introduced by the Transformer is the self-attention mechanism that al-
lows to find inter-dependencies between elements in the input, regardless of their posi-
tions in the input sequence. Broadly speaking, self-attention receives as input an em-
bedding representation of n input elements, denoted by (x1, ..., xn), and maps them into
(z1, ..., zn) output embeddings while preserving the input dimensions. Each zi embed-
ding, i ∈ (1, ..., n), contains information about how input element at position i is related
to all the remaining input elements. This input-output transformation process can be
summarized as follows. First, every input element xi, i ∈ (1, ..., n), is mapped via linear
transformation into key ki, query qi and value vi vectors. Next, a logit uji measuring the
compatibility between qi and key kj , ∀j ∈ (1, ..., n), is computed:

uji =
qik

T
j√

d(k)
, j ∈ (1, ..., n) (3.28)
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where d(k) is the dimension of k.
Then, just as in Ptr-Net, the compatibility vector ui is passed through a softmax

layer (Expression (3.27)) to produce a probability vector pi, whose size is equal to the
length of the input. Finally, the output zi is computed as:

zi =
n∑
j=1

pjivj, (3.29)

where pji is the jth weight in pi.
The generic input-output mapping, provided by the self-attention mechanism, allow

these computation blocks to be stacked to create a higher level of abstraction and, potenti-
ally, give the network more generalization capacity. In the original work, authors stacked
six self-attention blocks in the encoder and decoder and, at that time, were able to achieve
state-of-the-art results in NLP tasks.

Please note that the Transformer was originally developed to solve NLP problems,
where the order of the input sequence matters. To that end, the authors introduced a so
called positional encoding1. Here in our work the order does not matter and, for this
reason, the positional encoding is not included in our design.

3.4.2 MDP Formulation

In the following sections the RD problem, outlined in Definition 1, is formulated as an
MDP and described in terms of state, actions, and possible reward functions.

State Space

The state of the RD problem includes: i) a set of Rules that arrive at the reverse proxy
and need to be distributed across nodes, denoted by X ′ ⊆ X ; ii) a set of available nodes
capable of hosting Rules in X ′, denoted by N ′ ⊆ N . Each Rule is represented by its
profile that includes CPU, RAM and storage requirements, while each node is represented
by its CPU, RAM and storage resources. Note that the node set, i.e., locations where
Rules can be placed, is also part of the action space, which will be explained in the
following section.

For an adequate distribution of Rules, reverse proxy must have an up-to-date infor-
mation about the number of available nodes and their states. In distributed systems, nodes
usually share this kind of information either by using passive or active methods. In case
of passive methods, nodes expose a specific endpoint, usually /health, that responds
with its status: an HTTP 200 OK status code informs that the device is alive, which may
be followed by information on available resources. Then, the reverse proxy (e.g, Traefik)

1See ”Section 3.5 - Positional Encoding” in [130]
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makes periodic requests to these endpoints and uses the obtained information during the
distribution process. In case of active methods, as in MoleculerJS [99], nodes periodically
broadcast Heartbeat packets containing information about their health status [141].
Here we assume that a reverse proxy always has an up-to-date information on the availa-
ble nodes and their CPU, RAM and storage resources. Note that there might be situations
where nodes do not have enough resources to serve all requests and, therefore, some of
the requests will be rejected. For this reason, we introduce a dummy node noderej where
rejected Rules are placed. This node does not have the ability to process the Rules, as
it does not have any computational resources, and its purpose is to allow the RL agent to
associate rejected Rules with a dedicated place. The overall state for the RD problem is
the following:

S , {N ′ ∪ noderej,X ′}. (3.30)

Designing S this way allows the RL agent to have a global view of the problem, in
order to make appropriate placement decisions. Furthermore, this design can be applied
to model other optimization problems (e.g, multiple knapsack problem, multiple vehicle
routing problem) whose state is described by two sets and the problem solution can be
modeled as a sequence of assignment decisions.

Action Space

It is assumed that a Rule x ∈ X ′ can be placed at any available node n ∈ N ′, as long
as resources are not exceeded. If a Rule has requirements higher than the resources
available at the nodes in N ′ then it is rejected, i.e. placed at the noderej. Therefore, the
action space is represented as follows:

A = N ′ ∪ noderej (3.31)

Placing a Rule at node n involves updating the amount of available resources at n.
This is done by subtracting Rule resource requirements from node’s available resour-
ces. Placing a Rule at noderej does not involve any computation, as the Rule is being
rejected.

From the user point-of-view, placing a Rule at any node in N ′ would result in a
HTTP 201 Created meaning that the request was accepted and the Rule is running.
On the other hand, placing a Rule at the noderej would result in a HTTP 503 Service

Unavailable response, meaning that the system is overloaded at the moment, and
can not process the incoming request. Therefore, the state and action spaces design is
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consistent with the realistic settings of Rule placement.

Rewards

The agent places Rules, one at a time, and in return receives a reward value. This reward
depends on the RD problem variant under consideration (see Section 3.3).

Greedy Reward The reward signal for greedy optimization is simple and represented
as follows:

r(st, at) =

{
0, if Rule is rejected
1, if Rule is accepted

(3.32)

Placing a Rule at any node in N ′ gives a positive reward to the agent, while placing
it at noderej, i.e., rejecting the Rule, gives zero reward. Since the agent aims to maximize
the accumulated reward, it will try to come up with a distribution strategy that maximizes
the number of placed Rules.

Critical-Aware Greedy Reward To maximize the placement of the Rules, while en-
suring a fair distribution, the following reward is used:

r(st, at) =

{
−2, if Rule is rejected

ΩMAX, if Rule is accepted
(3.33)

For each rejected Rule the agent is penalized by receiving a negative reward (-2,
which has been selected empirically). On the other hand, placing a Rule at node n ∈ N ′

gives a positive reward equal to the most critical resource among all nodes in N ′, as
described in Expression (3.7).

Penalizing rejections with negative rewards and rewarding successful Rule place-
ment with positive rewards has two effects. It encourages the placement of the largest
number of Rules and, at the same time, it allows the agent to obtain high ΩMAX rewards,
which brings fairness to the distribution of Rules.

Cost-Aware Greedy Reward The reward for maximizing the Rule placement while
minimizing the number of used nodes is represented as follows:
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Figure 3.3: Model architecture and decoding step example: Rule 0 placed at node 0.

r(st, at) =


−2, if Rule is rejected
−1, if Rule placed at an empty node
0, otherwise

(3.34)

The minimization of rejected requests is ensured by giving a negative reward, -2, for
each rejected Rule. To enforce that a minimum number of nodes is used, the agent
receives a negative reward, -1, every time it places a Rule at an empty node, i.e., a node
without previously assigned Rules. Placing at a node that already has Rules assigned
to it results in a reward equal to zero. This way the agent will try to find a strategy that
uses the lowest number of nodes to place all the Rules.

