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Abstract

In this work, we introduce and study a modified extragradient algorithm for approximating
solutions of a certain class of split pseudo-monotone variational inequality problems in real
Hilbert spaces. Using our proposed algorithm, we establish a strong convergence result for
the approximation of solutions of the aforementioned problem. Our strong convergence re-
sult is obtained without prior knowledge of the Lipschitz constant of the pseudo-monotone
and Lipschitz continuous operator used in this work, and with minimized number of pro-
jections per iteration compared to other results on split variational inequality problems in
the literature. More so, a numerical example of our algorithm in comparison with other
algorithm is given to show the efficiency and advantage of our results. We further ex-
tend our study from the frame work of real Hilbert spaces to Hadamard spaces, and from
variational inequality problems to monotone inclusion problems. Precisely, we introduce
a viscosity-type proximal point algorithm which comprises of a finite sum of resolvents of
monotone operators and a generalized asymptotically nonexpansive mapping. We prove
that the algorithm converges strongly to a common solution of a finite family of monotone
inclusion problems and fixed point problem for a generalized asymptotically nonexpansive
mapping in an Hadamard space. Furthermore, we give two numerical examples of our
algorithm in finite dimensional spaces and one numerical example in a non-Hilbert space
setting, in order to show the applicability of our results. We then introduce and study
the class of generalized demimetric mappings in Hadamard spaces. We also propose a
Halpern-type proximal point algorithm comprising of a generalized demimetric mapping
and a finite composition of resolvents of monotone operators, and prove that it converges
strongly to a common solution of a finite family of monotone inclusion problems and fixed
point problem for a demimetric mapping in an Hadamard space. More so, we apply our
results to solve a finite family of convex minimization problems, variational inequality
problems and convex feasibility problems in Hadamard spaces.
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Chapter 1

Introduction

1.1 Background of study

Optimization theory is an important area of research in mathematics that has attracted the
interest of many researchers due to its usefulness in nonlinear and convex analysis. Some
of the important problems in optimization theory are the Variational Inequality Problem
(VIP) and Monotone Inclusion Problem (MIP) since they include many other optimization
and mathematical problems as special cases; namely, minimization problems, complemen-
tarity problems, fixed point problems, convex feasibility problems, among others.

Let C be a nonempty closed and convex subset of a real Hilbert space H and f : C → C
be any nonlinear operator. The VIP is defined as: Find x ∈ C such that〈

fx, y − x
〉
≥ 0, ∀ y ∈ C. (1.1.1)

VIP was first introduced by Stampacchia [76] for modeling problems arising from mechan-
ics. To study the regularity problem for partial differential equations, Stampacchia [76]
studied a generalization of the Lax-Milgram theorem and called all problems involving
inequalities of such kind, the VIPs. The VIP is also known to have numerous applications
in diverse fields such as, physics, engineering, economics, mathematical programming,
among others. It can be considered as a central problem in optimization and nonlinear
analysis since the theory of variational inequalities provides a simple, natural and unified
frame work for a general treatment of many important mathematical problems such as,
minimization problems, network equilibrium problems, complementary problems, systems
of nonlinear equations and others (see [5, 9, 21, 31, 50, 51, 76, 86, 85] and the references
therein). Thus, the theory has become an active area of research to numerous researchers.
As a result of this, there has been an increased interest in developing efficient and imple-
mentable methods for solving VIPs.

In the same vein, the MIP which is an important generalization of the VIP is defined as
follows:

Find x ∈ D(A) such that 0 ∈ Ax, (1.1.2)
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where A : X → 2X
∗

is a monotone operator, X∗ is the dual of the Hadamard space X and
D(A) is the domain A (to be defined in Chapter 2).
The MIP is of central importance in nonlinear and convex analysis since many mathe-
matical problems such as the equilibrium problems, VIPs, minimization problems among
others can be posed as MIPs.

Various methods have been developed by numerous authors for solving VIPs and MIPs,
which include fixed point method, proximal point method, gradient method, extragradent
method, subgradient extragradient method, amongst others. One of the most effective
methods for finding the solutions of VIPs and MIPs is the fixed point method. Fixed
point theory is an important area of research in nonlinear functional analysis that has
continued to attract the interest of numerous researchers in past years. Many important
nonlinear problems in disciplines like engineering, physics, economics, life science and med-
ical sciences reduces to nonlinear functional equations such as nonlinear integral equations
and boundary value problems for nonlinear ordinary or partial differential equations. This
nonlinear functional equations can be translated in terms of a fixed point equation,

Tx = x (1.1.3)

for a given nonlinear mapping T on a nonempty set X, where x ∈ X satisfying (1.1.3) is
called the fixed point of T. Throughout this work, we will denote by F (T ) the set of fixed
points of T.

The fixed point theory is used in proving the existence and uniqueness of solutions of
different mathematical problems and as a result of this, it is sometimes referred to as the
kernel of the modern nonlinear analysis. The existence of a fixed point is important in
several areas of mathematics and many related areas. The design of fixed point iterative
methods for solving nonlinear problems, in particular, nonlinear equations or systems, has
gained a spectacular development in the last two decades. For example, if we consider the
nonlinear ordinary differential equation

x
′
(t) = f(t, x(t)), x(t0) = x0. (1.1.4)

To find the solution of the differential equation (1.1.4), we solve

x(t) = x0 +

∫ t

t0

f(s, x(s))ds,

and to establish the existence of the solution of the posed problem, we consider the operator

T : C([a, b])→ C([a, b]),

defined by

Tx = x0 +

∫ t

t0

f(s, x(s))ds,

where C([a, b]) is the space of continuous real valued functions on closed and bounded
interval [a, b].

2



Any x that solves the problem above is a fixed point of the operator T . Thus, finding a
solution to the problem is the same as finding a fixed point of T . However, an existence
theorem only involves the establishment of sufficient conditions under which a given prob-
lem has a solution, but does not tell us how to find the solution of such a problem. On
the other hand, the iterative methods are concerned with the approximation of sequences
that converge to fixed points of nonlinear operators and solutions of such problems (in
particular, (1.1.1) and (1.1.2)). The iterative methods are our major concern in this dis-
sertation.

1.2 Some important iterative schemes

Fixed points of nonlinear operators are not easily obtained so there is need for approximate
solutions. To overcome this, different iterative schemes have been developed and used to
approximate the fixed points of nonlinear mappings on suitable spaces. In this section, we
recall some important iterative schemes in literature for approximating solutions of fixed
point problems.

1.2.1 Picard iteration

Let T : X → X be an α-contraction mapping on a complete metric space (X, d), satisfying

d(Tx, Ty) ≤ αd(x, y) ∀ x, y ∈ X, (1.2.1)

with α ∈ [0, 1) fixed. Then by the contraction mapping theorem, we have

(i) F (T ) = {x∗}, that is T has a unique fixed point;

(ii) the Picard iteration

xn = T nx0, n = 1, 2, · · · (1.2.2)

converges to x∗ for x0 ∈ X;

(iii) both the priori and the posterior error estimates

d(xn, x
∗) ≤ αn

1− α
· d(x0, x1), n = 0, 1, 2, · · · , (1.2.3)

d(xn, x
∗) ≤ α

1− α
· d(xn−1, xn), n = 1, 2, · · · (1.2.4)

hold,

(iv) the rate of convergence is given by

d(xn, x
∗) ≤ α · d(xn−1, x

∗) ≤ αn · d(x0, x
∗), n = 1, 2, · · · . (1.2.5)

3



Remark 1.2.1. [13] The errors d(xn, x
∗) are decreasing as rapidly as the terms of geo-

metric progression with ratio α, that is, {xn}∞n=0 converges to x∗ at least as rapidly as the
geometric series. The convergence is however linear as shown in (1.2.5).

If T satisfies a weaker contractive condition, for example when T is nonexpansive, the
Picard iteration may not converge and if it does converge, its limit may not be a fixed
point of T.

1.2.2 Krasnoselskii iteration

Replacing (1.2.2) with

xn+1 =
1

2
(xn + Txn), for n = 0, 1, 2, · · · and x0 ∈ C, (1.2.6)

the iterative sequence converges to the unique fixed point. In general, if X is a normed
linear space and T is a nonlinear mapping, then (1.2.6) can be generalized as follows;

xn+1 = (1− λ)xn + λTxn, n = 0, 1, 2, · · · for x0 ∈ C and λ ∈ (0, 1). (1.2.7)

The formula (1.2.7) is called the Krasnoselskii iteration. Krasnoselskii iteration (1.2.7)
reduces to the Picard iteration when λ = 1, and it is the Picard iteration corresponding
to the averaged operator Tλ = (1− λ)I + λT, where I is the identity operator.

1.2.3 Mann iteration

Mann iteration [59] formula is the most general iterative formula for the approximation of
fixed points of nonlinear mappings, and it is given by

xn+1 = (1− an)xn + anTxn, n = 0, 1, 2, · · · and x0 ∈ C, (1.2.8)

where {an}∞n=0 is a sequence in (0, 1) satisfying the following conditions

(i) lim
n→∞

an = 0,

(ii)
∞∑
n=0

an =∞.

If {an} = {λ} then (1.2.8) reduces to (1.2.7) and if {an} = 1, (1.2.8) reduces to (1.2.2).

Example 1.2.2. [13] Let X = R with the usual norm, K =
[

1
2
, 2
]

and T : K → K be the
function given by Tx = 1

x
for all x ∈ K. Then;

(i) F (T ) = {1};

(ii) the Picard iteration associated to T does not converge to the fixed point of T for any
x0 ∈ X \ {1};

4



(iii) the Krasnoselskii iteration associated to T converges to the fixed point p = 1, for any
x0 ∈ K and λ ∈

(
0, 1

16

)
;

(iv) the Mann iteration associated to T with αn = n
2n+1

, n ≥ 0 and x0 = 2 converges
to 1, the unique fixed point of T.

1.2.4 Ishikawa iteration

The Mann iterative algorithm was improved by Ishikawa [36] to a new iterative algorithm
for pseudocontractive mappings that generates the sequence {xn} by

xn+1 = (1− an)xn + anT [(1− bn)xn + bnTxn], n = 0, 1, 2, · · · and x0 ∈ C, (1.2.9)

where {an}∞n=1 and {bn}∞n=1 are sequences satisfying the following conditions

(i) 0 ≤ an ≤ bn ≤ 1,

(ii) lim
n→∞

bn = 0,

(iii)
∞∑
n=1

anbn =∞.

Writing (1.2.9) in a system form, we have{
yn = (1− bn)xn + bnTxn

xn+1 = (1− an)xn + anTyn, n = 0, 1, 2, · · ·
(1.2.10)

which implies that the Ishikawa iteration is regarded as a double Mann iteration and
it reduces to Mann iteration when bn = 0. The Mann and the Ishikawa iterations have
been successfully used by various authors to approximate fixed points of various classes of
mappings.

Replacing T by T n in (1.2.10), we have the modified Ishikawa iterative algorithm defined
as follows: {

yn = (1− bn)xn + bnT
nxn

xn+1 = (1− an)xn + anT
nyn, n = 0, 1, 2, · · · .

(1.2.11)

1.2.5 Krik’s iteration

Let H be a Hilbert space, T : H → H be a self map, x0 ∈ H and the sequence {xn} be
defined by

xn+1 = α0xn + α1Txn + α2T
2xn + · · ·+ αkT

kxn, (1.2.12)

where k is a fixed integer.

k ≥ 1, αi ≥ 0, for i = 0, 1, · · · , k, αi > 0

5



and
α0 + α1 + · · ·+ αk = 1.

The iterative processes of Kirk, Ishikawa, Mann and Krasnoselskii are mainly used to
generate successive approximations for fixed points of nonlinear mappings for which the
Picard iteration does not converge to.

1.2.6 Halpern iteration

Halpern [33] introduced the explicit iterative algorithm which generates a sequence using
the recursive formula

xn+1 = αnu+ (1− αn)Txn, for n = 0, 1, 2, · · · (1.2.13)

with the initial guess x0 ∈ C and u ∈ C arbitrarily fixed and the sequence {αn} is
contained in (0, 1). The iterative method is used for finding fixed points of a nonlinear
mapping with F (T ) 6= ∅. This iterative method is known as Halpern iteration.

1.2.7 Viscosity iteration

Moudafi [62] proposed the viscosity iterative method. Choose an arbitrary initial point
x0 ∈ H, the sequence {xn}∞n=0 is defined by

xn+1 =
εn

1 + εn
g(xn) +

1

1 + εn
Txn, ∀ n ≥ 0, (1.2.14)

where T is a nonexpansive self-mapping and g is a contraction with a coefficient α ∈ [0, 1],
the sequence {εn} in (0, 1), such that

(i) lim
n→∞

εn = 0,

(ii)
∞∑
n=0

εn =∞,

(iii) lim
n→∞

(
1
εn
− 1

εn+1

)
= 0,

then lim
n→∞

xn = x∗, where x∗ ∈ F (T ) is the unique solution of the variational inequality

〈(1− f)x∗, x− x∗〉 ≥ 0, ∀ x ∈ F (T ). (1.2.15)

1.3 Research motivation

Censor et al. [21] introduced and studied the Spilt Variational Inequality Problem (SVIP)
which is a generalization of the spilt feasibility problems introduced by Censor and Elfving
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[20]. They proposed an algorithm for approximating the solution of the SVIP and proved
that the sequence generated by this algorithm converges weakly to a solution of SVIP
when the associated operators are inverse strongly monotone. Also, Tian and Jian [85]
introduced a new class of SVIP which generalizes the class of SVIP considered by Censor
et al. [21]. They proposed an algorithm for approximating the solution of the new class of
SVIP and also proved the weak convergence of this algorithm when the associated operator
is monotone and Lipschitz continuous, and the mapping is nonexpansive.

Motivated by the works of Censor et al. [21] and Tian and Jian [85], we propose a new
modified extragradient iterative algorithm for solving the new class of SVIP (introduced
by Tian and Jian [85]). We also prove that the sequence generated by our algorithm
converges strongly to a solution of the SVIP when the associated operator is pseudo-
monotone and Lipschitz continuous, and the mapping is strictly pseudocontractive. Our
proposed algorithm has minimized number of projections per iteration and does not require
prior knowledge of the Lipschitz constant unlike the algorithms of Censor et al. [21] and
Tian and Jian [85]. Also, our numerical experiements show that our iterative algorithm
performs better than that of Tian and Jian [85].

Rockafellar [71] studied the Proximal Point Algorithm (PPA) for approximating solu-
tions of MIP in real Hilbert spaces and obtained a weak convergence result. Bačák [7]
extended the study of the PPA from Hilbert spaces to Hadamard spaces, and obtained
a 4-convergence result when the associated operator is the subdifferential of a proper,
convex and lower semi-continuous function. Ranjbar and Khatibzadeh [69] proposed a
Mann-type and a Halpern-type PPA in an Hadamard space for approximating solutions of
MIP, and obtained a 4 and a strong convergence results respectively, when the associated
operator is monotone.

Motivated by the works of Bačák [7] and Ranijbar and Khatibzabeh [69], we introduce a
viscosity-type PPA which comprises of a finite sum of resolvents of monotone operators,
and a generalized asymptotically nonexpansive mapping. We prove that the algorithm
converges strongly to a common solution of a finite family of MIPs and fixed point problem
for a generalized asymptotically nonexpansive mapping in an Hadamard space.

In 2018, Aremu et al. [4] introduced the class of demimetric mappings in Hadamard spaces
and established some fixed point results for this class of mappings. They proved a strong
convergence theorem for approximating a common solution of finite family of minimization
problems and fixed point problems for this class of mappings in Hadamard spaces. In the
same year, Kawasaki and Takahashi [45] generalized the class of demimetric mappings
to the class of generalized demimetric mappings in Banach space, and obtained strong
convergence results. Motivated by the works of Aremu et al. [4], Kawasaki and Takahashi
[45], we introduce and study the class of generalized demimetric mappings in Hadamard
spaces. We also propose a Halpern-type PPA comprising of a generalized demimetric
mappings and a finite composition of resolvents of monotone operators, and prove that it
converges strongly to a common solution of a finite family of MIPs and fixed point problem
for a demimetric mapping in an Hadamard space.
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1.4 Statement of problem

The following problems have been studied in this dissertation:

1. Let H1 and H2 be two real Hilbert spaces, C be a nonempty closed and convex subset
of H1 and f : H1 → H1 be a pseudo-monotone and Lipschitz continuous operator.
Let g : H1 → H1 be a contraction mapping with constant ρ ∈ (0, 1), A : H1 → H2 a
bounded linear operator and T : H2 → H2 be a κ-strictly pseudocontractive mapping
with κ ∈ [0, 1) and F (T ) 6= ∅. We intend to find x ∈ C such that〈

fx, y − x
〉
≥ 0 ∀ y ∈ C and Ax ∈ F (T ).

2. Let X be an Hadamard space and X∗ be its dual space. Let T : X → X be a
uniformly asymptotically regular and uniformly L-Lipschitzian generalized asymp-
totically nonexpansive mapping with F (T ) 6= ∅. Let Ai : X → 2X

∗
, i = 1, 2, . . . , N

be a finite family of multivalued monotone mappings which satisfy the range condi-
tion and g be a contraction mapping on X with coefficient ρ ∈ (0, 1). We intend to
find

v̄ ∈ F (T ) such that 0 ∈ ∩Ni=1A(v̄). (1.4.1)

3. Let C be a nonempty closed and convex subset of an Hadamard space and T :
C → C be a θ-generalized demimetric mapping with θ 6= 0 and F (T ) 6= ∅. Let
Ai : X → 2X

∗
, i = 1, 2, · · · , N be multivalued monotone mappings that satisfy the

range condition. We intend to solve problem (1.4.1) for the class of θ-generalized
demimetric mappings.

1.5 Objectives

The objectives of this work are to:

(i) review some existing results on VIPs and MIPs in real Hilbert spaces and Hadamard
spaces,

(ii) develop and study better implementable iterative algorithms for approximating so-
lutions of VIPs and MIPs in Hilbert spaces and Hadamard spaces respectively,

(iii) establish strong convergence results of the proposed algorithms,

(iv) introduce and study the class of generalized demimetric mappings in Hadamard
spaces,

(v) give nontrivial numerical experiments of our results in comparison with others, in
order to illustrate the applicability and the competitive advantages of our results
over existing iterative algorithms in the literature,

(vi) apply the obtained results to solve some important optimization problems.
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1.6 Organization of dissertation

The rest of this dissertation is organized as follows:

Chapter 2: In this chapter, we give preliminaries of our study and also recall some basic
definitions, concepts, theorems, lemmas and propositions that will be useful in the main
results.
Chapter 3: In this chapter, we introduce and study a modified extragradient algorithm
for approximating solutions of a certain class of split pseudo-monotone VIP in real Hilbert
spaces. A numerical example of our algorithm in comparison with other algorithm is also
given in this chapter to show the efficiency and advantage of our results.
Chapter 4: In this chapter, we introduce a viscosity-type PPA which comprises of a finite
sum of resolvents of monotone operators, and a generalized asymptotically nonexpansive
mapping. We prove that the algorithm converges strongly to a common solution of a finite
family of MIPs and fixed point problem for a generalized asymptotically nonexpansive
mapping in an Hadamard space. Numerical examples of our results are given to further
illustrate the applicability of our results.
Chapter 5: In this chapter, we introduce a new class of nonlinear mappings, namely, the
class of generalized demimetric mappings in Hadamard spaces. We propose a Halpern-type
PPA comprising of our new class of mappings, and a finite composition of resolvents of
monotone operators. Using our proposed algorithm, we prove that the sequence generated
by it converges strongly to a common solution of MIPs and fixed point problem for the
generalized demimetric mapping in an Hadamard space. Finally, we applied our results to
solve a finite family of convex minimization problems, VIPs and convex feasibility problems
in Hadamard spaces.
Chapter 6: In this chapter, we give the conclusion of our research. We also highlight
the contributions of our research to existing knowledge. Furthermore, we discuss possible
areas of future research.
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Chapter 2

Preliminaries

In this chapter, we give preliminaries of our study and also recall some basic definitions
and results that will be useful in our main results.

2.1 Hilbert spaces

The notion of Hilbert spaces was introduced by David Hilbert (between 1862-1943) and
it is known to be an extension of the concept of Euclidean spaces to infinite dimensional
spaces. The Hilbert space is known to have the most simplest and clearly discernible
geometric structure compared to other Banach spaces. Hilbert space is our first space of
interest in this dissertation.

Definition 2.1.1. [25] Let H be a nonempty set. An inner product on H is a function
〈·, ·〉 defined on H×H with values in K = R or C such that the following conditions hold:

(i) 〈x, x〉 ≥ 0 ∀ x ∈ H and 〈x, x〉 = 0 ⇐⇒ x = 0;

(ii) 〈x, y〉 = 〈y, x〉 ∀ x, y ∈ H (the bar denotes the complex conjugate);

(iii) 〈αx, y〉 = α〈x, y〉;

(iv) 〈λx+ µy, z〉 = λ〈x, z〉+ µ〈y, z〉 ∀ x, y, z ∈ H and λ, µ ∈ K.

The pair (H, 〈·, ·〉) is called an inner product space.

We note that if K = R, then (ii) becomes 〈x, y〉 = 〈y, x〉. In this case, (H, 〈·, ·〉) is called
a real inner product space.

Definition 2.1.2. An inner product space (H, 〈·, ·〉) is said to be complete if every Cauchy
sequence in H converges to a point in H and a complete inner product space is called a
Hilbert space.
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Proposition 2.1.3. [25](Cauchy Schwartz inequality) Let (H, 〈·, ·〉) be an inner product
space. For arbitrary x, y ∈ H

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉. (2.1.1)

Lemma 2.1.4. [25] The function ‖ · ‖ : H → [0,∞), defined by

‖x‖ =
√
〈x, x〉 (2.1.2)

is a norm on H.

