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Abstract
In this dissertation, longitudinal data modeling approaches to analyze data on CD4
cell counts measured repeatedly in HIV-infected patients enrolled in the Centre for
the AIDS Programme of Research in South Africa are investigated. Longitudinal
data, or repeated measurements data, is a specific form of multilevel data. In lon-
gitudinal studies, repeated observations are made on an individual on one or more
outcomes, including covariates information at a baseline and over time. Mixed-
effects models have become popular for modeling longitudinal data. This statistical
procedure also permits the estimation of variability in hierarchically structured data
and examines the impacts of factors at different levels. Since longitudinal studies are
often faced with the incompleteness of the data due to partially observed subjects,
the mixed-effects model is by its very nature able to deal with unbalanced data of this
nature. Therefore, the study adopts the mixed-effects model and identifies whether
specific clinical and sociodemographic factors present in the data influenced CD4
count in a cohort of HIV-infected patients.

Since it is of great interest for a biomedical analyst or an investigator to correctly
model the CD4 cell count or disease biomarkers of a patient in the presence of co-
variates or factors determining the disease progression over time, the Poisson re-
gression approach, which explain variability in counts, is considered. The Poisson
generalized mixed-effects models can be an appropriate choice for repeated count
data. However, this model is not realistic because of the restriction that the mean
and variance are equal. Therefore, the Poisson mixed-effects model is replaced by
the negative binomial mixed-effects model. The later model effectively managed
over-dispersion of the longitudinal data. We evaluate and compare the proposed
models and their application to model CD4 cell counts of HIV-infected patients re-
cruited in the study data set. The results reveal that the negative binomial mixed-
effects model has appropriate properties and outperforms the Poisson mixed-effects
model in terms of handling the over-dispersion of the data. Multiple imputation
techniques are also used to handle missing values in the dataset to validate parame-
ter estimates in modeling the negative binomial mixed-effects model by assuming a
missing at random missingness.

v



To illustrate the full conditional distribution of the repeated outcome, a quantile
mixed-effects model is employed. This gives greater inclusive statistical modeling
than conventional ordinary mixed models. Quantile regression offers an invaluable
tool to discern effects that would be missed by other conventional regression mod-
els, which are solely based on modeling conditional mean. The quantile regression
model that assumes asymmetric Laplace distribution for the error term was applied
to longitudinal CD4 count data. The exact maximum likelihood estimation of the co-
variate effects and variance-covariance elements in the quantile mixed-effects model
was implemented using the Stochastic Approximation Expectation-Maximization
algorithm. In the model, multiple random effects are also incorporated to consider
the correlation among the observations. Thus, we obtain robust parameter estimates
for various conditional distribution positions that communicate an inclusive and
more complete picture of the effects.

Furthermore, to get more insights into the functional relationship between the re-
sponse variable and the covariates, the generalized additive mixed-effects mod-
els, such as the additive negative binomial mixed-effects model, a versatile model
used to better understand and analyze complex nonlinear trajectories in an over-
dispersed longitudinal data, is applied. Following the additive negative binomial
mixed-effects model, an attempt to fit additive quantile mixed-effects model, an ef-
ficient and flexible framework for nonparametric as well as parametric longitudinal
forms of data analysis focused on features of the outcome beyond its central ten-
dency, was made.

The response variable at hand is a CD4 count of HIV-infected patients as a function
of Highly Active Antiretroviral Therapy initiation and other relevant baseline char-
acteristics of the patients. Thus, even though this is a biostatistics methodological
dissertation research, some interesting clinical and sociodemographic findings are
also discussed. Discussion and conclusion of the results from the proposed models
with a suggestion of possible further research avenues completed the study.
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Chapter 1

Introduction

Longitudinal studies are characterized as studies in which the response variable is
measured in the same individual on several different occasions. In longitudinal
studies, the observations of one individual over time are not independent of each
other. Thus it is vital to apply special statistical techniques, which consider the fact
that the repeated observations of each individual are correlated. In contrast, cross-
sectional data refers to the situation at one particular point in time. The main advan-
tage of a longitudinal study compared to a cross-sectional study is that it can study
the individual development of a specific outcome variable over time. In addition
to this, the individual development of a particular outcome variable can be related
to the individual development of other variables. For example, HIV patients may
be followed over time, and monthly measures of disease biomarkers such as CD4
counts and viral load are collected to characterize immune status and disease bur-
den, respectively. Such repeated measures data require special statistical techniques
for accurate analysis and inference.

Longitudinal data analysis is widely used for at least three reasons: to increase the
sensitivity by making within-subject comparisons, to study changes over time, and
to use subjects efficiently once they are enrolled in a study (Twisk, 2013; Hedeker
& Gibbons, 2006; Der & Everitt, 2012). Repeated measurements can compensate for
small sample sizes because an individual is observed more than once compared to
a cross-sectional study. The covariance structure of the observed data makes longi-
tudinal data analysis distinct. For the analysis to be valid, one must appropriately
model the covariance among repeated measures. Although the covariance structure
is not the prime interest of the study, it is essential for valid inference (Kincaid, 2005;
Kowalchuk et al., 2004). Therefore, a lot of efforts are needed at the beginning of the
statistical analysis to assess the covariance structure of the data. Traditional methods
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for longitudinal data such as Analysis of Variance (ANOVA) and Multivariate Anal-
ysis of Variance (MANOVA) are of limited use because of the restrictive assumptions
concerning the variance-covariance structure of the repeated measures (Liu, 2015).

For this reason, mixed-effects models have become famous for modeling longitu-
dinal data. This statistical procedure also permits the estimation of variability in hi-
erarchically structured data and examines the impacts of factors at distinctive levels
(Taris, 2000; Brown & Prescott, 2014; Yirga et al., 2020a). Since longitudinal studies
are often faced with the incompleteness of the data due to partially observed sub-
jects, the mixed-effects model is by its very nature able to deal with unbalanced data
of this nature (Yirga et al., 2020a). There are also several methods suited to dealing
with longitudinal data, such as generalized estimating equations and generalized
linear mixed-effects models (Diggle et al., 2002).

Count data are ubiquitous in epidemiological studies. This sort of data assumes
only non-negative integer values (i.e. 0, 1, 2, . . . ). The most commonly used
model for count data is the Poisson distribution and its related enhancement, such as
the Poisson-gamma model, to account for overdispersion and heterogeneity (Brown
& Prescott, 2014; Diggle et al., 2002; Weiss, 2005; Molenberghs et al., 2010). How-
ever, these approaches confine the analysis of differences among units in terms of
the mean of the dependent variable, and they employ parametric models based
on the distributional hypothesis (Davino et al., 2013). Further, in some cases, it
might be challenging to find a suitable transformation to normalize the outcome,
or some resistance to outliers may be desired. An effective solution to all these is-
sues is given by focusing on the conditional quantiles of the longitudinal outcome
(Koenker, 2005b). The conditional quantile regression method, which measures the
complete conditional distribution of the outcome variable, was developed to assess
covariate effects at any subjective quantiles of the outcome. In addition, quantile
regression methods do not impose any distribution assumption on the error, except
that the error term has a zero conditional quantile, such as the asymmetric Laplace
distribution (ALD) (Wichitaksorn et al., 2014; Galarza et al., 2017).

The generalized additive mixed-effects models, such as the additive negative bi-
nomial mixed-effects model, can be used to better understand and analyze complex
nonlinear trajectories and get more insights into the functional relationship between
the outcome and the covariates, especially for over-dispersed longitudinal data. A
recently developed model, additive quantile mixed-effects model, also offers an ef-
ficient and flexible framework for nonlinear and linear longitudinal forms of data
analysis focused on features of the outcome beyond its central tendency. The practi-
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1.1. Motivational Background

cal motivation of these methods is applied to the CD4 count of HIV-infected patients
from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) 002
Acute Infection Study dataset.

1.1 Motivational Background

After it was identified by scientists as the human immunodeficiency virus (HIV) and
the cause of acquired immunodeficiency syndrome (AIDS) in 1983, HIV has spread
persistently, triggering one of the most severe pandemics ever documented in hu-
man history. More than 77 million individuals have been infected with HIV. More
than 34 million individuals have died due to AIDS-related causes worldwide since
the pandemic started, and 7000 new infections were reported daily, according to the
UNAIDS report in 2019 (Yirga et al., 2020b). Globally, 36.9 million [31.1-43.9 million]
people lived with HIV at the end of 2017. An estimated 0.8% [0.6-0.9%] of adults
aged 15-49 years worldwide live with HIV, even though the burden of the epidemic
continues to differ considerably between countries (Geneva, 2017; UNAIDS, 2019).
However, intensive global efforts to battle the pandemic is making a significant dif-
ference. Despite recent advancements in HIV prevention, care, and treatment, which
have modestly decreased the total number of new infections and deaths every year,
AIDS and AIDS-related illnesses are still among the driving causes of loss of life
globally (Yirga et al., 2020b). The impacts of HIV are far-reaching, which include re-
duced life expectancy, decreased economic development, and increased health costs.
These consequences subsequently damage social and political cohesion and block
the progression of worldwide health objectives-posing a risk to countrywide secu-
rity and the steadiness of numerous nation-states (Geneva, 2017; UNAIDS, 2017,
2019; Yirga et al., 2020b).

HIV/AIDS has been a characterizing challenge of our time. Studies show that Africa
carries the most burden for HIV/AIDS compared to other continents in the world.
HIV/AIDS has been researched, written about, and discussed numerous times. This
shows that HIV/AIDS remains a critical worldwide issue and obstruction to ad-
vancement. There are numerous articles published dealing with an assortment of
viewpoints of HIV/AIDS. Even though the HIV epidemic appears to be established
in multiple nations, this is not steady over globally. Numerous nations show an in-
crement in incidence in recent years, including developed countries. Sub-Saharan
Africa and southern Africa, in specific, are right now the region most affected by
HIV/AIDS in the world (WHO et al., 2008; WHO, 2010; Yirga et al., 2020b). South
Africa, found within the epicenter of the global scourge and with its disputable
history of HIV healthcare policy, remains an essential region for attempting to get
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1.1. Motivational Background

the numerous social, psychological, political, and therapeutic components that play
a role in the control of HIV/AIDS. Since South Africa is at the epicenter of the
HIV/AIDS epidemic, lessons learned in South Africa are lessons for the general
community (WHO et al., 2008; Shisana et al., 2014; Yirga et al., 2020b). Whereas
South Africa may be one of the foremost affected by HIV globally, other regions in
the world, such as nations in the south and southeast Asia and Latin America, are
challenged with increasing prevalence rates and, in few cases, developing outbreaks.
Furthermore, prevalence continues to increase across Eastern Europe, Central and
East Asia, the Middle East, and North Africa (WHO et al., 2008; Yirga et al., 2020a,b).

The need for good and better health care is one of each human being’s fundamental
rights without qualification of race, religion, gender, political conviction, financial,
or social condition. Women’s health includes their emotional, social, and physical
welfare and is determined by these factors and the economic setting of their lives,
as well as by biology. However, health issues evade the longer part of women. In
national and universal forums, women have emphasized that equality, the sharing
of family duties, development, and peace are necessary conditions to achieve good
health all through the life cycle. A major obstruction for women to the accomplish-
ment of the most exceptional plausible standard of their health is an imbalance, both
among people and among women in various geographical regions, social classes,
and innate and ethnic bunches. In national and universal forums, women have em-
phasized that to achieve ideal well-being all through the life cycle, equality, together
with the sharing of family duties, development, and peace, are necessary conditions.
Women are biologically and socially more vulnerable to HIV infection, especially in
developing countries (WHO et al., 2007; WHO, 2010; UN, 2014; amfAR, 2015).

HIV/AIDS and other sexually transmitted diseases (STD) have a devastating effect
on women’s health, mostly young ladies. The consequences of HIV/AIDS go be-
yond women’s health to their part as mothers and caregivers and include their fam-
ilies’ economic support and livelihoods. Thus, the social, development, and health
consequences of HIV/AIDS and other sexually transmitted diseases have strong
gender dimensions that cannot be ignored (Whelan, 1999; UN, 2014; amfAR, 2015).
It needs to be emphasized that, except for those issues that are sex-specific, treatment
algorithms for HIV-infected women do not contrast from those of men. Understand-
ing the changing epidemiology of HIV using statistical disease models will allow
the clinician to decide who may be at high risk and clarify the application of rules
to avoid sequential HIV transmission. Although antiretroviral (ARV) recommenda-
tion presently remains the same for all individuals living with HIV, examining the
progression of CD4 count or evolution of the viral load using data-driven models

4



1.2. Objectives

will allow the clinician to interpret potential information accurately and cope with
misdirection or distortion of the information due to patient-specific effects (Kassutto
& Rosenberg, 2004; Cohen et al., 2011; Rosenberg et al., 2000).

CD4 cell count levels signify the well-being of an individual immune system (body’s
natural defense system against pathogens, infections, and illnesses). It also provides
information about disease progression. CD4 cells are white blood cells (in a cubic
millimeter of blood) that play an essential role in the immune system. A higher
number shows a stronger immune system. The CD4 cell counts of a person who
does not have HIV can be between 500 and 1500 per cubic millimeter (Hughson,
2017). Individuals living with HIV who have a CD4 count over 500 but whose
immune response is still strong are usually in good health. However, individuals
living with HIV who have a CD4 count below 200 are at high risk of developing
severe illnesses and death (Hughson, 2017; Yirga et al., 2020b). With the CD4 count
at deficient levels, patients’ immunity is weak. If HIV-infected patients are not on
treatment or not virally suppressed, they become vulnerable to acquire opportunis-
tic infections (OIs) such as making them at risk of the new and ongoing coronavirus
disease 2019 (COVID-19) infection, underlying illness and many others (Yirga et al.,
2020b). The best strategy to avoid these infections and diseases is by enhancing the
immune function level through HAART, a combination of multiple antiretroviral
(ARV) drugs. HAART’s fundamental goal is to prolong or stop the progression to
AIDS and loss of life for those infected with HIV by suppressing and preventing the
virus from making copies of itself. When the virus’s level (viral load) in the blood is
low or undetectable, there is less damage to the body’s immune system and fewer
HIV infection complications. Even though HIV treatment is prescribed for all indi-
viduals living with HIV, it is particularly critical for patients with low CD4 count to
start treatment sooner rather than later and adhere to the treatment schedule (Yirga
et al., 2020a,b). While researchers believe that early diagnosis and effective treatment
are essential to effective control, more research is needed to understand better the
adaptive, innate, and host responses that alter viral load set-point and consequently
prognosis and infectiousness (Yirga et al., 2020a,b).

1.2 Objectives

The main objective of this thesis is to look for the appropriate statistical approaches
that can help understand CD4 count progression and identify the potential risk fac-
tors affecting the CD4 count progression in HIV-infected individuals based on longi-
tudinal observational data from the Centre for the AIDS Programme of Research in
South Africa (CAPRISA) 002 Acute Infection Study. The primary outcome of interest
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is CD4 count, which is widely used as a biomarker of HIV progression. The study’s
findings may suggest valuable insights that help further understand evolution of pa-
tients’ CD4 cells and factors associated with it. Additionally, the study may improve
understanding of patients’ baseline characteristics that alter CD4 count progression
and, consequently, respond to the treatment and improve their health. Most im-
portantly, the research findings will contribute towards developing of intervention
strategies (at the individual and population level) at the early stages of the disease.

1.3 Importance of the study

To introduce the most advanced level of care for people with HIV/AIDS in the
health-care system, scale up the AIDS clinical treatment programs is an important
measure. After introducing the AIDS clinical treatment programs, it is essential to
monitor and counsel patients. This process optimizes the benefit of the medication.
Furthermore, for most of the African countries, the costs of treatment programs are
enormous. Because of this strict AIDS, clinical treatment medications should enforce
to optimize benefits. Therefore, the study’s outcome will not only provide clinicians
with the factors associated with AIDS clinical treatments, but it will also offer within-
patient differences in AIDS clinical treatment levels over time. That is, understand-
ing specific barriers to medication adherence of individual patients will be valuable
in the development and implementation of evidence-based interventions targeted at
individual patients with poor adherence. The results should also be able to provide
appropriate statistical models that can be useful to analyze AIDS clinical treatment
data by governmental and non-governmental organizations to monitor adherence
levels over time. In general, after identifying a good-fitting, realistic model, it can be
used to project the short-term future of the HIV/AIDS epidemic, assuming that all
parameter values and conditions remain constant. Statistical models can separate or
disentangle the difference between individual-specific and population effects in the
disease’s evolution.

1.4 Outline of the dissertation

Five research papers have been produced from this thesis as previously stated under
the “List of Publications and Reports” section. Four of these research papers (Yirga
et al., 2020a,b, 2021a, 2022) have been published, and the rest one is currently under
review for publication. Therefore, based on these research manuscripts with further
details, the thesis’s remainder is organized as follows: Chapter 1 gives some back-
ground about longitudinal studies, HIV/AIDS, disease biomarkers (CD4 cell count),
the objective and importance of the study, and some current information on the his-
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tory of women and HIV/AIDS by reviewing research materials that have been done
in this field. Exploratory data analysis of the data set used for this study has also
been done in all chapters.

Chapter 2 presents a mixed-effects model to analyze data on CD4 cell count repeat-
edly measured in HIV-infected patients enrolled in a subset of the CAPRISA study.
Mixed-effects modeling is an advanced and vital method in statistics. It is a well-
known method; therefore, we summarized the key aspects of the model relevant
to this chapter’s study. Using mixed-effects models for longitudinal data analysis
helps to correctly account for the correlation of observations within a subject and
quantify the heterogeneity between subjects due to unobserved factors. In addition,
since longitudinal studies are often faced with the incompleteness of the data due to
partially observed subjects, the mixed-effects model is by its very nature able to deal
with unbalanced data of this nature. Thus, in Chapter 2, we adopt the mixed-effects
model with appropriate random effects incorporated, including a flexible variance-
covariance structure that gives the best fit and assesses the impact of HAART initia-
tion and other relevant factors on the average CD4 count. We also studied additional
works such as spatial covariance structure to account for spatial variability and over-
all influence diagnostics for the mixed effects and covariance parameters. Chapter 2
description is based on published work Yirga et al. (2020a).

In Chapter 3, the thesis presents a comparative study of Poisson regression and neg-
ative binomial in the context of generalized linear mixed-effects models to correctly
model the CD4 count of a patient in the presence of factors determining the dis-
ease progression over time. The Poisson mixed-effects model can be an appropriate
choice for repeated count data. However, this model is not realistic because of the
equality restriction of the mean and variance. Therefore, it is replaced by the neg-
ative binomial mixed-effects model. The later model effectively manages the over-
dispersion of the repeated count data. Evaluation and comparison of these models,
as well as their application to a subset of CAPRISA data, are conducted. Chapter 3
describes the research paper published in Yirga et al. (2020b).

Chapter 4 presents a review of quantile regression and its mixed-effects extension
for longitudinal data analysis. In this chapter, the longitudinal data’s various condi-
tional distribution is illustrated by employing the quantile regression mixed-effects
model. It offers more rigorous and comprehensive estimates in contrast to the mean-
based mixed-effects models, particularly in the case of skewed data. Thus, robust
parameter estimates for various positions of the conditional distribution that com-
municates an inclusive and more complete picture of the effects are obtained. The
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application to a subset of CAPRISA data is conducted. This chapter discusses the
research paper published in Yirga et al. (2022).

Chapter 5 presents a versatile model, generalized additive mixed-effects models, to
better understand and analyze complex nonlinear trajectories in longitudinal data.
It helped us to combine linear and nonlinear terms in the model. In this chapter,
we studied an additive negative binomial mixed-effects model to analyze the lon-
gitudinal CD4 count of HIV-infected patients in KwaZulu-Natal, South Africa, as a
function of age, baseline BMI, and time non-parametrically as well as some covari-
ates at hand parametrically. The results of the analysis give us more insights into
the functional relationship between the response variable and the covariates. We il-
lustrated the application to the CAPRISA 002 Acute Infection Study data. Chapter 5
describes the research paper presented in Yirga et al. (2021b).

In Chapter 6, we studied the additive quantile mixed-effects model, a recently devel-
oped model that has gained a great deal of popularity because it offers an efficient
and flexible framework for nonlinear and linear longitudinal forms of data analysis
focused on features of the outcome beyond its central tendency. We showed that ad-
ditive quantile mixed-effects model could be used to obtain robust results, not only
at the central location of the longitudinal outcome that may not be the best location
to characterize the data but also at different locations of the conditional distribution
that communicates an inclusive and more complete picture of the parametric as well
as the nonparametric covariate effects. Chapter 6 discusses the research paper pub-
lished in Yirga et al. (2021a).

Finally, Chapter 7 summarizes the preceding chapters’ findings, discusses the impli-
cations of these findings, and suggests future research avenues. Appendices hold:
additional results, the SAS- and R-codes to implement the results presented in Chap-
ters 2 - 6, and supplementary materials.
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Chapter 2

Modelling CD4 counts before and
after HAART for HIV-infected

patients in KwaZulu-Natal South
Africa

2.1 Introduction

Multilevel data modeling allows us to account for the correlation of measurements
and includes variables measured at different levels as well as model the variation
at different levels. Longitudinal data, or repeated measurements data, is a specific
form of multilevel data (Yirga et al., 2020a). In longitudinal studies, repeated ob-
servations are made on an individual on one or more outcomes, including covariate
information at a baseline and over time. Measurements made on the same individ-
ual are likely to be more similar than measurements made on different individuals.
Thus, observations on the same individual will not be independent. That is, repeated
measurements on the same subjects are bound to be correlated (Diggle et al., 2002;
Hox et al., 2010; Fitzmaurice et al., 2008; Yirga et al., 2020a). Thus, in this section,
we review the general linear mixed model approach that can be extended for mul-
tivariate longitudinal data by assuming appropriate random effects. This method
benefits from having extra correlation evolving from the longitudinal data structure
that can be modeled within the same framework (Yirga et al., 2020a). Therefore,
this study targeted identifying whether specific clinical and sociodemographic fac-
tors present in the data (and their respective possible interactions) influenced CD4
count in a cohort of HIV-infected patients receiving ART. The information and un-
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derstanding of such elements are of epidemiological importance. The results will be
beneficial in developing tools to support clinicians in identifying of factors related
to HIV-infected patients (Yirga et al., 2020a). The results can be further use to shape
communication and counseling strategies before treatment initiation.

2.2 Characteristics of longitudinal data

In longitudinal data, we have a high hierarchical structure. For example, consider
the study of children’s exam results within schools where the examination results
of a random sample of students within a random sample of schools are compared.
Here we have children within classrooms within schools (three levels) or just chil-
dren within schools (two levels); patients within centers, and measurements within
patients. We have got this high hierarchical structure. There is, of course, expected
variation in our levels; children within one classroom will not all be the same. They
will differ from one another on the outcome measure (exam score) or several other
measures we could imagine. The schools will also be different; some will be in
higher socioeconomic status in the neighborhood, and some will be at lower, or some
schools will have better teachers than others. Because of these reasons, there is ex-
pected to see a variation in the outcome of the children (exam score of a child at the
end of the child’s school career). We will also expect some differences in the average
exam score for the different schools.

Another possible example could be considering patients within nursing homes. We
expect differences between patients and their outcomes. It is because one nursing
home may be better at preventing a particular disease than another nursing home,
or may be they have a different population of patients where we see different levels
of a specific illness between centers. Measurements within patients will also dif-
fer from one another. But that daily or weekly, or monthly measurements will also
show variation. The cluster of different 4 (CD4) cell count of a patient will change
over time. If we measure HIV-infected patient’s CD4 cell count today or next week,
or next month, we will see variation. Therefore, measurements within patients also
have variation at the measurement level and variation at the patient level. We also
expect the “units” within a level will be correlated; for example children within a
school will be more homogeneous and look more alike in terms of the same level of
education and school activities than children from different schools. So we expect
the exam scores to be somehow related to one another within a school. They have
the same teachers, and they have the same type of education as the exam scores from
children at a different school. The same can be said for longitudinal data. If we look
at the CD4 cell count of a healthy person, the measurements will be very similar
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over time; of course, we will see variation depends on many significant factors, but
they will be very similar. Measurements of CD4 cell count within a person are more
highly correlated than measurements from another CD4 cell count. We expect a cor-
relation of the measurements when taking the “units” measurements within patients
or children within classrooms; we expect these to be correlated (Liang et al., 2003).

Variables in multilevel data can be measured at different levels. At the second level
(level-two), we could have the type of school: mixed school (boys and girls school)
or single-gender school or university hospital or community hospital and so on. At
the lower level, we can measure different variables: the reading ability of a child at
intake, gender of the patient, age of the patient, etc. We can measure variables at
both levels or two or three levels of data. It is essential to be able to use these vari-
ables measured at different levels in multilevel data analysis.

Multi-level data consist of multiple units of analysis, one nested within the other.
There is a high hierarchical (multiple levels) data structure in multi-level data. Lon-
gitudinal or repeated measures data can be viewed as multi-level data, with repeated
measures nested within individuals. In its simplest form, this leads to a two-level
model, with the series of repeated measures at the lowest level and the individual
subject at the highest level.

2.3 Mixed-Effects Models

Mixed-effects modeling is an advanced and vital method in statistics. It is a well-
known method; therefore, we summarize the key aspects of the model relevant to
the current study. The literature on mixed models is ubiquitous, and some of it can
be found in here (Molenberghs & Verbeke, 2000; West et al., 2014; Littell et al., 2006;
Searle et al., 2009; Pinheiro & Bates, 2006; Twisk, 2013; Liu, 2015; Hox et al., 2010;
Rawlings et al., 2001; Hedeker & Gibbons, 2006; Duchateau et al., 1998; Fitzmaurice
et al., 2008; Taris, 2000).

In longitudinal datasets, the response variables have more than one values per sub-
ject. This enables the analyst to study the improvement of the variable of interest
within-subjects, in this manner eliminating the variation among subjects and thus
increasing the power of the design. However, since observations on the same sub-
ject are almost always correlated, special techniques are required to deal with this
dependence. Another way in which data can be dependent is when there is a hi-
erarchical (multilevel) structure within the data, e.g., patients within the hospital,
students within classrooms, etc. Mixed-effects models are one way of analyzing this
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kind of data. This statistical method allows for the dependence of measurements in
hierarchically structured data and independently examines the effects of variables
at different levels. This study will discuss the use and theory of linear mixed-effects
models that focus primarily on the continuous outcome variable.

2.3.1 Advantages of mixed-effects models

Using the mixed-effects model for longitudinal data helps to correctly account for
the correlation of observations within a subject and quantify the heterogeneity be-
tween subjects due to unobserved factors. It is vital that before its implementation,
the correct sample is determined based on prior information on the magnitude of
the correlation. By correctly estimating the sample size, we end up with accurately
estimated standard errors (SEs), which will give reliable confidence intervals (CI)
and p-values (Yirga et al., 2020a). We can use the mixed-effects model to model vari-
ation at lower and higher levels of the design structure. Accounting for variation at
a lower level gives us more power for estimation at a higher level (Hox et al., 2010;
Yirga et al., 2020a). A mixed model is made up of fixed and random effects where the
latter helps in accounting for correlation at a lower level within higher-level units.
That is why mixed models are called “mixed” because the coefficients are a mix of
fixed and random effects (Yirga et al., 2020a).

