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Abstract

Accurate segmentation of the brain is an important prerequisite for effective diagnosis, treat-

ment planning, and patient monitoring. The use of manual Magnetic Resonance Imaging

(MRI) segmentation in treating brain medical conditions is slowly being phased out in favour

of fully-automated and semi-automated segmentation algorithms, which are more efficient

and objective. Manual segmentation has, however, remained the gold standard for supervised

training in image segmentation. The advent of deep learning ushered in a new era in image

segmentation, object detection, and image classification. The convolutional neural network

has contributed the most to the success of deep learning models. Also, the availability of

increased training data when using Patch Based Segmentation (PBS) has facilitated improved

neural network performance. On the other hand, even though deep learning models have

achieved successful results, they still suffer from over-segmentation and under-segmentation

due to several reasons, including visually unclear object boundaries. Even though there have

been significant improvements, there is still room for better results as all proposed algorithms

still fall short of 100% accuracy rate. In the present study, experiments were carried out

to improve the performance of neural network models used in previous studies. The revised

algorithm was then used for segmenting the brain into three regions of interest: White Matter

(WM), Grey Matter (GM), and Cerebrospinal Fluid (CSF). Particular emphasis was placed

on localized component-based segmentation because both disease diagnosis and treatment

planning require localized information, and there is a need to improve the local segmentation

results, especially for small components. In the evaluation of the segmentation results, sev-

eral metrics indicated the effectiveness of the localized approach. The localized segmentation

resulted in the accuracy, recall, precision, null-error, false-positive rate, true-positive and F1-

score increasing by 1.08%, 2.52%, 5.43%, 16.79%, -8.94%, 8.94%, 3.39% respectively. Also,

when the algorithm was compared against state of the art algorithms, the proposed algorithm

had an average predictive accuracy of 94.56% while the next best algorithm had an accuracy

of 90.83%.
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1. General Introduction

1.1 Introduction

The human brain is a crucial organ in the body, owing to its numerous functions. Its main

functions include the control and coordination of other organs of the body. Neurological ab-

normalities that affect the brain have tremendous effects on the body as a whole. Several

medical technologies have been invented to detect these abnormalities. Some of the tech-

nologies include but are not limited to X-ray, Computed Tomography (CT) and Magnetic

Resonance Imaging (MRI) [56]. Of these technologies, MRI is preferred for soft tissue imaging

because it has no known side effects, it produces exceptionally good three-dimensional (3D)

images of human internal organs, it produces no ionizing radiation and it is non-invasive [125].

MRI scanned data has to be segmented into different regions of interest (ROIs) before other

important clinical steps can be taken. The segmented regions can be used for volumetric

analysis during disease diagnosis or treatment planning and monitoring [20, 78]. The regions

may also be used in tumour detection and tumour progression monitoring. The component

volumetric analysis can be used to diagnose diseases like epilepsy, Alzheimer’s, schizophrenia,

bipolar disorder, multiple sclerosis, and attention-deficit disorder[73, 114].

MRI is a technique that has its roots in the NMR (Nuclear Magnetic Resonance) technique.

The NMR technique was proposed by Bloch and Purcell during World War II and perfected

after the same war [38, 44]. The MRI technology works by magnetizing the hydrogen protons

in the human body using a powerful magnet, typically 4 Tesla. This magnetization results

in the protons becoming magnetic dipoles that precess about an axis parallel to the strong

magnetic field. In addition to the strong magnet, there are gradient coils (0.5 Gauss) that

generate voxels and slices [38, 49]. These gradient coils are applied for short periods. Halfway

through the magnetic gradients, an RF-signal is sent into the body. The RF-signal will excite

protons in a cross-section of the body in the form of a slice. After the pulse, only the excited

protons will be relaxed, and the relaxing protons produce sinusoidal signals. The signals are
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emitted by each voxel, captured and stored as the information for each slice. The slices are

integrated by a computer to produce 3D image data [38, 44]. Computer-Aided Diagnosis

(CAD) systems have been extensively used in the medical field to help with visualization,

quantitative analysis, feature detection and extraction and classification of regions of interest.

CAD has become pervasive in the medical field. The accuracy of these CAD systems depends

on the efficiency and effectiveness of the model used. In general, there are two ways in which

CADs can be implemented, firstly, using expert systems within a given domain, and secondly,

using machine learning. Each approach has its advantages and disadvantages. Expert system

CADs heavily depend on the developer and hence are prone to human error. Machine learn-

ing models, on the other hand, allow models to learn from given datasets; hence the models

might ultimately learn how to classify the datasets but under-perform when subjected to new

datasets [61]. While expert systems and machine learning CADs are both time-intensive,

machine learning CADs are more flexible in terms of specifying classification logic. This re-

search focuses on machine learning because it is not developer dependent and is generally less

resource-intensive than the expert systems approach.

Machine learning has done exceptionally well in brain MRI medical image segmentation. Its al-

gorithms require large volumes of training data [103, 128]. This data is expensive and difficult

to get and requires input from several stakeholders [40]. The information is also strictly regu-

lated by patient-doctor confidentiality laws. In addition, the data used for supervised training

requires correctly annotated ground truth data to facilitate supervised learning. While several

MRI segmentation algorithms have been proposed in the past few decades, the majority of

these algorithms under-perform when presented with complex medical image data [32]. Both

supervised and unsupervised neural network (NN) machine learning models can be used for

MRI medical image segmentation [73].

Convolutional Neural Networks (CNNs) have been able to segment medical images with very

high accuracy. Some of the achieved accuracy rates were as high 90% or more, an example of

this being an algorithm developed by Cui et al. [32]. Several CNN algorithms have been pro-

posed for brain image segmentation based on the few layers that make up a CNN. The study

carried out by Toan et al. [20] summarized some of the state of the art deep CNN. Most

NNs are based on well-known architectures such as GANs, encoder-decoders, deep medic,
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DenseNet, U-Net, V-Net, and VoxResNet, just to mention a few. The present study makes

use of a patch-based NN.

One of the several ways of categorizing CNNs is as either fully connected CNN or window

sliding [112]. The majority of researchers focused more on fully-CNN and little research has

been done in window sliding. The research studies that were based on fully connected CNN

include , GANs [57, 60, 99] and several encoder-decoder based networks [5]. The encoder-

decoder networks included amongst others the V-Net [94, 129], Y-Net [24], U-Net [21, 30, 37,

45, 48, 63, 67, 74, 101, 111, 122] and ensemble [2, 11].

In diagnosing diseases there is no need to segment the whole brain since most neurological

disorders affect specific regions of the brain. Therefore, medical practitioners normally zero

in on specific components depending on the patient [41]. Figure 1.1 shows the region of the

brain that is crucial in the diagnosis of Parkinson’s disease [93].

Figure 1.1: The image shows the region of interest in diagnosing Parkinson’s disease [93]

In Figure 1.1 the wearing out of the substantia nigra is also evident. Furthermore, the study

carried out by Garz et al. [41] expanded on the point and describes how the substantia nigra’s

wearing out is responsible for the development of Parkinson’s disease. With this background,

the segmentation of the rest of the brain would, therefore, be a waste of computer resources.

To be efficient it would be better to consider the volume that surrounds the region of interest.

The present study was an extension of the study carried out by Cui et al. [32]. In the present

study, the first major experiment focussed on developing an algorithm for accurate human
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brain segmentation into WM, GM and CSF. The second section of the present study focussed

on the development of a localized component-based and patch-based segmentation (PBS)

algorithm. In this section, two major experiments were carried out. The first experiment

focussed on the segmentation of two components, that is, thalamus-proper and hippocam-

pus. In the second experiment, three components were segmented, that is, cerebellum-cortex,

thalamus-proper and hippocampus. Several test statistics were then used in the evaluation of

the proposed algorithms.

1.2 Motivation

MRI images used in segmentation are affected by inhomogeneity of the magnetic field and

partial volume effects [2, 8]. These factors affect the quality of the images, and hence human

brain image segmentation algorithms are presented with data that would have been corrected

for these effects. Although these images may be degraded and not in any way close to per-

fect, they are better than the original images. Brain segmentation also faces challenges due

to the complexity of brain structures and the fact that the components show varied differ-

ences in structure and size as one moves from one patient to another [9, 17, 24]. These

differences present learning difficulties for NNs. Traditionally human brain segmentation was

done manually, but this had several challenges hence the introduction of semi-automated and

fully automated algorithms [5, 9, 10, 13, 18]. Deep learning algorithms have proven to be

very effective in human brain segmentation [2, 3, 5]. In particular, CNNs have proved to be

very effective in image segmentation. The major challenges faced by CNN are the absence of

sufficient data for training, model inability to adapt to different datasets, and lastly, tissue

distribution overlap [13, 14, 17]. Also, some brain components are small, hence there is limited

data available for training the given algorithm to segment the components [9, 23]. Also, some

component boundaries are not very clear, and in some cases, the boundaries are not avail-

able, which makes segmenting them very difficult [8, 9, 11]. Although traditional algorithms

and existing software (such as Functional MRI of the brain FSL and Freesurfer [5, 9]) offer

ways of segmenting the human brain, they all generally suffer from either over-segmentation

or under-segmentation. The former occurs when the resulting regions of interest are more

than expected, while, the latter occurs when the segmentation algorithm produces insufficient

regions of interest. Over-segmentation and under-segmentation result from the previously
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mentioned CNN and general brain segmentation challenges. The present study aimed at test-

ing if localized brain image segmentation could improve segmentation results.

1.3 Problem Statement

MRI is a preferred modality because it produces images with high contrast and higher reso-

lution when compared to other modalities [120]. MRI segmentation is not a simple exercise

because primarily the source images are more often than not degraded by noise, bias field,

and partial volume effects. Traditionally, manual segmentation was the only method used

for MRI brain segmentation. In this approach, segmentation was carried out slice by slice.

On average, there would be more than 80 slices, with each being 512*512 pixels. Each brain

component’s contour lines would be drawn in each slice by a seasoned radiographer, and this

process was time-intensive [34, 47]. However, radiological results are needed timeously, and

the radiological laboratories frequently have many patients. The stated factors make manual

segmentation inefficient as it is time-consuming, prone to human error, not reproducible, and

highly subjective [32, 34, 40, 47]. A plethora of algorithms has been proposed to automate

the process of MRI brain segmentation. Of the proposed algorithms, CNNs have been known

to segment the human brain with exceptionally high accuracy rates [47]. These algorithms

require a lot of training data, and this data is difficult to get [14]. Researchers noted that

most of the images used as input to these algorithms had highly redundant data, hence some

researchers proposed the use of patch-based segmentation (PBS). PBS generates small images

(patches) from the provided images. these patches are used in training and testing the neural

network. PBS can be viewed as a data augmentation strategy. Additionally, research on the

implementation of different sized patches produced promising results. Some researchers also

experimented with 3D and 2D patches. These researchers realized that 3D patches were time

and computational resource-intensive but offered rich neighbourhood information as compared

to 2D patches [113]. Some researchers have also introduced 2.5D networks which integrate

sagittal, axial and coronal information in 2D image segmentation [14]. This approach is also

time and computational resource intensive. On the other hand, slight changes in the volume of

the human brain’s components could indicate a neurological disorder. Since existing methods

are yet to achieve segmentation accuracy rates of 100% (or close to 100%), there is room for

further research in this domain. Any resulting improvement in segmentation accuracy would
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also improve the performance of any subsequent clinical processes. Specific problems that arise

in the development and use of segmentation algorithms include the low contrast between tis-

sues to be segmented, brain component size variations, tissue class imbalance, and the brain’s

complexity in general. These problems result in the misclassification of pixels, resulting in low

accuracy [20]. There is, therefore, a need to develop brain segmentation algorithms that are

fully automated, do not over-fit given data and are effective even on small brain components

[47].

1.4 Research Question

This study seeks to answer the following research question:

Does localized brain MRI segmentation improve the segmentation accuracy of the hippocam-

pus, thalamus-proper and cerebellum-cortex?

This localized segmentation could also aid in research related to the segmentation of small

brain organs, which is currently a daunting task for neural networks. Additionally, the im-

proved accuracy could positively contribute to the accurate diagnosis, treatment and treat-

ment monitoring of diseases such as coresistant temporal lobe epilepsy, Alzheimer’s Disease,

dementia and Parkinson’s Disease.

1.4.1 Research Aims

The major aims of the present study were to:

1. Propose an algorithm for brain MRI segmentation that would rival state of the art al-

gorithms in brain segmentation,

2. Implement the algorithm proposed in item (1) in localized segmentation of the hip-

pocampus, thalamus-proper and cerebellum-cortex and evaluate its performance.

1.4.2 Research Objectives

1. Effectively preprocess MRI brain images for component-based segmentation.
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2. Train a CNN to segment a ROI using MRI patches.

3. Evaluate the achieved segmentation performance.

1.5 Contributions Of The Dissertation

The main contributions of this dissertation are as follows:

• Development of an algorithm for the accurate segmentation of the human brain into

three main components, that is, WM, GM and CSF. The proposed algorithm resulted

in improved segmentation results when compared with the algorithm it was based on,

• The proposed algorithm was used with localized patches. The implementation was

carried out in two experiments whose results were averaged for analysis purposes. The

first of the two experiments segmented two components, that is, thalamus-proper and

hippocampus. The second experiment segmented three components, that is, cerebellum-

cortex, thalamus-proper and hippocampus. Several test statistics were then used in

evaluating the performance of the proposed algorithm. The results of the proposed

algorithm rivalled those of state of the art algorithms in brain image segmentation.

1.6 Organisation Of The Dissertation

The remainder of the dissertation is structured as follows:

• Chapter 2 - Background And Related Work: This chapter investigates the current meth-

ods in brain MRI segmentation. It also gives a summary of brain MRI datasets and the

background on the human brain anatomy and CNN segmentation algorithms.

• Chapter 3 - Methodology And Techniques: This chapter gives the experimental objec-

tives, machine learning tools used in the study, the CNN architecture, model design,

dataset preprocessing, dataset processing and evaluation metrics used in the study,

• Chapter 4 - Results and Discussions: This chapter summarises the experimental results

and their discussions.
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• Chapter 5 - Conclusions and Recommendations: This chapter summarises the conclu-

sions drawn from the present study and recommends possible extensions for future stud-

ies.

1.7 Conclusion

This chapter gave a general summary of the dissertation. It additionally gave the motiva-

tion for the dissertation, its problem statement, research question, research aims and research

objectives. The chapter also summarized the contributions made by this dissertation and

concluded with the organization of the chapters in the rest of the dissertation. The subse-

quent chapter lays a foundation for the remainder of the dissertation by presenting a general

background to the human brain anatomy. It also gives a summary of the basic concepts in

MRI. The following chapter also gives a summary of some of the available datasets and details

of the chosen dataset. It also gives a summary of the basic concepts in CNN and the related

algorithms for brain MRI segmentation.

8



2. Background And Related Work

2.1 Introduction

This chapter covers the background and studies conducted related to the dissertation. It starts

with a summary of the anatomy of the human brain. The chapter then goes on to summarize

some of the basic concepts in MRI. Additionally, it gives a summary of the datasets considered

for the present study. The chapter also provides a detailed description of the dataset used in

the present study. It also summarises CNN basic concepts and studies related to the present

study. The studies included in the summary are of those algorithms that used CNN in human

brain segmentation.

2.2 Human Brain Anatomy

The brain is a key component in the body. It is one of the largest and complex organs in

the body. Scientists have studied it for generations but little progress has been made in

understanding the brain and how it functions. The organ is estimated to comprise of more

than one hundred billion nerve cells that communicate using electrical pulses. The human

brain makes it possible for diverse intricate physiological and psychological functions to take

place. Some of its functions include emotions, movement and consciousness. The brain is

also responsible for involuntary functions of the body such as breathing, digestion and pulse

control[28, 106].

The brain is known as the organ that controls the nervous system [106]. Additionally, the

nervous system is known to be responsible for controlling the body’s interactions with the

outside world. The brain achieves this function by controlling the individual’s behaviour and

coordinating the sensory functions of the body. The sensory organs that are usually used are

the tongue, skin, eye, only to mention a few. The nervous system is also responsible for con-

trolling the internal state and internal processes of the body [106]. According to Swanson and
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Larry [106] there are a lot of schools of thought on how the human brain functions and gener-

ates such high-level functions as thinking and conscious thought. Some philosophers look at

it from a philosophical and mathematical modelling standpoint, others took the psychological

standpoint while others took the physical science of biology, chemistry and physics perspec-

tive. Additionally, Swanson and Larry stated that interdisciplinary fields like Neuroscience

were introduced in the 1970s. Also, they alluded to the fact that the most central concept in

all the proposed arguments was the architecture of the human brain [106].

2.3 Magnetic Resonance Imaging

2.3.1 Introduction

Magnetic resonance imaging (MRI) has its roots in Nuclear Magnetic resonance (NMR) which

was pioneered by Bloch and Purcell[44]. It is a preferred modality for image acquisition for

soft tissues because it is non-invasive, it has no known side effects, it can adequately produce

high-resolution 3D images of medical organs and last but not least it has no ionizing radiation

[125]. According to Cerutti [22], ionizing radiation is known to be dangerous, carcinogenic

and causes a genetic mutation in humans. Ionizing radiation can efficiently kill those cells

that are developing quickly, induces several malignant neoplasms in human and result in the

de-structuring of the human deoxyribonucleic acid (DNA) [22], hence MR imaging has become

pervasive in the medical imaging.

MRI images are acquired using an MRI machine which is normally found in a special radio-

logical laboratory. In the laboratory, no metallic objects are permitted and the staff is well

educated on the safety precautions to be taken when inside the laboratory.

2.3.2 The MRI Machine

The MRI machine is made up of the main magnet, gradient magnets and a transceiver. The

main magnet provides a very strong magnetic field, in the order of up to 4 Tesla. The gradient

magnets provide magnetic fields that are way lower than those of the main magnet, in the

order of 5 Gauss. Figure 2.5 shows a typical MRI machine:
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Figure 2.1: An image showing a labelled diagram of the MRI scanner[110]

The diagram in the image in Figure 2.5 shows where the patient would be positioned, the

main magnetic coil, the three gradient coils (X-coil, Y-coil and Z-coil) and the transceiver.

Additionally, the gradient coils, main coil (main magnet) and transceiver are described in

detail in the following subsections.

2.3.3 Subatomic Particles

An atom is defined as the smallest part of an element and it comprises of neutrons, proton

and electrons. All three particles have the same quantized spin. The quantized spin is given

by h/(4π), where h is the Planck’s constant [49]. Planck’s constant is defined as the ratio of

the energy of a photon to its frequency. Additionally, electrons whiz around the nucleus of an

atom in atomic shells while protons and neutrons reside at the centre of the atom. Electrons

have a charge of −1.6 ∗ 10−19 and the smallest measure of quantized spin. On the other hand,

protons have the same charge as that of an electron but its charge is positive. In addition to

that, the proton is 1836 times heavier than the electron. Protons exert strong nuclear force on

other protons and neutrons. This is the force that binds neutrons and protons together in the

nucleus. The neutrons are neutral and have almost the same mass as the protons [49]. This

makes the nucleus positively charged. Figure 2.6 shows a typical atom, the hydrogen atom.
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Figure 2.2: The structure of an atom (Hydrogen) [49]

By its design, the hydrogen atom has no neutrons hence the nucleus only has one proton. The

atom also has only one electron whizzing around the nucleus. On the other hand, other atoms

have nuclei that are a combination of neutrons and protons. Additionally, in all atoms, the

number of electrons is always equal to the number of protons in the nucleus. Also, the mass

of an atom is mainly derived from the protons and neutrons.

Some atoms have nuclei that have a property called spin, the spin property is analogous to

the earth spinning on its axis, as shown in Figure 2.7 a. Hydrogen is one of those atoms that

possess a nuclear spin. According to Grover et al. [44], the nucleus itself does not spin but

its nature forms a magnetic moment. The magnetic moment generates a local magnetic field

with a designated north and south pole. The two poles that are present in the atom are the

same as those found on a bar magnet (as shown in Figure 2.7 (b)). If the atom is placed in

a strong external field β0, the nucleus will align itself parallel or perpendicular to the field [44].