3.4.3 Model Architecture

Figure 3.3 is a graphical representation of the proposed model, which has two main com-
ponents (encoder and decoder) that are detailed in this section. The source code of the
model, implemented in Tensorflow [142], is also publicly available2.

Encoder

The proposed encoder, illustrated in the upper part of Figure 3.3, uses self-attention me-
chanisms in all of its encoding layers. It receives y = (y1, y2, ..., yn−m, yn−m+1, ..., yn) as
input, where y1 is noderej; y2 to yn−m are the available nodes; and yn−m+1 to yn are the
Rules.

2https://github.com/AndreMaz/transformer-pointer-critic
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In the proposed architecture, the input y is split into two sets: Rules and nodes.
Each set passes through a dedicated embedding layer and a self-attention block. The
decision of having two separate processing components, one for each set, has two reasons.
First, to give the model the ability to select different pre-processing strategies for each
type of input. A pre-processing can be, for instance, sorting the rules and nodes using
different strategies (as in traditional heuristic algorithms). However, in this case, the pre-
processing strategies are not based on any human preconception, and the model learns
adequate strategies that suit the QoS factor at hand. The second reason is to make the
model flexible to input data of uneven number of features. In other words, to make the
model generic and applicable to different problems. For example, for the cost-aware
greedy optimization the node requires an additional binary feature in order to represent
whether it is empty or not, meaning that the node is described by four features while the
Rule is described by three only. Furthermore, the splitting idea can also be applied to
more than two input components, which adds more flexibility to the proposed design.

After completing the node and Rule pre-processing, the output is concatenated and
passed into a final self-attention block where the network performs further processing.
This time it looks for the relationships between the nodes and the Rules.

An interesting property of the proposed encoder is that it generalizes much better
than the typical Transformer encoder, especially when the number of Rules or nodes
increases. This is mainly due to the flexibility of processing each input type separately
using a dedicated location in the encoder. Finally, to improve the training process and
enforce problem constraints, the Rules already in place and full nodes are masked at
each step. Masking allows the encoder to discard specific elements during the processing
stage. The masking is done by modifying the logits calculation in Expression (3.28) by:

uji =

{
qik

T
j√

d(k)
, j ∈ (1, ..., n−m), j 6= 1, j 6= empty node

−∞, otherwise
(3.35)

The rule and the state encoding blocks use exactly the same expression but operate
over different indices. In the case of rule encoding block the Rules that are already
assigned are masked.

Decoder

The proposed decoder is illustrated in the lower part of Figure 3.3. At each step i, it
receives encoder’s output and a single Rule from range (yn−m+1, ..., yn) and generates a
pointer to a node (y1, ..., yn−m).

In the decoding layer, the model looks for a (good) contender node for a given Rule.
Since the decoder has access to encoder’s output, where the model had a global view of

62



3.5 Performance Evaluation

the problem, the selection of the contender takes also into consideration the presence of
other Rules and the state of the nodes. Finally, the last decoder layer is a Ptr-Net head,
described in Section 3.4.1. This head computes the location where the given Rule will
be placed. In order to avoid selecting unfeasible positions (e.g., full nodes), the logits
computation of the Ptr-Net head in Expression (3.26) is modified as:

uji =


vT tanh(W1ej +W2di), j ∈ (1, ..., n−m, ..., n),

vT tanh(W1ej +W2di), j ≤ n−m, j 6= 1,

vT tanh(W1ej +W2di) j 6= empty node
−∞, otherwise

(3.36)

Furthermore, as in [106], the logits from Expression (3.36) are clipped to [−Clogit, Clogit],
where Clogit = 10 in this work, to encourage the exploration:

u(clip)
i = Clogit · tanh(ui) (3.37)

Then, the clipped logits u(clip)
i passes through a softmax layer, Expression (3.27), to

produce the probability vector from which the node is selected. In the following decoding
step, the resources of the selected node are updated, the assigned Rule is masked and the
process repeats for the next Rule in (yn−m+1, ..., yn).

It is important to outline that, in addition to sequential Rule feeding, we have tested
random and neural-network based feeding strategies. However, other than adding additio-
nal complexity to the model we noticed no improvements in using any of these strategies.
Since the model has a global view of the problem, via the encoder’s output, the order by
which the Rules are placed has no effect in the final result.

3.5 Performance Evaluation

3.5.1 Experimental Setup

To evaluate the performance of the proposed agent, a comparison will be made against
several greedy heuristics and the optimal solution, generated using CPLEX solver. The
optimal relies on the mathematical formalizations presented in Section 3.3. The main
goals are: i) to assess the performance of the agent for different objective function criteria,
and compare against baseline methods; ii) to evaluate the scalability and generalization
capacity of the agent, i.e., evaluate the performance of the agent when it has to solve
problems larger than the ones used during training. It worth to mention that performance
evaluation does not consider other DRL approaches because, as mentioned in Section 3.2,
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models used to solve task distribution and load balancing problems do not have the ability
to scale, i.e., models have to be retrained each time the state or action space changes.
Therefore, to validate the proposed method, optimal solutions are used as a baseline.

All the development and testing was done on a PC with i7 6700 3.4Ghz CPU with
32GB of RAM and a single Nvidia 2080Ti with 11GB GPU.

The simulation environment was configured to generate instances on-the-fly. A uni-
form distribution, in range [0, 1], is used to assign CPU, RAM, and storage resources
to all nodes in an instance. A pool of 1000 Rules is made available, for set sampling
purposes, and resource requirement values are assigned using a uniform distribution in
range [0.01, 0.30]. This range ensures that the placement of Rules is neither too easy
nor artificially hard, while providing some degree of freedom when distributing Rules.
Additionally, the environment was configured to produce problem instances of different
sizes using the following parameters, allowing the assessment of the agent’s performance
and scalability:

• Node-related parameters:

– Smallest number of nodes: 10

– Largest number of nodes: 50

– Step size: 10

• Rule-related parameters:

– Smallest number of Rules: 10

– Largest number of Rules: 100

– Step size: 10

The training process of the agent and baseline heuristics are discussed next, prior to
the analysis of results. It should be noted that the choice for relatively simple greedy
heuristics, rather than complex heuristics or meta-heuristics, is due to the fact that it is
not feasible to run complex approaches in real-time on reverse proxies. As mentioned
in Section 3.1.1, the load balancing methods used in actual implementations are often
simple strategies. All strategies, RL agent and baseline heuristics, build a solution in a
single pass, by starting from an empty solution and expanding it by placing one Rule at
a time.

