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Abstract
We analyze potential Late Holocene metal contamination along a sediment core collected in the distal zone of Ria de Vigo 
(North Spain). Statistical treatment of the dataset based on a multiproxy approach enabled us to identify and disentangle factors 
influencing the depositional processes and the preservation of the records of this activity in the area over the last ≈3000 years 
bp. Some layers of the analyzed core have significant enrichment in Cu and a moderate enrichment in Ag, Mo, As, Sb, S, Zn, 
Ni, Sn, Cd, Cr, Co, Pb, and Li. The enrichment of these elements in some layers of this core may be related to mining activities 
that have taken place since classical times in the region. Successive phases of pollution were identified along the core KSGX24 
related to the Late Bronze Age (≈3000–2450 years bp), Iron Age (≈2450–1850 years bp), Roman times (≈1850–1550 years 
bp), Middle Ages (≈1250–500 years bp), and industrial and modern (≈250–0 years bp) anthropic activities. The protection of 
the Cies Islands, the erosive and transport capacity of the rivers in the region, oscillations of the oceanographic and climatic 
regime, atmospheric contamination, and diagenetic sedimentary processes might have contributed to the accumulation and 
preservation of this record in the distal region of the Ria de Vigo. The studied core shows that the industrial and preindustrial 
anthropic impacts caused an environmental liability and contributed to the presence of moderate to heavy pollution of various 
metals in surface and subsurface sediment layers in the distal sector of the Ria de Vigo, which could be a hazard to biota.
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Introduction

Anthropic activities have promoted and intensified atmosphere, 
oceans, and biosphere changes. Global human disturbances have 
led stratigraphers to recognize the existence of a new “stage,” 
still under debate, the Anthropocene (Zalasiewicz et al. 2011). 
Many pollution studies have focused on the current or post‑
industrial period in densely populated and heavily industrialized 
coastal areas that have often resulted in environmental degra‑
dation and the imbalance of natural ecosystems (Bardos et al. 
2020; Rahman et al. 2021). However, the records and effects of 
preindustrial anthropic impact on these regions are much less 
studied, particularly regarding mining, for example. Mining 
activities, closely linked to the exploitation of natural resources, 
have occurred in several regions of the world since classical 
times (Radivojević et al. 2019). In South Iberia, for instance, 
pollution from anthropogenic sources caused by the mining of 
metal sulfide ores has occurred since at least 3250–3000 BCE 
(the Copper Age; Emslie et al. 2015, 2019; Leblanc et al. 2000; 
Rovira 2002). By that time, northern Iberian communities had 
undergone a crucial historical trajectory regarding mining activ‑
ity (e.g., de Blas 1996, 2005; Martínez‑Cortizas et al. 2002, 
2012, 2016). In Roman times (ad 1st to fourth centuries), the 
significant mining resources available, including lead, silver, 
gold, and copper, made the Iberian Peninsula the first district to 
be exploited on a large scale (Claude 1987; Comendador Rey 
et al. 2016; Orejas and Sánchez‑Palencia 2002; Penhallurick 
1986). The record of these activities is well marked, for example, 
in peat bogs of the NW Iberian Peninsula (e.g., Kylander et al. 
2005; Martínez Cortizas et al., 1997b, 1999; Olid et al. 2010; 
Pontevedra‑Pombal et al. 2013; Rodríguez‑Racedo et al. 2013). 
Records show that contemporaneous pollution resulting from 
some anthropogenic activities, in particular mining and metal‑
lurgy, has already caused negative effects on local populations, 
for example, low to chronic doses of mercury and lead exposure 
(Álvarez‑Fernandez et al. 2020; López‑Costas et al. 2020).

Recently, concerns about environmental degradation in 
the Galician Rias have led to several studies on pollution 
in surface sediments (e.g., Barreiro Lozano et al. 1988; 
Canário et al. 2007; Carballeira et al. 1997; Carral et al. 
1995a, 1995b; Pérez‑López et al. 2004; Rubio et al. 2000) 
and sediment cores (e.g., Álvarez‑Vázquez et al. 2020; 
Rubio et al. 2010). Some authors have analyzed diage‑
netic processes that favored the retention and mobiliza‑
tion of metals, increasing the risk of sediment toxicity 
(e.g., Álvarez‑Iglesias and Rubio 2008, 2009; Belzunce 
Segarra et al. 2008; Andrade et al. 2011; Ramírez‑Pérez 
et al. 2020; Rubio et al. 2010).

The Ria de Vigo region has also been the target of several 
geological, oceanographic, and paleoenvironmental reconsti‑
tutions (e.g., Diz et al. 2002; González Álvarez et al. 2005; 
Martins et al. 2013a; Méndez and Vilas 2005). Méndez and 
Vilas (2005) inferred that between 3000 and 700 years bp, 

dominance in the estuarine circulation of the Rias Baixas 
might have occurred as well as an increase in the exchange of 
water between these rias and the ocean since about 500 years 
bp. González Álvarez et al. (2005) also noticed a significant 
environmental change that took place at 2850 years cal bp, in 
the transition between the Subboreal/Sub‑Atlantic climates, 
marked by high storminess in the mid‑latitudes. Diz et al. 
(2002), González Álvarez et al. (2005), and Martins et al. 
(2007, 2013a) identified reinforced upwelling pulses in the 
region around ≈2200–1200 years calibrated before present 
(cal bp) and in the past ≈500 years cal bp.

Although many studies on recent sediment pollution have 
been conducted in the Galician Rias Baixas in the last dec‑
ades (e.g., Álvarez‑Vázquez et al. 2020; Barreiro Lozano 
et al. 1988; Canário et al. 2007; Carballeira et al. 1997; 
Carral et al. 1995a, 1995b; Pérez‑López et al. 2004; Prego 
and Cobelo‑Garcia 2003; Rubio et al. 2000, 2010), to our 
knowledge, only the works of López Costas et al. (2020) and 
Álvarez‑Iglesias et al. (2020) has analyzed paleopollution 
(before the industrial revolution). The research presented in 
both works was performed on human remains of the archae‑
ological settlement of A Lanzada, which is located in the 
outer, northern sector of the Ría de Pontevedra and analyzed 
the effects of atmospheric mercury and lead exposure at the 
edge of the Roman World. However, no work of this nature 
has yet been done in the Ria de Vigo, particularly studies 
using marine sediment cores.

In this context, the present work analyzes the possible 
record of paleopollution in the last ≈3000 years bp by Ag, 
As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Sn, and Zn, which is related 
to several phases of mining activity that have occurred in the 
region. This record was obtained in a sediment core from the 
distal sector of Ria de Vigo (Spain), which is protected by 
the Cies Islands (Fig. 1). This study also associates the metal 
pollutants with possible lithological sources received in the 
study area as well as the atmospheric contribution divulged 
in the literature (Kylander et al. 2005; López‑Merino et al. 
2014; Martínez‑Cortizas et al. 1997a, 2005, 2012, 2013, 
2016; Olid et  al. 2010, 2013; Pontevedra‑Pombal et  al. 
2013). The probable influence of changes in oceanographic 
and climatic regimes and the factors that may have allowed 
the preservation of the paleopollution record in the study 
sediments were also analyzed.

Study area

The rias of Galicia (NW of the Iberian Peninsula) are a set 
of elongated coastal inlets that are fault‑bounded embay‑
ments spreading over 1720 km of the Iberian coast (Méndez 
and Vilas 2005; Vilas et al. 2019). The Ria de Vigo (172 
 km2) is the southernmost of these rias and is character‑
ized by a funnel shape, with depths in its central axes of the 
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outer zone of approximately 40–60 m and in the inner zone 
of 5–10 m.

Ria de Vigo lies in the Iberian Variscan orogenic domain, 
formed during the Paleozoic (Julivert et al. 1980; Martínez 
Catalán et al. 2019) in the Galicia‑Trás‑os‑Montes Zone 
(GTMZ; Fig. 1; Farias et al. 2014). The GTMZ represents 
a stack of parautochthonous and allochthonous units (or 
Schistose Domain; Farias et al. 2014) thrust over the autoch‑
thonous Central Iberian Zone (represented by the Ollo 
de Sapo formation) during the Variscan orogeny (Fig. 1; 
Llera et al. 2019; Ribeiro et al. 1990). The allochthonous 
units comprise metasediments and metavolcanics, as well 
as orthogneisses—an ophiolitic unit and an upper alloch‑
thonous unit—which includes a variety of rocks affected 
by granulite and eclogite facies metamorphism as well as 
abundant ultramafic lithologies (Fig. 1; e.g., Díez Fernández 
et al. 2012; Iglésias et al. 1983; Ribeiro et al. 1990; Rodri‑
gues et al. 2013).

The Galiñeiro igneous complex, which crosses the Ria 
de Vigo, is composed of peralkaline magmas (Montero 
et al. 2009), including aegirine‑riebeckite orthogneisses. 
The complex has high concentrations of high‑field‑
strength elements such as Zr, Hf, Nb, Ta, and Th, as well 
as rare earth elements (REE; Floor 1966; Montero et al. 
2009). Some pegmatite bodies that intruded the allochtho‑
nous metasedimentary sequences of the Schistose Domain 
(Llera et al. 2019) are characterized by the presence of 
Li–Sn–Ta mineralizations (Canosa et al. 2012; Fuertes‑
Fuente et al. 2000). Some mineralized pegmatites are prob‑
ably genetically related to peraluminous two‑mica granites 
(Fuertes‑Fuente and Martin‑Izard 1994; Llera et al. 2019). 
The erosion of these rocks supplied the coastal Quaternary 
sediments found in the region (García‑García et al. 2005).

In the Ria de Vigo, two sectors, namely internal and 
external, can be recognized according to hydrodynamic and 
sedimentological characteristics. The external zone, located 
at the mouth of the ria, is dominated by waves, although it is 
protected from direct oceanic influence by the Cies Islands, 
which act as a natural barrier and control oceanic influence 
and sedimentary processes (Vilas et al. 2019). The internal 
sector presents an estuarine behavior and is shallower.