Remark 2.1.5. Following (2.1.2), the Cauchy Schwartz inequality (2.1.1) can be written
generally as √

|〈x, y〉|2 ≤
√
〈x, x〉 ·

√
〈y, y〉 (2.1.3)

so that |〈x, y〉| ≤ ‖x‖ · ‖y‖ for arbitrary x, y ∈ H.

2.1.1 Examples of Hilbert spaces

(i) The space Rn is a Hilbert space with inner product defined by

〈x, y〉 = x1y1 + · · ·+ xnyn =
n∑
i=1

xiyi,

where x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) are in Rn.

(ii) The space L2(R) is the space of real valued functions such that∫
R
|f(x)|2dx <∞,

and it is a real Hilbert space, with inner product

〈f, g〉 =

∫
R
f(x)g(x)dx.

(iii) Let ω be an open set in Rn. The space L2(ω) is the space of complex valued functions
such that ∫

ω

|f(x)|2dx <∞,

where x = (x1, · · · , xn) ∈ ω and dx = dx1 · · · dxn. L2(ω) is a Hilbert space with
inner product

〈f, g〉 =

∫
ω

f ∗(x)g(x)dx.
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2.1.2 Geometric properties of Hilbert spaces

Some geometric properties that characterize Hilbert spaces include: the inner product,
the fact that the nearest point map of a real Hilbert space H onto a closed convex subset
C of H is lipschitzian with constant 1 and the following identities:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉, (2.1.4)

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2, (2.1.5)

which hold for x, y ∈ H and λ ∈ [0, 1]. These geometric characteristics of Hilbert spaces
makes certain problems posed in Hilbert spaces more manageable than those in general
Banach spaces [24].

We observe that (2.1.4) can be written as

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2 x, y ∈ H (2.1.6)

and

2(‖x‖2 + ‖y‖2) = ‖x− y‖2 + ‖x+ y‖2, (2.1.7)

where (2.1.7) is called the parallelogram identity.

2.1.3 Some inequalities that characterize Hilbert spaces

Lemma 2.1.6. [24] Let H be a real Hilbert space, then for each x, y ∈ H, we have

(i)

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉, (2.1.8)

(ii)

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, (2.1.9)

Proof. (i)

‖x− y‖2 = 〈x− y, x− y〉
= 〈x, x〉 − 2〈x, y〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2 − 2〈x, y〉.

(ii)

‖x+ y‖2 = 〈x+ y, x+ y〉
≤ 〈x, x〉+ 2〈y, x〉+ 2〈y, y〉
= 〈x, x〉+ 2〈y, x+ y〉.
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Remark 2.1.7. It then follows from Lemma 2.1.6 (i) that

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉 ∀x, y ∈ H.

Lemma 2.1.8. For x, y ∈ H and λ ∈ [0, 1], we have

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Proof.

‖λx+ (1− λ)y‖2 = 〈λx+ (1− λ)y, λx+ (1− λ)y〉
= λ2〈x, x〉+ λ(1− λ)〈x, y〉+ λ(1− λ)〈y, x〉+ (1− λ)2〈y, y〉
= λ2〈x, x〉+ 2λ(1− λ)〈x, y〉+ (1− λ)2〈y, y〉,

which implies from (2.1.8) that

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Lemma 2.1.9. [52] For x, y,m, z ∈ H, we have

2〈x− y,m− z〉 = ‖x− z‖2 + ‖y −m‖2 − ‖x−m‖2 − ‖y − z‖2.

We also have

‖x− y +m− n‖2 = ‖x− y‖2 + ‖m− z‖2 + 2〈x− y,m− z〉
= ‖x− y‖2 + ‖m− z‖2 + ‖x− z‖2 + ‖y −m‖2 − ‖x−m‖2 − ‖y − z‖2.

2.1.4 Some nonlinear single-valued mappings in Hilbert spaces

Definition 2.1.10. Let H be a real Hilbert space and C be a nonempty closed and convex
subset of H. A mapping f : H → H is said to be

(i) L-Lipschitz if there exists L > 0 such that

‖fx− fy‖ ≤ L‖x− y‖, ∀ x, y ∈ H;

if L = 1, then f is called nonexpansive while f is called a contraction if L ∈ (0, 1),

(ii) η-strongly monotone, if there exists η > 0 such that〈
fx− fy, x− y

〉
≥ η‖x− y‖2 ∀ x, y ∈ H;

(iii) η-inverse strongly monotone (η-ism), if there exists η > 0 such that〈
fx− fy, x− y

〉
≥ η‖fx− fy‖2 ∀ x, y ∈ H;

if η = 1, then f is called firmly nonexpansive,
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(iv) monotone, if 〈
fx− fy, x− y

〉
≥ 0 ∀ x, y ∈ H;

(vi) pseudo-monotone, if〈
fx, y − x

〉
≥ 0 =⇒

〈
fy, y − x

〉
≥ 0 ∀ x, y ∈ H;

(vii) sequentially weakly continuous on H, if for each sequence {xn} ⊂ H we have that
{xn} converges weakly to x ∈ H implies that {fxn} converges weakly to fx;

(viii) α−averaged, if f = (1−α)I+αT , where α ∈ (0, 1) and T : H → H is nonexpansive,

(ix) k-strictly pseudocontractive, if for 0 ≤ k < 1

‖fx− fy‖2 ≤ ‖x− y‖2 + k‖(I − f)x− (I − f)y‖2 ∀ x, y ∈ C. (2.1.10)

When k = 0, (2.1.10) becomes nonexpansive.

It is well-known that firmly nonexpansive mappings are 1
2
-averaged while averaged map-

pings are nonexpansive. It is also known that every η-ism mapping is 1
η
-Lipschitz contin-

uous. Also, if f is η-strongly monotone and L-Lipschitz continuous, then f is η/L2-ism.
Furthermore, both η-strongly monotone and η-inverse strongly monotone mappings are
monotone while monotone mappings are pseudo-monotone. However, there are pseudo-
monotone mappings which are not monotone.

Example 2.1.11. [47] Let H = R be endowed with the usual metric and f : (0,∞) →
(0,∞) be defined by

f(x) =
1

1 + x
, x ∈ (0,∞),

f is a pseudo-monotone mapping but not a monotone mapping.

2.2 Hadamard spaces

Although the geometric structure of Hilbert spaces makes problems that occur in Hilbert
spaces more manageable and easier to solve. However, most real life problems naturally
occur in nonlinear spaces (for instance, in Hadamard spaces). Thus, the need to extend
our study to nonlinear spaces arises. However, the nonlinear structure of nonlinear spaces
sometimes makes it difficult to extend some known results to this space. To guarantee
the extension of such existing results to nonlinear spaces, there was need to introduce
some kind of a convex structure or properties which provides sufficient information that
ensures the applications of such existing results. One of these properties is the existence
of distance-preserving mapping, which provides the metric space (nonlinear space) with
a structure that is similar to the linear structure of a normed linear space (in particular,
Hilbert space). Hadamard space is our second space of interest in this dissertation.
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Definition 2.2.1. [8] Let (X, d) be a metric space. A continuous mapping from the
interval [0, 1] to X is called a path.

Let x, y ∈ X and I = [0, d(x, y)], a geodesic path joining x to y is an isometry C : I → X,
such that C(0) = x, C(d(x, y)) = y and d(C(t), C(t

′
)) = |t − t

′ |. The image of a
geodesic path is a geodesic segment and it is denoted by [x, y] whenever it is unique. A
metric space (X, d) is said to be a geodesic space if every pair of points x and y in X
are connected by a geodesic. A subset C of a geodesic space X is said to be convex, if
for all x, y ∈ C, the segment [x, y] remains in C. For x, y ∈ X and t ∈ [0, 1] we write
tx⊕ (1− t)y for the unique point z in the geodesic segment joining x to y such that

d(x, z) = (1− t)d(x, y) and d(z, y) = td(x, y). (2.2.1)

A geodesic triangle 4(x1, x2, x3) in a geodesic space X consists of three points x1, x2, x3 ∈
X (which are also called the vertices of 4) and a geodesic segment between each pair of
vertices (which are also known as edges of 4). A comparison triangle for the geodesic
triangle 4(x1, x2, x3) ∈ X is a triangle 4̄(x1, x2, x3) := 4(x̄1, x̄2, x̄3) in Euclidean space
R2 such that d(xi, xj) = dR2(x̄i, x̄j) ∀ i, j ∈ {1, 2, 3}. Thus, a geodesic space is called a
CAT(0) space if all geodesic triangles satisfy the comparison axiom. Let 4 be a geodesic
triangle in X and let 4̄ be its comparison triangle in R2. Then, 4 is said to satisfy the
CAT(0) inequality, if for all x, y ∈ 4 and all comparison points x̄, ȳ ∈ 4̄,

d(x, y) ≤ dR2(x̄, ȳ).

Let x, y, z be points in X and y0 be the midpoint of the segment [y, z], then the CAT(0)
inequality implies

d2(x, y0) ≤ 1

2
d2(x, y) +

1

2
d2(x, z)− 1

4
d(y, z). (2.2.2)

Thus, a geodesic space is a CAT(0) space if and only if it satisfies (2.2.2). It is generally
known that a CAT(0) space is a uniquely geodesic space.

Definition 2.2.2. A complete CAT(0) space is an Hadamard space.

2.2.1 Quasilinearization mapping and dual space

Berg and Nikolaev [11] introduced the concept of quasilinearization for Hadamard spaces.

They denoted a pair (a, b) ∈ X×X by
−→
ab and called it a vector. Using this notation, they

defined the quasilinearization as a map 〈·, ·〉 : (X ×X)× (X ×X)→ R defined by

〈
−→
ab,
−→
cd〉 =

1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
, ∀a, b, c, d ∈ X. (2.2.3)

One can easily see that 〈
−→
ab,
−→
ab〉 = d2(a, b), 〈

−→
ba,
−→
cd〉 = −〈

−→
ab,
−→
cd〉, 〈

−→
ab,
−→
cd〉 = 〈−→ae,

−→
cd〉 +

〈
−→
eb,
−→
cd〉 and 〈

−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, for all a, b, c, d, e ∈ X.

15



The spaceX is said to satisfy the Cauchy Schwartz inequality, if 〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d) ∀a, b, c, d ∈

X. Moreover, a geodesic space is a CAT(0) space if and only if it satisfies the Cauchy-
Schwartz inequality (see [43]).

Based on the concept of quasilinearlization mapping, Kakavandi and Amini [43] introduced
the concept of dual space of an Hadamard space X as follows:
Consider the map θ : R×X ×X → C(X,R) defined by

θ(t, a, b)(x) = t〈
−→
ab,−→ax〉 (t ∈ R, a, b, x ∈ X),

where C(X,R) denotes the space of all continuous real valued functions on X. The Cauchy-
Schwartz inequality implies that θ(t, a, b) is a Lipschitz function with Lipschitz semi-norm

L(θ(t, a, b)) = |t|d(a, b) (t ∈ R, a, b ∈ X), where L(ϕ) = sup
{
ϕ(x)−ϕ(y)
d(x,y)

: x, y ∈ X, x 6= y
}

is the Lipschitz semi norm for any function ϕ : X → R. A pseudometric D on R×X ×X
is defined by

D((t, a, b), (s, c, d)) = L(θ(t, a, b)− θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).

In an Hadamard space (X, d), the pseudometric space (R×X ×X,D) can be considered
as a subset of the pseudometric space of all real valued Lipschitz functions (Lip(X,R), L)
(see [27, 69, 87]).

It is shown in [43] thatD((t, a, b), (s, c, d)) = 0 if and only if t〈
−→
ab,−→xy〉 = s〈

−→
cd,−→xy〉 for all x, y ∈

X. Thus, D induces an equivalence relation on R×X ×X, where the equivalence class of
(t, a, b) is defined as

[
−→
tab] := {

−→
scd : D((t, a, b), (s, c, d)) = 0}.

The set X∗ = {[
−→
tab] : (t, a, b) ∈ R×X×X} is a metric space with metric D([

−→
tab], [

−→
scd]) :=

D((t, a, b), (s, c, d)).

Definition 2.2.3. Let (X, d) be an Hadamard space. Then, the pair (X∗, D) is called the
dual space of (X, d).

Throughout this dissertation, we shall write X∗ for the dual space of an Hadamard space
X.

It is shown in [43] that the dual of a closed and convex subset of a Hilbert space H with

nonempty interior is an Hadamard space and t(b− a) ≡ [
−→
tab] for all t ∈ R, a, b ∈ H. We

also note that X∗ acts on X ×X by

〈x∗,−→xy〉 = t〈
−→
ab,−→xy〉, (x∗ = [

−→
tab] ∈ X∗, x, y ∈ X and t ∈ R).

2.2.2 Examples of Hadamard spaces

Example 2.2.4. (Hilbert space)[8]. Hilbert spaces are Hadamard. The geodesics are the
line segments. It is also known that a Banach space is CAT(0) if and only if it is Hilbert.

Example 2.2.5. (R- trees)[8]. A metric space (X, d) is an R-tree if it is uniquely geodesic
and for every x, y, z ∈ X, we have [x, z] = [x, y]∪ [y, z] whenever [x, y]∩ [y, z] = {y}. Also,
all triangles in an R-tree are trivial.
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Other examples of Hadamard spaces include, simply connected Riemannian manifolds of
non-positive sectional curvature, Hilbert balls, hyperbolic spaces, to mention a few (see
[8, 27, 41, 70]).

2.2.3 Some inequalities that characterize Hadamard space

Lemma 2.2.6. Let X be a CAT(0) space, w, x, y, z,∈ X and t ∈ [0, 1]. Then

(a) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z) [29].

(b) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y) [29].

(c) d2(tx⊕ (1− t)y, z) ≤ t2d2(x, z) + (1− t)2d2(y, z) + 2t(1− t) 〈−→xz,−→yz〉 [28].

(d) d(tw ⊕ (1− t)x, ty ⊕ (1− t)z) ≤ td(w, y) + (1− t)d(x, z) [14].

(e) z = tx⊕ (1− t)y implies 〈−→zy,−→zw〉 ≤ t 〈−→xy,−→zw〉 ∀ w ∈ X [28].

(f) d(tx⊕ (1− t)y, sx⊕ (1− s)y) ≤ |t− s|d(x, y) [23].

Lemma 2.2.7. [88] Let X be a CAT(0) space. For any t ∈ [0, 1] and u, v ∈ X, let
ut = tu⊕ (1− t)v. Then, for all x, y ∈ X,

(a) 〈−→utx,−→uty〉 ≤ t 〈−→ux,−→uty〉+ (1− t) 〈−→vx,−→uty〉 ,

(b) 〈−→utx,−→uy〉 ≤ t 〈−→ux,−→uy〉+ (1− t) 〈−→vx,−→ux〉 ,

(c) 〈−→utx,−→vy〉 ≤ t 〈−→ux,−→vy〉+ (1− t) 〈−→vx,−→vy〉 .

2.2.4 Some nonlinear single-valued mappings in Hadamard spaces

Definition 2.2.8. Let X be an Hadamard space and C be a nonempty closed and convex
subset of X. A mapping T : C → C is said to be

(i) a contraction, if there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y) ∀ x, y ∈ C;

(ii) nonexpansive, if
d(Tx, Ty) ≤ d(x, y) ∀ x, y ∈ C;
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(iii) firmly nonexpansive, if

d2(Tx, Ty) ≤ 〈
−−−→
TxTy,−→xy〉 ∀ x, y ∈ C; (2.2.4)

(iv) uniformly L-Lipschitzian, if there exists a constant L > 0 such that

d(T nx, T ny) ≤ Ld(x, y) ∀n ≥ 1, x, y ∈ C;

(v) asymptotically regular, if

lim
n→∞

d(T nx, T n+1x) = 0 ∀ x ∈ C;

(vi) asymptotically nonexpansive, if there exists a sequence {un} ⊆ [0,∞) with un → 0
as n→∞ such that

d(T nx, T ny) ≤ (1 + un)d(x, y) ∀n ≥ 1, x, y ∈ C;

(vii) generalized asymptotically nonexpansive, if there exist nonnegative sequences {un}, {vn}
with un → 0, vn → 0 as n→∞ such that

d(T nx, T ny) ≤ (1 + un)d(x, y) + vn, ∀ n ≥ 1, x, y ∈ C;

(viii) quasi-nonexpansive, if F (T ) 6= ∅ and

d(p, Tx) ≤ d(p, x) ∀ p ∈ F (T ), x ∈ C;

(ix) k-strictly pseudocontractive, if there exists k ∈ [0, 1) such that

d2(Tx, Ty) ≤ d2(x, y) + k [d(x, Tx) + d(x, Ty)]2 , for all x, y ∈ C;

(x) k-demicontractive, if F (T ) 6= ∅ and there exists k ∈ [0, 1) such that

d2(Tx, y) ≤ d2(x, y) + kd2(Tx, x), ∀ x ∈ C, y ∈ F (T );

(xi) nonspreading if

2d2(Tx, Ty) ≤ d2(Tx, y) + d2(Ty, x) for all x, y ∈ C;

(xii) hybrid if

3d2(Tx, Ty) ≤ d2(x, y) + d2(Tx, y) + d2(Ty, x) for all x, y ∈ C;

(xiii) generalized hybrid, if there exist α, β ∈ R such that

αd2(Tx, Ty) + (1− α)d2(x, Ty) ≤ βd2(Tx, y) + (1− β)d2(x, y) ∀x, y ∈ C. (2.2.5)
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The class of nonexpansive mappings with F (T ) 6= ∅ is contained in the class of quasi-
nonexpansive mappings, while the class of demicontractive mappings contains both the
classes of nonexpansive and quasi-nonexpansive mappings.

Definition 2.2.9. [4] Let X be a CAT(0) space and C be a nonempty, closed and convex
subset of X. A mapping T : C → X is said to be k-demimetric if F (T ) 6= ∅ and there
exists k ∈ (−∞, 1) such that

〈−→xy,
−−→
xTx〉 ≥ 1− k

2
d2(x, Tx) (2.2.6)

for all x ∈ C, y ∈ F (T ).

We now state the relationship between generalized asymptotically nonexpansive mappings
and other mappings. Also, we state the relationship between demimetric mappings and
other mappings.

Firmly nonexpansive mappings ⊂ nonexpansive mappings ⊂ asymptotically nonexpansive
mappings ⊂ generalized asymptotically nonexpansive mappings.

Firmly nonexpansive mappings ⊂ nonexpansive mappings (with F (T ) 6= ∅) ⊂ quasi-
nonexpansive mapping ⊂ strictly pseudo-contraction mappings (with F (T ) 6= ∅) ⊂ demi-
contractive mappings ⊂ demimetric mappings.

Example 2.2.10. Let X = R with the usual norm and T : R → R be a mapping defined
by

Tx =

{
x sin

(
1
x

)
, if x 6= 0,

0, if x = 0.
(2.2.7)

T is quasi-nonexpansive but not nonexpansive.

Proof. We observe that F (T ) 6= ∅ since 0 is a fixed point of T. We show that T is quasi-
nonexpansive. From definition, we have

|Tx− 0| =
∣∣∣∣x sin

(
1

x

)
− 0

∣∣∣∣ ≤ |x− 0|

satisfying the quasi-nonexpansive condition, hence T is a quasi-nonexpansive mapping.

We now show that T is not nonexpansive. Let x = 2
π

and y = 2
3π
, we have

|Tx− Ty| =
∣∣∣∣ 2π sin

(π
2

)
− 2

3π
sin

(
3π

2

)∣∣∣∣ =
8

3π
.

For the right hand side we have,

|x− y| =
∣∣∣∣ 2π − 2

3π

∣∣∣∣ =
4

3π
<

8

3π
.

Hence, T is not nonexpansive.
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Example 2.2.11. Let X be a real line with the usual norm and C = R. Define T : C → C
by

Tx = 5x.

T is k-strictly pseudo-contractive but not quasi-nonexpansive or nonexpansive.

Proof. It is clear that F (T ) = {0}, thus for x ∈ R, we have

|5x− 0|2 = 25|x− 0|2 > |x− 0|2

which implies that T is not quasi-nonexpansive and hence, not nonexpansive.

Next we show that T is k- strictly pseudo-contraction.

|Tx− Ty|2 = |5x− 5y|2 = 25|x− y|2.

Also,

|x− y − (Tx− Ty)|2 = |x− y − (5x− 5y)|2

= 16|x− y|2.

|Tx− Ty|2 = |x− y|2 + 24|x− y|2

= |x− y|2 +
3

2
|x− y − (Tx− Ty)|2.

Hence, T is 3
2
-strictly pseudo-contractive mapping.

The following are some examples of demimetric mappings.

Example 2.2.12. Let X be a real line and C = [−1, 1]. Define T on C by

Tx =
x

2
cosx, if x 6= 0 and T (0) = 0.

Then, T is a demimetric mapping.

Proof. Clearly, 0 is the only fixed point of T. Also, for x ∈ C, |Tx − 0|2 = |Tx|2 =
|x

2
cos x|2 ≤ |x

2
|2 ≤ |x|2 ≤ |x−0|2 +k|Tx−x|2 for all k ∈ [0, 1). Thus, T is demimetric.

Let X be a real line and C = [−1, 1]. Define T on C by

Tx =
2

3
x sin

1

x
, if x 6= 0 and T (0) = 0.

Thus, T is a demimetric mapping.

Example 2.2.13. [4] Let T : [0, 1]→ [0, 1] be defined by Tx = x− xj, j ≥ 1. Then T is
k-demimetric with k = −1.
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Proof. Clearly, F (T ) = {0}. Now, for all x ∈ [0, 1] and j ≥ 1, we obtain that

〈x− 0, x− Tx〉 = 〈x, xj〉

=
1

2

[
|x|2 + |xj|2 − |x− xj|2

]
=

1

2

[
|x|2 + |xj|2 − |x|2 + 2|x||xj|2 − |xj|2

]
≥ 1

2

[
2|xj||xj|

]
= |xj|2.