3.5.2 Training and Hyperparameters

The agent was trained on a fixed problem size of 10 nodes and 20 Rules, an empirically
selected size that showed to be a good compromise between the training time, approx-
imately 14 hours, and the agent’s ability to generate robust solutions to all the problem
instances during the testing.
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The agent is trained using an A2C algorithm [136], summarized in Algorithm 1, with
mini-batches of size equal to 128, for better gradient estimates. Two dedicated networks
are used: i) the actor for learning the policy, denoted by πθ; ii) the critic to estimate the
baseline, denoted by Vφ. The actor network is illustrated in Figure 3.3 and described in
detail in Section 3.4.3. The critic network is the encoder, from Figure 3.3, followed by
three fully connected layers with linear activation. The last layer of the critic network
produces a single scalar value that represents the baseline estimation. During the testing
phase, only the actor network is used.

The choice for two separate networks, with no parameter sharing, was made in order
to have more freedom to control agent’s inference time and the quality of critic’s baseline
estimations. The actor’s encoder uses a single self-attention stack N stack

actor = 1 in each
encoding block, while the critic uses a stack of threeN stack

critic = 3. Critic with less than three
self-attention stacks produced poor baseline estimations. Different learning rates were
also used for the actor αactor = 1e−4 and the critic αcritic = 5e−4 networks, parameters
that have shown to be stable and to ensure convergence. Table 3.1 summarizes all the
parameters that were adopted in this work. Please note that the batch size and number
of layer stacks in critic network were selected as a trade-off between the quality of the
solution and the GPU memory constraints.

Algorithm 1: Actor-Critic training algorithm (adapted from [106]).
Input : T=training steps, B=batch size
Output: Trained actor network πθ

1 Initialize actor πθ network parameters;
2 Initialize critic Vφ network parameters;
3 for t = 1 to T do
4 si ← SampleProblem(), ∀i ∈ {1, ..., B}
5 ai, ri ← SolveProblem(si, πθ),∀i ∈ {1, ..., B}
6 bi ← EstimateBaseline(si, Vφ), ∀i ∈ {1, ..., B}
7 A← ComputeAdvantage(ri, bi) // Expression (3.22)
8 E ← ComputeEntropy(πθ) // Expression (3.24)
9 gθ ← 1

B

∑B
i=1A∇θ log(πθ(ai|si)) + centropy × E

10 Lφ ← 1
B

∑B
i=1 ||A||22

11 θ ← ADAM(θ, gθ)
12 φ← ADAM(φ,∇φLφ)

13 end

3.5.3 Baseline Heuristics

Random Insertion

This heuristic randomly distributes the set of Rules across a set of available nodes. More
specifically, a Rule and a node are randomly picked from corresponding sets and then the
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Table 3.1: Network(s) and Training Parameters.

General
Training Steps 100 000

Batch Size 128
Discount Factor (γ) 0.99

Entropy Coefficient (centropy) 0.01
Actor Network

Weight Initialization Xavier uniform [143]
Number of Layer Stack (N stack

actor ) 1
Embedding Size 128

Number of Heads 8
Inner Layer Dimension 128
Logit Clipping (Clogit) 10

Gradient Clipping L2 Norm (1.0)
Optimizer Adam [144]

Learning Rate (αactor) 1e−4

Critic Network
Weight Initialization Xavier uniform [143]

Number of Layer Stacks (N stack
critic ) 3

Embedding Size 128
Number of Heads 8

Inner Layer Dimension 512
Gradient Clipping L2 Norm (1.0)

Last Layers Dimensions 128
Optimizer Adam [144]

Learning Rate (αcritic) 5e−4
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feasibility of the pair is checked, i.e., a validation is performed to check if the resources
available at the node are enough to satisfy the requirements of the Rule. If this condition
is not met, another node is picked. This process is repeated until all Rules are in place
or marked as rejected.

Critical Resource Insertion

This is a two step heuristic, summarized in Algorithm 2, that first sorts the Rules by
their resource requirements and then distributes them across the nodes, possibly giving
priority to fairness (Ωn). The following four variations were generated:

• Descending Rules - Descending Critical (DR-DC)

• Descending Rules - Ascending Critical (DR-AC)

• Ascending Rules - Descending Critical (AR-DC)

• Ascending Rules - Ascending Critical (AR-AC)

DR-DC and AR-DC (Corder=‘desc’) prioritize the placement of Rules at locations
that maximize the availability at the most critical resource, ensuring fairness. DR-AC and
AR-AC (Corder =‘asc’), on the other hand, prioritize placement of Rules that minimizes
the Ωn, which potentially leads to fewer nodes in use. TheXorder variable controls whether
smaller or larger Rules are placed first.

3.5.4 Evaluation

Evaluation consists in solving three different RD variants, mathematically expressed in
Section 3.3.3, and observe how the agent performs in the key performance indicators
(KPIs) of each. To ensure the consistency of the agent performance, three different seeds
were used to initialize the agent training weights, which essentially results in three distinct
versions of the same agent. After the training is finished, each agent solves 100 problem
instances for each scenario under consideration. Therefore, the reported performance is
an average of the three agents, i.e., an average of 300 executions. The baseline heuristics,
which are deterministic methods, also solve 300 problem instances. Finally, to ensure
that results of the CPLEX solver are obtained within a feasible time, a time limit of 60
seconds is set. With time limit set, CPLEX solver will either return the optimal solution,
if it manages to find one, or the best solution found so far. For this configuration CPLEX
takes approximately 8 days to solve all the problem instances of each RD variant under
the consideration.
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Algorithm 2: Critical resource insertion heuristic.
Input : N ′=node set, X ′=rule set, Xorder ∈ {‘asc’,‘desc’} is the rule size sorting

criteria, Corder ∈ {‘asc’,‘desc’} is the critical resource sorting criteria.
Output: Feasible solution

1 X ′ = SortByLargestResource(X ′, Xorder)
2 foreach x in X ′ do
3 Initialize critical resource list LΩ

4 foreach n in N ′ do
5 // Determine critical resource
6 Ωn = ComputeCritical(n, x)
7 LΩ ← (Ωn, n)

8 end
9 // Sort LΩ by Ωn

10 LΩ = Sort(LΩ, Corder)
11 // Do the first fit
12 foreach Ωn, n in LΩ do
13 allocated = False
14 if Ωn ≥ 0 then
15 // Place Rule x at node n
16 allocated = True
17 break // Break the loop
18 end
19 if allocated == False then
20 Reject x
21 end

Greedy Results

The KPI for the greedy optimizer (see Section 3.3.3) is the Rule rejection rate, i.e., the
likelihood of a user’s request being rejected. Figure 3.4 shows the performance of the
different solving methods for this particular case. Looking at the plots, it is visible that
CPLEX solver has the lowest rejection rate in the all scenarios and, therefore, has the best
performance. Moreover, in the green highlighted areas CPLEX was able to find optimal
solutions within the time limit.