Several rivers, such as the Verdugo‑Oitavén and the 
Lagares (Fig. 1C), flow into the Ria de Vigo, comprising 
a watershed of 709  km2. The rivers cross Paleozoic alka‑
line and calc‑alkaline granitic and metamorphic (schist 
and gneiss) lithologies, showing seasonal variability in 
their discharge and sediment load (Méndez and Vilas 
2005; Pazos et al. 2000; Perez‑Arlucea et al. 2005). The 
Verdugo‑Oitavén rivers are the largest and join together 
before flowing into the San Simón Bay, constituting about 
57.3% of the total catchment area and providing a major 
sediment load to the ria (Méndez and Vilas 2005; Pazos 
et al. 2000; Perez‑Arlucea et al. 2005).

The surface water temperature has a strong seasonal gradient 
varying between 11 and 12 °C (winter) and 19 and 20 °C (sum‑
mer). The salinity gradient varies between 36 toward the mouth 
of the ria and 31–32 toward the river mouths in the San Simón 
Bay (Nombela et al. 1995). On the ria’s coast, waves from 1 to 
2.5 m are predominant most of the year, but they can exceed 
3 m in height in winter (Chao et al. 2002). Accordingly, the 
Galician territory has some of the highest winds in the Iberian 
Peninsula, which may exceed 10 m/s in higher regions (Troen 
and Petersen 1989).

The wind regime has a considerable influence on the seasonal‑
ity of oceanographic processes in the region. In spring and sum‑
mer (mainly from May to September), the prevalence of northerly 
winds over the oceanic coastal surface results in upwelling events 
(Fiúza 1983; Fiúza et al. 1982; Wooster et al. 1976). During the 
rainy season (usually from October to April), greater amounts of 
fluvial sediments are introduced into the marine system. These 
seasonal variations, coupled with downwelling regimes and the 
development of currents toward the poles, result in the hydrody‑
namic transfer of resuspended materials to the north and offshore 
(Jouanneau et al. 2002; Martins et al. 2007; Torres and Barton 
2007). By analyzing the sediments of transitional coastal systems 
such as the Galician rias, it is possible to recognize periods of 
higher terrestrial vs. marine influence related to the seasonality 
of fluvial‑derived sediment plumes and oceanographic processes 
(Bernárdez et al. 2008). These seasonal factors can play an impor‑
tant role in the fate and transport of pollutants from polluted areas 
near the continent.

Materials and methods

A core KSGX24 (236 cm long) was collected in July 1998 
on the GAMINEX oceanographic cruise in the external sec‑
tor of the Ria de Vigo near the Cies Islands (42°12′48ʺN, 
8°51′90ʺW at a water depth of 39 m; Fig. 1). The research was 
conducted on the Galician and Northern Portuguese border in 
collaboration with the Hydrographic Institute of Portugal and 
the University of Algarve under the Ocean Margin Exchange 
Project (OMEX). The core was sampled at every 1‑cm interval 
(e.g., 0–1 cm, 2–3 cm, 4–5 cm, etc.) along its entire length.

Sediment texture

The sediment texture was analyzed by Martins et al. (2013a) 
with a laser diffraction particle size analyzer (Malvern 
Master Size) after the elimination of organic matter and 
carbonates with oxygen peroxide and hydrochloric acid, 
respectively. The percentage of fine silt + clay (< 15 µm), 
medium silt (15–30 µm), coarse silt (30–63 µm), very fine 
sand (63–125 µm), fine sand (125–250 µm), medium sand 
(250–500 µm), and coarse sand (> 500 µm) were determined, 
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as well as textural parameters such as sediment mean grain 
size (SMGS), sorting and skewness, according to Folk and 
Ward (1957).

Geochemical data

The concentration of elements (except Si) was determined 
in a fine fraction (< 63 μm) after digestion with four acids 
 (HClO4,  HNO3, HCl, HF) and determined by inductively 
coupled plasma‑mass spectrometry analysis at ACME Labo‑
ratory (Canada). Detection limits for each element (> 95% 
accuracy) are listed in Appendix 1. Silicon (Si) concentra‑
tions were determined in 40 samples by atomic absorption 
spectrophotometry based on dissolved sediments with three‑
acid decomposition, HCl +  HNO3 + HF. This work includes 
elemental concentrations analyzed by Martins et al. (2013a, 
b, 2016) along with the core (Al, As, Ca, Ce, Co, Cr, Fe, Ga, 
K, La, Li, Ni, S, Sc, Sr, Th, V, and Zn) and also new other 
elements (original data), such as Ag, Ba, Be, Cd, Cs, Cu, Dy, 
Er, Eu, Gd, Hf, Ho, Lu, Mg, Mn, Mo, Na, Nd, P, Pb, Pr, Rb, 
Sb, Si, Sm, Sn, Ta, Tb, Ti, Tm, U, V, W, Y, Yb, and Zr, as 
well as δ13C, δ15N, Nd, and Sr isotopic data.

The δ13C and δ15N isotopic data were analyzed in organic 
matter using a Thermo Finnigan MAT253 mass spectrometer 
at the University of Vigo. Isotopic values refer to the V‑PDB 
pattern. Total organic carbon (TOC) for the first 39 cm of 
the core was analyzed by combustion in a LECO CS Ana‑
lyzer 125 (Martins et al. 2013a). After carbonate removal, 
neodymium and strontium isotopes were analyzed in bulk 
sediment samples from six selected layers along the core 
using a VG Sector 54 thermal ionization mass spectrometer 
in the Laboratory of Isotope Geology of Aveiro University 
according to the methodology described by Ribeiro et al. 
(2011) and Martins et al. (2013b, 2018).

Geochemical indices

The use of elemental enrichment factors has been increas‑
ingly used to estimate the impact caused by pollution, that is, 
to determine how much the metal concentration in a sample 
increases in relation to their average value in the environ‑
ment when anthropogenic action is absent. For determina‑
tion of the chemical elements, however, it is necessary to 
have “background” concentrations as a reference (i.e., the 
concentration of metals in pristine sediment unaffected by 
human activity; Birch 2017). Several authors have criticized 
the way background concentrations have been estimated due 

to several factors such as sediment geochemical analysis 
procedures, applied statistical methods, the variable com‑
position of the Earth’s crust, and different erosion processes 
from various elements such as climate, the density of the 
hydrographic network, and regional geomorphological char‑
acteristics (Bern et al. 2019; Carranza 2017; Reimann and 
De Caritat 2000).

According to Birch (2017), the most widely used proce‑
dures are the use of world shale (e.g., Turekian and Wede‑
pohl 1961), pristine marine and fluvial sediments, and catch‑
ment soils and rocks, with the use of sedimentary cores 
being the method that presents the greatest advantage. Con‑
sidering the great utility of the analysis of the metal enrich‑
ment in relation to background values, this methodology was 
applied in this work. Some authors have proposed values for 
several chemical elements (e.g., Álvarez‑Iglesias et al. 2006; 
Rubio et al. 2000), but the database does not include all the 
chemical elements analyzed in this paper. No studies in Ria 
de Vigo or the region contain background values for all the 
chemical elements used in this work. Therefore, considering 
the various analytical methodologies applied in this study, 
this work used as background values the mean elemental 
concentrations of 12 samples of core KSGX40 (original 
data from this work) from sediment layers deposited prior 
to 4000 years bp (according to Martins et al. 2007). Core 
KSGX40 was collected on the adjacent continental shelf 
(in the Galicia Mud Deposit, off the Ria de Vigo, at lati‑
tude 42°14′98ʺN, longitude 09°01′01ʺW, at a sea depth of 
115 m) and subjected to the same methodology of analysis, 
also in the ACME Laboratory (Canada). These data were 
selected as they are local values of unpolluted marine sedi‑
ments related to regional lithologies from a muddy deposit 
with similar characteristics to the analyzed core.

The enrichment factors (EF) of the analyzed chemical ele‑
ments were calculated based on the equation (Buat‑Menard 
and Chesselet 1979):

where Cx is the concentration of the element x whose 
enrichment is to be determined and Cn is the concentration 
of the normalizing element n. In this work. Al was used as 
a normalizer, as it is a conservative lithogenic chemical 
element associated with fine‑grained sediments, namely 
clay minerals (Windom et al. 1989), and is considered ade‑
quate to remove the influence of metal enrichment in this 
region, as analyzed by Rubio et al. (2000). The classifica‑
tion of the EF values was based on Sutherland (2000), as 
follows: EF < 2, null or minimal contamination; 2 > EF < 5, 
moderate enrichment; 5 > EF < 20, significant enrichment; 
20 > EF < 40, very high enrichment, indicating a high level 

EF =

(

Cx

Cn

)

Environment

(

Cx

Cn

)

Baseline

Fig. 1  A Bathymetric map, some rivers, and the location of the 
KSGX 24 core in the Ria de Vigo. B Tin exploitation sites in the 
northwestern Peninsula (Meunier 2011). C Main rivers (R) that flow 
into the Ria de Vigo (adapted from Vilas et al. 1995). D Geological 
sketch of the NW Iberian Peninsula (adapted from Farias et al. 2014)

◂

69656 Environmental Science and Pollution Research  (2022) 29:69652–69679

1 3



)
P

B
sraey(

eg
A

SMGS
(µm)

V-EF Fe/Mn HREE
mg kg-1 

Ti/Ca Fe/Ca Mg/Ca

0.9 1.1 1.3 1.5 0.12 0.18 0.24 0.30
0

500

1000

1500

2000

2500

3000

12 17 22 27 90 130 170 0.0 0.1 0.4 0.9 1.4 1.920 24 28

)
P

B
sraey(

eg
A

Nd-EF Pr-EF Mn-EF P-EF Cs-EFY-EF

0.4 0.6 0.8 0.3 0.5 0.7 0.7 1.0 1.3 0.7 0.9 1.1 1.30.6 0.8 1.0
0

500

1000

1500

2000

2500

3000

0.4 0.6 0.8

Th/Co La/ScTh/Sc

)
P

B
sraey(

eg
A

Sr-EFCa-EF U-EF
0.7 1.7 2.7 0.4 0.7 1.0 0.3 0.5 0.7

0

500

1000

1500

2000

2500

3000

0.6 1.6 2.6 1.1 1.6 2.1 2.6 2.7 3.7 4.7 5.7

Fe
ls

ic
 R

oc
ks

M
af

ic
R

oc
ks

69657

1 3

Environmental Science and Pollution Research  (2022) 29:69652–69679



of contamination; and EF ˃ 40, extremely high enrichment, 
indicating extreme contamination.

