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ABSTRACT  

 

Land-use and land cover (LULC) is a crucial constitute of the terrestrial ecosystem, impacting 

on numerous fundamental processes and characteristics such as land productivity, 

geomorphological process and the hydrological cycle. Assessing the hydrological impacts of 

land-use and land cover changes (LULCCs) has become one of many challenges in 

hydrological research. LULCCs modify hydrological processes such as evapotranspiration, 

infiltration and interception, consequently impacting on the hydrological regimes of a 

catchment. Understanding the implications of LULCCs on catchment hydrology is therefore 

fundamental for effective water resource planning and management, and land-use planning. 

Globally, numerous studies have documented the impacts of LULCCs on catchment 

hydrology, however in Southern Africa there exists a knowledge gap on the impacts of 

LULCCs on catchment hydrology, specifically future land-use and land cover change 

(LULCC). Therefore, the aim of this study was to simulate potential future land-use within two 

diverse South African catchments using an appropriate land-use change model and thereafter 

to assess streamflow responses to these future land-use scenarios using the ACRU hydrological 

model.  

Future land-use was simulated utilizing the Cellular Automata Markov (CA-Markov) model. 

The CA-Markov model is a hybrid land-use change model that integrates Markov chain, CA, 

Multi-Objective Land Allocation (MOLA) and Multi-Criteria Evaluation (MCE) concepts. 

CA-Markov simulated future land-use through the creation of conditional probability and 

transition probability matrices, suitability images and the utilization of a CA contiguity filter 

and socio-economic and biophysical drivers of LULCC. The results illustrated that within both 

catchments, increasing growth of anthropogenically driven LULC classes such as urban, 

agroforestry and agrarian areas inevitability contribute to the fragmentation, modification and 

deterioration of natural land-cover types. The model’s reliability and capability was assessed 

by running a validation, which was conducted by simulating changes between t1 (1990) and t2 

(2013/14) to predict for t3 (2018). The predicted map produced for 2018 was then compared 

against the actual 2018 reclassified map, which served as a reference map. The obtained kappa 

values (Kstandard, Klocation and Kno) achieved during the validation were all above 80%, 

thus indicating the model’s reliability and capability in successfully predicting future LULC in 

the study sites.  
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The assessment of future LULCC impacts on streamflow responses was achieved by utilizing 

the ACRU model. Historical and future scenarios of land-use were utilized as inputs into a pre-

existing ACRU model where all input parameters (e.g. climate, soils) remained constant with 

only changes made to the land cover parameters and area occupied by each land cover. The 

results illustrated that due to anthropogenic induced LULCC, the hydrological regime within 

the uMngeni catchment has been altered when compared to the baseline hydrological regime. 

Patterns of low (1:10 driest year) and high (1:10 wettest year) flows have changed significantly 

between the baseline and 1990. However, between 1990 and the future hydrological regime 

(2030 LU scenario) only a slight amplification of these impacts was evident. Mean annual 

streamflow increases and decreases were present in majority of Water Management Units 

(WMU’s), however, the Table Mountain, Pietermaritzburg, and Henley WMU’s illustrated 

greater increases in mean annual accumulated streamflows compared to other WMU’s while 

the New Hanover New Hanover and Karkloof WMU’s illustrated the greatest decreases in 

mean annual accumulated streamflows. 

Furthermore, results indicated that streamflow responses significantly increase in the presence 

of urban land-use. The impacts become evident as streamflows cascade through the catchment. 

The results also illustrated that streamflow responses were due to the nature of LULCC, viz 

urban land-use, commercial forestry, and agriculture combined with the location and extent of 

LULCCs.  

These results are beneficial for the implementation of proactive and sustainable water resource 

planning and land-use planning. Moreover, considering the simulated streamflow responses in 

relation to varying land-use scenarios, it is essential that water resource planning incorporate 

land-use location, nature and scale from not only the perspective of land-use effects, but also 

on hydrological responses in a catchment. Given the interdependence between streamflow 

responses and changes in land-use, water resource and land-use planning should not occur in 

silos. Overall, this study illustrated the importance of understanding and assessing land-use and 

water interactions in a water stressed region such as South Africa. 

Keywords: land-use and land cover changes, hybrid land-use change model, streamflow 

responses, land-use and water interactions, sustainable water resource planning 
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CHAPTER ONE: BACKGROUND AND INTRODUCTION 

 

Land-use and land-cover change (LULCC) are significant contributors to global environmental 

change (Li et al. 2018) and impact on various aspects of the environment including hydrology 

(Scanlon et al. 2007). Land-use and land-cover (LULC) are two terms that are interrelated but 

have different meanings (Rawat and Kumar 2015). “Land-cover” can be referred to as the 

identifiable landscapes on the earth’s surface, namely forests, grassland and waterbodies. In 

contrast, the term “land-use”, makes reference to the utilization of land by humans for activities 

such as commercial forestry and cropping (Keys and McConnell 2005; Lambin 2006; Ellis and 

Pontius 2007).  

Land-cover change can take one of two forms: modification or conversion. Modification is 

altering the land’s attributes but not its overall classification, for example, the modification of 

forests due to logging.  Conversion refers to land being transformed from one land-cover 

category to another, for example, natural forest clearing for cropland (Lambin et al. 2003). 

LULCC occurs due to conversions of, or the intensification of present LULC (Turner et al. 

1995), as a result of complex interactions between the physical environment and society (Pielke 

et al. 2011). 

The environment and its associated ecologies are one of the first areas to be impacted by 

changes in land-use (Aspinall and Hill 2008; Ellis and Pontius 2007). Excessive pressure 

exerted on land resources for the purpose of food, shelter and water provision, has resulted in 

drastic LULCC, which has consequently altered hydrological regimes and water resources 

(Githui et al. 2009; Savenije et al. 2014; Gyamfi et al. 2016).  Even though studies have 

investigated the relationship between hydrological processes and LULCC (Beighley and 

Moglen 2002; Wei et al. 2005; Chaves et al. 2008), limited hydro-climatological data coupled 

with the differences in catchment characteristics, creates challenges in fully understanding this 

relationship (Li and Sivapalan 2011; Tekleab et al. 2014).  

Within South Africa, a primary factor impacting catchment hydrology, is LULCC (Albhaisi et 

al. 2013). Internationally, the impacts of LULCC on hydrology have been well documented 

(Brook et al. 2011; Baker et al. 2013; Yang et al. 2014; Ahn and Merwade 2017), and LULCC 

models are being implemented and utilized for the purpose of land-use planning and water 

resource planning related decisions. However, within South Africa there is sparse evidence 

indicating the implementation of land-use modelling applications accompanied with limited 
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LULC research (Wray et al. 2013; Tizora et al. 2016). There is no standard modelling approach 

to model land-use (Verburg et al. 2006), as selecting a land-use change model depends on study 

site, characteristics, data availability and research questions. After consulting various academic 

papers and comparative literature on LULCC models, two widely used and extensively cited 

cellular automata models were shortlisted to conduct a comparative study to determine the most 

suitable LULCC model to simulate future LULCC in the respective study sites. The CA 

(Cellular Automata) - Markov and Dyna-CLUE models were shortlisted based on their 

extensive applications and benefits when modelling LULCC in a developing country and local 

context (Aduah et al. 2017; Tizora et al. 2018; Aliani et al. 2019; Das et al. 2019; Pokojska 

2019; Zhou et al. 2020; Tadese et al. 2021; Youneszadeh et al. 2021). Furthermore, these 

models employ sound mathematical and statistical techniques and theories, thus enabling them 

to simulate LULCC annually and provide the user with flexibility regarding data acquisition, 

inputs and processing (Le Roux 2012). 

The CA-Markov model, which is an integration of the CA and Markov models, combines 

concepts of Multi-Objective Land Allocation (MOLA), Multi-Criteria Evaluation (MCE), 

Markov chains and Cellular automata (CA) (Ruben et al. 2020). The CA model controls the 

changes and evolution in the cells while the Markov chain produces the transition probability 

matrix (Kamusoko et al. 2009). Besides simulating two-way transitions between multiple 

LULC categories, the model also predicts changes among multiple LULC categories (Ye and 

Bai 2008), thus making it a spatially explicit robust LULCC model.  

The Dynamic Conversion of Land-Use and its Effects model (Dyna-CLUE) developed by 

Fresco and Veldkamp (1996), is utilised to simulated future LULCC scenarios based on 

historical land-use (Verburg and Veldkamp 2004). The model has two distinctive modules, 

namely, a spatial allocation module and a non-spatial demand module. The model requires 

various inputs to dynamically model land-use change, viz; location characteristics, land-use 

demands (requirements), specific land-use conversions and spatial restrictions and policies.  

As highlighted, both models are robust and capable of modelling LULCC within the study 

sites. Despite Dyna-Clues’ appealing advantages it was not used in this study due to the data 

requirements associated with the model. The model requires conversion elasticity values for 

each land-use this requires expert knowledge, visual interpretation and the analysis of historical 

LULC data. Moreover, spatial restrictions and policies were not applicable in this study. Land-

use demand values require calculations which are produced independently from the model 
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either through the integration of economic and macro-demographic models or through 

historical land-use trend extrapolation and require advanced spatial analysis knowledge. 

Therefore, the CA-Markov model was chosen and implemented as the most appropriate land-

use change model based on the models reduced processing time, ease of use, data requirements 

and extensive application.  

Simulating future LULCC through a land-use model, assists in evaluating and predicting 

LULCC impacts and providing solutions to LULCC impacts (Agarwal et al. 2002). Thereafter, 

a hydrological model can be utilised to determine hydrological responses to changing LULC. 

The KwaZulu-Natal (KZN) province is prone to high levels of ecological disturbances as a 

result of anthropogenic activities (Beires 2010). The uThukela river basin, the largest river in 

KwaZulu-Natal and the second largest river basin within South Africa (DWAF 2003) and the 

uMngeni river system, is characterized by rurality, lack of resources, poor catchment 

management and uneven water distribution (Van Der Kwast et al. 2013; PSEDS 2008). It is 

anticipated that changes in LULC will continue into the future. Several land-use change studies 

have been conducted in both catchments (Smith et al. 2010; Schulze and Horan 2007; Blignaut 

et al. 2010; Toucher et al. 2012; Mauck and Warburton 2013; Namugize et al. 2018). However, 

none of these studies have investigated how plausible scenarios of future changes in the land-

use would impact streamflow. Hence, a study that is capable of determining the effects of future 

land-use on catchment hydrology within these catchments, will not only be beneficial in adding 

to the limited LULC studies within South Africa but will also enhance the understanding of the 

effects and dynamics of future land-use change on local catchment hydrology, which will 

facilitate better resource management, land-use planning and catchment services. The land-

water nexus will be discussed and analysed further in sections 1.1 – 1.4 

1.1 Interactions between LULCC and hydrology 

A catchment’s hydrological responses are related, amongst others, to the catchment land-use 

and are reactive to land-use changes (Schulze 2000; Bewket and Sterk 2005) as LULCC 

modifies the way in which precipitation is partitioned into the water budget components of 

inception, infiltration, soil water, evapotranspiration and runoff (Chen and Li 2004; DeFries 

and Eshleman 2004; Li et al. 2009; Moa and Cherkauer 2009). LULCC impacts on 

hydrological processes vary with catchment scale, are site specific (Gebremicael et al. 2019) 

and often threshold related.  
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The land-use location in a catchment, the degree of intrinsic land cover modification by 

anthropogenic effects and the severity of LULCC, all determine the degree to which land-use 

governs a catchment’s hydrological response (Warburton et al. 2012). Catchment size also has 

an influence on the streamflow response to LULCC, for example, precipitation conversion into 

streamflow within a large catchment is usually more complex as a result of the increased 

variation with regards to properties of a specific catchment, such as geology, soils and land-

use (Ashagrie et al. 2006). Blöschl et al. (2007) explained that any impact as a result of changes 

in land-use, will likely decrease with an increase in catchment size. The theory was confirmed 

by Peel (2009), who highlighted that land-use impacts on streamflow responses are more 

prevalent at smaller temporal and spatial scales (<1000 km2). 

Three land-uses that have a noteworthy influence on hydrological responses in a South African 

context are; intensification of agriculture via irrigation (Schulze 2003), urbanization (Choi and 

Deal 2008) and afforestation (Jewitt et al. 2009). The means by which the aforementioned land-

uses impact hydrological responses differ from each other. For instance, urbanization affects 

hydrological responses through the substitution of vegetation with impermeable surfaces such 

as pavements, roads and artificial structures, which hinder rainfall infiltration and result in 

increased streamflow and surface runoff (Robinson et al. 2000; Marsalek et al. 2006).  Zhang 

and Schiling (2006) showed that a transformation of land from seasonal vegetation cover to 

seasonal line crops resulted in a reduction in evapotranspiration. While Baker and Miller (2013) 

found that decreasing forest area also reduced evapotranspiration.  

 

Therefore, investigating land-use change impacts on hydrological responses is crucial to better 

inform effective management of water resources and land-use planning (Memarian et al. 2014; 

Singh et al. 2014).  Methods for analyzing land-use change impacts on hydrological responses 

include, statistical analysis, experimental catchment comparative analysis and modelling 

(Elfert and Bormann 2010). Modelling is one of many methods in a wide range of approaches 

and techniques available to reveal the dynamics of a land-use system (Verburg et al. 2006) and 

is the most commonly used method for the assessment of LULCC impacts on hydrology. 
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1.2 LULCC modelling and the role of land-use change models in LULCC studies 

LULC patterns within a region are determined by economic, environmental and demographic 

driving factors (Verburg et al. 1999; Castella et al. 2007) that operate at local and regional 

scales. LULCC can be triggered by numerous factors such as biophysical conditions 

(Alemayehu et al. 2009; Yalew et al. 2016) and interactions between demographic and socio-

economic changes (Bewket 2002; Jacob et al. 2016). Understanding these patterns and factors 

are essential for sustainable resource management (Castella et al. 2007) and robust land-use 

planning (Dietzel and Clarke 2006). However, this requires data relating to the place, time, rate 

and type of change together with the physical and social forces that propel these changes 

(Lambin and Ehrlich 1997). Interactions among these factors quite often can only be achieved 

through the use of land-use change models. The development of LULCC models have been 

influenced by three pertinent issues; theoretical developments in various fields accompanied 

by diverse perspectives and approaches around what should be modelled, data availability and 

the need for planning and policy (Batty 2008). 