(a) The Earth rotating about its axis [109]
(b) An image of the analogy between a precessing
atom and a bar of magnet [49]

Figure 2.3: Images showing the earth and an atom rotating about its axis

If a fluid is placed in the magnetic field β0, the fluid will spin either parallel or anti-parallel

to β0. Spinning parallel to β0 is referred to as the low energy state and spinning anti-parallel

to it is referred to as the high energy state [44]. According to Grover, there tends to be an

excess of atoms spinning parallel to β0. Additionally, bar magnets when placed in β0 they

align themselves parallel to the magnetic field β0. On the other hand, nuclei precess about
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the magnetic field since they have angular momentum about β0. As the nuclei precess about

β0, their velocity of precession is given by the Larmor equation (equation 2.3.5) [44]. Addi-

tionally, several atoms can be used for NMR, some of these include carbon-13, phosphorus

and fluorine. For an atom to be used for NMR or MRI its nuclei spin should not be equal to

zero. In MRI, hydrogen atoms are used exclusively, but in special circumstances, Xenon-189,

Phosphorous-31, Helium-3 or Flourine-19 could be used [38].

2.3.3.1 Spectroscopy

There are several types of spectroscopic techniques but the commonly known ones are absorp-

tion and emission spectroscopy. In absorption, molecules gain energy and the energy absorbed

by molecules raises them to a higher state (excited). Just after the excitation molecules com-

mence getting back to their stable state (de-excited). They return to their steady-state through

radiation and the radiated energy’s wavelength patterns can be used for any analytical pur-

poses [38]. On the other hand in emission electricity is used to energize the molecules. The

molecules are continuously excited and de-excited. When molecules go through the excitation

and de-excitation they emit radiation. The radiation levels are capture an analyzed. It was

noted in experiments that molecules that absorb radiation of a given wavelength would give

release to radiation of the same wavelength [38].

A combination of both absorption and emission is referred to as fluorescence. In this type,

molecules are continuously irradiated with radiation of the same wavelength which is ab-

sorbed by the molecule under investigation. The electromagnetic radiation makes some of

the molecules excited and de-excited, hence releasing electromagnetic radiation which can be

measured and analyzed [38].

2.3.4 Magnetic Dipole Moments

If a charged ball is made to spin and placed in an external magnetic field, it will experience

a force that has a twisting effect on it. The twisting effect forces the axle of rotation to be

aligned to the magnetic field of the external magnetic field. Protons and electrons are quan-

tized particles and may only have discrete one charge, one discrete spin and one discrete mass

[49]. These properties result in protons and electrons having corresponding discrete magnetic
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dipole moments. Quantized particles also possess another property that is very important in

NMR and MRI. Quantized particles when placed in an external magnetic field align them-

selves either parallel or anti-parallel to the magnetic field β0. More energy is required for

nuclei to be in the anti-parallel state as opposed to the parallel state. For this reason, aligning

anti-parallel is referred to as the high energy state while the alternative is referred to as the

low energy state [49].

One of the critical properties of nuclei that is taken advantage of in NMR and MRI is magnetic

moments. The following equation (Dirac’s model) can be used to calculate the magnetic

moment of an electron or proton. The equation for calculating the magnetic moment of an

electron is as shown in equation 2.3.1:

µe =
qeh

4πme

(2.3.1)

where the magnetic moment of either the electron or proton is proportional to its charge (q0)

and its magnetic spin (h/4π) and will be inversely proportional to its mass (m0) [49]. The

magnetic moment of an electron is calculated to be 658 times larger than that of the proton.

Even though mathematically electrons are the preferred option, protons were chosen as the

particle of choice. The proton was selected because the electromagnetic waves that are re-

quired to excite hydrogen nuclei happen to be in the same range that is required to penetrate

the human tissue and born. The electromagnetic waves required to excite electrons happen

to be in the microwaves, microwaves are easily absorbed by cells after a centimetre of entry

into the human body [49].

Magnetic dipole moments are also important for other uses in MRI. Some atoms like gadolin-

ium have several unpaired outer shell electrons which makes them good magnetic resonance

contrast agents. When these are placed in an external magnet, the unpaired electrons align.

This creates strong non-uniform magnetic fields in the neighbourhood of the atoms. Materials

like these are referred to as paramagnetic because they have magnetic properties only when

they are exposed to a strong external magnetic field. These materials are used for contrast

enhancement in MRI imaging [49].
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2.3.5 NMR And MRI Working Principles

The MRI technique has its roots in Nuclear Magnetic Resonance (NMR). The NMR technique

was first proposed by Bloch and Purcell just before World War II and refined just after the

same war [38, 44]. NMR makes use of a very strong magnetic field, for humans in the order

of 0.1 to 4 Tesla (Earth’s magnetic field is about 0.5T), where one Tesla (T) = 10 000 Gauss.

The combined use of NMR, pulsed RF signals, superconducting magnets and computerized

Fourier transformation was a groundbreaking discovery that ushered in several new applica-

tion technologies. The very first MRI images were produced in the year 1980 in Nottingham

and Aberdeen in the United Kingdom (UK) [38, 44].

In the field of NMR and MRI, we make exclusive use of those atoms that possess nuclear spins

that are not equivalent to zero. There are a number of these atoms, for instance, carbon-13,

phosphorus and fluorine. The body of a human being is about 66.7% water (H2O) and each

molecule of water is made up of two atoms of hydrogen and one atom of oxygen. There are a

number of other substances found in the human body whose chemical formula has hydrogen,

some of these substances include fat (C56H108O11) and carbohydrates (C12H22O11). Hydro-

gen, therefore, is found abundantly in the human body, hence it was chosen as the atom of

choice in NMR and MRI. As stated earlier, MRI currently makes exclusive use of hydrogen

atoms except for special circumstances [38].

2.3.6 Image Acquisition In MRI

When imaging a patient, the patient is placed along with the main magnet. A vertical gradi-

ent of about 0.5 Gauss is applied for a short period. Halfway through the magnetic gradient,

an RF-signal is sent into the body. The RF-signal will excite protons in a cross-section of the

body in the form of a slice. The slice would be about one millimetre or less in thickness. After

the pulse, only the excited protons will relax and produce a sinusoidal signal with decreasing

amplitude (FID) [38, 49].
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2.3.6.1 The Larmer Frequency

The most common atom found in the human body is the hydrogen atom. The hydrogen atoms’

magnetic fields have a cancelling effect, hence there is no resultant magnetic field. When the

human body is placed in a magnetic field, the hydrogen atoms align themselves parallel and

anti-parallel to the external magnetic field β0 [38, 49]. Empirical evidence showed that those

particles that align themselves parallel to the field will be slightly more than those that align

anti-parallel to the field, hence there is a resulting magnetic field. This net magnetic field is

referred to as the net magnetic vector (NMV). The population ratio of the two energy levels

can be calculated using the Boltzmann’s distribution law, where the Boltzmann’s constant is

k = 1.381 ∗ 10−23J/K [49]. The Boltzmann’s distribution law is as shown in equation 2.3.2:

N low/Nhigh = exp(−∆E/kT ) (2.3.2)

where Nlow is the number of atoms in the low energy state and the opposit is true for Nhigh.

Research has shown that in the XY-plane these magnetic moments have a cancelling effect

leaving the NMV component along the Z-plane. Empirical results also indicated that NMV

was proportional to the density of protons, the external magnetic field β0 and the square of

the gyromagnetic ratio γ [38].

As stated earlier on we have nuclei in a high energy state and those that will be in a low energy

state. The difference between the two energy levels can be expressed as shown in equation

2.3.3:

∆E = hγβ0 (2.3.3)

where h is Planck’s constant (h = 6.626 ∗ 1034Js), γ the gyromagnetic ratio for protons and

β0 the external magnetic field. ∆E is defined as the energy that is required to change an

excited proton from a lower energy level to its higher energy level [38, 44, 49]. Changing the

state from low to high can also be achieved by applying electromagnetic waves of the same

frequency (f). The frequency must be generated from photons that have photon energy given

by the equation 2.3.4.

δ = hf = ∆E (2.3.4)
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For resonance to occur there is a need to ensure that the photon energy and the difference

between the energy levels must be equal [38, 49]. The electromagnetic waves (for changing

state from low to high) should have the same frequency as given in equation 2.3.5 which was

derived from equations 2.3.3 and 2.3.4:

f = γβ0 (2.3.5)

where f is the angular frequency of the protons, γ the gyromagnetic ratio (a constant fixed

for a specific nucleus) and β0 the field strength. The equation 2.3.5 is known as the Larmor

frequency equation

2.3.7 Measuring The Magnetic Resonance Signal

Exciting the hydrogen protons can be achieved through RF-signals of frequencies that are cal-

culated using the Larmor frequency equation. The de-excitation can be measured analytically

and conclusions can then be drawn from there. The signal from the hydrogen nuclei can be

captured and measured through the use of Faraday’s law of induction. The law states that

a changing magnetic field (or changing magnetic field flux) induces an electric current in a

loop of wire that is close to it [49]. If we are to take an example of the processing transverse

magnetization, the total effect of precessing dipoles creates the changing magnetic field. This

is induced in a wire loop that is close to the precessing nuclei. The changing flux, in this case,

is owing to the fact that the hydrogen dipoles will be precessing and doing so in phase [49].

Empirical results showed that if an RF receiver is placed close to the precessing hydrogen pro-

tons, it will pick up a signal that has a frequency that is similar to the frequency of precession

of the hydrogen protons [49].

2.3.8 Longitudinal Relaxation

Longitudinal relaxation by definition is the recovery of longitudinal magnetization parallel to

the external magnetic field β0 commencing just after the application of the RF-signal. Tissue

magnetization can be defined as an aggregate of all the hydrogen dipoles after a 90-degree

RF-pulse. These dipoles (particles) can change orientation due to a number of reasons. For

particles to change direction, they do so by interacting with the neighbouring molecules as
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the particles will be tightly packed. As the nuclei are turning they have thermal interactions

with other molecules in the tissue (also known as (AKA) lattice) [44, 49]. T1 is then described

as the longitudinal relaxation that occurs between the high energy state hydrogen nuclei and

the larger macromolecules in the same tissue. The interactions of the particles with their

neighbours result in an increase in the number of nuclei in the low energy state and a decrease

in the number of nuclei in the high energy state. T1 involves interactions between spins and

the lattice, hence it is also referred to as the spin-lattice relaxation [44, 49]. The thermal

interactions that occur, exclusively occur when the lattice is made up of larger molecules than

the hydrogen particles. The larger molecules should have the capacity of holding the energy

that is released by the hydrogen molecules. By losing energy hydrogen moves from the high

energy state to the low energy state. The amount of energy released or absorbed by molecules

is given by the Larmor equation. The energy transfer happens at a rate equal to one minus

an exponential. The exponential will be a reflection of the longitudinal magnetization at time

zero after a 90-degree pulse [44, 49].

The recovery rate is rapid at the beginning and slows down as time progresses. The rapid

recovery is because at the beginning a lot of nuclei would be changing state. The slow rate

at the end is owning to the fact that at the end there will be fewer dipoles changing state,

that is the rate of recovery is directly proportional to the number of dipoles changing state.

Equation 2.3.6 describes the rate of recovery during longitudinal relaxation after a 90-degree

pulse [44, 49]:

M z,t = M z,eq(1− e−tR1) (2.3.6)

where R1 is described as the longitudinal relaxation rate constant or spin-lattice relaxation

rate constant. R1 is the inverse of T1 and T1 is defined as the time taken to de-excite 1/e of

the excited dipoles. Figure 2.8 shows the graph of the amplitude height against time:
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Figure 2.4: Recovery of the z-magnetization after 90-degree pulse [49]

The graph shows a steep gradient at the beginning that dies as time progresses. As stated

earlier, the high rate is owing to a lot of dipoles changing state, while the slower rate after

some time is because there will be fewer dipoles changing state. It takes an exceptionally long

period for longitudinal relaxation to recover fully. It was then concluded to define longitudinal

relaxation as the time taken for 63% of the total strength to be recovered. To shorten the

time for recovery, substances like gadolinium are added to the tissue. These substances have

the effect of shortening T1 as they act like an energy sponge [49].

2.3.9 Transverse Relaxation

In transverse relaxation, we consider the magnetization perpendicular to the z-axis or parallel

to the XY-plane. In actual fact protons do not exactly align themselves parallel and anti-

parallel to β0 [44]. They will be precessing about the direction of β0 so they would have

components along the z-axis and components along the XY-plane as well but there is no net

magnetization along the XY-plane though. If a pulse is sent along the x-axis, the vector will

be restricted wholly to the y-axis. Consequently, the net effect of the pulse along the x-axis

would be that the z-component of the NMV would be rotated 90-degrees into the y-axis.

When the pulse is over, the union of the magnetization will decay in a transverse or spin-spin

relaxation [44].

Naturally, hydrogen nuclei will have different magnetic field environments and hence precess

differently in the magnetic field β0. When the RF pulse is introduced, they start precessing

in-phase and after the pulse, they start returning to their steady-state. This results in a very

fast decrease in transverse magnetization. The de-phasing that occurs is described by T2,

which is described as the exponential loss of transverse magnetization after a 90-degree pulse.
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Equation 2.3.7 shows the relationship that exists between the variables involved in transverse

magnetization [49].

Mxy,t = Mxy,0e
(−tR2) = Mxy,0e

(−t/T2) (2.3.7)

The graph in Figure 2.9 shows the decay for the transverse magnetization.

Figure 2.5: Recovery of the z-magnetization after 90-degree pulse [49]

A realistic picture of transverse magnetisation shows that each hydrogen atom will have a

non-uniform magnetic field around it. These individual magnetic fields affect the magnetic

fields of the dipoles in their vicinity. The combined effects of these fields on a particular

atom is referred to as spin. The magnetic field interactions from other dipoles result in a

decay referred to as T2-decay, spin-spin relaxation or true T2 de-phasing [49]. The true T2

de-phasing has been found to contain a lot of information that can be used for analytical

purposes and therefore it is used extensively for patient diagnosis. It also takes a long time

for all the strength to be recovered hence T2 can also be defined as the time it takes for 1/e

or 37% of the original signal to be recovered. It can then be concluded that tissues with

longer T2 values lose transverse magnetization slowly. Transverse magnetization decay can

be expressed in an equation as shown in equation 2.3.8 [49]:

Mxy(t) = Mxye
−t/T2 (2.3.8)

where t is the variable time, T2 is the transverse relaxation time constant. Empirical evidence

showed that T2 is always shorter than T1 [44].
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2.4 Datasets

The folowing section discusses the datasets considered for this dissertation. These sections

describe the datasets used. Mainly focussing on where and how to get it and file formats used

to stored the data. The file formats commonly found in the discussion are MAT-lab, zipped,

h5py, NIfTI, CSV, dicom,tsv and otl.

2.4.1 Common File Formats

The MAT-lab files are data files that are created when MAT-lab stores files to disk [71]. On

the other hand, Zipped files are files that have been compressed to optimize disk space usage.

These are important when downloading files or when the computer has limited space [76]. In

addition, h5py files are file formats that store data in a format similar to NumPy arrays. The

file formats store data in data structures that are immutable. The file type also supports a

number of file format feature that include compression, error detection and chunked I/O [29].

Also, the Neuroimaging Information Technology Infrastructure (NIfTI) is a file format that

was designed to store fMRI and other medical image data. There are two types of NIfTI files,

that is, NIfTI-1 AND NIfTI-2 where the latter is an update of the former [50]. We also have

the Comma Separated Variables (CSV) and these are plain text files that comprise of a list

of data items that are separated by commas. In same cases the commas are replaced by a

semicolons, the files are then referred to as as the character separated variables. These files

are commonly used to transfer data between applications. The extension .csv is commonly

used with the character separated variables [16]. In addition, there are the Digital Imaging

and Communication in Medicine (DICOM) files and these are commonly used to store medical

imaging data. DICOM files are also know to store patient identification data. The common

extension for DICOM is .DCM [55]. There is also the Tab Separated Variables (.tsv) file

format and these files are used to store data in a tabular form. The lines in the file represent

records in the table and values of the record are separated by the tab character. The common

file extension for tab separated variables are .tsv and .tab [39]. Finally we have the .OTL Files

and these are generated when NoteTab saves files to disk. These files can be easily opened by

several applications [97]. The following section discusses the datsets where these file formats

are .
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2.4.2 Kaggle Datasets

Kaggle provides competitions that are run in the machine learning community and partici-

pants can be from all walks of life. The competitions are free to join and are designed to

promote interest in research areas that organizers think need more input from the machine

learning community. The dataset had two classes, that is, a class with tumours and the second

class did not have tumours. The dataset comprises of .jpg file format but the dataset provides

no information about the origins of the data [59].

2.4.3 Figshare Datasets

The Figshare dataset is a compilation of 3064 T1-weighted contrast-enhanced images that were

captured from 233 patients. The patients in this work had three types of tumours: menin-

gioma, glioma and pituitary tumours. The data for the patients was captured and stored in

a Mat-lab file format and saved in four different zipped files [25]. The data for each image in

the zipped files were made from the struct construct that comprised of the following headings,

one for meningioma, two for glioma, 3 for pituitary tumours, patient ID, image data and a

vector string that contained the coordinates of discrete points on tumour border [25]. After

downloading the dataset one could use SciPy to read the .mat files but certain versions like

the 7.3 could not be read with SciPy. One could also use h5py to read the files or save the

files using .mat earlier versions [81].

2.4.4 MICCAI Datasets

MICCAI dataset provided MRI brain datasets as part of a multi-modal brain tumor segmenta-

tion challenge aimed at promoting research in certain areas of research. The first competition

was run in 2012 and since then there has been a competition every year and each competition

had different tasks. In 2018, competitors were required to produce segmentation results for

different types of glioma tumours and their sub-regions. After the segmentation process, par-

ticipants were provided with extra information that they were expected to use to estimate the

overall survival of the patient. In this competition 3T scanners were used for the acquisition

of images and training, validation and test sets were released at different times during the life-
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time of the competition. The first set released was the training dataset. The second set was

the validation set but the ground truth was withheld for some time. Participants were given

the training set at their request but the validation and testing sets were provided at the same

time for all participants. The period between the release of the validation and test set was a

month. In the dataset, both the training and validation datasets had four files, that is, ground

truth, segmentation survival information, age and segmentation status [7]. All the subject

data in the competition were in NIfTI (.nii.gz) file format and there would be a description

of spin-lattice (T1), spin-lattice gadolinium-enhanced-weighted (T1Gd), post-contrast-spin-

lattice-weighted (post-contrast-T1w), spin-spin-weighted (T2w) and Fluid-attenuated inver-

sion recovery (FLAIR). Each image was manually segmented by between one and four indi-

viduals and accessed by neurologists with extensive experience. Additionally, the data had

been preprocessed using BraTs protocols and these are found in [75].

2.4.5 Open Access Series Of Imaging Studies (OASIS) Datasets

OASIS seeks to make brain data freely available to those researchers that need it in an endeav-

our to make way for discoveries in basic and advanced neuroscience. The OASIS project is

hosted by central.xnet.org [91] and it is a compilation of data from over 1000 participants that

were collected over three decades. Of these participants (age range 42-95 years), 609 had no

cognitive disorders while the other 489 participants did. The data collected from the partic-

ipants were initially anonymized through the eradication of timestamps, all logs, ID-change,

QC staff, the path to the raw data file and the raw data file. The dataset comprised of

over 2000 sessions that included spin-lattice weighted (T1w), Susceptibility Weighted Imaging

(SWI), fluid-Attenuated Inversion Recovery (FLAIR), ASL, time of flight, resting-state BOLD

and spin-spin (T2w) images. Freesurfer was used to acquire surface measures and subcortical

segmentation and details of these could be found on a downloadable CSV file [90]. The web

page also made provisions for the data to be downloaded as a CSV file.