The Igeo was calculated according to Müller (1986):

where Cx is the concentration of the metal (“x”) in the 
sediment layer and Cb is the corresponding baseline concen‑
tration (Appendix 2). The Igeo values were used to identify 
polluted sediments and classified as follows (Müller 1986): 
˂0, unpolluted; 0–1, unpolluted to moderately polluted; 1–2, 
moderately polluted; 2–3, moderately to strongly polluted; 
3–4, strongly polluted; 4–5, strongly to extremely polluted; 
and ˃5, extremely polluted.

Benthic foraminifera

The database of benthic foraminifera from Martins et al. 
(2013a) was improved: aged and transported specimens 
(whose abundance is significant along the KSGX24 
core) were removed from the previous count. Specimen 
counts (in the sediment fraction > 63 μm) were increased 
until ideally reaching a number of at least 300 speci‑
mens per sample (N between 292–850; mean 511 ± 117); 
the percentage of the species per sample was recalcu‑
lated. Foraminiferal density provides information on the 
abundance of specimens: FD = number of specimens/g 
of bulk sediment. The percentage of species that are 
more frequent in the middle‑outer shelf (MOS) than in 
coastal transitional areas (Martins et al. 2012, 2019) 
was calculated to trace higher marine influence in the 
distal region of the Ria de Vigo. The density (number 
per gram of total sediment) of planktonic foraminifera 
and biogenic particles such as sea urchin spikes, frag‑
ments and spikes of sponges, bryozoan remains, and 
pyritized foraminifera were also determined (new data 
of this work).

Age model

Ages taken from Martins et al. (2013a) have been reinter‑
preted in this work. These authors obtained radiocarbon ages 
at Beta Analytic, Inc. (Miami, FL, USA, by accelerator mass 
spectrometry (AMS)) for the sediment layers (33–34 cm, 
71–72 cm, 143–144 cm, and 193–194 cm; Appendix 3) 

Igeo = log
2

[

Cx

Cbx1.5

]

using Cibicides spp. (foraminiferal) samples (10 to 20 mg, 
with size > 125 μm). Radiocarbon ages were calibrated (2σ 
calibration) using the OxCal v4.1.7 program (Bronk Ramsey 
2001, 2008, 2009, 2010). For this work, the radiocarbon 
ages were corrected for the reservoir effects estimated by 
Soares and Dias (2007). Intermediate ages were estimated 
by interpolation (Appendix 3).

Statistical analysis

Before statistical analyses, data were log‑transformed (log 
x + 1). Pearson correlations were performed with a recog‑
nized level of significance ofp < 0.05. Relationships among 
the analyzed variables were explored through two principal 
component analyses (PCA) based on Pearson correlation 
matrices between (A) concentrations and (B) EF of chemi‑
cal elements and other geochemical, textural, and biotic 
variables. These analyses were performed using the TIBCO 
Statistica® 13.5.0 software.

Foraminiferal ecological parameters (i.e., species rich‑
ness (SR); Shannon diversity, Shannon 1948 (H′) and equi‑
tability, Magurran 1988 (J′)) were calculated in Primer 6. 
A bathymetric map with the location of the studied core 
was performed in Surfer software 14. The mean values and 
the moving average, determined with three successive data 
along the core, were applied to some graphs to identify gen‑
eral trends.

Results

Sedimentological results

The results analyzed in this work are included in Appen‑
dices 1, 2, 3, 4, 5, 6, 7, and 8. The age model based on 
the radiocarbon ages indicates that the KSGX24 core 
records the last ≈3000  years bp (Appendix 3). This 
core is composed essentially of fine‑grained sediments 
(fine fraction, < 63 µm, ranging from 76.30 to 92.84%; 
mean 84.41 ± 3.37%) with sediment mean grain size 
(SMGS) values varying from 9.07 to 26.36 µm (mean 
19.34 ± 2.85 µm; Fig. 2; Appendix 4). The range of the 
elemental concentrations and the baseline concentrations 
used in this work are presented in Appendix 2. The high‑
est concentrations of major elements, in decreasing order, 
were found for Si, Al, Ca, Fe, K, S, Na, Mg, Ti, and P 
(Appendices 1 and 2). The trace elements that reached 
concentrations > 20 mg  kg−1 are, in decreasing order, Ba, 
Sr, Mn, Rb, Zr, Li, Ag, Zn, Ce, V, Cr, Cu, La, Ni, Nd, Pb, 
and As (Appendices 1 and 2). In some layers of the core, 
certain elements attain concentrations higher than the 
background values. In some layers, the enrichment factors 
(EF; Appendix 1) reached values between 5 and 20 for Cu 

Fig. 2  Age plots of the values of sediment mean grain size (SMGS; 
µm), enrichment factors (EF) of several chemical elements, heavy 
rare earth elements (HREE) concentrations (mg  kg−1), and the ratios 
Fe/Mn, Ti/Ca, Fe/Ca, Mg/Ca, Th/Co, Th/Sc, and La/Sc. The mean 
value of each variable (dashed vertical line) is shown. The finest sedi‑
ment sections are are shaded

◂
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and between 2 and 5 for Ag, Mo, As, Sb, Zn, Ca, S, Ni, Sn, 
Cd, Cr, Co, Pb, and Li. The other elements have EF < 2.

Some geochemical variables tended to present an oppo‑
site distribution pattern to SMGS, reaching higher values in 
the finer sections of the sediments, such as V‑EF, Fe/Mn, 
heavy REE (HREE), Ti/Ca, Fe/Ca, and Mg/Ca (Fig. 2). Oth‑
ers show a marked reduction or tend to decline in the finer 
sections of the sediments, for example, Y‑EF, Nd‑EF, Pr‑EF, 
Mn‑EF, P‑EF, Cs‑EF, Ca‑EF, Sr‑EF, and U‑EF, as well as 
Th/Co, Th/Sc, and La/Sc (Fig. 2).

Based on the geochemical and grain size data, it is pos‑
sible to identify several intervals along the KSGX40 core.

Phase 1, ≈3000–2450  years bp, marked by peaks of 
Cd‑EF, Cr‑EF, Ni‑EF, and Sn‑EF associated with rela‑
tively coarser sediments and relatively high Ca‑EF, Cs‑EF, 
Mn‑EF, Mo‑EF, Nb‑EF, Pr‑EF, Sr‑EF, and Ta‑EF and/or 
Li‑EF, V‑EF, Y‑EF, Th/Co, Th/Sc, and La/Sc values;
Phase 2, ≈2450–1850 years bp, indicated by a sharp 
increase of As‑EF, S‑EF, and Sb‑EF, as well as peaks of 
Co‑EF, Cr‑EF, Cu‑EF, Ni‑EF, Pb‑EF, Sn‑EF, and Zn‑EF 
associated with the increase of V‑EF, Fe/Mn, HREE, Ti/
Ca, Fe/Ca, and Mg/Ca, and decreasing SMGS, Ca‑EF, 
Cs‑EF, Mn‑EF, Nd‑EF, P‑EF, Pr‑EF, Sr‑EF, U‑EF, Y‑EF, 
Th/Co, Th/La, and La/Sc;
Phase 3, ≈1850–1550 years bp, showing peaks of Ag‑EF, 
Co‑EF, Cr‑EF, Li‑EF, Mo‑EF, P‑EF, Pb‑EF, Sn‑EF, Ta‑EF, 
W‑EF, and Zn‑EF were observed, associated with the increase 
or relatively high values of SMGS, Ca‑EF, Cs‑EF, Mn‑EF, 
Nd‑EF, Pr‑EF, Sr‑EF, U‑EF, Y‑EF, Th/Co, and La/Sc;
Phase 4, ≈1250–500 years bp, with marked peaks of 
Cu‑EF as well as As‑EF, Cd‑EF, Cr‑EF, Co‑EF, Ni‑EF, 
P‑EF, and Sn‑EF. This phase is also characterized by a 
decreasing trend of SMGS, Ca‑EF, Sr‑EF, Th/Co, Th/Sc, 
and La/Sc values and increasing trends of Cs‑EF, Mn‑EF, 
U‑EF, and HREE values yet with low values of Fe/Mn, 
Ti/Ca, Fe/Ca, and Mg/Ca;
Phase 5, from ≈250  years bp, is marked by a sharp 
increase of Cd‑EF, Pb‑EF, and W‑EF, a rise of Co‑EF, 
Cr‑EF, Cu‑EF, and Zn‑EF, and a decrease of SMGS, 
Ca‑EF Mn‑EF, Sr‑EF, Th/Co, Th/Sc, and La/Sc.

In some layers or intervals, the Igeo values reached ranges 
between: 2 and 3 for Cu and As; 1 and 2 for Ag, Sb, Mo, S, 
Zn, and Ni; and 0 and 1 for Sn, Pb, Cd, V, Co, Cr, Fe, and 
W (Appendix 1). The age plots of Igeo values for Cu, S, Ag, 
As, and Sb are presented in Figure S1, which also shows the 
layers where these values are higher (Fig. 3).

Isotopic data

Values of 143Nd/144Nd and 87Sr/86Sr are presented as a 
function of age in Appendix 5. As Sr and Nd isotope 

data were analyzed after carbonate removal, the results 
essentially reflect the terrigenous fraction. The values 
of 143Nd/144Nd ranged from 0.511992 to 0.512043 and 
correspond to a variation of εNd between 11.6 and 12.6, 
putting into evidence a strong homogeneity of the Nd 
isotope composition (Fig. 4). The values of 87Sr/86Sr vary 
between 0.729791 and 0.732354. The highest 87Sr/86Sr 
values were recorded in the lower part of the core 
(Appendix 5), but given the limited number of analyzed 
samples, it is unclear whether that represents a reliable 
trend. The εNd vs. 87Sr/86Sr biplot (Fig. 4) reveals that 
the analyzed samples lie in a small area within the fields 
of typical compositions of the western European crust. 

Values of δ13C in organic matter varied from − 23.04 
to − 24.57‰ (mean − 23.69 ± 0.3‰; Appendix 1). The 
highest values of δ13C are recorded in the intervals 
between ≈2250 and 950 years bp and tend to increase from 
≈550 years BP (Fig. 5). Values of δ15N ranged from 1.85 to 
5.84‰ (mean 3.81 ± 0.69‰; Appendix 1).