Land-use change models provide spatio-temporal and non-linearity analysis of LULCC as they 

utilize different methods to better understand spatial relationships between LULCC and their 

associated drivers (Verburg and Veldkamp 2004). In addition, these models also evaluate, 

predict, explain and support land-use policy and planning and help to improve understanding 

relating to land-use system functioning (Verburg et al. 2004). Moreover, land-use change 

models can represent plausible ways that the future might unfold through scenario 

developments (Dalla-Nora et al. 2014). LULCC models are capable of exploring dynamic 

processes linked to the land-use system, simulating LULCC trajectories and feedback loops 

via land-use scenario implementation and lastly, predicting the future development of land-use 

over space and time (Basse et al. 2014). LULCC modelling, especially when undertaken using 

an approach that is spatially explicit, serves as an important technique for conducting 

experiments that aid in LULCC understanding, describing key LULCC processes 

quantitatively, exploring and projecting future LULCC scenarios (Veldkamp and Lambin 

2001). Modelling future land-use consists of applying artificial interactions to a specific land-

use system to investigate anticipated future land-use dynamics and developments (Lambin and 

Geist 2006). It also aids in the determination of future land-use trends and provides useful 

information regarding probable future land-use conditions under varying scenarios (Koomen 

and Stillwell 2007). A variety of land-use change models exist and are classified into different 

categories for different applications. 
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1.3 Classifying land-use change models 

Various classifications of land-use change models have been proposed in literature. For 

example, Briassoulis (2000) classified models according to (i) integration models, (ii) 

econometric and statistical models (iii), optimization models and (iv) spatial interaction models 

(Figure 1.1). Verburg et al. (2004) examined land-use change models with reference to seven 

features, namely, level of integration, driving factors, level of analysis, temporal dynamics, 

cross-scale dynamics, neighbourhood effects and spatial integration, for the purpose of 

describing numerous features of land-use change models that need to be taken into 

consideration when modelling. In a similar approach, Lambin et al. (2000) distinguished 

between integrated, stochastic, empirical statistical, dynamic simulation and optimization 

modelling approaches. More recently, Silva and Wu (2012) categorized land-use models by 

grouping them into six different benchmarks of modelling approaches: planning tasks, levels 

of analysis, spatial dimensions, temporal scales and spatial scales.  

 

 

Figure 1.1: Common classifications of land-use change models (adapted from Briassoulis, 

2000). 
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Literature has identified two main model structure types, viz.: top-down and bottom-up models 

(Table 1.1). Top down-models are based on remote sensing data and originate from landscape 

ecology (Castella and Verburg, 2007). The models are used when determining the aggregate 

land-use change rate for a region by statistical or mathematical means (Verburg, 2006). As 

opposed to top-down models, bottom-up models describe how actors in land-use change 

interact with the environment. Bottom-up models also known as agent-based models consist of 

autonomous decision-making entities, rules dictating action sequence in the model, rules 

determining interactions among the environment and agents and an environment in which the 

agent’s function (Parker et al. 2002; Castella and Verburg 2007). 

Top-down models include DINAMICA (Soares-Filho et al. 2002), Environment Explorer 

(White and Engelen 2000), Conversion of Land Use and its Effects (CLUE) (Veldkamp and 

Fresco 1996) and CA-Markov (Eastman 2012). Bottom-up models, on the other hand, require 

extensive fieldwork in order to collect data regarding agents' behaviour and to develop rules 

that govern their interactions with the environment. The SLEUTH model (Clarke and Gaydos 

1998) is a popular bottom-up approach that takes into account local drivers of LULC. A variety 

of models only implement a top-down or bottom-up approach, yet some integrate these 

approaches to produce hybrid models. Examples of hybrid models include Dyna-Clue (Verburg 

and Overmars 2009), Markov and CA-Markov. The main benefit of hybrid models is that they 

overcome the limitations of individual modelling approaches while leveraging their strengths 

(National Research Council, 2014).   

Land-use change models should address land-use system characteristics on a multiscale basis 

and place more attention on the interaction between driving factors of LULCC. Thus, the 

selection of an appropriate land-use change model is crucial (Han et al. 2015). 

1.4 Review of LULCC modelling studies 

In recent years, land-use change studies utilizing GIS and RS approaches based on LULCC 

modelling techniques has become increasingly common and abundant (Munthali et al. 2020). 

Literature has shown the benefits of land-use change models over traditional approaches. As 

stated by Verburg et al. (2004) land-use change models are useful tools for separating the 

complex web of biophysical and socio-economic forces responsible for influencing land-use 

and its spatial pattern and for estimating LULCC impacts. Globally, various researchers have 

utilized an array of models to simulate and predict LULCC.  
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Table 1.1: Examples of land-use change models 

 

MODEL NAME MODEL TYPE PURPOSE 

CLUE  

(Veldkamp and Fresco,1996) 

Top-down Combines various biophysical and 

human land-use drivers as well as their 

interactions to determine land-use. 

CLUE-s  

(Verburg et al., 2002) 

Top-down Dynamically simulates competition 

among different types of land-use to 

model land-use change. 

Dyna-CLUE  

(Verburg and Overmars, 2009) 

Hybrid Used to test conversions of land-use and 

its associated impacts using current and 

historical land-use patterns related to 

biophysical and socio-economic driving 

factors at different scales using logistic 

regression equations. 

CA-Markov 

(Clarks Labs,2010) 

Top-down LULC forecasting model that simulates 

two-way transitions between multiple 

LULC categories and predicts transitions 

between multiple categories of LULC. 

Integrates the benefits of both CA and 

Markov models. 

SLUETH  

(Clarke and Gaydos,1998) 

Bottom-up Projects urban growth and analyses how 

newly developed urban areas impact the 

surrounding environment and replace 

surrounding land-use. 

LUCAS  

(Berry et al., 1996) 

Hybrid Examines anthropogenic impact on land-

use and the subsequent impacts on 

resource sustainability and the natural 

environment.  

LTM  

(Pijanowski, 1997) 

Top-down Analyses the spatio-temporal aspects of 

land-use change drivers and determines 

the spatial interactions of drivers. 
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Hybrid models have become a popular approach in simulating and predicting future LULC 

patterns and changes. The CA-Markov model, which was used in this study, is an example of 

a hybrid modelling approach. The CA-Markov model has been extensively used in many 

regions of the world. For example, Hoet and Hubert-Moy (2006), used the CA-Markov model 

to analyse LULC trajectories within a catchment located in Central Brittaney, France. In order 

to support water resource management, the model predicted plausible LULCC for the years 

2015 and 2030. Applying the model as a planning support tool, Nouri et al. (2014) predicted 

urban LULCC within Anzali, Iran. As a result, the authors concluded that utilizing CA-Markov 

to simulate future LULCC provided an opportunity to improve environmental management in 

order to strike a better balance between ecological protection and urban development. The CA-

Markov model has been widely applied and has shown to produce reliable results for 

sustainable planning in countries such as Tanzania, India, Iraq, and Malaysia (Memarian et al. 

2012; Singh et al. 2015; Hyandye and Martz 2017; Hamad et al. 2018). 

Within Southern Africa, the application of the CA-Markov model is limited. Matlhodi et al. 

(2021) employed the CA-Markov model to predict future LULCC within Gaborone dam 

catchment, Botswana. The results demonstrated the model’s reliability and efficiency in 

simulating LULCC by producing realistic future LULC patterns. Daniels (2021) simulated 

future spatio-temporal expansion of informal settlements between 2011 and 2051 within the 

city of Cape Town, South Africa utilising the CA-Markov model. The study concluded that the 

hybrid CA-Markov model produced credible simulation outputs and served as a functioning 

decision making-facilitator. In a different study, Ikegwuoha et al. (2021) predicted future 

LULC within the Olifants river basin, South Africa. The model simulated LULCC for the year 

2040 and served as a suitable decision support system for the formulation of sustainable land-

use planning policies. Based on previous studies, the hybrid CA-Markov model was deemed 

to be suitable for use in this study.  
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1.5 Research Aim and Objectives  

The aim of this study was to simulate potential future land-use/cover of the uThukela and 

uMngeni catchments for the assessment of streamflow responses. In order to achieve this aim, 

four objectives were set: 

1. Undertake a comprehensive literature review to determine the most suitable land-use 

change model. 

2. Simulate future land-use for the uThukela and uMngeni catchment utilizing the most 

appropriate land- use change model and collected data. 

3. Assess changes in streamflow responses in the uMngeni catchment under plausible future 

land-use scenarios utilizing the ACRU agrohydrological model. 

In order to address the aforementioned aim and associated objectives, a systematic research 

approach was followed which is outlined below.  

The research approach followed in this study together with the delineation of the chapters is 

provided in Figure 1.2. The main research chapters (Chapters 2 and 3) were written as 

independent papers and in accordance with the guidelines provided by the School of 

Agricultural, Earth and Environmental Science, University of KwaZulu-Natal.  

A comprehensive introduction (Chapter 1) is followed by the simulation of future land-use 

under three different plausible future development scenarios for the uThukela and uMngeni 

catchments (Chapter 2), thereafter the assessment and impact analysis of future land-use 

change on streamflow responses is presented (Chapter 3). Finally, the dissertation concludes 

with a synthesis chapter (Chapter 4), which synthesises key research findings to foster future 

recommendations and research, which is geared towards improved catchment management and 

land-use planning.  
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Figure 1.2:  Research approach adopted in study 
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Abstract 

Due to anthropogenic activities, the earth’s surface is constantly being altered. These 

alterations take the form of Land-use/cover change (LULCC), which is a fundamental driver 

of global, regional and local environmental change. LULCC studies have become pivotal in 

supplementing our understanding and observations of environmental change. However, 

understanding the past and present spatial-temporal variability of LULCC characteristics and 

their link to future land-use/cover trajectories at a catchment scale is limited, particularly in 

Southern Africa. As a contribution to addressing this limitation, this study simulated future 

land-use change utilizing a spatially distributed, empirical land-use modelling approach, for 

the uThukela and uMngeni catchments in the KwaZulu-Natal province, South Africa. The CA-

Markov model, a popular and frequently utilized model employed in LULC predictive 

modelling, was selected to simulate LULCC conjointly with Geographic Information Systems 

(GIS) techniques. The obtained kappa values (Kstandard, Klocation and Kno) achieved during 

the validation were all above 80%, thus indicating the model’s reliability and capability in 

predicting future LULC in the study sites. Future projections indicated that both study areas 

are anticipated to experience anthropogenic induced LULCC which further fragments the 

landscape configuration, functionality and ecological stability. With an understanding of the 

extent of projected LULCC by 2030 within both catchments, proactive planning and 

management within the framework of sustainable water resource management and land-use 

planning in the respective catchments can be undertaken.  

Keywords: LULCC, CA-Markov model, environmental change, sustainable land-use planning 
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2.1 Introduction 

Land-use and land cover change (LULC), which can be described as modifications to the 

biological and physical cover of the Earth’s surface (Pielke et al. 2011), significantly impact 

natural resources, the environment and threaten societal and ecosystem functionality (Palang 

et al. 2000; Nagendra et al. 2004). Land-use/cover change (LULCC) is rooted in the spatio-

temporal interactions between biophysical and socio-economic aspects (Veldkamp and 

Verburg 2004; Poelmans and Van Rompaey 2009; Arsanjani et al. 2013). LULCC is 

predominately attributed to anthropogenic factors, such as escalating population growth, 

industrialization, and urban sprawl (Agarwal et al. 2002; Hishe et al. 2021), which 

consequently alters earth-atmospheric interactions (Mahmood et al. 2010) and the associated 

demand on environmental resources (Lambin et al. 2006; Bewket and Abebe 2013).  

Wood et al. (2004) identified agricultural expansion as a primary driver of LULCC within parts 

of Africa; and South Africa does not deviate from this. Highly fragmented land is omnipresent 

as a result of population growth where land redistribution was a common during the pre- and 

post-apartheid era (Gelderblom 2004; Atkinson and Marais 2006). Many stable and productive 

landscapes were modified and converted into settlements and cultivated land to satisfy shelter 

and food demands of society.  

Even though land-use provides various socio-economic benefits, it is accompanied by 

substantial socio-economic and environmental implications. Conversions of natural vegetation 

to facilitate agricultural expansion and urban development, contributes to soil erosion, 

degradation and deteriorating ecosystem services and processes (Lubowski et al. 2006; Wu and 

Irwin 2008). Furthermore, LULCC influences the hydrological cycle and water supply 

(Schilling et al. 2010; Garg et al. 2019).  Therefore, understanding processes, patterns and the 

magnitude of LULCC, is mandatory for the sustainable management of natural resources, 

which may include improved land-use policies, determining future developmental pressure 

points, effective and proactive land-use planning and integrated land-water resource 

management strategies (Dietzel and Clarke 2006; Castella et al. 2007; Taubenbock et al. 2009).  

The complexities of LULCC necessitate the utilization of tools and technologies that are 

capable of systematically understanding, analyzing and simulating LULC dynamics. 

Integrating various geospatial technologies such as Geographic Information Systems (GIS) and 

Remote Sensing (RS) provide a useful platform from which LULC dynamics can be 

ascertained and LULCC processes, patterns and impacts can be analysed and better understood 
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(Luo et al. 2010; Nouri et al. 2014). The recent advancement and unprecedented growth of 

these technologies have given rise to the development of prediction techniques, comprehensive 

computing and spatial simulation models (Benenson and Torrens 2004). Various approaches 

have been utilized to simulate LULCC, such as statistical models (regression), evolutionary 

models (neural networks), mathematical models (static and linear), systems models (flow and 

stock) and cellular models (Cellular Automata (CA) and Markov Chains) (Agarwal et al. 2002; 

Parker et al. 2003; Poelmans and Van Rompaey 2010; Subedi et al. 2013). Generally, these 

approaches are integrated to produce a hybrid model, which are widely utilized because of their 

flexibility, simulation capabilities and bottom-up approach (Nejadi et al. 2012; Amini Parsa, 

et al. 2015). 