That is,

〈x− 0, x− Tx〉 ≥ 1− (−1)

2
|xj|2.

Hence, we have that 〈x− 0, x− Tx〉 ≥ 1−(−1)
2
|x− Tx|2.

The following is an example of a generalized asymptotically nonexpansive mapping.

Example 2.2.14. [68] The mapping T :
[
−2

3
, 2

3

]
→
[
−2

3
, 2

3

]
defined by

Tx =


x, if x ∈ [−2

3
, 0),

16
81
, if x = 0,

x4, if x ∈ (0, 2
3
]

(2.2.8)

is generalized asymptotically nonexpansive.

2.3 Relationship between Hilbert spaces and Hadamard

spaces

As mentioned earlier (see Example 2.2.4), all Hilbert spaces are Hadamard spaces. How-
ever, there are some differences between both spaces. In this section, we shall briefly
discuss some of them. We begin by highlighting some of the similarities that both spaces
share.

Hadamard spaces share many properties with Hilbert spaces which include: the nonex-
pansivity of the metric projections onto convex closed sets (which we shall discuss in the
next section), the Kadec-Klee property, the Opial property, the finite intersection property
(reflexivity), analogs of weak convergence, the Banach-Saks property, among others (see
[6, 7]).

On the other hand, Hadamard and Hilbert spaces have some differences which include:

� A convex continuous function on an Hadamard space does not have to be locally
Lipschitz, while this function is known to be locally Lipschitz in Hilbert space.
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� A weakly convergent sequence does not have to be bounded in an Hadamard space
but known to be bounded in Hilbert spaces.

� There are nonconvex Chebyshev sets in Hadamard spaces (see for example [6]).

� It is not known whether there exists a topology corresponding to the weak con-
vergence in Hadamard spaces, or whether the closed convex hull of a compact set
is compact in Hadamard spaces (see [6, 7]). However, these results are known in
Hilbert spaces.

More so, many non-convex problems in Hilbert spaces can be viewed as convex problems
in the Hadamard spaces. For example, consider the following.

Example 2.3.1. Let X = R2 be endowed with a metric d : X ×X → [0,∞) defined by

d(x, y) =
√

(x1 − y1)2 + (x2
1 − x2 − y2

1 + y2)2 ∀x, y ∈ X.

Then, (X, d) is an Hadamard space, and the geodesic joining x to y is given by

(1− t)x⊕ ty =
(
(1− t)x1 + ty1, ((1− t)x1 + ty1)2 − (1− t)(x2

1 − x2)− t(y2
1 − y2)

)
.

Define f : X → R by f(x1, x2) = 100((x2 + 1) − (x1 + 1)2)2 + x2
1. Then, f is not convex

in Hilbert setting but convex in the Hadamard space so defined (see [94]).

Now consider the following convex minimization problem:

Find x ∈ X such that f(x) = min
y∈X

f(y), (2.3.1)

where X and f are as defined above. We see clearly that problem (2.3.1) is non-convex in
Hilbert setting but convex in the Hadamard setting.

Henceforth, we shall denote the real Hilbert space by H and Hadamard space by X.

2.4 Metric projection

Definition 2.4.1. The mapping PC : H → C which assigns every point in H to it’s unique
point in C is called a metric projection of H onto C and it is defined by

‖x− PCx‖ ≤ ‖x− y‖ ∀ x ∈ H and y ∈ C.

Proposition 2.4.2. The metric projection is characterized by

〈x− PCx, y − PCx〉 ≤ 0 ∀ y ∈ C and x ∈ H.

The consequences of Proposition (2.4.2) are
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(i) the metric projection is firmly nonexpansive, that is

‖PCx− PCy‖2 ≤ 〈x− y, PCx− PCy〉 ∀ x, y ∈ H,

(ii)
‖x− PCx‖2 + ‖y − PCx‖2 ≤ ‖x− y‖2 ∀ x ∈ H and y ∈ C.

It is well known that metric projections onto closed convex subsets of Hilbert spaces are
well defined single-valued mappings which are nonexpansive. We know also that the metric
projections in Hadamard spaces have the same property.

2.4.1 Examples of metric projections

Example 2.4.3. Let C = [a, b] be a closed rectangle in Rn, where a = (a1, a2, · · · , an)T

and b = (b1, b2, · · · , bn)T , then for 1 ≤ i ≤ n

(PCx)i =


ai, xi < ai,

xi, xi ∈ [ai, bi],

bi, xi > bi

(2.4.1)

is the metric projection with the ith coordinate.

Example 2.4.4. Let C = {y ∈ H : 〈s, y〉 ≤ α} be a closed half space, with s 6= 0 and
α ∈ R, then

PCx =

{
x− 〈s,x〉−α‖s‖2 s, if 〈s, x〉 > α,

x, if 〈s, x〉 ≤ α
(2.4.2)

is the metric projection onto C.

Example 2.4.5. Let C = {y ∈ H : 〈s, y〉 = α} be a hyperplane, with s 6= 0 and α ∈ R,
then

PCx = x− 〈s, x〉 − α
‖s‖2

s (2.4.3)

is the metric projection onto C.

2.5 Monotone operators in Hadamard spaces

Monotone operator theory is one of the most important aspect of nonlinear and convex
analysis due to the role it plays in optimization theory and related mathematical problems.
In this section, we study the concept of monotone operators in Hadamard spaces. Let X
be an Hadamard space and X∗ be its dual space. A multivalued operator A : X → 2X

∗
is
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monotone if and only if for all x, y ∈ D(A), x∗ ∈ Ax, y∗ ∈ Ay, we have

〈x∗ − y∗,−→yx〉 ≥ 0.

A monotone operator A is called a maximal monotone operator if the graph G(A) of A
defined by

G(A) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ A(x)},
is not properly contained in the graph of any other monotone operator. The resolvent of
a monotone operator A of order λ > 0 is the multivalued mapping JAλ : X → 2X defined
by

JAλ :=

{
z ∈ X

∣∣ [1

λ
−→zx
]
∈ Az

}
. (2.5.1)

The operator A satisfies the range condition if for every λ > 0, D(JAλ ) = X. For examples
of monotone operators in Hadamard spaces, see [27].

The resolvent of monotone operators plays an important role in the approximation of
solutions of MIPs. The following lemmas relates the fixed points of a resolvent of a
monotone operator and the set of solutions of the MIP (1.1.2).

Lemma 2.5.1. [48] Let X be a CAT(0) space and JAλ be the resolvent of the operator A
of order λ. Then we have that

(a) For any λ > 0, R(JAλ ) ⊂ D(A) and F (JAλ ) = A−1(0), where R(JAλ ) is the range
of JAλ .

(b) If A is monotone, then JAλ is a single-valued and firmly nonexpansive mapping.

(c) If A is monotone and 0 < λ ≤ µ, then d2(JAλ x, J
A
µ x) ≤ µ−λ

µ+λ
d2(x, JAµ x), which implies

that d(x, JAλ x) ≤ 2d(x, JAµ x).

Lemma 2.5.2. [87] Let X be an Hadamard space and A : X → 2X
∗

be a monotone
mapping. Then,

d2(u, JAλ x) + d2(JAλ x, x) ≤ d2(u, x), (2.5.2)

for all u ∈ F (JAλ ), x ∈ X and λ > 0.

Remark 2.5.3. We observe that inequality (2.5.2) is a property of any firmly nonexpansive
mapping. That is, if T is a firmly nonexpansive mapping, then from (2.2.3) and (2.2.4),
we obtain

d2(u, Tx) + d2(Tx, x) ≤ d2(u, x), for all u ∈ F (T ) and x ∈ X.

Lemma 2.5.4. [87] Let X be an Hadamard space and X∗ be its dual space. Let T : X → X
be a nonexpansive mapping for each i = 1, 2, · · · , N, let J iλ be the resolvent of monotone
operators Ai of order λ > 0. Then

F (T ◦ JNλ ◦ JN−1
λ ◦ · · · ◦ J2

λ ◦ J1
λ) = F (T ) ∩ F (JNλ ) ∩ F (JN−1

λ ) ∩ · · · ∩ F (J2
λ) ∩ F (J1

λ).
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2.6 Variational inequality problems in Hilbert spaces

The VIP (1.1.1) is called a monotone VIP, if f is monotone and it is called a pseudo-
monotone VIP, if f is pseudo-monotone. Henceforth, we shall denote the set of solutions
of VIP (1.1.1) by V I(C, f) irrespective of whether f is monotone or pseudo-monotone.

2.6.1 Examples of variational inequality problems

1. Let f and C associated with the VIP (1.1.1), be defined by

f(x) =

22x1 − 2x2 + 6x3 − 4
2x2 − 2x1

2x3 + 6x1

 and

C = {x ∈ R3 | x1 − x2 ≥ 1, − 3x1 − x3 ≥ −4, 2x1 + 2x2 + x3 = 0, l ≤ x ≤ h},
where l = (−6,−6,−6)T and h = (6, 6, 6)T . The above VIP is linear and has only
one solution x∗ = (2, 1,−6)T (see [93]).

2. Consider the following VIP. The mapping f and the set C are defined by

f(x) =


3x1 − 1

x1
+ 3x2 − 2

3x1 + 3x2

4x3 + 4x4

4x3 + 4x4 − 1
x4
− 3

 and

C = {x ∈ Rn | x1 + x2 = 1, x3 + x4 ≥ 0, l ≤ x ≤ h}, where l = (0.1, 0, 0, 1)T

and h = (10, 10, 10, 10)T . The above VIP is nonlinear and has a unique solution
x∗ = (1, 0, 0, 1)T (see [93]).

2.6.2 Past works on variational inequality problems in Hilbert
spaces

Many authors have studied and developed various iterative methods for approximating
soltuions of VIPs when the underlying operator is strongly monotone, inverse strongly
monotone, monotone or pseudo-monotone. A simple iterative method for solving VIP
(1.1.1) is the gradient projection method which is only efficient for solving VIP (1.1.1)
when f is either strongly monotone or inverse strongly monotone. To overcome this
setback, Korpelevich [53] introduced the extragradient method for solving VIP (1.1.1) in
the finite dimensional Euclidean space when f is monotone and L-Lipschitz continuous{

yn = PC(xn − λfxn),
xn+1 = PC(xn − λfyn), n ≥ 1,

(2.6.1)

where λ ∈ (0, 1
L

). He also proved the convergence of a sequence {xn} to a solution of
V I(C, f) provided that V I(C, f) 6= ∅. Since then, many authors have studied the extra-
gradient method in infinite dimensional spaces (see [3, 17, 34, 37, 63] and the references

25



therein). It is worth mentioning that, in infinite dimensional Hilbert spaces, the extragra-
dient method (2.6.1) only yeilds weak convergence results. However, we know that in such
spaces, strong convergence results are often much more desirable than weak convergence
results. For this reason, many authors modified Agorithm (2.6.1) by either strengthening
the assumptions on the underline operator f or by adding more projections to it (see
[63, 89] and the references therein) in order to obtain strong convergence results.

Note also that, Algorithm (2.6.1) needs two projections onto the feasible set C per it-
eration, thus making it very difficult to implement especially when the projection onto
C is the dominating task in the iteration. In fact, to develop better implementable and
efficient algorithms for solving problem (1.1.1), one important task would be to minimize
the number of projections onto C per iteration. On this note, Censor et al. [21] modified
the extragradient method to the following subgradient extragradient method:

yn = PC(xn − λnfxn),

Tn := {w ∈ H : 〈xn − λnfxn − yn, w − yn〉 ≤ 0},
xn+1 = PTn(xn − λnfyn), n ≥ 1.

(2.6.2)

Observe that Algorithm (2.6.2) is less computationally expensive than Algorithm (2.6.1),
since the second projection in (2.6.2) is onto a subgradient half-space which is much
more easier to compute. However, as in the case of Algorithm (2.6.1), Algorithm (2.6.2)
converges only weakly.

By combining the subgradient extragradient method and the Halpern’s method, Kraikaew
and Saejung [54] obtained a strong convergence result for solving VIP (1.1.1) when f is
monotone and Lipschitz continuous. Later, Maingé and Gobinddass [56] introduced a
new algorithm for solving (1.1.1), which involves only one projection onto a feasible set C
without any additional projection onto the half-space, as follows: For x0, x1 ∈ C, choose
δ ∈ (0, 1] and λn ∈ (0,∞) and define the sequence {xn} by{

yn = xn + λn
δλn−1

(xn − xn−1),

xn+1 = PC(xn − λnfyn), n ≥ 1.
(2.6.3)

Algorithm (2.6.3) is less computationally expensive than Algorithm (2.6.2) (as well as
Algorithm (2.6.1)) and that considered by Kraikaew and Saejung [54]. However, the
authors only obtained a weak convergence of Algorithm (2.6.3) to a solution of VIP (1.1.1)
when the underline operator f is monotone and lipschitz continuous.

Very recently, Thong and Hieu [86] proposed the following iterative method for approxi-
mating solutions of (1.1.1):

Algorithm 1

Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step1. Compute
yn = PC(xn − λnfxn),

where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λn‖fxn − fyn‖ ≤ µ‖xn − yn‖. (2.6.4)
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If xn = yn, then stop and xn is the solution of VIP. Otherwise,

Step 2: Compute
xn+1 = αng(xn) + (1− αn)zn,

where zn = yn − λn(fyn − fxn),
f : H → H is monotone and Lipschitz continuous, and g : H → H is a contraction with
constant ρ ∈ [0, 1).

Set n := n+ 1 and return to Step 1.
Furthermore, they proved that Algorithm 1 converges strongly to a solution of (1.1.1) in
a real Hilbert space.

Now, we point out some interesting features of Algorithm 1.

1. In Algorithm 1, only one projection onto C is required to be computed per iteration
just as in the case of Algorithm (2.6.3). Thus, Algorithm 1 is less computationally
expensive than Algorithm (2.6.1) and that of Kraikaew and Saejung [54].

2. Unlike Algorithm (2.6.3), Algorithm 1 converges strongly to a solution of VIP (1.1.1),
which is an important factor to consider while in an infinite dimensional space.

3. the Armijo-like search rule (2.6.4) which has been established in [86, Lemma 3.1] to
be well-defined, can be seen as a local approximation of the Lipschitz constant L
of the mapping f . Thus, the Lipschitz constant need not to be known. Hence, the
stepsize {λn} is given self-adaptively (see [31]) unlike other algorithms where {λn}
(or λ) depends on the knowledge of L.

Therefore, Algorithm 1 is very efficient for solving problem (1.1.1) when f is monotone
and Lipschitz continuous.

The Split Variational Inequality Problem (SVIP) was introduced by Censor, Gibali and
Reich [21] and they defined it as follows: Find x ∈ C such that〈

fx, y − x
〉
≥ 0 ∀ y ∈ C (2.6.5)

and 〈
g(Ax), z − Ax

〉
≥ 0 ∀ z ∈ Q, (2.6.6)

where C and Q are nonempty closed and convex subsets of real Hilbert spaces H1 and H2

respectively, A : H1 → H2 is a bounded linear operator and f, g are nonlinear mappings
on C and Q respectively. As observed in [21], the SVIP can be seen as a pair of VIPs
in which a solution of one VIP occur in the first space H1 whose image under a given
bounded linear operator A is a solution of the second VIP in the second space H2. They
established the solutions of the SVIP (2.6.5) and (2.6.6) by considering two methods and
in each of methods they established strong convergence results of the SVIP (2.6.5) and
(2.6.6). Furthermore, SVIPs are very important in optimization, nonlinear and convex
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analysis. They can be viewed as an important generalization of the spilt feasibility prob-
lems introduced by Censor and Elfving [20] which are known to have applications in many
fields such as phase retrieval, medical image reconstruction, signal processing, radiation
therapy treatment planning among others (for example, see [1, 16, 18, 19, 20, 39] and the
references therein). To solve SVIP (2.6.5) and (2.6.6), Censor [21] proposed the following
algorithm:

xn+1 = PC(I − λf)(xn + τA∗(PQ(I − λg)− I)Axn) n ≥ 1, (2.6.7)

where τ ∈
(
0, 1

L

)
, L being the spectral radius of A∗A. They proved that the sequence

{xn} generated by (2.6.7) converges weakly to a solution of (2.6.5) and (2.6.6) provided
that the solution set of problem (2.6.5) and (2.6.6) is nonempty, f, g are α1, α2- inverse
strongly monotone mappings, λ ∈ (0, 2α), where α := min{α1, α2}, and for all x which
are solutions of (2.6.5),〈

fy, PC(I − λf)(y)− x
〉
≥ 0, ∀y ∈ H. (2.6.8)

We point out here that the weak convergence of Algorithm (2.6.7) is established under
strong assumptions; namely assumption (2.6.8) and the fact that both mappings are inverse
strongly monotone. To relax these assumptions, Tian and Jiang [85] proposed a new
algorithm by combining Algorithm (2.6.1) and (2.6.7) as follows:

yn = PC(xn − τnA∗(I − T )Axn),
xn = PC(yn − λnf(yn)),
xn+1 = PC(yn − λnf(xn)), n ≥ 1.

(2.6.9)

They obtained the following results without assumption (2.6.8), and under the assumption
that f is monotone and Lipschitz continuous.

Theorem 2.6.1. Let H1 and H2 be real Hilbert spaces and C be a nonempty closed and
convex subset of H1. Let A : H1 → H2 be a bounded linear operator such that A 6= 0,
and T : H2 → H2 be a nonexpansive mapping. Let f : C → H1 be a monotone and
L-Lipschitz continuous mapping. Suppose that Γ := {z ∈ V I(C, f) : Az ∈ F (T )} 6= ∅ and
the sequence {xn} is defined for arbitrary x1 ∈ C by (2.6.9), where {τn} ⊂ [a, b] for some

a, b ∈
(

0, 1
‖A‖2

)
and {λn} ⊂ [c, d] for some c, d ∈

(
0, 1

L

)
. Then {xn} converges weakly to

z ∈ Γ.

Observe that the class of SVIP considered by Tian and Jian [85], that is, find x ∈ C such
that 〈

fx, y − x
〉
≥ 0 ∀ y ∈ C and Ax ∈ F (T ), (2.6.10)

generalizes the class of SVIP considered by Censor et al. [21] (see [85, Theorem 3.3]). We
also observe the following about the results of Tian and Jiang [85].

Remark 2.6.2. 1. The sequence generated by Algorithm (2.6.9) converges weakly to a
solution of problem (2.6.10). However, we know that strong convergence results are
more desirable than weak convergence results in infinite dimensional spaces.
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2. For the weak convergence of Algorithm (2.6.9) to the solution of problem (2.6.10),
one needs to compute three projections onto the feasible set C per iteration which is
very difficult to do in practice when C does not posses a simple structure, and this
could seriously affect the efficiency of the algorithm. Thus, for the sake of computa-
tion, it is more desirable to develop algorithms with minimized number of evaluations
of PC per iteration.

3. To implement Theorem 2.6.1, one needs to compute the Lipschitz constant L before
the stepsize {λn} can be computed. Thus, Theorem 2.6.1 is dependent on the knowl-
edge of the Lipschitz constant L.

4. Problem (2.6.10) can be viewed as a class of SVIP for which a solution of a VIP
occur in the first space H1 (where the underline operator f is monotone and Lipschitz
continuous) whose image under a given bounded linear operator A is a fixed point of a
nonexpansive mapping T in the second space H2. Thus, problem (2.6.10) will be more
applicable if the underline operator f is pseudo-monotone and Lipschitz continuous
and the mapping T is more general than nonexpansive mappings.

From the above remarks, we see the need to further improve and generalize the works
discussed above.

2.7 Monotone inclusion problem

An important problem in monotone operator theory is the MIP (1.1.2) (also known as the
problem of finding a zero of a monotone operator). The solution set of problem (1.1.2) is
denoted by A−1(0) and it is known to be closed and convex (see [69]). The MIP is of central
importance in nonlinear and convex analysis since many mathematical problems such as
optimization problems, equilibrium problems, VIPs among others can be modelled as MIP
(1.1.2). For instance, the problem of finding a zero of a monotone operator describes the
equilibrium or stable state of an evolution system controlled by the monotone operator.
Also, the problem of finding a zero of a monotone operator is the problem of finding a
minimizer of a proper convex and lower semicontinuous functional. Furthermore, a zero
of a monotone operator is a solution of a VIP associated with the monotone operator (see
[10, 12, 38, 48, 69] and the references therein). Thus, there has been an increase interest
in the search of effective iterative methods that best approximate solutions of MIP by
numerous researchers.

Martinet [60] introduced in the real Hilbert space, one of the most successful methods
for finding solutions of MIP, which is the PPA. Rockafellar [71] further developed it for
approximating solutions of (1.1.2) in a real Hilbert space. He defined it as follows;{

x0 ∈ H,
xn+1 = JAλnxn, n ≥ 0,

(2.7.1)
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where JAλn = (I + λnA)−1 is the resolvent of the monotone operator A and {λn} is a
sequence of positive real numbers.

Rockafellar [71] proved that the sequence {xn} generated by the PPA convergence weakly
to a solution of MIP (1.1.2) under some given conditions. He then raised an important
question as to whether the PPA converges strongly or not, which was later resolved in
the negative by Güler [32] who provided a counterexample showing that the PPA may
not converge strongly except additional conditions are imposed. Since then, numerous
authors have modified the PPA so as to obtain strong convergence results. For example,
Kamimura and Takahashi [44] introduced the Halpern-type PPA in real Hilbert spaces
and established its strong convergence. For more interesting results on the construction
of iterative techniques for finding solutions of (1.1.2) in both Hilbert and Banach spaces,
see [15, 44, 46, 65, 78] and the references therein.