Benthic foraminifera

The values of FD (82–3300 n/g; mean 912 ± 592 n/g) 
vary considerably along the core as well as those of SR 
(25–62, mean 41 ± 7), H′ (2.32–3.16; mean 2.77 ± 0.16), 
and J′ (0.63–0.82; mean 0.75 ± 0.03) (Appendix 6). 
The presence of pyritized foraminifera was observed 
throughout the entire core (Appendix 6). The abundance 
of planktonic foraminifera (33 ± 36 n/g) is much smaller 
than that of benthic foraminifera and presents a pattern 
identical to the density curve of benthic foraminifera. 
Other biogenic particles are also observed, such as fos‑
sils of foraminifera (old tests), pyritized foraminifera, 
sea urchin spikes, fragments and spicules of sponges, and 
bryozoan remains (Appendix 6).

Overall, 198 benthic foraminiferal species and taxa 
are identified (Appendix 6). The species and taxa 
that reach ≥ 20% are, in descending order, Nonion 
faba (0–37.5%), Cibicides spp. (0.7–35.4%), Cibici-
doides ungerianus (0–30.8%), Bolivina pseudoplicata 
(2.3–25.9%), Bolivina ordinaria (0–21.7%), and Boliv-
ina spathulata (0–21.1%; Appendix 6). Some of these 
species are present along the core but do not show a 
clear pattern of distribution, such as Cibicides spp., C. 
ungerianus, and B. ordinaria.

A numerous group of benthic foraminiferal species is 
more frequent in the MOS environments of the Iberian 
margin than in coastal transitional areas (Martins et al. 
2012, 2019), such as Bolivina skagerrakensis, Bolivina 
spathulata, Bulimina elongata, Bulimina marginata, Cas-
sidulina laevigata, Cassidulina carinata, Nonionella iri-
dea, Nonionella stella, Trifarina angulosa, Uvigerina spp., 
and Valvulineria bradyana (complete list in Appendix 6). 
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The relative abundances of B. spathulata, V. bradyana and 
N. faba tend to increase mostly in the middle part of the 
core (Fig. 5). Ammonia species are mainly present at the 
core base and up to ≈2500 years bp (Fig. 5), and in the 
central part of the core, only scattered peaks of this spe‑
cies occur.

Statistical results

Pearson correlations and the first two factor loadings (unro‑
tated) of two PCAs relating geochemical, textural, and bio‑
genic variables are presented in Appendices 7 and 8, respec‑
tively. The biplots of factor 1 versus factor 2 of the two PCAs 
relating elemental concentrations and the enrichment factors 
with other geochemical, textural, and biogenic variables are 
included in Fig. 5A, B, respectively.

The biplot of factor 1 versus factor 2 of the PCA of 
Fig. 6A, which explain 69% (factor 1: 54%; factor 2: 15%; 
Appendix 8), shows that the concentrations of (1) Ca, Ce, 
Gd, La, Na, Nd, Pr, Rb, Sm, Sr, Th, and Y tend to increase 
in coarser and sandier sediments and are associated with 
biotic variables related to foraminiferal density and diversity 
and abundance of transported foraminifera; (2) Ag, Al, As, 
Ba, Bi, Co, Cr, Er, Eu, Fe, Ga, Ho, K, Li, Mg, Mo, Ni, P, 
Pb, S, Sb, Sc, Sr, Tm, U, W, Yb, and Zn are associated with 
finer‑grained sediments and V. bradyana, N. faba, and B. 
spathulata with MOS and δ13C; (3) Be, Cd, Cs, Mn, Mo, Nb, 
Sn, Ta, Ti, and Zr are related to Ammonia spp. rising; (4) P, 
Ag, Eu, Lu, Tb, Tm, and U are more related to the increas‑
ing remains of bryozoans, sponges, and sea urchins. The 
concentration of most of the chemical elements has signifi‑
cant correlations (positive or negative) with the fine fraction 
of the sediments and the relative abundance of N. faba, V. 
bradyana, B. spathulata, and Ammonia spp. (Appendix 7).

The biplot of factor 1 versus factor 2, from the PCA in 
Fig. 6B, which explains 77% (factor 1: 66%; factor 2: 11%), 
shows that (1) most variables are positively correlated with 
factor 1, which is associated with coarser and sandier sedi‑
ments (Ca‑EF, Sr‑EF, La‑EF, Ce‑EF, Pr‑EF, Th‑EF, Y‑EF, 
Rb‑EF, Nd‑EF, Sm‑EF, Zr‑EF, Na‑EF, Ti‑EF, Gd‑EF, K‑EF, 
Hf‑EF, Mg‑EF, Ta‑EF, U‑EF, Tb‑EF, Dy‑EF, Nb‑EF, Er‑EF, 
Lu‑EF, Cs‑EF, Yb‑EF, Cd‑EF, Eu‑EF, Mo‑EF, Ho‑EF, 
Be‑EF, Ba‑EF, Sn‑EF, P‑EF, Mn‑EF, W‑EF, as well as 
the ratios La/Sc, Th/Sc, Th/Co), the Shannon index, spe‑
cies richness, density of benthic foraminifera, planktonic 
foraminifera, and other biogenic remains, such as transported 
foraminifera and fossil foraminifera; (2) As‑EF, Sb‑EF, 
Sc‑EF, S‑EF, Fe‑EF, V‑EF, Co‑EF, and Pb‑EF are related to 
finer‑grained sediments (and the finest fractions), as well as 
with increased Fe/Ca, Mg/Ca, Ti/Ca, HREE, δ13C, and MOS 
values and V. bradyana, N. faba, and B. spathulata; (3) bio‑
genic particles, namely foraminiferal density and diversity 
parameters, are more associated with coarse silt fraction; 

(4) potentially toxic elements, such as Cr‑EF, Ni‑EF, Zn‑EF, 
Cu‑EF, Pb‑EF, W‑EF, and Co‑EF, and also δ15N, Li‑EF, and 
Ga‑EF are negatively related to the foraminifera and other 
biogenic remains (variables of 3).

Discussion

Tracers of changes in oceanographic processes

Factor 1 of the PCA of Fig. 5A (Appendix 8) and the cor‑
relations between the variables (Appendix 7) show that the 
concentrations of most chemical elements are significantly 
and positively correlated to finer‑grained sediments, MOS 
and δ13C values, and several foraminifera species, such as 
V. bradyana, N. faba, and B. spathulata, whose frequency 
typically increases in the mid‑ to outer‑continental shelf 
(Martins et al. 2019). Since the sediments’ grain size is 
mostly related to hydrodynamic conditions, this means that 
factor 1 of the PCA of Fig. 6A represents the influence of 
energy changes, which largely influenced the composition 
of the sediments.

Note that the enrichment of several chemical elements 
(e.g., La, Ce, Pr, Th, Y, Rb, Nd, Sm, Zr, Na, Ti, Gd, K, 
Hf, Mg, Ta, U, Tb, Dy, Nb, Er, Lu, Cs, Yb, Cd, Eu, Mo, 
Ho, Be, Ba, Sn, P, Mn, W) is associated with coarser sedi‑
ments, according to the results of the PCA of Fig. 5B (I), 
which presupposes the prevalence of a more active bot‑
tom hydrodynamic regime, different from the one that 
favored the increase of the variables of the Fig. 5B (II), 
namely As, S, and Sb. In the region, the hydrodynamics 
are stronger in autumn and winter, when the rainfall and 
the SW storms are more intense. These conditions give 
rise to downwelling events that favor the transport of sedi‑
ments offshore (Álvarez‑Salgado et al. 2000; Jouanneau 
et al. 2002).

The δ13C and δ15N values are proxies widely used for 
tracing the source of sedimentary organic matter (Barros 
et al. 2010; Bueno et al. 2019; Martinelli et al. 2009). 
The biplot of δ13C against δ15N values and the marked 
fields (Fig. 7), following Silva et al. (2012), indicates 
that the organic matter deposited in the study area is 
essentially provided by macrophytes, phytoplankton, and 
algae, as also observed by Alonso‑Pérez et al. (2010). 
According to these authors, the δ13C values are mainly 
associated with the algal part in relation to the non‑
algal portion of the particulate organic carbon. On the 
contrary, the higher non‑algal proportions in particu‑
late organic carbon result in more negative δ13C values. 
In core KSGX24, the most negative values of δ13C are 
recorded between ≈3000 and 2250 years bp (in the lower 
section of the core) and could be related to a higher con‑
tribution of terrestrial sources of organic matter to the 
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sediments, probably due to a greater fluvial influence in 
the study area (Schulz and Zabel 2006). The increase in 
this section of the relative abundance of Ammonia spp., 
which proliferates in disturbed environments under the 
greater continental influence, also supports this inference 
(e.g., Bouchet et al. 2021; Debenay and Guillou 2002).

Therefore ,  fac tor  2  of  the  PCA shown in 
Fig.  6A  (Appendix 8) represents the oceanic versus 
continental influence. The oceanic influence is traced 
to the increasing values of δ13C (according to Deines 
1980; Lamb et al. 2006; Meyers 1997) and sea urchin, 
sponges, and bryozoan remains. The continental influ‑
ence is indicated by the rise of Ammonia spp., taxa fre‑
quent in coastal transitional waters (Duleba et al. 2018, 
2019), with a higher contribution of organic matter from 
terrestrial productivity and increased concentrations of 
several lithogenic elements such as Nb, Ti, Ta, Cs, Mo, 
Zr, and Be.

In addition to higher δ13C values (Deines 1980; 
Lamb et al. 2006; Meyers 1997), the increase in MOS 
and V. bradyana, N. faba, and B. spathulata also sug‑
gests higher oceanic inf luence in the distal sector 
of Ria de Vigo. The mentioned species are associ‑
ated with high food supplies and can tolerate oxygen 
depletion resulting from the consumption and degra‑
dation of organic matter by aerobic organisms (Mar‑
tins et al. 2019). In this area, the increment of oce‑
anic productivity is associated with upwelling events 
(Prego 1993; Wollast 1998), which should have been 
stronger on the NW Iberian Margin during several 
periods in the Late Holocene (e.g., Diz et al. 2002; 
González Álvarez et  al. 2005; Martins et  al. 2007, 
2013a). The upwelling events typically occur during 
the spring and summer oceanographic regimes (Álva‑
rez‑Salgado et  al. 2000; Torres and Barton 2007). 
Sometimes, however, intense upwelling events occur 
during the winter (Vitorino et al. 2002) and follow 
more or less severe rainfall events (Martins et  al. 
2007) that introduce more freshwater (Pazos et  al. 
2000; Ríos et  al. 1992) into the continental shelf. 
These phenomena can cause stratification of water 
masses, with colder, more saline, and denser oceanic 
water under the low‑saline coastal waters (Fraga and 
Margalef 1979). The stratification in the Ria de Vigo 
is generally maintained throughout the entire year 
(Diz et al. 2002). During periods of higher runoff, the 
rivers transport and introduce more sediments into 
the Ria de Vigo (Pazos et al. 2000). While the coarser 

sediments are deposited mainly near the river mouths, 
the finest ones are transported in suspension and dis‑
tributed by the currents (Perez‑Arlucea et al. 2005). 
Thus, intense upwelling events occurring under these 
conditions could eventually produce fronts between 
the oceanic and coastal waters favorable to the accu‑
mulation of fine‑grained sediments enriched in trace 
elements such as Ag, Al, As, Ba, Bi, Co, Cr, Er, Eu, 
Fe, Ga, Ho, K, Li, Mg, Mo, Ni, P, Pb, S, Sb, Sc, 
Sr, Tm, U, W, Yb, and Zn (PCA Fig. 6A; Appendix 
7) and organic matter, as reported by Martins et al. 
(2007), for the adjacent continental shelf.