The CA-Markov model, which combines CA techniques and Markov chain procedures, has 

been the most universally employed model in simulating future LULCC dynamics 

(Ebrahimipour et al. 2016; Gidey et al. 2017; Li et al. 2020). This model can simulate LULCC 

among multiple categories and takes into consideration LULCC suitability and the impact of 

natural drivers of LULCC (Eastman 2003; Mas et al. 2014; Sang et al. 2011). The Markov 

chain process governs temporal changes in LULC classification founded on conversion 

probabilities (Lopez et al. 2001; Guan et al. 2011; Yang et al. 2012), while spatial changes are 

governed by local rules controlled by suitability maps or the CA spatial filter (Wu 2002; He et 

al. 2008; Yang et al. 2012). Several studies have proven the efficiency and success of the CA-

Markov model to simulate spatial and temporal LULCC (Samat 2009; Memarian et al. 2012; 

Fu et al. 2018; Faichia et al. 2020). Moreover, the quantitative, spatially detailed outputs of 

future LULC trends produced by the model, provide information relating to the magnitude and 

direction of LULCC, which can assist in climate change studies and strategies, biodiversity 

conservation and land management policies (Weng,2002). 

Although several land-use modelling studies (Cillers 2010; Mauck and Warburton 2012; Abu-

taleb et al. 2013; Shoko and Smit 2013; Le Roux 2012; Tizora et al. 2018) have been conducted 

within South Africa, only four studies have incorporated future land-use modelling into their 

research. For example, Shoko and Smit (2013) suggested the development of a conceptual 

model for implementing an agent-based prototype that is empirically informed and capable of 

simulating future trends and patterns in changes in land occupation over time, with focus on 

informal settlement proliferation within the city of Cape Town.  Abu-taleb et al. (2013), 

conversely, utilized a cellular automata model to model future urban growth in the Gauteng 

province. Whereas, Tizora et al. (2018) showed the Dyna-CLUE model to be suitable for 
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simulating LULCC at a provincial level in a Southern African context. While Mauck and 

Warburton (2012) used an urban growth model (SLEUTH) to model future urban growth 

within the uMngeni catchment. In assessing the LULCC modelling initiatives within South 

Africa, Wray et al. (2013) stated that provincial and local LULCC modelling initiatives are 

predominantly GIS based and centred around tracking trends as opposed to the simulation of 

future LULCC under scenario developments, with the use of future modelling mainly being 

utilized for population prediction. Whereas, within the academic sphere, an analysis of 

historical land cover change was more common. 

Given the limited attempts to understand future land-use change patterns, processes and their 

associated driving forces across South Africa and for the province of KwaZulu-Natal in 

particular, this paper set out to quantify and simulate future land-use change utilizing a spatially 

distributed, empirical land-use modelling approach, for two South African catchments in the 

KwaZulu-Natal province, namely the uMngeni and uThukela catchments. LULC modification 

within these catchments is occurring at unprecedented rates, placing increasing pressure on 

natural resources, particularly water resources (Mauck and Warburton 2013; Namugize et al. 

2018). Hence, simulating future LULCC within these catchments will be crucial in fostering 

better land-use planning, decisions and improving land-use policies and water resource 

management.  

 

2.2 Description of Study Areas 

Located within the province of KwaZulu-Natal, South Africa, the uThukela and uMngeni 

catchments (Figure 2.1) are two highly water stressed systems (Mauck 2013; De Lecea and 

Cooper 2016) in the summer rainfall area that are inter-connected via the Mooi-uMngeni 

Transfer Scheme (MMTS). The MMTS was developed to ensure that the assurance of water-

supply to approximately five million downstream water users within the catchment remained 

high (uMngeni Water Infrastructure Master plan, 2019).  

The uMngeni catchment (4 349 km2) not only houses the country’s largest trade port and the 

second largest economic hub, but also drives 65% of the province’s economic production 

(Karar and Seetal 2000) and supports 15% of South Africa’s total population (Warburton et al. 

2010). The catchment supplies water to the Durban-Pietermaritzburg corridor, which are two 

prominent urban areas that produce close to 1/5 of the country’s Gross Domestic Product 

(GDP) (Warburton et al. 2010). The uMngeni catchment (Figure 2.1), experiences a warm 
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The uThukela catchment (29 036 km2) contributes to South Africa’s food production and is a 

prime tourism hotspot as it encompasses the World Heritage uKhahlamba-Drakensberg Park 

(uThukela District Municipality 2019). The catchment is diverse, from being a water rich 

catchment in the high rainfall (MAP = 1 520 mm) headwater areas (Northern Drakensberg 

Strategic Water Source Area), accommodating the Tugela-Vaal inter-basin transfer scheme, to 

having areas of water poverty lower down in the catchment (MAP = 650 mm). Land-use in the 

catchment is highly variable, with large areas of natural vegetation, 15% of the catchment is 

utilized for agriculture, 8% is considered degraded and approximately 1% is classified as urban 

(EDTEA 2017; Anderson et al.2009).  

Both these catchments were selected due to the pressures they are currently under and the 

planned development trajectories. The “National Development Plan 2010: Vision for 2030” 

and the “KwaZulu-Natal Provincial Growth and Development Plan (PGDP) 2018” provide a 

reference point for the national and provincial developmental goals and objectives that are 

relevant to the catchments. Designed to progressively move the country towards addressing 

socioeconomic challenges, eliminating poverty and reducing inequality, the goals and 

objectives include developing and promoting the agricultural potential of KwaZulu-Natal, 

upgrading all informal settlements on suitable and well-located land by 2030 (NDP 2012), 

enhancing spatial economic development and enhancing the resilience of new and existing 

cities, towns and rural nodes (PGDP 2018). Strategic Integrated Projects (SIP’s) have been 

designed to assist in achieving these goals and objectives. Three SIPs are relevant to the study 

areas, one speaks to a logistics and industrial corridor running through the uMngeni catchment, 

another to node and corridor development spanning the KwaZulu-Natal province from south 

to east, and the last to agri-logistics and rural infrastructure. These SIP’s will modify pre-

existing LULC, with the future LULC trajectory of the uThukela catchment likely to include 

the increasing conversion of natural vegetation to accommodate the proliferation of agriculture, 

while in the uMngeni catchment, is likely that the future LULC trajectory is likely to include 

significant expansions in urban and agriculture LULC classes at the expense of natural land-

cover types. Undertaking future LULCC mapping will serve as a management tool for the 

identification of potential conflicts among dominate land-uses, allow the potential to determine 

the consequences on ecosystem services and implement sustainable land-use strategies and 

improved agricultural policy action plans. 
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2.3 Methodology 

Prior to modelling future land-use change, LULC data was sourced, verified and prepared 

before using in the CA-Markov model. 

2.3.1 LULC Data 

The land-use maps for the years 1990, 2013/14 and 2018 produced by GEOTERRAIMAGE 

Pty Ltd were obtained from the Department of Environmental Affairs GIS (EGIS) webpage 

(https://egis.environment.gov.za/data egis/data download/current). The 1990 and 2013/14 

land-cover datasets were generated using the same operationally proven, semi-automated 

modelling procedures and methodologies. The 1990 DEA/CARDNO SANLC dataset was 

produced utilizing Landsat-5 multispectral and multi-seasonal imagery obtained between 1990 

and 1991, while the 2013/14 LULC was produced using Landsat 8 multi-seasonal imagery. 

The national dataset is in raster format, map corrected based on 30 x 30 m cells and ideally 

suited for ± 1: 75,000 - 1: 250,000 scale GIS based mapping and modelling applications 

(GEOTERRA Image Data User Report and Metadata, 2015).  

 

The SANLC 2018 dataset was generated using automated mapping models as opposed to 

general procedures of image classification, from 20m resolution multi-seasonal Sentinel-2 

satellite imagery for the period of 1st January 2018 to 31st December 2018 (GEOTERRA Image 

Data User Report and Metadata, 2019). The automated mapping models and associated 

procedures, used cloud-based geo-data computing capabilities and image archives, although 

the merging and final compilation of the LULC classes, was achieved utilizing automated 

modelling capabilities embedded in commercial mapping software in a traditional desktop 

environment. The SANLC 2018 dataset, which is presented in a GeoTIFF raster format, depicts 

South Africa’s full spatial extent, in addition to 100 m into neighbouring countries, and 10 

km’s into coastal waters.  

 
Accuracy assessments for the datasets were independently conducted by GEOTERRAIMAGE 

Pty Ltd. Due to insufficient suitable historical reference data, an accuracy assessment on the 

historical 1990 DEA/CARDNO SANLC dataset was not conducted (GEOTERRA Image Data 

User Report and Metadata 2015). The 2013/14 dataset was verified visually through a desk-

top approach, against high resolution photography and imagery in Google Earth © 

(GEOTERRA Image Data User Report and MetaData, 2015) and accuracies reported using 

industry standard confusion (error) matrices which included user, producer and kappa values. 
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Overall map accuracy for the 2013/14 dataset was reported as 82.53% with a mean LULC class 

accuracy of 88.36%. A reported Kappa Index value of 0.81 indicated that the results were 

highly unlikely to be attributed to chance occurrence (GEOTERRA Image Data User Report 

and MetaData, 2015). The overall map accuracy reported for the SANLC 2018 dataset, was 

90.14%, with an 89.63% mean LULC class accuracy and 90% confidence limits of 89.65 – 

90.62 %. The reported Kappa index was 0.89 (GEOTERRA Image Data User Report and 

MetaData, 2019). 

2.3.2 Data Preparation  

In order to model future LULCC, the Markov and CA-Markov modules and Land Change 

Modeler (LCM) in the TerrSet software version 18.31 requires the LULC images to have 

identical sequential categorical legends and spatial dimensions with the backgrounds assigned 

a value of zero. The LULC images were therefore resampled to a 100 x 100 m (1 ha) resolution 

and clipped to the extent of the respective study sites. This resolution was compatible with the 

input data, yielded the highest accuracy and maintained the morphology of LULC types. The 

1990, 2013/14 and 2018 land-use maps were reclassified into 9 classes (Table 2.1) to achieve 

commonality across the different LULC images and for the simplification of land-use classes. 
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Table 2.1:  Description of land-cover classes used in study (adapted from DEA / CARDNO 

SCFP002: Implementation of Land-Use Maps for South Africa, 2016) 

 

  

LULC class Description 

 

Indigenous Forest 

Natural or semi-natural indigenous forest, which is dominated by tall 

trees, where tree canopy densities are generally > ± 75% and tree 

canopy heights are typically > ± 5m, associated with multiple 

understory vegetation canopies. 

 

Commercial Forestry 

Forestry plantations utilized for cultivating commercial timber tree 

species. Represents a combination of young, temporary and mature, 

clear-felled stands. Comprises of spatially smaller woodlots and 

windbreaks with the same cover characteristics 

 

Grassland 

Natural / semi-natural areas dominated by grass, where bush and/or 

tree densities are generally < ± 20% but may include localised denser 

areas up to ± 40%, regardless of canopy heights. 

 

 

Other Vegetation 

Includes natural / semi-natural tree and / or bush dominated areas, such 

as thicket, tall, dense shrubs and bush, closed and open woodland and 

bushland and transitional wooded grassland areas. Where typically 

canopy heights are between 2 - 5 m, and canopy density is typically > 

± 75%, 

 

 

Cultivated Land 

Cultivated lands utilized primarily for rain-fed, annual crop production 

for commercial markets or home use and/or local markets. Generally 

represented by large or small field units, typically in a dense local or 

regional cluster 

 

 

Urban 

Includes all built-up areas. Typically represented as a single class, 

including but not limited to residential land-uses (formal and 

informal), transport networks, religious, educational, industrial, health 

and commercial infrastructure across a range of structural densities 

ranging from high to low. Includes agricultural smallholdings located 

on the urban periphery. 

 

 

Wetlands 

Primarily vegetated areas on a seasonal or permanent basis. 

Identifiable by surface vegetation patterns. Wetland vegetation is 

either rooted or floating and is predominately herbaceous. Includes but 

is not limited to wetlands associated with, marshes, seeps/springs, 

lakes/pans, floodplains, swamps, some riparian areas and estuaries. 

 

Waterbodies 

Areas of open surface water. Includes man-made or natural bodies of 

water, which can either be flowing, static, fresh water or saltwater. 

 

Degraded/Bare areas 

Bare and/or sparsely vegetated areas (typically < ± 5 - 10% vegetation 

cover). Includes but not limited to dry riverbeds, erosion areas, dry 

pans, natural rock exposures, rocky and sandy desert areas, beaches 

and coastal dunes, very sparse, low grasslands and shrublands. 

Includes mining activity footprints, which comprise of sand mines, 

open cast pits, tailings, waste dumps, flooded pits, extraction pits, 

quarries and borrow pits   
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2.3.3 Modelling LULCC Framework  

The modelling framework adopted in this study is depicted in Figure 2.2. The processes and 

applications were conducted utilizing RS and GIS based software and applications in a GIS 

data environment. A 5x5 CA filter and Markov chain modelling approach, jointly known as 

CA-Markov was used to simulate future LULCC within the respective study sites. The CA-

Markov model is based on the evaluation and utilization of historical land-use combined with 

predictions of the spatial distribution of LULC in the future (Sang et al. 2011).  

 

 

 

Figure 2.2: Modelling framework adopted in study 
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2.3.3.1 Cellular Automata (CA) Model  

The cellular Automata (CA) model, expressed in equation 2.1, can be described as a cellular 

entity, which can change and control complex spatially distributed processes (Gidey et al. 

2017). The CA model independently varies from a new state based on its immediate neighbours 

and preceding state (Surabudin et al. 2013; Omar et al. 2014).  