As of the writing of this document, OASIS-3 was the latest release from OASIS. The dataset

made use of the longitudinal acquisition protocol, clinical, cognitive and biomarker dataset

for normal ageing and Alzheimer’s disease. The data was available through the link given in

[90]. One of the predecessors, OASIS-1 dataset had human brain T1-weighted cross-sectional

dementia patients in the range (18,96) [69] While the other OASIS-2 dataset had human brain
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MRI T1-weighted longitudinal images of dementia patients in the range (60,96) [68]. OASIS-3

comprised of human brain MRI and PET image longitudinal images of dementia patients in

the range (42,95). The dataset also had 1912 Freesurfer processed outputs as well as a data

dictionary [90]. The image data files were initially converted to NIfTI format by a format

proposed in an article by [15]. The raw DICOM or IMA formatted images were initially

converted to NIfTI through the function dcm2nii. The acquisition scanners were Siemens

BioGraph NMR PET-MR 3T, Siemens TIM Trio 3T MTI, Siemens Sonata 1.5T and Siemens

Vision 1.5T. Additionally, each image had the scanner information saved with the data [15].

2.4.6 ITK-SNAP

This dataset comprised of a zipped file that was made up of .nii brain MRI data files. This

dataset was considered for this research but the licence disapproved its use for such purposes

[105].

2.4.7 National Bioscience Data Center (NBDC Human Database)

The project NBDC was developed to ensure brain MRI data and other related files can be

stored and easily retrieved for research purposes. It functioned by integrating data from

multiple sites. The dataset downloaded from the project housed T1-weighted full brain im-

ages coupled with the associated clinical data for patients with schizophrenia, mood disorders

(unipolar and bipolar disorder) and healthy controls acquired at three different locations in

Japan. The data in the dataset was initially made anonymous and the quality of data was

assessed before storing the data. As of the time of writing of the dissertation the project com-

prised of 176 cases, that is, normal control (129), schizophrenia (37), unipolar disorder (8),

bipolar disorder (2) [82]. The data for the patients were arranged into five categories. The five

categories were normal cases, schizophrenia cases, unipolar cases, bipolar cases, and types of

MRI equipment used. The first four categories were tabulated and each table had four rows,

that is, brain MRI, phantom MTI, subject’s ID-phantom, ID-equipment, ID mapping table

and clinical information. The brain MRI and phantom MRI data files were zipped files that

contained NIfTI (.nii) files [82]. The raw subject’s ID-phantom, ID-equipment, ID mapping

table and clinical information rows contained information stored in tab separated variables
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(.tsv) formats. Finally, the section on MRI equipment showed the details of the scanners

that were used, that is, Philips, 3T and the modality were 3D-T1. Additionally, the NBDC

website gave the links to download the .nii and .tsv files when needed. It also provides a data

dictionary for clinical data bipolar disorder patients [82].

2.4.8 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

ADNI is committed to the provision of gadgets and resources for disbanding, amalgamating,

searching and making available a wide range of neuroscience data. It comprised of varied

data from volunteers collected by researchers. The varied data was collected using a standard

set of protocols and steps to eradicate discrepancies. The information on the dataset can

easily be accessed by authorized investigators through the LONI Image and Data Archive

(IDA) [54]. IDA houses brain MRI image data collected from an excess of 80 studies. The

study’s main thrust was an evolution, advancement in age and the continuation of the spe-

cific disease. The software allows you to search and choose the option of the file format to

download and the available options are archived file format, NIfTI and MINC file-formats [54].

2.4.9 Multiple Observations Across Networks (SIMON)

This project comprises of Brain MRI dataset of a single male in the age range (29,46). Each

patient being scanned in 73 sessions at different sites with varied scanner models. Each of the

sessions includes at least one anatomical T1-weighted image, in addition to other modalities

such as T1, T2- and PD-weighted, diffusion, resting-state fMRI, susceptibility, arterial spin

labelling. During these sessions, there were wide-ranging modalities. The datasets in this

project can be easily downloaded from Amazon Web Services S3 bucket. The files from S3

can only be accessed through the use of HyperText Transfer Protocol (HTTP). In accessing

the data one has to determine the correct Uniform Resource Locator (URL) and use it with

an HTTP platform to access the necessary data. Wild-cards are common tools for use when

searching data but they can not be used to access required data from S3 bucket, one has

to use the actual name in a given search. There are many programs (eg Cyberduck) that

can process S3 on the indigenous machine, these also allow individuals to browse through

the data through the use of a browser. In addition to all this, the dataset provides a .csv
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file that houses additional information about the 73 patients. The additional information

includes dominant handedness, age, scanner model name, scanner manufacturer, the institu-

tion where the image was taken, the date of acquisition and a column for the session number.

The dataset is comprised of archive files and these archive files contain .nii data files [104, 108].

2.4.10 Reshare

This project provides Brain MRI data from 22 patients that were known to have brain tu-

mours. The main thrust in acquiring the data was to access the practicality and usability

of fMRI in brain tumour surgical planning [96]. During image acquisition the radiographers

made use of an 8 channel phased-grey head coil GE Sigma HDxt 1.5T scanner. Originally the

scanner produced DICOM files and these were anonymized by getting rid of any information

that might be used to identify individuals in the study. The DICOM files were then converted

into NIfTI files using the dcm2nii function hence the imaging data stored in the zipped files

are in the NIfTI file format. The zipped files were then stored in a .tar file format which is

the file that the user downloads. Also, the dataset had an excel file (metadata.xlsx) attached

and this file housed extra data about the dataset [96]. The initial sheet in the excel file is

entitled ‘MRI DES data’and comprised of patient IDs (sub-IDs), pathology, tumour location,

estimates of grey/white/CSF and tumour volumes, any electrical stimulation if any were con-

ducted and last but not least the imaging modality (T1, T2, fMRI or DTI) used. The second

sheet entitled ‘clinical data’comprises of the demographics of the patients involved, dominant

hand information and results for many clinical examinations conducted [96]. The ‘nil’symbol

used in both sheets indicates missing values or information. [96].

2.4.11 LORIS

LORIS is a software designed to aid researchers through the provision of tools designed to

govern, process and distribute colossal volumes of data. Its infrastructural components in-

clude a database (NoSQL) and the database can operate effectively and efficiently even when

presented with large datasets. The database also provides the users with a unique opportu-

nity of using structured query language to access specific customized data. This data can

then be pre-processed for downloading and downloaded to a locally provided storage device.
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Also, LORIS enriches its experience by providing only relevant data to different users through

permissions depending on who they are and the data they should have access to [65]. The

infrastructure can also be customized to give more detail and give additional information such

as the original data, the data file formats used and the imaging modalities used. During up-

loading, the infrastructure is designed to be compatible with several file formats such as NIfTI,

MINC and DICOM amongst others and it can also be customized to conduct quality control

before any imaging data uploading. LORIS has a sub-project entitled BigBrain and the data

from BigBrain can be accessed through LORIS or from an FTP (File Transfer Protocol). The

data store in BigBrain related to MRI brain was in .nii file format [65].

2.4.12 NeuroImaging Tools & Resources Collaboratory (NITRC)

Researchers in neuroimaging can freely access resources from the NITRC website upon reg-

istration to the site. The website is hosted by the Center for Research in Biological Systems

(CRBS) which is a research organ in the University of Califonia San Diego (UCSD). It was

initialised in the year 2007 and continued running until the writing of this dissertation. The

function of CRBS is to enable collaboration between computer scientist/information technol-

ogy expert and experts in the fields of chemistry, medicine and other science-related fields

[85]. The NITRC project offers comprehensive information about ways of increasing the scope

of neurological related software resources and data. In general, NITRC has three sub-groups,

that is, the resource registry (NITRC-R), Image Repository (NITRC-IR) and Computational

Environment (NITRC-CE). NITRC-R’s main thrust is the provision of software tools and

other necessary resources to ensure that previously funded neuroimaging projects are made

available to the neuroimaging community at large [89]. It also provides a platform for the

free exchange of ideas between researchers and developers. On the other-hand NITRC-CE is

a cloud-based platform that is free to download. After the download and installation have

been completed, the user can make use of the platform but pay for the use of the platform

when they do use it. The platform comes pre-configured with some popular neuroimaging

software, for instance, ANTs, AFNI, FSl and FreeSurfer. The user can easily make use of

the available software to analyze their data without the need to configure the given software

hence saving them on computational resources and time. The platform has provisions for the

user to configure the software they need as an addition to those already provided for [89].

Last but not least, NITRC-IR is synonymous with NITRC-R but while NITRC-R focuses on
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tools NITRC-IR focuses on data. It makes it possible to download free of charge publicly

available datasets. NITRC houses several files with data formats ranging from DICOM to

BIDS for normal subjects and those with conditions under study. The conditions normally

studied include Parkinson’s, autism, ADHD and Schizophrenia [89].

Internet Brain Segmentation Repository (IBSR) was a sub-section of NITRC-IR and it offered

MRI brain data along with segmentation results generated by experts in the field. The project

aims to promote the development of segmentation methods and assessment. NITRC has had

several versions over the years, one of the releases was CANDIShare Schiz-Bull 2008 version

1.2 (v1.2) and this version was based on 103 subjects. In this release, the organisers added

the Certified Medical Assistant (CMA) general segmentation for all the subjects [83]. Version

1.2 also corrected the bug that was found in version 1.1. Also, v1.2 includes the linear and

non-linear registrations for each subject. These comprised of MRI images and the segmented

results for all the four categories that were involved. The categories considered were the con-

trol group (29 subjects), the group with Schizophrenia Spectrum (20 subjects), the group with

Bipolar Disorder coupled with Psychosis (19 subjects) and finally the group with Bipolar Dis-

order without Psychosis (35 subjects). The dataset had a folder for each category and hence

there are four folders and each folder was a gzipped tar folder. Each of the four files contains

sub-folders for each imaged subject [83]. These sub-folders housed CMA preprocessed image

data and the results of the general segmentation and all the data were in the NIfTI (.nii.gz)

file format. CMA included protocols for positional normalization and bias field correction.

The protocols were there to ensure that the images were in the standard orientation of the

Talairach coordinate space in the accurate segmentation of the lateral ventricles and caudate

nucleus in MR brain images using anatomical driven histograms. Additionally, the dataset

also provided group basic demographics in a separate .csv file. The information contained in

the .csv file included the age, gender and dominant handedness of the subjects [83].

For one to get access to NITRC resources one has to go through a very simple and straight

forward registration process and after that, the publicly available datasets are fairly easy to

download and free. It took us less than 5 minutes to download v1.1 and v1.2 which was

exceptionally fast considering that a dual core was being used with four gigabytes Random

Access Memory (RAM) on Ethernet. On the other hand, it has been observed over the years

that at times some files are not accessible, for instance, Olmos and Tero in 2013 could not
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access version 1.1 (v1.1) and v1.2 for the demographic information [87]. Researchers also

pointed out that even though the segmentation results were in NIfTI file format the original

acquisition data was in .otl file format and this brought about minor differences at the voxel

level. The .otl file formats might be more difficult to read but they provide better accuracy,

on the other hand, the preferred NIfTI file formats are easier for the general public to access

and read hence they are mostly used by the research community but are less accurate [88].

The preceding sections discussed the various datasets that could be used for brain image seg-

mentation. The information discussed included the image data-types, acquisition protocols

and other crucial aspects of datasets. The following sections discusses brain image segmenta-

tion and some of the algorithms that have been proposed this far.

2.5 Brain MRI Segmentation

Image segmentation by definition is the parcellation of an image into different regions of in-

terest. Medical image segmentation was traditionally done manually by seasoned medical

practitioners. The problem with manual segmentation was that its outputs were difficult to

reproduce, susceptible to human error, time-consuming and suffered from user variability. On

the other hand, radiological laboratories frequently had large numbers of medical images to

process [66]. This made manual segmentation inefficient and ineffective in a fast-paced envi-

ronment like the hospital. Also, in image segmentation, it is critical to understand how the

different organs work as units and systems [66]. Image segmentation is crucial in studying the

neurological development of soft tissues like the brain and/or spinal code, checking if any dif-

ferences exist between healthy and abnormal anatomical structures and the mapping that can

be done between functional activation and brain anatomy [125]. Segmentation by definition

involves either organ and/or tissue characterization depending on the clinical procedure that

is about to be undertaken [125].

A brain stroke is also known as cerebrovascular or cerebral circulation abnormalities (ischemia)

which leads to necrosis. Stroke has non-reversible effects on the human body so there is a

need for early diagnosis and treatment [26]. Also, white matter lesions are common in neural
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disorders such as multiple sclerosis, small vessel disease and anaemia [124]. Identification and

measurement of regions of interest is an important step in the identification of neurological

disorders [124, 26]. The main sulci are used to differentiate functionally different regions in the

brain. The shape and size can be used to diagnose neurological disorders. According to Borne

et al. [17] segmenting sulci is a daunting task, because it’s a highly irregular structure and

also each brain contains about 120 different types of sulci [17]. Also, segmentation in medical

imaging is a challenge because of the rarity of labelled images and the fact that medical images

are normally very large that is, 3D [17].

The segmentation of arteries using 3D time-of-flight (TOF) magnetic resonance angiography

of the brain allows for the measurement of their volume, which is important in studies focus-

ing on understanding ageing. It is a challenging task to segment the arteries because they

are a dense complex network and weak signals generated from slow-moving blood [24]. The

hippocampus is responsible for the learning process, long and short term memory including

memory management for daily activities. The segmentation of the hippocampus can assist

in the diagnosis of coresistant temporal lobe epilepsy [21]. Hippocampus is also the region of

interest in studying the progression of Alzheimer’s disease. The rate of tissue decay of the

hippocampus can be used to deduce the progression of AD. The structural changes of the

hippocampus are also critical biomarkers for dementia [11]. The hippocampus has faint edges

and overlapping intensities with its neighbouring structures, this makes the segmentation more

difficult [11, 18, 37, 111]. The authors in [36], also pointed out that Alzheimer’s is a type of de-

mentia that affects a significant population of those who are above 80 years of age. AD seems

to be highly correlated with symptoms such as cognitive impairments and attitudinal changes.

The segmentation of sub-thalamus nucleus and globus pallidus internal and Substantia Ni-

gra are important for the diagnosis of diseases such as dystonia and Parkinson’s diseases

respectively [77]. The study of the hippocampus has attracted attention in medical image

segmentation due to its connection with memory and AD [12]. The treatments that are cur-

rently available for AD are early treatments hence it is important to have an early diagnosis.

Segmentation is a challenging task due to noise, differences in image acquisition protocols,

inhomogeneity, differences in intensity profiles, differences in scanner models, partial volume

effects, anatomical differences between subjects, magnetic field non-uniformities and low con-

trast between tissues [2, 8, 33]. Different components of the human body (water, bone, etc.)
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exhibit different properties when exposed to different environments. Image acquisition ex-

ploits these differences to come up with the required image. The modalities in common use

are x-ray, computed tomography, magnetic resonance imaging, ultrasound scan and other im-

portant modalities as stated in the work by Bandhyopadhyay and Tuhin [8]. X-ray and other

modalities like computer assistance tomography (CT) have high levels of radiation and these

have well-known side effects.

Segmentation of sub-cortical structures is a daunting task as they are small and normally

have varied shapes and structures and they also have unclear boundaries are missing in same

images[9]. Manual segmentation is time-consuming as compared to the automated and semi-

automated algorithms [79]. Additionally, machine learning algorithms are known to perform

exceptionally well in subjects that have approximately the same intensity values and under-

perform when presented with data with differing intensity values. The differences in intensities

are normally due to different scanners or imaging protocols amongst other reasons [33]. An-

other thorny issue in image segmentation especially for ageing people that have neurodegen-

erative disorders is the existence of white matter hyperintensities (WMH) which contribute to

cognitive defects. These are regions of the brain that have a boasted signal appearing on T2

scans and FLAIR MRI scans and these appear as WMH in T1w images. They give a similar

intensity profile to that of the grey matter and can result in the regions being erroneously

classified as a grey matter regions [33]. .

Medical image segmentation is crucial as a pre-requisite or core component for many clinical

processes. Some of the processes include surgical planning, abnormal organ development de-

tection and post-surgical assessment. Almost all the image processing activities that are done

are digital. In image processing the acquisition, processing, storing and analysis have all be-

come digitalized. Several strides have been made in developing the technology used for image

processing. Even though a lot of ground has been covered in the field, it remains very difficult

to accurately segment medical images [8]. Many semi and fully automated algorithms have

been developed. All these algorithms attempt to segment brain images within certain limits

of accuracy. The algorithm’s error rate is owing to the unidentified and irregular noise source,

inhomogeneity and weak contrast between tissues especially on the boundaries between tis-

sues. Medical images normally contain complex regions of interest and have to be segmented

with a high degree of accuracy for meaningful diagnosis of neurological and psychiatric dis-
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orders to take place, for the assessment of treatment effectiveness and as a prerequisite for

surgical planning [8]. The following sections cover discussions on the literature review related

to the segmentation of MRI brain images of humans, mainly focusing on those that made

use of CNNs. The section commences with general discussions on concepts related to neural

networks (NN).

2.6 Neural Networks (NN)

2.6.1 Introduction

A NN is a learning algorithm that forms the major component of most deep learning al-

gorithms. Litjens et al. [64] gave a summary of the mathematical definitions and related

equations for a neural network. These networks form the basis of artificial neural networks

(ANNs), and ANNs are the predecessors of CNNs. CNN’s are almost the same as ANNs.

In that, they are also made up of neurons, and they learn to optimize. In effect, they are

calculating machines that are comprised of several neurons working together as a system to

learn inputs to produce an output [92]. A summary of the mathematical constructs involved

with convolutions was shown in the study carried out by Wu [121]. CNN’s have an advantage

over ANNs in that they are better able to handle larger problems as compared to ANN hence

they have been applied in solving numerous real-life problems [3, 92]. CNN’s are made up of

mainly three types of layers, that is convolutional layers, pooling layers, and fully-connected

layers. When the layers are stacked in any logical order, they result in a CNN architecture.

Figure 2.10 provides a typical example of a CNN architecture.

Figure 2.6: A diagram showing the structure of a typical CNN architecture [4]

Figure 2.10 shows a CNN architecture, with the input, convolutional, pooling, dense and
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output layers. The neural network in the diagram could be used to classify animals in the

images as either a cat or non-cat animal. The convolutional layer establishes the yields of

neurons connected to the input by calculating the scalar product of weights and the region

connected to the input volume. The parameters for this layer are centred around the use of

learnable kernels. Kernels are integer matrices of a given size, but they are generally small

in space dimensionality [92]. When the input data goes through the convolution, each of its

filters goes across the input’s entirety, producing activation maps. Each of the kernels will

have an interrelated activation map, and these maps are stacked, resulting in a convolutional

layer. CNN can minimize the intricacy of a model by optimizing its output. The optimization

can be achieved through three hyperparameters, that is stride, zero paddings, and depth [92,

121]. The study carried out by O’Shea et al. [92] showed how these hyperparameters could

be set or activated. Activation functions such as Rectified Linear Units (ReLU) or sigmoid

would be used on outputs to give an output in the expected range, and this will be used as

input for the next input [92].

Pooling layers would be used to reduce the number of incidents in the given input and further

reduce the number of parameters within the activation function. The pooling layer will act

on each of the activation maps that it receives as input. It would scale the dimensionality of

the activation maps, and this would usually be achieved through the ‘MAX’function as the

commonly used pooling function is max-pooling. Due to the pooling layer’s destructive nature,

a kernel size of more than three is not advised, as this will result in decreased performance of

the model [92]. In the fully connected layer, all the neurons in a layer are connected to the

next layer’s neurons. There are also other types of layers, for instance, dropout, softmax, and

other layers used in a CNN architecture.