The TOC contents (between 1.50 and 1.95%) in the 
uppermost 40 cm are markedly high, and the C/S ratio val‑
ues are relatively low (ranging between 1.6 and 3.8; mean 
2.2 ± 0.6; Appendix 1), indicating low oxic conditions, as 
described by Cetecioğlu et al. (2009). The low oxic condi‑
tion in the sediments was favorable for the production of 
sulfides and the formation of siderite and pyrite (Álvarez‑
Iglesias and Rubio 2008; Rubio et al. 2010) in anoxic and 
sulfidic environments or microenvironments (Berner 1983; 
Lin et al. 2020). The presence of these minerals suggests 
that the supply of organic matter in the study area was high 
in the last ≈3000 years bp.

Var iations in EF‑Mn and EF‑S values may be 
largely due to changes in the redox state of the sedi‑
ment. Under reducing conditions, Mn is depleted 
(Hastings et al. 2016). The significant enrichment in 
S (Fig. 3) may instead be related to the production of 
sulfides in anoxic layers of the sediments (as generi‑
cally analyzed by Jørgensen et  al. 2019). Thus, the 
variation of the Mn‑EF values along the studied core 
indicates the presence of two redoxcline levels in core 
KSGX24, the first occurring at ≈2500 years bp and 
the second at around 500 years bp (Fig. 2), preced‑
ing the increase in MOS (Fig. 5) and Fe/Mn values 
(Fig. 2). The distribution of Fe/Mn values along the 
core KSGX24 indicates oxygen depletion in the sedi‑
ments deposited between ≈2300 and 1500 years bp 
(Fig.  2), which could have been more pronounced 
around 2000  years bp  (Fig.  2). The production of 
sulfides in this phase may have contributed to the 
increased values of EF‑As, EF‑S, and EF‑Sb (Fig. 3).

The δ13C values remained gener ically higher 
between ≈2250 and 950  years bp  and tended to 
increase from ≈550 years bp, revealing the presence 
of a higher proportion of organic matter supplied by 
oceanic relative to continental sources. These data 
may have resulted from the strengthening of upwelling 
events as characterized by Martins et al. (2013a, b) 
and Piedracoba et al. (2005). However, the increase 
in MOS between ≈2250 and 1500  years bp and in 
the last ≈250  years bp suggests that the supply of 

Fig. 3  Age plots of the enrichment factors (EF) of several chemi‑
cal  element. In the graphs the mean value for each variable is pre‑
sented (dashed vertical line). Five main phases were identified related 
to the possible influence of various peoples on mining.

◂
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organic matter to the bottom could have been higher 
during these two periods as well as the stratification 
of the water masses (traced mainly by the increase of 

B. spathulata). It is also possible that during these 
two periods, ocean fronts (generated by the clash of 
coastal and oceanic waters) occurred near the study 

Fig. 4  Sr and Nd isotopic 
compositions. Blue triangles: 
terrigenous component of sam‑
ples from core KSGX 24 (Ria 
de Vigo). Gray fields: some pos‑
sible source areas of sediments, 
with very distinct isotopic 
compositions, in and around 
North Atlantic; “Europe” refers, 
in fact, to western Europe; 
adapted from Snoeckx et al. 
(1999), Grousset et al. (2001), 
and Hemming (2004). Ellipse 
with red contour: field of 
compositions of the terrigenous 
component of sediments from 
the Galician continental slope, 
according to the results reported 
by Martins et al. (2013b) and 
Plaza Morlote et al. (2017), 
excluding the samples from 
layers with ice‑rafted debris 
(clasts with exotic provenance, 
transported by icebergs in the 
Pleistocene)
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area. Identical phenomena were recorded on the adja‑
cent continental shelf by Martins et al. (2007) in both 
periods.

According to the results of the PCA (in Fig. 6A, B), 
the finer sediments are negatively correlated to higher 
foraminiferal abundance and diversity (as indicated 
by the Shannon index and species richness). Thus, the 
HOP intervals may have triggered a certain environ‑
mental disturbance favoring the development of oppor‑
tunistic foraminifera. However, the burial of organisms 

by terrigenous sediments (indicated by the increase in 
Sc‑EF, Ga‑EF, Fe/Ca, Mg/Ca, Ti/Ca, and HREE) and 
the oxygen depletion (suggested by the increase of S‑EF, 
Fe‑EF, and Fe/Mn values and a reduction of Mn‑EF 
values; Fig. 2) should have been unfavorable for spe‑
cies with carbonate tests, as suggested by the decline 
in Ca‑EF and Sr‑EF (Fig. 2). Calcium and Sr have simi‑
lar biogeochemical characteristics (Kabata‑Pendias and 
Pendias 1992) and are mostly associated to the biogenic 
sources of carbonates (e.g., mollusks and foraminifera). 

Fig. 6  Biplots of the factor 1 
versus factor 2 of two principal 
component analyses (PCAs) 
relating elemental concentra‑
tions and the enrichment factors 
(EF) and other geochemical, 
textural, and biotic variables. 
Legend: SMGS, sediment mean 
grain size; VFSand, very fine 
sand fraction (63–125 µm); 
Fsand, fine sand fraction 
(125–250 µm); Csand, coarse 
sand fraction (> 500 µm); Sand, 
total sand fractions (> 63 µm); 
Fines, total fine fraction 
(< 63 µm); < 15, fine silt and 
clay fractions (< 15 µm); Msilt, 
medium silt (15–30 µm); Csilt, 
coarse silt fraction (30–63 µm). 
The concentrations of heavy 
rare earth elements (HREE), 
δ13C and δ15N in organic matter, 
and several elemental ratios 
(Th/Sc, La/Sc, Mg/Ca, Fe/
Ca, Th/Co, Ti/Ca) were also 
considered, as well as data 
related to foraminifera, such as: 
FD, foraminifera density; SR, 
species richness; H′, Shannon 
Index; MOS, species more 
frequent in the middle to outer 
shelf; N.fab, Nonium faba; 
V.brad, Valvulineria bradyana; 
B.spat, Bolivina spathulata and 
Ammonia spp. The abundance 
of biotic particles found in the 
sediment also were considered, 
such as: TranspF, transported 
foraminifera; Plankt, plank‑
tonic foraminifera; PyrF, 
pyritized foraminifera; Fos, 
fossil of foraminifera (old tests); 
SeaUrch, sea urchin spines; 
Spong, sponge spicules and; 
Bryoz, bryozoan fragments
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On the contrary, FD and SR tended to increase in sandy 
and coarser‑grained sediments (Fig. 6A, B), which are in 
general associated with more oxic conditions in the sedi‑
ment, traced by higher values of Mn‑EF (Fig. 2; PCA in 
Fig. 6B). Note that the finer sections are also associated 
with the enrichment of several potentially toxic elements 
(PTEs), such as, Co, Ni, Pb, Sb, and Zn, which may have 
had a negative impact on the benthic fauna.

Detrital sources of sediments

The La/Th vs. Hf discrimination biplot (Fig. 8A) is based 
on the diagrams of Floyd and Leveridge (1987), Cullers and 
Podkovyrov (2000), and Bijan Noori et al. (2016), and the 
ternary Zr‑Th‑Sc diagram (Fig. 8B), which is based on Bha‑
tia and Crook (1986) and Okunlola and Idowu (2012). The 
biplot indicates that sediments deposited in the distal region 
of Ria de Vigo were supplied by rocks formed in a passive 
margin. This finding perfectly matches with the geological 
history of the region related to the opening of the northern 
Atlantic Ocean (Hallam 1971). The biplot of Th/Sc vs. Zr/Sc 
(Fig. 8C), based on Chen and Robertson (2020), shows that 
the sediments are related to rocks from the upper continental 
crust (UCC). The combination of low Cr/V and Y/Ni ratios 
(both < 1.5) suggests that the main source of the sediments 
is felsic rocks (Hossain et al. 2017). In addition, the ternary 
La‑Th‑Sc diagram (Fig. 8D), based on Cullers and Podkovy‑
rov (2000), indicates that the sediments were mostly sourced 
by granodiorites, which are present in the Malpica‑Tui unit 
(Gil‑lbarguchi 1994; Santos Zalduegui et al. 1995, 1996) and 
granites, which are abundant in the region (Fuertes‑Fuente and 
Martin‑Izard 1994; Llera et al. 2019).

Although hydrographic basins in western Galicia are rela‑
tively small and some exotic geological units are present 
in the region, the Sr and Nd isotopic signature of the ter‑
rigenous component of sediments from core KSGX24 fits 
perfectly into what is expected in materials representative 
of the western European crust. This part of the continental 
crust is characterized by having been strongly affected by 
Paleozoic orogenies (Caledonian and Variscan); therefore, 
its Sr–Nd isotopic fingerprint is clearly distinct from other 
possible sources of sediments into the North Atlantic. In the 
analyzed samples plotted (Fig. 4) within the field of western 
Europe, although there are mafic and ultramafic rocks in the 
region and the hydrographic basin is not large, the Sr and 
Nd isotopic ratios in the sediments were mostly linked with 
granitoids and metasediments. A hypothetical strong local 
influence of mafic and ultramafic lithologies on the isotope 
compositions would have decreased the 87Sr/86Sr ratios and 
increased the εNd values relative to typical European upper 
crustal compositions, but these effects were not observed.