                                            S(t,t+1) = f (S(t), N)                                             (2.1) 

Where:  

S = Set of discrete and limited cellular states, N = Cellular field, t and t+1 = Different time 

steps, f = transformation rule of cellular states  

CA encompasses a regular lattice framework in which any given cell within the lattice is in one 

of a defined number of states, with the states either changing at every time step (or iteration) 

or remaining in the current state (O’Sullivan and Unwin 2003). Changes are facilitated by 

deterministic rules which are defined before the execution of the CA process. The model 

performs as an analytical engine that facilitates dynamic LULC modelling within remote-

sensing and GIS environments (Rendana et al. 2015). A disadvantage of the model is its 

inability to define transition rules (Rocha et al. 2007). However, this can be compensated for 

by integrating other empirical and spatial models such as CA-Markov (Halmy et al. 2015).  

2.3.3.2 Markov Chain Model  

The Markov chain model is a stochastic model (Equation 2.2) in which the future state of one 

system (t2) can be predicted according to the probability of transition and its previous state (t1) 

(Houet and Hubert-Moy 2006; Thomas and Laurence 2006; Adhikari and SouthWorth 2012), 

making it suitable for LULCC modelling studies (Sang at al. 2011).  The model analyses LULC 

images from two time periods to derive a transition probability matrix, a set of conditional 

probability images and a transition areas matrix (Mishra et al. 2014; Ebrahimipour et al. 2016). 

S (t, t+1) = Pij* S(t)                              (2.2) 

Where: 

S(t) = The system status at time t, S (t+1) = The system status at time (t+); and Pij = Transition 

probability matrix in a given state and is calculated as follows:  
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Pij =‖‖

p1,1 𝑝1,2 … 𝑝1,𝑛

𝑝2,1 𝑝2,2 … 𝑝2,𝑛

⋮ ⋮ ⋱ ⋮
𝑝𝑛,1 𝑝𝑛,2 ⋯ 𝑝𝑛,𝑛

‖‖, (0≤pij≤1)      

Where:  

P = Transition probability, Pij = Probability of converting from i (current state) to another state 

j, Pn = State probability of any given time  

 

An inherent issue with the Markov chain model, is that although the transition probabilities are 

generally accurate on a LULC category basis, it is unable to delineate the quantity of conversion 

state between different LULC classes (Bozkaya et al. 2015; Ghosh et al. 2017), thus fails as a 

spatial distribution model (Nouri et al. 2014).  

2.3.3.3. CA-Markov Model  

The CA-Markov model combines the strengthens of CA and Markov chain models and 

overcomes the disadvantages of the two separate models making it robust and reliable (Eastman 

2003; Arsanjani et al. 2011; Yang et al. 2012; Singh et al. 2015; Aburas et al. 2021). The 

integrative CA-Markov modelling approach is able to simulate two-way transitions between 

multiple categories, predict any transition between multiple categories and control space 

dynamics via local principles utilizing transition probabilities of each LULC class utilizing 

Markov Chain procedures and CA mechanisms (Pontius and Spencer 2005; Ye and Bai 2008; 

Behera et al. 2012). 

The CA-Markov model has been widely applied and has shown to produce reliable results for 

sustainable planning in countries such as Tanzania, India, Iraq and Malaysia (Memarian et al. 

2012; Singh et al. 2015; Hyandye and Martz 2017; Hamad et al. 2018). Moreover, the model 

is one of few design support tools used to analyse the spatio-temporal distribution of LULC 

(Hua 2017). In addition, the model has been widely used to simulate urban sprawl, forest 

cover, LULC dynamics and watershed management. When analysing historical LULC 

changes, this model develops an empirical explanation of the association between LULC 

transitions and a set of explanatory variables (Matlhodi et al 2021; Nouri et al. 2014). Markov 

chains have good statistical power to predict change probabilities, and cellular automata are 

considered to be a powerful method for reading spatial patterns of change (Ghosh et al. 2017; 

Gidey et al. 2017). Compared to methods that are only capable of handling changes in a 
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single land type, CA-Markov is straightforward, user-friendly, easy to set up, has a pre-

defined calibration process, can simulate multi-class land changes and has been proved to be 

a simple but effective approach to model the evolution of LU patterns in areas with intense 

human activity and dynamicity (Eastman 2012). 

The CA-Markov modelling process, conducted within the IDRISI Selva v.17 software, 

required three inputs: (i) base land-cover image, (ii) transition suitability image collection, (iii) 

Markov transition areas file and (iv) number of cellular iterations. These inputs were derived 

using various applications, modules and functions within the IDRISI Selva v.17 software.   

2.3.3.4 Generating Transition Area files and Transition Probability Matrices 

The Markov chain model was applied to derive transition probability matrices and transition 

area files between 1990 to 2013/14 and 2013/14 to 2018 using the Markov-Markovian 

transition estimator (MARKOV module) in TerrSet 19.0 The MARKOV module analyses a 

pair of land cover images and outputs a transition probability matrix, a transition areas matrix, 

and a set of conditional probability images. The transition probability matrix file records the 

probability that each land cover category will change to every other category, while the 

transition areas matrix file records the number of pixels that are expected to change from each 

land cover type to each other land cover type over the specified time (Regmi et al. 2014; 

Adhikari and SouthWorth 2012). The conditional probability images report the probability that 

each land cover type would be found at each pixel after the specified time. These images are 

calculated as projections from the later of the two input land cover images and is expressed as 

follows: 

ᵡ = ∑ (O-E)2/E                             (2.3) 

Where: 

ᵡ = Transition probability matrix, O = Observed number of transitions and E = Expected 

number of transitions  

In order to validate the CA-Markov model and predict a future LULCC scenario, the LULC 

image of 1990 for the uMngeni catchment was used as a base map while the 2013/14 LULC 

image was used as second LULC to obtain a transition probability matrix and a transition areas 

matrix between 1990 and 2013/14 to run a simulation for 2018. 
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2.3.3.5 Fuzzy Standardisation and Analytic Hierarchy Process (AHP) 

An accurate indicator and prime driver of LULC dynamics is the proximity to socio-economic 

factors such as distance to main road networks, city centres and waterbodies as societies 

residing in close proximity to these socio-economic influences have the freedom to expand 

and/or create new settlements and clear existing vegetation at various spatial-temporal scales 

(Subedi et al. 2013; Gidey et al. 2017). In this study, elevation, slope and aspect coupled with 

socio-economic factors of distance to main routes and primary rivers were taken into 

consideration as drivers based on literature findings. The analytical hierarchy process (AHP) 

was applied to determine the weights of these drivers in conjunction with a pairwise 

comparison matrix (Memarian et al. 2012 and Rimal et al. 2018). AHP, a common and popular 

mathematical, multi-purpose decision-making technique, is a measurement theory based on 

expert judgement formulated to analyse complex decision issues utilizing pairwise comparison 

methods (Satty 1980; Memarian et al. 2012). In this method, a pairwise comparison matrix is 

used, where comparisons are developed with reference to a scale of absolute judgement that 

illustrates how much more an element dominates over the other for a specific attribute. Given 

the symmetrical nature of the matrix, only the lower half is filled.   

While many different standardisation methods exist, this study used fuzzy membership 

applications, which provides a variety of membership functions as opposed to other 

standardisation methods (Myint and Wang 2006). The IDRISI MOLA environment was used 

to execute fuzzy standardization and used various fuzzy membership function types and shapes.  

2.3.3.6 Suitability Map Generation 

Individual suitability maps for land-cover classes are a pre-requisite for the development of the 

transition suitability image collection, which is used as an input for the CA-Markov model. 

Suitability maps were generated using the multi-criteria evaluation (MCE) tool in IDRISI 

version 17.01, which evaluated the drivers of LULCC using the Weighted Linear Combination 

(WLC) function (Saaty 1980; Eastman 2003, Dengiz and Usul 2018). WLC (equation 2.4) 

multiplies each individual standardized driver map by its driver weight then aggregates the 

results (Eastman 2003). The higher the score the higher the suitability for that specific LULC. 

S= ∑ WiXi*ΠCj                                                                      (2.4) 

Where: 

S= Suitability, Wi= Factor i weight, Xi= Factor i score, Cj= Boolean value of constraint j 
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2.2.4 Validation Method 

The Kappa statistic index has become accepted as the standard to quantify image classification 

accuracy (Yang et al. 2014; Halmy et al. 2015; Gidey et al. 2017; Singh et al. 2017; Mondal 

et al. 2019). However, according to Pontius Jr and Millones (2001) kappa indices are often 

misleading, flawed and impractical, hence they encourage the use of components of agreement 

and disagreement as the foremost validation technique. Both agreement and disagreement 

components and kappa statistics were thus considered. These were obtained from the 

VALIDATE module imbedded in the TerrSet 19.0 software. 

The VALIDATE module computes seven different statistical calculations, which form the 

premise of components of agreement and disagreement (Pontius Jr and Chen 2006). 

Ascertained by Pontius and Millones (2011) components of agreement and disagreement are 

more beneficial validation techniques and offer a comprehensive statistical analysis. 

Components of agreement and disagreement statistics are based on the commonality and 

variability between the simulated and reference map. Components of agreement describe 

agreement characteristics between the reference map and simulated map, while components of 

disagreement describe disagreement characteristics between the reference and simulated map.  

(Pontius et al. 2007). The module also provides traditional Kappa Index of Agreement (KIA) 

statistics and other useful variations such as Kstandard Kquantity, Klocation and Kno. 

Kstandard denotes overall KIA, Kquantity illustrates the level of agreement relating to quantity, 

given the models capability to identify location; Klocation gives the level of agreement related 

to location, given a specific quantity and Kno indicates the overall simulation run accuracy. 

The aforementioned variants complement the standard kappa index, which is defined as 

(Keshtkar and Voigt 2016):  

                                K=(Pa-Pe)/(Pi-Pe)                                    (2.5) 

Where:  

K= Kappa index, Pa= Actual accuracy, Pe= Expected prediction accuracy; and Pi= Ideal 

accuracy (100%) 

When Kappa index equals 1, the agreement is perfect and when equal to 0 agreement is 

expected by chance (Pontius 2000), however, Kappa index values of above 0.61 can be 

considered to display substantial agreement (Cohen 1960). According to literature acceptable 

values for components of agreement and disagreement range from ≤ 0 indicating no agreement; 

0.01–0.20 indicating none to slight; 0.21–0.40 indicating fair; 0.41– 0.60 as moderate; 0.61–
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0.80 indicating substantial and 0.81–1.00 indicating near perfect agreement (McHugh 2012). 

In terms of values for disagreement, Wundram and Loffler (2008) stated that an overall 

disagreement above 23% is not satisfactory.  
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2.4 Results 

2.4.1 Validation Results 

Prior to producing LULC maps for the future, a validation of the model was undertaken for the 

uMngeni catchment to determine its adequacy and accuracy. The validation was conducted by 

simulating changes in the uMngeni catchment between t1 (1990) and t2 (2013/14) to predict for 

t3 (2018). The predicted map produced for t3 (2018) was then compared against the actual 2018 

reclassified map (Figure 2.3). The traditional KIA statistics (Kstandard, Kquantity, Klocation 

and Kno) were all above 0.8 (Table 2.2), indicating a high level of agreement between the 

simulated and predicted map and a satisfactory accuracy level. The components of agreement 

and disagreement were also considered (Table 2.2). Interpreting overall agreement and 

disagreement is considered more beneficial when validating prediction accuracy. Based on the 

overall agreement and disagreement values, overall agreement (0.8715) illustrated a higher 

value compared to overall disagreement (0.1285). Low map disagreement was mainly a result 

of location errors (0.0906) rather than quantity errors (0.0379), indicating the model’s high 

ability to predict LULCCs in quantity rather than location. The combined Kappa statistics and 

components of agreement and disagreements confirm the CA-Markov model can be considered 

valid and suitable to predict future LULCC within the respective study sites.   
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Figure 2.3: Map showing a) simulated 2018 LULC map and b) actual 2018 LULC map for 

the uMngeni catchment 
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2.4.3 Spatial-temporal analysis of historical land-use patterns and simulated 2030 

LULCC  

2.4.3.1 uMngeni Catchment 

The historical spatial distribution of LULC classes in the uMngeni remains fairly consistent 

between 1990 and 2018 (Figure 2.4), with the upper reaches occupied by cultivated land, 

grasslands and commercial forestry, the middle reaches of the catchment dominated by 

commercial forestry and urban, while the lower reaches are predominately occupied by urban 

and other vegetation LULC classes. Between 1990 and 2018, notable and visible changes in 

LULC areas was the loss in grasslands and gains in cultivated land (Table 2.5). Whereas other 

vegetation, urban and indigenous forestry showed small net increases between 1990 and 2018. 

The waterbodies, wetlands and degraded LULC classes remained relatively constant, with 

negligible changes in their distribution. The overall LULC of the uMngeni catchment from 

1990 to 2018 depicts a decline in grasslands in favour of agricultural and urban land-uses.  

 

 

Figure 2.4: Spatio-temporal distribution of historical and simulated future LULC 

within the uMngeni catchment 
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2.4.3.2 uThukela Catchment  

The uThukela catchment is dominated by grasslands, with cultivated land and natural vegetated 

areas being present in the lower, middle and upper reaches of the catchment (Figure 2.5). 

Between 1990 and 2018, grasslands declined while an increase in cultivated land occurred 

(Table 2.7). Less significant changes (>1%) were displayed in the other vegetation class, 

including net gains in indigenous forest, commercial forestry and urban areas. Waterbodies, 

wetlands and degraded areas experienced insignificant changes, thus making them relatively 

stable over the 24-year observation period. The overall LULC scenario for the uThukela 

catchment illustrates a decrease of natural vegetation in favour of agricultural expansion. 

 

Figure 2.5 depicts the spatial distribution for 2030 in the uThukela catchment. As represented 

in Table 2.7, cultivated land, urban together with the least dominating classes (wetlands and 

degraded/bare) encountered the highest gains over the 24-year observation period. Whilst 

natural classes such as grassland, other vegetation and indigenous forest suffered the greatest 

net losses from 1990 to 2030. Commercial forestry underwent a slight but considerable net 

gain. 