The second best performing method is the proposed agent. It is visible that regardless
of the problem size, the proposed agent has the smallest rejection gap with respect to
the CPLEX solver, which acts as a lower bound. As an example, for problems with 10
nodes the proposed agent has an average rejection rate 4.69% higher than the CPLEX, as
shown in Table 3.2. As the number of available nodes increases the rejection gap becomes
smaller, reaching an average of 0.01% for problems with 50 nodes. In contrast, the best
performing heuristic (AR-DC) has an average rejection gap of 9.26% for 10 nodes, when
compared to CPLEX. The DR-DC presents the lowest gap, 0.52%, for 50 nodes, which is
still larger than the agent’s gap.

Results indicate that agent’s generalization capacity is maintained even for large pro-
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Figure 3.4: Rule rejection rate for different problem sizes. Green areas highlight where
CPLEX was able to find optimal results for all instances, i.e., all the solution space was
searched.

blems. Note that during training the agent solved problems with only 10 nodes and 20
Rules. However, results do not show any critical degradation in performance, even for
problem instances five times larger than the ones used in training. For example, for the
problems with 50 nodes, where CPLEX solves all problem instances to optimality, the
agent generates near-optimal solutions.

Critical-Aware Greedy Results

In this scenario, Section 3.3.3, the Rule rejection rate and the most critical resource
(ΩMAX) are the KPIs, which are shown in Figure 3.5.

As in the case of greedy optimization, the agent shows a similar trend when conside-
ring the rejection rate. On the other hand, looking at the most critical resource at different
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Table 3.2: Average rejection rate gap with respect to the CPLEX solver for the greedy
optimization.

Node
Sample

Size
Agent DR-DC DR-AC AR-DC AR-AC Random

10 4.69 14.4 17.97 9.26 11.95 14.44
20 3.18 10.73 16.18 9.64 12.28 13.2
30 1.51 6.08 10.49 7.64 9.01 9.27
40 0.34 2.36 4.5 4.52 4.58 4.93
50 0.01 0.52 0.85 2.1 1.42 1.89

Table 3.3: Average ΩMAX and rejection rate gaps with respect to the CPLEX solver for
the critical-aware optimization.

Agent DC-DC DR-AC AR-DC AR-AC Random
Node

Sample
Size

ΩMAX Rej.
Rate ΩMAX Rej.

Rate ΩMAX Rej.
Rate ΩMAX Rej.

Rate ΩMAX Rej.
Rate ΩMAX Rej.

Rate

10 0.00210 4.75 0.00175 14.14 0.00553 17.73 0.00093 9.18 0.00544 11.91 0.00453 14.38
20 0.00173 3.21 0.00155 10.77 0.00498 16.04 0.00164 9.62 0.00496 12.18 0.00417 12.99
30 0.00157 1.55 0.00137 6.01 0.00483 10.51 0.00172 7.57 0.00483 8.89 0.00413 9.12
40 0.00080 0.36 0.00076 2.33 0.00366 4.39 0.00118 4.50 0.00366 4.57 0.00312 4.92
50 0.00020 0.02 0.00015 0.50 0.00252 0.85 0.00059 2.06 0.00252 1.41 0.00218 1.89

ranges, the agent struggles to keep up with the CPLEX solver and seem to stay closer
the DR-DC heuristic. However, when taking both KPIs into account, it is visible that
DR-DC’s higher critical resource value is achieved at the expense of a higher rejection
rate. Similar behavior happens with the AR-DC heuristic. Considering the KPI gaps bet-
ween CPLEX and other methods, summarized in Table 3.3, it is visible that in general the
overall ΩMAX differences are negligible but due to lower rejection rate the proposed agent
offers a smoother user experience.

Cost-Aware Greedy Results

For this RD optimization criteria, described in Section 3.3.3, the Rule rejection rate and
the number of empty nodes are the KPIs, which are shown in the Figure 3.6.

From all the RD problems under consideration, this one was the hardest for CPLEX.
This has to do with a greater number of binary variables involved in the mathematical
formalization of the problem. The solver did not manage to obtain optimal solutions for
problems with more than 20 Rules to distribute. The problem complexity might explain,
therefore, the larger agent-CPLEX gap in the rejection rate, when compared with other
optimization criteria Figure 3.5. These results are summarized in Figure 3.5. Neverthe-
less, the agent shows a trend similar to CPLEX solver in both KPIs and does not show
critical performance degradation, as it happens with the heuristics.

When looking at gaps in Table 3.4, it is possible to see that for 10 nodes the agent uses
in average less -0.03 nodes but has a rejection rate is 4.9% higher that the CPLEX. As the
number of nodes increases the rejection rate gap decreases at the expense of additional
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Figure 3.5: Rule rejection rate (left column) and most critical resource (right column)
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results for all instances, i.e., all the solution space was searched.

71



72

Table 3.4: Average empty node and rejection gaps with respect to the CPLEX solver for
the cost-aware optimization.

Agent DC-DC DR-AC AR-DC AR-AC Random
Node

Sample
Size

Empty
Nodes

Rej.
Rate

Empty
Nodes

Rej.
Rate

Empty
Nodes

Rej.
Rate

Empty
Nodes

Rej.
Rate

Empty
Nodes

Rej.
Rate

Empty
Nodes

Rej.
Rate

10 -0.03 4.9 0.41 14.19 0.76 17.84 -0.04 9.09 0.8 11.82 0.55 14.28
20 0.03 3.63 1.79 10.7 3.39 16.05 0.71 9.61 3.62 12.24 2.66 13.06
30 0.45 2.06 4.31 6.04 7.86 10.43 2.72 7.58 8.38 8.97 6.41 9.14
40 1.23 0.67 7.78 2.32 13.85 4.4 6.03 4.54 14.8 4.53 11.65 4.91
50 1.45 0.07 10.67 0.48 19.28 0.85 9 2.05 20.75 1.38 16.44 1.87

nodes in use. For example, for 50 nodes the agent requires more 1.45 nodes to have almost
the same rejection rate as the CPLEX.