2.6.2 CNN Applications To Brain Segmentation

Only a few layers can be used in making a CNN architecture, but the actual architecture is

very dynamic. Several algorithms have been proposed for medical image segmentation, and

these include GANs, encoder-decoder, deep medic, Densenet, ensemble, patch-based CNN,

transfer learning, U-Net, V-Net, Y-Net, and VoxResNet just to mention a few.

Over the past few decades, researchers have proposed many approaches to segment the brain

into varied regions of interest. The approaches can be categorized in several ways, but we
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categorized them as a sliding window (patch-based) and fully convolutional neural networks

(Fully CNN) [42]. Sliding window algorithms make use of patch-based segmentation and still

use convolutional neural networks (CNN) in their architecture while fully CNN does not use

patches. Fully CNN is predominantly CNN that some researchers have used as hybrids.

The study carried out by Geceri and Evgin [42] outlined the advantages and disadvantages

of each group. They went on to point out that most fully CNNs were based on the encoder

and decoder architecture. They concluded that fully CNNs were more efficient than sliding

windows regarding processing time and computational complexity, but fully CNN had more

parameters. They went on to outline the fact that many fully CNN had been proposed, citing

that some authors had used cascaded hybrids of fully CNN, and other algorithms made use of

dense pooling layers [42]. They went on to cite U-Net as one of the most commonly adopted

architecture. In researches, it has been proven that increasing the depth results in rich im-

age features, which also enhances the learning of the NN, but unfortunately, this results in

reduced accuracy rates. Their study also indicated that ResNets were able to take advantage

of deeper networks. Hydride architectures have been developed to unify the strength of many

base architectures, and the studies done by Goceri and Evgin gave some of these architectures

[42].

The review by Geceri and Evgin summarised related reviews. It went on to show that some

authors had zeroed in on the segmentation of the medical images, others zeroed in on only the

technical aspect of segmentation, other authors focused on more aspects including registration

and classification, other authors zeroed in on retinal blood vessels segmentation. In contrast,

other authors zeroed in on semantic segmentation only while others have zeroed in on weakly-

supervised semantic segmentation [42]. In addition, the study carried out by Litjens et al. [64,

102] made a comprehensive review of the methodologies and application-driven studies carried

out in all fields in image processing. The review only focused on deep learning algorithms [64,

102].

2.6.3 Sliding Windows

These algorithms use patches as inputs instead of complete brain image slices or volumes.

The studies in [9, 10, 17, 18, 26, 32, 43, 53, 62, 123, 124] used patch-based segmentation.
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There are two types of researches that have been connected to sliding windows. First type

focussed on experimenting with different patch sizes to determine the one that optimizes NN’s

segmentation accuracy [123]. The second focussed on implementing sliding windows in brain

image segmentation. In addition, some algorithms use 2D [32, 43, 123, 124], 3D [18] while

others use 2.5D [123] sliding windows. The most commonly used patch sizes are 13, 32 and

64 while patches of size 8, 16 and 60 have also been used. Patch size 13 was said to have the

best segmentation output but was slow [32, 123, 124]. Also, some researchers used patches

with prior label information [9, 10]. In addition, researcher pointed out that, larger patches

produce better results because of the more information but smaller sized patches were known

to have higher accuracy rates. Researcher have therefore proposed models that use both small

and large patches [124]. Also, sliding windows are used with various architectures including

DenseNet and the LeCun architectures[17, 43]. The following section discussed the fully con-

nected convolutional neural network.

2.6.4 Fully Convolutional Neural Network (Fully-CNN)

The fully connected CNN neural networks proposed have several variations, and some are hy-

brids of other algorithms. The studies carried out by [5, 57, 99, 60] made use of fully connected

CNN. Some of these algorithms were hybrides of well known architectures such as V-Net [94,

129], U-Net [21, 37, 48, 45, 63, 111, 122], Y-Net [24], Ensemble [2, 11], Encoder-Decoder

architecture and Generative Adversarial Networks.

2.6.4.1 GANs

Research on GANs showed that they could be instrumental in medical image data augmen-

tation and making image data anonymous. In addition a trained GAN could be used for

continuous learning in decentralized datasets or in the integration of data from different in-

stitutions without fear of confidentiality violation [57, 99].
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2.6.4.2 Encoder-Decoder Architectures

The encoder-decoder architecture is one of the commonly used architectures in medical im-

age segmentation. The encoder-decoder architecture uses CNN as a backbone. Some of the

common encoder-decoder architectures include V-Net, U-Net, and many more hybrids since

its a common and very effective NN architecture. The following sections discussed some of

the typical encoder-decoder based medical image segmentation proposed algorithms.

2.6.4.3 U-Net

The U-Net architecture has proven itself to be a very instrumental architecture in medical

image segmentation hence many algorithms have been proposed based on it. The research

studies in [21, 37, 48, 45, 63, 111, 122] used the U-Net architecture. Some authors made use of

the U-Net in conjunction with ensempling [37], prior information [48], patches, a second U-Net

and ensemple methods [30], 3D contextual information [111] with very promising results. On

the other hand, some authors have shown that U-Net used in conjunction with a large step

size (during patch generation) prove to be as effective as one with a small step size. Also,

the U-Net produces better visual segmentation results as compared to a number of other al-

gorithms [37, 48]. In addition, of the U-Net architectures have been known to be very fast [111].

2.6.4.4 Ensemble

Ensemble methods have gained traction in the past as they have had promising results. They

combine different models and aggregate the different models’ results to achieve the medical

image segmentation task [2, 11]. Research has shown that by comparison three channel en-

semple classifiers perform better than one channel [2].

2.6.5 Section Conclusion

The sections above discussed various algorithms that have been implemented for brain image

segmentation. In the literature, some researchers proposed the use of conditional random

fields (CRF) or recurrent networks to aid in image processing [94]. In addition, some authors
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believed quantization introduced a regularizing effect to the NN, resulting in an increase in

segmentation results. On the other hand some authors suggested the use of intensity cor-

rection in areas were the images have not been preprocessed. Authors in other texts also

believed that the use of sliding windows mitigated information lose. In addition, research has

shown that the use of parallel patch generation to maximize efficiency and effectiveness of a

NN model in medical image segmentation. Also, to optimize model output researchers should

consider using different set of parameters (learning rate, loss functions, etc) and choosing the

set that optimizes the segmentation output [24].

2.7 Conclusion

The brain is responsible for coordinating the operations of the entire human body. Different

parts of the brain have different responsibilities in the body. For the brain to perform its sev-

eral functions effectively and efficiently, it has to be devoid of defects. Any defects in the brain

usually result in severe neurological disorders that are difficult, if not impossible, to reverse.

Early diagnosis and treatment of any neurological defects would go a long way in reducing

the brain’s effects and the body in general. For any meaningful clinical decisions to be made,

there is a need to accurately segment the human brain. Researchers around the globe have

proposed several human brain MRI segmentation algorithms over the past few decades. In

the present study, we gravitate towards the use of CNNs in MRI brain image segmentation,

which then boiled down to patch-based segmentation of the human brain MRI. We choose to

gravitate towards CNN because of the promising results they have shown for human brain

segmentation in several studies.
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3. Methods And Techniques

3.1 Introduction

This chapter covers the objectives of the present study. It gives a summary of the machine

learning tools describes the NN architecture used in the study. The chapter goes on to discuss

dataset preprocessing steps for the study. Additionally, it discusses segmentation classes pro-

vided in the dataset and classes considered in the present study and how they are derived. It

also discusses the methods used in patch generation and how the dataset is split into training

and validation datasets. The chapter also goes on to discuss 3D and 2D pixel/voxel voting

and their comparison. It also describes the experiments that were carried out in the present

study. The chapter concludes with a discussion of the evaluation metrics that are considered

in evaluating the performance of the proposed algorithms.

3.2 Experimental Objectives

This section of the present study focuses on the experimental objectives and these are:

1. Effectively pre-process MRI brain images for component-based segmentation,

2. Train a CNN to segment a ROI using MRI patches

3. Evaluate the achieved segmentation performance

3.3 Machine Learning Tools Used In The Research

3.3.1 Programming Platform

Several image processing tools are used during preprocessing, model development, training and

evaluation. Medical image training and evaluation is known to take extended periods hence
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alternatives to Anaconda were considered and some of the popular choices were Google’s Col-

laboration, Azure Notebooks, Kaggle, Amazon SageMaker, IBM DataPlatform Notebooks and

Jupyter Notebooks. Google’s Collaboration (a.k.a Colab) was the preferred choice because

it comes configured with most required modules, gives access to resources such as GPUs or

TPUs and is a familiar platform for researchers. Colab is an online framework that allows

users to compile and run Python through the browser. The framework uses the Jupyter Note-

book interface and required no system set up to be done for one to develop or run Python

code. It provided free access to computing resources including GPUs, TPUs etc. even though

there were limitations due to demand from users. The GPUs and TPUs allocation algorithm

prioritised users who used Colab interactively as opposed to users with models that took a

long time running. The algorithm also prioritised users that recently used fewer resources.

Colab had a maximum runtime of 12 hours and the available memory varied with demand.

Colab comes with a lot of packages and these included NumPy, TensorFlow, Keras, pandas,

Babel, OpenCV, Pillow, pip-tools, Sci-kit learn and torch only to mention a few. The platform

also enables users to install other packages, in the present study we install Mayavi and other

packages as per need. Additionally, during training GPUs are activated in the run-time envi-

ronment. Also, the packages discussed in the following sections were installed on the platform.

3.3.1.1 Keras

The proposed model is a Keras based model, hence the layers, optimizers and regularizers

are from Keras. Keras is used to import important modules like SoftMax, Activation, Input,

Dense, Flatten, Dropout, Reshape, Conv2D, MaxPooling2D, UpSampling, Conv2DTranspose

and image. Most of these modules are then used in model development. The model also uses

the to categorical function from the utils module from Keras, to convert ground truth classes

into categorical classes.

3.3.1.2 Tensorflow

The proposed algorithms are implemented in Tensorflow. Firstly, the actual inputs to the NN

are patches hence Tensorflow is used in patch extraction. It is also used in tensor to array

conversion using the eval() function. Tensorflow is also used in the extraction of the central
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pixel values for ground truth patches using crop to bounding box() function from Tensorflow.

Additionally, it is used to reshape the NumPy array to suit the requirements of the next stage

in the processing cycle or the requirements of the researchers.

3.3.1.3 Matplotlib

Matplotlib is used alternatively with Mayavi for visualizing the brain or its components. Py-

plot from Matplotlib is also used in visualizing the performance of the NN through plotting

the graphs of evaluation metric such as training accuracy and validation loss. Pyplot is also

used in plotting the cropped slices of both the input and ground truth images in visualising

their morphology.

3.3.1.4 SKLearn

The CANDI dataset comes as a single dataset hence there was a need to split it into training

and validation sets. Sklearn is used for splitting the provided dataset. Also, there is a need

to encode the ground truth classes hence Sklearn is also used for the encoding.

3.3.1.5 Numpy

Numpy is extensively used in the development of the proposed algorithms. It is used in the

conversion of image data from its original format. The image data format is originally dataobjs

hence Numpy is used in converting dataobjs into Numpy arrays in the preprocessing stages

of model development. It is also used in the integration of the missing channel and batch

information to image NumPy arrays.

3.3.1.6 ADDED Packages-Mayavi

During the present study’s experimental work it is important to visualise the data either for

analysis or verification purposes. Mayavi [72] gives a set of tools for 3D interactive visualiza-

tion of the brain or its components. It is built on top of several libraries and these include
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VTK (Visualisation ToolKit), NumPy, Traits and TVTK and details of these can be found

in the work done by Ramachandran et al. [95]. Mayavi is chosen because it works seamlessly

with our data which has been converted to NumPy arrays. The following sections discuss

some of the hyper-parameters used in the study.

3.3.1.7 Machine learning Hyper-parameters

Stochastic Gradient Descent (SGD)

In most machine learning problems, there would be an input vector x and an output vector

y that would normally be adopted from a probability distribution P(x,y). The probability of

y given a certain value of x(P (y|x)) then would give the required relationship between the

vectors x and y [119]. When ŷ is used to represent an estimate of y then ŷ− y would give the

error and the expression Γ(ŷ - y) would be referred to as the error function. The objective

function is to minimize the function given in equation 3.5.1.

E(g) =
1

n

n∑
i=1

Γ(g(xi), yi) = E n[Γ(g(x), yi)] (3.3.1)

The linear parameterization of Γ is done by w, where w would be an element of Rd and d

would be the size of the vector x. SGD would make use of one sample at a time during

SGD iterations. After each iteration, it would update the weight vector w by making use of

time-dependent factors and this would result in the equation 3.5.2:

wt+1 = wt − [
λ

t

σ

δw
Γ(gt(xt), yt)] (3.3.2)

where λ would be the gain factor the function uses to update the weight at time t at the end

of every iteration.

Learning Rate, Decay And Momentum

SGD would make use of the back-propagation of errors algorithm to update weights. The rate

at which weights are updated is referred to as the step-size or the ‘learning’rate (lr). Learning

rate (lr) is a SGD hyperparameter that has a value between zero and one. Learning rate
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(lr) would be responsible for determining the corresponding change in the model given the

estimated errors during weight update [19]. Learning rates should be selected with wisdom

as an extremely large value of lr forces the model to converge prematurely resulting in a sub-

optimal solution, on the other hand, a value too small would result in the model getting stuck

in a local minima [19]. If the NN is implemented with momentum then the update of the

weights would consider the current gradient as well as the previous updates to the weights.

This would result in an accelerated convergence and slim chances of being stuck in local

minima. Momentum also aids the parameter vector to build velocity in any given direction

and it would do that at a constant gradient to avoid any oscillations. The most common

momentum values are those that are close to 1, such as 0.99 [27]. In Keras implementation, the

parameters momentum and decay are defaulted to zero and consequently learning is constant

by default. Learning rate decay would make lr a variable whose current value is calculated

using equation 3.5.3:

lrnew = lrstarting −Blrcurrent (3.3.3)

where B = 1/(decay + iteration), lrnew is the new learning rate, lrstarting the initial learning

rate, lrcurrent the current learning rate, decay the decay rate and iteration the number of it-

erations that have run thus far. Additionally, the SGD class is implemented in Keras in the

optimizer class and it provides decay as one of its arguments. Also, equation 3.5.3 shows that

the learning rate would be a non-linear function. It also shows that Learning rate (lr) and

decay are inversely proportional to each other. A high value for decay would result in the

lr quickly moving to a very small value. Consequently, a high value of decay would there-

fore not be advised as this would increase the chances of the model being stack in local minima.

3.3.2 Convolutional Neural Networks Architecture

The model NN architecture proposed for the present study is an extension of the work done

by Cui et al. [32] and its structure is as shown in Figure 3.1.
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Figure 3.1: The neural network architecture for the proposed algorithm

In the model, all the convolutional layers have the use bias parameter set to ‘True’and the

bias-initializers initialized to zero. In addition, ReLU activation function is used in each

convolutional layer. Also, RandomNormal kernel initializers are initialized with mean 0.0,

standard deviation 0.01 and no seeds set. The general equation for a convolutional layer is as

shown in 3.2.1:

yj = (
∑
i

mijxi) + nj (3.3.4)

where mij represents the ith filter for the jth feature maps and xi represents the input to the

convolutional layer and nj represents the jth filter bias [32]. The convolutional layer has three

other important parameters, that is, filter size, stride and padding. Filter size gives the size

of the filter used during convolution, stride gives the step size for the convolution and padding

allowed the implementer to either implement padding or not. When padding is implemented

its value is either set to same or valid. In the present study, padding is set to ‘valid’and the

43



other parameters are maintained in their default state.

There is only one Dense layer and in this layer the parameters use bias, bias initializer and

kernel initialiser are initialised to the same values as in the convolutional layer. It, however,

uses the Sigmoid instead of the ReLU activation function. The rest of the layers and param-

eters are as discussed in the following paragraphs.

The input images to the NN are patches of size 32∗32. Greyscale is used in the present study.

Table 3.1 gives a general summary of the layers used in the proposed model. It shows the 9

layers of the model, that is, 4 convolutional layers (Conv), 2 pooling layers (Pool), 2 Drop out

layers (Drop) and a Dense layer (Dense).

Table 3.1: Table showing a summary of the layers of the proposed NN model

Layer Layer Layer Number of input-size Output-size

number type feature maps

1 Conv2D Conv 48 32 28

2 MaxPooling2D Pool 48 28 14

3 Conv2D conv 96 14 10

4 Drop out Drop 96 10 10

5 MaxPooling2D Pool 96 10 5

6 Conv2D Conv 700 5 2

7 Drop out Drop 700 2 2

8 Conv2D Conv 4 2 1

9 Dense Dense 4 1 1

Table 3.1 shows the types of layers, the number of feature maps used in each layer, the image

input and output size for each layer. In the table the inputs to a layer are the outputs of

the previous layer. The output size of each layer can be calculated by the formula shown in

equation 3.2.2:

Output size = [
n+ 2p− f

s
+ 1] (3.3.5)

where n is the input size, p the padding size, f the size of the filter and s the stride size. In

addition, Algorithm 1 [1] shows a simple implementation of the Convolution algorithm.
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Algorithm 1: 2D Convolution Algorithm [1]

Result: Convolved Image Matrix

1 hoplx = (oplx + 1)/2;

2 hoplx = (oplx + 1)/2;

3 for iy = 0; iy < ny; iy++ do

4 starty = MAX(iy-hoply+1, 0);

5 endy = MIN(iy+hoply, ny);

6 for ix = 0; ix<nx ; ix++ do

7 startx = MAX(ix-hoplx+1, 0);

8 endx = MIN(ix+hoplx, nx);

9 if velmod[iy*nx+ix] != c then

10 c = velmod[iy*nx+ix];

11 readtable2D(opx, om/c, hoplx, hoply, mode);

12 end

13 dumr = dumi = 0.0;

14 k = MAX(hoply-1-iy, 0);

15 for i = starty; i < endy; i++ do

16 l = MAX(hoplx-1-ix, 0);

17 for j= startx; j < endx; j++ do

18 dumr += data[i*nx+j].r*opx[k*oplx+l].r;

19 dumr += data[i*nx+j].i*opx[k*oplx+l].i;

20 dumi += data[i*nx+j].i*opx[k*oplx+l].r;

21 dumi -= data[i*nx+j].r*opx[k*oplx+l].i;

22 l++;

23 end

24 k++;

25 end

26 convr[iy*nx+ix].r = dumr;

27 convr[iy*nx+ix].i = dumi;

28 end

29

30 end

31
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In the implementation, there are variables oplx, oply, nx and ny. The first two of the variables

represent the length of the operator while the last two represent the sizes of the data. Addi-

tionally, opx and velmod are arrays, the former contains the operators of the convolution while

later contains information on whether or not to load a new operator. All this information is

stored in a table and the readtable2D function reads the appropriate value of the operator

depending on the values of c and om.

In the proposed algorithm the layer is a convolutional layer with input images of size (32 ∗ 32)

and the filters are of size 5 ∗ 5. Using equation 3.2.2 with n = 32, p = 0, f = 5 and s = 1,

the outputs of the first convolutional layer are of size (28 ∗ 28). In the convolutional layer, the

filters slide over the channel. Forty-eight filters are used in this case, this resulted in a total

of 28 ∗ 28 ∗ 48(37632) feature maps that are produced and 48 images.

The second layer is a pooling layer. MaxPooling and AveragePooling are the most frequently

used pooling layers in images processing. MaxPooling is selected for use in the present study

and an example of its algorithm is as shown in Algorithm 2 [6].