2.3.2 Fixed and random effects

In more general terms, fixed effects or fixed factors are covariates that we anticipate
will influence the outcome variable. They are what we call explanatory variables in
a standard linear regression. For instance, in our case, we are interested in making
conclusions about how the socio-economic, demographic, and treatment type (place
of residence, baseline BMI, baseline viral load, age, education level, marital status,
HAART initiation, etc.) impacts the CD4 count of a patient. Therefore, these socio-
economic, demographic, and treatment types are fixed effects, and the CD4 count
of a patient is the response variable (Yirga et al., 2020a). Thus, a fixed-effect is the
parameter of interest. The overall intercept is not the variable of interest, but of
course, it is a fixed effect. In addition to the fixed effects, we also incorporate random
effects in the mixed-effect model. Random effects are grouping factors for which we
are attempting to control. A random intercept allows a different intercept for each
subject. A random effect for a variable enables the effect of a variable on the outcome
to differ between subjects. For example, a random effect could also be a random
slope for a categorical variable. In general, in a mixed model, all of the variables
of interest are added as fixed effects, but at least one and sometimes several of the
fixed effects variables may also be added as random effects variables (Rawlings et al.,
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2001; Yirga et al., 2020a). Therefore, the idea is that the random effects variables in
the sample are a random sample of all possible variables in the broader population.
Moreover, in longitudinal studies, time or a time-varying covariate X is often an
explanatory variable of interest, and the associations between explanatory variables
and responses may vary between subjects. A model that allows heterogeneity in
the intercept and heterogeneity in the magnitude of the slope between subjects is
referred to as the random intercept and slope model (Yirga et al., 2020a).

2.4 Linear mixed-effects model formulation

The random intercept and slope model is given by

yij = β0 + β1xij + bi0 + bi1zij + εij

where xij is the variable used as a predictor in the model.

A more general form of the mixed model is expressed as

yij = β0 + β1xij1 + · · ·+ βjpxijp + bi0 + bi1zij1 + · · ·+ biqzijq + εij (2.1)

where yij , j = 1, · · · , ni, is the response of subject i at jth measurement, βi, · · · , βjp
are the fixed effects coefficients, xij1, · · · , xijp are the fixed-effects regressors for sub-
ject i at jth measurement, bi1, · · · , biq are the random-effects coefficients for subject
i, zij1, · · · , zijp are the random-effects regressors, and εij the error for subject i at jth
measurement.

For our data analysis of CD4 cell count, we look at the square root of CD4 count
as an outcome because it confirms that the model was better to the assumption of
normally distributed residuals. Hence the model becomes

√
CD4ij = β0 + β1xij1 + · · ·+ βjpxijp + bi0 + bi1zijq + · · ·+ biqzijq + εij

where xi1, · · · , xijp are fixed effects.

The general matrix specification of the mixed model is

Yi︸︷︷︸
ni×1

= Xi︸︷︷︸
ni×p+1

β︸︷︷︸
p×1

+ Zi︸︷︷︸
ni×q+1

Ui︸︷︷︸
q×1

+ εi︸︷︷︸
ni×1

(2.2)
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with i = 1, ..., n individuals and j = 1, ..., ni observations for individual i, where Yi
is ni × 1 vector of response variable, X = [Xij1, ..., Xijp] is ni × p + 1 known design
matrix that includes covariates for the fixed effects, β is p × 1 vector of fixed effects
parameters, Zi is ni × q + 1 known design matrix (represents the observed values of
covariates) for random effects (ith subject), Ui is q×1 vector of random effects from a
normal distribution with variance-covariance matrix G, and εi is ni × 1 error vector
from a normal distribution with variance-covariance matrixR (Rawlings et al., 2001).

The assumption of the distribution of the random effects Ui
ind∼ N(0,

∑
ν),
∑

ν = G,
and errors εi

ind∼ N(0, σ2Ini), σ2Ini = Ri. Thus,

E

[
Ui

εi

]
=

[
0

0

]
and cov

[
Ui

εi

]
=

[
G 0

0 R

]
or

[
Ui

εi

]
∼ N

[[
0

0

]
,

[
G 0

0 R

]]

That is,
Yi ∼ N(Xiβ,V = ZGZ′+R)

The variance-covariance matrix of Yi, V ar(Yi) = V , can be written as

V = var(Xiβ +ZiUi + εi).

Since we assume that the random effects Ui and the errors εi are independent,

V = var(Xiβ) + var(ZiUi) + var(εi).

Since β describes the fixed-effects parameters, var(Xiβ) = 0. Also, Zi is a matrix of
constant. Therefore,

V = Zvar(Ui)Z
′ + var(εi).

LetG denote var(Ui), and var(εi) = R. Hence,

V = ZGZ ′ +R.

The general form of the Z,G, andR matrices can be shown as follows:

Zi =




zi11 zi12 · · · zi1r

zi21 zi22 · · · zi2r
...

...
. . .

...
zini1 zini2 · · · zinir
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V ar(Ui) = G =




V ar(u1i) cov(u1i, u2i) · · · cov(u1i, uri)

cov(u1i, u2i) V ar(u2i) · · · cov(u2i, uri)
...

...
. . .

...
cov(u1i, uri) cov(u2i, uri) · · · V ar(uri)




V ar(εi) = Ri =




V ar(ε1i) cov(ε1i, ε2i) · · · cov(ε1i, εnii)

cov(ε1i, ε2i) V ar(ε2i) · · · cov(ε2i, ε2i)
...

...
. . .

...
cov(ε1i, εnii) cov(ε2i, εnii) · · · V ar(εnii)




The distribution of Y is a multivariate normal distribution. The vector of n random

variables Y =




Y1

...
Yn


 is said to have a multivariate normal distribution with mean

vector Xβ and variance-covariance non-singular matrix V . The probability density
function (pdf) of the multivariate normal distribution is

f(Y ,β,V ) = (2π)−n/2|V |−1/2exp
[
−1
2 (Y −Xβ)′V −1(Y −Xβ)

]
(2.3)

The log-likelihood of Y under this model is

`(β,V ) =
−n
2
log(2π)− 1

2
log |V | − 1

2
(Y −Xβ)′V −1(Y −Xβ)

=
−1

2
{n log(2π)− log |V |+ (Y −Xβ)′V −1(Y −Xβ)}

Therefore, the maximum likelihood estimate (MLE) of (β,V ) is the one that maxi-
mizes the right-side of the above expression. To obtain the MLE of β, for any fixed
V , differentiate the log-likelihood with regard to β both sides and equate to zero.
Then replacing β by β̂ we solve for β̂:

∂`

∂β
=

∂

∂β

(−n
2

log(2π)− 1

2
log |V | − 1

2
(Y −Xβ)′V −1(Y −Xβ)

)

=
∂

∂β

(
−1

2
(Y −Xβ)′V −1(Y −Xβ)

)
= 0

X ′V −1(Y −Xβ) = 0

X ′V −1Y −X ′V −1Xβ = 0

X ′V −1Y = X ′V −1Xβ
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β̂ = (X ′V −1X)−1X ′V −1Y

2.4.1 Covariance structure of repeated measures

The covariance structure of the observed data makes longitudinal data analysis par-
ticular (Searle et al., 2009; Yirga et al., 2020a). For the investigation to be substantial,
the covariance among repeated measures must be demonstrated appropriately. The
covariance structure is not the prime intrigued of study but is essential for signif-
icant inference. Covariance or correlation structures that are commonly used for
longitudinal data analysis are compound symmetry (CS), unstructured (UN), First-
order Autoregressive (AR(1)), and Toeplitz (Toep). These four common covariance
structures are summarized here (Kincaid, 2005; Kowalchuk et al., 2004; Wolfinger,
1996; Kincaid, 2005; Hedeker & Gibbons, 2006; Rawlings et al., 2001; Searle et al.,
2009; Little & Rubin, 2019; Hofer, 1998).

Compound Symmetry (CS)

Compound Symmetry correlation assumes observations of the same subject have
homogeneous variance and homogeneous covariance. That is, both the variances
and covariance across time are considered to be the same. For example, given four
equally spaced time points, the CS has the following matrix structure:

CS =




σ2 σ2
1 σ2

1 σ2
1

σ2
1 σ2 σ2

1 σ2
1

σ2
1 σ2

1 σ2 σ2
1

σ2
1 σ2

1 σ2
1 σ2




= σ2




1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1




• Constant variance over time = V (Yij) = σ2. This implies that all variances are
assumed equal in CS.

• C(Yij , Y
′
ij) = ρ =

σ2
1
σ2 , with σ2

1 the variance within individuals, where j 6= j′.
This implies that CS assumes an equal correlation between any two measure-
ments of the same subject. ρ is then known as the intraclass correlation coeffi-
cient, a ratio of individual variance to the total variance.

• The CS or exchangeable correlation structure assumes correlations between
all-time points to be equal, irrespective of the length of the time intervals.

Unstructured Correlation (UN)

All the variances and covariance in the UN are different over time (have no struc-
ture). This lets the data dictate what they should be and requires the estimate of
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many parameters. But the more data that are used to assess the covariance struc-
ture, the fewer data are left to estimate the parameters of linear models. The UN
matrix has the following form:

UN =




σ11 σ12 σ13 σ14

σ21 σ22 σ23 σ24

σ31 σ32 σ33 σ34

σ41 σ42 σ43 σ44




Unstructured correlation is a very flexible structure; however, this flexibility comes
in with the price, and the price is having a lot of degrees of freedom.

Autoregressive of order 1 (AR (1)) correlation

In AR (1), observations per subject are assumed to be taken at equally-spaced in-
tervals. The outcome has constant variance (σ2) over time. AR (1) structure resolves
some of the objectives to the use of CS. It uses a correlation between two responses
that are m measurements apart is ρm; since ρ is −1 ≤ ρ ≤ 1, the greater the power,
the smaller the magnitude. Thus, the further measurements are apart, the lower
their correlation. The AR (1) structure is given by:

UN = σ2




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1




TOEPLITZ (TOEP)

Similar to AR (1) in that all the correlations at the same distance have the same
relationship; but no assumption of exponential decay. The AR (1) model can be esti-
mated with a single parameter (and then the exponent of the distance). The Toeplitz
model has many settings due to distance.

TOEP =




σ2 σ2
12 σ2

13 σ2
14

σ2
21 σ2 σ2

21 σ2
22

σ2
31 σ2

32 σ2 σ2
31

σ2
41 σ2

42 σ2
43 σ2
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2.4.2 Spatial covariance structure in mixed-effects models

Spatial covariance structure measures the actual distance or variation among obser-
vations in space that are identified as unequally spaced longitudinal data (Zimmer-
man & Harville, 1991; Littell et al., 2006). The objective of including spatial covari-
ance structure in mixed-effects models is to account for spatial variability (hetero-
geneity), failure to do so can result in erroneous conclusions. The spatial covariance
structure model, written as

C(h) = C0 + σ2ρ(h) (2.4)

where C0, σ2 and ρ(h) indicates the nugget, the sill and the range (covariance struc-
ture model), respectively (Zimmerman & Harville, 1991; Littell et al., 2006).

The four commonly used covariance structure for longitudinal data analysis de-
scribed in Subsection (2.4.1) is used when the time points are equally spaced. In
many longitudinal data, repeated measurements are not designed to have equal in-
tervals, or some subjects may enter a follow-up survey after a specified interview
data due to sickness, migration, or some other reasons (Liu, 2015). In these circum-
stances, the use of covariance pattern models discussed in Subsection (2.4.1) is no
longer reasonable; instead, spatial covariance structures that take into account the
distance between the observations within each subject can be used. There are four
commonly used spatial covariance structures to analyze longitudinal data with un-
equal time intervals: spatial exponential, spatial power, spatial spherical, and spatial
Gaussian. Each of these spatial covariance pattern models is based on the assump-
tion that correlations between measurements are positive and decreasing functions
of the Euclidean distance, d̂ij , which is defined as the absolute difference between
two-time points, where i 6= j and i > j (i, j = 1, ..., n) (Liu, 2015). For illustrative
convenience and simplicity, spatial covariance pattern models for four unequally
spaced time points are presented.

The spatial power covariance structure, SP(POW), is given by

R = σ2




1 ρd12 ρd13 ρd14

ρd21 1 ρd23 ρd24

ρd31 ρd32 1 ρd34

ρd41 ρd42 ρd43 1
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The spatial exponential covariance pattern model (SP(EXP)), which is an extension
of the spatial power covariance structure, with dij = dji, is given by

R = σ2




1 exp(−d12/ρ) exp(−d13/ρ) exp(−d14/ρ)

exp(−d21/ρ) 1 exp(−d23/ρ) exp(−d24/ρ)

exp(−d31/ρ) exp(−d32/ρ) 1 exp(−d34/ρ)

exp(−d41/ρ) exp(−d42/ρ) exp(−d43/ρ) 1




The spatial Gaussian covariance structure, or SP(GAU), has the following structure:

R = σ2




1 exp(−d2
12/ρ

2) exp(−d2
13/ρ

2) exp(−d2
14/ρ

2)

exp(−d2
21/ρ

2) 1 exp(−d2
23/ρ

2) exp(−d2
24/ρ

2)

exp(−d2
31/ρ

2) exp(−d2
32/ρ

2) 1 exp(−d2
34/ρ

2)

exp(−d2
41/ρ

2) exp(−d2
42/ρ

2) exp(−d2
43/ρ

2) 1




The variance-covariance structure for the spatial spherical pattern model (SP(SPH))
is given by

= [1− 1.5(dij/ρ) + 0.5(dij/ρ)3]× 1{dij < ρ},

where the function 1{dij < ρ} is an indicator function that equal 1 when dij < ρ and
equals 0 otherwise (Littell et al., 2006).

2.4.3 Semivariogram

A good measure of the spatial continuity of z(s) is defined by means of the variance
of the difference z(ti) − z(tj), where ti and tj are unequally spaced time points
in d in the context of longitudinal data. Specifically, consider ti and tj to be spatial
increments such that h = tj−ti, then the variance function based on the increments h
is independent of the time points, ti, tj . According to Cressie (2015), most commonly,
the continuity measure used in practice is one half of this variance, also known as
the semivariogram (semivariance) function,

γz(h) =
1

2
V ar [z(t+ h)− z(t)]

=
1

2

(
E{[z(t+ h)− z(t)]2} − {E[z(t+ h)]− E[z(t)]}2

) (2.5)

The semivariogram, based on either the random intercept or the random coefficient
model, is usually applied for spatial data when the time intervals are unequally
spaced (Liu, 2015). Since the empirical semivariogram is sensitive to outliers, in-
fluence diagnostics need to be performed first before fitting a smooth curve to the
scatter-plot of the empirical semivariogram.
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The approximate empirical semivariance with a Gaussian-type form is

γz(h) = C0

[
1− exp

(
−h

2

a2
0

)]
(2.6)

where γz(h) is the semivariance function, C0 = Cn + σ2
0 is the sill consists of the

nugget effect (Cn), if present, and the partial sill σ2
0 (Cressie, 2015).

The commonly used theoretical semivariogram shape rises monotonically as a func-
tion of distance. The shape is typically characterized in terms of particular parame-
ters; these are the range (a0), the sill (or scale, C0), and the nugget effect.

Specifically, the sill is the semivariogram upper bound. The range represents the
distance at which the semivariogram reaches the sill. When the semivariogram in-
creases asymptotically towards its sill value, as occurs in the exponential and Gaus-
sian semivariogram models, the term effective (practical) range is used. The effective
range rε is defined as the distance at which the semivariance value achieves 95% of
the sill. In particular, for these models the relationship between the range and effec-
tive range is rε = 3a0 (exponential model) and rε =

√
3a0 (Gaussian model) (Littell

et al., 2006). The nugget effect Cn represents a discontinuity of the semivariogram
that can be present at the origin. It is typically attributed to microscale effects or
measurement errors. The semivariance is always 0 at distance h = 0; hence, the
nugget effect demonstrates itself as a jump in the semivariance as soon as h > 0

(SAS, 2014).

The four commonly used spatial covariance pattern models in terms of the semi-
variogram: power, exponential, spherical, and Gaussian are given here

Power:

γz(h) =





0 if |h| = 0

Cn + σ2
0h

a0 if 0 < |h|, 0 ≤ a0 < 2

Exponential:

γz(h) =





0 if |h| = 0

Cn + σ2
0

[
1− exp

(
− |h|a0

)]
if 0 < |h|
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Spherical:

γz(h) =





0 if |h| = 0

Cn + σ2
0

[
1.5|h|/a0 − 0.5 (|h|/a0)3

]
if 0 < |h| ≤ a0

C0 if a0 < |h|

Gaussian:

γz(h) =





0 if |h| = 0

Cn + σ2
0

[
1− exp

(
− |h|2

a20

)]
if 0 < |h|

A detailed discussion of various spatial covariance pattern models in terms of the
semivariogram can be found in the literature by Cressie (2015), and SAS (2014).

2.4.4 Model selection in mixed models

To decide which mixed-effects model are fits the data best, we can use likelihood-
based methods, i.e., either the likelihood ratio test (LRT) or Information Criteria (IC)
such as Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC)
method. The LRT, which is based on distribution, can be used to test nested models.
The model with the smallest AIC and BIC (the one with the highest likelihood given
the parameters in the model) is the best fitting model. That is, the AIC and BIC can
be used to compare models such that the smaller of any of these, the better between
two or more competing models. The IC method is more general to compare two or
more competing non-nested models. However, the LRT is the best method to com-
pare nested models (Loy et al., 2017).

Regarding the variance-covariance structure, we have many choices. We have dis-
cussed the four most appropriate correlation structures for longitudinal data analy-
sis in the previous section. Ideally, the covariance structure should be known from
previous worth or subject matter consideration. Otherwise, one should look for a
structure that gives a better fit. We contemplate a few likely structures and choose
among them according to some measures fit. These measures have two components:
one that rewards for accuracy of fit and another that penalizes for the number of pa-
rameters it takes to achieve it. The most popular of these methods are arranged in
tabular form below.
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Table 2.1: Summary of Information Criteria

Criteria Large is better Small is better Reference

AIC `-d -2`+2d Akaike (1974)

BIC `− 1
2d log n -2`+d log n Schwarz et al. (1978)

CAIC `− d(logn+1)
2 -2`+d(log n+1) Bozdogan (1987)

HQIC `-d log log n -2`+2d log log n Hannan & Quinn (1979)

2.4.5 Parameter estimation in mixed models

Let Yi denote the vector of observations from one individual. Yi = (yi1, yi2, · · · , yini)
assuming ni observations per individual. Variance-covariance matrix for this is Vi
and mean is Xiβ where Xi is the design matrix and β is the vector of observations.

In mixed models, we use maximum likelihood (ML) to estimate the fixed effects,
the standard errors of the fixed effects, and the variance of the random effects. The
likelihood of mixed effect models can be time-consuming computationally, but with
advances in statistical software, this has become an easily manageable problem. Of-
ten the likelihood is solved by iteration until convergence. However, under ML es-
timation, the residual variance and variance of random effects are underestimated.
Thus, instead, the restricted maximum likelihood (REML) estimation gives unbiased
estimates of variance parameters by taking into account the degrees of freedom (DF)
utilized to estimate the fixed effects; hence variance parameter estimates are gener-
ally larger than those from ML estimation. However, REML uses the covariate mean
structure (the number of fixed effects) in the model to adjust. That means we use
REML when we are comparing two models that differ only in random effects (Rawl-
ings et al., 2001; Littell et al., 2006; Yirga et al., 2020a).

In general, when testing mixed-effects models that differ in variance components,
we could either use REML or ML since they both give interpretable LRT and IC for
such a comparison. However, testing and comparing models that differ in fixed ef-
fects, then only ML, will provide us with interpretable LRT and IC. However, ML
does not take into account the degrees of freedom for the loss of fit in the estimation
of parameters, but REML does (Rawlings et al., 2001; Hofer, 1998). REML is the de-
fault of SAS PROC MIXED and PROC GLIMMIX for mixed models with normally
distributed data; the details are given in Littell et al. (2006).
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Maximum Likelihood (ML) Estimation

ML estimation is a method of obtaining estimates of model parameters by mini-
mizing the likelihood function. The likelihood function, L, measures the likelihood
of unknown parameters given the observations and is defined using the density
function of the data (Brown & Prescott, 2014; Hedeker & Gibbons, 2006). In statisti-
cal models where the data are assumed to be independent (e.g., fixed-effects mod-
els), L is simply the product of each observation’s density functions. However, in a
mixed-effects model, observations are not independent, and L needs to be based on
a multivariate normal density function (Equation 2.3) for the data (West et al., 2014;
Hedeker & Gibbons, 2006). The Corresponding log-likelihood function, `, is also de-
scribed in Equation 2.3.

Parameters in a specified model are fixed unknown constants to be estimated from
the data. The parameters in Equation (2.3) are thus vector of fixed effects β, and all
unknowns in the variance-covariance matrices G and R. All unknowns in the G and
R matrices are collectively referred to as the covariance parameters and denoted as θ
(Littell et al., 2006).

In ML estimation, although it is possible to find estimates of β, and θ simultane-
ously, by maximizing the log-likelihood of Equation (2.3) with respect to both β,
and θ, many iterative algorithms simplify the maximization by profiling-out the β
parameters from ` Equation (2.3). The most common iterative methods used for
the maximization problem in the context of mixed-effects models are Expectation-
Maximization (EM), Newton-Raphson (N-R), and Fisher scoring method. For de-
tailed reviews of these methods, see West et al. (2014), Hedeker & Gibbons (2006),
Casella & Berger (2002), Harville & Callanan (1990), Harville (1977) or Searle et al.
(2009).

ML Estimation for known θ

Consider a special case of ML estimation for linear mixed-effects models that all
parameters in G and R, and the matrix V = R + ZGZ′ are assumed to be known.

Since θ is assumed to be known, the only parameters that we estimate are the fixed-
effects, β. Therefore, optimization of β is equivalent to finding a minimum of an
objective function ∂`

∂β , defined by the last term in Equation (2.3) and setting the re-
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sulting expression to zero:

∂`

∂β
=

(−1

2
(Y −Xβ)′V −1(Y −Xβ)

)
= 0

Note that optimization of ∂`
∂β with respect to β can be carried out by applying the

method of generalized least square (GLS) (West et al., 2014). Rearrangement of the
above equation gives the ML estimate of the parameter β for a known θ:

β̂ = (X ′V −1X)−1X ′V −1Y

where the estimate β̂ has the desirable statistical property of being the best linear
unbiased estimator (BLUE) of β. For a detailed description of this property can be
found in West et al. (2014), Brown & Prescott (2014), McCulloch et al. (2008), and
Christensen (1991).

ML Estimation for unknown θ

With the assumption of the covariance parameter, θ, unknown but not being a func-
tion of the fixed effects, β, the log-likelihood function of Equation (2.3) has to be
maximized with respect to V (unknown parameters describing G and R). The ML
equation for V can be obtained by taking partial derivatives of Equation (2.3) with
respect to V and setting the resulting equation equal to Zero, using θ for each pa-
rameter in V . But β is implicitly a function of V .

The log-likelihood for β, and θ is written as

`(β,θ;Y ) =
−n
2
log(2π)− 1

2
log|V (θ)| − 1

2
(Y −Xβ)′V (θ)−1(Y −Xβ) (2.7)

The partial derivatives can be solved by using some results of matrix and vector dif-
ferentiation. Christensen (1991) and McCulloch et al. (2008) presented the following
four results:

1. ∂Ax
∂x = A

2. ∂x′Ax
∂x = 2x′A

3. If A is a function of a scalar s,

∂A−1

∂s = −A−1∂A
∂s A−1

4. If A is a function of a scalar s,

∂log|A|
∂s = tr

(
A−1 ∂A

∂s

)
.
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Additional determinants and inverse properties that are useful for the differentiation
of matrix expression are highlighted in Appendix C. The following partial deriva-
tives are obtained using the above four matrix and vector differentiation results:

∂`

∂β
= −β′X ′V (θ)−1X + Y ′V (θ)−1X, and

∂`

∂θj
= −1

2

[
tr

(
V −1 ∂V

∂θj

)
− (Y −Xβ)′V (θ)−1 ∂V

∂θj
(Y −Xβ)

]
,

(2.8)

where j = 1, ..., q. The above partial derivatives are set equal to zero to get the
following set of estimating equation which can be solved to obtain the ML estimates
of β̂ and θ̂:

X ′V (θ)−1Xβ = X ′V (θ)−1Y

tr

(
V −1 ∂V

∂θj

)
= (Y −Xβ)′V (θ)−1 ∂V

∂θj
(Y −Xβ)

(2.9)

Since the above estimating equation does not have simple closed-form solutions,
they can be solved simultaneously by using iterative methods to obtain ML es-
timates of β̂ and θ̂. The conventional optimization methods which require first
and second derivatives (e.g., Newton-Raphson and Fisher scoring) may be applied.
However, instead of solving Equation (2.9) simultaneously, an alternative method of
maximizing Equation (2.7), which is often more convenient, is the method of profile-
likelihood. Thus, one can evaluate the profile-likelihood for V denoted `P , which is
the likelihood for a given value of V with the maximizing value of β for that V is
inserted.

`P = −1

2
Y PY −

1

2
log |V | − n

2
log(2π), (2.10)

where P = V −1 − V −1X(X ′V −1X)−1X ′V −1. For the presentation of efficient
computational methods for maximizing `P , see Searle et al. (2009), Searle (1982),
and Pinheiro & Bates (2006).

An advantage of ML estimators is their efficiency-they simultaneously utilize all of
the available data and account for any dependence. The limitation with a variance-
component estimation through the usual ML approach is that all fixed-effects are
assumed to be known without error. This is not always true in practice, and as a
consequence, ML estimators yield biased estimates of variance components. Most
notably, estimates of the residual variance tend to be underestimated. This bias oc-
curs because the ML estimates of θ do not take into account the loss of a degree of
freedom (information used up) that results from estimating the fixed-effect param-
eters in β (West et al., 2014; Rawlings et al., 2001; Hedeker & Gibbons, 2006; Hofer,
1998). This can be illustrated with a simple scenario. Consider a simple random
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sample, x1, ..., xn, identically and independently distributed N(µ, σ2), then the ML
variance estimator of σ2 is σ̂2 = 1

n

∑n
i=1(xi−x̄)2 rather than the unbiased Analysis of

Variance (ANOVA) estimator σ̂2 = 1
n−1

∑n
i=1(xi− x̄)2. In estimating the variance, an

ML estimator ignores the fact that parameters in the mean have been estimated. One
degree of freedom is used up in estimating the population means with x̄; therefore,
the appropriate divisor is supposed to be n − 1 (the number of observations minus
number of non-redundant parameters estimated) rather than n.

The bias in ML estimates can also become quite large when a model contains many
fixed effects than the sample size (Searle et al., 2009). A detailed discussion of the
bias in ML estimates of θ in the context of mixed-effects models is provided by
Molenberghs & Verbeke (2000). An alternative way of the ML method known as
Residual (restricted) maximum likelihood (REML) estimation, which was first sug-
gested by Patterson & Thompson (1971), is frequently used to eliminate the bias in
ML estimates of θ. We discuss REML estimation in the following subsection.

Restricted Maximum Likelihood (REML) Estimation

REML estimation is an alternative way of estimating the covariance parameters in
θ. REML is often preferred to ML estimation since it produces unbiased estimates
of covariance parameters by taking into account the degrees of freedom lost, which
results from estimating the fixed effects β (West et al., 2014; Rawlings et al., 2001).
REML aims to improve upon the ML estimator of θ, not all of the model’s parame-
ters. However, given a REML estimator of θ, it is evident how the ML estimator of
β should be formed.

Unlike ML estimators, REML estimators maximize only the part of the likelihood,
which is invariant to Xβ. In this sense, REML is a restricted version of ML. That
is, β is eliminated from the log-likelihood by considering the likelihood of a set of
the linearly transformed response data vector, whose distribution does not contain
any fixed effects, rather than the density of the response vector (Y ) itself. Harville
(1977) refers to linearly transformed K ′Y for K ′ of this nature as being error contrast,
whereK ′ is any (n−p)×nmatrix of full rank satisfyingK ′X = 0; E(K ′Y ) = 0 ∀β.
Detail discussions of error contrast have appeared in Patterson & Thompson (1971),
Harville (1977), Searle et al. (2009), and Searle (1982).