The study of the PPA for approximating solutions of MIP (1.1.2) was later extended
to Hadamard spaces by Bačák [7], who proved its 4-convergence when the operator A
is the subdifferential of a convex, proper and lower semicontinuous function. In 2016,
Khatibzadeh and Ranjbar [48] introduced and studied the PPA in Hadamard spaces,
when the operator A is a monotone operator.{

x0 ∈ X[
1
λn

−−−−→xnxn−1

]
∈ Axn, n ≥ 0.

(2.7.2)

They obtained a 4-convergence result of the PPA to a solution of MIP (1.1.2). Fur-
thermore, they established a strong convergence result when the operator A is strongly
monotone. Later in 2017, Ranjbar and Khatibzabeh [69] proposed the following Mann-
type and Halpern-type PPA in an Hadamard space for approximating solutions of MIP
(1.1.2) {

x0 ∈ X
xn+1 = αnxn ⊕ (1− αn)JAλnxn, n ≥ 0

(2.7.3)

and {
x0 ∈ X
xn+1 = αnu⊕ (1− αn)JAλnxn, n ≥ 0,

(2.7.4)

where {λn} ⊂ (0,∞) and {αn} ⊂ [0, 1]. Under some conditions, they obtained 4-
convergence result using the Mann-type PPA (2.7.3) and a strong convergence result
using the Halpern-type PPA (2.7.4). Many other authors have also studied the MIP
in Hadamard spaces (see for example [27, 40, 66, 87, 94] and the references therein).
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Chapter 3

A Modified Extragradient Algorithm
for a Certain Class of Split
Pseudo-monotone Variational
Inequality Problem

3.1 Introduction

In this chapter, we introduce and study a modified extragradient algorithm for approxi-
mating solutions of a certain class of split pseudo-monotone VIP in real Hilbert spaces.
Using our proposed algorithm, we establish a strong convergence result for the approxima-
tion of solutions of the aforementioned problem. Our strong convergence result is obtained
without prior knowledge of the Lipschitz constant of the pseudo-monotone operator used
in this paper, and with minimized number of projections per iteration compared to other
results on SVIPs in the literature. Furthermore, a numerical example of our algorithm in
comparison with other algorithm is given to show the the efficiency and advantage of our
results. Our results extend and improve many recent results in this direction.

More precisely, we study the following problem: Let H1 and H2 be two real Hilbert spaces,
C be a nonempty closed and convex subset of H1 and f : H1 → H1 be a pseudo-monotone
and Lipschitz continuous operator. Let g : H1 → H1 be a contraction mapping with
constant ρ ∈ (0, 1), A : H1 → H2 a bounded linear operator and T : H2 → H2 be a
κ-strictly pseudocontractive mapping with κ ∈ [0, 1) and F (T ) 6= ∅. Our interest is to find
x ∈ C such that 〈

fx, y − x
〉
≥ 0 ∀ y ∈ C and Ax ∈ F (T ).

3.2 Preliminaries

In this section, we present some lemmas which are required in establishing the main results
of this chapter. We denote the strong and weak convergence of a sequence {xn} to a point
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x ∈ H by xn → x and xn ⇀ x respectively.

Lemma 3.2.1. [90] Let H be a Hilbert space and f : H → H be a nonlinear mapping,
then the following hold.

(i) f is nonexpansive if and only if the complement I − f is 1
2
-ism.

(ii) f is η-ism and γ > 0, then γf is η
γ

-ism.

(iii) f is averaged if and only if the complement I − f is η-ism for some η > 1
2
. Indeed,

for β ∈ (0, 1), f is β-averaged if and only if I − f is 1
2β

-ism.

(iv) If f1 is β1-averaged and f2 is β2-averaged, where β1, β2 ∈ (0, 1), then the composite
f1f2 is β-averaged, where β = β1 + β2 − β1β2.

(v) If f1 and f2 are averaged and have a common fixed point, then F (f1f2) = F (f1) ∩
F (f2).

Lemma 3.2.2. [80] Let H1 and H2 be real Hilbert spaces. Let A : H1 → H2 be a bounded
linear operator with A 6= 0, and T : H2 → H2 be a nonexpansive mapping. Then A∗(I −
T )A is 1

2‖A‖2 -ism.

Lemma 3.2.3. [85] Let H1 and H2 be real Hilbert spaces. Let C be a nonempty, closed and
convex subset of H1. Let T : H2 → H2 be a nonexpansive mapping and let A : H1 → H2 be
a bounded linear operator. Suppose that C ∩ A−1F (T ) 6= ∅. Let γ > 0 and x∗ ∈ H1. Then
the following are equivalent.

(i) x∗ = PC(I − γA∗(I − T )A)x∗;

(ii) 0 ∈ A∗(I − T )Ax∗ +NCx
∗;

(iii) x∗ ∈ C ∩ A−1F (T ),

where NC is the normal cone of C at a point x∗ ∈ H1 such that NCx
∗ = {z ∈ H1 :

〈z, y − x〉 ≤ 0∀y ∈ C}, if x∗ ∈ C and empty if otherwise.

Lemma 3.2.4. [91] Let H be a real Hilbert space and T : H → H be a nonexpansive
mapping with F (T ) 6= ∅. If {xn} is a sequence in H converging weakly to x∗ and if {(I −
T )xn} converges strongly to y, then (I − T )x∗ = y.

Lemma 3.2.5. [92] Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1− αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn} and {γn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1],
∞∑
n=0

αn =∞,

(ii) lim supn→∞ δn ≤ 0,

(iii) γn ≥ 0 (n ≥ 0),
∞∑
n=0

γn <∞.

Then lim
n→∞

an = 0.
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Lemma 3.2.6. [96] Let H be a real Hilbert space and T : H → H be a κ-strictly pseudo-
contractive mapping with κ ∈ [0, 1). Let Tβ := βI + (1− β)T , where β ∈ [κ, 1), then

(i) F (T ) = F (Tβ),

(ii) Tβ is a nonexpansive mapping.

Lemma 3.2.7. [57] Let {Γn} be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence {Γnj

}j≥0 of {Γn}such that

Γnj
< Γnj+1 ∀j ≥ 0.

Also consider the sequence of integers {τ(n)}n≥n0 defined by

τ(n) = max{k ≤ n | Γk < Γk+1}.

Then {Γτ(n)
}n≥n0 is a nondecreasing sequence such that τ(n)→∞, as n→ 0, and for all

n ≥ n0, the following two estimates hold:

Γτ(n) < Γτ(n)+1, Γn ≤ Γτ(n)+1.

Lemma 3.2.8. [86] The Armijo-like search rule (2.6.4) is well defined and min{γ, µl
L
} ≤

λn ≤ γ.

Lemma 3.2.9. [61] Let H be a real Hilbert space and C be a nonempty closed and convex
subset of H. If the mapping h : [0, 1]→ H defined as h(t) := f(tx+(1− t)y) is continuous
for all x, y ∈ C (i.e. h is hemicontinuous), then M(f, C) := {x ∈ C :

〈
fy, y − x

〉
≥

0, ∀ y ∈ C} ⊂ V I(C, f). Moreover, if f is pseudo-monotone, then V I(C, f) is closed,
convex and M(C, f) = V I(C, f).

3.3 Main results

In this section, we present and study our modified extragradient algorithm for solving
the SVIP (2.6.10). Throughout this section, we assume that H1 and H2 are two real
Hilbert spaces, C is a nonempty closed and convex subset of H1 and f : H1 → H1 is a
pseudo-monotone, Lipschitz continuous and sequentially weakly continuous operator on
bounded subsets of H1 but the Lipschitz constant need not to be known. We also assume
that g : H1 → H1 is a contraction mapping with constant ρ ∈ (0, 1), A : H1 → H2 is
a bounded linear operator and T : H2 → H2 is a κ-strictly pseudocontractive mapping
with κ ∈ [0, 1). Finally, we assume that {αn} is a sequence in (0, 1) and the solution set
Γ := {z ∈ V I(C, f) : Az ∈ F (T )} 6= ∅.

Algorithm 3.1

Initialization: Let γ > 0, l, µ ∈ (0, 1) and x1 ∈ H be given arbitrary.

Iterative Steps: Calculate xn+1 as follows:
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Step 1. Compute

wn = PC(xn − τnA∗(I − Tβ)Axn) and yn = PC(wn − λnfwn), (3.3.1)

where Tβ is as defined in Lemma 3.2.6 and λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · }
satisfying

λn‖fwn − fyn‖ ≤ µ‖wn − yn‖. (3.3.2)

Step 2. Compute

xn+1 = αng(xn) + (1− αn)zn, (3.3.3)

where zn = yn − λn(fyn − fwn).

Set n := n+ 1 and go back to Step 1.

Lemma 3.3.1. Let {xn}, {wn}, {yn} and {zn} be sequences generated by Algorithm 3.1,
then for all p ∈ Γ, we have

(i) ‖zn − p‖2 ≤ ‖wn − p‖2 − (1− µ2)‖yn − wn‖2.

(ii) ‖xn+1 − p‖2 ≤ αn‖g(xn)− p‖2 + (1− αn)‖xn − p‖2 − (1− αn)(1− µ2)‖yn − wn‖2.

Proof.

(i) Let p ∈ Γ, then by Proposition 2.4.2(i) , we obtain

‖yn − p‖2 ≤
〈
yn − p, (wn − λnfwn)− p

〉
=

1

2

(
‖yn − p‖2 + ‖wn − λnfwn − p‖2 − ‖yn − wn + λnfwn‖2

)
=

1

2

(
‖yn − p‖2 + ‖wn − p‖2 + λn

2‖fwn‖2 − 2λn
〈
wn − p, fwn

〉)
− 1

2

(
‖yn − wn‖2 + λn

2‖fwn‖2 − 2λn
〈
yn − wn, fwn

〉)
=

1

2

(
‖yn − p‖2 + ‖wn − p‖2 − ‖yn − wn‖2 − 2λn

〈
yn − p, fwn

〉)
,

which implies that

‖yn − p‖2 ≤ ‖wn − p‖2 − ‖yn − wn‖2 − 2λn
〈
yn − p, fwn

〉
. (3.3.4)

Also, we obtain from (3.3.2), (3.3.3) and (3.3.4) that

‖zn − p‖2 = ‖yn − p‖2 + λ2
n‖fyn − fwn‖2 − 2λn

〈
yn − p, fyn − fwn

〉
≤ ‖wn − p‖2 − ‖yn − wn‖2 − 2λn

〈
yn − p, fwn

〉
+ λn

2‖fyn − fwn‖2

− 2λn
〈
yn − p, fyn − fwn

〉
≤ ‖wn − p‖2 − ‖yn − wn‖2 + µ2‖yn − wn‖2 − 2λn

〈
yn − p, fyn

〉
. (3.3.5)
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Since p ∈ Γ and yn ∈ C, we have that 〈fp, yn−p〉 ≥ 0. Hence, by the pseudo-monotonicity
of f , we obtain that 〈fyn, yn − p〉 ≥ 0. Thus, we obtain from (3.3.5) that

‖zn − p‖2 ≤ ‖wn − p‖2 − (1− µ2)‖yn − wn‖2, (3.3.6)

which completes the proof of (i).

(ii) From Lemma 3.2.1 (ii),(iii),(iv), Lemma 3.2.2 and Lemma 3.2.6, we obtain that PC(I−
τnA

∗(I − Tλ)A) is 1+τn‖A‖2
2

-average. That is, PC(I − τnA
∗(I − Tλ)A) = (1 − βn)I +

βnTn, ∀n ≥ 1, where βn = 1+τn‖A‖2
2

and Tn is nonexpansive for all n ≥ 1. Therefore, we
can rewrite wn from (3.3.1) as

wn = (1− βn)xn + βnTnxn, n ≥ 1. (3.3.7)

Again, let p ∈ Γ, then from (3.3.7), we obtain that

‖wn − p‖2 ≤ (1− βn)‖xn − p‖2 + βn‖Tnxn − p‖2 − βn(1− βn)‖xn − Tnxn‖2

≤ ‖xn − p‖2 − βn(1− βn)‖xn − Tnxn‖2 (3.3.8)

≤ ‖xn − p‖2.

Also, we obtain from (3.3.3), (3.3.6), (3.3.8) and the convexity of ||.||2 that

‖xn+1 − p‖2 = αn‖g(xn)− p‖2 + (1− αn)‖zn − p‖2

≤ αn‖g(xn)− p‖2 + (1− αn)‖wn − p‖2 − (1− αn)(1− µ2)‖yn − wn‖2

≤ αn‖g(xn)− p‖2 + (1− αn)‖xn − p‖2

−(1− αn)(1− µ2)‖yn − wn‖2. (3.3.9)

Lemma 3.3.2. Let {xn}, {wn}, {yn} and {zn} be sequences generated by Algorithm 3.1,
then the sequences {xn}, {wn}, {yn}, {zn} and {g(xn)} are bounded. Furthermore, if in
addition, lim

n→∞
αn = 0, then lim

n→∞
‖xn+1 − zn‖ = 0.

Proof. By (3.3.3), (3.3.8) and Lemma 3.3.1, we obtain that

‖xn+1 − p‖ ≤ αn‖g(xn)− p‖+ (1− αn)‖zn − p‖
≤ αnρ‖xn − p‖+ αn‖g(p)− p‖+ (1− αn)‖zn − p‖
≤ αnρ‖xn − p‖+ (1− αn)‖wn − p‖+ αn‖g(p)− p‖
≤ αnρ‖xn − p‖+ (1− αn)‖xn − p‖+ αn‖g(p)− p‖
= (1− αn(1− ρ))‖xn − p‖+ αn‖g(p)− p‖

≤ max

{
‖xn − p‖,

‖g(p)− p‖
1− ρ

}
...

≤ max

{
‖x1 − p‖,

‖g(p)− p‖
1− ρ

}
.
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Therefore, {xn} is bounded. Consequently, {wn}, {yn}, {zn} and {g(xn)} are all bounded.

Furthermore, since lim
n→∞

αn = 0, we obtain from (3.3.3) that

‖xn+1 − zn‖ = αn‖g(xn)− zn‖ → 0, as n→∞. (3.3.10)

Lemma 3.3.3. Let {xn}, {wn} and {yn} be sequences generated by Algorithm 3.1 such
that lim

n→∞
‖wn− yn‖ = 0 = lim

n→∞
‖wn− xn‖. If there exists a subsequence {xnk

} of {xn} that

converges weakly to some v ∈ H, then v ∈ Γ.

Proof. Suppose that there exists a subsequence {xnk
} of {xn} that converges weakly to

some v ∈ H. Then, by our hypothesis, there exists a subsequence {wnk
} of {wn} and

a subsequence {ynk
} of {yn}, both converging weakly to v ∈ H. We may also assume

without loss of generality that, the subsequence {τnk
} of {τn} converges to a point say τ ∈(

0, 1
‖A‖2

)
. Also, by Lemma 3.2.2, A∗(I − Tβ)A is an inverse strongly monotone operator.

Therefore, {A∗(I − Tβ)Aunk
} is bounded. Hence, by the nonexpansivity of PC , we obtain

that

‖PC(I − τnk
A∗(I − Tβ)A)xnk

− PC(I − τA∗(I − Tβ)A)xnk
‖

≤ |τnk
− τ |‖A∗(I − Tβ)Axnk

‖ → 0, as k →∞.

That is,
lim
k→∞
‖wnk

− PC(I − τA∗(I − Tβ)A)xnk
‖ = 0,

which implies from our hypothesis that

lim
k→∞
‖xnk

− PC(I − τA∗(I − Tβ)A)xnk
‖ = 0. (3.3.11)

Thus, by Lemma 3.2.4, we obtain that v ∈ F (PC(I − τA∗(I − Tβ)A). It then follows from
Lemma 3.2.3 that v ∈ C ∩ A−1F (Tβ), which together with Lemma 3.2.6 implies that

Av ∈ F (Tβ) = F (T ). (3.3.12)

Now, by the characteristic property of PC , we obtain for all x ∈ C that

0 ≤
〈
ynk
− wnk

+ λnk
fwnk

, x− ynk

〉
=
〈
ynk
− wnk

, x− ynk

〉
+ λnk

〈
fwnk

, wnk
− ynk

〉
+ λnk

〈
fwnk

, x− wnk

〉
≤ ‖ynk

− wnk
‖‖x− ynk

‖+ λnk
‖fwnk

‖‖wnk
− ynk

‖+ λnk

〈
fwnk

, x− wnk

〉
. (3.3.13)

Since lim
k→∞
||wnk

− ynk
|| = 0, and by Lemma 3.2.8, min{γ, µl

L
} ≤ λn ≤ γ, we obtain by

passing limit as k →∞ in (3.3.13) that

lim inf
k→∞

〈
fxnk

, x− xnk

〉
≥ 0 ∀x ∈ C. (3.3.14)
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Now, choose a sequence {δk} of positive numbers such that δk+1 ≤ δk, ∀ k ≥ 1 and δk →
0 as k → ∞. Then, for each δk, we denote by Nk (which exists as a result of (3.3.14))
the smallest positive integer such that

〈fxnj
, x− xnj

〉+ δk ≥ 0 ∀j ≥ Nk. (3.3.15)

Since {δk} is decreasing, we have that {Nk} is increasing. Furthermore, we set for each

k ≥ 1, mNk
=

fxNk

‖fxNk
‖2 , provided fxNk

6= 0. Then it is easy to see that 〈fxNk
,mNk

〉 =

1 for each k ≥ 1. Thus, by (3.3.15), we have that

〈fxNk
, x+ δkmNk

− xNk
〉 ≥ 0,

which implies by the pseudo-monotonicity of f that

〈f(x+ δkmNk
), x+ δkmNk

− xNk
〉 ≥ 0. (3.3.16)

Now, by the sequentially weakly continuity of f, we have that {fxnk
} converges weakly to

fv. If fv = 0, then v ∈ V I(C, f). On the other hand, if we suppose that fv 6= 0, then by
the weakly lower semicontinuity of ‖ · ‖, we obtain that

0 < ‖fv‖ ≤ lim inf
k→∞

‖fxnk
‖.

Since {xNk
} ⊂ {xnk

}, we obtain that

0 ≤ lim sup
k→∞

‖δkmNk
‖ = lim sup

k→∞

(
δk

‖fxnk
‖

)

≤
lim sup
k→∞

δk

lim inf
k→∞

‖fxnk
‖

≤ 0

‖fp‖
= 0.

Therefore, lim
k→∞
‖δkmNk

‖ = 0. Thus, letting k →∞ in (3.3.16) yields

〈fx, x− v〉 ≥ 0 ∀x ∈ C, (3.3.17)

which implies by Lemma 3.2.9 that v ∈ V I(C, f). This together with (3.3.12) gives that
v ∈ Γ.

We now prove the main theorem of this paper.

Theorem 3.3.4. Let {xn} be a sequence generated by Algorithm 3.1. Assume that lim
n→∞

αn =

0 and
∞∑
n=1

αn =∞. Then, {xn} converges strongly to z = PΓg(z).
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Proof. We consider two cases for our proof.
Case 1: Let z = PΓg(z). Suppose that {‖xn − z‖2} is monotone decreasing, then {‖xn −
z‖2} is convergent. Thus,

lim
n→∞

‖xn − z‖2 = lim
n→∞

‖xn+1 − z‖2. (3.3.18)

Since lim
n→∞

αn = 0, we obtain from (3.3.9) and (3.3.18) that

lim
n→∞

‖yn − wn‖ = 0. (3.3.19)

Again, from Algorithm 3.1, we obtain that

‖zn − yn‖ = λn‖fyn − fwn‖ ≤ µ‖wn − yn‖ → 0, as n→∞. (3.3.20)

From (3.3.10), (3.3.19) and (3.3.20), we obtain that

‖zn − wn‖ → 0 and ‖xn+1 − wn‖ → 0, as n→∞. (3.3.21)

From (3.3.8), (3.3.9) and (3.3.18), we obtain that

βn(1− βn)‖xn − Tnxn‖2 ≤ ‖xn − z‖2 − ‖wn − z‖2

≤ ‖xn − z‖2 + αn‖g(xn)− z‖2 − ‖xn+1 − z‖2 → 0, as n→∞,

which implies from the definition of βn that

lim
n→∞

‖xn − Tnxn‖ = 0. (3.3.22)

Again, from (3.3.7) and (3.3.22), we obtain that

‖wn − xn‖ = βn‖xn − Tnxn‖ → 0, as n→∞.

That is,

lim
n→∞

‖xn − wn‖ = 0. (3.3.23)

From (3.3.21) and (3.3.23), we obtain that

lim
n→∞

‖xn − xn+1‖ = 0. (3.3.24)

By Lemma 3.3.2, we have that {xn} is bounded. Thus, there exists a subsequence {xnk
}

of {xn} such that {xnk
} converges weakly to some v ∈ H and

lim sup
n→∞

〈
g(z)− z, xn − z

〉
= lim

k→∞

〈
g(z)− z, xnk

− z
〉

=
〈
g(z)− z, v − z

〉
. (3.3.25)

Also, we obtain from (3.3.19), (3.3.23) and Lemma 3.3.3 that v ∈ Γ.

Thus, since z = PΓg(z), we obtain from (3.3.25) that

lim sup
n→∞

〈
g(z)− z, xn − z

〉
≤ 0,
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which implies from (3.3.24) that

lim sup
n→∞

〈
g(z)− z, xn+1 − z

〉
= lim sup

n→∞

(〈
g(z)− z, xn+1 − xn

〉
+
〈
g(z)− z, xn − z

〉)
≤ 0.