The Malpica‑Tui unit (Gil‑Ibarguchi and Ortega 1985) 
and the Galiñeiro Complex (Montero et al. 1998), which 
cross the Ria de Vigo, have abundant bastnasite, parisite, 
xenotime, thalenite, and yttrialite (Marmolejo‑Rodríguez 
et al. 2008). Yttrium is a trace element in the Earth’s crust 
(mean 33 mg  kg−1; Taylor 1964) but is concentrated in some 
minerals, especially xenotime and monazite (Montero et al. 
1998), which are present as accessory phases in granitic 
gneiss, igneous, and metamorphic rocks that occur around 
the Ria de Vigo (Evans et al. 2003; Nombela et al. 1995). 
These minerals are resistant to chemical weathering and tend 
to be preserved in the detrital component of the sediments. 
Yttrium is also considered to have little involvement in 

Fig. 7  Values of δ13C vs. δ15N. 
The fields were marked accord‑
ing to Silva et al. (2012)
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Fig. 8  A Source rock La/Th 
vs. Hf discrimination diagram 
(based on the diagrams of Floyd 
and Leveridge 1987; Cullers 
and Podkovyrov 2000; Bijan 
Noori et al. 2016). B Ternary 
Zr–Th–Sc diagram (based on 
Bhatia and Crook 1986 and 
Okunlola and Idowu 2012). C 
Biplot of Th/Sc vs. Zr/Sc (based 
on Chen and Robertson 2020). 
D Ternary La–Th–Sc diagram 
(based on Cullers and Podkovy‑
rov 2000). Legend: UCC, upper 
continental crust
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diagenetic processes. Therefore, it has been used to relate the 
sediments to the source rocks (Murad 1978), and the concen‑
trations of this element provide insights into the weathering 
of the rocks surrounding the Ria de Vigo and the transport 
of sediments from this coastal system toward the adjacent 
continental shelf (Marmolejo‑Rodríguez et al. 2008).

Yt t r ium concent ra t ions  (between 10 .4  and 
13.1 mg  kg−1; mean 11.5 ± 0.5 mg  kg−1) along the core 
KSGX24 can be considered pristine (EF values < 1). This 
element is more enriched in coarser intervals (PCA in 
Fig. 6B). This would be expected since, according to 
Turekian and Wedepohl (1961), the worldwide sands 
have higher mean concentrations of Y (40 mg  kg−1) than 
shale (26 mg  kg−1). In surface sediments of the Ria de 
Vigo, the enrichment of this element is mostly observed 
in its middle zone and is also related to sands (Mar‑
molejo‑Rodríguez et al. 2008). The PCA results (Fig. 6 
(II)) and the correlations presented in Appendix 7 show 
that Y‑EF is associated with the enrichment of several 
other chemical elements (La‑EF, Ce‑EF, Pr‑EF, Th‑EF, 
Y‑EF, Rb‑EF, Nd‑EF, Sm‑EF, Zr‑EF, Na‑EF, Ti‑EF, 
Gd‑EF, K‑EF, Hf‑EF, Mg‑EF, Ta‑EF, U‑EF, Tb‑EF, 
Dy‑EF, Nb‑EF, Er‑EF, Lu‑EF, Cs‑EF, Yb‑EF, Cd‑EF, 
Eu‑EF, Mo‑EF, Ho‑EF, Be‑EF, Ba‑EF, Sn‑EF, P‑EF, 
Mn‑EF, W‑EF), as well as the ratios La/Sc, Th/Sc, and 
Th/Co. Therefore, the ratios Ti/Ca, Fe/Ca, and Mg/Ca 
can be considered good tracers of the lithogenic influx 
relative to the biogenic influx (Gebregiorgis et al. 2020; 
Nace et al. 2014).

Since Th/Co is not affected by biogeochemical 
processes that occur in bottom sediment (Taylor and 
Mclennan 1985), it is also used as an important proxy 
for determining the source area of the sediments and 
the chemical composition of the rocks (Cullers and 
Podkovyrov 2000). Similarly, the Th/Sc (Condie 1993; 
McLennan et al. 1993) and La/Sc (Cullers 2002) ratios 
along the core KSGX24 also indicate that a sedimen‑
tary contribution essentially originated from felsic 
rocks, possibly derived from the Variscan granitoids 
that make up the Galicia‑Trás‑os‑Montes Zone (Dias 
da Silva et al. 2016). These ratios reach their highest 
values in the coarser intervals and decrease in the finer 
ones, in opposition to the rise of HREE, Ti/Ca, Fe/Ca, 
and Mg/Ca (Figs. 3 and 6B).

Although the sediments of the analyzed core are 
generally depleted in relation to HREEs (average, 
24.1 mg  kg−1), their concentrations slightly increase 
in the finest layers, reaching 29.2 mg   kg−1 (Fig. 2). 
The finer‑grained intervals are also characterized by 
higher proportions of phyllosilicates, chlorite, and 
siderite, as described by Martins et al. (2016), which 
also indicates a higher contribution of detrital particles 
(Fig. 6B). Thus, the finer‑grained intervals could have 

been characterized by a reduction in the contribution 
resulting from felsic rocks (Fig. 3) and a higher sup‑
ply of materials from mafic and ultramafic complexes 
that underlie much of the region (Farias et al. 2014; 
Fig. 1D). These variations may also be influenced by 
changing patterns of rock weathering and sediment 
supply, which may be related to changes in climatic 
or oceanographic processes (as analyzed by Diz et al. 
2002; González Álvarez et  al. 2005; Martins et  al. 
2007, 2013a).

Sources of paleopollution

Taking the Sutherland (2000) classification as a reference, 
some sedimentary layers of the KSGX24 core can be con‑
sidered significantly enriched in Cu‑EF and moderately 
enriched in Ag‑EF, Mo‑EF, As‑EF, Sb‑EF, S‑EF, Zn‑EF, 
Ni‑EF, Sn‑EF, Cd‑EF, Cr‑EF, Co‑EF, Pb‑EF, and Li‑EF 
(Appendix 1). Whereas the increase of Mo‑EF, Sn‑EF, and 
Cd‑EF is essentially associated with coarser sediments (and 
sandy fraction content; Fig. 6B; Appendix 7), Li‑EF is posi‑
tively correlated with medium silt and medium sand frac‑
tions. Meanwhile, Cr‑EF is negatively correlated with coarse 
silt fractions but is weakly correlated to the other fractions. 
Ag‑EF has a low correlation with grain size, and As‑EF, 
S‑EF, Sb‑EF, Zn‑EF, Ni‑EF, Co‑EF, and Pb‑EF are found 
in finer‑grained sediments, as mentioned.

According to the classification and terminology of Müller 
(1986) for Igeo values (Appendix 1; Fig. S1), we can infer 
that the core KSGX24 has sediment layers moderately to 
strongly polluted by Cu and As and moderately polluted, for 
instance, by Ag, Sb, Mo, S, Zn, and Ni, as well as by Sn, Pb, 
Cd, V, Co, Cr, Fe, and W (Appendix 1). Based on EF and 
Igeo values, several instances of pollution can be identified 
in core KSGX24 (Figs. 2, 3, and 9), as described below.

Phase 1, ≈3000–2750 years bp

Phase 1, ≈3000–2750 years bp, with a moderate increase of 
Cd, Ni, Sn, and Cr, is characterized by low δ13C and MOS 
values and a relatively high content of lithogenic chemical 
elements and peaks of Ammonia spp., which indicates higher 
continental influence, a higher supply of organic matter from 
continental sources, and relatively low oceanic productivity. 
The relatively high Th/Co, Th/Sc, and La/Sc values indicate 
that the materials supplied were felsic rock granitoids and 
high‑grade gneisses and mica‑schists with a similar major 
element composition to granite (Evans et al. 2003; Llera 
et al. 2019; Nombela et al. 1995).

It is known that the inhabitants of Galicia advanced in 
the use of the minerals from classical times (Comendador 
Rey et al. 2016; Meunier 2011). This phase of metal enrich‑
ment was noticed by Martínez‑Cortizas et al. (1997a) in the 
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Penido Vello bog (NW Spain) by the slight rise of Pb and 
Cd, which was attributed to atmospheric pollution caused by 
Late Bronze Age mining activities.

In the core KSGX24, the general enrichment of, for 
instance, Cd, Ni, Sn, and Cr (and Ag, As, Co Cr, Pb, Sb, 
Sn, and Zn, but also Al, Be, Bi, Cs, Eu, Fe, Ga, Ho, Mn, 
Sc, S, and Tm; Appendix 7; Fig. 6A), is associated with 
increasing Li and a rise in Ta in some layers (Figs. 2 and 
3), probably due to mining, as observed in other regions of 
the world (Muhly 1973, 1988; Weeks 2003). Mineraliza‑
tions with these elements occur in quartz veins containing 
sulfides (mainly pyrite, arsenopyrite, and chalcopyrite) and 
are associated with hydrothermal processes in fractured host 
granites (Urbano et al. 1998). In Central Galicia, there are 
both barren and Li–Sn–Ta–mineralized pegmatites. In both 
bodies, the pegmatite‑derived fluids that migrated into the 
wall rock are enriched in several elements, such as Li, Rb, 
Cs, Sn, Zn, and As (Llera et al. 2019).

It is possible that mining activity occurred in areas drained 
by rivers that discharge into the Ria de Vigo and drain areas 
with a number of spodumene‑bearing pegmatites, some 
quite extensive (Parga‑Pondal and Cardoso 1948). These 
pegmatites have several accessory minerals, including beryl 
 (Be3Al2Si6O18), columbite‑tantalite [columbite: (Fe, Mn)
Nb2O6; Ta atoms can replace niobium atoms in the columbite 
structure and form tantalite), apatite  [Ca5(PO4)3(F,Cl,OH)], 
some heterosite [(Fe3+,Mn3+)PO4], and ferrisicklerite 
 [Li1‑x(Fe3+

xFe2+
1‑x)PO4] derived from lithiophilite triphylite 

(a series from  LiMn2+PO4 to  LiFe2+PO4), zircon  (ZrSiO4), 
arsenopyrite (FeAsS), and manganiferous garnet, mainly in 
the contact zones (Von Knorring and Vidal Romani 1981). 
According to these authors, columbite‑tantalite is embed‑
ded in cleavelandite [(Na(AlSi3O8)] and dispersed in a 
fine‑grained albite‑rich matrix  (NaAlSi3O8) of the main 
pegmatite. Tantalite [(Fe, Mn)(Ta, Nb)2O6] has some inclu‑
sions of a tin‑bearing phase similar to the mineral wodginite 
 (Mn2 +  Sn4 +  Ta2O8), and garnets and phosphates in Li‑peg‑
matites are frequently rich in manganese. Thus, the chemical 
elements whose enrichment is associated with the positive 
axis of factor 1 of the PCA in Fig. 6B (I) could be mostly 
associated with this type of contribution in the study area.