Algorithm 2: Maxpooling Algorithm [6]

Input: Input Images

Output: Maxpooled Images

1 Initialisation: feature maps = []

2 Def max pooling(inputs, pool size):

3 foreach i in range (0, len(inputs[feature map]) - pool size[0], pool size[0]) do

4 foreach j in range (0, len(inputs[feature map]) - pool size[0], pool size[0]) do

5 feature maps[-1].append(np.array(max((inputs[feature map][j:j+pool

size[0], i:i+pool size[0]]).flatten())))

6

7 return feature maps

8

The Maxpooling function takes as input the input images and the size of the pool to be used

during the Maxpooling process. The for loops help in isolating the required values and then

the max() function is used to determine the maximum value in a pool. Maxpooling has the

effect of highlighting certain features in given feature maps. This pooling layer receives 48
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images of size (28 ∗ 28) as inputs. Using formula 3.2.2 with n = 28, p = 0, f = 2 and s = 2,

the output images are of size 14. This, in essence, produces 48 images of size (14 ∗ 14) or a

total of 9 408 feature maps. After the MaxPooling layer, the third layer is a convolutional

layer. This layer receives 48 input images of size (14∗14). It makes use of 96 filters and hence

produces 96 images as output. Using formula 3.2.2 with n = 14, p = 0, f = 5 and s = 1, the

resulting images are of size 10 ∗ 10. The total number of feature maps produced as output is

9600(96 ∗ 10 ∗ 10) located on 96 images.

Large NNs normally have multiple weights and bias parameters. This makes their training

difficult as this usually results in dataset over-fitting. Researchers proposed two mechanisms

to reduce the possibility of over-fitting. The two approaches are regularization and Drop outs.

The Drop out layer randomly selects and destroys (turn them to zero) a given fraction of the

pixel or voxel data. In this way, the network is taught to learn redundant representations

in data and hence avoid over-fitting. The fourth layer is, therefore, a Drop out layer with a

Drop out rate of 0.5. In this layer, the input images are of size 10 ∗ 10. For these images,

50% of the pixel values are destroyed. In this way the number of feature maps, images and

parameters does not change from those of the previous layer. The only changes that would

occur will occur to half the pixel values.

The fifth layer is a MaxPooling layer and the inputs to this layer are images of size 10 ∗ 10.

This layer maintains the number of images from the previous layer but image sizes are halved.

Using equation 3.2.2 with n = 10, p = 0, f = 2 and s = 2 results in outputs of size 5.

Also, feature maps are reduced to 2400(5 ∗ 5 ∗ 96) and the number of images remained as

96. After the MaxPooling layer, the sixth layer is a convolutional layer. This layer has 700

filters that are of size 2 ∗ 2 and input images of size 5 ∗ 5. Additionally, equation 3.2.2 uses

the floor() function when presented with fractions. Simplifying [(5 + 0 − 2)/2] + 1 results

in floor(1.5) + 1, which simplified to 1 + 1 = 2. This implied that the output images are

of size 2∗2. This layer produces 700 images of the stated size and 2800(2∗2∗700) feature maps.

The seventh layer is a Drop out layer and its inputs are images of size 2 ∗ 2. The layer out-

putted 700 images that are of size 2 ∗ 2 just like the previous layer. Its output pixel values

are randomly selected and 50% of the neural connections were rendered ineffective to avoid

over-fitting. Additionally, the number of feature maps produced are the same as for the pre-
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vious layer. After the Drop out layer, the eighth layer is a convolutional layer and its input

images are of size 2 ∗ 2. This layer has four filters of size 2 ∗ 2. Using formula 3.2.2 with

n = 2, p = 0, f = 2, s = 1 results in 4 output images of size 1.

The final layer is a dense network layer. There are four input images to this layer and each

is of size 1 ∗ 1 (four neurons). Additionally, all the input neurons are connected to the four

neurons in this layer. This layer has a Softmax activation function. This activation function

is a generalization of logistic regression that enables models to make predictions in multi-class

classifications. Equation 3.2.3 [107] gives the general formula for Softmax regression:

Zθ(x
(j))) =



P (y(j) = n1|x(j); β)

P (y(j) = n2|x(j); β)

.

.

P (y(j) = nm|x(j); β)


=

1∑nm
j=n1

eβ
T
j x

j M (3.3.6)

where M=
[
eβ

T
n1

x(j)eβ
T
n2

x(j) ...eβ
T
nm

x(j)
]T

and x1, x2, x3, ..., xnm are the inputs to the Softmax

layer while y1, y2, y3, ..., ynm are the ground truth values. In the equation, yj is an element of

the set n1, n2, ..., nm and the quest is to determine the probability that y(i) = nk, where nk is

an element of n1, n2, ..., nm. Last but not least β1, β2, ..., βnm are the associated parameters.

The Softmax layer produces probabilities of class occurrence given a certain input and the

sum of all the probabilities added up to one. The class with the highest probability is the

winning class for the classification problem. The final outputs vary, in the experiments with

four classes the output is as shown in Table 3.1 but in those with three classes the output

would be one less than that in Table 3.1.

3.4 Experimental Design

3.4.1 Conversion From NIfTI To Numpy Arrays

The data from CANDI comprises of zipped files with NIfTI data files. The present study

makes use of NumPy arrays hence all the NIfTI data files are converted to NumPy arrays.
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NiBabel’s load() function (nib.load()) is used to load the NIfTI data files. When the function

loads data files from disk, it loads proxy images. These images have several properties that

include a dataobj data structure. Dataobj data structures are not arrays but array proxies.

The proxy objects are then passed as parameters to the function np.array() and this returns

NumPy arrays. This is done for all the slices in all the data volumes, hence all the data beyond

this point is then processed as NumPy arrays.

3.4.2 Train-Validation Splitting

The train test split() function from Sklearn was designed to split arrays or matrices into ran-

dom training and validation sets. This function is used in creating the training and validation

sets for the present study. The function has several parameters and the ones considered for

the present study are *arrays, test size, train size, random state and shuffle. Train size and

test size are complementary and their sum is one. In the study only ‘test size = 0.25′ is set

and this implies that ‘train size = 0.75′. It also, means that 75% of the data is for training

and the rest for validation. Additionally, the random state parameter can assume either the

value None (default) or an integer value. If random state assumes its default value, calling the

function multiple times would result in different results for each call to the function. When

set to an integer value, multiple calls to the function would produce similar results for every

call to the function. In the present study, random is set to an integer value for consistency

and additionally shuffle is set to true. The *arrays parameter take arrays of the same size, in

this case, x patches and y patches are the arrays used. These are arrays of patches generated

from the raw data and the ground truth respectively. The function then returns two lists

containing train-validation splits for each of the sets, raw data and ground truth.

3.4.3 Segmentation Model Voxel Voting

Patch-based segmentation makes use of the neighbourhood information in estimating the value

of the central voxel or cell. Several considerations have been made by researchers and these

can be grouped into 2D and 3D pixel/voxel voting. Two dimensional (2D) pixel voting makes

use of horizontal slices whose size is a major component of the design process. The information

contained in the 2D patch is used to estimate its central cell value. These models leave out
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information from the neighbourhood cells that are not in the same dimension as the slices.

On the other hand, 3D models use the information contained in a volume to vote for the

value of the central voxel. These models are known to provide more information during voxel

voting. They are therefore expected to produce better results since morphological information

is considered in multiple dimensions. 3D models, therefore, process a lot of information hence

they are computational resource and time-intensive as opposed to 2D models. In the present

study, the proposed model makes use of localized 2D patches in segmenting the human brain.

3.4.4 Data Preprocessing

3.4.4.1 The Chosen Dataset-NITRC-CANDI

Several algorithms have been proposed to segment CANDI brain MRI images. The studies

carried out by [13, 33, 51, 52, 63, 75, 98, 100, 115, 116, 117] used the CANDI dataset. The

results for the segmentation of the dataset was compared with the results of other datasets

such as ADNI, MALC, IBSR, Colins27, OASIS. The results of the comparison showed that

the dataset was more difficult to segment as compared to other datasets it was compared with.

This can be observed from the studies done by [13, 33, 51, 52, 63, 75, 98, 100, 115, 116, 117]

and in results presented in the appendix B1, B2 and B3. We chose the dataset because we

identified a research gap and it was easy to access.

3.4.4.2 Image Cropping

Image processing models process large volumes of data, a decision was made to crop the images

so that their size does not strain the processing system. The cropping was done to remove

as much background pixels as possible while capturing most of the brain tissue pixels to be
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classified. The cropping function is given in Algorithm 4 [31].

Algorithm 3: Cropping function Algorithm [31]

Input: Input Image

Output: Cropped Image

1 Initialisation: y , x = image.shape

2 Def crop center(img, cropx, cropy):

3 startx = ((x//2)) - (cropx//2)

4 starty = ((y//2)) - (cropy//2)

5 m = starty + cropy

6 n = startx + cropx

7 return img[starty : m , startx : n ]

It takes three parameters, that is, the image, the crop size along the x-axis (cropx) and

crop size along the y-axis (cropy). The function identified the centre of the image. Addition-

ally, it takes the crop size along both dimensions and divided them by two. The quotients from

the division tasks are then subtracted from the centre coordinates and this gives the starting

coordinates of the crop. The crop size along each dimension is then added to the starting

coordinates to give the ending coordinates. The function then returns a cropped image with

dimensions as just stated above.

3.4.4.3 Segmentation Classes

The dataset provided by CANDI [86] had 39 classes. Two of these represented un-classified

regions of the brain. In the present study, these two regions are classified as background.

CANDI website also provided anatomical associations for the values given in the CMA gen-

eral segmentation file. A copy of this data is provided in Appendix D [84]. The 39 classes

are reclassified into four classes. The chosen classes are WM, GM, CSF and background. The

background class comprises of all other tissue classes that do not fall into the other three

classes. The study carried out in [kaggletc29, 80] provided notes that are instrumental in the

reclassification. Additionally, most components are made up of both white matter and grey

matter, where one was the core and the other formed a layer on top. The dominant material

was chosen as the class for the component and ignored the minor material. Table 3.2 shows

the four classes and their corresponding tissues.
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Table 3.2: Categorization of brain tissues into WM, CSF, GM and background

Category Tissues

WM 2 , 7 , 41 , 46 , 77 , 85

GM 3 , 8 , 10 , 11 , 12 , 13 , 16 , 17 , 18, 26, 42, 47 , 49 , 50, 51 , 52 , 53, 54 , 58

CSF 4 , 5 , 14 , 15 , 24 , 28 , 43 , 44 , 60 , 72

Background 29 , 30, 36, 61

The components that are categorised as white matter include, Optic chiasm, WM-hypointensities,

left and right cerebellum-white-matter, left and right cerebral-white-matter. Also, components

that make up the CSF included left and right lateral-ventricle, 3rd, 4th and 5th Ventricles, left

and right VentralDC (Ventral Dendritic Cells), left and right Inferior-Lateral-ventricle (Inf-

Lat-Vent) and CSF. Additionally, left and right undetermined, left and right vessels and vessels

were neither WM, GM nor CSF hence they are categorised as background. Finally, the rest

of the components are categorised as Grey Matter, that is, left and right Cerebral-Cortex, left

and right cerebellum-cortex, left and right thalamus-proper, left and right Caudate, left and

right Putamen, left and right Pallidum, left and right hippocampus left and right Amygdala

and Brain-stem.

3.4.4.4 Patch Generation

The function extract patches() is used for patch extraction. This function is part of the Ten-

sorflow’s Image class. It takes six parameters, that is, image, sizes, strides, rate, padding and

name. The x train dataset is passed as the image parameter in this function. Additionally,

the array [1, 32, 32, 1] is passed as the patch size. This implies that the patches are of size

32 ∗ 32 and channel and batch size is set to 1. Also, the array [1, 1, 1, 1] is passed as the stride

size. This means that the patch extraction function uses step sizes of 1 in either the horizontal

or vertical planes. Also, the channel and batch sizes are set to 1. The array passed for rate

is the same as the one passed for strides but it means that all the patches generated are to

be selected and used. Also, the parameter padding is set to ‘SAME’. Lastly, the parameter

name is set to ‘NONE’. An array is then declared and named x patches and it is assigned the

return value of the extract patches() function. The same procedure is done for y patches.
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The function extract patches() returns a tensor which has the same data type as its input.

The present study makes use of arrays hence Tensorflow’s eval() function was used in convert-

ing tensors to arrays. The function returned NumPy arrays which have the same shape as the

input tensors. The extracted patches are then rearranged into a list by appending each patch

to a list and then converting the list into a NumPy array. The function np.array() is used in

converting the list into an array. In the function, np stood for NumPy. This conversion is also

implemented for the y patches. Consequently, arrays x patches and y patches are 32 ∗ 32 and

the channel size is maintained but the batch size became the number of patches generated.

The following images show the first patch’s raw and ground truth images. The patches are

for the segmentation of the brain into hippocampus, thalamus-proper, cerebellum-cortex, and

background.

[a] [b]

Figure 3.2: Images showing a raw patch [a] and its ground truth patch [b]

Figure 3.2. [a] and [b] shows the raw and ground truth patch images, respectively. Inspecting

the images shows that segmenting the image would be difficult for both humans and computer

NNs. The challenge is due to the image patch regions and their boundaries are not clear. The

NN’s task is to learn to segment [a] into [b].

3.4.4.5 Experiments For The Present Study

In the present study, three experiments are carried out on the CANDI provided dataset. The

first and last experiment classified three tissues while the second classified two tissues. The
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downloaded dataset had gone through several preliminary preprocessing stages before being

uploaded for free access to researchers worldwide. In addition to the pre-upload preprocessing,

in the first experiment, the 3D brain data is cropped from volumes of size 256 ∗ 256 ∗ a to

volumes of size 170 ∗ 170 ∗ a. In the second and third experiments, the images are cropped to

volumes of sizes 80 ∗ 80 ∗ a. In all the cases a is the z-dimension.

During model development and training, all the essential libraries are imported and these

included Mayavi, Keras, Matplotlib, NumPy, models, optimizers, regularizers, utils, Skimage,

SciPy, Nibabel, Sklearn and TensorFlow. Mayavi provides an interactive visualization of 3D

volumes and hence in the initial experiments conducted Mayavi is used in the displaying of

datasets, that is, both the ground truth and input data. It is also used for the component by

component interactive visualization. Mayavi can also be used for the displaying of the model

predicted results and provide an interactive tool for comparison between the expected output

and the ground truth.

A number of functions are developed to either aid with preprocessing or as part of the NN

and these include functions such as crop center(), encoder(), compute class weights() and ex-

tract patches(). The crop center() function is used in the cropping of images, the encoder()

function forms the NN of the model and the extract patches() function is used to extract

patches. The next task is to reclassify brain tissue pixels into WM, GM, CSF, and background.

The next task is the calling of the function that generates weights which are then later passed

as a parameter in the model.fit() function. The next task is the extraction of patches. These

are extracted from both the ground truth and the input data using the patch extraction()

function. The patch extraction function returns a tensor, therefore, the next task is the

conversion of tensors into arrays. This is done by initially converting the tensor into a list

then the list is converted into an array. Additionally, the central values for the ground truth

patches are extracted using TensorFlow’s crop to bounding box() function with height and

width set to 1. The results from crop to bounding box() are appended into a list, and the list

is converted into an array. The new arrays then became the array of the ground truth used

during training. The ground truth array is then label encoded using Sklearn’s preprocessing

tools. Also, a for loop is used to eliminate patches that comprised of only background pixels.

The ground truth labels that corresponded to the eliminated patches are also eliminated. The
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remaining input patches and the ground truth label arrays are then fed as parameters into

Sklearn’s train test split(). This function then split the given data into training and validation

sets, with the validation sets being 25% of the total available data. Callbacks are added to

aid in the training of the NN. During training, the NN parameters are systematically altered

to improve the performance of the NN. The adopted neural architecture is also systematically

altered to improve the segmentation performance of the NN. Several performance metrics are

used in evaluating the performance of any proposed model and its parameters.

In the first session of experiments, the algorithm proposed by Cui. et al [32] is slightly mod-

ified to improve its segmentation accuracy. Some of the changes that are made include the

removal of the softmax layer and adoption of Softmax as the activation function of the dense

layer. The first experiment segments the human brain into background, WM, GM and CSF.

In the second set of experiments, the revised architecture is used in the localized patch-based

segmentation. There are two major experiments carried out, the first segments two compo-

nents of the brain while the other segments three components. The experiment with two

components segments the brain into background, thalamus-proper and hippocampus. On

the other hand, the experiment with three components segments the brain into background,

cerebellum-cortex, thalamus-proper and hippocampus. The performance of the NN in each

of the experiments is assessed using several evaluation metrics. The following section covers

some of the evaluation metrics used.

3.5 The Proposed Algorithm

Algorithm 3 gives a summary of the proposed algorithm. This description of the algorithm

has several components that are not given. All conversions from one data structure to the

other are left out. The algorithm makes extensive use of arrays hence most data structures

produced during the algorithm’s execution are converted to arrays. Algorithm 3 also excludes

the call back() function and the function responsible for mitigating class imbalances’ effects.

It also excludes the label encoding function. The neural network (encode() function) was also

left out, but some of the details are given in this section. The proposed algorithm made ex-

tensive use of Python’s built-in functions such as extract patches() and crop to bounding box

amongst others. Details of these functions are not provided in Algorithm 3.
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Algorithm 3 shows the algorithm uses 80 ∗ 80 slices and the patches that are then extracted

from these slices. The function also initializes several variables used in the neural network.

Some of these variables include base size and num classes. Patches are then extracted using

built-in Python functions. The train test split() function is then used in splitting the patches

into training and validation datasets. The model is then trained using the model, and the

other parameters are set as shown in Algorithm 3.
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Algorithm 4: Proposed Algorithm

Result: Segmented Brain Slices

1 ns = number of slides

2 images= [ ], images1=[ ]

3 for i = 0; i < ns; i++ do

4 y train1 = y[:,:,i]

5 x train1 = x[:,:,i]

6 y train = crop center(y train1, 80, 80)

7 x train = crop center(x train1, 80, 80)

8 images.append(y train)

9 images.append(y train)

10 end

11 batch size, epochs, inchannel, x, y, num classes = 4, 185, 1, 32, 32, 4

12 for i = 0; i < ns; i++ do

13 y patches.append(extract patches1(y train[i]))

14 end

15 y patches = tf.image.crop to bounding box(y patches, 16,16,1,1)

16 y patches = to categorical(y patches)

17 x patches1 = [ ]

18 for i = 0; i < ns; i++ do

19 x patches1.append(extract patches(x train[i]))

20 end

21 x patches = x patches1 x train, x valid, y train, y valid = train test split(x patches,

y patches, test size=0.25, random state=0, shuffle = True)

22 sgd= SGD(lr = 0.001, decay = 0.005, momentum = 0.9)

23 model = Model(input img, encoder(input img))

24 model.compile(loss=”categorical crossentropy”, optimizer=sgd, metrics=[’accuracy’])

25 CNN train = model.fit(x train, y train, epochs=epochs, verbose=1,

validation data=(x valid, y valid), shuffle=True, callbacks = [cp callback])

3.6 Evaluation Metrics

The following section covers the evaluation metrics considered in the present study. It covers

concepts such as accuracy, loss, stochastic gradient descent (SGD), learning rate (lr), decay,
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momentum, dice similarity coefficient and the confusion metrics.

3.6.1 Accuracy And Loss Metrics

Machine learning and CNNs in particular still suffer from under-fitting or over-fitting. There

are several reasons why models would end up over-fitting or under-fitting. To avoid models

over-fitting a technique called cross-validation was proposed. In cross-validation, the datasets

would be split into training and validation sets. The training set would be used for initializing

and fine-tuning the parameters of the model while the validation set would be used for evalu-

ating the predictive accuracy of the trained NN. On the training set, metrics such as training

loss and training accuracy would be used to evaluate the training progress. The training loss

metric through the loss function would be used by the model to update the model’s parame-

ters. On the other hand, training accuracy would be used to show how well the training was

proceeding. When training a NN model, the objective would be to minimize the loss function

inline with the model parameters through changing values in the weight vector. This would

be achieved through the use of an optimization algorithm such as the Stochastic Gradient

Descent algorithm. The training or validation loss would be a sum of the accumulated er-

rors encountered during either training or validation. Additionally, even though the objective

would be to minimize the loss function the ripple effect of this would be an increase in the

training accuracy. When all things are equal, one would expect to see a decrease in the loss

function values after every epoch or each iteration of the optimization. Alternatively, one

would observe an exponential increase in training accuracy after every epoch.