REML Equations

Searle et al. (2009) shows the REML estimation of θ, which is summarized as fol-
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lows:
Recall the linear mixed model:

Y = Xβ + ZU + ε,

where Y ∼ N(Xβ, V ). Consider the set of values K ′Y where vectors of the form K ′

can be chosen to satisfy
K ′Y = K ′Xβ +K ′ZU (2.11)

such that no term in β is contained. That is K ′Xβ = 0 ∀β. Therefore, K ′Y ∼
N(0,K ′V K). Then,

K ′Y = K ′ZU

E(K ′Y ) = E(K ′ZU) = K ′E(ZU) = K ′ZE(U) = 0.

This confirms that REML estimation has no procedure for fixed effects.

The information matrix is essential to REML in that it plays a role in estimating the
variance components. Searle et al. (2009) also shows the information matrix, which
is also summarized as follows:

`Y = −n
2
log(2π)− 1

2
log|V | − 1

2
(Y −Xβ)′V −1(Y −Xβ)

`K′Y = −n− r
2

log(2π)− 1

2
log|K ′V K| − 1

2
(K ′Y − 0)′|K ′V K|−1(K ′Y − 0)

= −n− r
2

log(2π)− 1

2
log|K ′V K| − 1

2
(K ′Y )′|K ′V K|−1(K ′Y )

= −n− r
2

log(2π)− 1

2
log|K ′K| − n− r

2
log|V | − (Y ′K)

2|V | |K
′K|−1(K ′Y )

(2.12)

∂`K′Y
∂V

= −n− r
2V

+
1

2V 2
(Y ′K ′)(K ′K)−1(K ′Y ) = 0

n− r
2V

=
1

2V 2
(Y ′K ′)(K ′K)−1(K ′Y )

(n− r)V = (Y ′K ′)(K ′K)−1(KY )

V̂ =
(Y ′K ′)(K ′K)−1(KY )

n− r ,

(2.13)

where K ′(K ′K)−1K = In − X(X ′X)−1X ′ (Searle et al., 2009). Therefore, Equation
(2.13) can be expressed as:

V̂ =
Y ′(In −X(X ′X)−1X ′)Y

n− r .
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Let X ′X = n, which results (X ′X)−1 = 1
n = n−1, and XX ′ − In. Substitute these in

the above expression, results:

V̂ =
Y ′(In − n−1In)Y

n− r , which is the REML estimate of V.

Recall: V ar(K ′Y ) = V ar(K ′ZU)

By definition: V ar(Y ) = E((Y − E(Y ))(Y − E(Y ))′)

Therefore,

V ar(K ′Y ) = E((K ′Y − E(K ′Y ))(K ′Y − E(K ′Y ))′)

= K ′E((Y − E(Y ))(Y − E(Y ))′)︸ ︷︷ ︸
V

K

= K ′V K, which is the REML variance component.

(2.14)

Refer to Searle et al. (2009) for explicit formula of REML estimating equations.

The advantage of having the likelihood and IC in mixed-effects models is that we
can easily compare different models, we can discern what the effect is adding or
removing a fixed effect (ML approach) or random effect (either ML or REML ap-
proach) by comparing the AIC, BIC and the likelihoods, where for the AIC and BIC
a lower value is better, means that the model fits better. We could also compare
models using −2LogLikelihood and the Likelihood ratio test. Then, if a model is
significantly lower, it means that it is better if models are not significantly different
from each other, then we prefer the simpler of the two models. A model with fewer
parameters is not significantly worse than a more complex model, is considered to
be better. Note that a simpler model cannot be significantly better; it is just that it is
not significantly worse than a complex model. It is more straightforward, and that
is why we prefer if models are not significantly different from each other.

ML and REML are the two most common methods available to estimate the parame-
ters (β′is and b′is) in mixed models, as discussed in the above section. Our preference
is for the REML approach because it takes into account the DF in the VC estima-
tion, and it gives us unbiased estimates. Several software packages make it possible
to perform mixed-effects models in R, such as the MASS package with the function
glm (generalized linear model), lme (linear mixed-effects) function in the nlme (non-
linear mixed-effects) package, and lmer (linear mixed-effects regression) function in
the lme4 (linear mixed-effects with S4 classes) package. We could also use SAS Proc
Mixed, Stata, and SPSS to do a mixed model.
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2.5 Residual and Influence Diagnostics

Under linear mixed-effects models, the distributional assumptions for the random
effects bi, and the residuals εi, are assumed to be satisfied. However, this may not be
true in practice because, in the parameter estimation of linear mixed-effects models,
some bizarre observations can have undue influences on the chosen model. There-
fore, once a chosen mixed-model is fitted with longitudinal data, it is necessary to
carry out model diagnostics for verifying whether distributional assumptions for
the residuals are satisfied or meet various assumptions on model specifications (Liu,
2015; West et al., 2014; Schabenberger, 2005).

In longitudinal data analysis, plotting various residuals reveals inconsistencies be-
tween the observed data and the model-based predictions (Diggle et al., 2002). More-
over, the identification of influential observations also needs to be performed in lon-
gitudinal data analysis to check whether the fit of the model is sensitive to unusual
observations (Liu, 2015; Diggle et al., 2002; West et al., 2014; Schabenberger, 2005).
This notion of a standard diagnostic technique is discussed in this section. We focus
on the definitions of a selected set of terms related to residual and influence diagnos-
tics in the context of linear mixed-effects models. A detailed discussion of existing
diagnostic techniques can be found in numerous literature (Cook & Weisberg, 1982;
Liu, 2015; Diggle et al., 2002; West et al., 2014; Schabenberger, 2005).

2.5.1 Residual Diagnostics

Recall the general linear mixed model

yi = x′iβ + z′iui + εi.

Let the predicted mean response for subject i at time point j be µ̂ij = x′iβ̂. Then,
a residual is the deviation of the predicted value from the observed value. In the
mixed model, residuals are distinguished as marginal and conditional. An ni-dimensional
vector of residuals for each subject can then be obtained from an LMM, given by

rmi = yi − x′iβ̂,

where rmi indicates the marginal residuals. If the random-effects model is consid-
ered, residuals for each subject become conditional on the random effects, written
as

rci = yi − x′iβ̂ − z′iui = rmi − z′iui,
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where rci indicates the conditional residuals Liu (2015).

Residuals are used to verify model assumptions, detect outliers, and identify po-
tentially influential observations. In general, residuals are useful for assessing nor-
mality, constant variance, and outliers. However, the raw residuals (rmi and rci) in
the context of LMMs, are less suited for these purposes because the raw residuals
will exhibit correlations and have heterogeneous variances. Therefore, studentized
and Pearson residuals can be considered since they account for the unequal variance
of the residuals (West et al., 2014; Schabenberger, 2005; Littell et al., 2006). Adjusting
the raw residuals by their actual standard deviations obtain standardized residu-
als. However, the actual standard deviations are rarely known in practice; therefore,
adjusting is done using estimated residual variances, which are then referred to as
studentized residuals. Raw residuals can also be adjusted by their estimated vari-
ances of the observed response yi, referred to as Pearson residuals (West et al., 2014;
Liu, 2015).

Given the specifications of linear mixed model, Liu (2015) noted that the variance-
covariance matrix of rmi is

V ar(r̂mi) = V̂i − xi(x′iV̂ −1
i xi)

−1,

where r̂mi is the estimated total variance of yi, from either MLE or the REML es-
timator. The variance-covariance matrix of conditional residuals can be specified
according to Grégoire et al. (1995) as follows:

V ar(r̂ci) = (Ini −ZiĜZ ′iV̂ −1
i )V ar(r̂mi)(Ini −ZiĜZ ′iV̂ −1

i )′,

Another method of adjusting residuals, rather than dividing each individual resid-
ual by the variance of an observation, is to consider the vector of residuals and the
estimated variance V (θ̂). Let Ĉ denote a matrix such that ĈĈ ′ = V (θ̂), its lower-
triangular Cholesky root (see Appendix C). Then the adjusted residuals rc = Ĉ−1rm

have zero mean and are approximately uncorrelated (West et al., 2014). Table 2.2
shows summary of residuals.

2.5.2 Influence Diagnostics

In determining parameter estimates and other statistics, it is well known that not all
observations in a data set play an equal role (Zewotir & Galpin, 2005). Identification
of influential observations is essential to identify particular observations that have
extraordinary influences on the analytic results (West et al., 2014; Liu, 2015). Specifi-
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Table 2.2: Summary of residuals in LMMs

Type of Residuals Marginal Conditional

Raw rmi = yi − x′iβ̂ rci = rmi − z′iûi
Studentized rSmi = rmi√

ˆV ar(rmi)
rSci = rci√

ˆV ar(rci)

Pearson rPmi = rmi√
ˆV ar(yi)

rPci = rci√
ˆV ar(yi|ui)

Scaled Rmi = Ĉ−1rmi

cally, influence diagnostics on longitudinal data involve individuals having multiple
data points rather than at a single time. Consequently, the removal of one individ-
ual can affect a series of observations, thereby magnifying the case’s influence on
parameter estimates, both the fixed-effects and the random components. Therefore,
in this subsection, we discuss some basic diagnostic techniques to identify influen-
tial observations in LMMs.

Cook’s D and DFBETAS Statistic

In fitting an LMMs, some observations may have unduly impacted the inferential
process to derive parameter estimates. Conventionally, these influential cases can be
identified by the change in the estimated regression coefficients after deleting each
observation in a sequence (Liu, 2015; Cook, 1977, 1979). As noted by Liu (2015),
for a single covariate xm, the distance in the estimated regression coefficient after
removing the subject denoted d̂mi , is written as

d̂mi = β̂m − β̂m(−i) ,

where β̂ represents the estimate of β from the full data and β̂m(−i) be the estimate of
β after subject i has been eliminated from the data.

This statistic can be expressed in terms of the entire vector of the estimated regres-
sion coefficients, given by

_
d i= β̂ − β̂(−i). A greater value of

_
d i suggests subject i to

have a stronger influence on the estimate of β; likewise, a lower value indicates that
subject i impact on the model fit is limited (Liu, 2015).
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For LMMs, the specification of the scaled Cook’s D is given by

d̄i =
[β̂ − β̂(−i)]

′V ar(β̂)−1[β̂ − β̂(−i)]

rank(x)
,

where V ar(β̂) represents the covariance matrix after a case has been estimated from
the data (Christensen et al., 1992). As an alternative to cook’s D, DFBETAS statistic is
useful to identify the change in the parameter estimates by influential observations,
defined as

DFBETASi =
β̂i − β̂−ij
s.e(β̂−ij)

,

where i represents the parameter estimates in the jth group, β̂i and β̂−ij are respec-
tively, the estimate base of the full data and the estimate after eliminating group j

from the data. Furthermore, s.e(β̂−ij) is the standard error of β̂−ij .

Cook’s D measures the influence of a single level group on all parameter estimates
(Nieuwenhuis et al., 2012). However, according to Fox & Monette (2002), DFBETAS
quantifies the influence of observations on single parameter estimates. With this
in mind, the DFBETAS is essential in evaluating the reliability of specific estimates
individually. On the other hand, Cook’s D is highly valuable for assessing the re-
liability of all group-level estimates simultaneously (Van der Meer et al., 2010). As
a criterion, Belsley et al. (2005) conclude that cases are regarded as influential if the
associated absolute value of DFBETAS or Cook’s distance values exceeds the cut off
value, 2/

√
n or 4/n respectively, with n representing the number of groups in the

grouping variable.

Likelihood Distances

An overall influence statistic measures the change in the objective function being
minimized (Schabenberger, 2005). In LMMs, fit by ML or REML, which are the two
likelihood-based methods implemented in the SAS Proc Mixed package, the overall
influence measure is the likelihood distance (Schabenberger, 2005). The reduced log-
likelihood function ` and restricted log-likelihood function `R of the LMM is given
as follows:

ML : ` = −1

2
log|V | − 1

2
r′V −1r − n

2
log(2π),

REML : `R = −1

2
log|V | − 1

2
log|X ′V −1X| − 1

2
r′V −1r − n− p

2
log(2π),
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where r = Y −X(X′V −1X)−X′V −1Y , and p is the rank ofX . The likelihood and
restricted likelihood distances, denoted by LDu andRLDu, respectively, can then be
defined as

LDu = 2{`(ψ̂)− `(ψ̂u)},
RLDu = 2{`R(ψ̂)− `R(ψ̂u)},

where `(ψ̂) represents the full data parameter estimates (collection of all the fixed
effects β and the covariance parameters θ), and `(ψ̂u) represents the reduced data
parameter estimates.

Covariance Ratio (CovRatio)

A determinant operation such as CovRatio is one of the common ways to do in-
fluence on the precision of estimates. The covariance-based statistics measure the
impact on the precision of estimates, whereas Cook’s D measures the impact of data
points on the parameter estimates (Littell et al., 2006). The SAS Mixed Procedure
computes CovRatio of the fixed-effect parameters as follows:

CovRatio(β) =
detns( ˆV ar[β̂u])

detns( ˆV ar[β̂])
,

For covariance parameter estimates:

CovRatio(θ) =
detns( ˆV ar[θ̂u])

detns( ˆV ar[θ̂])
,

where detns(M) represents the determinant of the nonsingular part of matrix M

(Christensen, 1991; Littell et al., 2006).

The covariance ratio statistic relates the determinants of the variance matrices of
the full-data and reduced-data estimates. The measure of no influence is a value of
1. Values larger than 1 indicate increased precision in the full-data case, and values
smaller than 1 indicate higher precision for the reduced-data estimates (Littell et al.,
2006).

Predicted Residual Sum of Squares (PRESS)

In addition to analyzing a unit’s influence on the change in parameter estimates, and
the change within the precision of estimates, influence on fitted and predicted values
can also be inspected through the PRESS statistic. The PRESS provides a comparison
of the predicted marginal mean and the observed mean when the predicted value is
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calculated without the deleted observation in question (Schabenberger, 2005). The
PRESS statistic is the sum of the squared PRESS residuals,

PRESS =
∑

i∈u
ε̂i(u),

where the sum is over the observations in u.

In general, “influence” is understood as the capability of a single or multiple data
points, via their presence or absence in the data, to alter important aspects of the
analysis, yield qualitatively different inferences, or violate assumptions of the sta-
tistical model. The primary goal of influence analysis is not to mark data points for
deletion so that a good model fit can be achieved for the reduced data. However, this
might be a result of the influence analysis. The goal is instead to determine which
cases are influential and how they are essential to the study (Schabenberger, 2005).
It is vital to note that the influence analysis is performed under the assumption that
the chosen model is correct. Changing the model structure can alter the conclusion.

2.6 Data example: CAPRISA 002 Acute Infection Study

This section illustrates the estimation, methodology, and model selection procedures
discussed in the above sections on the Centre for the AIDS Programme of Research
in South Africa (CAPRISA) 002 Acute Infection Study data set. Between August 2004
and May 2005, CAPRISA initiated a cohort study enrolling high-risk HIV-negative
women to follow up. These women then followed up closely to study disease pro-
gression and CD4/viral load evolution (Garrett et al., 2018; Mlisana et al., 2014;
Moosa et al., 2018). The study was conducted at the Doris Duke Medical Research
Institute (DDMRI) at the Nelson R Mandela School of Medicine of the University
of KwaZulu-Natal in Durban, South Africa. This study observed N = 235 inci-
dent HIV-1 positive women whose disease biomarkers were (CD4 counts and Viral
Loads) measured repeatedly at least four times on each participant.

The baseline characteristics of the dataset are given in Table 2.3. From a total of 235
women, 105 (44.7%) were residing around Vulindlela (rural site), and 130 (55.3%)
were living around eThekwini (Durban, urban site), KwaZulu-Natal, South Africa.
The average age at enrollment and baseline square root transformed CD4 cell counts
were 27.15 years (range 18-59) with a standard deviation of 6.56 and 23.45 (range 13-
40) with a standard deviation of 4.594, respectively. The average follow-up time was
2.69 years, and the majority of the women, 182 (77.4%), had a stable partnership.
Furthermore, from the total women included in the study, the majority of the 224
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(95.3%) completed secondary/high education, and most of the women (78.8%) were
self-reported sex workers (Mlisana et al., 2014; Van Loggerenberg et al., 2008). There
were a total of 7129 observations from the 235 women, which consists of a minimum
of two and a maximum of sixty-one measurements of CD4 cell counts, among the
subjects which were measured at different time points, indicating that the number of
measurements over all subjects was not equal. Further apart from an unequal num-
ber of measurements across individuals, measurements were not taken at fixed time
points, which implies the CAPRISA 002: Acute Infection Study is a highly unbal-
anced longitudinal data set that requires carefully designed modeling approaches.

Table 2.3: Baseline characteristics of the CAPRISA 002 AI Study data set, 2004-2018

Variable Total Variable Total

Number of women 235 Marital Status

Place of residence No partner 43 (18.3%)

Rural 105 (44.7%) Stable partner 182 (77.4%)

Urban 130 (55.3%) Many partners 10 (4.3%)

Age at Seroconversion (Years)

Mean (Std. Deviation) 27.15 (6.56) Educational Level

≤20 21 (8.9%) Primary schools (grade 0-7) 11 (4.7%)

20-29 150 (63.8%) Secondary schools (grade 8-12) 224 (95.3%)

30-39 50 (21.3%) Baseline sqrt of CD4 cell counts (cells/ML)

40-49 12 (5.1%) Mean (Std. Deviation) 23.5 (4.594)

≥ 50 2 (0.9%) Baseline HIV viral load (cells/µL)

Baseline Body Mass Index Undetectable VL (≥ 50) 1 (0.4%)

Underweight 14 (6%) Low VL (50 ≤ V L ≤ 10000) 74 (31.5%)

Normal weight 173 (73.6%) Medium VL (10000 ≤ V L ≤ 100000) 94 (40%)

Overweight 41 (17.4%) High VL (≥ 100000) 66 (28.1%)

Obese 7 (3%)

Figure 2.1 (left panel) shows that CD4 cell count distribution is right-skewed, in-
dicating non-normality; thus, a square root transformation to CD4 cell count was
performed to normalize the data, Figure 2.1 (right panel) shows that the square root
transformed data conforms quite well to the normal distribution.

The spaghetti plots in Figure 2.2 illustrate the actual CD4 cell count measurements
for randomly chosen participants over time across pre and post ART initiation groups.
Since plots with all individual curves can be hard to distinguish for a large sample
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Figure 2.1: Distributional properties plot for original and square root transformed CD4 tra-
jectories

size, we randomly chose 15 participants to construct such individual plots. Figure
2.2 shows a decreasing trend of CD4 cell count over time on patients before Highly
Active Antiretroviral Therapy (HAART) initiation, but an increasing trend of CD4
cell count over time for the same 15 randomly chosen patients initiated on HAART.
Figure 2.2 also indicates that there is evidence of variability between individuals as
well as variability within individuals. In addition, the individual profiles are not
all of the same lengths, an indication of incompleteness and missing data due to
dropout or attrition.

Figure 2.2: Individual profiles plot of CD4 count for the same 15 randomly selected individ-
uals before and after HAART

Figure 2.3 shows an array of individual series from the CAPRISA 002: AI study. In
each panel, the observed CD4 count for a single subject is plotted against the times
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that measurements were obtained. Such plots permit assessment of the person re-
sponse patterns and whether there is substantial heterogeneity within the trajecto-
ries. Figure 2.3 shows that there can be variation in the ”level” of CD4 count for
subjects. Subject PID=5 in the first row second from left has CD4 counts greater than
500 for almost all times while PID= 110 in the third row lower-left corner has all
measurements below 500. Moreover, PID=30 in the first row third from left has all
measurements almost constant around 500. Further, individuals profile plots can be
evaluated for the change over time (Twisk, 2013). Figure 2.3 shows that most subjects
are either relatively stable in their measurements over time or tend to be increasing.

Figure 2.3: A sample of 15 individual CD4 trajectories from the CAPRISA 002 AI Study

Figure 2.4 shows the mean CD4 trajectories over time for the pre and post ART ini-
tiation group in the CARISA 002: AI study. Overall the mean plots suggest that
patients initiated on HAART have significant quadratic growth in the evolution of
CD4 count over time as what we would expect. Furthermore, the plots appeared to
be nonlinear implying factor that controls the nonlinear effect that may need to be
applied to the data.

The inferential focus of this study is on the mean response of a square root trans-
formation to the CD4 cell count measure. An appropriate selection of the random
effects was also performed. That is, the appraisal as to which of the nonlinear com-
ponents (the intercept, time, or square root of time) ought to have a random com-
ponent was made. A covariance structure must be incorporated into the statistical
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Figure 2.4: Mean CD4 trajectories over time by ART Initiation group, CAPRISA 002 AI study

model to have a valid inference about the mean structure (Melesse & Zewotir, 2017).
Hence, following the selection of random components, a comparison of covariance
structure was made in the study.

The following random effect models, which have the same fixed effects, were fit-
ted for testing:
Model 1: Intercept, Time, SQRT of time ( Random intercept and slope (time and
SQRT of time) model )

yij = β0 + β1xij + β2tij + β2

√
tij + bi0 + bi1tij + bi2

√
tij + εij

where xij is the ART initiation group variable, and tij is the time variable.

Model 2: Time, Square root of time ( Random slope model )

yij = β0 + β1xij + β2tij + β2

√
tij + bi1tij + bi2

√
tij + εij

Model 3: Time only ( Random slope model without random SQRT of time )

yij = β0 + β1xij + β2tij + β2

√
tij + bi0 + bi1tij + εij

Model 4: Intercept only ( Random intercept model )

yij = β0 + β1xij + β2tij + β2

√
tij + bi0 + εij

All models were fitted using the REML estimation procedure, and model compari-
son is made using different Information Criteria. Hence, we conclude that the ran-
dom intercept and slope model is the preferable model among the models listed
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Table 2.4: Model comparison using IC for random effects using REML estimation

Information Criteria

Random effect models Params -2log ` AIC HQIC BIC CAIC

Model 1 4 34392.7 34400.7 34406.3 34414.6 34418.6

Model 2 3 36567.8 36573.8 36577.9 36584.1 36587.1

Model 3 2 39832.4 39836.4 39839.2 39843.3 39845.3

Model 4 2 36363.7 36367.7 36370.5 36374.6 36376.6

above (Table 2.4).

To validate the random intercept and slope model, a panel of conditional studen-
tized residuals for the square root CD4 count was used. The result is presented in
Figure 2.5. The panel consists of a scatterplot of the residuals, a histogram with
normal density, a Q-Q plot, and summary statistics for the residuals and the model
fit. The residuals were randomly dispersed around zero, suggesting that their mean
was approximately zero. The histogram follows a normal distribution indicating a
constant variance, which was moreover affirmed by the Q-Q plot that did not show
heavy tails. Hence, the fulfillment of the assumption that the error term εij was
normally distributed with mean 0 and variance σ2.

Figure 2.5: Panel of conditional studentized residuals for the square root of CD4 count

Table 2.5 shows the comparisons between the four different covariance structures

39



2.6. Data example: CAPRISA 002 Acute Infection Study

that were considered in the model using REML under the same fixed effects model.
The Information Criteria were used to compare models for the structure that gives a
better fit.

Table 2.5: Comparisons of covariance structure

Information Criteria

Covariance Structure Params -2log ` AIC HQIC BIC CAIC

AR(1) 3 35675.6 35681.6 35685.8 35692.0 35695.0

CS 3 35671.5 35677.5 35681.7 35687.9 35690.9

TOEP 4 35671.4 35679.4 35685.0 35693.2 35697.2

UN 7 34087.1 34101.1 34110.8 34125.3 34132.3

The estimated unstructured covariance parameter determines the matrix (Ĝ) along
with the estimated variance of the random error term (R̂), respectively, are given
below for Model 1:

Ĝ =




20.1224 0.09786 −2.4719

0.09786 0.01849 −0.1705

−2.4719 −0.1705 1.9686


 and R̂ = var(εij) = 5.7063

Table 2.6 shows the REML estimates for the fixed effects of the random intercept and
slope model (Model 1).

Table 2.6: Fixed effect estimates of Model 1 for unstructured covariance structure

Effect DF Estimate SE Pr < |t| 95% C.I for Estimate

Intercept 234 24.3062 0.3055 <.0001 (23.7043, 24.9081)

Time in month 6781 0.09015 0.01072 <.0001 (0.06913, 0.1112)

Sqrt Time 6781 -0.9554 0.1036 <.0001 (-1.1586, -0.7523)

ART Initiation (Post) 195 2.4473 0.1348 <.0001 (2.1815, 2.7131)

The overall mean CD4 count for post ART initiation group is 26.7535, whereas the
mean at time ′t′ is estimated as

Ŷt = 26.7535 + 0.09015t− 0.9554
√
t
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The overall mean CD4 count for pre ART initiation group is 24.3062, whereas the
mean at time ′t′ is estimated as

Ŷt = 24.3062 + 0.09015t− 0.9554
√
t

The above fitted conditional models are extended to incorporate the impact of pa-
tient’s age, educational status, number of sex partners, baseline BMI, baseline viral
load, and ART initiation group with the square root of CD4 count as the response. In
addition to this, the two-way interaction effect was evaluated within the modeling
process. But, none of the interaction effects was significant. The results of the effects
of age, educational status, and the number of sex partners were not found to be sig-
nificant. However, we incorporate them within the modeling process since factors
with subject matter importance ought to be kept within the model to eliminate any
confounding effects.

Table 2.7: Fixed effect estimates of the full Model

Covariates Estimate SE Pr < |t| 95% C.I for Estimate

Intercept 25.2439 0.6040 <.0001 (24.0536, 26.4342)

Time in month 0.06377 0.009142 <.0001 (0.04585, 0.08169)

Sqrt Time -0.6674 0.09020 <.0001 (-0.8442, -0.4906)

ART Initiation (Post) 2.1104 0.1647 <.0001 (1.7855, 2.4353)

Baseline BMI category (ref.=Normal weight)

Obese 8.0201 1.2896 <.0001 (5.4788, 10.5614)

Overweight 0.4966 0.5799 0.3927 (-0.6461, 1.6394)

Underweight 0.2486 0.9131 0.7856 (-1.5508, 2.0481)

Baseline HIV viral load category (ref.= Low VL )

High VL -3.2552 0.5633 <.0001 (-4.3652, -2.1452)

Medium VL -1.5696 0.5211 0.0029 (-2.5965, -0.5426)

Undetectable 1.3418 3.3359 0.6879 (-5.2321, 7.9157)

Number of sex partner (ref.= Stable partner)

Many partners -1.4706 1.0859 0.1770 (-3.6105, 0.6693)

No partner -0.6478 0.5791 0.2645 (-1.7889, 0.4933)

Age group (ref.= < 20)

20-29 0.06144 0.4231 0.8847 (-0.7742, 0.8971)

30-39 0.1611 0.4780 0.7366 (-0.7831, 1.1053)

40-49 0.2491 0.6420 0.6985 (-1.0190, 1.5172)

50-59 -1.0100 1.0149 0.3212 (-3.0147, 0.9946)

≥ 60 -0.7631 1.9554 0.6969 (-4.6254, 3.0991)

Education attainment (ref.= Secondary or high school)

Primary school 0.08077 1.0585 0.9392 (-2.0052, 2.1668)

Residence of participant (ref.= Urban)

Rural -0.2647 0.4539 0.5604 (-1.1593, 0.6298)
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The results of the fixed effect estimates are presented in Table 2.7. As seen from
Table 2.7, the model intercept (β̂0 ) is equal to 25.2439, which is an estimate of the
mean square root CD4 count at baseline (i.e., month=0) subject to other effects with
covariate values set to zero in the model. The Month effect (β̂1 )=0.06377 is the slope
or rate of change in the mean square root CD4 count per unit increase in the month
among HIV-infected patients with other covariate values set to zero. In other words,
the time (month) effect shows a significant positive effect on the mean CD4 count
with a rate of 0.06377 (p-value <0.0001) units per month. Hence square root of CD4
count increases by 0.06377 for every month among patients, showing low progress of
CD4 count over time. The effect of the square root of time (p-value < 0.0001) is also
significant but appears to have an opposite effect on the square root of CD4 count
in a cohort of HIV-infected patients enrolled in the CAPRISA 002 Acute Infection
Study. The estimate for post-HAART initiation shows a highly significant positive
effect with a mean square root CD4 count of 2.1104 units higher than the pre-HAART
state. This implies, among patients in the post-HAART initiation group, their mean
square root CD4 count increased by 2.1104, but this is not a slope. Relative to patients
with normal weight status, patients with higher BMI (Obese) show a highly signifi-
cant positive effect (p-value<0.0001) with 8.0201 square root CD4 count higher than
the reference group (Table 2.7). However, underweight patients (patients with low
BMI) show no significant effect compared to the reference group. After the patients
had been initiated on HAART, the average square root CD4 count among patients
with a high value of the viral load at baseline is -3.2552 (p-value<0.0001) units lower
compared to patients with low viral load at baseline. Moreover, after the patient had
been initiated on HAART, the average square root CD4 count among patients with
a medium viral load category at baseline is decreased by 1.5696 (p-value=0.0029)
units compared to the average square root of CD4 count among patients with low
viral load at baseline. Implying that patients with high and medium viral load at
baseline have significantly lower mean CD4 count compared to patients with low
viral load at baseline.