 

Grasslands, cultivated land, other vegetation and urban areas are projected to be the prime 

LULC class types within the uThukela catchment in 2030, dominating areal extents of 43.08%, 

29.06%, 12.59% and 8.62% of the total study area, respectively. Even though more than 50% 

of the study area is expected to remain naturally vegetated mainly by grasslands, the increase 

in urban and cultivated land-use at the cost of grasslands and other vegetation land-uses, will 

likely leave much of the natural vegetation fragmented. Areas of cultivated land which 

experienced the highest net gain, are projected to be distributed throughout the catchment with 

dense clusters south-east and south-west of the catchment, and in the middle reaches of the 

catchment. Predicted net gains in urban land-uses are primarily in the south-east region, in the 

edge of the north-east region and around Newcastle and Ladysmith. Natural vegetation classes 

such as indigenous forest and other vegetation are projected to be densely aggregated in the 

south-east region and in the lower right reaches of the catchment. Projected gains in 

commercial forestry are expected to be clustered as one long continuous strip on the edge of 

the catchment extending from south to east with patches also evident in the south-west of the 

catchment. Wetlands underwent relatively smaller net gains in area, while negligible increases 

in water bodies occurred. Degraded/bare areas are scattered throughout the landscape and are 

mainly concentrated in the south-eastern parts of the catchment. 
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2.5 Discussion  

The CA-Markov model was shown to be a reliable and robust model for simulating future 

LULC as the kappa index values (Kstandard, Kno and Klocation) were all over 0.8 and the 

components of agreement had higher values (0.8715) compared to overall disagreement 

(0.1285).  Furthermore, disagreement was largely a result of allocation errors (0.0906) rather 

than quantity errors (0.0379), indicating the model’s high ability to predict LULCCs in quantity 

rather than location. Similarly, Munthali et al. (2019) obtained kappa index values over 0.8 and 

found that disagreement was mainly attributed to allocation error as opposed to quantity errors 

when modelling future land-use dynamics for Malawi. Singh et al. (2018) modelling LULCC 

dynamics for India and Rimal et al. (2017) modelling urban expansion in the Jhapa district in 

Nepal, reported similar statistics with all kappa index values over 0.8 further supporting the 

suitability of the CA-Markov model in modelling LULCC dynamics in developing countries. 

The CA-Markov model takes precedence over other land-use change models based on its 

simple calibration, effective explicit simulation capabilities, high data efficiency and ability to 

simulate complex LULC patterns and LULC types (Mermarian et al. 2012; Singh et al. 2015; 

Hyandye and Martz 2017).  

Several Southern Africa studies have noted significant transformation of South Africa’s 

landscape (StatsSA, 2004; Schoeman, 2013; Niedertscheider 2012; Jewitt 2012; Gillson et al. 

2012; Halpern and Meadows 2013; Jewitt et al. 2015; Gibson 2018). For example, Jewitt et al. 

(2015) found 7.6% loss of natural vegetation across the KwaZulu-Natal province between 2005 

and 2011, due to anthropogenic landscape transformation. Analysing the historical LULC maps 

available for the two catchments between 1990 and 2018, revealed similar trends in LULCC in 

the uMngeni and uThukela catchments of considerable declines in the areas under grassland 

and indigenous forest, while the areas under cultivated land, commercial forestry and urban 

LULC classes increased. These trends indicate a disintegration of natural LULC classes due to 

the expanding anthropogenic-induced activities such as agricultural and urban intensification. 

Waterbodies, wetlands and degraded areas remained relatively stable over the 28-year period, 

while the extent of commercial forestry increased slowly at a steady rate. These findings agree 

with Namugize et al. (2018) who noted that natural vegetation within the uMngeni catchment 

has been significantly modified due to anthropogenic activities and Van Der Kwast et al. (2013) 

who noted that the uThukela catchment was degrading due to anthropogenic driven LULC 

transformations and unsustainable land-use practices. The LULC simulated in this study for 

2030 exhibited similar trends with the natural land-use classes such as grassland, other 
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vegetation and indigenous forest declining in spatial extent across both catchments, with 

expansion in agricultural and urban areas. Similarly, Selomane and Reyers (2020) projected 

significant LULCC’s by 2030 across South Africa of increases in agriculture, urbanisation and 

commercial forestry areas, and decreases in all other land-uses. 

The projected urban, agricultural and commercial forestry expansion will most likely result in 

a fragmented landscape functionality and configuration. The landscape stability is also 

negatively affected by modifying the functionality, connectivity and composition of adjacent 

land through the loss and removal of natural vegetation cover and biodiversity. Ultimately, the 

projection is towards a progressive landscape homogenization and low diversification of the 

natural landscape (Prokopová et al. 2019). The altered landscape configuration, connectivity 

and composition leads to dysfunctionality in ecosystem system services and functions, and a 

reduction in ecological stability (Jongman 2002; Fondoni et al. 2011). Thereby affecting the 

societies who are reliant on these ecosystem services (Kerr and Ostrovsky 2003). In a country 

such as South Africa, and in the uMngeni and uThukela catchments, where many people are 

heavily reliant on the services provided by the ecosystem, these trends of continued 

fragmentation and the resultant negative impact on ecosystem services is highly concerning.  

Globally LULCC’s are largely driven by interactions between environmental factors (climate 

and topography) and socio-economic factors (e.g. population) (Lambin and Geist 2008). 

Hence, LULCC can be expressed as a function of environmental and socio-economic factors. 

These factors are known as “driving factors” and are categorised into underlying (indirect 

changes at a regional level) or proximate (direct modifications by individuals at a local level) 

drivers of LULCC (Lambin and Geist 2008). Even though this study did not explicitly 

determine the drivers contributing to LULC trends within the study sites, applicable underlying 

and proximate drivers within the study catchments include agricultural and infrastructure 

expansion, socio-economic factors (population growth, population distribution, poverty and 

related factors), institutional and policy factors and agro-technological change. This is 

supported by Geist and Helmut (2002), who stated that within Southern Africa there is a 

recurrent set of underlying socio-economic, socio-political, institutional and policy and 

technological driving forces. These forces produce at the proximate level, a limited set of direct 

outcomes such as agrarian expansion, infrastructure extension and wood extraction which bear 

immediate consequences.  
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Due to data scarcity relating to LULC drivers, only topographic variables (slope and elevation) 

and distance to primary roads and rivers were taken into consideration. These drivers served as 

a proxy in describing the spatial distribution of LULC classes in relation to the natural 

landscape. The absence of biophysical and socio-economic data resulted in transition 

inconsistencies between validation and calibration intervals. For the purposes of this study, 

LULC transitions between 1990 and 2014 were used as prototypal LULC patterns within the 

CA-Markov model. Using LULC transitions from one-time period can result in the projection 

of discontinued trends or the miss projection of short-term trends as long-term trends. For 

example, transitional matrices based on a decline or strong growth trend can result in the model 

either undershooting or overshooting its predictions (Iacono et al.2015).  

2.6 Conclusion and Future Research 

This study aimed to investigate the historical and future LULCC dynamics within two diverse 

Southern African catchments. An integration of GIS and RS was utilized in conjunction with 

a spatially distributed empirical land-use change model to explore the spatial-temporal LULC 

dynamics and simulate future LULCC. The research findings inferred the following: 

 The hybrid CA-Markov model was able to successfully simulate future LULCC within 

the study catchments utilizing historical LULC data, transition matrices, and suitability 

maps. The reliability and predictive power of the model was illustrated during the 

model validation process.  

 Based on historical and future LULC trends and patterns, spatial-temporal LULC 

dynamics within the study catchments are primarily attributed to anthropogenic induced 

landscape modifications. These modifications significantly altered landscape patterns 

and take the form of rapid socio-economic development in the form of urbanisation and 

agricultural intensification. Moreover, these LULC dynamics are an outcome of the 

interplay between socio-economic, institutional and biophysical drivers governing the 

study areas. By analysing spatial-temporal LULCC dynamics, trends and patterns, 

preventative interventions can be put into place to reverse the projected direction of 

LULC changes and help manage LULC variability within the study areas.   

 The incessant and rapid LULC transformations occurring within the study catchments 

pose consequential impacts. The analysis illustrates significant removal of natural 

vegetation as well as increasing rates of urban and agricultural growth. Predicted LULC 

dynamics illustrated the continuation of this trend. This will negatively impact the 
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social-ecological system within the catchments and foster unsustainable development. 

These predicted LULC dynamics should be a forewarning to policy makers, natural 

resource planners and manages, stakeholders and the local government to formulate 

proactive and effective land-use policies to curb the unmannered growth of artificial 

LULC classes to help reduce or mitigate adverse environmental effects.  

 

The findings of this study not only contextualised the LULCC dynamics and future LULC 

trajectories within two Southern African catchments, but also demonstrated the importance and 

advantages of utilizing GIS and RS technologies in land-use analysis and prediction. The study 

has also provided vital insights on LULCC’s and their associated impacts on the natural 

environment in the study landscape. Considering that the study was conducted at a catchment 

scale, future studies should conduct comparative research and adapt the CA-Markov model 

across different landscapes at a regional and local level. This will contribute towards the 

retrieval of comprehensive and informative reference LULC datasets. Although the utilization 

of multi-spectral imagery, was adequate in achieving the study’s aim and objectives, future 

studies should consider using hyperspectral datasets. These datasets effectively evaluate LULC 

issues at thematic levels that are higher order where 5m or higher spatial resolutions are 

required. Furthermore, it is recommended that future studies investigate the potential for the 

CA-Markov model to accommodate socio-economic conditions as it forms a vital part of 

LULCC studies, especially in instances where the results can be utilized to inform and 

supplement land planning and policy.   

With the ability of the CA-Markov land-use change model to effectively simulate future land-

use change under different catchment land-uses and given the implications of changing land-

use on hydrological responses such as streamflow, an enhanced understanding of the complex 

dynamics between land-use and hydrological responses is necessary. To achieve this 

understanding, the selection of an appropriate hydrological model is required and confirmation 

of the model’s ability to represent hydrological responses such as streamflow under varying 

land-uses needs to be achieved.  
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Abstract 

An essential prerequisite for proactive land-use planning and water resource management is 

the impact analysis of actual and future land-use/cover change (LULCC) on hydrological 

regimes. The aim of this study was to assess the changes in streamflow responses as a result of 

historical and future land-use change in the uMngeni catchment. Changes in streamflow 

responses were assessed utilizing the ACRU hydrological model combined with baseline, 

historical and plausible future land-use scenarios. The results illustrated extensive streamflow 

changes in a number of Water Management Units (WMUs) by 1990. Increases and decreases 

in mean annual streamflows were present in many of these areas; however, the 

Pietermaritzburg, Table Mountain and Henley WMUs were shown to have greater increases in 

mean annual accumulated streamflows compared to other areas while the Karkloof and New 

Hanover WMUs illustrated the greatest decreases in mean annual accumulated streamflow. 

However, between 1990 and 2030 the changes in mean annual accumulated streamflow under 

the land-uses for 2014, 2018 and projected land-use for 2030 were limited. Furthermore, the 

results indicated that urban land-use has a significant effect on streamflow responses. These 

impacts are evident as streamflows cascade through the catchment. Changes in the 1:10 wettest 

year and 1:10 driest year accumulated streamflows have shown the greatest change between 

the baseline and the 1990 LU scenario. 

Keywords: Water Management Units, ACRU hydrological model, land-use/cover change, 

water resources management 
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3.1 Introduction 

Pressure exerted on land resources for the purpose of food, shelter and water provision, has 

resulted in extensive modification of the natural landscape through both natural processes and 

anthropogenic activities (Coppin et al. 2004; Cohen and Goward 2004; Hu et al. 2005; 

D’Orgeval et al. 2008). The resultant land-use and land cover change (LULCC) has altered 

hydrological regimes and available water resources (Githui et al. 2009; Savenije et al. 2014; 

Gyamfi et al. 2016), becoming a key driver of alterations in hydrologic responses within 

catchments (Wada et al. 2011; Chawla and Mujumdar 2018; Kabite and Gessesse 2018). 

LULCC impacts water resource availability by altering the rainwater partitioning through the 

soil and vegetation into the hydrological components of surface runoff, interception, 

evapotranspiration (ET) and infiltration, thus modifying the water balance of a catchment 

(Falkenmark et al. 1999; Rose and Peters 2001; Costa et al. 2003; Scanlon et al. 2007; 

D’Orgeval and Polcher 2008; Rientjes et al. 2011). Therefore, a catchments hydrological 

response is responsive to LULCC and is reliant on the land-use within the catchment (Schulze 

2002; Bewket and Sterk 2005). 

 

The degree to which LULCC alters the hydrological responses within a catchment, is dictated 

by the degree of LULCC, the extent of modification and location within the catchment. Land-

water interactions vary significantly both in space and time, due to water fluctuations in a 

catchment, which move laterally (via soils, rivers and aquifers) and vertically (via 

evapotranspiration). Hence, as water is transmitted through the catchment, any LULCC 

impacts will subsequently be transferred through the catchment (Falkenmark 2003). In 

addition, land-use induced impacts are generally threshold related as individual catchments 

have their own unique feedback mechanisms between catchment components and processes, 

with varied stable states existing in each (Warburton et al. 2012). Hydrological responses differ 

according to different LULCCs. Land-use changes that significantly impact hydrological 

responses include, agricultural intensification via irrigation, urbanization and commercial 

afforestation (Choi and Deal 2008; Jewitt et al. 2009). Thus, in order to achieve effective water 

resource management, the interdependence between a hydrological system and land-use needs 

recognition, as land-use and water decisions are intrinsically linked (Molden 2007). An 

appropriate and accepted way to assess LULCC effects on catchment hydrological responses 

is through the utilization of a hydrological model, which is sensitive to LULCCs and structured 

to adequately represent and conceptualize hydrological processes (Warburton et al. 2012).  
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Within South Africa, rapid LULCC driven by unprecedented population growth and 

development in conjunction with macro and regional developmental and economic policies has 

led to significant landscape transformation and fragmentation (Warburton et al. 2012; 

Niedertscheider et al. 2012; Gillson et al. 2012; Halpern and Meadows 2013; Jewitt et al. 2015; 

Mauck and Warburton 2014; Gibson et al. 2018; Moodley et al. under review, Chapter 2) Thus, 

as land management decisions are ultimately water management decisions, it is imperative to 

analyse and determine the implications of future LULCC projections on hydrological responses 

for adaptive and resilient land-use planning and water resource management.  The uMngeni 

catchment is one of many catchments within South Africa heavily impacted by unsustainable 

LULCC. Within six years (2005-2011) the uMngeni catchment lost approximately 7.6 % of its 

natural land-cover, consequently bringing the total loss of natural land-cover in the catchment 

to 48 % (Hughes et al. 2018). This loss is the result of rapid urbanization and economic stimulus 

in the form of agriculture, trade and tourism (KZN Provincial Planning Commission, 2012). 