(3.3.26)

Thus, from (3.3.3) and Lemma 2.1.6 (ii), we obtain that

‖xn+1 − z‖2 ≤ (1− αn)2‖zn − z‖2 + 2αn
〈
g(xn)− z, xn+1 − z

〉
= (1− αn)2‖zn − z‖2 + 2αn

(〈
g(xn)− g(z), xn+1 − z

〉
+
〈
g(z)− z, xn+1 − z

〉)
≤ (1− αn)2‖xn − z‖2 + 2αnρ‖xn − z‖‖xn+1 − z‖+ 2αn

〈
g(z)− z, xn+1 − z

〉
≤ (1− 2αn(1− ρ))‖xn − z‖2 + α2

n‖xn − z‖2 + 2αn
〈
g(z)− z, xn+1 − z

〉
= (1− 2αn(1− ρ))‖xn − z‖2 (3.3.27)

+ 2αn(1− ρ)

[
αn‖xn − z‖2

2(1− ρ)
+

〈
g(z)− z, xn+1 − z

〉
1− ρ

]
.

Using (3.3.26) and Lemma 3.2.5, we obtain that lim
n→∞
‖xn−z‖2 = 0. Hence, {xn} converges

strongly to z = PΓg(z).

Case 2: Suppose that {‖xn − z‖2} is not monotone decreasing, then there exists a sub-
sequence {‖xni

− z‖2} of {‖xn − z‖2} such that ‖xni
− z‖2 < ‖xni+1

− z‖2 ∀i ∈ N. Thus,
by Lemma 3.2.7, there exists a nondecreasing sequence {mk} of N such that k →∞ and
the following holds

‖xmk
− z‖2 ≤ ‖xmk+1

− z‖2 and ‖xk − z‖2 ≤ ‖xmk
− z‖2. (3.3.28)

Thus, we obtain from (3.3.9) that

(1− αmk
)(1− µ2)‖ymk

− wmk
‖2 ≤ ‖xmk

− z‖2 − ‖xmk+1
− z‖2 + αmk

‖g(xmk
)− z‖2 → 0,

which implies that

lim
k→∞
‖ymk

− wmk
‖ = 0.

By similar arguments as in Case 1, we can show that

lim
k→∞
‖xmk

− wmk
‖ = 0 = lim

k→∞
‖xmk

− xmk+1
‖ = 0

and
lim sup
k→∞

〈
g(z)− z, xmk+1

− z
〉
≤ 0.

Now, for all k ≥ k0, we obtain from (3.3.27) that

‖xmk+1
− z‖2 ≤ (1− 2αmk

(1− ρ))‖xmk
− z‖2

+ 2αmk
(1− ρ)

[
αmk
‖xmk

− z‖2

2(1− ρ)
+

〈
g(z)− z, xmk+1

− z
〉

1− ρ

]
,
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which implies from (3.3.28) that

‖xk − z‖2 ≤ αmk
‖xmk

− z‖2

2(1− ρ)
+

〈
g(z)− z, xmk+1

− z
〉

1− ρ
.

Therefore, we obtain that lim sup
k→∞

‖xk−z‖ ≤ 0. Hence, {xk} converges strongly to z, where

z = PΓg(z).

Now, by setting H1 = H2 and T = I = A in Algorithm 3.1, we obtain the following result
as a corollary of Theorem 3.3.4.

Corollary 3.3.5. Let γ > 0, l, µ ∈ (0, 1) and x1 ∈ H be given arbitrary. Then calculate
xn+1 as follows:

Step 1. Compute

yn = PC(xn − λnfxn),

where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λn‖fxn − fyn‖ ≤ µ‖xn − yn‖.

Step 2. Compute

xn+1 = αng(xn) + (1− αn)zn,

where zn = yn − λn(fyn − fxn).

Assume that lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞. Then, the sequence {xn} converges strongly to

z = PΓg(z).

Remark 3.3.6. Notice that our algorithm (Algorithm 3.1) is of viscosity-type. The moti-
vation for using the viscosity-type algorithm over the Halpern-type (which also converges
strongly) stems from the fact that viscosity-type algorithms have higher rate of convergence
than the Halpern-type. More so, it was established in [75] that Halpern-type convergence
theorems imply viscosity convergence theorems. In fact, by setting g(x) = u for arbitrary
but fixed u ∈ H1 and for all x ∈ H1 in Algorithm 3.1, we obtain the following result (with
respect to an Halpern-type algorithm) as a corollary of Theorem 3.3.4.

Corollary 3.3.7. Let γ > 0, l, µ ∈ (0, 1) and u, x1 ∈ H be given arbitrary. Then calculate
xn+1 as follows:

Step 1. Compute

wn = PC(xn − τnA∗(I − Tβ)Axn) and yn = PC(wn − λnfwn),

where Tβ is as defined in Lemma 3.2.6 and λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · }
satisfying

λn‖fwn − fyn‖ ≤ µ‖wn − yn‖.
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Step 2. Compute

xn+1 = αnu+ (1− αn)zn,

where zn = yn − λn(fyn − fwn).

Assume that lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞. Then, the sequence {xn} converges strongly to

z = PΓu.

Remark 3.3.8. If we replace the pseudo-monotonicity assumption on f with monotonicity
assumption, then we obtain another corollary of Theorem 3.3.4. In this case, the sequential
weakly continuity assumption on f can be dispensed with. That is, we can obtain (3.3.17)
from (3.3.13) without the extra assumption that f is sequentially weakly continuous.

3.4 Numerical example

In this section, we give a numerical example of our algorithm in comparison with Algorithm
(2.6.9) of Tian and Jiang [85] in an infinite dimensional Hilbert space. For the sake of
comparison, we shall consider a monotone operator for our numerical experiment (since
Algorithm (2.6.9) may not be applicable when f is pseudo-monotone). Let H1 = H2 =
L2([0, 1]) be endowed with inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt ∀ x, y ∈ L2([0, 1])

and norm

||x|| :=
(∫ 1

0

|x(t)|2dt
) 1

2 ∀ x, y ∈ L2([0, 1]).

Let C = {x ∈ L2([0, 1]) : 〈y, x〉 ≤ a}, where y = t2 + 1 and a = 2. Then,

PC(x) =

{
a−〈y,x〉
||y||2L2

y + x, if 〈y, x〉 > a,

x, if 〈y, x〉 ≤ a.

Now, define the operator f : L2([0, 1])→ L2([0, 1]) by

fx(t) =

∫ 1

0

(
x(t)−

( 2tset+s

e
√
e2 − 1

)
cosx(s)

)
ds+

2tet

e
√
e2 − 1

, x ∈ L2([0, 1]), t ∈ [0, 1].

Then f is 2-Lipschitz continuous and monotone on L2([0, 1]) (see [35]). Let A, g, T :

L2([0, 1]) → L2([0, 1]) be defined by Ax(t) = 2x(t)
5
, gx(t) = 2x(t)

7
and Tx(t) = −4x(t).

Then, A is a bounded linear operator with adjoint A∗x(t) = 2x(t)
5
, g is a contraction with

coefficient ρ = 2
7

and T is 3
5
-strictly pseudocontractive. Thus, we can choose β = 3

5
, so

that Tβx(t) = −x(t). Take µ = 1
2

= l, γ = 1 and αn = 1
n+1

for all n ≥ 1, then the
conditions in Theorem 3.3.4 are satisfied. Now, consider the following cases.

Case 1: Take x1(t) = 2t.
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Figure 3.1: Errors vs Iteration numbers(n): Case 1 (top left); Case 2 (top right); Case
3 (bottom left); Case 4 (bottom right).
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Case 2: Take x1(t) = t3.

Case 3: Take x1(t) = sin t.

Case 4: Take x1(t) = cos t.

By using these cases (Case 1-Case 4 above), we compared Algorithms 3.1 (studied in
this paper) with Algorithm (2.6.9) of Tian and Jiang [85] as shown in Figure 1. The
graphs show that our algorithm converges faster than Algorithms (2.6.9) of Tian and
Jiang [85]. This shows that our algorithm works well and have competitive advantages
over the algorithm of Tian and Jiang [85].
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Chapter 4

A Viscosity Iterative Algorithm for a
Family of Monotone Inclusion
Problems in an Hadamard Space

4.1 Introduction

In this chapter, we introduce a viscosity-type PPA which comprises of a finite sum of re-
solvents of monotone operators, and a generalized asymptotically nonexpansive mapping.
We prove that the algorithm converges strongly to a common zero of a finite family of
monotone operators, which is also a fixed point of a generalized asymptotically nonexpan-
sive mapping in an Hadamard space. Furthermore, we give two numerical examples of
our algorithm in finite dimensional spaces of real numbers and one numerical example in
a non-Hilbert space setting, in order to show the applicability of our results.

More presicely, we study the following problem: Let X be an Hadamard space and X∗

be its dual space. Let T : X → X be a uniformly asymptotically regular and uniformly
L-Lipschitzian generalized asymptotically nonexpansive mapping with F (T ) 6= ∅. Let
Ai : X → 2X

∗
be a finite family of multivalued monotone mappings which satisfy the

range condition and g be a contraction mapping on X with coefficient τ ∈ (0, 1). Our
interest is to find v̄ ∈ F (T ) such that

0 ∈ ∩Ni=1A(v̄). (4.1.1)

Equation (4.1.1) can also be written as

v̄ ∈ ∩Ni=1A
−1(0). (4.1.2)

We shall denote the set of solutions of problem (4.1.1) by Γ := F (T ) ∩ (∩Ni=1A
−1
i (0)).

4.2 Preliminaries

In this section, we recall some important results that will be needed in our main results.
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Remark 4.2.1. (see [27, Remark 3.6]). If X is an Hadamard space and A : X → 2X
∗

is
a multivalued monotone mapping, then we have that

d(JAλ x, J
A
µ x) ≤

(√
1− λ

µ

)
d(x, JAµ x), ∀ x ∈ X, 0 < λ ≤ µ.

Lemma 4.2.2. [38] Let X be an Hadamard space and X∗ be its dual space. Let Ai : X →
2X
∗
, i = 1, 2, · · · , N be a finite family of multivalued monotone operators. Then, for βi ∈

(0, 1) with
N∑
i=0

βi = 1, the mapping Sλ : X → X defined by Sλx := β0x⊕β1J
A1
λ x⊕β2J

A2
λ x⊕

· · · ⊕ βNJAN
λ x is nonexpansive with F (Sµ) ⊆ ∩Ni=1F (JAi

λ ) for all x ∈ X, 0 < λ ≤ µ.

Remark 4.2.3. [84] For a CAT(0) space X, if {xi, i = 1, 2, · · · , N} ⊂ X, and αi ∈
[0, 1], 1 = 1, 2, · · · , N. Then by induction , we can write

N⊕
i=1

αixi := (1− αN)
N⊕
i=1

αi
1− αN

xi ⊕ αNxN .

Lemma 4.2.4. [27, 38] Let X be a CAT(0) space, {xi, i = 1, 2, · · · , N} ⊂ X, {yi, i =

1, 2, · · · , N} ⊂ X and αi ∈ [0, 1] for each i = 1, 2, · · · , N such that
N∑
i=1

αi = 1. Then

d

(
N⊕
i=1

αixi,
N⊕
i=1

αiyi

)
≤

N∑
i=1

αid(xi, yi).

Definition 4.2.5. Let {xn} be a bounded sequence in X and r(., {xn}) : X → [0,∞) be
a continuous functional defined by r(x, {xn}) = lim sup

n→∞
d(x, xn). The asymptotic radius of

{xn} is given by r({xn}) := inf{r(x, {xn}) : x ∈ X}, while the asymptotic center of {xn}
is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is well known that in an Hadamard space X, A({xn}) consists of exactly one point. A
sequence {xn} in X is said to be 4-convergent to a point x ∈ X if A({xnk

}) = {x} for
every subsequence {xnk

} of {xn}. In this case, we write 4- lim
n→∞

xn = x.

Lemma 4.2.6. [29] Every bounded sequence in an Hadamard space always has a M-
convergent subsequence.

Lemma 4.2.7. [42] Let X be an Hadamard space, {xn} a sequence in X and x ∈ X.
Then, {xn} M-converges to x if and only if lim sup

n→∞
〈−−→xxn,−→xy〉 ≤ 0 for all y ∈ C.

Lemma 4.2.8. [22] Let C be a closed convex subset of an Hadamard space X and T :
C → X be a uniformly L−Lipschitizian and generalized asymptotically nonexpansive
mapping. Let {xn} be a bounded sequence in C such that {xn} 4-converges to v and
lim
n→∞

d(xn, Txn) = 0. Then, Tv = v.

Lemma 4.2.9. [77] (see also [40]). Let {xn} and {yn} be bounded sequences in a metric
space of hyperbolic type X and {βn} be a sequence in [0, 1] with lim inf

n→∞
βn < lim sup

n→∞
βn < 1.

Suppose that xn+1 = βnxn⊕(1−βn)yn for all n ≥ 0 and lim sup
n→∞

(d(yn+1, yn)−d(xn+1, xn)) ≤

0. Then lim
n→∞

d(yn, xn) = 0.
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4.3 Main results

Lemma 4.3.1. Let X be an Hadamard space and X∗ be its dual space. Let T : X → X
be a generalized asymptotically nonexpansive mapping with the sequences {un}, {vn} ⊂
[0,∞). Let Ai : X → 2X

∗
, i = 1, 2, . . . , N be a finite family of multivalued monotone

mappings which satisfy the range condition and g be a contraction mapping on X with
coefficient τ ∈ (0, 1). Suppose that Γ := F (T ) ∩

(
∩Ni=1A

−1
i (0)

)
6= ∅ and for arbitrary

x1 ∈ X, the sequence {xn}∞n=1 is generated by
yn = Sλnxn := β0xn ⊕ β1J

A1
λn
xn ⊕ · · · ⊕ βNJAN

λn
xn,

wn = αn

1−βn g(xn)⊕ γn
1−βnT

nyn,

xn+1 = βnxn ⊕ (1− βn)wn n ≥ 1,

(4.3.1)

where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in (0, 1) and {λn} is a sequence of
positive numbers such that,

(a) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(c)
∞∑
n=1

un <∞,
∞∑
n=1

vn <∞,

(d) βi ∈ (0, 1) with
N∑
i=0

βi = 1.

Then {xn}∞n=1 is bounded.

Proof. Let v ∈ Γ, then from (4.3.1) and Lemma 2.2.6, we have

d(xn+1, v) ≤ βnd(xn, v) + (1− βn)d(wn, v)

= βnd(xn, v) + (1− βn)

[
d

(
αn

1− βn
g(xn)⊕ γn

1− βn
T nyn, v

)]
≤ βnd(xn, v) + αnd(g(xn), v) + γnd(T nyn, v)

≤ βnd(xn, v) + αnτd(xn, v) + αnd(g(v), v) + γn [(1 + un)d(yn, v) + vn]

≤ βnd(xn, v) + αnτd(xn, v) + αnd(g(v), v) + γn [(1 + un)d(xn, v) + vn]

= (1− αn + αnτ + γnun)d(xn, v) + αnd(g(v), v) + γnvn

≤ (1− αn + αnτ + un)d(xn, v) + d(g(v), v) + vn

= [(1 + un)− αn(1− τ)] d(xn, v) + d(g(v), v) + vn

≤ (1 + un)d(xn, v) + d(g(v), v) + vn (4.3.2)

By the same method as above, we obtain

d(xn, v) ≤ (1 + un−1)d(xn−1, v) + d(g(v), v) + vn−1
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Thus (4.3.2) becomes

d(xn+1, v) ≤ (1 + un)(1 + un−1)d(xn−1, v) + (1 + un) [d(g(v), v) + vn−1] + d(g(v), v) + vn

= Π1
i=0d(xn−1, v) + (1 + un) [d(g(v), v) + vn−1] + d(g(v), v) + vn

≤ (1 + un)(1 + un−1)(1− un−2)d(xn−2, v) + (1 + un)(1 + un−1) [d(g(v), v), vn−2]

+ (1 + un) [d(g(v), v) + vn−1] + d(g(v), v) + vn

= Π2
i=0(1 + un−i)d(xn−2, v) + Π1

i=0(1 + un−i) [d(g(v), v) + vn−2]

+ (1 + un) [d(g(v), v) + vn−1] + d(g(v), v) + vn

= Π3
i=0(1 + un−i)d(xn−3, v) + Π2

i=0(1 + un−i) [d(g(v), v) + vn−3]

+ Π1
i=0(1 + un−i) [d(g(v), v) + vn−2] + (1 + un) [d(g(v), v) + vn−1] + d(g(v), v) + vn

...

≤ Πn−1
i=0 (1 + un−i)d(x1, v) + Πn−2

i=0 (1 + un−i) [d(g(v), v) + v1] + · · ·
+ Π2

i=0(1 + un−i) [d(g(v), v) + vn−3] + Π1
i=0(1 + un−i) [d(g(v), v) + vn−2]

+ (1 + un) [d(g(v), v) + vn−1] + [d(g(v), v) + vn] .

Since
∞∑
n=1

un < ∞ and
∞∑
n=1

vn < ∞, we obtain that {xn} is bounded and consequently

{wn}, {g(xn)}, {T nyn} and {yn} are all bounded.

Theorem 4.3.2. Let X be an Hadamard space and X∗ be its dual space. Let T : X → X be
a uniformly asymptotically regular and uniformly L-Lipschitzian generalized asymptotically
nonexpansive mapping with the sequences {un}, {vn} ⊂ [0,∞). Let Ai : X → 2X

∗
, i =

1, 2, . . . , N be a finite family of multivalued monotone mappings which satisfy the range
condition and g be a contraction mapping on X with coefficient τ ∈ (0, 1). Suppose that
Γ := F (T )∩

(
∩Ni=1A

−1
i (0)

)
6= ∅ and for arbitrary x1 ∈ X, the sequence {xn}∞n=1 is generated

by (4.3.1), where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in (0, 1) and {λn} is a
sequence of positive numbers such that

(a) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(b) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, αn + βn + γn = 1 ∀ n ≥ 1,

(c)
∞∑
n=1

un <∞,
∞∑
n=1

vn <∞,

(d) βi ∈ (0, 1) with
N∑
i=0

βi = 1,

(e) 0 < λ ≤ λn ∀n ≥ 1.

Then {xn}∞n=1 converges strongly to v̄ ∈ Γ.
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Proof. Step 1: We show that lim
n→∞

d(xn+1, xn) = 0. From (4.3.1) and Lemma 2.2.6, we

have

d(wn+1, wn) = d

(
αn+1

1− βn+1

g(xn+1)⊕ γn+1

1− βn+1

T n+1yn+1,
αn

1− βn
g(xn)⊕ γn

1− βn
T nyn

)
≤ d

(
αn+1

1− βn+1

g(xn+1)⊕ γn+1

1− βn+1

T n+1yn+1,
αn+1

1− βn+1

g(xn+1)⊕ γn+1

1− βn+1

T n+1yn

)
+ d

(
αn+1

1− βn+1

g(xn+1)⊕ γn+1

1− βn+1

T n+1yn,
αn+1

1− βn+1

g(xn)⊕ γn+1

1− βn+1

T nyn

)
+ d

(
αn+1

1− βn+1

g(xn)⊕ γn+1

1− βn+1

T nyn,
αn

1− βn
g(xn)⊕ γn

1− βn
T nyn

)
= d

(
αn+1

1− βn+1

g(xn+1)⊕
(

1− αn+1

1− βn+1

)
T n+1yn+1,

αn+1

1− βn+1

g(xn+1)⊕
(

1− αn+1

1− βn+1

)
T n+1yn

)
+ d

(
αn+1

1− βn+1

g(xn+1)⊕
(

1− αn+1

1− βn+1

)
T n+1yn,

αn+1

1− βn+1

g(xn)⊕
(

1− αn+1

1− βn+1

)
T nyn

)
+ d

(
αn+1

1− βn+1

g(xn)⊕
(

1− αn+1

1− βn+1

)
T nyn,

αn
1− βn

g(xn)⊕
(

1− αn
1− βn

)
T nyn

)
≤
(

1− αn+1

1− βn+1

)
d(T n+1yn+1, T

n+1yn) +
αn+1

1− βn+1

d(g(xn+1), g(xn))

+

(
1− αn+1

1− βn+1

)
d(T n+1yn, T

nyn) +

∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣ d(T nyn, g(xn))

≤
(

1− αn+1

1− βn+1

)
[(1 + un+1)d(yn+1, yn) + vn+1] +

(
αn+1

1− βn+1

)
τd(xn+1, xn)

+

(
1− αn+1

1− βn+1

)
d(T n+1yn, T

nyn) +

∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣ d(T nyn, g(xn)).

(4.3.3)

Now, without loss of generality, we may assume that 0 < λn+1 ≤ λn, ∀ n ≥ 1. Thus, from

48



(2.2.6), Lemma 4.2.4, condition (d) and Remark 4.2.1, we have

d(yn+1, yn) = d
(
β0xn+1 ⊕ β1J

A1
λn+1

xn+1 ⊕ · · · ⊕ βNJAN
λn+1

xn+1, β0xn ⊕ β1J
A1
λn
xn ⊕ · · · ⊕ βNJAN

λn
xn

)
≤ β0d(xn+1, xn) +

N∑
i=1

βid(JAi
λn+1

xn+1, J
Ai
λn
xn)

≤ β0d(xn+1, xn) +
N∑
i=1

βid(JAi
λn+1

xn+1, J
Ai
λn+1

xn) +
N∑
i=1

βid(JAi
λn+1

xn, J
Ai
λn
xn)

≤ d(xn+1, xn) +

(√
1− λn+1

λn

)
N∑
i=1

βid(JAi
λn
xn, xn)

≤ d(xn+1, xn) +

(√
1− λn+1

λn

)
M, (4.3.4)

where M = sup
n≥1

{
N∑
i=1

βid(JAi
λn
xn, xn)

}
.