Validation accuracy is defined as the percentage of correctly classified pixels. It would be eval-

uated after the model has finished training and the parameters are now fixed. Of the three

metrics discussed so far, validation accuracy would be the best measure of the performance of

a NN. A high value of training accuracy corresponding to a lower validation accuracy would

be an indication of a dataset that would now be starting to over-fit a given dataset. When

a model starts over-fitting, it would be best to stop and adjust parameters such as weight

decay in regularization or the dropout rate and data augmentation could also prove to be

helpful. The proposed algorithm uses the Stochastic gradient descent with the parameters

learning rate (lr), decay and momentum set to 0.001, 0.005 and 0.9, respectively. Validation
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loss and validation accuracy graphs are plotted to visualise the performance of the proposed

algorithm. If the algorithm were to be performing well, the curves for validation loss and

training loss would be exponentially decreasing and asymptotic to zero. Alternatively, the

curves for training accuracy and validation accuracy would be exponentially increasing and

asymptotic to 100%.

3.6.2 Dice Similarity Coefficient (DSC)

The Dice similarity coefficient (DSC) is an evaluation metric that is extensively used in quanti-

fying segmentation overlap. Unfortunately, it is not currently implemented in Keras. There is,

therefore, a need to write a DSC function or calculate it from the confusion matrix. Equation

3.5.4 provides the formula used to calculate DSC.

DSC =
2|A ∩B|
|A|+ |B|

(3.6.1)

In equation 3.5.4, A would be the number of pixels segmented manually while B would be

those that would have been segmented by the proposed algorithm [35, 32, 58]. In the present

study, the values for DSC are used in assessing the performance of the proposed algorithm

against state of the art algorithms in brain MRI segmentation.

3.6.3 Confusion Matrix

The confusion matrix is used as an evaluation metric in the present study. It is a table

that describes how well the classification model performs predictions. The confusion matrix

was originally designed for binary classification but Sklearn has an implementation for multi-

label classification. However, the multi-label implementation is based on the binary confusion

matrices for the presented classes. Additionally, in a binary classification, assuming that, a

binary classifier would be classifying pixels belonging to one of two classes (positive/negative)

then Table 3.3 would provide the confusion matrix.
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Table 3.3: Confusion matrix for binary classification

Positive Negative

Positive TP FP

Negative FN TN

In Table 3.3, TN, FP, FN and TP represents ‘True Negative’, ‘False Positive’, ‘False Nega-

tive’and ‘True Positive’, respectively. ‘True Positive’would represent the number of times the

algorithm correctly predict Positive. Additionally, TN would represent the number of times

the algorithm correctly predict negative. Also, FP would represent the number of times the

algorithm wrongly predict positive. Lastly, FN would represent the number of times the algo-

rithm wrongly predict negative. Additionally, one advantage of the confusion matrix is that

it has several evaluation metrics that can be calculated from it. Appendix C provides a list

of some of the commonly used evaluation metrics. The Appendix also provides a description

of each evaluation metric and a formula.

3.7 Conclusion

The chapter covered the technical breakdown of the NN considered in this research. The model

commences with patch images of size 32∗32 and the output of the NN are 4 neurons that were

governed by a sigmoid function. The evaluation metrics finally used were validation accuracy

and loss, Dice Similarity Coefficient (DSC) and confusion metric and other evaluation metrics

derived from it. Input images were converted into NumPy arrays for easy processing. The 39

classes in the original dataset were regrouped into four classes, that is, WM, GM, CSF and

Background. The input images were cropped first before being processed further. 3D voxel

voting consumes a lot of resources during processing even though it includes more morpho-

logical information. On the other hand, 2D pixel voting uses fewer resources but also limited

morphological information. The present study focused on localized component segmentation

since most medical diagnosis would only require certain sections of the brain to be segmented.
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4. Results and Discussions

4.1 Introduction

The chapter covers the results of the experiments carried out. It commences with an extension

of the study done by Cui et al. [32] in segmenting the brain into GM, WM, and CSF,

mainly focusing on improving the segmentation accuracy of the proposed algorithm. The first

section includes the training and validation loss analysis, followed by training and validation

accuracy analysis. The last part of the section includes the confusion matrix and the test

statistics calculated from it. Each test statistic is then evaluated and analyzed. The second

section summarises the work done on localized component-based segmentation. The following

sections similarly cover the evaluation matrics, as was done in the first section. Each section

concludes with a section conclusion. The last section covers the comparison of the results of

the proposed algorithm against state of the art algorithms. The chapter then closes with a

chapter conclusion.

4.2 Proposed Algorithm’s Vs Cui’s algorithm

There are a lot of similarities between the proposed algorithm and the one proposed by

Cui. Some of these include the fact that the model layers are exactly the same, the hyper-

parameters learning rate, momentum and decay are set to the same values and the initialization

of weights are the same. In addition, both algorithms use patch-based segmentation in their

implementation and both eliminate patches which comprise of only background pixels before

training of the algorithm. On the other hand the proposed model has no softmax layer instead

the activation function for the second from last layer is set to softmax. In addition, in the

study by Cui patch generation is done on the whole slice whereas in the present study patch

generation is only done on localised regions of interest. Also, the study done by Cui focused

on binary classification, we focussed on three and four component segmentation. In their

evaluation, the study done by Cui used two evaluation metric and we used several in order to
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access the performance of the neural network.

4.3 Brain Segmentation

This section covers the experiments (referred to as the first experiment) done in improving the

study done by Cui et al.[32]. The present study’s main thrust is the improvement of segmen-

tation accuracy and generally segmenting the brain into GM, WM, and CSF. The following

sections discuss some of the results.

4.3.1 Training And Validation Losses

Figures 4.1 and 4.2 shows the performance of the NN during training and validation, respec-

tively. The charts are expected to show an exponential decrease in the losses. The decrease

would be an indication that the NN’s loss function values were decreasing. This decrease

would then imply that the NN was learning in each epoch. Also, the loss function values

were expected to be asymptotic to zero. In Figure 4.1, the training losses are exponentially

decreasing and asymptotic to zero as expected.

Figure 4.1: First experiment’s training Loss graph

The vertical axis shows the loss values for the different epochs, while the horizontal axis shows
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the epoch number. In the experiment 185 epochs are used, and the training loss drops from

1.3748 to 0.1734. The graph in Figure 4.2 shows the corresponding validation losses that are

recorded as the training progressed.

Figure 4.2: First experiment’s validation Loss graph

Figure 4.2 shows the validation losses recorded for different epochs while the horizontal axis

shows the epoch numbers. The validation losses drop from 0.0206 in the first epoch to 0.0031

in the last recorded epoch. In general, the two graphs indicate that the NN is learning, as

demonstrated by the exponential decrease in the losses. Additionally, the two charts are also

asymptotic to zero as expected.

4.3.2 Training And Validation Accuracy

Figure 4.3 shows the NN’s performance in the actual segmentation of the given patches.

Training and validation losses are calculated using a function whose objective function is to

be minimized. In contrast, training and validation accuracy tests are based on how well the

NN performed at predicting the central values of given patches. The best-expected result

would be 100% accuracy, but NNs have been known to provide results as high as 90% or

more.
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Figure 4.3: First experiment’s training accuracy graph

Figure 4.3 shows the graphed results of the training accuracy rates realised during training.

The vertical axis shows the training accuracy rates while the horizontal axis shows the epoch

numbers. In the graph, the training accuracy rates are exponentially increasing as expected.

They increase from 43.71% in the first epoch to 93.37% in the last recorded epoch. Addition-

ally, Figure 4.4, shows the graphed results for validation accuracy rates recorded as training

progressed.

Figure 4.4: First experiment’s validation accuracy graph

In Figure 4.4, the vertical axis shows the validation accuracy rates, whereas the horizontal axis

shows the epoch numbers. The validation accuracy rates are also exponentially increasing.
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They increased from 29.24% in the first epoch to 62.86% in the last recorded epoch. The

exponential increase in the accuracy rates indicates that the NN is learning and the recorded

training accuracy is more than some of the state of the art NNs.

4.3.3 Confusion Matrix

After training, the NN is used to classify 2481 patches. The confusion matrix is used to test

how well the NN performed in the classification task. Table 4.1 shows the confusion matrix

with classification results. The top labels show the actual values, while the horizontal ones

show the predicted values.

Table 4.1: Confusion matrix for the first experiment

Actual
Predicted Background GM CSF WM
Background 469 6 0 0

GM 7 972 2 75
CSF 0 0 4 5
WM 0 33 0 908

The confusion matrix shown in Table 4.1 shows that the background labels (476 in total) are

correctly classified 469 times and never classified as either WM or CSF but are misclassified

as GM 7 times. In addition, GM labels (1011 in total) are correctly classified 972 times, mis-

classified as WM and background 33 and 6 times respectively but never misclassified as CSF.

Also, CSF labels (6 in total) are correctly classified 4 times, misclassified as GM 2 times and

never classified as either background or WM. WM labels (988 in total) are correctly classified

908 times, misclassified as CSF 5 times, misclassified as GM 75 times and never misclassified

as background.

The confusion matrix in Table 4.1 is for multiple labels and hence does not display true

negative (TN), true positive (TP), false positive (FP), and false negative (FN) values. The

formulas used to calculate the several test statistics derived from the confusion matrix require

these values. Table 4.2 shows the tabulated values for the TN, TP, FN, and FP for each of

the classes considered in this section of the current research.
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Table 4.2: Table showing TP, TN, FP and FN for the first experiment

Brain tissue TP TN FP FN

Background 469 1999 6 7

GM 972 1419 84 39

CSF 4 2470 5 2

WM 908 1460 33 80

Table 4.2 shows that the TP values for Background, GM, CSF and WM are 469, 972, 4 and

908 respectively. In addition, the TN values for the same classes are 1999, 1419, 2470 and

1460 respectively. Also, the FP values for the same classes are 6, 84, 5 and 33 respectively.

Finally the FN values for the the same classes are 7, 39, 2 and 80 respectively.

4.3.3.1 Test Statistics Derived From The Confusion Matrix

The confusion matrix data was used to calculate several test statistics used in evaluating the

NN’s performance. Table 4.3 gives a summary of these test statistics for the four classes used

in this section of the current research. The test statistics used are Accuracy, Recall, Precision,

Prevalence, Null Error Rate, False Positive Rate, True Negative Rate, and F1 Score.

Table 4.3: Test statistic values obtained from the confusion matrix (Table 4.2)

Test statistic Background GM CSF WM Averages

Accuracy 99.48 96.37 99.72 95.45 97.06

Recall 98.53 96.14 66.67 91.90 84.90

Precision 98.74 92.05 44.44 96.49 77.66

Prevalence 19.19 40.75 0.24 39.82 25.00(26.94)

Null error rate 80.81 60.58 99.76 60.18 75.33

False positive rate 1.26 8.31 83.33 3.34 31.66

True negative rate 98.74 91.69 16.67 96.66 68.34

F1 score 98.63 94.05 53.33 94.13 80.50
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Accuracy

The first statistic considered is accuracy, this statistic expresses as a percentage the number

of cases the classifier accurately classified. The calculated values for the Background, GM,

CSF and WM are 99.48%, 96.37%, 99.72% and 95.45% respectively. These values show that

the NN has an accuracy rate of 99.48% in classifying Background tissue pixels, 96.37% in

classifying the GM, 99.72% in classifying the CSF and 95.45% in classifying WM. The average

accuracy for the classification of GM, CSF and WM is calculated to be 97.06%. The accuracy

of the proposed algorithm is relatively high and rival state of the art NNs.

Recall

The next statistic considered is Recall (True Positive Rate), and it measures the rate at

which the algorithm predicted positive, given that the correct label value is positive. The

Recall values for Background, GM, CSF and WM are 98.53%, 96.14%, 66.67% and 91.90%

respectively. These values show that when the actual label is Background, the algorithm

predicts Background at a rate of 98.53%. Similarly, in classifying GM, the algorithm correctly

predicts GM in 96.14% of the times. Also, in classifying CSF, the model correctly classified

CSF, given that the actual label is CSF in 66.67% of the times. Last but not least, the

algorithm correctly predicts WM in 91.90% of the cases. The average recall for the three

tissue classes, that is, GM, CSF and WM is 84.90%.

Precision

The third statistic considered is Precision, and this test statistic measures how often the al-

gorithm would be correct if it predicts positive. The Precision values for the Background,

GM, CSF and WM are 98.74%, 92.05%, 44.44% and 96.49% respectively. In this case, the

algorithm correctly predicts positive in 98.74% of the Background cases, 92.05% of the GM

cases, 44.44% of the CSF cases, and 96.49% of the WM cases. The average Precision for the

three human brain tissues being segmented is calculated to be 77.66%
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Prevalence

The fourth statistic considered is Prevalence, and this statistic measures how often the positive

cases appear in the sample used. The Prevalence values for the categories Background, GM,

CSF and WM are 19.19%, 40.75%, 0.24%, and 39.82%, respectively. This indicated that the

sample comprise of 19.19% background tissues, 40.75% GM tissues, 0.24% CSF tissue labels,

and 39.82% WM tissue labels. The average Prevalence is 25.00% for the four categories and

26.94% for the three human brain tissue classes.

Null Error Rate

The fifth statistic considered is Null Error Rate, and this measures how often the algorithm

would be wrong if it always predicts the majority class. The Null Error Rates for Background,

GM, CSF and WM are 80.81%, 60.58%, 99.76% and 60.18% respectively. If the algorithm

always predicts the majority class, then it would be wrong 80.81% of the times for Background

class labels, 60.58% of the times for the GM cases, 99.76% of the times for the CSF class labels,

and 60.18% of the time in the WM class labels. The average Null Error Rate is calculated to

be 75.33%. These results indicate that the algorithm has to do more than just estimating the

majority class for it to be effective in predicting class labels.

False Positive Rate

The sixth statistic considered is the False Positive Rate (Specificity), and it measures the rate

at which the algorithm predicts positive when the correct label value is negative. The Speci-

ficity values for the Background, GM, CSF and WM are 1.26%, 8.31%, 83.33% and 3.34%

respectively. The Specificity values implied that in 1.26% of the cases, it predicts Background

when the correct label is not Background. When the correct label is not GM, the algorithm

predicts GM in 8.31% of the cases. When the correct label is not CSF, the algorithm predicts

CSF in 83.33% of the cases, and finally, WM has a Specificity of 3.34% which implies that the

algorithm predicted WM when the correct response is not WM in 3.34% of the cases. The

average Specificity is calculated to be 31.66%, which implies that the algorithm would wrongly

predict a positive in 31.66% of the cases.
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True Negative Rate

The seventh statistic considered is True Negative Rate, and the statistic measured the rate at

which the algorithm predicts negative when the actual label is negative. The True Negative

Rates values for Background, GM, CSF and WM were 98.74%, 91.69%, 16.67%, and 96.66%,

respectively. For Background the algorithm correctly predicts the negative label in 98.74% of

the cases. For GM, the algorithm correctly predicts negative in 91.69% of the cases. For CSF,

the algorithm correctly predicts negative labels in 16.67% of the cases. Finally, for WM, the

algorithm correctly predicts negative labels in 96.66% of the cases. The average True Negative

Rate is calculated to be 68.34%.

Dice Similarity Coefficient

The final test statistic considered is F1 Score (also know as Dice Similarity coefficient), and

this gives a weighted average of Recall and Precision. The values obtained for Background,

GM, CSF and WM are 98.63%, 94.05%, 53.33%, and 94.13% respectively. From this data, it

can be seen that 98.63% of the Background tissues are identical when comparing the actual

and predicted labels. Similarly, 94.05% of the labels are similar when comparing GM tissues.

In the same way, 53.33% of the tissues are similar when comparing CSF tissues. Lastly, 94.13%

of the tissues are similar in the GM classification. The average F1 Score is calculated to be

80.50% for the three brain tissues in the experiment.

4.3.4 Section Conclusion

The loss and accuracy graphs showed the results that were expected of a learning model. Early

stopping was used, and training stopped at a training accuracy rate of 93.37%. This result ri-

vals state of the art NN models’ training accuracy rates. Additionally, a confusion Matrix was

tabulated and then used to calculate several test statistics. The test statistics derived from

the confusion matrix showed averagely high performance of the NN, with most values being

above 80%. High percentage rates were recorded, where high values were expected except for

Precision, which recorded 44.44% for CSF and True Negative rate, which recorded 16.67%.

The algorithm also recorded significantly low values in cases where low values were expected
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except for CSF, which recorded 83.33% for Specificity for the same tissue label. Test statistics

such as Prevalence gave the general tissue label distribution for a given sample. Null Error

Rate was low for the majority class but significantly high for all the other tissues indicating

that the NN was learning and did not depend on guessing, especially of the majority class.

4.4 Localized Component PBS

The algorithm used in the first experiment is also implemented in localized patch-based seg-

mentation. This implementation is done in two separate experiments. The first experiment

(referred to as the second experiment) segments a localized region of the brain into hip-

pocampus, thalamus-proper, and background. The last experiment (referred to as the third

experiment) segments it into background, hippocampus, thalamus-proper, and cerebellum-

cortex.

4.4.1 Training Losses

Figure 4.5 shows the performance of the localized component PBS NN model during train-

ing. The graphs show the losses that are realized during the two experiments, that is, second

(Figure 4.5(a)) and third experiment (Figure 4.5(b)). The charts are expected to show an

exponential decrease in the losses. The decrease would indicate that the NN’s loss function

values are decreasing, which would imply that the NN is learning in each epoch. Also, the

loss function values are expected to be asymptotic to zero. In both cases, the losses function

values are exponentially decreasing and asymptotic to zero as expected.
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(a) Second Experiment (b) Third Experiment

Figure 4.5: Training losses for the second and third experiment

The horizontal axis represents the epoch numbers in both graphs, while the vertical axis rep-

resents the loss values at given epoch numbers. In the second experiment loss dropped from

0.7710 to 0.0881. On the other hand, in the third experiment loss dropped from 1.3097 to

0.1647. The two graphs show that the NN is learning during the training process, as evidenced

by the exponential decrease in the loss function values.

4.4.2 Validation Losses

Figure 4.6 shows the NN’s performance during validation in the two experiments stated above.

The graphs show the validation losses incurred during the second (Figure 4.6(a)) and third

experiment (Figure 4.6(b)). The charts are expected to show an exponential decrease in the

validation losses. The exponential decrease is synonymous to the one for training loss.

(a) Second Experiment (b) Third Experiment

Figure 4.6: Validation losses for the second and third experiment
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The horizontal axis represents the epoch numbers in both graphs, while the vertical axis rep-

resents the validation losses at given epochs. Figure 4.6(a) shows that the validation losses

dropped from 0.0092 to 0.0018 for the second experiment. On the other hand, Figure 4.6(b)

shows that validation losses dropped from 0.0185 to 0.0029 in the third experiment. In both

cases, the loss function values are exponentially decreasing and asymptotic to zero. The de-

crease goes on to affirm the conclusion drawn on training loss analysis (that the NN was

learning).

4.4.3 Training Accuracy

Figure 4.7 shows how well the NN is performing the classification task. The graphs show the

accuracy rates obtained at different epochs during the second (Figure 4.7(a)) and third exper-

iment (Figure 4.7(b)). The graphs are expected to be exponentially increasing as training of

the NN progresses. Also, the accuracy rates are expected to be asymptotic to 100% in each

of the two graphs. In both cases, accuracy rates are exponentially increasing and asymptotic

to 100% as expected.

(a) Two Components (b) Three Components

Figure 4.7: Training accuracy for the segmentation of two (a) and three components (b)

The horizontal axis represents the epoch numbers in both graphs, while the vertical axis rep-

resents the training accuracy values at given epoch numbers. During training, the accuracy

rates in the second experiment increased from an initial value of 83.09% to 96.60% in the last

epoch. On the other hand, in the third experiment accuracy increased from an initial value of
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70.85% to a value of 93.70% in the last epoch. The two graphs show that the NN was learning

during the training process and yielded results that rival state of the art NNs in brain image

segmentation.