In addition, when looking at the results of the heuristics, it is visible that they struggle
to keep both KPIs gaps close to the CPLEX and the proposed agent. In fact, from the
three scenarios being considered, the cost-aware is where the heuristics struggle the most.
This highlights that a change of a single KPI requires redesigning and developing a new
heuristic, which is impractical and time consuming. In the case of the proposed agent,
which performs well in all scenarios, the only change would be the reward signal.

Inference Time

Reporting the time to obtain the solutions is important but hard to measure. It depends on
the hardware used (e.g., CPU vs GPU, GPU model), programming language, code imple-
mentation/optimization and so on. Nevertheless, a practical approach was taken and the
reported times, summarized in Table 3.5, are averages of 1000 executions obtained on the
development machine. For brevity purposes, only the results for 100 Rules are shown,
i.e., the upper bound. Also, note that the reported measurements are rough approximati-
ons that can vary from execution to execution. Still, they show the trend and the orders of
magnitude that each method takes to compute the solution. The running times of CPLEX
are not reported because, as mentioned earlier, it is not feasible to run it at reverse proxies.
Finally, agent’s reported times are the average duration of an entire episode, which also
accounts the environment’s transitions.

Looking at the agent’s results it is visible that its time is practically constant, regard-
less of the number of nodes in the input. This is a result of: i) using the Transformer
architecture that, as mentioned in Section 3.4.1, does not use RNNs to compute the re-
lationships between the input elements; ii) GPU parallelization capabilities, allowing to
compute the relationships between all the elements in a single pass. It is also worth to
mention that, regardless of the tested input size, the model takes approximately 2.5 milli-
seconds in every decoding step, i.e., to find a location for a single Rule.

Comparing the agent’s times with the heuristics, it is visible that they operate at dif-
ferent orders of magnitude. For example, for 10 nodes all the heuristics are around 28
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Figure 3.6: Rule rejection rate (left column) and empty nodes (right column) for different
problem sizes. Green areas highlight where CPLEX was able to find optimal results for
all instances, i.e., all the solution space was searched.
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Table 3.5: Time, in milliseconds, to obtain the solution for problems with 100 Rules.
Reported times are an average of 1000 executions.

Node
Sample

Size
Agent DC-DC DC-AC AR-DC AR-AC Random

10 394.82 14.49 14.14 14.22 14.35 12.27
20 398.39 28.53 28.46 28.13 28.60 18.59
30 402.89 42.28 42.61 41.46 42.45 20.05
40 403.31 56.79 57.77 55.80 57.43 20.37
50 404.17 69.86 72.24 69.42 71.80 21.14

times faster that the agent. However, for 50 nodes, this difference drops down to 6 for the
critical resource heuristics and 20 for the random heuristic. This time difference reduction
is explained by the complexity of the heuristics: O(r · nlog(n)) for the critical resource
heuristic and O(r · n) for the random heuristics, where r is the number of Rules and the
n is the number of nodes. Nevertheless, despite the reported time differences, the agent is
able to generate high quality or even optimal solutions in 400 milliseconds, which makes
the proposed model an appealing option.

Also, it should be noted that, although it is not visible in Table 3.5, the self-attention
mechanism in the Transformer has O(m2) complexity, where m is total number of input
elements [140]. The reported constant time for the tested problem instances is ensured
by the GPU parallelization. Once the problem size become large enough, and hardware
limitations of the GPU are reached, the effects of quadratic complexity become visible in
the rapidly growing inference time. However, this limitation can be tackled by replacing
the Transformer with a recently introduced variation called the Linformer [145], which
reduces the self-attention complexity fromO(m2) toO(m) while maintaining similar per-
formance in NLP tasks. Overall, the performance and the inference speed of the proposed
model can be improved even further by tuning the hyperparameters, using more advanced
RL training algorithms (e.g., rolling baseline [129], proximal policy [146]), using more
recent variations of the Transformer [140, 147] and by doing model optimization3 and
compression [148].

3.6 Conclusions

This chapter investigated the use of DNN-based strategies for the distribution of event
processing tasks across edge devices, considering three different optimization criteria.
Each criteria is mathematically formulated, ensuring proper task execution, fair usage
of resource and/or cost minimization related to device operation. Furthermore, an MDP
formulation is introduced, which is followed by the presentation of the model based on
Transformer and Ptr-Net architectures.

3See https://www.tensorflow.org/lite/performance/model_optimization
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3.6 Conclusions

Simulation experiments show that the proposed model is capable of producing high
quality solutions in all scenarios under consideration. Additionally, it is scalable and
capable of solving problems with up to five time larger than the ones that it was trained
upon. The latter is a very important ability as it allows to solve instances of different sizes
without the need of retraining, which makes it easy to deploy in real world. Existing work
applying DNN and RL methods to load balancing tend to neglect model scalability and
only work with static environment settings, which is not applicable in real world.

In summary, the proposed model is generic and can be applied to problems that are
modeled using two sets of elements and solved by taking sequential assignments decisi-
ons. The latter is an important characteristic in load balancing problems as the increasing
network complexity will likely generate several problem variations for which there is no
good performing heuristic, making RL and machine learning methods attractive and of
practical value.
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C H A P T E R 4

Concluding Remarks

Abstract: This chapter summarizes the main conclusions of the research presented in
previous chapters, highlights the achievements of the work and outlines the directions for
future research.

4.1 Summary

The goal of this thesis is to contribute to the creation and proper placement of event
processing tasks connecting billions of devices. As seen throughout this work, achieving
this goal requires application-layer interoperability and edge infrastructure, which plays a
supportive role in event processing. This final chapter briefly summarizes the findings of
this research work and answers to the questions outlined in Chapter 1: i) What standards

are required for distributed event processing to happen across heterogeneous devices?;
ii) What is the role of edge computing in event processing?; iii) How edge devices can

participate in event processing?; iv) What is the optimal placement of tasks for event

processing to happen?; v) How can machine learning methods help in the distribution of

event processing tasks?.
Chapter 2 highlighted that standardization of event processing is a recent and rapidly

evolving research topic. Many of the analyzed resource synchronization mechanisms are
still in development and, therefore, may change or even be abandoned. Nevertheless,
the analysis of their characteristics provides a view of the trend that this research area is
following, giving some hints about the problems that future proposals should focus on.