Table 2.8 shows a comparison of the three commonly used spatial covariance struc-
tures: spatial exponential structure (SP(EXP)), spatial spherical structure (SP(SPH)),
and spatial Gaussian structure SP(GAU). Since the exponential model has the small-
est information criteria statistics and the smallest −2log` suggests that the SP(EXP)
structure is the best of the three spatial covariance models (Table 2.8).

The estimated spatial exponential covariance parameters are demonstrated in Table
2.9. The estimate of the sill (σ2) is 9.7063, reported as “Variance”, which corresponds
to the variance of observation (Table 2.9). The estimated range (ρ(h)) is 31.1376,
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Table 2.8: Comparison of spatial covariance models

Model Fitting Criteria

Spatial covariance Params -2log ` AIC HQIC BIC CAIC

SP(EXP) 9 33024.5 33042.5 33055.1 33073.6 33082.6

SP(SPH) 9 33039.1 33057.1 33069.6 33088.2 33097.2

SP(GAU) 9 33162.1 33180.1 33192.7 33211.2 33220.2

which appears as “SP(EXP),” which is the practical range or distance at which the
spatial autocorrelation in the exponential model is three times this amount, 3 ×
31.1376 = 93.4128. That is, observations separated by more than 93.4128 distance
units are not spatially correlated. The estimated nugget (C0) is 3.4986, which appears
as “Residual,” that is, the value at which h=0 or defined as “Intercept” in the spatial
covariance structure model.

Table 2.9: Covariance Parameter Estimates of the full model

Cov Parm Estimate SE Z Value Pr>Z

UN(1,1) 3.3317 2.6772 1.24 0.1067

UN(2,1) 0.05870 0.04370 1.34 0.1792

UN(2,2) 0.004944 0.001733 2.85 0.0022

UN(3,1) -0.3405 0.4031 -0.84 0.3983

UN(3,2) -0.05410 0.01654 -3.27 0.0011

UN(3,3) 0.6223 0.1798 3.46 0.0003

Variance 9.7063 2.3528 4.13 <.0001

SP(EXP) 31.1376 9.4724 3.29 0.0005

Residual 3.4986 0.1008 34.70 <.0001

Figure 2.6 indicates the predicted profile plot for the average number of CD4 cells,
following Table 2.6 shows results obtained by the fitted mixed-effects model. The
predicted values closely matched the observed CD4 count, with an R2 = 0.75, sug-
gested that the overall model fit was good (Figure 2.7).
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Figure 2.6: Heat map of fitted average by observed CD4 count overlaid with the fitted line

The fitted solid line in the above figure also indicates the estimated regression line
between the observed CD4 count and fitted values (Fitted= 148.07+0.7259 observed),
and the two dashed lines show both 95% confidence interval and prediction interval.

The overall influence diagnostic and diagnostics for the fixed effects are displayed
graphically hereunder in Figure 2.7-2.11. Figure 2.7 shows the needle plot of the
Restricted Likelihood Distance (RLD) for the response variable (square root of CD4
count). The RLD plot suggests that the overall influence of patients 5, 12, 29, 32, 55,
84 and 188 stands out compared to those of the rest of the patients (Figure 2.7).

Figure 2.7: Restricted Likelihood Distance
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PRESS statistics are sums of squared PRESS residuals in the deletion sets (Schaben-
berger, 2005). Figure 2.8 shows the scatter plot of the PRESS statistics for the square
root of the CD4 count. Large values of the PRESS statistic for patients 5, 60, 84, 127,
and 189 are noted.

Figure 2.8: PRESS Statistics

A panel of influence statistics for fixed effects and covariance parameters is pre-
sented in Figure 2.9. Cook’s D statistics measure the influence on the vector of pa-
rameter estimates, and the CovRatio statistic measures influence on the covariance
matrix of the parameter estimates. The patients with the most substantial effect on
the fixed effect estimates are 5, 32, and 55 (Cook’s D Fixed effects). Cook’s D Covari-
ance parameters indicate that the influence of patients 12, 84, and 188 far exceeds that
of other subjects in the study data sets. This is expected since their RLD is substan-
tial, while their impact on the fixed effects was relatively moderate. The CovRatio
Covariance Parameters also show that the covariance parameters may be estimated
much more precisely in the absence of those patient’s observations, especially pa-
tients 84 and 188. Note that other sets of observations, besides those listed above,
exert influence on the chosen model (Model 1).

A panel of deletion estimates for the response variable is displayed in Figures 2.10
and 2.11 to examine how the individual parameter estimates and covariance param-
eters, respectively, react to the removal of the influential sets of observations (Sch-
abenberger, 2005). Each cell in the panel (Figure 2.10) displays the estimates of few
fixed effects that were included in the fitted model. Each cell in Figure 2.11 displays
estimates of the 3× 3 variance-covariance matrix of the random coefficients and the
estimate of SP(EXP) parameter following removal of sets of influential observations.
Reference lines are drawn at the complete-data parameter estimates.
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Figure 2.9: Influence statistics for the square root of CD4 count

Figure 2.10: Fixed effects deletion estimates for square root of CD4 count
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The focus of Figure 2.10 is on the behavior of individual parameter estimates that
react to the removal of influential cases. Specifically, subjects 5, 44, 60, and 188 indi-
cate a substantial impact on the model fit of the intercept. However, the removal of
these subjects does not influence at all the displayed fixed effects. On the other hand,
subject 27 is identified as an additional influential case since it strongly impacts the
obese BMI category (Figure 2.10). Subjects 5, 29, 73, and 85 are also identified as
influential cases since their presence in the data reduces the estimate of SP(EXP) pa-
rameter (Figure 2.11), substantially reducing the degree of correlation among data
points from any patient. On the other hand, observation from subject 12 has the op-
posite effect. The temporal correlation drops when the impact of this patient’s data
is removed.

Figure 2.11: Covariance parameter deletion estimates for square root of CD4 count

Finally, the normal probability plot of the random effects for the fitted mixed-effects
model is indicated in Figure 2.12. The assumption of normality seems reasonable for
all three random effects (Pinheiro & Bates, 2006).
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Figure 2.12: Q-Q and Histogram normal plot of estimated random effects

Some of the codes that are used for this section can be found here (Code 7.1 in the
Appendix A).
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2.7 Summary

Mixed models are one of the special statistical models that are useful in understand-
ing longitudinal or repeated measures data. The models permit the examination of
the changes over time within and between subjects. In the presence of fixed effects
and random effects, the selection of an appropriate mixed model is more compli-
cated than for a linear regression model. The fixed effect and the random effect
structure are subordinate to each other and the determination of one influences the
other (Melesse & Zewotir, 2017). In this study, a step-up model selection procedure
was applied to find a reasonable model that fits the data, primarily since this pro-
cedure begins with the simplest possible model and is built up by including more
covariates within the model and hence does not have much numerical issue (West
et al., 2014; Melesse & Zewotir, 2017; Diggle et al., 2002). In this study, the model
where the intercepts and slopes were considered as random effects consolidated
with the UN covariance structure. The fixed effects combined with the REML es-
timation technique were determined as the best fit to estimate the prognosis of the
square root transformation of the CD4 count of HIV-infected patients enrolled in the
CAPRISA 002 Acute Infection Study.

The results revealed that the prognosis of the CD4 count of a patient is significantly
increased after the patient had been initiated on HAART, as we would anticipate.
The impact of HIV-infected patients with the predominance of obese nutrition sta-
tus (higher BMI) at baseline showed significance after patients had been initiated on
HAART. Therefore, we ought to pay more consideration to the BMI of HIV-infected
patients before and after HAART initiation. This may inform future techniques in
studying the progression and the immunologic responses to treatment, but that does
not infer that patients with higher BMI ought to be clinically ignored. Instead, based
on this study and other findings, it appears that BMI contributes to some degree to
drug metabolism and consequently influencing the proficiency of HAART (Palermo
et al., 2011; Li et al., 2019). Moreover, our results also showed that the impact of
patients with higher viral load before the patient had been initiated on HAART sig-
nificantly reduced their CD4 count. Therefore, effective HAART initiation after HIV
exposure is necessary to suppress the increase of viral loads to induce potential ART
benefits that accrue over time.

The results of the influence diagnostics analysis for the CAPRISA 002 Acute Infec-
tion study using the chosen mixed-effects model were also performed. Several cases
were identified as influencing the analysis of the fitted model. Influence diagnostics
analysis is essential for statistical analysis to determine how individual observations
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or sets of observations are influential that their presence or absence from the data
impacts the analysis (Zewotir, 2008). The goal of influence analysis is not to deter-
mine observations for removal from the analysis but to determine which cases exert
undue influence on the analysis. Eliminating certain subjects from the data and bas-
ing the final analysis on only the remainder is usually not the right action to take.
The results of a diagnostic influence analysis can be seen only in light of the model
we are working with (Littell et al., 2006).

Moreover, the data showed evidence of strong individual-specific effects on the evo-
lution of CD4 counts. The diagnostic plots also suggested a significant individual
heterogeneity between subjects both before and after HAART initiation. Thus, this
may indicate that prescribing a common treatment or intervention overall to pa-
tients may not be the best strategy. More research may be required to understand
what factors cause patients to respond differently to treatment intervention. Such in-
formation may help design treatment and intervention strategies that may be more
efficient to a specific group of patients rather than one treatment/intervention fit all
strategy.

The models depicted in this study may empower the description of the effect of
several covariates on the square root CD4 count of HIV-infected patients utilizing all
accessible information. We believe that this sort of analysis can be valuable to ad-
dress several important issues in public health as well as offer assistance in observ-
ing patients and checking the viability of their medications. The information and
understanding of such factors are of epidemiological importance. The results will
be beneficial in developing tools to support clinicians in the identification of factors
related to HIV-Infected Patients. The results can be further use to shape communi-
cation and counseling strategies at the individual level before treatment initiation.
Effective HAART initiation immediately after HIV exposure is necessary to suppress
the increase of viral loads to induce potential ART benefits that accrue over time. Ef-
fective monitoring and modeling of disease biomarkers are essential to help inform
methods that can be put in place to aimed to suppress viral loads for maximum ART
benefits that can be accrued over time at an individual level. In this study, we have
concentrated on the transformed normalized response data, which is the square root
of CD4 count, that is continuous and conditional on the explanatory variables, and
random effects have a normal distribution. Mixed models with random effects can
also be applied to non-normal responses.
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Chapter 3

Negative binomial mixed models
for analyzing longitudinal CD4

count data

3.1 Introduction

A linear model consists of an outcome variable Y, which is assumed to be normally
distributed, and several predictors (X1, X2, · · · , Xp). The simple linear model is
given by

Yi = β0 + β1X1i + εi,

where εi ∼ N(0, σ2) and εi is independent for i = 1, 2, · · · , n.

We can extend these linear model ideas to generalized linear models (GLM). Where
we, too, have an outcome variable Y and predictor variable(s) X . The outcome Y
can be continuous, dichotomous, count, ordinal, categorical, and so on as long as it
comes from the exponential family. The exponential family of distribution incorpo-
rates numerous valuable distributions such as Poisson and Negative Binomial for
count data; Binomial, Bernoulli, and Geometric for discrete data; Gamma, Normal,
Inverse Gaussian, Exponential, and Beta for the study of continuous response data
set. A distribution belongs to an exponential family of distribution if its probability
density function (pdf) or probability mass function (pmf) can be expressed as

f(Y ; θ, φ) = exp

{
1

a(φ)
[θY − b(θ)] + c(Y, φ)

}
(3.1)
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where θ is the natural or canonical parameter, a(φ) is the scale parameter or disper-
sion and c(Y, φ) is some function of Y and φ. The mean, µ = E(Y ) = b′(θ), and the
variance, V ar(Y ) = φb′′(θ) (Dobson & Barnett, 2018).

Assume we have an outcome variable Y = [y1, y2, · · · , yn] that is expected to have
the same distribution from an exponential family with E[Y ] = µ and we have a
set of parameters β with predictor variables X′i = [xi1, xi2, · · · , xip] that produces
a linear predictor (η) such that η = X′iβ. The predictor variables and the out-
come variable links to each other through the so-called “link function”(g(·)) such
that η = g(µ). That is g(µi) = ηi =

∑p
i=1 xijβj . In general, there are three com-

ponents to all generalized linear models (GLMs). These are the random component
which identifies the response variable Y and assumes a probability distribution
for it. The systematic component specifies the explanatory variables (x1, x2, · · · , xp)
used as predictors in the model, and the linear combination of the explanatory vari-
ables is called linear predictor (Casella & Berger, 2002). The linear predictor is given
by β0 + β1x1 + β2x2 + · · · + βpxp =

∑p
j=0 βpxp. The link function describes the

functional relationship between the systematic component and the expected value
(µ = E(Y )) of the random component. For linear models, this link function is simply
the “identity link,”which means that Y itself is modeled, but there are some exam-
ples where that is not the case. Some of the examples of link function are summa-
rized in (Fitzmaurice et al., 2008, 2012; Der & Everitt, 2012). Identity link which is
the most straightforward possible link function that has the form g(µ) = µ. It is
used for the continuous response ordinary regression model. Log link or log-linear
model used for non-negative integer values such as count data. It has the form
g(µ) = log(µ) = β0 + β1x1 + β2x2 + · · · + βpxp. Log link models the log of the
mean (µ). This allows the mean to be non-linearly related to the predictors. The
logit link or logit model is used when the outcome variable is dichotomous (usu-
ally 0 and 1). The fourth illustration of the link function is the probit link. The
probit moreover demonstrates when µ is between 0 and 1, such as a probability
φ−1(µ) = β0 + β1x1i + β2x2i + · · ·+ βpxpi. The contrast between logit and probit link
functions is regularly only seen in small samples, since the probit link assumes the
normal distribution of the probability of an event, while the logit link assumes the
logistic distribution (Menard, 2002; McCullagh & Nelder, 1989).

Note that the ordinary regression models for longitudinal data analysis lack as they
fail to consider the reliance between observations over time. This means when data
are measured repeatedly, like the CD4 count of an individual over time, the assump-
tion of independence is no longer reasonable. The GLM is usually extended to gen-
eralized linear mixed models (GLMMs), with a subject-specific random effect added
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in the linear predictor to capture the dependence (correlation).

Generalized linear mixed models (GLMMs) combine the above specification of gen-
eralized linear models with the linear mixed models discussed in Chapter 2. GLMMs
include random effects into the linear predictor as an extension of generalized linear
models. As an extension of the linear mixed model, GLMMs contain at least one
fixed effect and at least one random effect. This permits the modeling of correlated,
conceivably non-normally distributed data with a flexible settlement of covariates.
This may overcome the modeling issue of overdispersion in the data and, at the same
time, oblige the population heterogeneity. More particularly, let Y be the outcome
variable whose conditional distribution given the random effects belongs to the ex-
ponential family, x1, · · · , xp be a set of p explanatory variables describing the fixed
effects and let u1, · · · , uk be a set of q random effects. The linear predictor (η) of the
model for the jth observation given the random effects is expressed as

ηij = g(E[Yj |u1, · · · , uq]) = β0 +

p∑

i=1

βixij +

q∑

k=1

zkjuk, j = 1, · · · , n (3.2)

where β0 is the intercept, βi is the ith fixed effect coefficient, xij is the ith fixed effect
explanatory variable on the jth observation, zkj is the binary indicator variable for
the effect of the kth random effect, uk on the jth observation, and g(·) is the link func-
tion relating the conditional mean of the response to the predictors.

Comparing the GLMMs specification to Section 2.4, the outcome variable is no longer
required to be normally distributed. The relationship between the conditional mean
of the response and the linear predictor is now on the link scale. This is an essential
difference between these models and those where the response variable needs to be
transformed before analysis (Gbur et al., 2012). In addition, when the observed data
are counts, GLMMs are a viable strategy for dealing with such data. The most com-
mon cause of overdispersion with count data is assuming the wrong distribution for
the model. The leading candidates for dealing with count data are the Poisson and
the negative binomial distribution. Hurdle and Zero-Inflated regression models are
utilized to handle the distribution of count data with excess zeros (Morel & Neer-
chal, 2012; Liu & Cela, 2008; Lambert, 1992; Mullahy, 1986). Since our motivating
data set, illustrated in Section 3.7, does not have excess zeros thus, discussions of
the Poisson and negative binomial distribution in the context of generalized linear
mixed-effects models are the primary focus in the succeeding sections.
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3.2 Marginal versus Conditional Models

The need to distinguish models according to the interpretation of their regression
coefficients has led to the use of the terms marginal models and conditional models
(Fitzmaurice et al., 2012). As with generalized linear mixed models (GLMMs), lin-
ear mixed models (LMMs) can also be formulated as marginal or conditional models
(Diggle et al., 2002; Zeger & Liang, 1986; Molenberghs & Verbeke, 2000; Fitzmaurice
et al., 2008, 2012). However, for GLMMs, the marginal versus conditional model is
far more consequential because of the issue of overdispersion, which is unique to
models for non-normally distributed data. Over-dispersion is discussed in Section
3.4.

The most crucial point of the marginal and conditional models for non-normally
distributed GLMMs, unlike LMM, for normally distributed data is that they do not
yield identical estimates. For non-normal data, they are not equivalent; they do not
estimate the same thing (Diggle et al., 2002; Fitzmaurice et al., 2012). The estimated
probabilities from the marginal model are often referred to as population-averaged esti-
mates or marginal estimates. Predicted probabilities from the conditional model are
variously called subject-specific estimates, mixed-effects model estimates, random-effects
model estimates, or conditional model estimates (Diggle et al., 2002; Molenberghs & Ver-
beke, 2006; Hardin & Hilbe, 2003). The target of inference for the marginal model
is the population, whereas the target of inference for the conditional model is the
individual (Fitzmaurice et al., 2012). Given the different analytic focuses, the inter-
pretation of the regression coefficients also differs markedly between the marginal
and conditional perspectives in longitudinal data analysis. For the marginal models,
the covariate regression coefficients represent an average effect on the linear predic-
tor, which cannot directly be transformed into the population-averaged effect on the
untransformed scale. For the conditional models, the regression coefficient of a co-
variate indicates the change in the transformed response variable (e.g., log, log odds)
with a one-unit increase in the covariate within a subject (Liu, 2015). This section dis-
cusses marginal and conditional models, and the main focus is on the GLMMs.

3.2.1 Marginal Models

An alternative way of specifying mixed models is marginal models. As the name in-
fers, they are characterized in terms of the marginal distribution of the observations.
The term marginal in this setting demonstrates that the model for the mean response
depends only on the fixed effects (covariates of interests) and not on any random
effects (Fitzmaurice et al., 2012). That is, the term marginal is used to emphasize
that the model for the mean response at each occasion does not rely on dependence
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among observations. Such a marginal approach has tremendous appeal to many re-
searchers of various disciplines who are concerned with the covariates’ effects on the
nonlinear response and to whom the impact of the random effects is not of direct in-
terest (Liu, 2015). The random effects in marginal models are not modeled explicitly,
but their impact on variation is embedded in the covariance structure of the model
(Gbur et al., 2012). This is in contrast to conditional (mixed-effects) models, where
the mean response depends not only on fixed-effects but also on a vector of random
effects (Fitzmaurice et al., 2012). For this reason, marginal models are appropriate
only when inference about the population average is the main focus (Diggle et al.,
2002; Fitzmaurice et al., 2012).

The marginal LMMs and GLMMs share the same linear predictor, but the distri-
bution and variance assumptions differ. The distribution applies exclusively to the
response variable Y because there are no random effects on which to condition; all
marginal GLMMs are defined on quasi-likelihood, not on exact probability distribu-
tions. All of the variance-covariance structure in the marginal GLMM uses a working-
correlation structure (Diggle et al., 2002).

Marginal GLMMs can only be estimated using quasi-likelihood methods, whereas
conditional models may use quasi-likelihood as well as an integral approximation (see
Section 3.2.2). In general terms, marginal models do not require distributional as-
sumptions for the observations, only a regression model for the mean response. That
is, marginal models provide a unified method for analyzing diverse types of longi-
tudinal responses by avoiding assumptions about the distribution of the vector of
responses; the method relies solely on assumptions about how the mean response
is related to the covariates. The avoidance of distributional assumptions leads to a
method of estimation known as generalized estimating equations (GEE). Technically
the term GEEs usually refers to the marginal models, whereas GLMMs refer to the
conditional models (Fitzmaurice et al., 2012; Zeger & Liang, 1986; Liang & Zeger,
1986).

Strictly speaking, GEE refers to generalized linear models (GLMs) with no random
effects in the linear predictor and all of the variance-covariance structures associ-
ated with the random factors embedded in the working correlation structure (Gbur
et al., 2012). GEEs became very popular when GLMM computing software and com-
puting technology, in general, were less developed (Stroup, 2012; Gbur et al., 2012).
GEEs are still deeply entrenched in certain disciplines. Nonetheless, GEEs are use-
ful if the conditional GLMMs are too complex to be computationally tractable or if
the objectives of the study are best addressed by the marginal mean rather than the
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conditional mean (Diggle et al., 2002; Stroup, 2012; Agresti, 2003). However, GEEs
are associated with a lack of efficiency due to incomplete, occasionally, incorrect
model specifications when the sample size is small or the regression model includes
time-varying covariates (Liu, 2015; Fitzmaurice et al., 2012). Furthermore, based on
the assumption of missing completely at random (MCAR), the GEE models cannot
be applied effectively if missing data mechanisms are complex (Liang & Zeger, 1986;
Liu, 2015; Fitzmaurice et al., 2012). Given the restrictions in the approach, GEEs have
gradually become a much less applied methodology than GLMMs in the analysis of
nonlinear longitudinal data (Liu, 2015). The use of GEE to estimate regression coef-
ficients specified by marginal models has been studied extensively, for more details,
see Liang & Zeger (1986), Zeger & Liang (1986), Fitzmaurice et al. (2012), Agresti
(2003), McCullagh & Nelder (1989), Liu (2015), Diggle et al. (2002), Molenberghs &
Verbeke (2000).

Marginal GLMMs

Let Yij denote the response variable for the ith subject on the jth measurement oc-
casion. The response variable Yij can be continuous, binary, ordinal, or count. The
nature of the response variable does have important implications for model speci-
fication; however, the notation does not distinguish among the diverse types of re-
sponses. Suppose that Yij is a count, and we wish to relate changes in the expected
count (or expected rate) to the covariates. For this motivation, Fitzmaurice et al.
(2012) discuss three illustrations of the marginal model for Yij :

• The mean of the jth response, given xi1, · · · , xini , depend only on Xij .

E(Yij |xi1, · · · , xini) = E(Yij |Xij), i = 1, · · · , N ; j = 1, · · · , ni.

This assumptions implies that given Xij , there is no dependence of Yij on Xik

for k 6= j, and the mean of Yij is related to the covariates through a log link
function, log(µij) = ηij = X ′ijβ, where β describes the change in the log of the
population-average count per unit change in x.

• To account for the overdispersion, which is not prescribed by the Poisson model,
one can assume the variance of each Yij , given the effects of the covariates,
depends on the mean response, V ar(Yij |Xij) = φµij , where φ > 1 is a time-
variant scale parameter that needs to be estimated.

• The within-subject association among the vector of repeated responses is as-
sumed to have an unstructured pairwise correlation pattern, corr(Yij , Yik|Xij , Xik)

= αjk, where α is a correlation parameter, which is between 0 and 1. Here a
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balanced longitudinal design is assumed, and the vector of parameters α rep-
resents the pairwise correlations among respondents.

3.2.2 Conditional Models

The name conditional model is derived from the fact that the distribution of the ob-
servations is specified conditionally on the random effects (Gbur et al., 2012). The
conditional approach defines the probability distribution of the outcome variable as
a function of the covariates and a parameter specific for each individual. The illus-
tration of the conditional models is often based on the assumption that longitudinal
data follow some particular stochastic distributions that reflect intraindividual de-
pendence. Without the consideration of this distribution in regression modeling, the
quality of parameter estimates, both point, and variance will be influenced by the
correlation of repeated measurements for the same subject (Liu, 2015).

The conditional models give an effective approach for using fully specified probabil-
ity functions to fit non-normal as well as normal distributed longitudinal data. These
models are preferable, especially when the trajectory of non-normal distributed re-
sponse outcomes is of primary interest (Liu, 2015). For longitudinal data, a pre-
diction must combine the information of the estimated regression coefficients, the
values of covariates, and the approximated random effects. This can be done under
conditional models (Fitzmaurice et al., 2012). As each subject is assumed to have a
unique random parameter, the random effect approximates are an integral compo-
nent in the predictions. In contrast, the GEE models, where the variance-covariance
matrix is specified as a nuisance parameter, cannot be used for nonlinear predictions
except that all subjects potentially have the same value of the random effect param-
eter (Liu, 2015).

Conditional GLMMs

Consider longitudinal data with repeated measurements taken on the same indi-
viduals over time. Although the presence of different subjects is a known source of
variation, the variability in the response due to the predictor variables xi1, ..., xini is
of greater interest. The interest lies not in the specific subjects that happened to be
observed but rather in understanding the heterogeneity in the population of subjects
and how it relates to the variability present in the data. The predictors xi1, ..., xini
have specific, fixed values of interest and are therefore known as fixed effects. The
random effects, in contrast, are viewed as a random sample from a population of
such effects. A model that incorporates both fixed and random effects is referred
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to as a mixed-effects model (see Chapter 2). A generalized linear model that includes
random effects is, therefore, referred to as a GLMM (Diggle et al., 2002; McCulloch
et al., 2008).

In GLM, the conditional distribution of Yij given Ui follows a distribution from the
exponential family with density f(Yij |Ui;β) given Ui the repeated measurements,
yi1, ..., yini , are independent; the Ui

iid∼ f(Ui, G). Much like a GLM, a GLMM re-
lates the mean of a response Yij , i = 1, ..., N ; j = 1, ..., ni, to a set of p predictors
Xij through a link function g(·). In addition to the fixed predictors Xij , the linear
component of a GLMM also includes q random effects Ui with q-variate density fUi .
Conditional on Ui, one typically assume that the data are independent observations
from a parametric distribution with density f(Yij |Ui) and mean E[Yij |Ui = u], and
then models the conditional mean as: µ = E[Yij |Ui = u] = h(X ′ijβ + Z ′iju), where
Zij is a q-vector of covariates associated with the random effects (Diggle et al., 2002).
This model is hierarchical in structure and does not directly assume a marginal dis-
tribution for Yij . Rather, distributional assumptions are made for Ui and for Yij |Ui,
and one must integrate over the random effects density fUi to obtain the marginal
distribution for Yij . Therefore, the GLMM is a conditional model because the mean µ
is conditioned on the random effects Ui.