4.4.4 Validation Accuracy

Figure 4.8 shows how well the NN performed the classification task during the training of the

NN in the two experiments. The graphs show validation accuracy rates realised at different

epochs during the second (Figure 4.8(a)) and third (Figure 4.8(b)) experiment. The graphs

are expected to show exponential increase in validation accuracy and their characteristics are

synonymous with training accuracy graphs. In both cases, accuracy rates are increasing and

asymptotic to 100% as expected.

(a) Second Experiment (b) Third Experiment

Figure 4.8: Validation accuracy for the second and third experiment

The horizontal axis represents the epoch numbers in both graphs, while the vertical axis rep-

resents the validation accuracy rates at given epochs. During training, the rates obtained the

second experiment increased from an initial value of 54.74% to a value of 63.75% in the last

epoch. On the other hand, in the third experiment, they increased from an initial value of

49.49% to a value of 62.35% in the last epoch. The two graphs show that NN is learning

during the training process. Additionally, section 4.3.5 shows some of the segmented images

and the corresponding ground truth images.
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4.4.5 Segmented Images Of The Hippocampus And Thalamus-Proper

In the second experiment, the model is trained and then used to segment four 2D brain slices.

Figure 4.9 shows localized segmented and ground truth slices, respectively.

(a) Prediction 1 (b) Prediction 2 (c) Prediction 3 (d) Prediction 4

(e) Ground truth 1 (f) Ground truth 2 (g) Ground truth 3 (h) Ground truth 4

Figure 4.9: Images showing localized segmentation of the hippocampus and thalamus-proper
and their corresponding ground truth images

In Figure 4.9, image (a) is the segmented image, while image (e) is its corresponding ground

truth image. Additionally, image (b) is the segmented image, while image (f) is its corre-

sponding ground truth image. Image (c) is also the segmented image, while image (g) is the

corresponding ground truth image. Finally, image (d) is the segmented image while (h) is its

corresponding ground truth image. Additionally, image (e) shows thalamus-proper and hip-

pocampus. In each image, there are two Thalamuses and two hippocampuses. On the other

hand, close inspection shows that the algorithm could identify the components but missed

some minor details. Also, to quantify the NN’s effectiveness in segmenting the human brain,

several evaluation metrics are then used. The evaluation metrics are derived from the confu-

sion matrix of each of the two experiments.

4.4.6 Confusion Matrix

After training, the algorithm was used to classify the central pixels for 3 299 patches and 6

326 patches in the second and third experiment, respectively. The results were then tabulated

into confusion matrices. These matrices indicate how effective the algorithm had been in each

of the classification tasks. Tables 4.4 and 4.5 show the tabulated confusion matrices for the
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two experiments. In the tables, vertical labels represent the actual values, while the horizontal

ones represent predicted values.

Table 4.4: Confusion matrix for the second experiment

Actual
Predicted Background Thalamus-proper Hippocampus
Background 2573 130 15

Thalamus-proper 3 428 0
Hippocampus 9 32 109

Table 4.4 indicates that for all the Background pixels (2 585) classified, 2 573 pixels are cor-

rectly classified as Background, whereas three are misclassified as thalamus-proper and nine

hippocampus. It also indicates that for all the thalamus-proper pixels (590), 428 pixels are

correctly classified as thalamus-proper, while 130 pixels are classified as Background and 32

pixels are classified as hippocampus. Lastly, of all the hippocampus pixels (124), 109 pixels

are correctly classified as hippocampus, while 15 are wrongly classified as Background, and

none are misclassified as thalamus-proper. Additionally, Table 4.5 shows the confusion matrix

for the third experiment. In the table, the vertical and horizontal labels still have the same

meaning as in the confusion matrix in the second experiment.

Table 4.5: Confusion matrix for the third experiment

Actual
Predicted Background Cerebellum-cortex Thalamus-proper Hippocampus
Background 4607 73 39 0

Cerebellum-cortex 133 1065 0 13
Thalamus-proper 3 0 186 0

Hippocampus 48 0 17 142

In Table 4.5, of all the background pixels (4791), 4607 pixels are correctly classified as Back-

ground, whereas 133 are wrongly classified as cerebellum-cortex, 3 misclassified as thalamus-

proper, and 48 misclassified as hippocampus. Of all the cerebellum-cortex pixels (1138), 1065

pixels are correctly classified as cerebellum-cortex, while 73 pixels are misclassified as Back-

ground and none as thalamus-proper or hippocampus. Also, of all the thalamus-proper pixels

(242), 186 pixels are correctly classified as thalamus-proper, whereas 17 are misclassified as

hippocampus, 39 misclassified as Background, and none misclassified as cerebellum-cortex.

Finally, of all the hippocampus pixels (155), 142 pixels are correctly classified as hippocam-

pus, whereas 13 are misclassified as cerebellum-cortex, and none are misclassified as either

Thallamus-Proper or Background. The two confusion matrices are then used to extract the
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data in Table 4.6 and Table 4.7. These tables give the values for TP, TN, FP, and FN for the

second and third experiment.

The values in Tables 4.6 are calculated from Table 4.4. Table 4.6 gives the values for TP, TN,

FP and FN for the second experiment. In the table, the column headings headings are TP,

TN, FP and FN while the row headings were Background, thalamus-proper and hippocampus.

Table 4.6: Table showing TP, TN, FP and FN for the second experiment

Brain Tissue TP TN FP FN

Background 2573 567 145 12

Thalamus-proper 428 2706 3 162

Hippocampus 109 2134 31 15

In Table 4.6 the values for TP, TN, FP and FN for the classification of the background are

2573, 567, 145 and 12 respectively. The values for the same labels in the thalamus-proper

classification are 428, 2706, 3, 162, respectively. Finally, the values for the same labels in the

hippocampus classification are 109, 2134, 31, and 15, respectively. Additionally, Table 4.7

gives a table similar to Table 4.6 but this time for the third experiment. The column and row

headings are the same but there is an additional row for the cerebellum-cortex.

Table 4.7: Table showing TP, TN, FP and FN for the third experiment

Brain tissue TP TN FP FN

Background 4607 1423 112 184

Cerebellum-cortex 1065 5042 146 73

Thalamus-proper 186 6081 3 56

hippocampus 146 6105 86 13

In Table 4.7, the values for TP, TN, FP and FN in the classification of the background are

4607, 1423, 112 and 184 respectively. Additionally, the same labels’ values in the cerebellum-

cortex classification are 1065, 5042, 146, and 73. Also, the values for the same labels in the

classification of the thalamus-proper are 186, 6081, 3, and 56, respectively. Finally, the values
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for the same labels in the hippocampus classification are 146, 6105, 86, and 13. The data from

Table 4.6 and Table 4.7 are then used to calculate several test statistics used in the evaluation

of the performance of the proposed algorithm.

4.4.6.1 Test Statistics Derived From The Confusion Matrix

Values from Table 4.6 are used in the calculation of values in Table 4.8 while values from

Table 4.7 are used in the calculation of values in Table 4.9. The two tables include averages

for all the test statistics. Most averages are calculated excluding the background class, since

it is not a class of interest but just a class that is available during the classification process.

Table 4.8: Test statistic values based on Table 4.6

Test statistic Background Thalamus-proper Hippocampus Averages

Accuracy 95.18 94.998 98.30 96.16

Recall 99.53 72.54 87.90 86.66

Precision 94.66 99.3 77.86 90.61

Prevalence 78.36 17.88 3.76 33.33

Null error rate 21.58 82.11 95.94 66.54

False positive rate 20.37 0.11 0.99 7.16

True negative Rate 79.63 99.89 99.01 92.84

F1 score 97.03 83.94 82.53 87.83

Accuracy

The first statistic considered is accuracy, this statistic expressed as a percentage the number

of cases the classifier accurately classified. In the second experiment, the calculated values

for the Background, thalamus-proper, and hippocampus are 95.18%, 94.998%, and 98.30%,

respectively (Table 4.8). This shows that the NN had an accuracy rate of 95.18% in classi-

fying Background pixels, 94.998% in classifying the thalamus-proper, and 98.30% in classify-

ing the hippocampus brain tissue pixels. The average accuracy for the classification of the

thalamus-proper and hippocampus is calculated to be 96.16%. On the other hand, the accu-

racy values calculated in the third experiment are 95.32%, 96.54%, 99.07%, and 98.81% for
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Background, cerebellum-cortex, thalamus-proper, and hippocampus respectively (Table 4.9).

This shows that the algorithm correctly classified background tissues at an average rate of

95.32%, cerebellum-cortex at an average rate of 96.54%, thalamus-proper at an average rate

of 99.07%, and hippocampus at an average rate of 98.81%. The average accuracy rate for

the three brain components is calculated to be 98.14%. It is noted that the average accuracy

is lower in the two tissue segmentation as compared to the three tissue segmentation. The

average accuracy for the two experiments is calculated to be 97.15%. Considering the average

accuracy and all the other metrics used to this point, it shows that the NN is learning and its

results rival some of the state of the art NNs in brain image segmentation.

Table 4.9: Test statistic values based on Table 4.7

Test statistic Background C-cortex T-proper Hippocampus Averages

Accuracy 95.32 96.54 99.07 98.81 98.14

Recall 96.16 93.59 76.86 91.82 87.42

Precision 97.63 87.94 98.41 62.93 83.09

Prevalence 75.74 17.99 3.83 2.51 33.33(8.11)

Null error rate 24.26 82.01 96.17 97.87 92.12

False positive rate 2.34 12.83 1.24 54.09 22.72

True negative rate 97.66 87.17 98.76 45.91 77.28

F1 score 96.89 90.68 86.31 74.68 83.89

Recall

The following statistic considered is Recall (True Positive Rate), and it measures the rate

at which the algorithm predicts positive, given that the correct label value is positive. It

can also be defined as the ability for a model to find relevant pixels in the dataset, hence

it is best to use when data is imbalanced. In the second experiment, the recall values for

Background, thalamus-proper, and hippocampus are 99.53%, 72.54%, and 87.90%, respec-

tively (Table 4.8). The Recall values show that the algorithm predicts Background when the

correct label is Background in 99.53% of the cases. In classifying thalamus-proper, the algo-

rithm correctly predicts thalamus-proper in 72.54% of the cases. In classifying hippocampus,

the algorithm correctly classifies hippocampus, given that the actual label is hippocampus in
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87.90% of the cases. The average Recall for the classification of thalamus-proper and hip-

pocampus is calculated to be 86.66%. On the other hand, in the third experiment, the Recall

values for Background, cerebellum-cortex, thalamus-proper, and hippocampus are 96.16%,

93.59%, 76.86%, and 91.82% respectively (Table 4.9). These values indicated that when the

correct label is Background, the algorithm correctly predicts Background at an average rate of

96.16%. Given that the correct label is cerebellum-cortex, the algorithm correctly predicts the

cerebellum-cortex at a rate of 93.59%. In the case where the actual label is thalamus-proper,

the algorithm correctly predicts it at a rate of 76.86%. Last but not least, when the actual

label is hippocampus, the algorithm correctly predicts it at a rate of 91.82%. The average

Recall for the three brain tissues is calculated to be 87.42%. The Recall rate is higher in the

third experiment as compared to the second experiment. The average Recall rate for the two

experiments is calculated to be 87.04%. The lowest recall rate is 76.86%. This shows that for

the case where data is limited, the NN network’s least performance is 76.86%. There is room

for improvement, but this is exceptionally high.

Precision

The third statistic considered is Precision, and this test statistic measures how often the algo-

rithm would be correct if it predicts positive. In the second experiment, the Precision values

for the Background, thalamus-proper, and hippocampus are 94.66%, 99.3%, and 77.86%, re-

spectively (Table 4.8). In this case, the algorithm correctly predicts positive in 94.66% of

the Background cases, 99.3% of the thalamus-proper cases, and 77.86% of the hippocam-

pus cases. The average Precision for the two brain tissues being segmented is calculated

to be 90.61%. On the other hand, in the third experiment the Precision values for Back-

ground, cerebellum-cortex, thalamus-proper, and hippocampus are 97.63%, 87.94%, 98.41%,

and 62.93% respectively (Table 4.9). The algorithm is right in the classification of background

pixels in 97.63% of the cases, in the cerebellum-cortex case, it is correct in 87.94% of the cases,

in the thalamus-proper, it is correct 98.41% of the cases, and in the hippocampus, it is cor-

rect in 62.93% of the cases. The average Precision is calculated to be 83.09% for the three

brain components. Precision is higher in the second experiment as compared to the third

experiment. The average Precision for the two experiments is calculated to be 86.85%. This

indicates that, on average, whenever the algorithm predicts positive, 86.85% of the time it

would be correct. There is room for improving the Precision, but, the NN was performing well.
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Prevalence

The fourth statistic considered is Prevalence, and this statistic measures how often the posi-

tive cases appear in the sample used. In the second experiment, the Prevalence values for the

categories Background, thalamus-proper, and hippocampus are 78.36%, 17.88%, and 3.76%,

respectively (Table 4.8). These results indicate that the sample comprises of 78.36% back-

ground tissues, 17.88% thalamus-proper tissues, and 3.76% hippocampus tissue labels. The

average Prevalence is 33.33% for the four categories and 10.82% for the three brain tissue

classes. On the other hand, in the third experiment, the prevalence values for Background,

cerebellum-cortex, thalamus-proper, and hippocampus are 75.74%, 17.99%, 3.83%, and 2.51%

respectively (Table 4.9). This implies that the labels used comprise of 75.74% background la-

bels, 17.99% cerebellum-cortex labels, 3.83% thalamus-proper labels, and 2.51% hippocampus

labels. The four labels’ average population is calculated to be 25%, and the average for the

three brain tissues is calculated to be 8.11%. The average Prevalence for the brain components

in the two experiments is calculated to be 9.47%. The results in this paragraph indicate that

the training samples used were highly imbalanced with the Background constituting the bulk

of the labels.

Null Error Rate

The fifth statistic considered is Null Error Rate, and this measured how often the algorithm

would be wrong if it always predicts the majority class. In the second experiment, the Null

Error Rates for Background, thalamus-proper, and hippocampus are 21.58%, 82.11%, and

95.94%, respectively (Table 4.8). These rates imply that, if the algorithm always predicts

the majority class, then it would be have been wrong 21.58% of the times for Background

class labels, 82.11% of the times for the thalamus-proper cases, and 95.94% of the times for

the hippocampus cases. The average Null Error Rate is calculated to be 66.54%. On the

other hand, in the segmentation of three components, the Null Error Rate values for Back-

ground, cerebellum-cortex, thalamus-proper, and hippocampus are 24.26%, 82.01%, 96.17%,

and 97.87% respectively (Table 4.9). These results indicate that if the algorithm is just to

predict that every label is the majority class, then it would be wrong 24.26% for the back-

ground label, 82.01% for the cerebellum-cortex, 96.17% for the thalamus-proper labels, and

97.87% of the hippocampus labels. The average Null Error Rate for the two experiments is
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calculated to be 79.33%. This average error rate indicates that if the algorithm is to always

predict the majority class on average, then it would be wrong 79.33% of the time. This shows

that the algorithm had to do more than just estimating the majority class for it to be useful

in predicting class labels.

False Positive Rate

The sixth statistic considered is the False Positive Rate (Specificity), and it measures the

rate at which the algorithm predicted positive when the correct label value is negative. The

Specificity values for the Background, thalamus-proper, and hippocampus are 20.37%, 0.11%,

0.99%, and 7.16% respectively, for the second experiment (Table 4.8). The Specificity val-

ues imply that in 20.37% of the cases, it predicts Background when the correct label is not

Background. The algorithm predicts thalamus-proper in error 0.11% of the time. Also, the

algorithm wrongly predicts the hippocampus 0.99% of the time. The average Specificity is cal-

culated to be 7.16%. This implies that the algorithm would wrongly predict a positive instead

of a negative in 7.16% of the cases presented. On the other hand, in the third experiment, the

Specificity values for Background, cerebellum-cortex, thalamus-proper, and hippocampus are

2.34%, 12.83%, 1.24%, and 54.09% respectively (Table 4.9). This implies that the algorithm

wrongly predicts Background at a rate of 2.34%, it wrongly predicts cerebellum-cortex at a

rate of 12.83%, it wrongly predicts thalamus-proper at a rate of 1.24%, and wrongly predicts

hippocampus at a rate of 54.09%. The average rate of Specificity is calculated to be 22.72%.

This shows that in 22.72% of the cases, the algorithm wrongly predicted positive instead of

negative. The average Specificity for the two experiments is calculated to be 14.94%. Which

implied that in 14.94% of the cases, the algorithm would predict positive instead of negative.

True Negative Rate

The seventh statistic considered is True Negative Rate, and the statistic measures the rate at

which the algorithm predicts negative when the actual label is negative. The True Negative

Rates for Background, thalamus-proper, and hippocampus are 79.63%, 99.89%, and 99.01%,

respectively, for the second experiment (Table 4.8). This implied that for Background, the

algorithm correctly predicts the negative label in 79.63% of the cases. For thalamus-proper,
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the algorithm correctly predicts negative in 99.89% of the cases. For hippocampus, the algo-

rithm correctly predicts negative labels in 99.01% of the cases. The average True Negative

Rate is calculated to be 92.84%. On the other hand, for the third experiment, the True

Negative Rates for Background, Cerebellum-Cortex, thalamus-proper, and hippocampus are

97.66%, 87.17%, 98.76%, and 45.91% respectively (Table 4.9). This implies that the algorithm

correctly predicts negative, in the background segmentation 97.66% of the cases. It also cor-

rectly predicted negative in cerebellum-cortex segmentation at a rate of 87.17% and the same

applied for thalamus-proper at a rate of 98.76% and hippocampus segmentation at a rate of

45.91%. The average True Negative rate is calculated to be 77.28%. Additionally, the average

True Negative Rate for the two experiments is calculated to be 85.06%. This implies that the

algorithm correctly predicted negative at a rate of 85.06%.

Dice Similarity Coefficient

The final test statistic considered is F1 Score (Dice Similarity coefficient), and this gives

weighted averages of Recall and Precision. The values obtained for Background, thalamus-

proper and hippocampus are 97.03%, 83.94%, and 82.53%, respectively, for the second ex-

periment (Table 4.8). From this data, it is noted that when comparing actual and predicted

labels, the algorithm correctly predicts background labels at a rate of 97.03%. Also, 83.94%

of the thalamus-proper labels are correct when comparing classification results and actual

results, and 82.53% of the tissues are similar when comparing predicted and actual hippocam-

pus tissues. The average F1 Score is calculated to be 87.83% for the two brain tissues be-

ing segmented. On the other hand, in the third experiment, the F1 Scores for Background,

cerebellum-cortex, thalamus-proper, and hippocampus are calculated to be 96.89%, 90.69%,

86.31%, and 74.68% respectively (Table 4.9). This indicates that in comparing the predicted

and actuals values, the background pixels are 96.89% similar, the cerebellum-cortex pixels are

90.68% similar, the thalamus-proper pixels are 86.31% similar, and the hippocampus pixels

are 74.68% similar. The average F1 Score is 83.89% for the three brain components being

segmented. This implied that, on average, 83.89% of the labels predicted are similar to the

actual labels. The average score for the two experiments is calculated to be 86.85%. This

implies that when a classification task is carried out, 86.85% of the labels would be similar to

the actual labels.

82



4.4.7 Section Conclusion

In the training and evaluation of the NN, the loss and accuracy graphs showed the expected

results of a learning model. The training accuracy for the second and third experiment were

95.26% and 93.70%, respectively. These two give an average segmentation accuracy of 94.48%,

which rivals state of the art NNs in brain image segmentation. During training, early stop-

ping was used, but training continued to the last epoch. The algorithm was then used to

predict labels, and the results of the prediction were used to tabulate confusion matrices. The

confusion matrices were then used to calculate several test statistics used to test how well the

NN was performing the classification tasks presented to it. The test statistics derived from

the confusion matrix showed high performance of the NN, with most values being above 70%

where high percentage rates were expected except for Null Error Rate, which had a low value

for the majority class. The other statistic that was below 70% was the True Negative Rate.