The early and large scale adoption of MQTT was due to its ease of use and because it
allowed to quickly build IoT applications. Another reason is that at the early stages of IoT
there were no real concerns about the data silos, meaning that the interoperability was neg-
lected. Moreover, the majority of applications were cloud-based where all the incoming
data was processed at the cloud and, then, commands were sent back to actuators. Ho-
wever, the emergence of new applications, whose restrictions (e.g., delay sensitivity) can
not be satisfied when using the cloud, caused a shift towards more machine-to-machine
oriented solutions. This change of paradigm led to a standardization need of more strict
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interfaces and communication patterns. CoAP Observe [42], conditional observe in CoAP
and dynamic linking tackled this issue by providing a one-to-one resource synchroniza-
tion mechanism. These proposals effectively solved the problem of sending resource state
notification directly to a destination. Nevertheless, these proposals require client side pro-
cessing of incoming data, i.e., require for the client to know how to extract the data that
may be encoded in many different data formats. The Monitor proposal identified this li-
mitation and outlined the need for mechanisms that inform the client of how to interpret
the incoming data. It also offered a way of outsourcing the synchronization process to a
third-party device. Yet, the Monitor proposal is a one-to-one synchronization mechanism
that cannot cover complex scenarios. The latest proposals, Rule and Splot model, are
being designed upon the ideas and the concepts of their predecessors. These synchroni-
zation mechanisms provide means to build endpoint-to-endpoint conditional notification
between multiple devices. Also, they can scale from a simple one-to-one synchroniza-
tion that can be executed in devices with limited resources to a complex many-to-many
synchronization scenarios involving multiple devices.

Overall, the current trend leans toward many-to-many distributed event processing
solutions that rely on REST principles and other design patterns that are common in “re-
gular” Web, which are well-known to the users and the developers. By being designed
from the ground up with interoperability in mind, new event processing solutions can be
easily integrated into already existing infrastructure and IoT applications that follow the
same principles.

Regarding the execution of event processing tasks, edge devices will play a crucial
role as they can provide storage and computation near the data producers and consumers.
However, due to the extremely dynamic nature of edge environments, where billions of
devices will be available for the user, finding the right device for a task may be difficult.
The discovery of edge devices, and of their availability to participate in event processing,
involves several standards and proposals under development (e.g., HSML [71], CoRE
resource directory [76], Thing directory [77]) that were also discussed in Chapter 2. As
with event processing, these proposals follow “regular” Web standards and design patterns
in order to avoid the creation of interoperability barriers. The dynamic nature of edge is
also expressed in different form factor of devices, ranging from small and constrained
devices to virtual/containerized nodes with high performance CPU and large amount of
storage. For the latter, several tools and technologies for the management of the edge were
presented in Chapter 3. Additionally, Chapter 3 presented and discussed the architecture
and the organization of virtual edge nodes.

Overall, the current trend shows that tools, architecture, and technologies commonly
used in management of cloud services are also moving toward the edge.

The placement and distribution of event processing tasks is another crucial issue
that is currently under active research and it was a pivotal research topic of this the-
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sis. Chapter 2 focused on the most recent CoRE-based approach for event processing,
called Rule, and then proposed an improved rule decomposition and chaining method,
called Collecting Rule, to achieve better reusability and scalability. The optimal
placement of both approaches was investigated showing that Collecting Rule is a
complement to the Rules-only approach.

Chapter 3 focused on attention-based DNN architecture and RL for distribution of
event processing tasks. The proposed model was able to perform well in the three diffe-
rent scenarios under consideration, which shows that DNN models can be useful in load
balancing and task distribution.

In summary, optimization techniques play a crucial role in networks and communica-
tion. However, the rapid growth of the complexity of the networks (e.g., complex traffic
patterns, new QoS requirements) will make handcrafted solutions less practical. There-
fore, we can safely state that the role of DNN in network management will continue to
grow and their use in optimization tasks will be more prevalent.

4.2 Final considerations for future research

The completion of this thesis took approximately 4 years. It yielded several achievements
in the application of DRL methods to the distribution of event processing tasks, and to
combinatorial optimization in general. However, the work presented here is just a starting
point, which opens many new research opportunities that can be explored using the pro-
posed solution framework. Further research can be done to optimize the proposed DNN
architecture, making it more robust and production-ready. This involves small tasks like
hyperparameter tuning or more complex ones, like the development of new RL training
algorithms or the design of new network architectures.

This work was based on the vanilla Transformer model, a model that revolutionized
the DL when it was first introduced. Prior to its appearance there was a segmentation
of architectures (e.g., LSMT for text, convolution networks for image) and techniques
for different tasks. However, the Transformer changed this paradigm and it is slowly
becoming a building block unifying different areas of research. Current state-of-the-art
models used in NLP, computer vision [149], audio analysis [150] use the Transfomer
model or its variations. Research in this area is evolving very rapidly, as reported in [140],
between March and August 2020 a dozen new efficiency-focused Transformer variations
were proposed. The cross-domain nature of Transfomer means that a contribution that
improves its performance in NLP tasks will, most likely, apply to other research areas
and problem domains. Hence, it would be quite interesting to explore new Transformer
proposals and test their applicability in combinatorial optimization.

The current training time of 14 hours limits the exploration of new parameters and
model variations. Code profiling revealed that the main bottleneck during training was the
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environment implementation, which was running in a general purpose CPU. Therefore,
another future research path could be GPU implementation of the RL environment, which
would drastically speed up the training time.

Another interesting research topic is the utilization of the proposed DLR framework
in other combinatorial problems (e.g., bin packing, vehicle routing problem, multiple
knapsack), and subsequent performance evaluation.

In a nutshell, DLR is still in its infancy. There is no definitive cookbook stating what
architecture, reward signal, training algorithm should be used to solve a specific problem.
Current DRL is a hands-on approach where every small proposal must be experimented
and evaluated, which gives a lot of room for further research and improvement.
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P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE

Transactions on Intelligent Transportation Systems, 2021.

[7] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-
forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, 2017.

[8] D. Guinard and V. Trifa, Building the Web of Things: With Examples in Node.Js

and Raspberry Pi, 1st ed. Greenwich, CT, USA: Manning Publications Co., 2016.