Since the probability distribution of the response variable is specified conditionally
on the random effects, parameters in GLMM can be fit using maximum likelihood
estimation. However, for many choices of link function and random effects distribu-
tion, evaluating the marginal likelihood involves an analytically intractable integral.
To overcome this issue, one could use numerical integration or maximize an approx-
imation of the marginal likelihood instead of the true likelihood and thereby avoid
the intractable integral. Alternative approximation methods are discussed in Section
3.3. Furthermore, the fixed effects parameters β have subject-specific interpretation,
which means that each element of β provides information about the effect of the
corresponding predictor on the response for a specific subject realization of the ran-
dom effect. However, this interpretation does not always make sense because some
predictors, such as indicators (e.g., gender), never change within a single subject.

3.3 Inference in Generalize Linear Mixed Models (GLMMs)

Frequently, the least-squares method has been used as the basis of estimation and
statistical inference in linear models where the outcome variable is normally dis-
tributed. As an estimation method, least squares is a mathematical approach for
minimizing the sum of squared errors that do not depend on the probability distri-
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bution of the outcome variable. While they are appropriate for fixed effects models
with normally distributed data, least squares do not generalize accurately to models
with random effects, non-normal data, or both. This means that least-squares be-
come gradually much less applicable as modeling complexity increases. Likelihood-
based procedures are the typical strategy to solve these issues, which offers an alter-
native method that accommodates the probability distribution of the outcome vari-
able into parameter estimation as well as inference.

Inference for mixed and generalized linear models is based on a likelihood method
described in Subsection 2.4.5. Maximum likelihood (ML) or editions of ML, such
as restricted maximum likelihood (REML), are standard methods of estimation for
linear mixed models and generalized linear models. ML is also broadly used for
fitting GLMMs and has the following properties: ML estimators are asymptotically
normal, with standard errors available from second derivatives of the log-likelihood;
Under broad conditions, ML estimators are asymptotically efficient; and Hypothesis
testing can be carried out using likelihood ratio, score, or Wald tests (Stroup, 2012).
Maximum likelihood estimation in GLMMs requires maximizing the marginal like-
lihood, which can be challenging because the likelihood to be maximized does not
have a simple closed-form expression. It can be obtained either by averaging or in-
tegrating over the distribution of the random effects; maximizing that likelihood is
challenging (Stroup, 2012). Therefore, the estimating equations cannot be written
precisely. There are two techniques to doing this: linearization, specifically, the quasi-
likelihood method and integral approximation, which are discussed in the later sections.
Each technique can get very elaborate and computationally intense as the complex-
ity of the GLMM increases. However, this simple illustration will serve our purpose:
to have a conceptual sense of how the approximation works.

3.3.1 Quasi-Likelihood and Integral Approximation Methods

Quasi-Likelihood Method

In some statistical investigations, the distribution of the data is known. In others,
we are less confident. With a little more experience with particular data, we would
recognize that the variance increases with the mean, and we might have a tough
concept as to how rapidly it increases. However, we are unlikely to know what dis-
tribution structure is correct or even possibly fit well. But not knowing the distribu-
tion makes it impossible to assemble a likelihood and hence use such techniques as
maximum likelihood and likelihood ratio test. It would, therefore, be useful to have
inferential methods that work as well or almost as well as maximum likelihood but
without having to make specific distributional assumptions (McCulloch et al., 2008).
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Wedderburn (1974) formalized this fundamental concept via quasi-likelihood theory
to derive a likelihood-like extent whose development requires few assumptions, like
properties of the score function.

Quasi-likelihood is defined as

Qi =

∫ µi

yi

yi − µi
a(φ)ν(µi)

dµi, (3.3)

where yi = (y1, · · · , yn), ν(µi) corresponds to the form of the variance function, and
a(φ) denotes the scalar parameter function, which is the unspecified constant of pro-
portionality relating V ar(yi) to ν(µi) (McCulloch et al., 2008).

Letting ν(µi) = µi and a(φ) = 1 in Equation (3.3) yields

=

∫ µi

yi

yi − µi
µi

dµi = yilog(µi)− µi,

which becomes the Poisson log-likelihood without c(y, φ) = −log(y!). Similarly,
setting ν(µi) = 1 and a(φ) = φ2 in Equation (3.3) yields

=

∫ µi

yi

yi − µi
φ2

dµi =
yilog(µi)− µ2i

2

φ2
,

which becomes the quasi-likelihood part of the Gaussian log-likelihood (Stroup, 2012).

Integral Approximation Methods: Laplace and Gauss-Hermite quadrature

The two commonly used integral approximation approaches for GLMMs are the
Laplace approximation (McCulloch, 1997) and Gauss-Hermite quadrature (Pinheiro
& Bates, 1995).

Laplace approximation

The idea of the Laplace approximation is to use a quadrature approximation at the
point where the integrand takes its maximum. Its basic form is based on a second-
order Taylor series expansion to obtain an analytical approximation of the integral,
and the standard normal form of Laplace approximation takes as

=

∫ +∞

−∞
exp{h(x)}dx ∼=

√
2πexp{h(x̃)}

(
−∂

2h(x)

∂x2

∣∣∣∣
x=x̃

)− 1
2

(3.4)
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where x̃ denotes the value of x that maximizes h(x), and by Taylor expansion, h(x) =

h(x̃) + h′(x̃)(x− x̃) + h′′(x̃)(x−x̃)2

2! + h′′′(x̃)(x−x̃)3

3! + · · · , which yields an approximation
to

∼=
√

2π

h′′(x̃)
exp{h(x̃)}

Gauss-Hermite quadrature

Gauss-Hermite quadrature is a method for approximating the integral of a func-
tion f(·) multiplied by another function having the shape of a normal density. The
approximation is a finite weighted sum that evaluated the function at certain points
(Stroup, 2012). For a set of nodes x1, · · · , xn and weights w1, . . . , wn, the Gauss-
Hermite quadrature approximation has the form

=

∫ +∞

−∞
f(x)e−x

2
dx ∼=

n∑

k=1

wkf(xk), (3.5)

the weights {wk} and quadrature points {xk} are tabulated in standard reference books
of mathematical tables such as Zwillinger (2002), and Abramowitz & Stegun (1948),
or can be computed with a formula provided by Golub & Welsch (1969). The approx-
imation with Gauss-Hermite quadrature improves as k, the number of quadrature
points increases. However, increasing k also increases the procedure’s computa-
tional burden, to the point where it becomes prohibitive (Pinheiro & Bates, 1995;
Stroup, 2012). Although statistical software packages such as SAS PROC GLIMMIX
procedure are adaptive, that is, they have data-driven decision rules to select a nom-
inally optimal number of quadrature points. In some situations, the complexity of
the model makes the adaptive procedure itself computationally restrictive (Stroup,
2012).

A detailed discussion of quasi-likelihood, Laplace approximation, Gauss-Hermite quadra-
ture, and other alternative approximation methods of estimation for GLMMs can be
found in numerous literature (Wedderburn, 1974; Stroup, 2012; McCulloch, 1997;
Fitzmaurice et al., 2012; Jiang, 2007; McCulloch et al., 2008; Breslow & Clayton, 1993;
Demidenko, 2013; McCullagh & Nelder, 1989; Pinheiro & Bates, 1995). Searle and
McCulloch, 2001. Statistical software packages: SAS PROC GLIMMIX Procedure,
and R such as the lme4, MASS, glmmPQL, glmmADMB, and glmmML packages can
fit these approximation methods for various GLMMs.
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3.4 Issues of Overdispersion in GLMMs

The term overdispersion would imply more variability shown by the data than
would be assumed under a given statistical model. For instance, if a response vari-
able, Y , is count (positive integer) and assumed to have a Poisson distribution, then,
in theory, we implicitly assume that E(Y ) = λ = V ar(Y ), which is also known as
equidispersion. However, if the sample variance exceeds the sample mean, then the
data are said to be overdispersed; that is, the observed variance is implausibly large
for the Poisson assumption to be correct. This indicates that not all processes that
give rise to count data can be modeled as Poisson. In some cases, the total count is
bounded, in which case a binomial distribution should probably be used. In other
cases, the counts may be adequately large that a normal approximation is advocated
so that a normal linear model might be used.

Overdispersion is an issue that should not be disregarded in the analysis. The es-
sential and most serious consequences of failing to account for overdispersion are
underestimating of standard errors and inflate test statistics; consequently, exces-
sive type I error rate and inadequate confidence interval coverage (Stroup, 2012).
We illustrated this in Table 3.6, uncorrected analysis of overdispersed data results in
underestimated standard errors, leading to biased estimates and inflated statistics.
It is necessary to check for overdispersion when fitting a GLM or a GLMM to guar-
antee that inferences derived from the fitted model are precise (Morel & Neerchal,
2012; Molenberghs et al., 2007).

Overdispersion is an implication that the fitted model is incorrect, and adjustments
are required. The fitted model may be inaccurate by the improper choice of any of
the three components in GLMMs: the linear predictor, the distribution of the ob-
served data, or the link. Also, for GLMMs, overdispersion is associated with the
variance and covariance assumptions for the random effects (Stroup, 2012). For this
reason, action needs to be taken to avoid the unwanted outcomes outlined above.
The two most commonly used approaches in GLMMs are: adjusting the standard
errors and test statistics by incorporating an adjustment for overdispersion in the as-
sumed model or consider a different probability distribution for the observed data
that more reasonably approximate the method by which overdispersion emerge
(McCullagh & Nelder, 1989). Because the second strategy of assuming a different
distribution is a reasonable and suggested methodology, we illustrated this in Table
3.6 in which the negative binomial distribution (see Section 3.6) substitutes the Pois-
son distribution (see Section 3.5) as the conditional distribution of the count outcome
variable.
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Detecting diagnostics such as residual plots and Pearson χ2/df fit statistics can be
computed from the data to assess overdispersion. In ordinary least squares (OLS),
residual refers to the difference between the observed and its fitted value. However,
in generalized linear mixed models, residuals are scaled in two different ways: on
the model scale and the data scale. The Pearson and Studentized residual using the es-
timated variance of the conditional distribution and residual, respectively, on each
scale, summarized in Table 3.1 below.

Table 3.1: Summary of residuals in GLMMs

Residual Model scale Data scale

Pearson y∗−η̂√
ˆV ar(y∗|b)

y−h(η̂)√
ˆV ar(y|b)

Studentized y∗−η̂√
ˆV ar(y∗−η̂)

y−h(η̂)√
ˆV ar(y−µ̂)

Where y∗ is the pseudo-variate, h(·) is the inverse link function, η̂ is the estimated
linear predictor, and µ̂ is the estimated mean (Stroup, 2012).

3.5 Poisson Regression Model in the Context of GLMMs

Poisson Regression Model is one of the special case of generalized linear models,
which share the following features: The mean response µi = E(Yi), is assumed to
be related to a vector of covariates, x, through h(µi) = x′iβ = log(µi); the function,
h(·), is called the link function. The variance of Yi ia a specific function of its mean,
µi, namely, V ar(Yi) = νi = φν(µi), the function ν(·) is known and referred to as
the variance function; φ is the scaling factor, which is a known constant for some
members of the GLM family, whereas in others it is an additional parameter to be
estimated. Finally, the Poisson regression model is a member of the exponential
family of distribution, with a likelihood of the form expressed in Equation (3.1), can
be shown as follows: Note that: λY =exp{Y lnλ} and 1

Yi!
= exp{−lnYi!}. Therefore,

f(Yi, λi) = exp{Yilnλi − λi
1

− lnYi!}

where φ = 1, the canonical parameter θ = lnλi, b(θ) = λ, c(Y, φ) = −lnYi!.

Let Yi be a response variable and xi = (xi1, ..., xip)
′ be a p× 1 vector of covariates for

the ith individual then the pdf of the Poisson regression model with parameter λi is
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given by

f(Yi, λi) =
e−λiλYii
Yi!

(3.6)

where λi = exp(x′iβ) and β = (β0, β1, ..., βp)
′ is a p × 1-dimensional vector of un-

known parameters corresponding to xi.

In the statistics literature the model comprising in Equation (3.6) is also called a log-
linear model since the logarithm of the conditional mean, E[Yi|xi] = λi = exp(x′iβ),
is linear in the parameters: lnE[Yi|xi] = lnλi = x′iβ.

The Poisson regression model figures prominently in the modeling of count data.
Count data comes from counting events of interest in an experimental unit, espe-
cially increasingly common in biostatistical science. For instance, the number of
COVID-19 infected patients recorded during the coronavirus prevention programme.
Counts are non-negative integer, often right-skewed, with a Poisson or negative bi-
nomial distribution. The Poisson regression is a commonly-used statistical model
for n responses y1, · · · , yn that take count values. Each yi is modeled as an indepen-
dent Poisson (λi) r.v. and distributed as yi

iid∼ Poisson (λi), where the parameter λi
controls the count rate in the ith time. Thus, a model for the Poisson rate parameter
λi is given by

lnλi = β0 + β1xi1 + · · ·+ βpxip =

p∑

j=1

βjxij

or equivalently,

λi = exp{β0 + β1xi1 + · · ·+ βpxip} = exp{
p∑

j=1

βjxij} (3.7)

where xi1, · · · , xip are set of p covariates, and β = (β0, · · · , βj) are the regression co-
efficients.

Since yi
iid∼ Poisson (λi), as a consequence, the likelihood function is equal to the

product of their pdf:

L(y1, · · · , yn|λi) =

n∏

i=1

f(Yi, λi) =

n∏

i=1

e−λiλYii
Yi!

= λ
∑n
i=1 Yi

i e−nλi
n∏

i=1

1

Yi!
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The log-likelihood function can be derived by taking the natural logarithm of the
likelihood function:

`(y1, · · · , yn|λi) = ln

(
λ
∑n
i=1 Yi

i e−nλi
n∏

i=1

1

Yi!

)
= ln(λi)

n∑

i=1

Yi − nλi −
n∑

i=1

lnYi!

=

n∑

i=1

[Yiln(λi)− λi − lnYi!] (3.8)

where λi is defined interms of β0, · · · , βp and the covariates xi1, · · · , xip in Equation
(3.7). Setting xi0 ≡ 1 for all i, the log-likelihood function can be expressed as

p∑

j=1

[Yi(βjxij)− exp(βjxij)− lnYi!] (3.9)

The maximum likelihood estimator (MLE), which is the standard estimator of the
Poisson rate (λi) is the solution of the following maximization problem:

λ̂i = argmax
λ

`(y1, · · · , yn|λi)

The first order condition for a maximum is ∂
∂λ`(y1, · · · , yn|λi) = 0. The first deriva-

tive of the log-likelihood with respect to the parameter λi is

∂

∂λ
`(y1, · · · , yn|λi) =

∂

∂λ
(lnλi

n∑

i=1

Yi − nλi −
n∑

i=1

lnYi!) =
1

λi

n∑

i=1

Yi − n

Impose that the first derivative equal to zero, and we get the MLE of λ for the ith

observation, i.e. λ̂i = 1
n

∑n
i=1 Yi.

The first and second partial derivatives, respectively, of the logL expressed in Equa-
tion (3.9) with respect to unknown parameter β are given by

∂`

∂β
=

n∑

i

(Yi − λi)xi (3.10)

and
∂2`

∂β∂β′
= −

n∑

i

λixix
′
i (3.11)
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3.5.1 Poisson mixed-effects model for longitudinal count data

The conventional Poisson regression model for count response, discussed in the
above section, assume statistical independence of observations. However, in many
cases, the frequency data are longitudinal, and the assumption of independence is
no longer reasonable.

Suppose that there are N =
∑n

i=1 ni non-negative counts yij for i = 1, ..., N subjects
and j = 1, ..., ni observations for subject i and a p-dimensional unknown parame-
ter vector, β, associated with a covariate vector xij = (xij1, ..., xijp)

′. For simplicity,
consider a model with a single random effect νi, and assume that νi is normally dis-
tributed with mean 0 and variance σ2 and independent of the covariate vector xij .
Thus, the Poisson mixed-effects model conditional on the density function of the ni
individual responses for subject i is written as

f(yi|θ) =

ni∏

j=1

f(Yij ;λi) =
∏

j

exp(−λij)λYijij
Yij !

(3.12)

where θi = Yi/σ such that θi ∼ N(0, 1), and λij = exp(x′ijβ + νi) = exp(x′ijβ + σθi).
The log-likelihood function corresponding to the above equation becomes

logL(yi|θ) =

ni∑

j=1

[
Yij(x

′
ijβ + σθi)− exp(x′ijβ + σθi)− log(Yij !)

]
(3.13)

Pertinent references about the description of the Poisson mixed-effects model in-
clude Breslow (1984), Lawless (1987), Dean et al. (1989), Stukel (1993), Thall (1988),
and Liu (2015).

3.6 Negative Binomial Regression Model in the Context of
GLMMs

The basic regression model to analyze count data is the Poisson model. However,
the Poisson regression model is limited because it forces the conditional mean of the
response to equal the conditional variance. This assumption is often violated in real-
life data. Real-life count data usually feature overdispersion relative to the Poisson
model. As previously discussed (Section 3.4), accounting for overdispersion when
modeling count data is essential. Failure to cope with this feature of the data can
lead to biased parameter estimates and thus false conclusions.

A commonly used model for overdispersed count data, where the variance exceeds
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the mean, is the negative binomial model. As a generalization of Poisson regression,
negative binomial regression loosens the restrictive assumption, which is the vari-
ance and the mean made by the Poisson model is equal by including a dispersion
parameter to accommodate the unobserved heterogeneity in the count data. Here,
we assume that given a rate µi, the Yij are independent Poisson variates with mean
and variance equal to µi. The overdispersion arises because the µ′is are assumed to
vary across subjects according to a gamma distribution with mean µ and variance
φµ2 which exceeds the Poisson variance when φ > 0.

Like most regression models, the negative binomial regression is based on an under-
lying probability distribution function (pdf ). For instance, the normal linear regres-
sion model is derived from the Gaussian (normal) pdf, and the Poisson regression is
derived from the Poisson pdf. However, the conventional negative binomial model,
which is commonly symbolized as NB2 or quadratic negative binomial based on the
exponent in its second term (Cameron & Trivedi, 2013; Hilbe, 2014), is derived from
a Poison-gamma mixture distribution. But such a mixture of distributions is only
one of the ways in which the negative binomial pdf can be obtained. As we would in
referring to the Poisson regression model or logistic regression model, the negative
binomial model is not based on a single model (one derivation) (Hilbe, 2014). The
negative binomial distribution can be mathematically derived from the binomial,
Poisson inverse Gaussian, as well as from the geometric distributions. There are also
more derivations of the negative binomial model. Some separate types of deriva-
tions for the negative binomial model were discussed here (Cameron & Trivedi, 1986,
2013; Boswell, 1970; Shoukri et al., 2004; Hilbe, 2011, 2014; Demidenko, 2013).

The standard negative binomial (NB2) model, predominantly as a Poisson-gamma
mixture model with a mean of µ and a variance of µ + αµ2, is nearly always used
to estimate parameters of overdispersed count data (Hilbe, 2014). The derivation
of the Poisson-gamma mixture model can be addressed as follows: parameteriza-
tion of the negative binomial regression as summarized by Demidenko (2013), is
frequently expressed in terms of the mean λ, dispersion parameter θ, and a non-
negative integer y. Let Y takes discrete values with the conditional Poisson distri-
bution, Pr(Y = y|λ) = e−λλy

y! , where λ > 0, λ ∼ Gamma(α, θ) then the pdf of a
two-parameter, α, and θ, Gamma distribution is given by:

f(λ;α, θ) =
λα−1e−

λ
θ

θαΓ(α)
, λ > 0, α > 0, θ > 0 (3.14)
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Thus, the negative binomial (Poisson-Gamma) model (joint pdf of Y and λ) can be
defined as

f(y, λ) =
e−λλy

y!

λα−1e−
λ
θ

θαΓ(α)
(3.15)

The marginal distribution of Y can be obtained by integrating out λ:

f(y) =

∫ ∞

0

e−λλy

y!

λα−1e−
λ
θ

θαΓ(α)
∂λ

=
1

θαy!Γ(α)

∫ ∞

0
e−λλy+α−1e−

λ
θ ∂λ

Let λθ = u, ∂λθ = ∂u, ∂λ = θ∂u. Thus, the above equation can be expressed as

=
1

θαy!Γ(α)

∫ ∞

0
e−θu(θu)y+α−1e−u∂u

=
θyθα

θαy!Γ(α)

∫ ∞

0
e−θuuy+α−1e−u∂u =

θy

y!Γ(α)

∫ ∞

0
e(−1+θ)uuy+α−1∂u

Let (1 + θ)u = z, (1 + θ)∂u = ∂z, ∂u = ∂z
(1+θ) . Thus,

=
θy

y!Γ(α)

∫ ∞

0
e−z

(
z

1 + θ

)y+α−1 ∂z

(1 + θ)
=

θy

y!Γ(α)

∫ ∞

0

zy+α−1e−z

(1 + θ)y+α
∂z

=
θy

(1 + θ)y+αy!
Γ(α)

∫ ∞

0
zy+α−1e−z∂z

where Γ is the gamma function which has the formula Γ(α) =
∫∞

0 zα−1e−z∂z, for
any positive real number α. Thus, the above equation becomes

θyΓ(α+ y)

(1 + θ)y+αy!Γ(α)
=

(α+ y − 1)!θy

y!(α− 1)!(1 + θ)y+α
(3.16)

which is a negative binomial density. It has also been defined in the literature as:

=

(
α+ y − 1

y

)(
θ

1 + θ

)y ( 1

1 + θ

)α
=

Γ(α+ y)

y!Γ(α)

(
θ

1 + θ

)y ( 1

1 + θ

)α
, (3.17)

where the binomial coefficient is computed as
(
α+y−1

y

)
= (α+y−1)(α+y−2)···α

y! = (α+y−1)!
y!(α−1)! .

Note that for a positive integer α, we have Γ(α) = (α− 1)!.

For negative binomial distribution, E(y) = αθ, and var(y) = αθ(1 + θ). For Poisson
distribution, the mean and variance are equal, but for negative binomial, the vari-
ance is higher than the mean by αθ2. By applying some calculus, one can show that
the Poisson distribution is a special case of the negative binomial distribution when
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α → ∞ and θ → 0, such that the product, αθ = λ, is kept constant. The parameter
a = 1

α is associated with the “extra-Poisson”variation, or overdispersion, because
var(y) = λ+ aλ2, which is quadratic in the mean that is why the negative binomial
model is referred to as the NB2 model as we mentioned previously. This interpreta-
tion justifies a (λ, a) parameterization of the negative binomial distribution as

Pr(Y = y;λ, a) =

(
y + 1

a − 1

y

)(
aλ

1 + aλ

)y ( 1

1 + aλ

) 1
a

, (3.18)

where E[y] = λ and var[y] = λ + aλ2, and a = 0 leads to Poisson distribution. This
latest parameterization is convenient for specifying the negative binomial regression
and for testing overdispersion as H0 : a = 0 (Lawless, 1987).

The likelihood function of Equation (3.17) is proportional to

L(θ, α) =
n∏

i=1

Γ(α+ yi)

yi!Γ(α)

(
θ

1 + θ

)yi ( 1

1 + θ

)α
(3.19)

Lawless (1987) notes that for any c > 0, Γ(y + c)/Γ(c) = c(c + 1) × · · · × (c + y − 1)

for integer-valued y ≥ 1, thus, Γ(α+y)
Γ(α) = α(1 + α) × · · · × (y − 1 + α). Hence,

log
{

Γ(α+y)
Γ(α)

}
=
∑y−1

i=1 log(1 + α). This produces logL(θ, α) as follows

=
n∑

i=1

(
yi−1∑

i=1

log(1 + α)− log yi! + yi log θ − yi log(1 + θ) + αlog1− αlog(1 + θ)

)

`(θ, α) =
n∑

i=1

(
yi−1∑

i=1

log(1 + α)− log yi! + yi log θ − (yi + α) log(1 + θ)

)

Therefore, applying the Poisson theorem with Gamma distribution leads to the nega-
tive binomial distribution. Furthermore, detailed discussions of estimating methods
and characteristics of the negative binomial regression model presented in numer-
ous literature (Lord et al., 2012; Demidenko, 2013; Guide, 2008; Hilbe, 2011; Liu &
Cela, 2008; Lawless, 1987).

When repeated counts are measured on the same individual over time, the assump-
tion of independence is no longer reasonable; instead, they are correlated. Subject-
specific random effects can be added into the linear predictor to modeling such de-
pendence. Let yij be the values of a count variable (non-negative integer value) for
subject i at time point j. The count is assumed to be drawn from a Poisson distri-
bution with errors assumed to have a normal distribution, εij ∼ N(0, σ2

ε). Then, the
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Poisson mixed-effects model that specifies the expected number of counts is written
as

log(µij) = x′ijβ + z′ijbi + εij ,

where x′ij is the variable of interest, β is the vector of fixed effects (population-level
effects), including an intercept β0, bi is the vector of random effects (subject-level
effects) for the sample variables zij , and εij is the random errors (Fitzmaurice et al.,
2012; Liu, 2015). Given the Poisson process for the count yij , the probability that
yij = y, conditionally on the random effects bi, is given by

P (yij = y|bi,xij , zij) =
e−µijµyij

y!
=

1

y!
e− exp(x′ijβ+z′ijbi) exp(x′ijβ + z′ijbi)

y

=
1

y!
exp[(x′ijβ + z′ijbi)

y − exp(x′ijβ + z′ijbi)], y = 0, 1, 2, ...

This addition also can be applied to the NBMM that allows over-dispersion by as-
suming a gamma distribution for the errors; instead of a normal distribution. Sup-
pose that xij and zij are known vectors of covariates associated with count data
yij , i = 1, ..., n and j = 1, ..., ni, conditional on a q-dimensional vector of subject-
specific random effects, bi, the counts of yij , with the assumption of gamma er-
rors, has a negative binomial distribution, yij |bi ∼ NB(µij , µij + θµ2

ij), with µij =

E(yij |bi) = exp{x′ijβ + z′ijbi}. This indicates that the mean parameters µij of the
negative binomial mixed-effects models are also related to the predictor variables
xij , and the sample variables zij through the logarithm link function: log(µij) =

x′ijβ+z′ijbi+εij , which shows that the model for the conditional mean of the NBMM
is similar to that of PMM. However, the conditional variance of yij for NBMM is
V ar(yij |bi) = µij + θµ2

ij , which is greater than the conditional mean of PMM by
θµ2

ij , specifically, because a gamma distribution is assumed for the exponentiated er-
rors, exp(εij), with a mean of 1 and variance θ (Fitzmaurice et al., 2012; Demidenko,
2013). Random effects are used to demonstrate multiple assets of variations and
subject-specific effects. As a result, they avoid biased inference on the fixed effects.
The random effects are assumed to have a multivariate normal distribution:

bi ∼ N(0,Ψ),

where Ψ is a positive-definite variance-covariance matrix that accounts for the cor-
relation of the random effects (Zhang et al., 2017, 2018).
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3.6.1 Parameter Estimation and Model Selection in GLMMs

Several methods are available to estimate the parameters (β′is and b′is) in GLMMs.
We have listed a few of these methods herein: marginal quasi-likelihood (MQL), pe-
nalized (predictive) quasi-likelihood (PQL), the Laplace approximation, the Gauss-
Hermite quadrative, and the Markov Chain Monte Carlo (MCMC) method (Guide,
2008; Gill & Torres, 2019). Our preference is for the Laplace approximation due to the
fewer limitations and regularly equal or better results than the Adaptive quadrature
(method=quad). Additionally, it is accurate, fast, and gives us the plausibility to urge
likelihood and information criteria (Shoukri, 2018; Schabenberger & Gotway, 2017;
Jiang, 2007). However, R-side random effects are not supported for method=laplace
or method=quad in the Proc Glimmix statement. Instead, Proc Glimmix uses a ran-
dom statement and the residual option to model repeated (R-side) effects.