Most test statistic values were above 80%, with the majority being above 90% where high

values are expected. The algorithm also recorded significantly low values in cases where low

values were expected, except hippocampus, which recorded 54.09% for False Positive Rate.

Test statistics such as Prevalence gave the general tissue distribution for the given tissues.

Null Error Rate was low for the majority classes but significantly high for all the other tissues

indicating that the algorithm was learning and did not depend on guessing, especially of the

majority class.

4.5 Comparson With Prior Art

A comparison is also made of the test statistics in Tables 4.3, 4.8, and 4.9. It is evident that

in 4 out of the 6 test statistics (excluding Prevalence), localized segmentation produced better

results. Additionally, two-component segmentation produced poor results in two test statis-

tics compared to whole-brain segmentation, while three-component segmentation produced

better results than the whole-brain segmentation. The results from the present study are also

compared with results for other state of the art algorithms. The predictive accuracies of these

algorithms are acquired from the study done by Cui et al. [32]. Table 4.10 then gives the pre-

dictive accuracy rates for the second experiment, third experiment, and other state of the art

algorithms.
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Table 4.10: Accuracy rates for the proposed CNN and state of the art CNNs [32]

Neural Network Total no. Average no. of Accuracy rates

of labels correct labels

Proposed CNN(2 components) 3299 3110 94.27%

Proposed CNN(3 components) 6326 6000 94.84%

Cui CNN 24725 22 458 90.83%

CNN1 24 725 22 246 89.97%

CNN2 24 725 22 299 90.18%

CNN3 24 725 21 326 86.25%

Table 4.10 shows that the second and third experiment have accuracy rates of 94.27% and

94.84%, respectively. This is compared against 90.83%, 89.97%, 90.18% and 86.25% for the

algorithms Cui CNN, CNN1, CNN2 and CNN3, respectively [32]. In both implementations,

the proposed algorithm shows improved accuracy rates as compared to other state of the art

algorithms. Additionaly, Table 4.11 shows the Dice similarity coefficients for the proposed

algorithm compared against other state of the art algorithms acquired from a study done by

Zandifar et al. [126]. In the table, EC stands for error correction.

Table 4.11: Dice ratios for the proposed CNN and state of the art CNNs [126]

Neural network Dice ratio

Proposed CNN(2 components) 87.83%

Proposed CNN(3 components) 83.89%

FreeSurfer with EC (error correction) 86.9%

ANIMAL with label fusion 86.2%

ANIMAL with label fusion with EC 86.9%

patch-based 87.9%

patch-based with EC 88.9%

Nonlinear patch-based 88.6%

Nonlinear patch-based with EC 89.4%

Table 4.11 shows that the dice ratios for the second and third experiment are 87.83% and

83.89%, respectively. This is compared against Dice ratios 86.9%, 86.2%, 86.9%, 87.9%,

88.9%, 89.4% and 88.6% for the algorithms FreeSurfer with EC, ANIMAL with label fusion,
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ANIMAL with label fusion with EC, patch-based, patch-based with EC, Nonlinear patch-

based and Nonlinear patch-based with EC, respectively [126]. Additionally, the algorithms

in Table 4.11 segmented the hippocampus only whereas the proposed algorithm segmented

the hippocampus together with the thalamus-proper in one experiment and in the other it

included the cerebellum-cortex. The proposed algorithm performed better than FreeSurfer

and Animal (both versions). It however has almost the same Dice score with the patch-based

algorithm. Lastly both versions of non-linear patch-based segmentation produced slightly

better results. Also, the Dice scores for the proposed algorithm are compared with those

acquired from the study carried out by Haegelen et al. [46]. Table 4.12 shows the average

Dice scores for hippocampus and thalamus-proper.

Table 4.12: Average dice scores for the proposed CNN and state of the art CNNs in segment-
ing the hippocampus and thalamus-proper [46]

Neural network Dice ratio

Proposed algorithm 87.83%

Animal 82.25%

SyN 82.20%

Patch-based 71.75%

Table 4.12 shows that the average dice score for the segmentation of the hippocampus and

thalamus-proper is calculated to be 87.83%. This was compared against 82.25%, 82.20% and

71.75% for the algorithms Animal, SyN and Patch-based, respectively [46]. The proposed

algorithm out performs the other algorithms it is compared against. There is a difference of

more than 5% between the Dice score of the proposed algorithm and the next best algorithm

in Table 4.12. The proposed algorithm is also compared with other algorithms that were

acquired from a study done by Zhang et al. [127]. The study compared the parcellation

results of several algorithms in segmenting several components of the brain. Table 4.13 then

shows the comparison between the Dice scores from the study against the proposed algorithm.
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Table 4.13: Average dice scores for the proposed CNN and state of the art CNNs in segment-
ing the hippocampus and thalamus-proper [127]

Proposed CNN(2 components) 87.83%

Proposed CNN(3 components) 83.89%

Majority Voting (MV) 53.60%

STAPLE [118] 56.90%

Local Weight Voting (LWV) 68.00%

Patch-Based Method (PBM) 73.60%

Sparse Patch-Based Method (SPBM) 75.60%

Table 4.13 shows that the Dice ratios for the second and third experiments are 87.83% and

83.89%, respectively. This is compared against Dice ratios 53.60%, 56.90%, 68.00%, 73.60%

and 75.60% for the algorithms majority voting (MV), STAPLE, local weight voting (LWV),

patch-based method (PBM) and sparse patch-based method (SPBM), respectively [127]. The

proposed algorithm out performs all other algorithms. The least difference between the pro-

posed algorithm’s Dice score and those of other state of the art algorithms is 8.89%. Addi-

tionally, Table 4.14 shows the Dice scores for the proposed algorithm compared against those

of state of the art algorithms acquired from the study done by Cui [32].

Table 4.14: Dice ratios for the proposed CNN and state of the art CNNs [32]

Neural Network Dice Ratio

Proposed CNN (2 components) 87.83%

Proposed CNN (3 components) 83.89%

Cui CNN 95.19%

CNN1 94.12%

CNN2 94.83%

CNN3 92.62%

Table 4.14 shows that the Dice scores for the second and third experiment are 87.83% and

83.89%, respectively. This was compared against the Dice ratios 95.19%, 94.12%, 94.83% and

92.62% for the algorithms Cui CNN, CNN1, CNN2 and CNN3, respectively [32]. The table

values show that the algorithm is outperformed by all the other algorithms. The least differ-

ence was 4.79% against CNN3 [32]. The low performance of the algorithm is attributed to

86



the fact that all the other algorithms were conducting binary classification while the proposed

algorithm was segmenting at least three components. Additionally, in comparing Tables 4.11,

4.12, and 4.13, it was observed that the more components segmented, the lower the Dice

ratio. The proposed algorithm rivals state of the art algorithms, as shown in cases where

the same number of components are segmented in which it outperforms other algorithms.

Additionally, in cases where the proposed algorithm had more components to segment, the

algorithm underperformed by less than 10%. Also, to pave the way for a fair comparison,

the first experiment’s classification results are compared with those of the third experiment.

Localized segmentation shows increased rates in accuracy, Recall, Precision, Null Error rate,

False Positive rate and F1-score of 1.08%, 2.58%, 5.52%, 16.79%, -8.94 and 3.39% respectively.

These increase/decrease rates indicate that localized segmentation improved the predictive

power of the algorithm.

4.6 Conclusion

The model proposed by Cui et al. was tweaked, and the segmentation results improved from

90.93% to 93.37%. This improvement in accuracy was realized when the brain was being

segmented into WM, GM, and CSF. Several test statistics were then used to test the NN’s

performance, and it was concluded that in general, the NN was performing well as it rivalled

state of the art NNs. The NN was also used in localized component-based segmentation in

which two experiments were carried out. The first experiment segmented the brain into two

components, while the second segmented the brain into three components. The test statis-

tics also showed that the NN did well in the classification task with an average accuracy

rate of 94.48%. It was also noted that some of the component pixel populations were very

small, resulting in some low results that were realized during the three experiments carried

out during the present study. Lastly, it was also observed that the proposed algorithm rivalled

state of the art algorithms in segmenting the brain and generally produced better results in

cases were the number of components segmented was the same.
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5. Conclusion And Recommendations

5.1 Summary

Accurate segmentation of the brain is an important prerequisite for effective diagnosis, treat-

ment planning, and patient monitoring. The use of manual Magnetic Resonance Imaging

(MRI) segmentation in treating brain medical conditions is slowly being phased out in favour

of fully-automated and semi-automated segmentation algorithms, which are more efficient

and objective. Manual segmentation has, however, remained the gold standard for supervised

training in image segmentation.

The advent of deep learning ushered in a new era in image segmentation, object detection,

and image classification. The convolutional neural network has contributed the most to the

success of deep learning models. Also, the availability of increased training data when using

Patch Based Segmentation (PBS) has facilitated improved neural network performance. On

the other hand, even though deep learning models have achieved successful results, they still

suffer from over-segmentation and under-segmentation due to several reasons, including vi-

sually unclear object boundaries. This results in deep learning algorithms having less than

perfect results. Researchers have been working tirelessly to improve the accuracy of neural

networks. Even though there have been significant improvements, there is still room for better

results as all proposed algorithms still fall short of 100% accuracy rate.

In the present study, experiments were carried out to improve the performance of neural net-

work models used in previous studies. The revised algorithm was then used for segmenting

the brain into three regions of interest: White Matter (WM), Grey Matter (GM), and Cere-

brospinal fluid (CSF). Particular emphasis is placed on localized component-based segmen-

tation because both disease diagnosis and treatment planning require localized information,

and there is a need to improve the local segmentation results, especially for small components.
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In the evaluation of the segmentation results, several metrics indicate the effectiveness of the

localized approach. The localized segmentation resulted in the accuracy, recall, precision,

null-error, false-positive rate, true-positive and F1-score increasing by 1.08%, 2.52%, 5.43%,

16.79%, -8.94%, 8.94%, 3.39 respectively. Also, the proposed algorithm produced segmenta-

tion results that rivalled those of state of the art algorithms in brain image segmentation.

5.1.1 Contributions

• In this section of the present study, a PBS algorithm is proposed based on the work done

by Cui et al. [32]. In this algorithm, the NN proposed by Cui et al. [32] is tweaked to

optimize output. The proposed algorithm is then used in segmenting the human brain

into four classes, namely background, WM, GM, and CSF. The major challenge is insuf-

ficient data for training the algorithm to segment small brain tissues. Insufficient data

results in a sub-optimum performance of the proposed algorithm. On the other hand,

to mitigate class imbalance, the brain slices are cropped, ensuring that the majority of

the brain’s pixels are included. Also, patches that are completely made out of back-

ground pixels are eliminated. The algorithm also attempts to solve the class imbalance

problem using the class weight() function from a Python library called SKLearn. Class

weights give weights that are inversely proportional to any given class’s prevalence rate

during model fitting. All these approaches are implemented to mitigate the effects of

class imbalance during model training. The proposed algorithm improves the training

accuracy from 90.83% to 93.37% compared with the results of the algorithm it is based

on. Several test statistics are then used in evaluating the performance of the NN. All

the test statistics used resulted in the conclusion that the NN rival state of the art NNs

in brain MRI image segmentation.

• In most cases, medical diagnosis, treatment planning, and treatment monitoring require

the segmentation of a section of the brain or just a few components that are important

for the neurological disorder being investigated. In this section of the present study, the

proposed algorithm was implemented in localized component PBS. The proposed algo-

rithm was implemented in two separate experiments. The first experiment segmented

two components, that is, thalamus-proper and hippocampus. The second segmented
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three components, that is, cerebellum-cortex, thalamus-proper, and hippocampus. In

evaluating the algorithm’s performance in the experiments, the same statistics used in

evaluating the first algorithm are used. The averages for the two experiments were then

used in judging the performance of the NN in component-based PBS. The average train-

ing accuracy for the two experimented are observed to be 95.15%, and this rate is higher

than the 93.37% obtained during the segmentation in the first section of this study. The

next comparison was the performance of the algorithm in segmenting four classes, that

is, [WM, GM, CSF, and background] and [background, hippocampus, thalamus-proper,

and cerebellum-cortex]. Training accuracy slightly increased from 93.37% to 93.70%.

The accuracy, recall, precision, null error rate, false-positive rate, True positive rate

and F1-score increased by 1.08%, 2.52%, 5.43%, 16.79%, -8.94%, 8.94%, 3.39% respec-

tively. All the statistics were expected to increase (except for False Positive rate) to

increase the NN’s performance. The statistics show a general increase in the NN’s pre-

dictive ability when used in localized segmentation. In general, all the statistics used

showed significantly high-performance rates for the algorithm with a few sub-optimum

performance rates on classes with limited training data. The sub-optimum performances

happened even though the same strategies addressing class imbalance used in the first

implementation were implemented. The results of the algorithm were also compared to

those of state of the art algorithms. The algorithm performs better than some and is

outperformed by others. In cases where the number of classes is the same, the algorithm

seems to outperform other algorithms it was compared against

The proposed NN’s implementation in localised PBS was compared against and rivalled several

state of the art NN. Localized segmentation improved the segmentation accuracy especially

in cases where the comparison was done with NNs that segmented the same dataset. The

improved results from the proposed NN were realised even though the other implementations

were mainly binary classifications.

5.2 Limitations And Future Work

Deep learning algorithms have produced state of the art accuracy rates in medical image

segmentation. One of the significant contributors to this success were CNNs. Even though

these algorithms have made headway in medical image segmentation, there is still room for
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improvement. The proposed algorithm, just like all the other algorithms before it, is not

without limitations. The platform used also had it is limitations.

5.2.1 Limitations

Deep learning NNs, including CNNs, require large volumes of data. The need for large vol-

umes of data compounded by the fact that medical image data is significantly large strains the

computational resources of a computer. In each of the experiments carried out in the present

study, only a few slices from a single patient are used. The lack of variation in slices results

in a NN that does not generalize well due to the lack of variability in the samples used during

the NN training and validation. Additionally, Google-Colab was chosen due to its processing

abilities superior to other platforms, but this limits the training time to 12 hours. It also

has user limitations, which makes extensive experimentation with training very difficult. In

addition to these limitations, training the NN to segment small organs presents challenges as

there is limited training data for the NN.

5.2.2 Future Work

The extensions to the present study could experiment with data augmentation for small or-

gans. It could consider using multi-dimensional pixel voting as an augmentation strategy.

Researchers could also experiment with integrating transferred learning of the little organs

into medical image segmentation algorithms. Also, training does not stop before the last

epoch, even though early stopping has been implemented in the algorithms proposed. For

researchers with locally installed GPUs, they could experiment with training the NNs for long

periods. Extensions to the study could also consider developing the proposed algorithms’

hybrids with well-known state of the art algorithms like U-Net and V-Net. Additionally, re-

searchers could consider implementing the algorithm with error correction (EC). Also, one

could implement the algorithm using Non-linear patch generation with or without EC. Last

but not least future work could also consider developing an algorithm for automatic cropping

and patch size generation that maximizes the output of the NN.
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Appendices
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A. HD, MSD And DSC For OASIS, Collin27

And CANDI Datasets

Table A.1: HD, MSD and DSC for OASIS, Collin27 and CANDI datasets

Statistical test OASIS dataset Colin27 CANDI

Mean ± std HD 20.837 ± 3.124 7.115 26.561 ± 2.623

median HD 20.475 3.913 26.739

Mean ± std MSD 1.870 ± 0.283 1.802 2.435 ± 0.666

Median MSD 1.605 0.299 2.250

Mean ± std DSC 0.716 ± 0.017 0.593 0.594 ± 0.045

Median DSC 0.716 0.695 0.601
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B. ANOVA Analysis For OASIS, Collin27 And

CANDI Datasets

Table B.1: ANOVA table for OASIS, Collin27 and CANDI datasets for HD

Df Sum Sq Mean Sq F value Pr>F

Datasets 2 2996 01498.0 5.327 0.00867

Residuals 42 11810 281.2

Table B.2: ANOVA table for OASIS, Collin27 and CANDI datasets for MSD

Df Sum Sq Mean Sq F value Pr>F

Datasets 2 5.46 2.728 0.415 0.663

Residuals 42 276.22 6.577

Table B.3: ANOVA table for OASIS, Collin27 and CANDI datasets for DSC

Df Sum Sq Mean Sq F value Pr>F

Datasets 2 0.148 0.07373 9.538 0.000385

Residuals 42 0.3247 0.00773
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C. Commonly Used Evaluation Metrics Cal-

culated From The Confusion Matrix

Table C.1: Commonly used evaluation metrics calculated from the confusion matrix

Metric Description Formula

Accuracy The percentage of cases the classifier is TP + TN

total
× 100 (C.0.1)

actually correct

Misclassification The percentage of cases the classifier is
1− accuracy (C.0.2)

wrongly classifying OR

FP + FN

total
∗ 100 (C.0.3)

True Positive When the correct value is positive,

rate (Recall) how often does the model predict TP

ActualPositive
(C.0.4)

positive

False Positive When it is actually negative, how

Rate often does the model predict FP

ActualPositive
(C.0.5)

positive

Continued on next page
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Table C.1 – continued from previous page

Metric Description Formula

True Negative When the correct result is negative 1− FalsePositiverate

(C.0.6)

Rate how often does the model predict OR

negative TN

ActualNegative
(C.0.7)

Precision When it predicts positive, How often

is it correct
TP

TP + FP
(C.0.8)

Prevalence How often does the positive cases

actually appear in our sample actualpositive

total
(C.0.9)

Null Error This measures how often the model

Rate would be wrong if it always predicted TN + FP

total
(C.0.10)

the majority class

Cohen’s This metric measures how well the

Kappa model performs as opposed to
TP − P c

1− P c

(C.0.11)]

performance based on chance

F1-score This gives the balance between 2 ∗ (precision ∗ recall)
precision+ recall

(C.0.12)

precision and recall

ROC curve This graph summaries the -

performance of the classifier

over several thresholds. It shows

true positive rate on the y-axis and

Continued on next page
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Table C.1 – continued from previous page

Metric Description Formula

false positive rate on the x-axis

Where Pc refers to percentage by chance [70].
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D. Brain Tissue Classes As Provided In The

CANDI Website [84]

Table D.1: Brain tissue classes as provided in the CANDI website

Number Component

1 2 Left-Cerebral-white-matter

2 3 Left-Cerebral-Cortex

3 4 Left-Lateral-Ventricle

4 5 Left-Inf-Lat-Vent

5 7 Left-Cerebellum-White-Matter

6 8 Left-cerebellum-cortex

7 10 Left-thalamus-proper

8 11 Left-Caudate

9 12 Left-Putamen

10 13 Left-Pallidum

11 14 3rd-Ventricle

12 15 4th-Ventricle

13 16 Brain-Stem

14 17 Left-hippocampus

15 18 Left-Amygdala

16 24 CSF

17 26 Left-Accumbens-area

18 28 Left-VentralDC

19 29 Left-undetermined

20 30 Left-vessel

21 41 Right-Cerebral-White-Matter

22 42 Right-Cerebral-Cortex

Continued on next page

98



Table D.1 – continued from previous page

Number Component

23 43 Right-Lateral-Ventricle

24 44 Right-Inf-Lat-Vent

25 46 Right-Cerebellum-White-Matter

26 47 Right-cerebellum-cortex

27 49 Right-thalamus-proper

28 50 Right-Caudate

29 51 Right-Putamen

30 52 Right-Pallidum

31 53 Right-hippocampus

32 54 Right-Amygdala

33 58 Right-Accumbens-area

34 60 Right-VentralDC

35 61 Right-undetermined

36 62 Right-vessel

37 72 5th-Ventricle

38 77 WM-hypointensities

39 85 Optic-Chiasm
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