Nickel often occurs associated with copper deposits and 
is present in continental soils. The distribution pattern of Cd 
along the core KSGX24 is similar to that of Be, Cs, Hf, Nb, 
Rb, Th, and Ti (as indicated by the positive and significant 
correlations with these chemical elements; Appendix 7), 
and is associated to Ta increases, suggesting common litho‑
genic sources. The Li–Sn–Ta–mineralized pegmatites are 
also associated with sulfides, such as sphalerite (ZnS), the 
primary ore of Cd, occurring as an impurity. The sphalerite 
formation was probably related to a post‑magmatic hydro‑
thermal event (Llera et al. 2019). However, according to 
Nriagu (1979), an important natural source of Cd is volcanic 

emissions. It is possible that atmospherically transported 
materials also contributed to the increase of Cd, as there 
was a considerable increase in northern European volcanic 
ash (NEVA) during this period (Swindles et al. 2018). Note 
that during the Holocene, there were, for example, more than 
20 eruptions per century in Iceland from about 30 active 
volcanoes (Thordarson and Höskuldsson 2008). The recent 
eruption in 2010 of the Eyjafjallajökull volcano (Iceland), 
linked with particular meteorological conditions, resulted 
in the dispersal of volcanic ash over large areas of the North 
Atlantic Ocean and Europe (e.g., Gasteiger et al. 2011; 
Gudmundsson et al. 2012). Volcanic activity events also 
occurred in the Azores (Andrade et al. 2021; Moore 1990) 
during the periods when the highest Cd peaks were recorded 
in the KSGX24 core, which also supports the hypothesis of 
fluxes deriving from atmospheric deposition (agreeing with 
the observations in peat cores of López‑Merino et al. 2014; 
Martinez Cortizas et al. 2005, 2012, 2013, 2016; Olid et al. 
2010, 2013; Pontevedra‑Pombal et al. 2013).

Phase 2 (≈2450–1850 years bp)

Phase 2, ≈2450–1850 years bp, with a sharp increase of As‑EF, 
S‑EF, and Sb‑EF, and peaks of other elements (Co‑EF, Cr‑EF, 
Cu‑EF, Ni‑EF, Pb‑EF, Sn‑EF, and Zn‑EF), is characterized by 
a rise of δ13C and MOS. The occurrence of As‑enrichment 
in “As‑rich pyrite,” which also contained, for example, Sb, 
Ni, Pb, Co, Cu, and Zn and related geological settings, was 
indicated by several authors (e.g., Cepedal et al. 2008; Jahoda 
et al. 1989; Gutiérrez Claverol et al. 1991; Piering et al. 2000), 
mainly in NW Galicia. Thus, it is possible that in addition 
to materials transported by the rivers, contributions were 
also received from the atmosphere. This phase has also been 
described, for example, by Martínez‑Cortizas et al. (1997a) 
and Pontevedra‑Pombal et al. (2013) in peat cores from the 
NW Iberia, where increased concentrations of As, Cd, Ni, Pb, 
and Zn were observed. These and other authors have assigned 
this contamination to mining during the Iron Age (López‑
Merino et al. 2014; Martinez Cortizas et al. 2005, 2012, 2013, 
2016; Pontevedra‑Pombal et al. 2013).

The geochemical, granulometric, and faunal characteris‑
tics suggest that upwelling events were more intense during 
this period, giving rise to stronger stratification of the water 
column. Additionally, oceanic fronts might have occurred 
near the study area that favored the deposition of finer sedi‑
ments and a greater expression of materials from mafic and 
ultramafic complexes (as suggested by the decreasing of Th/
Co, Th/La, and La/Sc; Fig. 2) that outcrop in the region 
(Fig. 1D). Oceanic productivity was also higher, as seen in 
the flux of organic matter to the bottom, which should have 
given rise to a greater scarcity of oxygen and higher diage‑
netic processes (García‑García et al. 1999), indicated by the 
rise of V‑EF and Fe/Mn.
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Phase 3 (≈1850–1550 years bp)—Roman mining

Phase 3, ≈1850–1550 years bp, showed peaks of Ag‑EF, 
Co‑EF, Cr‑EF, Pb‑EF, Sn‑EF, W‑EF, and Zn‑EF, associated 
with a marked increase in Li‑EF and Ta‑EF. The peaks of 
these elements were probably related to intense mining activ‑
ity that developed during the Roman times, when many new 
mines were established in the region (Martínez‑Cortizas et al. 
2002; Roos‑Barraclough et al. 2002; Rosman et al. 1997). 
Silver was a product extracted from the region, which had a 
greater profitability than gold given the technical possibilities 
existing at the time (Pérez‑García et al. 2000; Hillman et al. 
2017). Moreover, copper, tin, iron, and lead were extracted 
(O’Brien 2015), as well as sulfur (Figueiredo et al. 2018).

Metallurgy on the Iberian Peninsula contributed almost 
40% of the world’s Pb production during the Roman Empire 
(Nriagu 1983). Note that this activity has also been recorded 
in Greenland, with peak concentrations of lead and copper 
(Hong et al. 1994, 1996). The Pb increase in this period 
agrees with the record of a prominent increase of lead in peat 

cores from NW Spain related to the exploitation of alloys 
(Killick and Fenn 2012; Kylander et al. 2005; López‑Merino 
et al. 2014; Martínez‑Cortizas et al. 1997a, 2002, 2005, 
2012, 2013, 2016, 2020; Pontevedra‑Pombal et al. 2013). 
Thus, part of the Pb increases observed in core KSGX24 
could be related to atmospheric Pb pollution (which began 
at least ≈2800 years ago due to Pb mining and metallurgy in 
Spain), air transport from Saharan aridification, and a large 
expansion of agricultural practices in NW Spain (Kylander 
et al. 2005; Martínez Cortizas et al., 1997b).

Arsenic and tin were also exploited in the same districts 
as gold pyrite (Arias et al. 2008), which has been mined 
in different periods from the Bronze Age to modern times 
(Comendador Rey et al. 2016), but mostly during Roman 
times (Duarte 1995). These elements are related to diverse 
types of hydrothermal deposits, which are more abundant 
infilling microfractures functioning as conduits for hydro‑
thermal fluids in arsenopyrite or included in pyrite and fre‑
quently associated with galena (e.g., Cepedal et al. 2013; 
Martínez‑Abad et al. 2015).
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Fig. 9  Schematic overview of the characteristics of paleopollution events
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Zinc followed a similar pattern to Pb in the core KSGX24 
(Fig. 3) but with sharper peaks during Roman times. The source 
of Zn may have been the same as that of Pb since in NW Spain 
mining took place mainly in Hercynian granitoids in the form of 
vein and stratiform deposits in siliciclastic and calcareous rocks 
containing Zn–Pb (Tornos et al. 1996; Velasco et al. 1996).

Therefore, sediments resulting from mining activity during 
Roman times may have been transported by rivers to the Ria de 
Vigo but were probably also dispersed through the atmosphere, 
as observed in peat bogs from NW Iberia by Martínez‑Cortizas 
et al. 1997a, 2005, 2012, 2013, 2016), Pontevedra‑Pombal et al. 
(2013), and López‑Merino et al. (2014).

The Roman mining period (≈1850–1550 years bp) was 
also characterized by relatively high δ13C and Ammonia spp. 
values and by a tendency for MOS to decline (Fig. 5). In 
addition, the period saw relatively high values of Th/Co and 
La/Sc and a tendency for increased values of SMGS, Ca‑EF, 
Sr‑EF, and Mn‑EF, which together can be interpreted as a 
tendency for a weakening of upwelling events, reduction of 
eutrophication processes, augmentation of carbonated bio‑
genic particles, and a dilution of contributions from mafic 
and ultramafic rocks (Fig. 9).

Phase 4 (≈950–500 years bp)—Late Antiquity and Middle 
Ages mining

Phase 4, ≈950–500 years bp, is characterized by the occurrence 
of a sharp increase in Cu, associated with peaks of As, Cd, Cr, 
Co, and Ni, and a rise in Ta‑EF and Li‑EF values. This period 
is related to mining activities in the Late Antiquity and Mid‑
dle Ages. The main raw materials from which Cu is extracted 
include pyrrhotine and chalcopyrite in granatiferous amphibo‑
lites, which are considered to be of volcanosedimentary origin 
(Arias et al. 2008) and also enriched in Cr and Co. This phase 
also demonstrated a slight rise of Pb in the Penido Vello bog 
(NW Spain), as shown in Martínez Cortizas et al. (1997b).

The increase of these metals occurred in a phase in which 
there is a decreasing trend of SMGS, Ca‑EF, Sr‑EF, Th/
Co, Th/Sc, and La/Sc values; an increasing trend of Cs‑EF, 
Mn‑EF, U‑EF, and HREE values; and low values of Fe/Mn, 
Ti/Ca, Fe/Ca, Mg/Ca, δ13C, and MOS. Taken together, these 
data indicate a higher continental influence, lower flux of 
organic matter to the bottom, and more aerated conditions 
in the sediment, but tend toward a new period of increasing 
influence of upwelling events in the Ria de Vigo.

Phase 5 (from ≈250 years bp)—industrial and modern 
anthropic activities

Phase 5, from ≈250 years bp, is characterized by a sharp 
increase in Cd, Pb, and W and a rise in Co, Cr, Cu, and Zn, 
associated with relatively high Li‑EF values. This event is 
related to industrial and modern anthropic activities and has 

also been described by several authors (e.g., Kylander et al. 
2005; Olid et al. 2010; Pontevedra‑Pombal et al. 2013). On 
the one hand, significant peaks of Cu in peat cores have 
also been observed in the last 250 years bp, mainly resulting 
from local pollutant sources (i.e., coal mining and burning) 
under the influence of regional and local atmospheric metal 
deposition (Martínez Cortizas et al. 1997; Olid et al. 2010; 
Pontevedra‑Pombal et al. 2013). On the other hand, Cd is 
a quite mobile element—its enrichment can be related to 
bacteria‑mediated processes of solid sulfide mineral produc‑
tion (Davies‑Colley et al. 1985) or with the formation of 
organic‑Cd complexes (Macías and Calvo de Anta 2008).