Several software packages make it conceivable to perform GLMMs in R, such as
MASS package with the function glmPQL, lme4 package with the function glmer, and
MCMglmm package with the function MCMC. We could also use programs such as
SAS Proc GLIMMIX (method= Laplace), WinBUGS Bayesian inference (MCMC), and
nowadays, we can also use SPSS to do GLMMs. If we use either the lme4 package
with the function glmer or SAS Proc GLIMMIX (Laplace), we will get the Laplace ap-
proximation, which has an advantage that it gives likelihood and IC. The advantage
of having those accessible is that we can compare several methods, observe what the
impact is, including or expelling a fixed or a random effect by comparing the AIC,
BIC, CAIC, or QIC, and the likelihoods depending on the adopted modeling strat-
egy. The parameter estimates based on the mixed-effects negative binomial model
are not exceptionally different from those based on the mixed-effects Poisson model.
However, the Poisson model underestimates the standard errors when overdisper-
sion is present, driving to improper inference. A straightforward way to select be-
tween these two models is to compare them based on a few criteria, such as AIC and
BIC. Where for the ICs, a lower value better means that the model fits way better. We
may moreover compare models utilizing −2loglikelihood and the likelihood ratio test,
and then if a model is significantly lower, it implies that it is the best model. Also,
the regression parameters in GLMMs have somewhat different interpretations than
the regression parameters in the conventional marginal models. In GLMMs, the re-
gression coefficients have subject-specific interpretations. Especially, they represent
the impact of variables on a particular subject’s mean response. Specifically, the β′s
are interpreted in terms of the effects of within-subject changes in explanatory vari-
ables on changes in an individual’s transformed mean response while holding the
remaining covariates constant. Accordingly, βp can be interpreted as the change in
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an individual’s log of response for a unit increase in Xpij while holding other fixed
variables constant for that individual. Since the components of the fixed effects, β,
have interpretations that depend on holding bi, the ith individual’s random effects,
fixed, they are regularly referred to as subject-specific regression coefficients. Thus,
generalized linear mixed-effects models are most valuable when the main scientific
objective is to make inferences about individuals rather than the population average;
the population averages are the targets of inference in marginal models (Fitzmaurice
et al., 2012).

3.7 Data example: CAPRISA 002 Acute Infection Study data

In this section, we illustrate the performance of the methods discussed in the above
sections on the CAPRISA 002 Acute Infection Study. The data is an ongoing prospec-
tive cohort study conducted on HIV-infected women at the Doris Duke Medical Re-
search Institute (DDMRI) at the Nelson R Mandela School of Medicine of the Uni-
versity of KwaZulu-Natal in Durban, South Africa. Between August 2004 and May
2005, CAPRISA initiated a cohort study enrolling high-risk HIV-negative women to
follow up. In the case of the data used in this paper as part of an ongoing study,
women infected with HIV are enrolled in the study early, followed intensely, and
monitored closely to study disease progression and CD4 count/viral load evolu-
tion. One can refer to studies by (Van Loggerenberg et al., 2008; Mlisana et al., 2014)
for details on the design, development, and procedures of the study population.

Table 3.2 shows the summary of CD4 count and its associated selected covariates
in the CAPRISA 002 Acute Infection Study. The dataset included 235 subjects (7129
observations consist of a minimum of two and a maximum of sixty-one observations
per subject). p-values demonstrated in Table 3.2 are obtained from the Chi-square
test. At a significance level of α = 5%, the univariate cross-tabulation analysis un-
covers that the patient’s baseline BMI, baseline viral load, number of sex partners,
age, ART initiation, and level of education are significantly associated with the pa-
tient’s CD4 count. Table 3.2 demonstrates that there is a high prevalence of CD4
count above 500 cells/mm3 among patients having normal weight and overweight
status, which are 38.32 and 9.36%, respectively (p-value<0.0001). Out of 7129 obser-
vations, patients having an undetectable viral load at baseline indicates no sign of a
CD4 count below 500 cells/mm3 throughout the study.
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Table 3.2: Distribution of CD4 count and associated selected covariates with percent miss-
ing

CD4 count N(%)

Covariates Level <200 200-500 >500 p-value % Missing

Underweight 2(0.03) 219(3.12) 254(3.62) <0.0001 0.0

Baseline Normal weight 114(1.62) 2305(32.84) 2690(38.32)

BMI Category Overweight 18(0.26) 512(7.29) 657(9.36)

Obese 0 17(0.24) 231(3.29)

Undetected 0 0 16(0.23) <0.0001 0.0

Baseline Low 20(0.28) 791(11.27) 1532(21.83)

Viral Load Medium 45(0.64) 1209(17.22) 1497(21.23)

High 69(0.98) 1053(15) 787(11.21)

Number of No Partner 29(0.41) 565(8.05) 579(8.25) <0.0001 0.0

sexual partners Stable Partner 85(1.21) 2274(32.4) 3078(43.85)

Many Partner 20(0.28) 214(3.05) 175(2.49)

<20 1(0.01) 130(1.82) 121(1.72) <0.0001 0.0

Age group 20-29 97(1.38) 1872(26.67) 1977(28.17)

30-39 17(0.24) 813(11.58) 1255(17.88)

40-49 19(0.27) 203(2.89) 369(5.26)

50-59 0 35(0.5) 91(1.3)

≥ 60 0 0 19(0.27)

Educational Primary school 3(0.04) 104(1.48) 181(2.58) 0.0129 0.0

level Secondary school 131(1.87) 2949(42.01) 3651(52.02)

Place of Rural 62(0.88) 1467(20.90) 1806(25.73) 0.7176 0.06

residence Urban 72(1.03) 1586(22.6) 2026(28.86)

ART initiation Pre ART 110(1.57) 2566(36.56) 2783(39.65) <0.0001 0.0

group Post ART 20 (24) 487(6.94) 1049(14.95)

• The response variable (CD cell count) has 110 (1.5%) missing observations.
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Moreover, from Table 3.2, there is a high prevalence of CD4 count above 500 cells/mm3

for patients with low viral load at baseline (21.83%). This shows ART suppresses the
amount of HIV viably in patient’s body fluids who have an undetectable and low vi-
ral load at baseline to the point where standard tests are incapable of detecting any
HIV or can only find a little flow. There is also a high prevalence of CD4 count above
500 cells/mm3 for patients who have a stable sex partner (43.85%, p-value <0.0001)
compared to patients who have many sex partners. A high prevalence of CD4 count
above 500 cells/mm3 is observed among patients of the age group between 20-29
years and 30-39 years, 28.17 and 17.88%, respectively (p-value< 0.0001). The preva-
lence of CD4 count above 500 cells/mm3 is also observed among women patients
with higher/secondary school levels of education (52.02%, p-value=0.0129). How-
ever, the place of residence is found not to be associated with patients’ CD4 count
(p-value=0.7176).

The individual profiles plot for 17 randomly selected HIV-Infected women enrolled
in the CAPRISA 002 Acute Infection Study is shown in Figure 3.1.

Figure 3.1: Individual Profiles plot of CD4 cell count for 17 randomly selected individuals

Analyzing data shown in Figure 3.1, we can observe insights concerning the variabil-
ity between individual units at a given point in time, the variance within units over
time, and the trends over time. Note that the space between the lines represents unit
variability between subjects, and the change in each line (slope) represents within-
subject variability. Moreover, as portrayed in Figure 3.1, CD4 cell counts appear a
slightly increasing pattern over time, but the rate of increment is low. Figure 3.1 also
shows that there is wide variability in the number of CD4 cells and in the number of
repeated measures (number of observations per subject are not equal).
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Table 3.3: Comparisons of Fit Statistics for the two distributions

Fit statistics

Distribution -2 log likelihood AIC AICC BIC CAIC HQIC

Poisson 204842.9 204892.9 204893.1 204979.4 205004.4 204927.8

Negative Binomial 87781.28 87833.28 87833.48 87923.23 87949.23 87869.54

The results of the Fit statistics in Table 3.3 are obtainable because of method=Laplace
in Proc Glimmix Procedure. These values are relative and valuable when we com-
pare different model choices. The values of the fit statistics of the NB model are
much smaller than the values of the fit statistics of the Poisson model (Table 3.3). For
instance, the corrected Akaike’s Information Criterion (AICC) value is 87833.48 for
NB versus 204893.1 for the Poisson. Also, the Pearson χ2/DF of 20.66 for the Poisson
model is problematic (Table 3.4). Ideally, this value ought to be generally 1.0 when
modeling count data with a Poisson distribution. The ratio of Pearson χ2 statistics
are dropped from 20.66 to 0.91 under the NB model, which is close to one (Table 3.4),
indicating that overdispersion has been appropriately modeled and it is no longer
an issue under the NB model.

Table 3.4: Measure of overdispersion between Poisson and Negative Binomial distribution

Fit Statistics for Conditional Distribution Poisson Negative Binomial

-2 log L(CD4 counts/r. effects) 199670.3 85320.39

Pearson χ2 145017.0 6396.89

Pearson χ2/DF 20.66 0.91

In addition to the conditional fit statistics, another diagnostic that would permit us
to visualize overdispersion in the Poisson model is the graphical representation (Fig-
ure 3.2). We can get residual plots through Proc Glimmix using the Plot option. Here,
we only focus on looking at residual versus predicted plots. Figure 3.2 (left panel)
shows the visual prove of overdispersion. As the Predicted Mean (µ̂) increases, the
associated residuals become more broadly dispersed. The variance ought to increase
as a function of the mean, but not as quickly as we see in this plot (Figure 3.2). Also,
Figure 3.2 (right panel) shows prove of overdispersion. The variance adjusted resid-
uals are more variable around the lower point of the estimated Linear Predictor (η̂).
On the model scale, we should not see the variance adjusted residuals variable across
different points of η̂ as we see in this plot (Fox & Monette, 2002; Stroup, 2012). In
other words, Figure 3.2 (right panel) demonstrates that the empirical distribution of
the residuals is not reasonably symmetric, and in general, it is not very informative.
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Figure 3.2: Diagnostics plot to visualize overdispersion in the Poisson regression model

The improvements in the Pearson χ2/DF and Fit statistics indicates that it is best to
model data from this experiment with the Negative Binomial distribution. Utilizing
the proper distribution gives unbiased test statistics and standard error estimates.

In addition, the subsequent random effect models were taken into consideration for
testing the NBMMs:
Model 1: Intercept, Time,

√
Time

yij = β0 + β1xij + β2tij + β2

√
tij + bi0 + bi1tij + bi2

√
tij + εij

where xij is the ART initiation group variable, and tij is the time variable.

Model 2: Intercept, Time

yij = β0 + β1xij + β2tij + β2

√
tij + bi0 + bi1tij + εij

Model 3: Intercept,
√

Time

yij = β0 + β1xij + β2tij + β2

√
tij + bi0 + bi1

√
tij + εij

Model 4: Time,
√

Time

yij = β0 + β1xij + β2tij + β2

√
tij + bi1tij + bi2

√
tij + εij

Model 5: Intercept only

yij = β0 + β1xij + β2tij + β2

√
tij + bi0 + εij
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Model 6: Time only

yij = β0 + β1xij + β2tij + β2

√
tij + bi1tij + εij

Model 7:
√

Time only

yij = β0 + β1xij + β2tij + β2

√
tij + bi1

√
tij + εij

Table 3.5: Comparison of random effect models

Information Criteria

Random effect models −2 log ` AIC AICC BIC CAIC HQIC

Model 1 87781.28 87833.28 87833.48 87923.23 87949.23 87869.54

Model 2 88603.50 88649.50 88649.66 88729.07 88752.07 88681.58

Model 3 88591.64 88637.64 88637.80 88717.21 88740.21 88669.72

Model 4 89156.39 89202.39 89202.55 89281.96 89304.96 89234.47

Model 5 89837.18 89879.18 89879.31 89951.83 89972.83 89908.47

Model 6 92302.08 92344.08 92344.21 92416.73 92437.73 92373.37

Model 7 91190.61 91232.61 91232.74 91305.26 91326.26 91261.90

We conclude that Model 1 is a preferable model among the models listed above
since it has the smallest information criteria (Table 3.5). Moreover, a comparison
of the covariance structure using the fitted model (Table 7.1) and a comparison of
fixed-effects results across different covariance structures using Model 1 (Table 7.3)
are made.

The estimated unstructured covariance matrix (Ĝ) for GLMMs model that uses Neg-
ative Binomial distribution is

Ĝ =




0.1131 0.000739 −0.01754

0.000739 0.000155 −0.00137

−0.01754 −0.00137 0.01556




The estimated scale parameter is 0.04205, which can be found in the “Covariance
Parameter Estimates”output of the SAS PROC GLIMMIX (Laplace) procedure (see
Table 7.2 in Appendix B). Therefore, the estimated conditional variance of the count
is µ̂i + 0.04205µ̂2

i , where µ̂i is the conditional mean on the counting scale. The Scale
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parameter measures the magnitude of overdispersion and is practically equivalent
to the mean square error in conventional theory analysis of variance (Gbur et al.,
2012).

Table 3.6 shows the overall effect of the selected factors within the fitted models.
The results indicate that the effects of Time, Baseline BMI, HAART initiation group,
baseline viral load, and the number of sex partners on the patient’s CD4 count were
highly significant in both fitted models. However, the overall F-values of the NB
model were smaller than for the Poisson model. This can be supporting prove that
over-dispersion can lead to inflated and biased F-values if we do not use the proper
model in our analysis.

Table 3.6: Measure of over-dispersion between Poisson and Negative Binomial distribution

NB Poisson

Effect Num DF Den DF F Value Pr>F F Value Pr>F

Time in month 1 235 62.53 <.0001 14.80 0.0002

Sqrt Time 1 234 86.36 <.0001 48.41 <.0001

Baseline BMI category 3 6307 6.26 0.0003 6.31 0.0003

ART initiation 1 6307 345.45 <.0001 5890.28 <.0001

Baseline VL 3 6307 7.48 <.0001 12.79 <.0001

Number of sex partner 2 6307 1.64 0.1935 1.85 0.1578

Age group 5 6307 1.46 0.1987 27.34 <.0001

Education level 1 6307 0.25 0.6196 0.15 0.6990

Place of residence 1 6307 0.01 0.9246 0.11 0.7406

Table 3.7 shows the log of the expected CD4 count as a function of the selected
predictor variables using a negative binomial mixed-effect model. The results in-
dicate that time (month) significantly affects the CD4 count of a patient. We inter-
pret the coefficient of the month as an average within-subject change in the logs of
expected CD4 count for patients would be expected to increase by 0.0078 unit (p-
value<0.0001; 95% CI: 0.005875, 0.009774), while holding the other factors in the
model constant. The square root of time shows a significant adverse effect in the
logs of expected CD4 counts of a patient (Table 3.7). Compared to pre HAART ini-
tiation, the difference in the logs of CD4 counts of a patient who had been initiated
on HAART would be expected to increase by 0.2301 units (p-value<0.0001; 95% CI:
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0.2058, 0.2543), holding other factors constant in the model. It can be observed that
the difference in the logs of expected CD4 counts is expected to be 0.4815 units (p-
value<0.0001; 95% CI: 0.2633, 0.6996) higher for patients with higher BMI (Obese)
at baseline compared to patients with normal weight status holding other factors
constant in the model. For those patients who had high and medium viral load at
baseline, the difference in the logs of their expected CD4 counts was decreased by
0.2393 (p-value<0.0001; 95% CI: -0.3404, -0.1382) and 0.1258 (p-value=0.0061; 95%
CI: -0.2157, -0.03585), respectively, compared to patients who had low viral load at
baseline while holding the other factors in the model constant.

Table 3.7: Parameter estimates using Poisson and Negative Binomial mixed-effects model

NB Poisson

Covariates Estimate Std Err Pr > |t| 95% C.I for NB Estimate Estimate Std Err

Intercept 6.47 0.04982 <.0001 (6.3715, 6.5679) 6.4625 0.04264

Time in month 0.007824 0.000989 <.0001 (0.005875, 0.009774) 0.006564 0.001706

Sqrt Time -0.08649 0.009307 <.0001 (-0.1048, -0.06815) -0.06839 0.009830

ART Initiation (Post) 0.2301 0.01238 <.0001 (0.2058, 0.2543) 0.1947 0.002537

Baseline BMI category (ref.=Normal weight)

Obese 0.4815 0.1113 <.0001 (0.2633, 0.6996) 0.4985 0.1147

Overweight 0.02561 0.04975 0.6067 (-0.07191, 0.1231) 0.03131 0.05148

Underweight 0.005901 0.07927 0.9407 (-0.1495, 0.1613) 0.01691 0.08264

Baseline HIV VL category (ref.= Low VL )

High VL -0.2393 0.05157 <.0001 (-0.3404, -0.1382) -0.3074 0.05065

Medium VL -0.1258 0.04587 0.0061 (-0.2157, -0.03585) -0.1121 0.04686

Undetectable 0.1377 0.2901 0.6351 (-0.4310, 0.7064) 0.1199 0.2978

Number of sex partner (ref.= Stable partner)

Many partners -0.1560 0.09394 0.0967 (-0.3402, 0.02811) -0.1674 0.09908

No partner -0.04821 0.04993 0.3343 (-0.1461, 0.04967) -0.05913 0.05164

Age group in years(ref.= < 20)

20-29 0.01166 0.03104 0.7072 (-0.04919, 0.07251) -0.00791 0.007830

30-39 0.02852 0.03432 0.4060 (-0.03876, 0.09580) -0.01239 0.008474

40-49 -0.00719 0.04545 0.8743 (-0.09629, 0.08191) -0.03422 0.01112

50-59 -0.05694 0.06662 0.3927 (-0.1875, 0.07365) -0.1399 0.01549

≥ 60 0.2082 0.1532 0.1741 (-0.09205, 0.5084) -0.3107 0.03519

Education level (ref.= Secondary or high school)

Primary school -0.04509 0.09084 0.6196 (-0.2232, 0.1330) -0.03582 0.09263

Residence of participant (ref.= Urban)

Rural -0.00373 0.03947 0.9246 (-0.08112, 0.07365) 0.01337 0.04038
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Furthermore, the standard errors for the Poisson mixed-effects model were more
likely to be underestimated and/or biased as compared to those from a negative bi-
nomial mixed-effects model since the model is fitted by ignoring overdispersion of
the data (Table 3.7).

The prediction profile equation for the average number of CD4 cells following Table
3.7 results obtained by negative binomial (NB) mixed-effects model is given as:

log(µ̂) = 6.4697 + 0.007824× time− 0.08649×
√

time
+0.2301× post HAART treatment + 0.4815× obese
−0.2393× high VL− 0.1258×medium VL

The prediction of individual profiles, Figure 3.3, presents the estimated trajectories
for the average number of CD4 cells under the estimates obtained by the negative
binomial mixed-effect model with UN covariance structure consolidated with the
model where the intercept and slope were considered as random effects (see Table
7.1 and 7.3 in Appendix B) for seven patients with particular profiles for four years.
For instance, from CAPRISA 002 AI Study, patient ID = 141, 22 years old female,
with around 500 cells/mm3 CD4 cell count at baseline, low VL at baseline, had nor-
mal weight status at baseline, and have no partner at the time of enrollment. The

Figure 3.3: Prediction of 7 randomly selected individual profiles plot of CD4 count for four
years

second patient ID=152, 34 years old female, with obese weight status at baseline,
having stable sex partner, high VL at baseline, and CD4 count at baseline below 500
cells/mm3. As a third example, we looked at patient ID=172 who had undetected
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VL at baseline, with CD4 count at baseline above 500 cells/mm3, 29 years old fe-
male, with obese weight status at baseline and have a stable sex partner. As a fourth
example, we can also look at patient ID=188, who had a high number of CD4 cells
at baseline (1070 cells/mm3) with low VL at baseline, 42 years old, obese weight
status at baseline, and have a stable sex partner. As we would anticipate, all seven
individuals appeared to have an increased average number of CD4 cells over time,
according to their predicted individual profiles (Figure 3.3). However, the increasing
level or degree is different among individuals. This is due to factors related to this
study and numerous other characteristics of these individuals, mainly (according to
our research) for their VL at baseline, baseline BMI and the treatment (either the pa-
tient had effective HAART initiation after HIV exposure or not).

Moreover, for this study to yield meaningful results, we have checked the missing
values in the dataset using Little’s MCAR test. The regular Little’s MCAR test gives
us a χ2 distance of 4515.686 with a degree of freedom 106 and p-value 0.000 (Little’s
MCAR test: χ2=4515.686, DF=106, sig.= 0.000). The analysis provides evidence that
the missing data in the study variables of interest are not MCAR under significance
level 0.000. Therefore, we used multiple imputation (MI) techniques to get valid
inferences for parameter estimates from the complete data set by fitting the chosen
model. The key idea of the MI procedure is to replace each missing value with a
set of m plausible values. Generally, the imputation of dependent and independent
variables is basic for getting unbiased estimates of the regression coefficients (Alli-
son, 2001). Following Rubin’s (1987) terminology, the MI procedure involves three
distinct phases: each missing value is imputed m times to generate m complete data
sets, analyze each m complete data sets separately by using standard procedure and
then combine the results to generate valid statistical inference about the model pa-
rameters from the m data set analysis using Rubin’s combine rule Rubin (2004). SAS
Proc MI can be used to create N number of imputations; after that, Proc MIAnalyze
is used to pool the parameter estimates. A detailed discussion of missing data anal-
ysis and how missing data handled by statistical software can be found in numer-
ous literature (Rubin, 2004; Little & Rubin, 2019; Fitzmaurice et al., 2008; Berglund
& Heeringa, 2014; Enders, 2010; Molenberghs & Kenward, 2007; Bücker & Hogan,
2011; Der & Everitt, 2012).

Table 3.8 shows a combined result for each parameter. The table also displays a
95% confidence interval, the minimum and maximum regression coefficients from
the imputed data set, and the associated p-value. We can compare the results given
in Table 3.8 with the results of applying the negative binomial mixed-effect model
to the CAPRISA 002 Acute Infection data using incomplete cases (Table 3.7). Com-
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paring the two different sets of results, we do not see that many exciting differences.
In both case analyses, covariates that were significantly affecting the patient’s CD4
count are similar, and their respective parameter estimates are closer to each other.

Table 3.8: Combined results of a negative binomial mixed-effects model analysis using MI
Procedure to deal with the missing values

Parameter Estimates (10 Imputations)

Parameter Estimate Std Err Pr > |t| 95% Confidence Limits Minimum Maximum

Intercept 6.459413 0.049830 <.0001 (6.36175, 6.55708) 6.458658 6.460775

Time in month 0.007475 0.000975 <.0001 (0.00556, 0.00939) 0.007450 0.007508

Sqrt Time -0.083647 0.009266 <.0001 (-0.10181, -0.06549) -0.083982 -0.083434

ART Initiation (Post) 0.224037 0.012594 <.0001 (0.19935, 0.24872) 0.223216 0.225014

Baseline BMI category (ref.=Normal weight)

Obese 0.474714 0.109902 <.0001 (0.25931, 0.69012) 0.473892 0.475630

Overweight 0.024208 0.048971 0.6211 (-0.07177, 0.12019) 0.023820 0.024529

Underweight 0.002070 0.078101 0.9789 (-0.15101, 0.15515) 0.001321 0.003137

Baseline HIV VL category (ref.= Low VL )

High VL -0.239102 0.051294 <.0001 (-0.33964, -0.13857) -0.239735 -0.238839

Medium VL -0.122078 0.045390 0.0072 (-0.21104, -0.03311) -0.122251 -0.121642

Undetectable 0.142848 0.286259 0.6178 (-0.41821, 0.70391) 0.142510 0.143351

Number of sex partner (ref.= Stable partner)

Many partners -0.153632 0.092090 0.0953 (-0.33412, 0.02686) -0.154667 -0.152911

No partner -0.046962 0.049227 0.3401 (-0.14344, 0.04952) -0.047267 -0.046691

Age group in years(ref.= < 20)

20-29 0.013477 0.031659 0.6703 (-0.04857, 0.07553) 0.012306 0.014325

30-39 0.033725 0.034974 0.3349 (-0.03482, 0.10227) 0.032678 0.034744

40-49 -0.005842 0.046177 0.8993 (-0.09635, 0.08466) -0.007790 -0.004745

50-59 -0.052070 0.067501 0.4405 (-0.18437, 0.08023) -0.054207 -0.051024

≥ 60 0.206708 0.156046 0.1853 (-0.09914, 0.51255) 0.205360 0.207553

Education level (ref.= Secondary or high school)

Primary school -0.046292 0.089605 0.6054 (-0.22191, 0.12933) -0.046602 -0.046009

Residence of participant (ref.= Urban)

Rural -0.001916 0.038813 0.9606 (-0.07799, 0.07416) -0.002146 -0.001596

In general terms, a comparison of the results from data with missing value case
analysis (Table 3.7) and multiple imputation analysis (Table 3.8) shows little differ-
ence between parameter estimates, standard errors, and confidence intervals. In this
case, the small difference in results and associated inferences is likely due to rela-
tively low amounts of missing data in the analysis variables (Table 3.2). However, it
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will not always be true that results from incomplete or complete case analysis and a
multiple imputation treatment of the data will lead to similar results and inferences
(Berglund & Heeringa, 2014). Finally, missing data is especially common in longi-
tudinal data sets. Missingness can arise due to respondent attrition, survey struc-
ture, file-matching issues, and refusal to answer sensitive questions such as certain
health conditions, illegal behaviors, or income (Berglund & Heeringa, 2014). Miss-
ing data can also arise due to death. A loss to follow-up due to death is qualitatively
distinct from dropout due to other responses and, ordinarily, needs to be handled
quite differently in the analysis of longitudinal data (Dufouil et al., 2004). Missing
data is generally categorized as Missing Completely at Random (MCAR), Missing
at Random (MAR), or Not Missing at Random (NMAR) (Rubin, 2004; Schafer, 1997;
Molenberghs & Kenward, 2007; Bücker & Hogan, 2011; Raghunathan et al., 2001;
Enders, 2010).

Finally, the normal probability plot of the random effects for the fitted NBMM is
indicated in Figure 3.4. The assumption of normality seems reasonable for all three
random effects. The plots confirmed that the estimated random effects are normally
distributed, with mean zero and covariance matrix Ĝ and are independent for dif-
ferent group (Assumption 2 holds) (Pinheiro & Bates, 2006).

83



3.7. Data example: CAPRISA 002 Acute Infection Study data

Figure 3.4: Q-Q and Histogram normal plot of the estimated random effects

Some of the codes that are used for the above section can be found here (Code 7.2 in
the Appendix A).
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3.8 Summary

Generalized linear models extend standard theory linear models to response vari-
ables whose distribution belongs to the exponential family. GLM comprises of three
components: a stochastic component that characterizes the likelihood distribution of
the response variable; a linear predictor that is a systematic component portraying the
linear model characterized by the explanatory variables; and a link function that con-
nect the mean of the response variable to a linear combination of the explanatory
variables. Link functions that are commonly used for distributions are discussed
in numerous literature (Dobson & Barnett, 2018; Fox & Monette, 2002; Gill & Torres,
2019; McCullagh & Nelder, 1989; Menard, 2002; Faraway, 2016; Zeger & Liang, 1986;
Rawlings et al., 2001; Stroup, 2012; Jiang, 2007). Parameters in GLM are estimated
based on maximum likelihood principles. Different ways of transformations of the
response variable make the transformed data fulfill the linear model’s assumptions,
such as approximately normally distributed and having stable variances. In a more
common term, a transformation is a replacement that changes the shape of distribu-
tion or relationship. However, transformation can be problematic for regression set-
tings in which it also influences the functional relationship between the explanatory
and the outcome variable. Sometimes it is not recognized that the use of transfor-
mations changes the model under consideration (McArdle & Anderson, 2004).