Substituting equation (4.3.4) into equation (4.3.3), we obtain

d(wn+1, wn) ≤
(

1− αn+1

1− βn+1

)[
(1 + un+1)

[
d(xn+1, xn) +

(√
1− λn+1

λn

)
M

]
+ vn+1

]

+

∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣ d(T nyn, g(xn)) +

(
1− αn+1

1− βn+1

)
d(T n+1yn, T

nyn)

+

(
αn+1

1− βn+1

)
τd(xn+1, xn)

=

[
αn+1

1− βn+1

τ +

(
1− αn+1

1− βn+1

)
(1 + un+1)

]
d(xn+1, xn)

+

(
1− αn+1

1− βn+1

)
(1 + un+1)

(√
1− λn+1

λn

)
M +

(
1− αn+1

1− βn+1

)
vn+1

+

∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣ d(T nyn, g(xn)) +

(
1− αn+1

1− βn+1

)
d(T n+1yn, T

nyn)

=

[
(1 + un+1)− αn+1

1− βn+1

(1 + un+1 − τ)

]
d(xn+1, xn) +

(
1− αn+1

1− βn+1

)
vn+1

+

(
1− αn+1

1− βn+1

)
(1 + un+1)

(√
1− λn+1

λn

)
M

+

(
1− αn+1

1− βn+1

)
d(T n+1yn, T

nyn) +

∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣ d(T nyn, g(xn)),
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which implies

d(wn+1, wn)− d(xn+1, xn) ≤
(
un+1 −

αn+1

1− βn+1

(1 + un+1 − τ)

)
d(xn+1, xn)

+

(
1− αn+1

1− βn+1

)
(1 + un+1)

(√
1− λn+1

λn

)
M

+

∣∣∣∣ αn+1

1− βn+1

− αn
1− βn

∣∣∣∣ d(T nyn, g(xn))

+

(
1− αn+1

1− βn+1

)
vn+1 +

(
1− αn+1

1− βn+1

)
d(T n+1yn, T

nyn).

Since {λn} is monotone nonincreasing and bounded below, we have that lim
n→∞

λn = lim
n→∞

λn+1 =

c, where 0 < c ≤ λ. Thus, we obtain from conditions (a) and (c), and by the uniform
asymptotic regularity of T that

lim sup
n→∞

(d(wn+1, wn)− d(xn+1, xn)) ≤ 0.

Therefore, it follows from Lemma 4.2.9 and condition (b) that,

lim
n→∞

(wn, xn) = 0. (4.3.5)

From (2.2.1), we have

d(xn+1, xn) = d(βnxn ⊕ (1− βn)wn, xn)

= (1− βn)d(wn, xn)→ 0 as n→∞.
Hence,

lim
n→∞

d(xn+1, xn) = 0. (4.3.6)

Step 2: We next show that lim
n→∞

d(yn, T yn) = 0 = lim
n→∞

d(wn, T (Sλn)wn).

Since JAi
λn

is firmly nonexpansive for each i = 1, 2, · · · , N, we obtain from Lemma 2.5.2
that

d2(JAi
λn
xn, v) ≤ d2(v, xn)− d2(JAi

λn
xn, xn). (4.3.7)

Also, from Lemma 2.2.6 (b) and Lemma 4.2.2, we have

d2(wn, v) ≤ αn
1− βn

d2(g(xn), v) +
γn

1− βn
d2(T nyn, v)

≤ 1

1− βn
[
αnd

2(g(xn), v) + γn[(1 + un)d(yn, v) + vn]2
]

=
1

1− βn
[
αnd

2(g(xn), v) + γn(1 + un)2d2(yn, v) + 2γn(1 + un)vnd(yn, v) + v2
nγn
]

≤ 1

1− βn
[
αnd

2(g(xn), v) + 2γn(1 + un)vnd(yn, v) + v2
nγn
]

+
1

1− βn

[
γn(1 + un)2

(
N∑
i=0

βid
2(JAi

λn
(xn), v)

)]
,
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where JA0
λn
xn = xn. Thus, it follows from (4.3.7) that

d2(wn, v) ≤ 1

1− βn
[
αnd

2(g(xn), v) + 2γn(1 + un)vnd(yn, v) + v2
nγn

+ γn(1 + un)2d2(v, xn)− γn(1 + un)2

N∑
i=1

βid
2(JAi

λn
xn, xn)

]
≤ 1

1− βn
[
αnd

2(g(xn), v) + 2γn(1 + un)vnd(yn, v) + v2
nγn
]

+

(
1− αn

1− βn

)[
(1 + un)2d2(v, xn)− (1 + un)2

N∑
i=1

βid
2(JAi

λn
xn, xn)

]
,

which implies from (4.3.5) and conditions (a) and (c) that

(1 + un)2

N∑
i=1

d2(JAi
λn
xn, xn)→ 0, as n→∞.

Hence, by condition (c), we obtain that

N∑
i=1

d2(JAi
λn
xn, xn)→ 0, as n→∞. (4.3.8)

Therefore, we obtain from Lemma 4.2.2 that

d(Sλnxn, xn) ≤
N∑
i=0

βid(JAi
λn
xn, xn)→ 0, as n→∞.

That is,

lim
n→∞

d(Sλnxn, xn) = lim
n→∞

d(yn, xn) = 0. (4.3.9)

It follows from Remark 4.2.3 that (4.3.1) is equivalent to:{
yn = Sλnxn := β0xn ⊕ β1J

A1
λn
xn ⊕ · · · ⊕ βNJAN

λn
xn,

xn+1 = αng(xn)⊕ (1− αn)βnxn⊕γnT
nyn

(1−αn)
n ≥ 1.

(4.3.10)

Thus, from (2.2.1), we have

d

(
xn+1,

βnxn ⊕ γnT nyn
(1− αn)

)
= αnd

(
g(xn),

βnxn ⊕ γnT nyn
(1− αn)

)
→ 0, as n→∞. (4.3.11)

Also, from (2.2.1), we have that

d

(
xn,

βnxn ⊕ γnT nyn
(1− αn)

)
=

γn
1− αn

d(xn, T
nyn),
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which implies from (4.3.6) and (4.3.11) that

γn
1− αn

d(xn, T
nyn) = d

(
xn,

βnxn ⊕ γnT nyn
(1− αn)

)
≤ d(xn, xn+1) + d

(
xn+1,

βnxn ⊕ γnT nyn
1− αn

)
→ 0, as n→∞.

This implies that

lim
n→∞

d(xn, T
nyn) = lim

n→∞
d(xn, T

nSλnxn) = 0. (4.3.12)

By the uniform asympototic regularity of T, (4.3.9) and (4.3.12), we obtain that

d(yn, T yn) ≤ d(yn, T
nyn) + d(T nyn, T

n+1yn) + d(T n+1yn, T yn)

≤ (1 + L)d(yn, T
nyn) + d(T nyn, T

n+1yn)

≤ (1 + L)[d(yn, xn) + d(xn, T
nyn)] + d(T nyn, T

n+1yn)→ 0, (4.3.11)

as n→∞.

as n → ∞. Since {xn} is bounded and X is complete, we obtain from Lemma 4.2.6
that there exists a subsequence {xnk

} of {xn} such that 4- lim
k→∞

xnk
= v̄. Again, since Sλn

is nonexpansive and every nonexpansive mapping is demiclosed, it follows from (4.3.9),
condition (e) and Lemma 4.2.2 that v̄ ∈ F (Sλn) ⊆ ∩Ni=1F (JAi

λ ).
Also, we obtain from Lemma 4.2.8, (4.3.9) and (4.3.13) that v̄ ∈ F (T ). Hence, we obtain
that v̄ ∈ Γ.

Now, using (4.3.5) and (4.3.12), we have

d(wn, T
n(Sλn)wn) ≤ d(wn, xn) + d(xn, T

n(Sλn)xn) + d(T n(Sλn)xn, T
n(Sλn)wn)

≤ d(wn, xn) + d(xn, T
n(Sλn)xn) + Ld(xn, wn)

= (1 + L)d(wn, xn) + d(xn, T
n(Sλn)xn)→ 0, as n→∞.

Hence,

lim
n→∞

d(wn, T
n(Sλn)wn) = 0. (4.3.11)

Step 3: Next, we show that lim sup
n→∞

〈
−−−→
g(v̄)v̄,

−→
xnv̄〉 ≤ 0.

Let T hmx := βmx ⊕ (1 − βm)w, where w = αm

1−βm g(xn) ⊕ γm
1−βmT

m(Sλm)x. Then, we have

that T hm is a contraction for each m ≥ 1. By Banach contraction principle, there exists a
unique fixed point zm of T hm ∀ m ≥ 1. That is zm = βmzm ⊕ (1 − βm)wm, where wm =
αm

1−βm g(zm)⊕ γm
1−βmT

m(Sλmzm). Moreover, lim
n→∞

zm = v̄ ∈ Γ (see [72]). Thus, we have

d(zm, wn) = d(βmzm ⊕ (1− βm)wm, wn)

≤ βmd(zm, wn) + (1− βm)d(wm, wn),

which implies that
(1− βm)d(zm, wn) ≤ (1− βm)d(wm, wn).
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This further implies that

d(zm, wn) ≤ d(wm, wn). (4.3.12)

We have from Lemma 2.2.6 (e) that

d2(wm, wn) = 〈−−−→wmwn,
−−−→wmwn〉

=
〈−−−−−−−−−−→
wmT

m(Sλmzm),−−−→wmwn

〉
+
〈−−−−−−−−−−→
Tm(Sλmzm)wn,

−−−→wmwn

〉
≤ αm

1− βm

〈−−−−−−−−−−−−→
g(zm)Tm(Sλmzm),−−−→wmwn

〉
+
〈−−−−−−−−−−→
Tm(Sλmzm)wn,

−−−→wmwn

〉
=

αm
1− βm

〈−−−−−−−−−−−−→
g(zm)Tm(Sλmzm),−−−→wmzm

〉
+

αm
1− βm

〈−−−−−−−−−−−−→
g(zm)Tm(Sλmzm),−−−→zmwn

〉
+
〈−−−−−−−−−−−−−−−−→
Tm(Sλmzm)Tm(Sλmwn),−−−→wmwn

〉
+
〈−−−−−−−−−−→
Tm(Sλmwn)wn,

−−−→wmwn

〉
≤ αm

1− βm

〈−−−−−−−−−−−−→
g(zm)Tm(Sλmzm),−−−→wmzm

〉
+

αm
1− βm

〈−−−−−→
g(zm)wn,

−−−→zmwn

〉
+

αm
1− βm

〈−−−−−−−−−−→
wnT

m(Sλmzm),−−−→zmwn

〉
+
〈−−−−−−−−−−−−−−−−→
Tm(Sλmzm)Tm(Sλmwn),−−−→wmwn

〉
+
〈−−−−−−−−−−→
Tm(Sλmwn)wn,

−−−→wmwn

〉
≤ αm

1− βm
d(g(zm), Tm(Sλmzm))d(wm, zm) +

αm
1− βm

〈−−−−−→
g(zm)zm,

−−−→zmwn

〉
+

αm
1− βm

〈−−−−−−−−−−→
zmT

m(Sλmzm),−−−→zmwn

〉
+ d(Tm(Sλmzm), Tm(Sλmwn))d(wm, wn)

+ d(Tm(Sλmwn), wn)d(wm, wn)

≤ αm
1− βm

d(g(zm), Tm(Sλmzm))d(wm, zm) +
αm

1− βm

〈−−−−−→
g(zm)zm,

−−−→zmwn

〉
+

αm
1− βm

d(zm, T
m(Sλmzm))d(zm, wn) + [(1 + um)d(zm, wn) + vm] d(wm, wn)

+ d(Tm(Sλmwn), wn)d(wm, wn),

which implies from (4.3.12) that

d2(wm, wn) ≤ αm
1− βm

d(g(zm), Tm(Sλmzm))d(wm, zm) +
αm

1− βm

〈−−−−−→
g(zm)zm,

−−−→zmwn

〉
+

αm
1− βm

d(zm, T
m(Sλmzm))d(wm, wn) + [(1 + um)d(wm, wn) + vm] d(wm, wn)

+ d(Tm(Sλmwn), wn)d(wm, wn)

=
αm

1− βm
d(g(zm), Tm(Sλmzm))d(wm, zm) +

αm
1− βm

〈−−−−−→
g(zm)zm,

−−−→zmwn

〉
+

αm
1− βm

d(zm, T
m(Sλmzm))d(wm, wn) + (1 + um)d2(wm, wn) + vmd(wm, wn)

+ d(Tm(Sλmwn), wn)d(wm, wn).
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Therefore,〈−−−−−→
g(zm)zm,

−−−→wnzm

〉
≤ d(g(zm), Tm(Sλmzm))d(wm, zm) + d(zm, T

m(Sλmzm))d(wm, wn)

+ um

(
1− βm
αm

)
d2(wm, wn)

+

(
1− βm
αm

)
vmd(wm, wn) +

(
1− βm
αm

)
d(Tm(Sλmwn), wn)d(wm, wn).

Thus, taking lim sup as n→∞ first, then as m→∞, it follows from (4.3.12) and (4.3.5)
that

lim sup
m→∞

lim sup
n→∞

〈−−−−−→
g(zm)zm,

−−−→wnzm

〉
≤ 0. (4.3.13)

Furthermore, we have〈−−−→
g(v̄)v̄,

−→
xnv̄
〉

=
〈−−−−−−→
g(v̄)g(zm),

−→
xnv̄
〉

+
〈−−−−→
g(zm)v̄,

−→
xnv̄
〉

≤
〈−−−−−−→
g(v̄)g(zm),−→xnv

〉
+
〈−−→
zmv̄,

−→
xnv̄
〉

+
〈−−−−−→
g(zm)zm,

−−−→xnwn

〉
+
〈−−−−−→
g(zm)zm,

−−−→wnzm

〉
+
〈−−−−−→
g(zm)zm,

−−→
zmv̄

〉
≤ d(g(v̄), g(zm))d(xn, v̄) + d(zm, v̄)d(xn, v̄) + d(g(zm), zm)d(xn, wn)

+
〈−−−−−→
g(zm)zm,

−−−→wnzm

〉
+ d(g(zm), zm)d(zm, v̄)

≤ (1 + τ)d(zm, v̄)d(xn, v̄) +
〈−−−−−→
g(zm)zm,

−−−→wnzm

〉
+ [d(xn, wn) + d(zm, v̄)]d(g(zm), zm).

Thus, from (4.3.5), (4.3.13) and the fact that lim
m→∞

zm = v̄, we obtain

lim sup
n→∞

〈−−−→
g(v̄)v̄,

−→
xnv̄
〉

= lim sup
m→∞

lim sup
n→∞

〈−−−→
g(v̄)v̄,

−→
xnv̄
〉

≤ lim sup
m→∞

lim sup
n→∞

〈−−−−−→
g(zm)zm,

−−−→wnzm

〉
≤ 0. (4.3.13)

Step 4: Finally, we show that {xn} converges strongly to v̄ ∈ Γ.
From Lemma 2.2.7 , we obtain

〈−−→wnv,−→xnv〉 ≤
αn

1− βn

〈−−−−→
g(xn)v,−→xnv

〉
+

γn
1− βn

〈−−−−−−−−→
T n(Sλnxn)v,−→xnv

〉
≤ αn

1− βn

〈−−−−−−→
g(xn)g(v),−→xnv

〉
+

αn
1− βn

〈−−−→
g(v)v,−→xnv

〉
+

γn
1− βn

d(T n(Sλnxn), v)d(xn, v)

≤ αn
1− βn

τd2(xn, v) +
αn

1− βn

〈−−−→
g(v)v,−→xnv

〉
+

γn
1− βn

[(1 + un)d(xn, v) + vn] d(xn, v)

=

[
αn

1− βn
τ +

(
γn

1− βn

)
(1 + un)

]
d2(xn, v)

+

(
γn

1− βn

)
vnd(xn, v) +

αn
1− βn

〈−−−→
g(v)v,−→xnv

〉
.
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Thus, we obtain from Lemma 2.2.6 that

d2(xn+1, v̄) ≤ βnd
2(xn, v̄) + (1− βn)d2(wn, v̄)

= βnd
2(xn, v̄) + (1− βn)

〈−−→
wnv̄,

−−→
wnv̄

〉
= βnd

2(xn, v̄) + (1− βn)
[〈−−→
wnv̄,

−−−→wnxn

〉
+
〈−→
xnv̄,
−−→
wnv̄

〉]
≤ [βn + αnτ + γn + γnun]d2(xn, v̄) + γnvnd(xn, v̄) + αn

〈−−−→
g(v̄)v̄,

−→
xnv̄
〉

+ (1− βn)d(wn, v̄)d(wn, xn)

= [1− αn(1− τ)]d2(xn, v̄) + γnund
2(xn, v̄) + γnvnd(xn, v̄)

+ αn(1− τ)

[
1

(1− τ)

〈−−−→
g(v̄)v̄,

−→
xnv̄
〉]

+ (1− βn)d(wn, v̄)d(wn, xn).

That is,

d2(xn+1, v̄) ≤ (1− σn)d2(xn, v̄) + σnδn + θn,

where σn := αn(1−τ), δn :=
[

1
(1−τ)

〈−−−→
g(v̄)v̄,

−→
xnv̄
〉]

and θn = γnund
2(xn, v̄)+γnvnd(xn, v̄)+

(1− βn)d(wn, v̄)d(wn, xn).
It follows from conditions (a), (c), (4.3.14) and Lemma 3.2.5 that d(xn, v̄)→ 0, as n→∞.
Hence, we conclude that {xn} converges strongly to v̄ ∈ Γ.

If T is a nonexpansive mapping in Theorem 4.3.2, then we obtain the following corollary.

Corollary 4.3.3. Let X be an Hadamard space and X∗ be its dual space. Let T : X → X
be a nonexpansive mapping and g be a contraction mapping on X with coefficient τ ∈ (0, 1).
Let Ai : X → 2X

∗
be a finite family of multivalued monotone mappings which satisfy the

range condition. Suppose that Γ := F (T ) ∩
(
∩Ni=1A

−1
i (0)

)
6= ∅ and for arbitrary x1 ∈ X,

the sequence {xn}∞n=1 is generated by
yn = Sλnxn := β0xn ⊕ β1J

A1
λn
xn ⊕ · · · ⊕ βNJAN

λn
xn,

wn = αn

1−βn g(xn)⊕ γn
1−βnTyn,

xn+1 = βnxn ⊕ (1− βn)wn n ≥ 1,

(4.3.4)

where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in (0, 1) and {λn} is a sequence of
positive numbers such that,

(a) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(b) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, αn + βn + γn = 1 ∀ n ≥ 1,

(c) βi ∈ (0, 1) with
N∑
i=0

βi = 1,

(d) 0 < λ ≤ λn ∀n ≥ 1.
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Then {xn}∞n=1 converges strongly to v̄ ∈ Γ.

By setting g(xn) = u for all n ≥ 1, u ∈ X fixed in Theorem 4.3.2, we obtain the following
corollary with the Halpern-type algorithm.

Corollary 4.3.4. Let X be an Hadamard space and X∗ be its dual space. Let T : X → X
be uniformly asymptotically regular and uniformly L-Lipschitzian generalized asymptoti-
cally nonexpansive mapping with the sequences {un}, {vn} ⊂ [0,∞). Ai : X → 2X

∗
be a

finite family of multivalued monotone mappings which satisfy the range condition. Suppose
that Γ := F (T ) ∩

(
∩Ni=1A

−1
i (0)

)
6= ∅ and for arbitrary u, x1 ∈ X, the sequence {xn}∞n=1 is

generated by 
yn = Sλnxn := β0xn ⊕ β1J

A1
λn
xn ⊕ · · · ⊕ βNJAN

λn
xn,

wn = αn

1−βnu⊕
γn

1−βnT
nyn,

xn+1 = βnxn ⊕ (1− βn)wn n ≥ 1,

(4.3.5)

where {αn}∞n=1, {βn}∞n=1, and {γn}∞n=1 are sequences in (0, 1) and {λn} is a sequence of
positive numbers such that,

(a) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(b) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, αn + βn + γn = 1 ∀ n ≥ 1,

(c)
∞∑
n=1

un <∞,
∞∑
n=1

vn <∞,

(d) 0 < λ ≤ λn ∀n ≥ 1,

(e) βi ∈ (0, 1) with
N∑
i=0

βi = 1.

Then {xn}∞n=1 converges strongly to v̄ ∈ Γ.

By setting T ≡ I (where I is the identity mapping on X) in Theorem 4.3.2, we obtain the
following corollary.

Corollary 4.3.5. Let X be an Hadamard space and X∗ be its dual space. Let g be a
contraction mapping on X with coefficient τ ∈ (0, 1) and Ai : X → 2X

∗
be a finite

family of multivalued monotone mappings which satisfy the range condition. Suppose that
Γ := ∩Ni=1A

−1
i (0) 6= ∅ and for arbitrary x1 ∈ X, the sequence {xn}∞n=1 is generated by

yn = Sλnxn := β0xn ⊕ β1J
A1
λn
xn ⊕ · · · ⊕ βNJAN

λn
xn,

wn = αn

1−βn g(xn)⊕ γn
1−βnyn,

xn+1 = βnxn ⊕ (1− βn)wn n ≥ 1,

(4.3.6)

where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in (0, 1) and {λn} is a sequence of
positive numbers such that,
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(a) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(b) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, αn + βn + γn = 1 ∀ n ≥ 1,

(c) βi ∈ (0, 1) with
N∑
i=0

βi = 1,

(d) 0 < λ ≤ λn ∀n ≥ 1.

Then {xn}∞n=1 converges strongly to v̄ ∈ Γ.