In Galicia, during the first half of the twentieth century, the 
production of tin and tungsten had a few years of expansion 
closely linked to armed conflicts, mainly to the Second World 
War (WWII; Rodríguez Pérez 1985; Comendador Rey et al. 
2016). During WWII, the need for wolfram (W) arose from 
the Allies (England) and Nazi Germany, establishing a con‑
flict of interest in the NW zone of the Iberian Peninsula that 
is known as the “war of the wolfram” (Lage 2020), which was 
largely controlled by the Germans (Lage 2020; Wheeler 1986). 
Extensive atmospheric deposition of lead has been caused by a 
variety of factors (Renberg et al., 2001), including the Industrial 
Revolution, mining activity, adding lead to gasoline in recent 
times, fly ash from incinerators, coal combustion, wastewater 
outflows, harbor‑shipyard activities, and the use of fertilizers 
and pesticides in agriculture (Ramírez‑Pérez et al. 2020). This 
Pb increase has also been detected in peat cores (Olid et al. 
2010, 2013; Martínez Cortizas et al. 2012).

This phase is associated with an increase of V‑EF, δ13C, and 
MOS values; a decrease of SMGS, Ca‑EF, Mn‑EF, Sr‑EF, Th/
Co, Th/Sc, and La/Sc; and a trend to increasing Fe/Mn values. 
Taken together, these data indicate a higher marine influence, a 
higher flux of organic matter supplied by oceanic productivity 
to the bottom, a trend to oxygen depletion in the sediment, and 
a general trend to upwelling intensification (Fig. 9).

Final considerations

Regarding paleoclimatic and paleoceanographic conditions, 
two main phases of intensification of upwelling events have 
been identified (Fig. 9). The upwelling events favor the dep‑
osition of muddy sediments rich in organic matter, culminat‑
ing in a stratified shelf and a weak benthic hydrodynamic 
regime (Jouanneau et al. 2002; Martins et al. 2007), which 
agrees with the results described in core KSGX24. Consid‑
ering atmospheric circulation, these changes should be an 
indicator of the interference of the North Atlantic Oscilla‑
tion (NAO), a large‑scale atmospheric circulation mode in 
the region (Giradeau et al. 2000; Hurrell 1995; Hurrell et al. 
2001), as well as the occurrence of cycles of solar activity 
(Bond et al., 2001), which lead to variations in ocean cur‑
rent intensity (Bianchi and McCave 1999). Note that the 
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intensification of precipitation and high sea surface tem‑
peratures (SSTs) in the Iberian Peninsula is correlated with 
a negative NAO index (Hurrell 1995; Ribeiro et al. 2016), 
while the intensification of the north wind, which drives the 
coastal upwelling along the W Iberian Margin, is correlated 
with positive NAO indices (Abrantes et al. 2005).

The mobilization of materials resulting from mining 
operations (Bury 2005; Duarte 1995; Lima 2011) might 
have been a source of sediments in the study area. The 
mobilization of lithogenic materials could also have been 
facilitated by the dynamics of deforestation and agricul‑
tural intensification (Carrión et al. 2010; Kaal et al. 2011; 
López‑Merino et al. 2012, 2014; Martínez Cortizas et al., 
2006, 2020; Mighall et al. 2006; Sanchez Pardo 2013; 
Silva‑Sánchez et al. 2014). Vegetation underwent major 
changes during the Bronze and Iron Ages, the Roman 
period, and with the permanent decline of deciduous for‑
ests since the Middle Ages as agriculture and metallurgy 
intensified (Mighall et al. 2006).

Note that the paleopollution records related to paleom‑
ining activities described in core KSGX24 (composed of 
marine sediments; Fig. 9) are also recorded in other transi‑
tional systems (e.g., Irabien et al. 2012, 2020) and in peat 
bogs from N Spain (Kylander et al. 2005; López‑Merino 
et al. 2014; Martínez‑Cortizas et al. 1997a, 2005, 2012, 
2013, 2016; Olid et al. 2010, 2013; Pontevedra‑Pombal 
et al. 2013), as mentioned above. The work performed in 
peat cores revealed that the paleopollution recorded in bogs 
resulted from pollution through the atmosphere with iso‑
topic signatures similar to lithologies present in Northern 
Iberia. Therefore, it is also possible to assume that airborne 
materials, notably from mining regions at the N, NE, and 
E of the Ria de Vigo, may have contributed to the levels 
of paleopollution recorded in core KSGX24. Most paleo‑
pollution events recorded in core KSGX24 are associated 
with increased Li and/or Ta, suggesting common sources 
of the contaminants from mineralized pegmatites occur‑
ring in the region (Canosa et al. 2012; Fuertes‑Fuente and 
Martin‑Izard 1994; Fuertes‑Fuente et al. 2000; Llera et al. 
2019). However, an exception to this general trend was 
observed in phase 2, ≈2450–1850 years bp, in which a 
significant reduction of Li and Ta contents was recorded 
in core KSGX24 (Fig. 3). This event was characterized 
by a sharp increase of As, S, and Sb and peaks of sev‑
eral metals (e.g., Co, Cr, Cu, Ni, Pb, Sn, and Zn; Fig. 3). 
Moreover, the event appears to have been recorded during 
a period of upwelling intensification, which gave rise to 
the development of oceanic fronts in the distal sector of 
Ria de Vigo, generating a high degree of eutrophication 
and intense diagenesis processes (Fig. 9). The intensifi‑
cation of upwelling processes in the distal region of the 
Ria de Vigo seems to favor the accumulation of minerals 
from mafic and ultramafic complexes, while it is probable 

that the lithic components richer in felsic components are 
mainly accumulated in more internal areas of this system.

Licht and Plawiak (2005) observed that oxidizing condi‑
tions tend to promote Fe precipitation as oxides and hydrox‑
ides. However, under reducing conditions linked with a high 
supply of organic matter to the sedimentary environment, Fe 
can be sequestered during sulfide mineral formation. Strong 
indicators that Fe is mainly retained in this sedimentary phase 
are shown by the presence of pyrite in the sediments and 
foraminiferal tests along the core KSGX24 (Appendix 7).

The study area’s protection by the Cies Islands and the 
paleoceanographic processes might have facilitated the rela‑
tively high accumulation of organic matter and the deposi‑
tion of fine sediments, which induced diagenetic processes. 
Several redox‑sensitive and sulfide‑forming elements, such 
as Ni, Sb, and Zn, could have been retained in this phase 
(Álvarez‑Iglesias and Rubio 2012, 2020; Yano et al. 2020). 
These processes were favorable to the maintenance of paleo‑
pollution records in the last 3000 years bp in the distal sector 
of Ria de Vigo, mostly during phases 2 and 5. On the con‑
trary, the more hydrodynamic phases associated with down‑
welling events gave rise to gaps in the paleopollution record 
or might result in a more nuanced picture of human influence 
in the study area. However, the results obtained reveal that 
the sediments from core KSGX24 are strongly to moderately 
polluted by Cu between 5 and 45 cm, As between 1 and 
39 cm and 130 and 173 cm depth, and show moderate pollu‑
tion by Pb, Cd, and Co between 0 and 1 cm depth. Although 
part of the concentrations of these metals may be retained 
in sulfides, the remobilization and aeration of the sediments 
can facilitate the reintroduction of the metals into the water 
column and become a source of risk to the biota.

Conclusion

The grain size, geochemical, and microfaunal records 
acquired along core KSGX24 were conditioned by nat‑
ural and anthropogenic factors over the last 3000 years. 
Although this core consists of muddy sediments whose 
mineralogical component is essentially supplied by felsic 
rocks outcropping in the region, finer layers seem to con‑
tain a relatively higher output from mafic and ultramafic 
rocks (which cross the Ria de Vigo). These finer layers fol‑
low the strengthening of upwelling phenomena due to the 
prevalence of positive NAO phases and the intensification 
of the northerly wind.

The strengthening of upwelling events may have given 
rise to a greater stratification of water masses and influ‑
enced the generation of oceanic fronts near the study area, 
located in the distal sector of the Ria de Vigo. These fronts 
favored a greater accumulation of organic matter, which 
could have given rise to more intense diagenetic processes 
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leading to the formation of sulfides and facilitating the 
retention of Fe, S, and other metals sensitive to redox con‑
ditions, mainly between ≈2250 and 1500 years bp and in 
the last ≈250 years bp.

In addition, several layers of polluted sediments were 
identified in the distal region of the Ria de Vigo associated 
with different phases of mining related to the Late Bronze 
Age (≈3000–2450 years bp), Iron Age (≈2450–1850 years 
bp), Roman times (≈1850–1550  years bp), Middle 
Ages (≈1250–500 years bp), and industrial and modern 
(≈250–0 years bp) anthropic activities. The enrichment of 
metals (such as As, Cu, Ag, Sb, Mo, S, Zn, Ni, Sn, Pb, Cd, 
V, Co, Cr, Fe, and W) in these periods seems to be related 
to the mobilization of sediments eroded from the rocks of 
the region. These materials may have been transported by 
rivers and even ocean currents and accumulated depending 
on favorable oceanographic and sedimentary conditions, as 
mentioned. However, the area also could have received con‑
tributions through the atmosphere from the remobilization 
and transportation of particles from mined areas in E, NW, 
and NE Iberia and even from volcanic eruptions. However, 
this hypothesis still needs to be confirmed in future studies 
by using isotopes (for example, Pb, which allow tracing the 
source of contamination by this chemical element) and its 
comparison with data obtained in peat cores. The enrich‑
ment in metals in the last ≈250 years bp was also a conse‑
quence of industrial and modern anthropic activities.

Mining and anthropogenic activities gave rise to sedi‑
ments moderately polluted by Pb, Cd, and Co (between 0 
and 1 cm depth of the sedimentary column), moderately to 
strongly polluted by As between 0 and 39 cm and 130 and 
173 cm, and Cu between 5 and 45 cm in depth. Some of 
these pollutants may be trapped in sulfides. However, if the 
sediments are remobilized and the sulfides are degraded 
by oxidative processes, the metals may reenter the water 
column and affect the biota.
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