[9] Z. Shelby, M. Koster, C. Groves, J. Zhu, and B. Silverajan, “Dynamic Resource
Linking for Constrained RESTful Environments,” Internet Engineering Task Force,
Internet-Draft draft-ietf-core-dynlink-09, Jul. 2019, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-ietf-core-dynlink-09

81

https://datatracker.ietf.org/doc/html/draft-ietf-core-dynlink-09


82

[10] Interactive Hypermedia and Asynchronous Machine Interaction using Hypermedia
Controls. [Accessed 30-03-2017]. [Online]. Available: http://iot-datamodels.
blogspot.com/2017/04/interactive-hypermedia-and-asynchronous.html

[11] Working directory for OCF CRs and PRs. [Accessed 02-01-2019]. [On-
line]. Available: https://github.com/mjkoster/ocf-working/raw/master/docs/CR%
20ATG%201968%20Rules.docx

[12] M. Weiser, “The computer for the 21st century,” IEEE pervasive computing, vol. 1,
no. 1, pp. 19–25, 2002.

[13] C. V. Networking, “Cisco Global Cloud Index: Forecast and Methodology,
2016–2021 White Paper,” 2018.

[14] Software Developers, Quality Assurance Analysts, and Testers. Occupational Out-
look Handbook. U.S. Bureau of Labor Statistics. [Online]. Available: https://www.
bls.gov/ooh/computer-and-information-technology/software-developers.htm

[15] J. Sutherland and J. Sutherland, Scrum: the art of doing twice the work in half the

time. Currency, 2014.

[16] Web of Things (WoT) Architecture. [Accessed 14-09-2021]. [Online]. Available:
https://w3c.github.io/wot-architecture/

[17] Web of Things (WoT) Protocol Binding Templates. [Accessed 14-09-2021].
[Online]. Available: https://w3c.github.io/wot-binding-templates/

[18] OCF Core Specification 2.0.4. [Accessed 02-09-2019]. [Online]. Available:
https://openconnectivity.org/developer/specifications

[19] iotschema.org. [Accessed 14-09-2021]. [Online]. Available: http://iotschema.org/

[20] Matter is the foundation for connected things. [Accessed 14-09-2021]. [Online].
Available: https://buildwithmatter.com/

[21] oneM2M Sets Standards For The Internet Of Things and M2M. [Accessed
14-09-2021]. [Online]. Available: https://www.onem2m.org/

[22] One Data Model. [Accessed 14-09-2021]. [Online]. Available: https://onedm.org/

[23] Azure Digital Twin Definition Language. [Accessed 14-09-2021]. [Online].
Available: https://docs.microsoft.com/en-us/azure/digital-twins/concepts-models

[24] Azure Digital Twin Definition Language. [Accessed 14-09-2021]. [Online]. Avai-
lable: https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-
lwm2m/

82

http://iot-datamodels.blogspot.com/2017/04/interactive-hypermedia-and-asynchronous.html
http://iot-datamodels.blogspot.com/2017/04/interactive-hypermedia-and-asynchronous.html
https://github.com/mjkoster/ocf-working/raw/master/docs/CR%20ATG%201968%20Rules.docx
https://github.com/mjkoster/ocf-working/raw/master/docs/CR%20ATG%201968%20Rules.docx
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://w3c.github.io/wot-architecture/
https://w3c.github.io/wot-binding-templates/
https://openconnectivity.org/developer/specifications
http://iotschema.org/
https://buildwithmatter.com/
https://www.onem2m.org/
https://onedm.org/
https://docs.microsoft.com/en-us/azure/digital-twins/concepts-models
https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/


References

[25] OPC UA. [Accessed 14-09-2021]. [Online]. Available: https://opcfoundation.org/

[26] A. Mazayev, J. A. Martins, and N. Correia, “Interoperability in IoT through the
semantic profiling of objects,” Ieee Access, vol. 6, pp. 19 379–19 385, 2017.

[27] ——, “Semantic web thing architecture,” in 2017 4th Experiment@ International

Conference (exp. at’17). IEEE, 2017, pp. 43–46.

[28] ——, “Semantically enriched hypermedia apis for next generation IoT,” in Intero-

perability, Safety and Security in IoT. Springer, 2017, pp. 19–26.

[29] A. Keränen, F. M. Kovatsch, and K. Hartke, “Guidance on RESTful Design
for Internet of Things Systems,” Internet Engineering Task Force, Internet-Draft
draft-irtf-t2trg-rest-iot-08, Aug. 2021, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-iot-08

[30] A. Mazayev and N. Correia, “A distributed core-based resource synchronization
mechanism,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4625–4640, 2019.

[31] IoT Analytics - Market insights for the Internet of Things. State of the IoT 2018:
Number of IoT devices now at 7B – Market accelerating. [Accessed 31-10-2019].
[Online]. Available: https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-
number-of-iot-devices-now-7b/

[32] C. Bormann, M. Ersue, and A. Keränen, “Terminology for Constrained-Node
Networks,” RFC 7228, May 2014. [Online]. Available: https://rfc-editor.org/rfc/
rfc7228.txt

[33] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle, “The web of things: intercon-
necting devices with high usability and performance,” in 2009 International Con-

ference on Embedded Software and Systems. IEEE, 2009, pp. 323–330.

[34] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical mashups in the
Web of Things,” in Proceedings of the 6th International Conference on Networked

Sensing Systems, ser. INSS’09. Piscataway, NJ, USA: IEEE Press, 2009, pp.
196–199. [Online]. Available: http://dl.acm.org/citation.cfm?id=1802340.1802386

[35] IPv6 over Low power WPAN (6LoWPAN). [Online]. Available: https:
//datatracker.ietf.org/wg/6lowpan/documents/

[36] Constrained RESTful Environments (CoRE). [Online]. Available: https:
//datatracker.ietf.org/wg/core/about/

83

https://opcfoundation.org/
https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-rest-iot-08
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://rfc-editor.org/rfc/rfc7228.txt
https://rfc-editor.org/rfc/rfc7228.txt
http://dl.acm.org/citation.cfm?id=1802340.1802386
https://datatracker.ietf.org/wg/6lowpan/documents/
https://datatracker.ietf.org/wg/6lowpan/documents/
https://datatracker.ietf.org/wg/core/about/
https://datatracker.ietf.org/wg/core/about/


84

[37] G. Montenegro, J. Hui, D. Culler, and N. Kushalnagar, “Transmission of
IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944, Sep. 2007. [Online].
Available: https://rfc-editor.org/rfc/rfc4944.txt

[38] P. Thubert and J. Hui, “Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks,” RFC 6282, Sep. 2011. [Online]. Available:
https://rfc-editor.org/rfc/rfc6282.txt

[39] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis,
R. Struik, R. Kelsey, and T. Winter, “RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks,” RFC 6550, Mar. 2012. [Online]. Available:
https://rfc-editor.org/rfc/rfc6550.txt

[40] R. T. Fielding and R. N. Taylor, Architectural Styles and The Design of Network-

based Software Architectures. University of California, Irvine Doctoral disserta-
tion, 2000, vol. 7.