Transformations can be problematic when a specific choice is not predetermined
by other considerations; that is, the choice of transformation is subjective (Mahmud
et al., 2006). GLMs avoid these issues since the data are not transformed; instead,
a function of the means is modeled as a linear combination of the explanatory vari-
ables (Gill & Torres, 2019; McCullagh & Nelder, 1989). In some cases, for example,
for large values of the estimated coefficient, the use of a transformation is effective
than using GLMs and Wald type statistics for inference (Menard, 2002; Rawlings
et al., 2001). In general, however, transformations rarely compete well with GLMs
for adequately powered studies (McCullagh & Nelder, 1989). Therefore, we ana-
lyzed the non-normal untransformed form of the CD4 cell count of a patient en-
rolled in the CAPRISA 002 Acute Infection Study in the context of generalized linear
mixed-effects models (Table 3.7).

Longitudinal studies, also called mixed-effects models, are used to study changes
in the response variable over a relevant interval of time or space and the effects
of different factors on these changes (Yirga et al., 2020b). The two fundamental is-
sues in longitudinal studies are constructing an appropriate model for the mean and
selecting an adequate but parsimonious model for the covariance structure of longi-
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tudinal data (Fitzmaurice et al., 2012; Yirga et al., 2020b). For these reasons, we have
fitted a negative binomial mixed-effects model consolidated with the UN covari-
ance structure since there was enough evidence of overdispersion in the data, and
the chosen covariance structure gives the smallest information criteria (Table 7.1 in
the Appendix B). The comparisons between Poisson and negative binomial mixed-
effects models were outlined in Table 3.7. Moreover, comparisons of the covariance
structure are illustrated in Table 7.1 in the Appendix B). Generalized linear mixed-
effects models combine the generalized linear models with the linear mixed models.
As an extension of generalized linear models, they consolidate random effects into
the linear predictor. As a mixed model, they contain at least one fixed effect and at
least one random effect. Parameter estimation in GLMMs is also based on maximum
likelihood principles; inferences for the parameters are readily obtained from clas-
sical maximum likelihood theory (McCulloch & Neuhaus, 2014; Fitzmaurice et al.,
2012; Yirga et al., 2020b). The two fundamental computational approaches to obtain
solutions to the likelihood equations are a pseudo-likelihood and integral approxi-
mation of the log-likelihood using either the Laplace or Gauss-Hermite quadrature
strategies (Der & Everitt, 2012; Shoukri, 2018; Stroup, 2012). Since pseudo-likelihood
produces biased covariance parameter estimates when the number of observations
per subject is small, it is especially inclined to biased estimates when the power is
small and uses a pseudo-likelihood rather than a true likelihood, likelihood ratio and
fit statistics such as AICC and BIC have no clear meaning (Yirga et al., 2020b). How-
ever, the Laplace and quadrature approaches use the actual likelihood and grant
us the appropriate likelihood ratio tests or information criteria, permitting compet-
ing models to be compared using these test statistics. Of these two, the Laplace
method is best since quadrature is ordinarily computationally restrictive for regu-
larly repeated measures. Moreover, the Laplace procedure is less computationally
intensive than the quadrature procedure and is considerably more flexible in terms
of the models with which it can be used (Yirga et al., 2020b). Detailed discussions of
parameter estimation in GLMMs can be found in numerous literature (Stroup, 2012;
Faraway, 2016; Fitzmaurice et al., 2012; McCullagh & Nelder, 1989; Zeger & Liang,
1986; Jiang, 2007). The fit statistics in Table 3.4 were obtained by using the Laplace
method. If this method had not been specified on the SAS Proc Glimmix procedure,
the default pseudo-likelihood procedure would have been used to fit the model. Be-
cause pseudo-likelihood is based on Tylor series approximation to the conditional
likelihood and not explicitly on the conditional likelihood itself, a goodness of fit
statistic such as the Pearson χ2 that is particularly appropriate to the conditional
distribution cannot be computed. Instead, the pseudo-likelihood approaches cal-
culate a Generalized χ2 statistic that measures the combined fit of the conditional
distribution of the counts and the random effects. Since it is not particular to only
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the conditional distribution, it does not give a clear-cut diagnostic to evaluate the fit
of the Poisson distribution to the counts (Der & Everitt, 2012).

The Pearson χ2/DF gives the goodness of fit statistic to evaluate over-dispersion
within the Poisson model. Since the mean and variance of the Poisson are equal, the
scale parameter (α) is one. If the Poisson assumption is fulfilled, the Pearson χ2/DF
ought to be close to one. Its estimated value of 20.66 (Table 3.4) indicated solid
prove of overdispersion under the Poisson model (Yirga et al., 2020b). Overdisper-
sion would imply more variability shown by the data than would be assumed under
a given statistical model (Morel & Neerchal, 2012; Yirga et al., 2020b). Overdisper-
sion could be an issue that should not be disregarded in the analysis. The essen-
tial and most serious consequence of overdispersion is its effect on standard errors
and test statistics. This was illustrated in Table 3.6, uncorrected analysis of overdis-
persed data (Poisson model) results in underestimated standard errors, leading to
biased estimates and inflated test statistics. It is basic to check for overdispersion
when fitting a GLM or a GLMM to guarantee that inferences derived from the fit-
ted model are precise (Morel & Neerchal, 2012; Yirga et al., 2020b). Overdispersion
is an implication that the fitted model is incorrect, and adjustments are required.
The two most commonly used approaches in GLMMs, to avoid unwanted outcomes
outlined above, are: adjusting the standard errors and test statistics by incorporat-
ing an adjustment for overdispersion in the model or assume a different probability
distribution for the counts that more reasonably approximate the method by which
overdispersion emerge (McCullagh & Nelder, 1989). Because the second strategy of
assuming a different distribution is a reasonable and suggested methodology, it was
illustrated in Table 3.5 in which the negative binomial distribution substitutes the
Poisson distribution as the conditional distribution of the outcome. The NB distri-
bution is the foremost candidate as an alternative to the Poisson (Hilbe, 2011; Yirga
et al., 2020b). The Pearson χ2/DF value of 0.91 (Table 3.4) shows that the negative
binomial provides a much-improved fit of the data compared to the Poisson model.
This is one of the reasonable GLMMs approaches for managing with overdispersion.

Table 7.3 outlined that the fixed effects results can be significantly influenced by
the covariance structure. Furthermore, the covariance structure also impacted the
estimate of the random effects: the time effects and their standard errors. The stan-
dard errors tend to be affected more than the estimates. The choice of covariance
structures matters for non-normally distributed data, just as it does for normally dis-
tributed data. The fit statistics associated with pseudo-likelihood estimation are not
comparable among models. Consequently, the fit statistics cannot be used to select
between competing for covariance structures. Therefore, the choice of covariance
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structure is not as straightforward for non-normal longitudinal response data as it is
under normality assumption (Harrison et al., 2018; Shoukri, 2018; Stroup, 2015; Gbur
et al., 2012; McArdle & Anderson, 2004; Galecki, 1994). However, for the GLMM
approach, the situation is better. As we discussed previously since the GLMM char-
acterizes an exact probability process under the Laplace method, fit statistics such
as AICC and BIC can be obtained (Harrison et al., 2018). Thus, for GLMMs, covari-
ance structures selection can proceed much as it does for normally distributed data
as long as either Laplace (preferable) or quadrature methods are used. Moreover,
while we have incorporated a parametric spatial covariance structure for the fitted
negative binomial mixed-effects model, other approaches to account for spatial vari-
ation are of interest. Our study methodology, in theory, can be extended to address
this issue using a generalized linear mixed-effects model for spatial data (Schaben-
berger & Gotway, 2017). Therefore, we leave this and other conceivable extensions
for future research.

Along this line, it would be fascinating to extend this study to the quantile mixed-
effects model. The majority of longitudinal modeling methods are based on mean
regression to concentrate only on the average effect of covariate and the mean tra-
jectory of the longitudinal outcome, which is constant across the population (Yirga
et al., 2020b). However, such average effects are not always of interest in many ar-
eas and sometimes quite heterogeneous. Thus, the quantile mixed-effects model has
the capacity, at both the population and individual level, to identify heterogeneous
covariates effects and describe differences in longitudinal changes at different quan-
tiles of the outcome. Hence leads to more efficient estimates, especially when the
errors are over-dispersed (Koenker, 2004; Geraci & Bottai, 2014).
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Chapter 4

Application of quantile
mixed-effects model in modeling

CD4 count from HIV-infected
patients in KwaZulu-Natal South

Africa

4.1 Introduction

The classical regression model has been the commonly applied statistical procedure
to depict the effects of explanatory variables on the mean response. This traditional
regression assumes that the effects of covariates are the same throughout the pop-
ulation. Nonetheless, such results based on a fixed location may not be relevant
in numerous areas, and sometimes the community is entirely diverse. Numerous
investigators, economic experts, monetary stakeholders, clinicians, and legislators
have revealed a growing interest in group differences across the whole population
instead of entirely depending on the average (Davino et al., 2013; Girma & Görg,
2005; Chunying, 2011; Mirnezami et al., 2012). Conventional regression cannot sat-
isfy all of these demands or conditions. In mean regression, we can only study the
influence of independent variables on the conditional mean of the outcome. Another
approach to study the central location is median regression. The median regression
approach is vigorous to the manifestation of outliers, and when the error distribu-
tion is not correctly specified (Davino et al., 2013; Koenker & Bassett, 1978).
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Quantile regression (QR) Was popularized by Koenker & Bassett (1978). It is an
extension of median regression to examine the covariates’ influence on different
quantiles/percentiles or the entire response distribution. Fixed effects could have
different impacts across various quantile levels. QR allows for a wide-ranging of ap-
plications; for example, investigating the 5th or 25th percentile (lower quantiles) of
the response (e.g., CD4 count distribution of HIV infected patient) might be of inter-
est in studying patients with fewer CD4 cell counts, where individuals are at higher
risk of developing illnesses. Therefore, that will be a high qualification for immedi-
ate HAART treatment so that the patients become beneficial. Therefore, studying the
response across all quantiles (e.g., at different CD4 count distribution), rather than
only the central tendency, as in mean regression, is important. The central tendency
cannot represent the entire distribution.

In recent years, mixed quantile regression models have become a widely used tech-
nique in statistical studies. A quantile regression model is based on conditional
quantiles instead of modeling the effects of covariates on the conditional mean,
which extends regression for the mean to the conditional distribution of the out-
come variable. Therefore, it is possible to examine the location, scale, and shape of
the distribution of responses to get an idea of how the covariates affect the distribu-
tion of responses. It is also more robust to outliers when compared to conventional
mean regression and is invariant to monotonic transformations. There is no need
to make any Gaussian assumptions concerning the response with a quantile regres-
sion, and it is capable of handling heavy-tailed and asymmetric data. As a result,
CD4 count can be modeled very well using this method.

Data gathered in numerous longitudinal research register considerable information
on repeated measures and imperative for understanding disease progression in clin-
ical studies. For instance, in HIV/AIDS investigations, repeated counts of CD4 cells
are vital signs of the seriousness of the viral infection, disease development, therapy
assessment and can be used to detect the future advantages of medical involvement
and risk factors for poor outcomes. Mixed-effects modeling have become quite pop-
ular in practical statistics. They are often used to examine longitudinal data due
to their ability to deal with both between-subject and within-subject variability in
longitudinal data (Pinheiro & Bates, 2006). Mixed-effects models and their esti-
mated effects are formulated on the response variable via a mean regression, reg-
ulating between-subject heterogeneity through normally distributed subject-specific
random effects and random errors. But, this centrality-based inferential system is
regularly cannot represent the entire distribution and may not be the finest location
to characterize the data. For more details on mixed-effects models (see Pinheiro &
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Bates, 2006; Verbeke & Molenberghs, 2009; Twisk, 2013; Diggle et al., 2002; Brown &
Prescott, 2014). There are also various strategies applicable to handle longitudinal
data, for instance, mixed-effects models and generalized linear mixed-effects mod-
els, as we have discussed in the previous chapters. However, all these techniques
limit the investigation of variations between subjects with regard to the mean of the
response variable, and they utilize parametric models based on the distributional
hypothesis (Davino et al., 2013). Moreover, in some cases, it could be challenging to
obtain appropriate transformation to normality for the response variable, or some
objection to outliers may be required. A good solvent to all these matters is given
by concentrating on the conditional quantiles of the longitudinal outcome (Koenker,
2005b). “Conditional QR methods, measuring the complete conditional distribution
of the response variable, have been developed to grant an analysis of variable effects
at any subjective quantiles of the response distribution. Furthermore, QR techniques
do not require any distribution assumption on the error; besides that, the error term
has a zero conditional quantile, like the ALD” (Wichitaksorn et al., 2014).

4.2 Quantile Regression

Quantile regression (QR) is a cutting-edge statistical strategy for modeling the per-
centiles of a response variable conditional on explanatory covariates. While regres-
sion for medians can be seen as more robust than regressions to model the mean
value, QR, a generalization of median regression, enables more fully to explore the
data by modeling the conditional quantiles at low or high quantiles, such as the 5th
and 95th percentiles. Studying the entire distribution of the response rather than
only the central tendency, as in mean regression, is important. Especially when the
distribution has a heteroscedastic nature, only the central tendency cannot represent
the entire distribution. If most of the observations are concentrated, for instance, on
the 75th percentile of the distribution, then it is more appropriate to consider the 75%

regression quantile than mean regression. Further, QR does not assume a specific
form for the (conditional) distribution and thus is able to accommodate non-normal
errors. When the response variable given a set of covariates has a heavy-tailed dis-
tribution, QR puts a reduced weight on the extreme observations. Furthermore, due
to its robustness to outliers, there is a growing interest in the literature on quantile
regression. For these reasons, QR becomes more prevalent in clinical, biomedical,
and other health-related research. For instance, Yirga et al. (2018) examined the BMI
of under-five children as a function of age and other important factors by quantile
regression. More applications of QR to independent data can be found in a number
of areas, among which public health, bioinformatics, health care, environmental sci-
ence, ecology, microarray data analysis, and survival data analysis (Koenker, 2005b;
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Buchinsky, 1998; Ellerbe et al., 2013; Koenker & Hallock, 2001; Peterson & Krishnan,
2015; Song et al., 2017; Sherwood et al., 2013; Cook & Manning, 2009; Borgoni, 2011;
Yu et al., 2003; Knight & Ackerly, 2002; Cade & Noon, 2003).

QR allows us to look beyond the average and provide a description of the whole
conditional distribution of a response variable in terms of a set of explanatory vari-
ables. It offers, therefore, an invaluable tool to discern effects that would be other-
wise lost in the conventional regression model analyzing the sole conditional mean
(Davino et al., 2013). Conventional regression focuses on the expectation of variable
Y conditional on the values of a set of variables x, E(Y |x), the so-called regression
function (Gujarati, 2014; Weisberg, 2005). Such a function restricts exclusively on a
specific location of Y conditional distribution. QR extends this approach by allow-
ing one to study the conditional distribution of Y on x at different locations and thus
offering a global view on the interrelations between Y and x.

QR solutions are computed for a selected number of quantiles, typically the three
quantiles along with two extreme quantiles, that is for

τ = {0.05, 0.25(Q1), 0.5(Q2), 0.75(Q3), 0.95}.

This is in light of the search for a rightful compromise between the amount of output
to manage and the results to interpret and summarize (Davino et al., 2013). Although
in many practical applications of QR, the focus is on estimating a subset of quantiles,
it is worth noticing that it is possible to obtain estimates across the entire interval of
conditional quantiles. In particular, the set: {β(τ) : τ ∈ (0, 1)} is referred to as the
quantile process (Koenker, 2005b).

Estimation of conditional quantiles relies on the non-differentiable and asymmetric
loss(check) function of Koenker & Bassett (1978), ρτ = u(τ−I{U < 0}) for τ ∈ (0, 1),
with I{·} = 1 if the function holds, and 0 otherwise, rather than the square loss
function in mean regression (Koenker, 2005b). Therefore, the computational and
theoretical aspects of conditional QR are different to that of mean regression.

4.2.1 Unconditional quantiles

Consider the mean of a generic r.v. Y , denoted as µ = E(Y ) which is defined as the
center c of a univariate distribution that minimizes the squared sum of deviations:

µ = arg min
c

E(Y − c)2 (4.1)
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The median (M ), which is the middle value (or the value half-way between the two
middle values) of a set of ranked data, rather, minimizes the absolute sum of devia-
tions:

M = arg min
c

E|Y − c| (4.2)

A particular location of the distribution (univariate quantile), in other words the τ th

quantile, is the value of y such that P (Y ≤ y) = τ . As a starting point, consider
the cumulative distribution function (cdf): FY (y) = F (y) = P (Y ≤ y). Thus, the
τ th quantile of Y , denotes as Qτ (Y ), is defined as the inverse of the cdf : Qτ (Y ) =

Qτ = F−1
Y (τ) = inf{y : F (y) ≥ τ}, for τ ∈ (0, 1). If F (·) is strictly increasing and

continuous, then F−1
Y is the unique real number y such that F (y) = τ (Gilchrist,

2000). Therefore, Qτ (Y ) minimizes the expected check function:

= arg min
c

E[ρτ (Y − c)], (4.3)

In such a view the median regression, which is a special case of quantile regression
with τ = 0.5, can bewritten as:

Q0.5(Y ) = arg min
c

E[ρ0.5(Y − c)] = arg min
c
E[0.5|Y − c|],

where ρτ (·) = [τ − I(y < 0)]y = [[(1 − τ)I(y ≤ 0) + τI(y > 0)]|y] (Davino et al.,
2013). This check (loss) function is then an asymmetric absolute loss function that is
a weighted sum of absolute deviations, where a (1−τ) weight is assigned to the neg-
ative deviations and a τ weight is used for the positive deviations. The loss function
ρτ of Koenker & Bassett (1978) is non-differentiable at zero. Thus, the minimizer has
no explicit solution. This calls for the use of optimization methods such as Linear
programming (LP).

Linear Programming

The problem which seeks to optimize a given linear function subject to linear equa-
tions and inequalities is called linear program (Koenker, 2005b; Vanderbei, 2020; Ma-
tousek & Gärtner, 2007). Linear programming (LP) is a subset of mathematical pro-
gramming, facing the efficient allocation of limited resources to know activities with
the objective of meeting the desired goal. For instance, let the random variables:
xi ≥ 0, i = 1, ..., n, whose values are to be decided in some optimal fashion, are re-
ferred to as decision variables (Vanderbei, 2020; Davino et al., 2013). Hence, LP aims
to find a vector X∗ ∈ <n+ to minimizing (or maximizing) the value of a given linear
function among all vectors X ∈ <n+ that satisfy a given system of linear equations
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and inequalities. This linearity has two purposes: to measure the considered quan-
tities with a linear function and to restrict the feasible plans by linear constraints
(inequalities) (Davino et al., 2013).

LP is a flexible approach widely used in various studies with different aims. An
exhaustive treatment of the topic would be outside the scope of this thesis. How-
ever, detailed description of the classical theory of LP as well as its formulation for
simple, multiple, and quantile regression models can be found Matousek & Gärtner
(2007), Koenker (2005b), Davino et al. (2013), or Vanderbei (2020).

4.2.2 Conditional quantiles

The idea of the unconditional mean as the minimizer of Equation (4.1) can be ex-
tended to the estimation of the conditional mean function by incorporating the effect
of covariates,X , on the response variable, Y :

µ̂(X,β) = arg min
µ

E[Y − E(Y |X = x)]2, (4.4)

where E[Y − E(Y |X = x) = X ′β in the case of a linear mean function. Thus,
the coefficient vector β is obtained by rearranging the above equation becomes:
β̂ = arg minβ E[Y − X ′β]2. Proceeding similarly, the τ th conditional quantile of
Y , denoted as Qτ (Y |X) is obtained as:

Q̂τ (Y |X) = arg min
Qτ (Y |X)

E[ρτ (Y −Qτ (Y |X))] (4.5)

where the (τ)-notation denotes that the parameters and the corresponding estima-
tors are for a particular quantile τ (Davino et al., 2013).

As mentioned previously, QR is an extension of the conventional estimation of con-
ditional mean models to conditional quantile functions; that is, an approach allow-
ing us to estimate the conditional quantiles of the distribution of a response variable
Y in the function of a set of predictor variablesX . In the framework of linear regres-
sion, the QR model for a given conditional quantile τ can be formulated as follows:

Qτ (Y |X) = Xβτ , (4.6)

where 0 < τ < 1 and Qτ (·|·) denotes the conditional quantile function for the τ th

quantile.

The quantile level is frequently signified by the Greek letter τ . Quantiles are location
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and scale parameters at the same time. For a given τ ∈ (0, 1), the τ th quantile is the
value of a r.v, where τ × 100% of its value lie below. In other words, it is the value
such that at most (1 − τ) × 100% of the values lies above. Thus, τ th quantiles close
to 0.5-quantile give the median, which is a well-known location parameter. On the
other hand, τ th quantiles close to zero or one give an idea of the scale. For instance,
the interquartile range (IQR) is defined as the 0.75-quantile minus the 0.25-quantile:
IQR=Q3 −Q1.

Let y denote a scalar response variable with conditional cumulative distribution
function Fy, whose shape is unspecified and xi the corresponding covariates vec-
tor of dimension k × 1 for subject i, i = 1, ..., n. Then, following Koenker & Bassett
(1978), the τ th conditional quantile regression model is written as Qτ (yi|xi) = x′iβτ ,
where Qτ (yi|xi) ≡ F−1

yi (·), which is the quantile function (or the inverse cumula-
tive distribution function) of yi given xi estimated at τ , and βτ is a column vector
of regression parameters corresponding to the τ th quantile. On the other hand, this
expression can be written as

Qτ (yi|xi) = x′iβτ + εi, with Qτ (εi|xi) = 0, (4.7)

where εi is the error term whose distribution (with density fτ (·)) is restricted to
have the τ th quantile to be zero, that is

∫ 0
−∞ fτ (εi)dεi = τ (Liu & Bottai, 2009; La-

chos et al., 2015). “The error density fτ (·) is often left unspecified in the classical
literature”(Lachos et al., 2015). Thus, the estimator β̂τ proceeds through linear pro-
gramming (LP) by minimizing

β̂τ = arg min
β∈RP

n∑

i=1

ρτ (yi − x′iβτ ) (4.8)

where ρτ (·) is the so called loss (or check) function defined by ρτ (u) = u(τ − I{u <

0}) with u being a real number and I{·} indicates the indicator function. Thus, β̂τ
is called the τ th quantile regression estimate (Koenker & Bassett, 1978; Koenker &
Machado, 1999; Koenker & Hallock, 2001; Koenker, 2005b). For a special case of
τ = 0.5, corresponds to median regression, Equation (4.8) simplified to

β̂0.5 = arg min
β∈RP

n∑

i=1

|yi − x′iβ0.5|

The parameter βτ and its estimator β̂τ depends on the quantile τ , due to the fact
that different choices of τ estimates different values of β (Liu & Bottai, 2009). For
this reason, interpretation of βτ is specific to the quantile being estimated, the inter-
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cept term denotes the baseline predicted value of the response at specific quantile
τ , while each coefficient can be interpreted as the rate of change of the τ th response
quantile per unit change in the value of the corresponding predictor variable (ith re-
gressor) keeping all the other covariates constant: βτ = ∂Qτ (yi|xi)

∂xi
.

If the distribution of the error term ε, characterized by its distribution function Fε

is known, Equation (4.7) would be stated as follows

Qτ (yi|xi) = x′iβτ + F−1
ε (τ), i = 1, ..., n.

In this case, the conditional mean and other associated measures of dispersion could
have better properties; therefore, there is no need for QR under these models. How-
ever, knowing the distribution of the error term ε in real data analysis is rare; rather,
long-tailed errors or heteroscedastic models or a mixture of both are usually ob-
served. For these reasons, either a robust alternative model (Koenker & Bassett,
1978) or a heteroscedastic extension of the model (Searle, 1997; Searle & Gruber,
2016) is needed.

The objective function of the conditional quantile estimator, β̂τ , in Equation (4.7)
proceeds by minimizing

H(βτ ) =
∑

i

τ |εi|+
∑

i

(1− τ)|εi|

=
n∑

i:yi≥x′iβτ

τ |yi − x′iβτ |+
n∑

i:yi<x′iβτ

(1− τ)|yi − x′iβτ |, 0 < τ < 1
(4.9)

where i : yi ≥ x′iβτ for under prediction, i : yi < x′iβτ for over prediction, and β̂τ
is the point where the absolute distance of all observations below are weighted with
1 − τ and the ones above are weighted with τ (Koenker & Bassett, 1978). Since the
above objective function is nondifferentiable, the gradient optimization methods are
not applicable; instead, linear programming methods can be used to obtain H(βτ )

(Cameron & Trivedi, 2005; Cameron et al., 2009). As discussed under Cameron et al.
(2009), the quantile regression estimator is asymptotically normal under general con-
ditions, and it is given by

β̂τ
a∼ N(βτ ,A

−1BA−1),

where A =
∑

i τ(1− τ)xix
′
i, B =

∑
i fuτ (0|xi)xix′i, and fuτ (0|xi) is the conditional

density of the error term uτ = y − x′βτ evaluated at uτ = 0 Buchinsky (1998). Es-
timation of the variance of β̂τ , which involves fuτ (0|xi) to estimate, is complicated
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and computationally intense. However, statistical software packages such as SAS
Proc Quantreg, quantreg in R, and qreg, bsreg, sqreg in Stata can easily obtain standard
errors for β̂τ .

One of the vital properties of conditional quantiles is their behavior with respect
to monotone transformations of the response variable. Transforming the covariates
such that they have equivalent scales expecting such changes have no fundamental
changes on the coefficients referred to as equivariance (Buchinsky, 1998).

The conditional quantiles’ equivariance properties

Consider the simple QR model with one explanatory variable for a given quantile
τ : Qτ (ŷ|x) = β̂0(τ) + β̂1(τ)x. For τ ∈ (0, 1), the equivariance property for chosen
transformation can be written as:

• Scale equivariance: Qτ (cŷ|x) = cβ̂0(τ) + cβ̂1(τ)x,
:Qτ (dŷ|x) = dβ̂0(τ) + dβ̂1(τ)x,

where c and d denote a positive and negative multiplier constant, respectively.
As a special case, τ = 0.5(Q2) the QR estimates are scale equivariant, irrespec-
tive of the sign of the constant (Manning et al., 1998; Davino et al., 2013).

• Shift or regression equivariance: Qτ (ŷ∗|x) = β̂0(τ) + [β̂1(τ) + γ]x,
where the dependent variable y is obtained as a linear combination, through
the γ coefficient, of the explanatory variable. Such an effect holds when y is
subjected to a location shift (Kuan, 2007): y∗ = y + xγ.

• Equivariance to reparametrization of design: Qτ (ŷ|Ax) = A−1xβ̂(τ),
whereA be a p× p non-singular matrix.

• Equivariance to monotone function: Qτ (h(ŷ)|x) = h(β̂0(τ)) + h(β̂1(τ))x,
where h(·) is a non-decreasing function on <.

Remark: the monotone transformation property is peculiar to QR, while the first
three properties are also satisfied by OLS estimators (Manning et al., 1998; Koenker
& Bassett, 1978; Davino et al., 2013).

Equivariance to monotone transformation is vital in real data applications because
the appropriate selection of the h(·) monotone function is necessary to manage and
correct different kinds of skewness (Manning et al., 1998; Davino et al., 2013). For in-
stance, the logarithmic transformation is a non-decreasing function that is typically
applied when the variable is right-skewed. Such a transformation can only be used
in the case of positive values (Davino et al., 2013).
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The case of a log transformation of Y for the above equivariance to monotone func-
tion can be expressed as:

Qτ (log(ŷ)|x) = log(β̂0(τ)) + log(β̂1(τ))x.