4.4 Numerical examples

In this section, we first present a numerical example of Algorithm (4.3.1) in real line
to show its efficiency. We also present two numerical examples of Algorithm (4.3.6) in
2-dimensional space of real numbers and in an Hadamard space (non-Hilbert space), to
show its applicability.

Throughout this section, we shall take αn = 1
2n+4

and γn = n+2
2n+4

, ∀n ≥ 1 and βn =
n+1
2n+4

, ∀ n. Furthermore, we shall take βi = 1
4
, i = 0, 1, 2, 3 and g(x) = 2

5
x ∀x ∈ X.

Thus, the conditions of Corollary 4.3.5 are satisfied. Hence, for x1 ∈ X, Algorithm (4.3.1)
becomes: 

yn = 1
4

(
xn + JA1

λn
xn + JA2

λn
xn + JA3

λn
xn
)
,

wn = 2n+4
n+3

[
2

10n+20
(xn) + n+2

2n+4
(T nyn)

]
,

xn+1 = n+1
2n+4

(xn) + n+3
2n+4

(wn) n ≥ 1,
(4.4.1)

while Algorithm (4.3.6) becomes:
yn = 1

4

(
xn + JA1

λn
xn + JA2

λn
xn + JA3

λn
xn
)
,

wn = 2n+4
n+3

[
2

10n+20
(xn) + n+2

2n+4
(yn)

]
,

xn+1 = n+1
2n+4

(xn) + n+3
2n+4

(wn) n ≥ 1.
(4.4.2)

We now compute the monotone operator A and its resolvent JAλn in the following examples.

Example 4.4.1. Let X = R be endowed with the usual metric. Define T : R→ R by

Tx =


x, x ∈ (−∞, 0),

kx, x ∈ [0, 1
2
],

sinx, x ∈ (1
2
,∞),

(4.4.3)

where k ∈ (0, 1). Then, it follows by similar argument as in [95] that T is a generalized
asymptotically nonexpansive mapping with un = 2kn and vn = kn. Also, T satisfies the

assumptions in Theorem 4.3.2, and
∞∑
n=1

un < ∞ and
∞∑
n=1

vn < ∞. Thus, condition (c) of

Theorem 4.3.2 is satisfied.
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Now, define Ai(x) = 3ix. Then, Ai is monotone for each i = 1, 2, 3. Recall that [t
−→
ab] ≡

t(b− a), for all t ∈ R and a, b ∈ R (see [43]). Thus, for each x ∈ R, we have that

JAi
λn

(x) = z ⇐⇒ 1

λn
(x− z) ∈ Aiz ⇐⇒ z = (I + λnAi)

−1x.

We now consider the following cases for our initial points x1 ∈ R.

Case 1: Take x1 = 3. Case 2: Take x1 = −5.

Case 3: Take x1 = 0.8. Case 4: Take x1 = 0.5.

Example 4.4.2. Let X = R2 be endowed with the Euclidean norm ||.||2. Then for i = 1,
we define A1 : R2 → R2 by

A1(x) = (x(1) − 2x(2), 2x(1) + x(2)).

Clearly, A1 is a monotone operator.

Hence, we compute the resolvent of A1 as follows:

JA1
λn

(x) =

([
1 0
0 1

]
+

[
λn −2λn
2λn λn

])−1 [
x(1)

x(2)

]

=
1

1 + 2λn + 5λ2
n

[
1 + λn 2λn
−2λn 1 + λn

] [
x(1)

x(2)

]
,

which implies that

JA1
λn

(x) =

(
(1 + λn)x(1) + 2λnx

(2)

1 + 2λn + 5λ2
n

,
(1 + λn)x(2) − 2λnx

(1)

1 + 2λn + 5λ2
n

)
.

Now, for i = 2, 3, we define Ai : R2 → R2 by

A2(x) = (x(1) − x(2), x(1) + x(2)), A3(x) = (x(2), − x(1)).

Thus, by similar argument as above, we obtain that

JA2
λn

(x) =

(
(1 + λn)x(1) + λnx

(2)

1 + 2λn + 2λ2
n

,
(1 + λn)x(2) − λnx(1)

1 + 2λn + 2λ2
n

)
,

JA3
λn

(x) =

(
x(1) − λnx(2)

1 + λ2
n

,
x(2) + λnx

(1)

1 + λ2
n

)
.

We consider the next example in a non-Hilbert space setting.

Example 4.4.3. [27] Let Y = R2 be an R-tree with the radial metric dr, where dr(x, y) =
d(x, y) if x and y are situated on a Euclidean straight line passing through the origin and
dr(x, y) = d(x,0) + d(y,0) := ‖x‖+ ‖y‖ otherwise. Let p = (1, 0) and X = B ∪ C, where

B = {(h, 0) : h ∈ [0, 1]} and C = {(h, k) : h+ k = 1, h ∈ [0, 1)}.
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Then X is an Hadamard space. Thus, for each [t
−→
ab] ∈ X∗, we obtain that

[t
−→
ab] =


{s
−→
cd : c, d ∈ B, s ∈ R, t(‖b‖ − ‖a‖) = s(‖d‖ − ‖c‖)} a, b ∈ B,
{s
−→
cd : c, d ∈ C ∪ {0}, s ∈ R, t(‖b‖ − ‖a‖) = s(‖d‖ − ‖c‖)} a, b ∈ C ∪ {0},
{t
−→
ab} a ∈ B, b ∈ C.

Now, define A : X → 2X
∗

by

A(x) =


{[−→0p]} x ∈ B,

{[−→0p], [−→0x]} x ∈ C.

Then, A is monotone and its resolvent JAλn is defined by

JAλn(x) =


{z = (h− λn, 0)} x = (h, 0) ∈ B,

{z = (h′, k′) ∈ C : (1 + λn)2(h′2 + k′2) = h2 + k2} x = (h, k) ∈ C.

We now consider the following cases for our initial vectors x1 ∈ R2.

Case I: Take x1 = (3, − 0.5)T . Case II: Take x1 = (−1, 0.5)T .

Case III: Take x1 = (−3, − 4)T . Case IV: Take x1 = (0.9, 10)T .

Remark 4.4.4. For each of the cases above, we compared the convergence rate of the
different parameter λn as shown in the figures below, that is, λn1 = n+2

2n+5
, λn2 = n+7

n+1
,

λn3 = 100n+1
n+2

for Case 1-4 and λn1 = n+1
10n+3

, λn2 = 2n
n+4

, λn3 = 15n+3
n+5

for Case I-IV.

We observe from the numerical results that the sequence {λn} converging to a number far
away from 0 has a better convergence rate than that converging to a number closer to 0.
This validates the condition on λn in our main results.
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Figure 4.1: Errors vs Iteration numbers for Example 4.1: Case 1 (top left); Case 2
(top right); Case 3 (bottom left); Case 4 (bottom right).
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Figure 4.2: Errors vs Iteration numbers for Example 4.2: Case I (top left); Case II
(top right); Case III (bottom left); Case Iv (bottom right).
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Figure 4.3: Errors vs Iteration numbers for Example 4.3: Case I (top left); Case II
(top right); Case III (bottom left); Case IV (bottom right).
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Chapter 5

On Generalized Demimetric
Mappings and Monotone Operators
in Hadamard spaces

5.1 Introduction

Recently, Takahashi [83] introduced a new class of nonlinear mappings in a real Hilbert
space which he defined as follows:
Let H be a real Hilbert space and C be a nonempty, closed and convex subset of H. A
mapping T : C → H is called k-demimetric, if F (T ) 6= ∅ and there exists k ∈ (−∞, 1)
such that for any x ∈ C and y ∈ F (T ), we have

〈x− y, x− Tx〉 ≥ 1− k
2
‖x− Tx‖2.

The class of demimetric mappings is of central importance in optimization since it contains
many common types of operators emanating from optimization. For instance, the class of
k-demimetric mappings with k ∈ (−∞, 1) is known to cover the class of k-demicontractive
mappings with k ∈ [0, 1), generalized hybrid mappings, the metric projections and the
resolvents of maximal monotone operators (which are known as useful tools for solving
optimization problems) in Hilbert spaces (see [4, 83] and the references therein). Thus,
many authors have studied this class of mappings in both Hilbert and Banach spaces (see
[52, 81, 82, 83]). This was recently extended to Hadamard spaces by Aremu et al. [4].
They defined demimetric mappings in an Hadamard space as follows: Let X be a CAT(0)
space and C be a nonempty, closed and convex subset of X. A mapping T : C → X is
said to be k-demimetric if F (T ) 6= ∅ and there exists k ∈ (−∞, 1) such that

〈−→xy,
−−→
xTx〉 ≥ 1− k

2
d2(x, Tx) (5.1.1)

for all x ∈ C, y ∈ F (T ).
Furthermore, they gave an example of a demimetric mapping and established some fixed
point results for this class of mappings and proved a strong convergence theorem for
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approximating a common solution of finite family of minimization problems and fixed
point problems for this class of mappings in Hadamard spaces.

In 2018, Kawasaki and Takahashi [45] generalized the class of demimetric mappings as
follows: Let C be a nonempty, closed and convex subset of a smooth Banach space E and
θ be a real number with θ 6= 0. A mapping T : C → E with F (T ) 6= ∅ is called generalized
demimetric if

θ〈x− y, J(x− Tx)〉 ≥ ‖x− Tx‖2 (5.1.2)

for all x ∈ C and y ∈ F (T ), where J is a duality mapping on E. This class of mappings
has also been studied in Banach spaces by Takahashi [79].

Motivated by the above results, we introduce and study the class of generalized demimetric
mappings in Hadamard spaces. We also propose a Halpern-type PPA comprising of this
class of mappings and a finite composition of resolvents of monotone operators, and prove
that it converges strongly to a common zero of a finite family of monotone operators
which is also a fixed point of a generalized demimetric mapping in an Hadamard space.
We apply our results to solve a finite family of convex minimization problems, VIPs and
convex feasibility problems in Hadamard spaces.

Let C be a nonempty closed and convex subset of an Hadamard space and T : C → C
be a θ-generalized demimetric mapping with θ 6= 0 and F (T ) 6= ∅. Let Ai : X → 2X

∗
, i =

1, 2, · · · , N be a multivalued monotone mappings that satisfy the range condition. Our
major interest in this chapter, is to study the problem: Find z ∈ F (T ) such that

0 ∈ ∩Ni=1A(z). (5.1.3)

5.2 Preliminaries

In this section, we recall some important results that will be needed in our study.

Definition 5.2.1. Let C be a nonempty closed and convex subset of an Hadamard space X.
A mapping T : C → C is said to be 4-demiclosed, if for any bounded sequence {xn} in X
such that 4- lim

n→∞
xn = x and lim

n→∞
d(xn, Txn) = 0, then x = Tx.

Lemma 5.2.2. [30] Let X be an Hadamard space and T : X → X be a nonexpansive
mapping. Then T is 4-demiclosed.

Lemma 5.2.3. [58] Let {an} be a sequence of non-negative numbers such that

an+1 ≤ (1− αn)an + αnTn,

where {Tn} is a sequence of real numbers bounded from above and {αn} ⊂ [0, 1] satisfies∑
αn =∞. Then it holds that

lim sup
n→∞

an ≤ lim sup
n→∞

Tn.

Lemma 5.2.4. [88] Let X be an Hadamard space, for any t ∈ [0, 1] and u, v ∈ X, let
ut = tu⊕ (1− t)v. Then for all x, y ∈ X, we have

〈−→utx,−→uy〉 ≤ t〈−→ux,−→uy〉+ (1− t)〈−→vx,−→uy〉.
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5.3 Main results

Following the idea of (5.1.1) and (5.1.2), we define θ-generalized demimetric mappings in
CAT(0) spaces as follows:

Definition 5.3.1. Let X be a CAT(0) space and T : X → X be a nonlinear mapping. T
is called θ-generalized demimetric, if F (T ) 6= ∅ and there exists θ 6= 0 such that

θ〈−→xy,
−−→
xTx〉 ≥ d2(x, Tx), (5.3.1)

for all x ∈ X and y ∈ F (T ).

Remark 5.3.2. The following are examples of generalized demimetric mappings in CAT(0)
spaces.

1. If T : X → X is a k- strictly pseudocontractive mapping with k ∈ [0, 1) and F (T ) 6=
∅, then T is

(
2

1−k

)
-generalized demimetric mapping. This follows from the same

argument as in [4].

2. If T : X → X is a generalized hybrid mapping with F (T ) 6= ∅, then T is a 2-
generalized demimetric mapping. Indeed, for x ∈ F (T ) and y ∈ X, we obtain from
(2.2.5) that

d2(x, Ty) ≤ d2(x, y). (5.3.2)

Also, from (2.2.3), we have that

2〈−→yx,
−−→
yTy〉 = d2(y, Ty) + d2(x, y)− d2(x, Ty),

which implies from (5.3.2) that

2〈−→yx,
−−→
yTy〉 ≥ d2(y, Ty) + d2(x, y)− d2(x, y)

= d2(y, Ty).

Hence, T is a 2-generalized demimetric mapping. Therefore, nonexpansive, non-
spreading and hybrid mappings are examples of generalized demimetric mappings.

3. If T : X → X is a k-demicontractive mapping, then T is a
(

2
1−k

)
-generalized demi-

metric.

We now study some properties of θ-generalized demimetric mappings in Hadamard spaces.

Proposition 5.3.3. Let X be an Hadamard space and T : X → X be a θ-generalized
demimetric mapping with θ > 0. Then T is a (1− 2

θ
)-demimetric.

Proof. It follows from the definition of demimetric mapping and θ-generalized demimetric
mapping.
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Proposition 5.3.4. Let X be an Hadamard space and T : X → X be a θ-generalized
demimetric mapping with θ 6= 0. Then F (T ) is closed and convex.

Proof. We first show that F (T ) is closed. Let {xn} be a sequence in F (T ) such that {xn}
converges to x∗. Then from the definition of θ-generalized demimetric mappings, we have

θ〈
−−→
x∗xn,

−−−→
x∗Tx∗〉 ≥ d2(x∗, Tx∗), (5.3.3)

which implies from Cauchy Schwartz inequality that

θd(x∗, xn)d(x∗, Tx∗) ≥ d2(x∗, Tx∗).

Taking the limit of both sides, we obtain 0 ≥ d2(x∗, Tx∗), which implies that x∗ = Tx∗.
Thus, x∗ ∈ F (T ). Therefore, F (T ) is closed. Next, we show that F (T ) is convex. For this,
let x, y ∈ F (T ). Then, it suffices to show that (tx ⊕ (1 − t)y) ∈ F (T ), for t ∈ [0, 1]. Set
z = tx⊕ (1− t)y, t ∈ [0, 1], then we obtain from Lemma 5.2.4 that

d2(z, Tz) = 〈
−−→
zTz,

−−→
zTz〉

= 〈
−−−−−−−−−−−−→
(tx⊕ (1− t)y)Tz,

−−→
zTz〉

≤ t〈
−−→
xTz,

−−→
zTz〉+ (1− t)〈

−−→
yTz,

−−→
zTz〉

= t
[
〈−→xz,
−−→
zTz〉+ 〈

−−→
zTz,

−−→
zTz〉

]
+ (1− t)

[
〈−→yz,
−−→
zTz〉+ 〈

−−→
zTz,

−−→
zTz〉

]
≤ −t

θ
d2(z, Tz) + td2(z, Tz)− (1− t)

θ
d2(z, Tz) + (1− t)d2(z, Tz)

=
−1

θ
d2(z, Tz) + d2(z, Tz),

which implies that 1
θ
d2(z, Tz) ≤ 0. Since θ 6= 0, we obtain that z ∈ F (T ) as required.

Lemma 5.3.5. Let X be a CAT(0) space and T : X → X be a θ-generalized demimetric
mapping with θ 6= 0. Suppose that Sλx = λx⊕ (1− λ)Tx with θ ≤ 2

1−λ and λ ∈ (0, 1),
then Sλ is quasi-nonexpansive and F (Sλ) = F (T ).

Proof. Let x ∈ X and z ∈ F (T ), then since T is θ-generalized demimetric, we obtain from
Lemma 5.2.4 that

〈−→zx,
−−−→
xSλx〉 = 〈

−−−−−−−−−−−−−→
(λx⊕ (1− λ)Tx)x,−→xz〉

≤ λ〈−→xx,−→xz〉+ (1− λ)〈
−−→
Txx,−→xz〉

= (1− λ)〈
−−→
Txx,−→xz〉

≤ −(1− λ)2

θ(1− λ)
d2(x, Tx). (5.3.4)

Now, from (2.2.1), we obtain that d2(x, Sλx) = (1−λ)2d2(x, Tx). Substituting into (5.3.4),
we obtain

〈−→zx,
−−−→
xSλx〉 ≤

−1

θ(1− λ)
d2(x, Sλx),
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which implies that

〈−→xz,
−−−→
xSλx〉 ≥

1

θ(1− λ)
d2(x, Sλx)

≥ 1

2
d2(x, Sλx).

Thus, we obtain that

d2(x, Sλx) + d2(z, x)− d2(z, Sλx) ≥ d2(x, Sλx),

which implies that
d2(z, Sλx) ≤ d2(z, x).

Hence, Sλ is quasi-nonexpansive.
Next, we show that F (Sλ) = F (T ). From (2.2.1), we obtain that

d(x, Sλx) = (1− λ)d(x, Tx).

This implies that Sλx = x if and only if Tx = x. Therefore, F (Sλ) = F (T ).

Theorem 5.3.6. Let X be an Hadamard space and X∗ be its dual space. Let Ai : X →
2X
∗
, i = 1, 2, · · · , N be a finite family of multivalued monotone mappings satisfying the

range condition and T : X → X be a θ-generalized demimetric mapping with θ 6= 0.
Suppose that Γ := F (T )∩ (∩Ni=1A

−1
i (0)) 6= ∅ and for arbitrary u, x1 ∈ X, the sequence {xn}

is defined by
yn = (1− αn)xn ⊕ αnu,
zn = (1− γn)yn ⊕ γnSµ(JNλ ◦ JN−1

λ ◦ · · · ◦ J2
λ ◦ J1

λyn),
xn+1 = (1− βn)yn ⊕ βnzn, n ≥ 1,

(5.3.5)

where Sµx := µx⊕(1−µ)Tx such that Sµ is M-demiclosed, with θ ≤ 2
1−µ , µ ∈ (0, 1), λ ∈

(0,∞) and {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 are in (0, 1) satisfying the following:

(C1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(C2) 0 < a ≤ βn, γn ≤ b < 1.

Then {xn} converges strongly to an element of Γ.

Proof. We first show that {xn} is bounded.
Let p ∈ Γ, from (5.3.5), Lemma 2.2.6 and Lemma 5.3.5, we have

d2(zn, p) = d2((1− γn)yn ⊕ γnSµ(JNλ ◦ JN−1
λ ◦ · · · ◦ J2

λ ◦ J1
λyn), p)

≤ (1− γn)d2(yn, p) + γnd
2(Sµ(JNλ ◦ JN−1

λ ◦ · · · ◦ J2
λ ◦ J1

λyn), p)

− γn(1− γn)d2(yn, Sµ(JNλ ◦ JN−1
λ ◦ · · · ◦ J2

λ ◦ J1
λyn))

≤ (1− γn)d2(yn, p) + γnd
2(yn, p)− γn(1− γn)d2(yn, Sµ(JNλ ◦ JN−1

λ ◦ · · · ◦ J2
λ ◦ J1

λyn))
(5.3.6)

≤ d2(yn, p).
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We also have from (5.3.5) and (2.2.1) that

d(xn+1, yn) = βnd(zn, yn), (5.3.7)

which implies that

d2(zn, yn) =
αn
βn

(
d2(xn+1, yn)

αnβn

)
. (5.3.8)

From (5.3.5), (5.3.6), (5.3.8) and Lemma 2.2.6, we obtain

d2(xn+1, p) ≤ (1− βn)d2(yn, p) + βnd
2(zn, p)− βn(1− βn)d2(yn, zn) (5.3.9)

≤ d2(yn, p)−
1

βn
(1− βn)d2(xn+1, yn) (5.3.10)

≤ d2(yn, p).

Thus, we obtain from Lemma 2.2.6 that

d(xn+1, p) ≤ d(yn, p)

≤ (1− αn)d(xn, p) + αnd(u, p)

≤ max {d(xn, p), d(u, p)}
...

≤ max {d(x1, p), d(u, p)}.

Therefore, {xn} is bounded and consequently, {yn} and {zn} are all bounded.
Next, we show that

lim
n→∞

d(yn, Sµ(JNλ ◦ JN−1
λ ◦ · · · ◦ J2

λ ◦ J1
λyn)) = 0.

From (5.3.5),(5.3.9) and Lemma 2.2.6, we have that

d2(xn+1, p) ≤ d2(yn, p)−
1

βn
(1− βn)d2(xn+1, yn)

= d2((1− αn)xn ⊕ αnu, p)−
1

βn
(1− βn)d2(xn+1, yn)

≤ (1− αn)2d2(xn, p) + α2
nd

2(u, p) + 2αn(1− αn)〈−→xnp,−→up〉 −
1

βn
(1− βn)d2(xn+1, yn)

≤ (1− αn)d2(xn, p) + α2
nd

2(u, p)− 2αn(1− αn)〈−→xnp,−→pu〉 −
1

βn
(1− βn)d2(xn+1, yn)

= (1− αn)d2(xn, p) + αn(−dn), (5.3.11)

where

dn =

[
2(1− αn)〈−→xnp,−→pu〉 − αnd2(u, p) +

1

βnαn
(1− βn)d2(xn+1, yn)

]
. (5.3.12)
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Since {xn} and {yn} are bounded, they are bounded below. Thus, {dn} is bounded below,
which implies that {−dn} is bounded above.
Therefore, we obtain from Lemma 5.2.3 and condition C1 of Theorem 5.3.6 that

lim sup
n→∞

d2(xn, p) ≤ lim sup
n→∞

(−dn)

= − lim inf dn, (5.3.13)

which implies that lim inf(dn) ≤ − lim sup d2(xn, p). Thus, we conclude that lim inf
n→∞

dn

exists.
Hence, we obtain from (5.3.12) and condition C1 of Theorem 5.3.6 that

lim inf
n→∞

dn = lim inf
n→∞

[
2〈−→xnp,−→pu〉+

1

βnαn
(1− βn)d2(xn+1, yn)

]
.