Several studies have investigated the impact of LULCC’s on hydrology within the catchment. 

For example, Mauck and Warburton (2013), mapped future areas of urban expansion within 

the uMngeni catchment with results showing that areas around the cities of Durban and 

Pietermaritzburg will experience the highest growth in urban areas by 2050. Following this, 

Mauck and Warburton (2013) modelled the impact of future urban expansion on streamflow 

responses within the uMngeni catchment, showing that the Water Management Units (WMUs) 

around Pietermaritzburg (Table Mountain, Pietermaritzburg and Henley) would experience the 

greatest increase in mean annual streamflow. Namugize et al. (2018), assessed the relationship 

between LULCC and water quality deterioration using Geographic Information System (GIS) 

techniques and water quality parameters. Their Findings revealed that urban LULC are linked 

to water quality deterioration. Warburton et al. (2012) used a hydrological model to enhance 

the understanding of land-water dynamics in the uMngeni catchment, and showed that LULC 

areas, contributions and location impact streamflow responses differently.  

 

Although previous studies have evaluated the impact of LULCC on hydrology, these have 

focused particularly on urban land-use and no assessment of the impacts of future projections 

of LULCC on hydrology have been undertaken for the uMngeni catchment. Moodley et al. 

(under review, Chapter 2) modelled projected future LULCC for the uMngeni using the CA-

Markov model, thus allowing for the hydrological impacts of these future LULCC to be 

assessed.  Assessing the impact of these land-use changes in the uMngeni catchment will 

quantify and provide insights on the extent and severity of land-use induced hydrological 
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impacts, allowing for proactive management of water resources and land-use planning at 

catchment level. This study will make use of the future LULCC projection made by Moodley 

et al. (under review, Chapter 2) as input to the ACRU agrohydrological model (Schulze 1995) 

to assess the hydrological responses of the uMngeni catchment to LULCC over time. The 

ACRU Agrohydrological Model (Schulze 1995) was developed in South Africa, specifically 

for South African conditions and is sensitive to land cover and changes thereof. The ACRU 

model has been successfully used to assess the impacts of land-use change on hydrology within 

South Africa and internationally (Herpertz 1994; Makoni et al. 2001; Schulze 2004; Schmidt 

et al. 2009; Aduah et al. 2017). More importantly, the model has been extensively applied in 

the uMngeni catchment for both climate change and LULCC impact studies (Kienzle and 

Schulze 1995; Schulze 1997; Schulze et al. 2005; Warburton et al. 2012; Mauck 2012).  

3.2 The uMngeni Catchment 

The uMngeni catchment (4 349 km2), situated within the province of KwaZulu-Natal, South 

Africa, comprises of 13 Water Management Units (WMUs) as shown in Figure 3.1. The 

Msunduzi and uMngeni river are the two primary rivers within the catchment which converge 

in the Inanda WMU and exit the catchment via the Durban WMU into the Indian ocean (Figure 

4.1). The catchment receives between 600 and 1 550 mm of rainfall per annum, with majority 

of rainfall occurring during summer (October to March) (Mauck and Warburton 2014). The 

mean annual temperature ranges between 12 to 20 °C (Warburton et al. 2012).  The uMngeni 

catchment houses four primary dams, making it a highly water engineered system. The Inanda 

and Nagle dam supply water to Durban while Albert falls and Midmar provide the city of 

Pietermaritzburg alongside parts of Durban (Summerton 2008). Furthermore, 300 farm dams 

supply irrigation water to 18 500 hectares of land within the middle to upper reaches of the 

catchment. Summerton (2008) defines the uMngeni as a stressed system that, for the 

foreseeable future, is closed to new streamflow reduction activities. 
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Figure 3.1: Locality of the uMngeni catchment with LULC distributions within WMU’S 

(source: https://egis.environment.gov.za/data_egis/data_download/current) 
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Historical land-use within the catchment varies, with a significant portion of the catchment 

covered by natural vegetation. Plantation forestry is a dominant land-use within the upper 

reaches of the catchment, while commercial and small-scale agriculture is practiced within the 

middle and upper reaches and the lower reaches are predominantly occupied by urban areas 

(Figure 3.1) (Geoterraimage (Pty) Ltd., 2010). Future LULC within the uMngeni catchment 

will resemble an increasingly artificial landscape with much of the natural vegetation within 

the catchment being transformed to accommodate the expansion of anthropogenic activities 

such as commercial forestry and urbanization Moodley et al. (under review, Chapter 2) In 

addition, as a region with high economic growth and development, the catchment is also 

expected to see a rise in urban development in the future (PSEDS, 2008). Socio-economic 

challenges such as rapid population growth, unemployment and poverty also plague the 

catchment (Mauck and Warburton 2014). The eThekwini and Msunduzi water services 

authorities (WSAs) currently supply more than 4 million residents with water. Thus, water is a 

vital asset for sanitation, human use and consumption as well as for commercial, agricultural 

and industrial activities within the catchment (Mauck and Warburton 2014).  

3.3 The ACRU agrohydrological model 

The ACRU Model (Schulze 1995) was developed in the School of Bioresources Engineering 

and Environmental Hydrology at the University of KwaZulu-Natal, South Africa for the 

purpose of simulating catchment hydrological responses to land management. It is an agro-

hydrological, physical-conceptual, daily time-step model (Schulze 1995; Smithers and Schulze 

2004). The model operates around a multi-layer soil water budget based on total evaporation 

and accounts for the redistribution and partitioning of soil water (Smithers and Schulze, 2004). 

The input variables are derived from the physical properties of a catchment, rather than the 

model relying on calibrating parameters to provide “the best fit” between observed and 

simulated data (Smithers and Schulze 2004).  

ACRU conceptualizes land cover based on water use and vegetation input parameters that 

describe LULC processes and how vegetation governs hydrological processes. In the ACRU 

model, the three processes that are considered when modelling the land-use component are 

canopy interception loss, evaporation from vegetated surfaces and soil water extraction by plant 

roots (Schulze, 1995). For each process monthly input values are required and these account 

for vegetation genetic and environmental factors affecting transpiration, for example spring 

regrowth, winter dormancy, senescence, planting date and growth rates (Schulze, 1995). Total 

evaporation comprises of transpiration, soil water evaporation and canopy interception loss 
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(Schulze 1995). For the purposes of this study canopy interception losses per rainday values 

were set using the interception loss parameter for each month of the year for each land-use 

considered. The interception loss parameter values accounted for intra-annual differences in 

interception loss with growth stage and dormancy. The parameters ranged from 3.5 mm per 

rainday for mature trees grown for commercial timber production to zero for freshly ploughed 

land.  

Transpiration is described using the water use coefficient (Kcm) within the ACRU model. Kcm 

is expressed as the ratio of maximum evaporation from the plant at a given stage of plant growth 

to a reference potential evaporation (Schulze, 1995). When the soil water content of both the 

top and subsoil horizons falls below 40% of plant available water, transpiration losses are 

reduced in proportion to the level of plant stress. When plant available water increases to above 

40% in either soil horizon, the plant stress is relieved, and the evaporative losses recover to the 

optimum value at a rate dependent on the ambient temperature (Schulze, 1995). Monthly values 

of Kcm for each land-use are used to compute daily values internally in the model using Fourier 

Analysis (Schulze, 1995).  

Soil water extraction occurs simultaneously from both soil horizons and is distributed in 

relation to the number of active roots in each soil horizon. Therefore, monthly values of the 

fraction of active roots in the topsoil horizon are a required input and the fraction in the lower 

soil horizon is computed internally from this. Under stressed soil water conditions, soil water 

extraction from the subsoil's contribution to total evaporation will be enhanced beyond that 

computed for its root mass fraction if the subsoil is not stressed and the topsoil is similarly, the 

reverse is true (Schulze, 1995). Evaporation of soil water under wet conditions is suppressed 

by a surface or litter cover, such that there is a linear relationship between surface cover and 

soil water evaporation, with 100% surface cover allowing 20% of maximum evaporation from 

the soil water.  Soil moisture, structure, texture and soil depth factors are necessary model 

inputs. These variables govern the rate of water infiltration into the soil, therefore deciding 

components of runoff, ground water recharge and soil water storage.  

In ACRU impervious areas within urban LULC units are accounted for by needing the 

impervious portion of the subcatchment. In the subcatchment, adjunct impervious areas (i.e. 

impervious areas which are connected directly to a stormwater or stream system) are 

differentiated from areas disjunct impervious surfaces (i.e. areas adjacent to pervious areas) 

(Schulze 1995). For the purpose of this study, conventional values for various urbanization 
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types produced by Tarboton and Schulze (1992) were utilized. Recent LULC studies 

undertaken in the uMngeni catchment by Warburton et al. (2010), Warburton et al. (2012) and 

Mauck (2012) have also used these values.  

3.4 ACRU model Configuration and Data Acquisition  

As the ACRU model has been extensively used in the uMngeni catchment, an existing ACRU 

model configuration for the uMngeni catchment as detailed in Warburton et al. (2010) was 

utilized. A short summary is given here with more details available in Warburton et al. (2010).  

3.4.1 Sub-catchment delineation and configuration 

The 13 WMUs (Figure 3.1) were initially delineated as Quaternary Catchments by the 

Department of Water Affairs and Forestry according to altitude, topography, soil properties, 

land cover and streamflow gauging stations and these have been used in major studies by 

Tarboton and Schulze (1992), Smithers et al. (1997) and Summerton (2008). Warburton et al. 

(2010) further delineated these WMU’s into 145 relatively homogenous catchments based on 

terrain, climate and soils. However, the LULC within these 145 catchments varied. Thus, each 

catchment was further delineated according to LULC into hydrological response units (HRUs). 

The HRUs were configured to flow in a logical sequence typical of river flow.  

3.4.2 Climate, soils and streamflow response variables 

Warburton et al. (2010) selected fifteen driver rainfall stations for the uMngeni catchment 

based on the location of the station, the altitude of the rainfall station within the catchment and 

the reliability of the record. Daily rainfall data for a 40-year time period (1960-1999) was 

extracted from the Lynch (2004) rainfall database. To improve the rainfall stations 

representativeness of the catchment, the daily rainfall was adjusted using a month-by-month 

correction factor as described in Warburton et al. (2010). Daily maximum and minimum 

temperatures were extracted from a database organized by Schulze and Maharaj (2004) and 

used to compute daily reference evaporation using the daily A-pan equivalent reference 

evaporation equation by Hargreaves and Samani (1985).  

Soil information, such as water holding characteristics, including wilting point and the field 

capacity and subsoil and topsoil depth, were obtained from the ‘South African Atlas of 

Climatology and Agrohydrology’ database (Schulze et al. 2008). This source also provided 

estimations for the fraction of the daily movement of water from the A to B horizons and B 

horizons to groundwater. As per Warburton et al. (2010) it was assumed that 30% of the total 
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stormflow generated in a sub-catchment would exit the same day as the rainfall event which 

generated the stormflow, and it was assumed that 0.9 % of the groundwater store will become 

base flow each day. 

As this study was particularly concerned with the land cover and land-use, more detail is 

provided on the land cover and land-use used as well as the parameters to represent them. In 

the simulations undertaken, all input parameters (e.g. climate, soils) remained constant with 

only changes made to the land cover parameters and area occupied by each land cover. 

3.4.3 LULC Scenarios  

Several land cover scenarios were considered, these included reference or benchmark scenarios 

against which comparisons could be made, historical and current land cover scenarios and the 

future projections. 

3.4.3.1 Reference Land-use: A means of comparison 

The determination of land-use impacts on hydrological responses, requires a reference 

condition or baseline land-cover against which LULCC can be assessed (Warburton et 

al.2012). The South African Department of Water Affairs (DWA) has accepted and supported 

natural vegetation in the form of Acocks’ (1988) Veld Types, as the reference or reasonable 

standard land cover against which to assess land-use impacts (Schulze 2004; Jewitt et al. 2009). 

The baseline or reference land cover can be considered the natural vegetation of the catchment 

and depicts a period before significant LULCC occurred. Therefore, streamflow simulated 

under the baseline land cover is assumed to be representative of the natural flow regimes of the 

uMngeni river. For the purpose of this study, the Acocks (1988) Veld Types was utilized as the 

reference land cover against which historical and future LULCC are assessed to establish their 

hydrological impacts. It must be acknowledged that the utilization of a specific reference or 

baseline land-cover can cause variations when assessing the extent of land-use change impacts 

on hydrological responses, which increases the complexity that exists when assessing how 

changes in land-use impact on hydrological responses. 

3.4.3.2 Historical land-use  

Historical LULC data used in this study was based on the SANLC datasets developed by 

GEOTERRAIMAGE Pty Ltd. Historical land-use at three periods were considered, viz. 1990, 

2013/14 and 2018 (Figure 3.2). LULC within the catchment was categorized into nine distinct 

LULC classes viz; commercial forestry plantations, indigenous forest, grasslands, cultivated 
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land typically for subsistence or commercial purposes, urban, wetlands, waterbodies, 

degraded/bare and other vegetation classes which includes natural, semi-natural tree and / or 

bush dominated areas, such as thicket and tall, dense shrubs. 