[41] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol
(CoAP),” RFC 7252, Jun. 2014. [Online]. Available: https://rfc-editor.org/rfc/
rfc7252.txt

[42] K. Hartke, “Observing Resources in the Constrained Application Protocol
(CoAP),” RFC 7641, Sep. 2015. [Online]. Available: https://rfc-editor.org/rfc/
rfc7641.txt

[43] Internet Assigned Numbers Authority - Media Types. [Accessed 02-01-2018].
[Online]. Available: https://www.iana.org/assignments/media-types/media-types.
xhtml

[44] M. Kovatsch, “Scalable Web Technology for the Internet of Things,” Ph.D. disser-
tation, ETH Zurich, 2015.

[45] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for IoT:
Review, enabling technologies, and research opportunities,” Future Generation

Computer Systems, 2018.

[46] M. Mukherjee, L. Shu, and D. Wang, “Survey of Fog Computing: Fundamental,
Network Applications, and Research Challenges,” IEEE Communications Surveys

& Tutorials, 2018.

[47] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on the
edge computing for the Internet of Things,” IEEE Access, vol. 6, pp. 6900–6919,
2017.

84

https://rfc-editor.org/rfc/rfc4944.txt
https://rfc-editor.org/rfc/rfc6282.txt
https://rfc-editor.org/rfc/rfc6550.txt
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7641.txt
https://rfc-editor.org/rfc/rfc7641.txt
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml


References

[48] H. Mora, M. T. Signes-Pont, D. Gil, and M. Johnsson, “Collaborative Working
Architecture for IoT-Based Applications,” Sensors, vol. 18, no. 6, p. 1676, 2018.

[49] H. Mora, J. F. Colom, D. Gil, and A. Jimeno-Morenilla, “Distributed computational
model for shared processing on Cyber-Physical System environments,” Computer

Communications, vol. 111, pp. 68–83, 2017.

[50] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource provisioning for
IoT services in the fog,” in 2016 IEEE 9th Conference on Service-Oriented Com-

puting and Applications (SOCA). IEEE, 2016, pp. 32–39.

[51] L. Kim-Hung, S. K. Datta, C. Bonnet, F. Hamon, and A. Boudonne, “A scalable
IoT framework to design logical data flow using virtual sensor,” in 2017 IEEE

13th International Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob). IEEE, 2017, pp. 1–7.

[52] Node-RED - Flow-based programming for the Internet of Things. [Accessed
25-07-2018]. [Online]. Available: https://nodered.org/

[53] Eclipse Kura. [Accessed 04-10-2019]. [Online]. Available: https://www.eclipse.
org/kura/

[54] Web of Things (WoT) Thing Description. [Accessed 14-09-2021]. [Online].
Available: https://w3c.github.io/wot-thing-description/

[55] Web Thing API. [Accessed 30-03-2018]. [Online]. Available: https://iot.mozilla.
org/wot/

[56] IFTTT every thing works better together. [Accessed 25-07-2018]. [Online].
Available: https://ifttt.com/

[57] Data Infrastructure at IFTTT. [Accessed 04-09-2019]. [Online]. Available:
https://medium.com/engineering-at-ifttt/data-infrastructure-at-ifttt-35414841f9b5

[58] N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Giannantonio,
M. Sgroi, R. Jafari, and G. Fortino, “From modeling to implementation of vir-
tual sensors in body sensor networks,” IEEE Sensors Journal, vol. 12, no. 3, pp.
583–593, 2012.

[59] A.-R. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta, and M. Alikarar, “A smart
home energy management system using iot and big data analytics approach,” IEEE

Transactions on Consumer Electronics, vol. 63, no. 4, pp. 426–434, 2017.

85

https://nodered.org/
https://www.eclipse.org/kura/
https://www.eclipse.org/kura/
https://w3c.github.io/wot-thing-description/
https://iot.mozilla.org/wot/
https://iot.mozilla.org/wot/
https://ifttt.com/
https://medium.com/engineering-at-ifttt/data-infrastructure-at-ifttt-35414841f9b5


86
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D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[143] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the thirteenth international conference

on artificial intelligence and statistics. JMLR Workshop and Conference Procee-
dings, 2010, pp. 249–256.

[144] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[145] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-attention
with linear complexity,” arXiv preprint arXiv:2006.04768, 2020.

[146] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[147] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ru-
der, and D. Metzler, “Long range arena: A benchmark for efficient transformers,”
arXiv preprint arXiv:2011.04006, 2020.

[148] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression and
acceleration for deep neural networks,” arXiv preprint arXiv:1710.09282, 2017.

[149] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and D. Tran,
“Image transformer,” in International Conference on Machine Learning. PMLR,
2018, pp. 4055–4064.

[150] Y. Gong, Y.-A. Chung, and J. Glass, “Ast: Audio spectrogram transformer,” arXiv

preprint arXiv:2104.01778, 2021.

93

https://moleculer.services/docs/0.14/registry.html
https://www.tensorflow.org/

	Statement of Originality
	Acknowledgements
	Abstract
	Resumo
	Nomenclature
	List of Publications
	Introduction
	Background
	Motivation and Research Goals
	Thesis Overview

	A Distributed CoRE-based Resource Synchronization Mechanism
	Introduction
	Related Work
	CoRE-based Resource Synchronisation Mechanisms
	Conditional Observe in CoAP
	CoRE Dynamic Linking
	Monitor
	Rule

	Rule Decomposition, Chaining and Distribution
	Decomposition and Chaining 
	Distributed Placement

	Rule Placement Problem
	Terminology and Notation
	Problem Definition and Formalization

	Performance Analysis
	Dataset Generation
	Scenario Setup
	Results and Discussion
	Rule-based vs Broker-based Event Processing

	Conclusions

	Attention-Based Model and Deep Reinforcement Learning for Distribution of Event Processing Tasks
	Introduction
	Adequate Resource Placement and Load Balancing
	Reinforcement Learning as a Solution Framework
	Motivation and Contributions

	Related Work
	Reinforcement Learning in Edge Computing
	Combinatorial Optimization with Reinforcement Learning

	The Problem of Event Processing
	Rule Synchronization Mechanism
	Assumptions and Notation
	Mathematical Formalization

	Proposed DRL Framework
	Deep Reinforcement Learning Background
	MDP Formulation
	Model Architecture

	Performance Evaluation
	Experimental Setup
	Training and Hyperparameters
	Baseline Heuristics
	Evaluation

	Conclusions

	Concluding Remarks
	Summary
	Final considerations for future research

	References