Since {xn} is bounded and X is complete, we obtain from Lemma 4.2.6 that there exists
a subsequence {xnk

} of {xn} such that 4- lim
k→∞

xnk
= z ∈ X, and

lim inf
n→∞

dn = lim
k→∞

[
2〈−−→xnk

p,−→pu〉+
1

βnk
αnk

(1− βnk
)d2(xnk+1, ynk

)

]
, (5.3.14)

for some subsequences {ynk
}, {βnk

} and {αnk
} of {yn}, {βn} and {αn} respectively.

Using the fact that {xn} is bounded and lim inf
n→∞

dn exists, we get that{
1

βnk
αnk

(1− βnk
)d2(xnk+1, ynk

)
}

is bounded. Also, by condition C2, we obtain that

1
αnk

βnk
(1− βnk

) ≥ 1
αnk

βnk
(1− b) > 0. Thus

{
1

βnk
αnk

d2(xnk+1, ynk
)
}

is bounded.

Again, from C1 and C2, we obtain that 0 <
αnk

βnk
≤ αnk

a
→ 0, as k → ∞. Thus,

αnk

βnk
→ 0 as k →∞.

Therefore, we obtain from (5.3.8) that

lim
k→∞

d(znk
, ynk

) = 0. (5.3.15)

From (5.3.7), (5.3.15) and condition C2, we obtain that

lim
k→∞

d(xnk+1, ynk
) = 0. (5.3.16)

Also, from (5.3.6) and (5.3.15), we have

γnk
(1− γnk

)d2(ynk
, Sµ(JNλ ◦ JN−1

λ ◦ · · · J2
λ ◦ J1

λynk
)) ≤ d2(ynk

, p)− d2(znk
, p)

≤ d2(ynk
, znk

) + 2d(ynk
, znk

)d(znk
, p)

+ d2(znk
, p)− d2(znk

, p)→ 0,

as k →∞.

Thus, from Condition C2, we have that

lim
k→∞

(ynk
, Sµ(JNλ ◦ JN−1

λ ◦ · · · J2
λ ◦ J1

λynk
)) = 0. (5.3.17)
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Next, we show that lim
k→∞

d(vnk
, Sµvnk

) = 0.

Let vnk
= ΦN

λ ynk
, where ΦN

λ = JNλ ◦ JN−1
λ ◦ · · · J2

λ ◦ J1
λ with Φ0

λ = 1. Since JNλ is firmly
nonexpansive, we obtain from Remark 2.5.3 and (5.3.17) that

d2(vnk
,ΦN−1

λ ynk
) ≤ d2(p,ΦN−1

λ ynk
)− d2(p, vnk

)

≤ d2(p, ynk
)− d2(p, Sµvnk

)

≤ d2(p, Sµvnk
) + 2d(p, Sµvnk

)d(Sµvnk
, ynk

)

+ d2(Sµvnk
, ynk

)− d2(p, Sµvnk
)→ 0 as k →∞. (5.3.18)

Similarly, since JN−1
λ is firmly nonexpansive, we obtain that

d2(ΦN−1
λ ynk

,ΦN−2
λ ynk

) ≤ d2(p,ΦN−2
λ ynk

)− d2(p,ΦN−1
λ ynk

)

≤ d2(p, ynk
)− d2(p, vnk

)

≤ d2(p, ynk
)− d2(p, Sµvnk

)

≤ d2(p, Sµvnk
) + 2d(p, Sµvnk

)d(Sµvnk
, ynk

)

+ d2(Sµvnk
, ynk

)− d2(p, Sµvnk
)→ 0 as k →∞. (5.3.19)

In the same manner, we can show that

lim
k→∞

d2(ΦN−2
λ ynk

,ΦN−3
λ ynk

) = lim
k→∞

d2(ΦN−3
λ ynk

,ΦN−4
λ ynk

) = · · · = lim
k→∞

d2(Φ1
λynk

, ynk
) = 0.

(5.3.20)

Thus,

d(vnk
, ynk

) ≤ d(ΦN
λ ynk

,ΦN−1
λ ynk

) + d(ΦN−1
λ ynk

,ΦN−2
λ ynk

) + · · ·+ d(Φ1
λynk

, ynk
).

This implies from (5.3.18), (5.3.19) and (5.3.20) that

lim
k→∞

d(vnk
, ynk

) = lim
k→∞

d(JNλ ◦ JN−1
λ ◦ · · · J2

λ ◦ J1
λynk

, ynk
) = 0. (5.3.21)

Furthermore, from (5.3.17) and (5.3.21), we obtain

lim
k→∞

d(vnk
, Sµvnk

) = 0. (5.3.22)

Lastly, we show that {xn} converges strongly to z ∈ Γ.
From (5.3.5) and condition C1, we obtain

d(ynk
, xnk

) = d((1− αnk
)xnk

⊕ αnk
u, xnk

)

= αnk
d(u, xnk

)→ 0 as k →∞. (5.3.23)

Since 4- lim
k→∞

xnk
= z, we obtain from (5.3.23) that 4- lim

k→∞
ynk

= z, and from (5.3.21)

that 4- lim
k→∞

vnk
= z. By the demicloseness of Sµ, (5.3.22) and Lemma 5.3.5, we obtain

that z ∈ F (Sµ) = F (T ). Since J iλ, i = 1, 2, · · · , N are nonexpansive mappings and the
composition of nonexpansive mappings is nonexpansive, we obtain from (5.3.21), Lemma
5.2.2 and Lemma 2.5.4 that z ∈ F (JNλ ◦JN−1

λ ◦· · ·◦J2
λ ◦J1

λ) = F (JNλ )∩F (JNλ )∩F (JN−1
λ )∩
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· · · ∩ F (J2
λ) ∩ F (J1

λ). Hence z ∈ Γ.
Furthermore, we obtain from Lemma 4.2.7 that

lim sup
n→∞

〈−→zu,−−→xnk
z〉 ≥ 0.

Thus, we obtain from (5.3.14) and (5.3.16) that

lim inf
n→∞

dn = 2 lim
k→∞
〈−→zu,−−→xnk

z〉 ≥ 0.

Hence from (5.3.13), we have

lim sup
n→∞

d2(xn, z) ≤ − lim inf
n→∞

dn ≤ 0.

Therefore, lim
n→∞

d(xn, z) = 0 and this implies that {xn} converges strongly to z ∈ Γ.

Setting T ≡ I (where I is the identity mapping) in Theorem 5.3.6, we have the following
result:

Corollary 5.3.7. Let X be an Hadamard space and X∗ be its dual space. Let Ai : X →
2X
∗
, i = 1, 2, · · · , N be a finite family of multivalued monotone mappings satisfying

the range condition. Suppose that Γ := ∩Ni=1A
−1
i (0) 6= ∅ and for arbitrary u, x1 ∈ X, the

sequence {xn} is defined by
yn = (1− αn)xn ⊕ αnu,
zn = (1− γn)yn ⊕ γnJNλ ◦ JN−1

λ ◦ · · · ◦ J2
λ ◦ J1

λyn,
xn+1 = (1− βn)yn ⊕ βnzn, n ≥ 1,

(5.3.24)

where λ ∈ (0,∞) and {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 are in (0, 1) satisfying the following:

(C1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(C2) 0 < a ≤ βn, γn ≤ b < 1.

Then {xn} converges strongly to an element of Γ.

Setting N = 1 in Theorem 5.3.6, we have the following result:

Corollary 5.3.8. Let X be an Hadamard space and X∗ be its dual space. Let A : X → 2X

be a multivalued monotone mapping that satisfies the range condition and T : X → X be
a θ-generalized demimetric mapping with θ 6= 0. Suppose that Γ := F (T )∩A−1(0) 6= ∅ and
for arbitrary u, x1 ∈ X, the sequence {xn} is defined by

yn = (1− αn)xn ⊕ αnu,
zn = (1− γn)yn ⊕ γnSµ(JAλ yn),
xn+1 = (1− βn)yn ⊕ βnzn, n ≥ 1,

(5.3.25)

where Sµx := µx⊕(1−µ)Tx such that Sµ is M-demiclosed, with θ ≤ 2
1−µ , µ ∈ (0, 1), λ ∈

(0,∞) and {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 are in (0, 1) satisfying the following:
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(C1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(C2) 0 < a ≤ βn, γn ≤ b < 1.

Then {xn} converges strongly to an element of Γ.

If T is nonexpansive in Corollary (5.3.8), we obtain the following result.

Corollary 5.3.9. Let X be an Hadamard space and X∗ be its dual space. Let A : X → 2X
∗

be a multivalued monotone mapping satisfying the range condition and T : X → X be a
nonexpansive mapping. Suppose that Γ := F (T )∩A−1(0) 6= ∅ and for arbitrary u, x1 ∈ X,
the sequence {xn} is defined by

yn = (1− αn)xn ⊕ αnu,
zn = (1− γn)yn ⊕ γnT (JAλ yn),
xn+1 = (1− βn)yn ⊕ βnzn, n ≥ 1,

(5.3.26)

with λ ∈ (0,∞) and {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 are in (0, 1) satisfying the following:

(C1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(C2) 0 < a ≤ βn, γn ≤ b < 1.

Then {xn} converges strongly to an element of Γ.

5.4 Application to some optimization problems

In this section, we apply our results to solve some optimization problems.

Definition 5.4.1. Let X be an Hadamard space and f : X → (−∞,∞] be a proper,
convex and lower semicontinuous function with domain D(f) := {x ∈ X : f(x) < +∞}.
The function f : X → (−∞,∞] is called

(i) proper, if D(f) 6= ∅,

(ii) convex, if

f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀ x, y ∈ X and λ ∈ (0, 1),

(iii) lower semicontinuous at a point x ∈ D(f), if

f(x) ≤ lim inf
n→∞

f(xn),

for each sequence {xn} in D(f) such that lim
n→∞

xn = x.
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(iv) f is lower semicontinuous on D(f), if it is lower semicontinuous at any point in
D(f).

Definition 5.4.2. [43] Let X be an Hadamard space and X∗ be its dual space. The
subdifferential of f is the multivalued function ∂f : X → 2X

∗
defined by

∂f(x) =

{
{x∗ ∈ X∗ : f(z)− f(x) ≥ 〈x∗,−→xz〉 ∀ z ∈ X}, if x ∈ D(f),

∅, otherwise.
(5.4.1)

Theorem 5.4.3. [43] Let f : X → (−∞,+∞] be a proper, convex and lower semicontin-
uous function on an Hadamard space X with dual X∗, then

(i) f attains its minimum at x ∈ X if and only if 0 ∈ ∂f(x),

(ii) ∂f : X → 2X
∗

is a monotone operator,

(iii) for any y ∈ X and α > 0, there exists a unique point x ∈ X such that [α−→xy] ∈ ∂f(x),
that is D(J∂fλ ) = X, for all λ > 0.

Definition 5.4.4. Let C be a nonempty, closed and convex subset of X. The indicator
function δC : X → R defined by

δCx =

{
0, if x ∈ C,
+∞, otherwise.

(5.4.2)

It is generally known that δC is a proper convex. Thus, by Theorem 5.4.3 (ii)(iii), we have
that the subdifferential of δC, given by

∂δC(x) =

{
{x∗ ∈ X∗ : 〈x∗,−→xz〉 ≤ 0 ∀ z ∈ C} if x ∈ C
∅ otherwise,

(5.4.3)

is a monotone operator which satisfies the range condition.

5.4.1 Variational inequality problem

Recently, Khatibzabdeh and Rajbar [49] formulated a VIP associated with a nonexpansive
mapping in an Hadamard space as follows: Find x ∈ C such that

〈
−−→
Txx,−→xy〉 ≥ 0 ∀ y ∈ C. (5.4.4)

Recall that the metric projection PC : X → C is defined for x ∈ X by d(x, PCx) =
inf
y∈C

d(x, y) and is characterized by z = PCx if and only if 〈−→zx,−→zy〉 ≤ 0, ∀ y ∈ C (see

[49]). Using the characterization of PC , we obtain that

x = PCTx if and only if 〈
−−→
Txx,−→xy〉 ≥ 0 ∀ y ∈ C.
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Thus, we have that x ∈ F (PC ◦ T ) if and only if x solves (5.4.4). From (2.5.1), we have
that

z = J∂δCλ x ⇐⇒
[

1

λ
−→zx
]
∈ ∂δCz ⇐⇒ 〈−→zx,−→zy〉 ≤ 0, ∀ y ∈ C ⇐⇒ z = PCx. (5.4.5)

Letting z = x, we obtain that x = PCx if and only if x ∈ (∂δC)−1(0). Thus,
x ∈ (∂δC)−1(0) ∩ F (T ) =⇒ x ∈ F (PC) ∩ F (T ) =⇒ x ∈ F (PC ◦ T ).
Suppose the solution set of Problem (5.4.4) is Υ. Setting A = ∂δC in Corollary 5.3.9, we
apply Corollary 5.3.9 to obtain the following result for approximating solutions of VIP in
Hadamard spaces.

Theorem 5.4.5. Let C be a nonempty closed and convex subset of an Hadamard space
X and X∗ be its dual space. Let T : X → X be a nonexpansive mapping. Suppose that
Υ 6= ∅ and for arbitrary u, x1 ∈ X, the sequence {xn} is defined by

yn = (1− αn)xn ⊕ αnu,
zn = (1− γn)yn ⊕ γnT (J∂δCλ yn), n ≥ 1,
xn+1 = (1− βn)yn ⊕ βnzn, n ≥ 1,

(5.4.6)

with λ ∈ (0,∞) and {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 ⊂ (0, 1) satisfying the following:

(C1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(C2) 0 < a ≤ βn, γn ≤ b < 1.

Then {xn} converges strongly to an element of Υ.

5.4.2 Convex feasibility problem

The convex feasibility problem is defined as follows: Find x ∈ C such that

x ∈
N⋂
i=1

Ci, (5.4.7)

where C is a nonempty closed and convex subset of X and Ci, i = 1, 2, · · · , N is a finite
family of nonempty closed and convex subsets of C such that

⋂N
i=1 Ci 6= ∅.

From (5.4.5), we have that x = J
∂δCi
λ x if and only if x = PCi

x, i = 1, 2, · · · , N. Setting
Ai = ∂δCi

in Corollary (5.3.7) and J iλ = PCi
, i = 1, 2, · · · , N in Algorithm 5.3.24, we

can apply Corollary 5.3.7 to approximate solutions of (5.4.7).
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5.4.3 Convex minimization problem

The minimization problem is to find x ∈ X such that

f(x) = min
y∈X

f(y). (5.4.8)

Observe from Theorem 5.4.3 (i) that (5.4.8) can be written as: Find x ∈ X such that

0 ∈ ∂f(x). (5.4.9)

Thus, by setting A = ∂f in Theorem 5.3.6, we obtain the following result.

Theorem 5.4.6. Let X be an Hadamard space and X∗ be its dual space. Let fi : X →
(−∞,∞], i = 1, 2, · · · , N be a finite family of proper, convex and lower semicontinuous
functions and T : X → X be a θ-generalized demimetric mapping with θ 6= 0. Suppose that
Υ := F (T ) ∩ (∩Ni=1∂f

−1
i (0)) 6= ∅ and for arbitrary u, x1 ∈ X, the sequence {xn} is defined

by 
yn = (1− αn)xn ⊕ αnu,
zn = (1− γn)yn ⊕ γnSµ(J∂fNλ ◦ J∂fN−1

λ ◦ · · · ◦ J∂f2λ ◦ J∂f1λ yn),
xn+1 = (1− βn)yn ⊕ βnzn, n ≥ 1,

(5.4.10)

where Sµx := µx⊕(1−µ)Tx such that Sµ is M-demiclosed, with θ ≤ 2
1−µ , µ ∈ (0, 1), λ ∈

(0,∞) and {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 ⊂ (0, 1), satisfying

(C1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(C2) 0 < a ≤ βn, γn ≤ b < 1.

Then {xn} converges strongly to an element of Υ.
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Chapter 6

Conclusion, Contribution to
knowledge and Future Research

6.1 Conclusion

In this dissertation, we proposed some iterative methods for approximating solutions of
SVIPs and MIPs in Hilbert spaces and Hadamard spaces respectively. In Chapter 3,
we established a strong convergence theorem for approximating solutions of split pseudo-
monotone variational inequality problems in Hilbert spaces without the prior knowledge
of Lipschitz constant of the pseudo-monotone, and with minimized number of projections
as compared with other results in the literature. We also gave numerical examples in this
chapter in a real Hilbert space. In Chapter 4, we established a strong convergence theorem
for approximating a common solution of a finite family of MIPs and fixed point problem
for a generalized asymptotically nonexpansive mapping in Hadamard spaces. Several
numerical examples of our established theorem are given in support of the theorem. In
Chapter 5, we introduced the class of generalized demimetric mappings in Hadamard
spaces and prove several fixed point results concerning this class of mappings. We further
obtained a strong convergence result of the sequence generated by our iterative scheme,
and applied the established results to solve other optimization problems like the VIPs,
convex feasibility problems and convex minimization problems.

6.2 Contribution to knowledge

The contribution of this work are as follows:

(i) In [21, 85], Censor et al., Tian and Jian proposed algorithms for approximating the
solution of the SVIPs and proved that the sequence generated by the algorithms
converges weakly to a solution of the spilt variational ineqaulity problem when the
operator is inverse strongly monotone and monotone (with a nonexpansive mapping)
respectively. Our work in Chapter 3 generalizes these results since we obtained a
strong convergence results when the underlying operator is pseudo-monotone and
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the mapping is strictly pseudocontractive. Also, our algorithm is designed in such
a way that it does not depend on the knowledge of the Lipschitz constant of the
underlying operator unlike the algorithms considered in [21, 85]. Furthermore, our
algorithm has minimized number of projections compared to that of Tian and Jian
[85], and our numerical experiments in Section 3.4 show that our algorithm performs
better than that considered by Tian and Jian [85].

(ii) Ranijbar and Khatibzabeh [69] proposed the Mann and Halpern-type PPAs in Hdamard
spaces for approximating solutions of MIPs. In Chapter 4 of this dissertation, we
introduced a viscosity PPA for approximating a common solution of a finite family
of MIPs and fixed point problem for generalized asymptotic nonexpansive mapping.
Besides the fact that the problem considered in this chapter (Chapter 4) generalizes
the problem studied by Ranijbar and Khatibzabeh [69], the Mann and Halpern algo-
rithms of Ranijbar and Khatibzabeh [69] are special cases of the viscosity algorithm
proposed in this chapter. Moreover, it has been established that viscosity type al-
gorithms have higher convergence rates than Halpern iterations (see [67] for more
advantages of viscosity algorithms over Halpern algorithms).

(iii) In Chapter 5, we introduced and studied the class of generalized demimetric map-
pings in Hadamard spaces. We proposed an iterative scheme which converges strongly
to a common zero of a finite family of monotone operators which is also a fixed point
of the newly introduced generalized demimetric mappings in an Hadamard space.
The results obtained in this chapter generalize the results obtained in [4].

6.3 Future Research

In this section, we discuss some possible areas of future research.

The Armijo-like search rule (3.3.2) can be seen as a local approximation of the Lipschitz
constant L of the pseudo-monotone and Lipschitz continuous operator f . Thus, the Lips-
chitz constant need not to be known. Hence, the stepsize {λn} is given self-adaptively in
our algorithm, which implies that the {λn} in our algorithm does not depend on the knowl-
edge of L. However, as observed in [73, Remark 5.3], Armijo-like search rules involve some
evaluations of the operator f in the inner iteration and additional projections, in order to
determine whether a certain ”candidate” predictor stepsize satisfies the required inequal-
ity (i.e., inequality (3.3.2)). This may affect the efficiency of algorithms with Armijo-like
search rules. To avoid this, one may relax the Lipschitz continuity assumption on the
operator f . In our future research, we shall replace the Lipschitz continuity assumption
on f with uniform continuity and try to obtain similar results as in Chapter 3. When this
is achieved, we shall generalize the obtained results from Hilbert space settings to other
Banach spaces more general than Hilbert spaces.

In Hadamard spaces, we are aware of only two results on VIPs (see [2, 49]), for which the
underlying operators are nonexpansive and inverse strongly monotone operators. Thus,
the theory of VIPs in Hadamard spaces are still in the developing stage. Part of our future
research would be to study VIPs in Hadamard spaces.
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It is generally known that Hilbert spaces are the only Banach spaces which are examples
of Hadamard spaces. To further generalize established results in other Banach spaces like
p-uniformly convex Banach spaces, Noar and Silberman [64] introduced the notion of p-
uniformly convex metric spaces in 2011, which are natural generalization of the classical
notion of p-uniformly convex Banach spaces. The notion of p-uniformly convex metric
space is defined as follows: Let 1 < p <∞, a metric space X is called p-uniformly convex
with parameter c > 0 if X is a geodesic space and for all x, y, z ∈ X and t ∈ [0, 1], we have

d(z, (1− t)x⊕ ty)p ≤ (1− t)d(z, x)p + td(z, y)p − c

2
t(1− t)d(x, y)p.

In our future research, we shall try to generalize the results in Chapter 4 and 5 to the
framework of p-uniformly convex metric spaces.
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