 

Historical spatial distribution of LULC within the uMngeni catchment remained largely 

unchanged between 1990 and 2018 with commercial forestry and agriculture occurring in the 

upper areas of the catchment, and urbanization in lower reaches. Over time, however, the 

percentage of natural vegetation declined and became more fragmented by anthropogenic 

activities such as agriculture and urbanization (Figure 3.2). The historical spatio-temporal 

changes within the various WMUs are shown in Table 3.1. WMUs located at the upper reaches 

of the catchment were predominately under commercial forestry production while WMUs 

located in the middle reaches were occupied by cultivated areas and grasslands. WMUs situated 

in the lower reaches were dominated by urban areas. Significant LULCCs have occurred within 

the Inanda, Durban, Henley, Karkloof, Pietermaritzburg, and Nagle WMUs. These WMUs 

have been subjected to significant anthropogenic modifications via the transformation and 

conversion of natural vegetation for the expansion of urban, cultivated and commercial forestry 

land-uses.  



74 

 

 

Figure 3.2: Historical LULCC within the uMngeni catchment (Source: 

https://egis.environment.gov.za/data_egis/data_download/current) and 2030 LULC produced 

by the CA-Markov model (Moodley et al. under review, Chapter 3) 

 

3.4.3.3 Future LULC modelling  

The future land-use scenario for 2030 modelled by Moodley et al. (under review, Chapter 2) 

for the uMngeni using the CA-Markov model were used to inform the future LULC 

hydrological modelling scenario. The CA-Markov model was deemed suitable for modelling 

future LULCC for utilization in hydrological applications as confirmed by recent studies 

conducted by Marhaento et al. (2018), Gao et al. (2020) and Matlhodi et al. (2021). The model 

provided a future LULC map for the year 2030 based on historical land-use, transitional 

probabilities and applicable LULCC drivers (Figure 3.2). Moreover, the CA-Markov model 

produces the required spatial location and extent of LULCC needed as input for hydrological 

applications. The projected LULCC for 2030 for the uMngeni catchment are shown spatially 

in Figure 3.2 with the areas provided in Table 3.2. 
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Projected land-use for the year 2030 within the uMngeni catchment resembles an increasingly 

anthropogenically altered landscape (Figure 3.2). Reductions in the spatial extent of natural 

vegetation classes such as grasslands and other vegetation are expected within most WMUs. 

WMUs located in the lower and middle reaches of the catchment, specifically the Durban, 

Henley, Inanda, Nagle, New Hanover, Pietermaritzburg, Albert Falls and Table Mountain 

WMUs are anticipated to experience an expansion in cultivated, urban and commercial forestry 

land-use classes. These simulated land-use trajectories are likely to prevail as a result of 

historical LULCC trends.  
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3.5 Results  

Simulated streamflows under historical (1990, 2013/14 and 2018) and future (2030) LULCC 

scenarios were compared against the Acocks’ (1988) baseline vegetation scenario. It should be 

noted that dams and irrigation were not considered in the model. This was done to allow for 

the LULC impacts to be evident, rather than the effects of the catchments water engineered 

system and irrigation demand being dominant.   

3.5.1 Changes in the mean annual accumulated streamflows simulated under historical 

and future land-use scenarios 

The absolute and percentage change in the mean annual accumulated streamflow simulated 

under historical and future land-use relative to the streamflow simulated under baseline 

vegetation at the WMU outlets is given in Table 3.3.  The spatial pattern of change within the 

WMU’s are shown in Figure 3.3. As the results are presented as the accumulation of streamflow 

through the catchment, the Durban WMU also represents the simulated flows for the entire 

uMngeni catchment. The mean annual accumulated streamflows simulated under the 1990 land 

cover reflects the significant land-use change that had occurred in the uMngeni catchment by 

1990. For example, by 1990 the accumulated flow at the outlets of the Karkloof and New 

Hanover WMUs had decreased by 30 and 18 %, respectively relative to the accumulated 

streamflows under the baseline land cover. These decreases are attributable to the large areas 

under commercial afforestation in those WMUs (Figure 3.3). While increases in accumulated 

flows of 16, 24 and 23 % were evident for the Henley, Pietermaritzburg and Table Mountain 

WMUs respectively. These increases in flows are attributable to the urban areas in the Henley 

and Pietermaritzburg WMUs whose flows are then routed through the Table Mountain WMU.  

 

The changes in accumulated streamflow under the 2014 and 2018 land-uses relative to the 

baseline streamflow are similar to those observed under the 1990 land-use, however the 

increases in the Henley, Pietermaritzburg, Table Mountain and Inanda WMUs become greater 

due to the expansion of urban areas in 2014 and 2018. Further at the outlet of the UMngeni 

catchment, an increase in flow of 13.7 and 17 % relative to the baseline is seen under the 2014 

and 2018 land covers respectively. This is attributable to the expansion of urban areas in the 

Durban WMU as well as the increase in urban areas in the upstream WMUs already 

highlighted. 
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Under the 2030 projected land cover the accumulated streamflows relative to the baseline show 

similar changes as under the 2018 land cover, due to the extent of land cover change that had 

already taken place. However, the increases in flow in the Henley, Pietermaritzburg, Table 

Mountain, Inanda and Durban WMUs become even greater under the 2030 land cover due to 

the projected expansions in urban areas 

3.5.2 Changes in the 1:10 wettest year accumulated streamflows simulated under 

historical and future land-use scenarios 

Given the variability in the climate of the uMngeni, considering the influence on the mean 

average streamflow needs to be supplemented with understanding the influence during wet and 

dry periods. Table 3.4 show the absolute and percentage change and Figure 3.4 the spatial 

pattern of change in the 1:10 wettest year accumulated streamflow under historical and future 

land-use scenarios relative to the baseline within the 13 WMU’s. The results show that under 

1990 land-use notable decreases are evident in the Karkloof, New Hanover, Albert Falls and 

Nagle WMU’s which decreased by 22, 14, 7 and 6% respectively. These decreases are 

attributable to the commercial forestry and sugarcane areas in these WMU’s, particularly the 

large areas in the Karkloof and New Hanover WMUs. Whereas significant increases were 

apparent in the Table Mountain, Pietermaritzburg, Mqeku and Henley WMU’s with increased 

flows of 12, 9, 7 and 5% respectively. These increased flows are attributable to the presence of 

urban areas and small farming towns in these parts of the catchment. Changes in the 1:10 

wettest year accumulated streamflows under the 2014 and 2018 land-use are similar to those 

under the 1990 land-use, however, increases within the Pietermaritzburg and Table Mountain 

WMU’s grew as a result of increasing urbanisation. At the catchment outlet (Durban WMU), 

changes in the 1:10 wettest year accumulated streamflows under the 1990, 2014 and 2018 land-

use experienced an increase in flow of 4.3, 4.8 and 5.3 % respectively. These increases are due 

to high-density residential development and commercial and industrial expansions combined 

with the accumulated influences of upstream impacts. 
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Changes in the spatial pattern of the 1:10 wettest year accumulated streamflows due to land-

use change under the simulated 2030 land-cover is similar to the 2018 land-use scenario, 

however the magnitude of change in streamflow slightly varies. This is a consequence of the 

preceding LULCC which has altered the catchments land-use configuration and composition. 

However, decreases have been amplified within the Karkloof and Albert Falls WMU’s due to 

the increases in commercial forestry expected in these areas. Increases grew under the 2030 

simulated land-cover scenario within the Pietermaritzburg and Table Mountain WMU’s which 

cascades downstream increasing streamflows in the Inanda and Durban WMU’s. These 

increases are due to projected urban sprawl.  

3.5.3 Changes in the 1:10 driest year accumulated streamflows simulated under 

historical and future land-use scenarios 

A comparison of the spatio-temporal changes for the 1 in 10 dry year percentile streamflows 

under historical and future simulated land-use scenarios relative to the streamflow simulated 

under baseline vegetation are shown in Figure 3.5 with absolute and percentage changes shown 

in Table 3.5 at the outlets of the uMngeni WMUs.  Percentage changes in 1:10 driest year 

accumulated streamflows under the 1990 land-use have resulted in significant decreases by 43, 

24, 11 and 10% respectively at the Karkloof, New Hanover, Nagle and Albert Falls WMUs 

outlets. These decreases are the consequence of commercial forestry impacts during these dry 

years using a greater percentage of the flows than during wetter years. While increases of 50, 

50, 52, 64 and 14% were apparent in the Pietermaritzburg, Table Mountain, Henley, Mqeku 

and Durban WMUs respectively. Within the Pietermaritzburg, Table Mountain, Henley and 

Mqeku WMUs, increases are attributable to the presence of towns and urban areas.  

 

Changes in the 1:10 driest year accumulated streamflows under the 2014 and 2018 land-uses 

relative to the baseline streamflows are similar to those under the 1990 land-use as experienced 

in the mean annual accumulated streamflows and the 1:10 wettest year accumulated 

streamflows. Increases experienced in the Pietermaritzburg, Table Mountain, Henley and 

Durban WMU’s became between 1990 and 2014/2013 were due to increased urban expansion, 

with the impacts remaining constant under the 2018 land cover. The Mqeku WMU experienced 

a significant 23% decrease between 2014 and 2018 due to the expansion of commercial 

afforestation as well as cultivated land.  
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Figure 3.5: Percentage change maps of in 1:10 driest year accumulated streamflows 

simulated under historical (1990, 2014 and 2018) and future (2030) land-use relative to the 

Acocks (1988) baseline vegetation 

 

The 1:10 driest year accumulated streamflows simulated under the 2030 land-use does not 

differ greatly from the 2018 land-use scenario as land-uses were generally similar due to land-

use proportions in the scenarios been relatively similar. However increased flows within the 

Pietermaritzburg, Table Mountain, Inanda and Durban WMUs become greater. Decreases in 

the Karkloof WMU become larger, while some sub catchments within the New Hanover and 

Nagle WMUs showed increased flows.  

3.6 Discussion  

The aim of this study was to assess the hydrological impact of historical and future LULC in 

the uMngeni catchment using the ACRU agrohydrological model. The study utilized simulated 

future and historical LULC maps as inputs into a pre-existing ACRU agrohydrological model 

to simulate streamflow responses under historical and future land-use scenarios.  

The results illustrate that due to anthropogenic induced LULCC, the hydrological regime 

within the uMngeni catchment has been altered when compared to the baseline hydrological 

regime. Previous studies have illustrated the successful application of the ACRU hydrological 

model in assessing hydrological impacts of LULCC (Warburton et al. 2010; Mauck 2012; 
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Aduah et al. 2017; McNamara and Warburton 2018). The uMngeni catchment has two major 

tributaries viz; the Lions River tributary which is located in the upper catchment and the 

Msunduzi tributary located in the lower reaches of the catchment. The Lions River tributary 

converges with the uMngeni River upstream of Midmar Dam whilst the Msunduzi River joins 

the uMngeni River upstream of the Inanda Dam. The confluence of the Lions River tributary 

and the Umgeni River within the Midmar WMU illustrates a decrease in mean annual 

accumulated, 1:10 wettest year and 1:10 driest year streamflow responses. This is a result of 

the presence of streamflow attenuating land-uses such as commercial forestry. The 

convergence of the Msunduzi River with the uMngeni River in the Inanda WMU shows 

increases in mean annual accumulated, 1:10 wettest year and 1:10 driest year streamflow 

responses. These increases are attributable to the presence of urban areas. 

Patterns of low (1:10 driest year) and high flows (1:10 wettest year) have changed significantly 

between the baseline and 1990. However, between 1990 and the future hydrological regime 

(2030 LU scenario) only a slight amplification of these impacts is evident. The further change 

in flows expected in the future hydrological regime is attributable to the anticipated expansion 

of urban areas, commercial forestry and cultivated land (Moodley et al. under review, Chapter 

2). 

Land-uses within the uMngeni catchment are diverse with multiple land-uses dominating the 

different WMUs. The land-use impacts on mean annual accumulated streamflows are notable 

at both an accumulated catchment scale and subcatchment scale (Figure 4.5). As streamflow 

moves through the catchment, associated streamflow impacts vary in magnitude and extent. In 

the upper reaches of the catchment there are significant decreases in streamflow responses, 

however these impacts are attenuated in the downstream WMU’s due to the impact of urban 

areas and impervious surfaces which increase flows. Mean annual accumulated streamflows 

simulated under historical and future projections of land-use relative to the baseline land-use 

scenario, take into account effects of various hydrologically sensitive LULC types such as 

commercial forestry, urban, agricultural land-use and cultivated land. The type of LULC and 

its location within a catchment significantly contributes to the streamflow responses of the 

catchment (Warburton et al. 2012).  

 

WMU’s within the upper reaches of the catchment experienced no changes or decreases 

between 5 and > 50% in mean annual accumulated streamflows attributable to large scale 

commercial sugarcane production and forestry. Increases in the WMU’s located in the middle 
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and lower reaches are due to high volumes of residential and built-up urban areas. The 

streamflow response at the outlet of the uMngeni catchment (Durban WMU) reflects the 

different land-uses evident within the catchment. Furthermore, specific LULC types exert 

varying impacts on streamflow responses. For example, built-up formal urban land-use which 

can be found in the Durban WMU has a greater influence on increasing mean annual 

accumulated streamflow responses while commercial forestry which is evident in the Karkloof 

WMU have a reduced effect on streamflow. By 2030, significant increases in mean annual 

accumulated streamflow within the Henley, Pietermaritzburg and Table Mountain WMUs were 

evident. These increases are attributable to the anticipated sprawling urban growth and urban 

expansion along transportation routes.  

 

Historical and future spatial-temporal changes of patterns of low (1:10 wettest year) and high 

(1:10 driest year) streamflow responses (Figures 4.6 and 4.7) relative to the baseline scenario 

are a result of the nature of LULCC, viz urban land-use, commercial forestry and agriculture, 

combined with the location and extent of LULCCs. Under historical and future land-use 

scenarios WMU’s in the upper reaches of the catchment displayed the greatest decreases 

attributed to the high proportion of commercial plantation forestry. According to a study 

conducted by Scott et al (1998) commercial forestry plantations are estimated to reduce low 

flows by 7.8% and mean annual streamflow by 3.2%. The middle and lower reaches of the 

catchment experienced the greatest increases as a result of the high percentage of informal and 

formal residential areas as well as built-up urban areas. These findings are supported by Mauck 

and Warburton (2014).  

 

When analysing LULCC and its resultant hydrological effects, the preceding LULC condition 

needs to be recognized before taking into account future land-use scenarios (Quilbé et al. 2008). 

The extent of change from a preceding LULC to a new LULC, dictates the extent of change in 

the catchment’s hydrological regime (Robinson et al. 2000). For example, within the uMngeni 

catchment the resultant increases in flows as a result of urban land-use within the Henley, 

Inanda, Pietermaritzburg and Durban WMUs are attributed to the conversion of the preceding 

land-use, which was mainly natural vegetation and commercial forestry to residential urban 

land-use and built-up land-use. This conversion has the greatest impact on hydrological 

responses due to the varying physiological characteristics of natural vegetation and commercial 

forestry (Falkenmark et al. 1999). At the catchment outlet streamflow, increases are evident as 
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a result of substantial urban land-use with 1:10 driest year accumulated streamflows showing 

the greatest increase. This is due to the low of precipitation during the dry year and the small 

quantity in increases in absolute values of percentage change in streamflow.  

 

The results indicate that the conversion of land-cover to urban land-use will exert the greatest 

impact on catchment streamflow responses within the 21% of the catchment expected to be 

urbanized by 2030. A change in LULC to urban is accompanied by the total replacement of 

natural ecosystems, hence it poses one of the largest impacts on a catchment’s hydrological 

responses (Schulze 2004). Thus, this calls for land-use management planning and land-use 

policies to be more sustainable and proactive by attempting to accommodate land-use to a sites 

original attributes as opposed to changing the sites qualities to accommodate land-use adapt 

land-use to the qualities of a site, rather than adapting these qualities to land-use, and 

implementing urban growth management programs, while ensuring uncontrolled urban sprawl 

(Nuissl and Siedentop 2021). Considering the simulated streamflow responses to the different 

land-use scenarios, it is essential that water resource planning incorporate land-use location, 

nature and scale from not only the perspective of land-use impacts but also on catchment 

hydrological responses. Moreover, given the interdependence between streamflow responses 

and land-use change, water resource and land-use planning should not occur in silos. Utilizing 

historical and plausible future scenarios of land-use change can be utilized to advise planning 

and development of water related policies and assist in decision-making within catchment 

management in the context of catchment land-use planning.  

3.7 Conclusion  

Quantitatively assessing land-use change impacts on streamflow responses utilizing historical 

and future plausible land-use change scenarios provided beneficial insights for sustainable 

water resources management. The results revealed that historical land-use change relative to 

the baseline significantly impacted mean annual, dry and wet year flows. It also illustrates that 

potential future land-use changes are likely to increase mean annual accumulated streamflows 

within most WMU’s. At a localized HRU scale land-use impacts on hydrological responses are 

easily discernible while at a catchment scale the impacts of land-use change become difficult 

to distinguish as a result of the balancing or amplification effects of present land-uses in the 

catchment. Furthermore, at the WMU scale the impacts becomes less likely discernible 

however, only at this scale are the accumulated streamflows able to reflect the combined 
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impacts of land-use changes. This study has shown that the spatial variability of streamflow 

changes has been shown to be higher at the WMU scale than at the catchment scale.  

Moreover, the study has demonstrated the advantages of utilizing a daily time step and land-

use sensitive model which possess a substantial level of confidence in its capability to produce 

realistic outputs to enhance understanding around the complex interactions of land-use change 

at varying spatio-temporal scales. The results also revealed that specific land-use types have 

varying impacts on mean annual, winter and summer accumulated streamflow changes. It is 

these land-use types which will require evaluation and consideration during policy 

development and planning regarding land-use planning and its associated effects on 

streamflow. 
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CHAPTER FOUR: SYNTHESIS 

 

4.1 Introduction  

This research focused on assessing the modelling of future LULCC in two diverse South 

African catchments and then illustrating the impacts of these future LULCC on streamflow 

responses within one of these catchments. In this chapter, the research aim and objectives 

formulated in chapter one will be examined and assessed against research conclusions and 

results. In addition, key conclusions will be highlighted, limitations and recommendations 

for future research will also be identified together with contributions that this research has 

made to new knowledge. 

4.2 Aim and associated objectives evaluation  

4.2.1 Aim 

The aim of this study was to model future land-use under different plausible future 

developmental scenarios for the uThukela and uMngeni catchments and thereof to assess 

the hydrological impact of future LULCC on streamflow responses within the uMngeni 

catchment utilizing the ACRU model. The aim was achieved by deriving four primary 

objectives. The four objectives are described and evaluated below. 

4.2.2 Evaluation of objectives 

In this section, the four objectives will be evaluated and assessed to determine the studies 

capability in achieving the objectives. The four objectives are listed below: 

1. Undertake a comprehensive literature review to determine the most suitable 

land-use change model. 

In order to achieve the first objective, the study conducted an extensive literature review 

highlighting and identifying various land-use change models. The selection and 

identification of an appropriate land-use change model was conducted by reviewing 

articles and literature through a systematic literature search. Information obtained 

pertained to model categorization, analysis, functionalities, limitations and 

applications. Appropriate models were then selected and compared to each other based 

on model characteristics such as data requirements and modelling techniques. Once this 

was complete shortlisted models were further assessed based on a selection criterion. 
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The CA-Markov model was selected as the most suitable land-use change model to be 

used in the land-use change modelling process due to the models attractive advantages 

such as its ability to combine CA techniques and Markov chain procedures, it was also 

the most universally employed LULCC model in simulating future LULCC dynamics, 

has the capability to simulate LULCC among multiple categories and takes into 

consideration LULCC suitability and the impact of socio-economic and natural drivers 

of LULCC.  

2. Source data which may inform the land-use simulation process, including 

historical land-use maps, policy documents, spatial development plans and 

climate change scenarios. 

Objective two was met by obtaining relevant data which was utilized to inform the 

simulation process and populate the selected land-use change model. Data took the form 

of historical land-use maps, policy documents, spatial development plans and drivers 

of land-use change. Land-use change maps which were utilized as input data for the 

land-use simulation process were obtained from https://egis.environment.gov.za/ for 

the years 1990, 2013/14 and 2018. Policy documents and development documents such 

as integrated development plans and spatial development plans, which informed the 

scenario development process were acquired from various sources including: 

http://www.uthukela.gov.za/, http://www.durban.gov.za/ and 

https://www.umgeni.co.za/infrastructure-master-plans/.   

 

3. Simulate future land-use for the uThukela and uMngeni catchment utilizing 

the most appropriate land-use change model and collected data. 

The third objective was achieved by employing the integrative CA-Markov model and 

associated IDRISI applications. Future LULCC was simulated for the year 2030 

utilizing a standard cellular automata 5x5 contiguity filter, a cellular automata iteration 

of 12 years, taking into consideration historical LULCC data from 1990 to 2018 as a 

baseline and identifying socio-economic and biophysical drivers of LULCC. The 

performance of the CA-Markov model was tested by running a validation, which was 

conducted by simulating changes between t1 (1990) and t2 (2013/14) to predict for t3 

(2018). The predicted map produced for 2018 was than compared against the actual 

2018 reclassified map, which served as a reference map. The obtained kappa values 

(Kstandard, Klocation and Kno) achieved during the validation were all above 80%, 
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thus indicating the model’s reliability and capability to successfully predict plausible 

future LULC in the study sites. The results obtained illustrated that within both 

catchments, increasing growth of artificial LULC classes such as urban, agroforestry 

and agrarian areas inevitability contribute to the fragmentation, modification and 

deterioration of natural land-cover types leading to increasingly anthropogenically 

altered landscape. 

 

4. Assess changes in streamflow responses within the uMngeni catchment under 

plausible future land-use scenarios utilizing the ACRU agrohydrological 

model 

The last objective was met by utilizing historical land-use maps and modelled future 

land-use as inputs to the ACRU model within the pre-existing configuration, only 

modifying land-use parameters and keeping all other parameters constant. The Acocks 

(1988) Veld Types was utilized as the reference land cover against which historical and 

future LULCC were evaluated to establish their hydrological impacts. The results 

revealed substantial streamflow changes in majority of Water Management Units 

(WMUs) within the uMngeni catchment by 1990. Increases and decreases in mean 

annual streamflows were evident in many of these areas; however, the Pietermaritzburg, 

Table Mountain and Henley WMUs were shown to have pronounced increases in mean 

annual accumulated streamflows compared to other areas while the Karkloof and New 

Hanover WMUs displayed the greatest decreases in mean annual accumulated 

streamflow. These changes in streamflow responses were attributable to different 

LULC types and its location within the catchment. However, between 1990 and 2030 

the changes in mean annual accumulated streamflow under the land-uses for 2014, 2018 

and projected land-use for 2030 were limited due to the fairly consistent LULC pattern 

between 2018 and 2030. Urban land-use was shown to have the greatest impact 

streamflow responses.  

4.3 Limitations and Recommendations  

This section will identify relevant limitations evident in the study and render possible 

recommendations for future research. Limitations associated with this study include, but are 

not limited, to the following: 
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1. Uncertainties in LULCC and hydrological modelling  

Models attempt to be representations of real-world processes such as LULCC, thus utilizing 

any model will be accompanied by uncertainties. Uncertainties present in land-use change and 

hydrological modelling arise as a result of lack of understanding of hydrological and LULCC 

processes, inaccurate and/or insufficient input data and errors in the model structure. It is 

suggested that data processing methodologies such as suitable ground truthing and image 

processing procedures can be undertaken to minimise uncertainty in LULC input data. 

Furthermore, a sensitivity analysis can be performed to reduce parameter space uncertainty.  

2. Lack of accurate LULC Classification Scheme and Methodology 

Not only does South Africa lack comparable and consistent LULC datasets at regional and 

local levels, but also the lack of a consistent LULC classification system used to classify 

satellite imagery used to produce the maps, made LULCC assessment difficult. It is proposed 

that additional investments be directed towards the development of a consistent and reliable 

LULC classification system for LULC maps in the country, so that LULCC can be identify 

with high levels of accuracy and confidence. The classification system should be capable of 

accounting for improved satellite imagery resolution whilst creating LULC layers which are 

consistent with previous classifications.  It is also recommended that the National Geo-Spatial 

Information (NGI) organization actively engage with local municipalities to ensure the 

successful development of methodologies and standards of a National LULC classification 

system. 

3. Absence of CA-Markov applications in LULCC studies in South Africa 

To the researcher’s knowledge there has not been any previous or current LULCC studies 

conducted in South African that has employed the CA-Markov land-use change model to 

simulate future LULCC. Increased application of the CA-Markov model in regional, local and 

catchment scale studies in South Africa will be beneficial in validating the model’s 

applicability within South Africa. Testing the applicability of the model in a South African 

context will be advantageous in future research to determine future LULC dynamics, processes 

and patterns on a national scale.  

4. Inapplicability of selected land-use drivers 

A crucial limitation is that, over several decades, certain drivers that assumed to be applicable 

in the past may not necessarily be effective in the future. Consequently, in a structured 

modelling environment, it is not feasible to dynamically make changes to the chosen modelling 
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approach to accommodate current trends. Moreover, the hybrid CA-Markov model assumes 

that historical patterns of LULCC will persist into the future.  

4.4 Future Research  

Future studies on LULCC modelling should incorporate more census and socio-economic data 

for a holistic understanding and analysis of LULCC processes. Moreover, future work should 

attempt to reduce uncertainties pertaining to hydrological and LULCC modelling. This can be 

achieved by utilizing optical satellite images with high spectral and spatial resolution obtained 

at frequent time intervals to observe LULCC dynamics within South Africa. Studies should 

also conduct independent data collection such as soil surveys and water consumption of 

different LULC types such as commercial forestry to reduce uncertainties as a result of 

unreliable input data during the hydrological modelling process. Future studies should also 

examine the usefulness of utilizing streamflow gauges at various sites for hydrological 

modelling validation. Utilizing streamflow gauges located at various sites in a catchment such 

as in the interior will enable accurate determination of modifications in river ecology and the 

spatial variability of water resources and effectively monitor restoration efforts. Future research 

should also consider applying the CA-Markov land-use change model on a provincial and 

regional scale to identify similarities and differences in LULCC patterns.  

 

4.5 Key Conclusions and Contribution to Knowledge 

This research aimed to understand the associated implications of LULCC on streamflow 

responses at a catchment level and highlighted the complexity of the dynamics between land-

use and hydrological responses. Chapter 2 demonstrated the capability of a land-use change 

model (CA-Markov) in simulating future LULCC at a catchment scale for the assessment on 

hydrological responses, specifically streamflow responses. Chapter 3 described the resultant 

impact of future LULCC on streamflow responses, while considering LULCC and streamflow 

response dynamics. The research yielded the following key conclusions and contributions: 

 The CA-Markov land-use change model proved to be effective and reliable in 

simulating future LULCC, as it was capable of spatially simulating multiple LULC 

classes based on suitable socio-economic and biophysical drivers; 

 Analysing historical LULCC and modelling future LULCC are vital components in 

providing information to better understand the land-use change process and aids in the 

implementation of effective natural resources management and land-use planning; 
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 The CA-Markov and ACRU models can be integrated to be effective tools in impact 

studies to provide data on the hydrological impacts of LULCC; 

 The study catchments have heterogeneous feedback mechanisms, complexities and 

land-water dynamics, thus each have unique thresholds of where LULCC starts to 

significantly influence hydrological responses such as streamflow; 

 Streamflow responses are dependent on the location and extent of certain LULC within 

the catchment. WMU’s dominated by urban land-use illustrated the greatest increase in 

streamflow responses while WMU’s occupied by hydrologically sensitive land-uses 

such as commercial forestry illustrated decreases in streamflow responses. 

 Urban land-use poses the greatest effect on a catchment’s hydrological responses 

especially streamflow responses. Impervious and artificial surfaces impede 

groundwater seepage and increase streamflows. 

 A catchment’s hydrological responses are reliant on the land-use present and are 

reactive to LULCC.  

 

 

 

 