However, log(E(ŷ|x)) 6= E(log(ŷ)|x), in the case of OLS regression. The log transfor-
mation might be very hazardous in terms of the inference results of an OLS regres-
sion (Manning et al., 1998) whereas it may aid the statistical inference at QR (Cade
& Noon, 2003).

In OLS regression, inference on a transformed dependent variable should be inter-
preted very cautiously because the evaluation of the significance of the parameter
values can lead to different conclusions with and without the use of the transfor-
mation. However, inference on the QR results is not affected by a monotone trans-
formation, and it can even be improved (Chen, 2005). More practical examples of
evaluating the consequence of a log transformation for the parameter inference in
detail, both in OLS and QR analysis, can be found in Davino et al. (2013). The equiv-
ariance property of QR to a different monotone transformation capable of dealing
with negative skewness is presented by Manning et al. (1998). Moreover, equivari-
ance properties and their corresponding proofs are presented by Koenker & Bassett
(1978).

4.2.3 Asymmetric Laplace Distribution for Quantile Regression

As illustrated in Koenker & Bassett (1978), the check function (ρτ (·)) is not differ-
entiable at zero; thus specific solutions to the minimization problem cannot be ex-
tracted. Hence, LP procedures are often used to achieve a relatively fast computa-
tion of β̂τ (Lachos et al., 2015; Cameron & Trivedi, 2013). A natural link between
minimization of the quantile check function and ML theory is given by the assump-
tion that the error term in Equation (4.7) follows an asymmetric Laplace distribution
(ALD) (Yu & Moyeed, 2001; Koenker & Machado, 1999). A connection between the
minimization of the sum in Equation (4.8) and the ML theory is provided by ALD
(Yu & Zhang, 2005). ALD that is closely associated with the loss function for QR
has been examined in several works of literature (Yu & Zhang, 2005; Yu & Moyeed,
2001; Geraci & Bottai, 2007; Liu & Bottai, 2009; Lachos et al., 2015; Kotz et al., 2002).
Other forms of Laplace distribution were summarized by Kozubowski & Nadarajah
(2010). A book entirely devoted to the Laplace distribution, historical background,
and its extension is presented by Kotz et al. (2012).
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As discussed in Koenker & Machado (1999) and Yu & Moyeed (2001) that a con-
tinuous r.v. Y ∈ R is distributed as an ALD if its probability density function (pdf)
with location parameter µ, scale parameter σ > 0, skewness parameter τ ∈ (0, 1),
and ρτ (u) = u(τ − I{u < 0}) represents the contribution by residuals u, is given by

f(Y |µ, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ

(
yi − µi
σ

)}
, (4.10)

which can be denoted as y ∼ ALD(µ, σ, τ), then Pr(y ≤ µ) = τ and Pr(y > µ) =

1− τ indicates that the parameters µ and τ in ALD satisfy µ to be the τ th quantile of
y. QR adapt this important feature of ALD (Yu et al., 2003). Moreover, Yu & Zhang
(2005) addressed detail investigation of the various properties and generalization of
an ALD.

Since τ ∈ (0, 1) is the skewness parameter, the ALD splits along the scale param-
eter into two parts, one with probability τ to the left and one with probability (1− τ)

to the right. That is, ALD(µ, σ, τ) is negatively skewed when τ > 0.5, and positively
skewed when τ < 0.5. When µ increases, the density shifted on the x-axis. For
higher σ, the density is wider, and the data is more spreader. Figure 4.1 displays
the ALD densities of these cases for a random sample generated from R; however,
see Yu & Zhang (2005) for more graphical representation of an ALD density. The
three-parameter ALD defined in Koenker & Machado (1999) useful for QR is imple-
mented in the R package 'ald'. It provides the probability density function, distri-
bution function, quantile function, random number generator function, likelihood
function, moments, and ML estimator for a given sample (Galarza & Galarza, 2015).
Further, the ALD, which is characterized by three parameters µ, σ, and τ (Equation
(4.10)) reduces into two special cases:

f(Y |µ, σ, τ) =




τ(1− τ) exp {−ρτ (y − µ)} , if σ = 1

1
4σ exp

{
− |y−µ|2σ

}
, if τ = 0.5,

where the first case is considered by Koenker & Machado (1999), and the second case
is usually called symmetric (double-exponential) Laplace distribution with location
parameter µ and scale parameter 2σ (Yu & Zhang, 2005). Several of the extended
ALDs are based on either the mixture of the symmetric Laplace distribution or a split
of it (Kotz et al., 2002; Kozubowski & Nadarajah, 2010). See also Kotz et al. (2012)
or Kozumi & Kobayashi (2011) for more details, and representation of the various
mixture of an ALD in the ALD(µ, σ, τ) parameterization.
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Figure 4.1: Densities of an Asymmetric Laplace Distribution
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As illustrated in Yu & Zhang (2005), the kth central moment of an ALD for a r.v.
Y ∼ ALD(µ, σ, τ) is written as follows

• The kth central moment

E(Y − µ)k = k!σkτ(1− τ)

(
1

τk+1
+

(−1)k

(1− τ)k+1

)
(4.11)

Thus, the mean and variance of an ALD can be derived from this moment:

• The mean of an ALD can be derived as follows

E(Y ) = E(Y − µ+ µ), where µ is constant

= E(Y − µ)1 + E(µ), k = 1

= στ(1− τ)

(
1

τ2
+

−1

(1− τ)2

)
+ µ, using Equation(4.11)

= στ(1− τ)

(
(1− τ)2 − τ2

τ2(1− τ)2

)
+ µ

=
σ(1− 2τ + τ2 − τ2)

τ(1− τ)
+ µ

= µ+
σ(1− 2τ)

τ(1− τ)

(4.12)

• The variance of an ALD can also be derived as follows

V ar(Y ) = V ar(Y − µ+ µ), where µ is constant

= V ar(Y − µ) + V ar(µ)

= V ar(Y − µ), V ar(µ) = 0 by properties of variance

= E((Y − µ)2)− (E(Y − µ))2, when k = 2 in Equation(4.11)

= 2σ2τ(1− τ)

(
1

τ3
+

1

(1− τ)3

)
−
(
στ(1− τ)

(
1

τ2
+

−1

(1− τ)2

))2

= 2σ2τ(1− τ)

(
(1− τ)3 + τ3

τ3(1− τ)3

)
−
(
σ(1− 2τ)

τ(1− τ)

)2

=
2σ2(1− 3τ + 3τ2)

τ2(1− τ)2
− σ2(1− 4τ + 4τ2)

τ2(1− τ)2

=
σ2(2− 6τ + 6τ2 − 1 + 4τ − 4τ2)

τ2(1− τ)2

=
σ2(1− 2τ + 2τ2)

τ2(1− τ)2

(4.13)

For independently distributed r.v. Yi|xi i∼ALD(µi, σ, τ) with µi = x′iβτ , the likeli-
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hood density function of an n-dimensional ALD is given as

L(β, σ|y, τ) =
n∏

i=1

f(Y |µi, σ, τ)

=
n∏

i=1

τ(1− τ)

σ
exp

{
−ρτ

(
yi − µi
σ

)}

=
n∏

i=1

τ(1− τ)

σ
exp

{
−ρτ

(
yi − x′iβτ

σ

)}

=
τn(1− τ)n

σn
exp

{
−

n∑

i=1

ρτ

(
yi − x′iβτ

σ

)}
,

(4.14)

for a fixed τ ∈ (0, 1), Equation (4.14) is proportional to

L(β, σ|y, τ) ∝ σ−n exp

{
−

n∑

i=1

ρτ

(
yi − x′iβτ

σ

)}
.

Thus, the ML estimator of µi is given by µ̂i = x′iβτ with

β̂τ = arg max
β∈Rp

{
σ−n exp

(
−

n∑

i=1

ρτ

(
yi − x′iβτ

σ

))}
(4.15)

This shows that for a fixed τ ∈ (0, 1) the estimators β̂τ from Equation (4.8) and from
Equation (4.15) align; it holds that

β̂τ = arg min
β∈Rp

n∑

i=1

ρτ (yi − x′iβτ )

= arg max
β∈Rp

{
σ−n exp

(
−

n∑

i=1

ρτ

(
yi − x′iβτ

σ

))}
,

which implies that maximizing the likelihood function in Equation (4.15) with re-
spect to β is equivalent to minimizing the objective function in Equation (4.8) (Liu
& Bottai, 2009; Lachos et al., 2015). This matches the result from simple linear re-
gression, where the OLS estimator of the regression parameter minimizing the error
sum of squares is equivalent to the ML estimator of the corresponding Gaussian
likelihood (Galarza et al., 2020).
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4.2.4 Quantile Regression for Count Data

The conventional QR is based on the median, or other quantile levels, by assuming
a continuous or Gaussian distribution. QR has been extended to count regression,
which is a special case of the discrete variable model (Winkelmann, 2008; Hilbe, 2011,
2014; Machado & Silva, 2005; Cameron et al., 2009; Cameron & Trivedi, 2013). How-
ever, the distribution function of a discrete r.v. is not continuous, and the objective
of interest of the conditional quantile Qτ (y|x) for discrete distribution cannot be a
continuous function of x such as exp(x′β) (Winkelmann, 2008). Machado & Silva
(2005) overcome this restriction by developing a continuous r.v. whose quantiles
have a one-to-one relation with the quantiles of y. The key step in their model is to
replace the count response, y, with a continuous r.v., z = h(y), where h(·) is a smooth
continuous transformation. Hence, the count response, y, is structured as

z = y + u, (4.16)

where u ∼uniform(0, 1) is a pseudorandom draw from the uniform distribution on
(0, 1). This step is also known as “jittering”, which is the process of eliminating the
discontinuities in the Poisson or negative binomial count models or any other mod-
els for count data in such a way that the resultant distribution appears as a contin-
uous variable; thus, the entire conditional quantile can then be model (Hilbe, 2011,
2014; Cameron et al., 2009; Cameron & Trivedi, 2013; Machado & Silva, 2005). Stata
command: qcount is available to model QR for count data using the jittering method
(Hilbe, 2011; Miranda, 2007; Cameron et al., 2009).

As illustrated in Machado & Silva (2005), the following parameterization is used
to represent a transformation, T (z; τ), and its associated representation of the condi-
tional τ -quantile of z, Qτ (z|x):

T (z; τ) =





log(ξ), z ≤ τ
log(z − τ), z > τ, τ ∈ (0, 1)

where 0 < ξ < τ , which is a small positive number, and x represents a vector of ex-
planatory variables. Hence, it follows that the transformed jittered quantile function
written as

Qτ (T (z; τ)|x) = x′βτ
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Winkelmann (2006, 2008) stated that after Qτ (z|x) and T (·) are specified, the param-
eters, βτ , estimated as solution to

min
n∑

i=1

ρτ (T (z; τ)− x′βτ )

where ρτ (u) = u(τ − I {u < 0}).

From Equation (4.16), one can study the conditional quantiles of z, Qτ (z|x), but
it is τ th quantiles of the conditional distribution of y, Qτ (y|x), that are of interest
(Cameron et al., 2009).

The conditional quantile for Qτ (z|x) is specified as

Qτ (z|x) = τ + exp(x′β), 0 < τ < 1 (4.17)

The conditional quantile function of the objective interest, Qτ (y|x) is

Qτ (y|x) = dQτ (z|x)− 1e, (4.18)

where dae denotes the ceiling function that returns the smallest integer greater than,
or equal to, a (Machado & Silva, 2005).

When the count data consists of severe outliers or multiple distributional compo-
nents that do not reflect a known underlying probability distribution, quantile count
models may be a useful alternative. Furthermore, QR models all of the quantiles of
distribution and covers the entire range of counts (Hilbe, 2011). For this reason,
QR to jittered count data can be used as a valuable additional tool to make infer-
ences about the entire range of counts, but it cannot replace the more structured and
well-proven models for count data analysis (Machado & Silva, 2005). Hilbe (2011,
2014) also stated that this new and growing in use class of count model, quantile
count model, could be used when the distribution, or mixture of distributions, can-
not be identified. Detailed discussions about quantile count models for independent
data are available in Winkelmann (2008), Machado & Silva (2005), Hilbe (2011, 2014),
Cameron et al. (2009), Cameron & Trivedi (2013), and the recent application of this
model can be found in Winkelmann (2006) and Miranda (2008).
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4.3 Quantile Mixed-Effects Models

Although QR was at first developed under a univariate system, the considerable
amount of longitudinal data recently produces its extensions toward mixed-effects
modeling system through either the distribution-free way (Galvao Jr, 2011; Fu &
Wang, 2012; Lipsitz et al., 1997) or the likelihood-based way in most cases following
the ALD (Galarza et al., 2015; Geraci & Bottai, 2007, 2014; Galarza et al., 2017). The
likelihood-based quantile mixed model additionally makes use of different para-
metric distributions such as an infinite mixture of Gaussian densities (Reich et al.,
2010), and direct parametric maximum likelihood (ML) approach (Noufaily & Jones,
2013). The distribution-free approaches that consist of fixed-effects and weighted
generalize estimating equations consider the use of independent estimating equa-
tions that ignore correlations between repeated measurements leads to loss of effi-
ciency (Geraci & Bottai, 2014; Koenker, 2004; Lipsitz et al., 1997). Meanwhile, Geraci
& Bottai (2007) suggested a likelihood-based QR model for longitudinal data that
accounts for within-subject dependence by incorporating subject-level random ef-
fects and modeling the residual distribution with an ALD. Liu & Bottai (2009) also
developed a likelihood-based method to estimate parameters of conditional quan-
tile functions with random effects by incorporating an ALD for the random error
term that is not restricted to be normal. The within-subject correlation among data
is taken into account by adding random effects to get unbiased parameter estimates
(Liu & Bottai, 2009).

Although the application of QR for mixed-effects models has received increasing
consideration in wide-ranging areas of study, such as marine biology, environmen-
tal science, cardiovascular disease, and ophthalmology (Geraci & Bottai, 2007; Muir
et al., 2015; Fornaroli et al., 2015; Blankenberg et al., 2016; Patel et al., 2016); it has
not easily extended to the mixed-effects models because of the greater complexity in
solving the minimization problem.

Mixed-effects models characterize an ordinary and conventional type of regression
methods used to examine data coming from longitudinal studies. Recall the general
linear mixed-effects model:

Yi = X ′iβ +Z ′iui + εij , i = 1, ..., n, j = 1, ..., ni,

where Yi is the ni × 1 vector of response variable, X ′i is the ith row of a known
ni × p + 1 design matrix, β is p × 1 vector of population-averaged fixed-effects, Zi
with the dimension of ni× q+ 1 known design matrix for random effects, ui is q× 1
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vector of random effects, ui ∼ N(0,Σu), and εij ∼ N(0, σ2). As previously dis-
cussed, Koenker & Bassett (1978) defined the quantile regression with no random
effects (Equation (4.7)), in which their model considered observations are indepen-
dent. Koenker (2004) introduced an approach of quantile regression with fixed ef-
fects models for the application of longitudinal data. He considered the conditional
quantile functions of the response of the jth observation on the ith individual yij of
the form

Qτ (yij |xij) = αi + x′ijβτ + εij , j = 1, ..., ni; i = 1, ...,M (4.19)

By solving,

arg min
(α,β)

q∑

k=1

ni∑

j=1

M∑

i=1

wkρ(τk)(yij −αi − x′ijβ(τk)), (4.20)

to estimate the model for several quantiles simultaneously. Note that ρτ = u(τ −
I(u < 0)) indicates the piecewise linear quantile loss function of Koenker & Bassett
(1978), wk denotes the weights that control the relative influence of the q quantiles
{τ1, ..., τq}, on the estimation of αi parameters, and αi’s have a pure location shift
effect on the conditional quantiles of the response, which were added to capture
some individual specific source of variability (unobserved heterogeneity) that was
not adequately controlled for by other covariates in the model. The effect of the co-
variates, xij are allowed to depend upon the quantile, τ , of interest, but the αi’s do
not (Koenker, 2004). However, this approach does not account for between/within
subjects’ variability; thus, it is computationally inefficient when dealing with large
sample sizes or complex models.

Furthermore, Koenker (2004) also considered using penalized quantile regression
with subject-specific fixed-effects to model longitudinal data. In this model, Konker
considered estimators of the penalized version of Equation (4.15) by solving

arg min
(α,β)

q∑

k=1

ni∑

j=1

M∑

i=1

wkρ(τk)(yij −αi − x′ijβ(τk)) + λ
n∑

i=1

|αi|, (4.21)

which considers theL1-penalty, P (α) =
∑n

i=1 |αi| for the loss function ρτ , rather than
the conventional Gaussian penalty, to maintain the LP form of the problem and also
to preserve the sparsity of the resulting design matrix (Koenker, 2004). Equation
(4.17) reduced to the following form of a quantile function by Koenker (2004) for
each individual

Qτ (yij |xij) = x′ijβ(τ) + αi(τ) (4.22)
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As a result, Koenker (2004) obtained two component parts: a common population
quantile function and an individual component for each subject. As Konker sug-
gested, when the population is of interest, a penalty method that controls for the
subject variability can be a useful approach due to the computational simplicity
(Koenker, 2004).

Similarly to the conventional QR model (Equation (4.7)) without random effect for
a fixed τ ∈ (0, 1), Geraci & Bottai (2007) extended the QR model by incorporating
random intercept to model longitudinal data that follows ALD for the conditional
response. Thus, the dependence among data (within-group correlation) accounted
for by a subject-specific random intercept, modeled as

Qτ (yij |xij ,u0i) = x′ijβτ + u0i + ετ,ij , with Qετ,ij (τ |xij ,u0i) = 0 (4.23)

where the extended random effect ετ,ij distributes as ετ,ij
iid∼ ALD(0, σ, τ) that car-

ries τ in the footnote, which implies for different quantile level the random effect
may be different. The ALD, which was discussed in subsection (4.2.3), also serves
as the distribution of the individual error term ετ,ij here. As Geraci & Bottai (2007)
presented, estimation of the regression quantiles for this approach was then accom-
plished using Gibbs Sampling, which is also highlighted in Appendix C.

The quantile mixed model version of Equation (4.19) only needs to be employed
whenever the distribution of the error term in the mixed model (Equation (4.19)) is
unknown. But for a known error distribution function Fε, which is not practical in
real data application, the τ -quantile of yij given xij would be

Qτ (yij |xij ,u0i) = x′ijβτ + u0i + ετ,ij + F−1
ε(τ), (4.24)

where i = 1, 2, ...,M ; j = 1, 2, ..., ni, and β is the same parameter vector as in Equa-
tion (4.19). However, assuming an unknown error distribution ε for practical appli-
cation leads to model flexibility.

Linear QR with multiple random effects (random intercept and random slope) sim-
ply general linear quantile mixed-effects models (QR-LMM hereafter) was devel-
oped by Geraci & Bottai (2014) as an extension of their previous work of Geraci &
Bottai (2007). The τ th QR-LMM is modeled as

Qτ (yij |xij ,ui) = x′ijβτ + z′ijui + ετ,ij , with Qετ,ij (τ |xij ,ui) = 0 (4.25)
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where the random errors ετ,ij ∼ ALD(0, σ, τ) are also dependent on τ , βτ is the
coefficient of fixed-effects corresponding to the τ th quantile, and the continuous re-
sponse variable yij , conditional on xij and ui for i = 1, ..., n, j = 1, ..., ni are assumed
to be independently distributed as ALD with the density given by

f(yij |xij ,ui, σ) =
τ(1− τ)

σ
exp

{
−ρτ

(
yij − x′ijβτ − z′ijui

σ

)}
, (4.26)

The random effects (u′is) are assumed to be distributed as ui
iid∼ Nτ (0,Ψ), where the

dispersion matrix Ψ = Ψ(α) relies on unknown and reduced parameters α (Lachos
et al., 2015; Galarza, 2015). Then a likelihood for yij at the τ th quantile is

L(β, σ|yij , τ) =
τn(1− τ)n

σn
exp



−

n∑

i=1

ni∑

j=1

ρτ

(
yij − x′ijβτ − z′ijui

σ

)
 (4.27)

Based on the likelihood of conditional quantile of yij , it is suggested that the max-
imization of the likelihood in Equation (4.26) with respect to the parameter βτ is
equivalent to the minimization of the loss function in Equation (4.28). Thus, we
can estimate the coefficient of fixed-effects corresponding to the τ th quantile (βτ ) by
minimizing the objective function of Equation (4.27), which can be expressed as

H∗(βτ ) =
n∑

i=1

ni∑

j=1

ρτ

(
yij − x′ijβτ − z′ijui

σ

)
(4.28)

As described by Geraci & Bottai (2007, 2014), the QR-LMM need an estimator (maxi-
mum likelihood) for the parameter βτ , and a predictor for the random vector leading
to the conditional quantile function estimator for a fixed τ ∈ (0, 1).

Q̂τ (yij |xij) = xijβ̂τ + ε̂τ,ij

These two estimation process: maximum likelihood methods and prediction of random
effects are summarized herein, which are also described in Geraci & Bottai (2007,
2014). The methods are implemented in the open software R (see the package lqmm
by Geraci et al. (2014)).

Maximum Likelihood Methods

From the QR-LMM (Equation (4.19)), the conditional distribution of Fyij |ui is as-
sumed to be unknown, and follows an ALD, with location, scale, and skewness
parameters given µτ,ij = x′ijβτ + z′ijui, στ , and τ , respectively, where βτ ∈ Rp is
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a vector of unknown fixed effects, and τ defines the quantile level to be estimated
(Geraci et al., 2014).

Thus the joint desity of the observation vector y and the random effect vector u,
(y,u), for QR-LMM is given as

f (y,u|βτ , στ ,Ψτ ) = f (y|βτ , στ ,u) f (u|Ψτ )

=
M∏

i=1

f (yi|βτ , στ ) f (ui|Ψτ )

=
M∏

i=1




ni∏

j=1

f (µτ,ij |βτ , στ ) f (ui|Ψτ )




(4.29)

where ui = (ui1, ..., uiq)
′, for i = 1, ...,M ; j = 1, ..., ni, assumed to be a zero-median

random vector independent from the model’s error term and distributed according
to f (ui|Ψτ ), and Ψτ is a q × q covariance matrix (Geraci et al., 2014).

By integrating out the random effects u from Equation (4.25), the marginal likeli-
hood can be obtained:

L(y|Ψτ ,βτ , στ ) =

∫

Rq

M∏

i=1




ni∏

j=1

f (µτ,ij |βτ , στ ) f (ui|Ψτ )


 dui

=
M∏

i=1

∫

Rq




ni∏

j=1

f (µτ,ij |βτ , στ ) f (ui|Ψτ )


 dui

=
M∏

i=1

∫

Rq




ni∏

j=1

f
(
x′ijβτ + z′ijui|βτ , στ

)
f (ui|Ψτ )


 dui,

(4.30)

where Rq denotes the q-dimensional Euclidean space (Geraci & Bottai, 2014).

Since there is no analytical or closed-form solution for the above integral, approx-
imation methods such as marginal, MCMC methods, and numerical integration are
needed (Geraci & Bottai, 2007, 2014). Geraci & Bottai (2007) first attempt to estimate
the parameter of the QR model with random intercept by using a Monte Carlo EM
(MCEM) algorithm, which, however, found to be computationally intensive and in-
efficient (Geraci & Bottai, 2014). Later, Geraci & Bottai (2014) made use of a different
approach based on a Gaussian quadrature, which is also implemented in the R pack-
age lqmm (Geraci et al., 2014), shows advanced than the previous MCEM method.
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By using numerical integration technique, Geraci & Bottai (2014) derived the marginal
log-likelihood density, denoted as `(y|Ψτ ,βτ , στ ) = logL(y|Ψτ ,βτ , στ ), written as

` =
M∑

i=1


log

(
τni(1− τ)ni

σni

)
+ log

∫

Rq
exp



−

1

σ

ni∑

j=1

ρτ (yij − µτ,ij)



 f (ui|Ψτ ) dui


 ,

(4.31)
where, the random effect u is assumed to be normally distributed as u ∼ N(0,Ψ),
which leads to a Gauss-Hermite quadrature for the approximate ALD-based log-
likelihood, denoted as `app(y|Ψτ ,βτ , στ ), see Geraci et al. (2014), or Geraci & Bottai
(2014), for further discussion.

Prediction of Random Effects

The predictor of the random effects U for the τ th QR-LMM can be written as

Ûτ = Ψ̂τZτ Σ̂
−1
{
Y −Xβ̂τ − Ê[Στ ]

}
, (4.32)

where the estimated covariance matrix of Y , which is Σ = ZΨ̂τZ
′ + ˆV ar(Στ ), and

the estimated mean and variance of the ALD with parameters µ = 0, σ̂, and τ that
are given in Yu & Zhang (2005) can also be written here as

Ê[Στ ] =
σ̂(1− 2τ)

τ(1− τ)

ˆV ar(Στ ) =
σ̂2(1− 2τ + 2τ2)

τ2(1− τ)2

(4.33)

Note that Geraci & Bottai (2014) used an approach based on the best linear predictor
(BLP) of Ruppert et al. (2003) for prediction of U . As a result QR-LMM estimator,
Q̂τ (yij |xij), is a combination of β̂τ (maximum likelihood estimator) from the first es-
timation process, and Ûτ (predictor of random effect) given in Equation (4.27). How-
ever, Geraci & Bottai (2014) stated that prediction of random effects in QR-LMMs is
still an ongoing research issue. More details regarding the estimation process of
quantile mixed-effects models are available here (Geraci & Bottai, 2007, 2014; Yu &
Zhang, 2005; Galarza et al., 2015; Liu & Bottai, 2009; Geraci et al., 2014).

Since computational issues for longitudinal quantile regression are still an open
problem, different approaches have been investigated by several researchers (Marino
& Farcomeni, 2015). Recently, Galarza et al. (2015, 2017) presented a robust paramet-
ric ALD-based QR-LMM that follows the stochastic approximation of the expectation-
maximization (SAEM) algorithm for deriving exact ML estimates of the fixed-effects,
and the general variance-covariance matrix Στ = Σ(θτ ) of the random effects pa-
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rameters for the specific quantile. The SAEM estimating algorithm for QR-LMM is
implemented in the open software R, see the package qrLMM by Galarza et al. (2017).

4.3.1 The EM and SAEM algorithms

The Expectation-Maximization algorithm, also known as the EM algorithm, which
was proposed by Dempster et al. (1977), is a popular technique to the iterative com-
putation of ML estimates when the observations can be viewed as incomplete data,
which incorporates the ordinary sense of missing data; however, it is much broader
than that (McLachlan & Krishnan, 2007). There are two steps in each iteration of the
EM algorithm: an expectation, or E-step, followed by a maximization (M-step). “In
the former action, the incomplete data are estimated given the observed data and
current estimates of the model parameters. In the later step, the likelihood function
is maximized under the assumption that the incomplete/missing data is known”
(Dempster et al., 1977). The detailed explanations of these processes, their related
analytical clarifications for successively more common sorts of models, and the ba-
sic theory underlying the EM algorithm are presented in Dempster et al. (1977). A
book devoted entirely to the general formulation of the EM algorithm, as well as
its basic properties and applications, has been provided by McLachlan & Krishnan
(2007). Moreover, the success of the EM algorithm is well documented and can be
found in numerous statistical literature.

Even though the EM algorithm is popular, Delyon et al. (1999) pointed out that,
in certain circumstances, it is not applicable due to the fact that the E-step cannot be
carried out in a closed-form. To bargain with these issues, Delyon et al. (1999) pre-
sented a simulation-based SAEM algorithm as an elective to the MCEM, standing
for Monte Carlo EM. “While the MCEM requires a consistent increment of the sim-
ulated data and regularly a substantial amount of simulations, the SAEM versions
guarantee convergence with a fixed and/or small simulation size” (Meza et al., 2012;
Delyon et al., 1999; Jank, 2006). The SAEM algorithm replaces the E-step of the EM
algorithm by one iteration of a stochastic (probabilistic) approximation procedure,
whereas the M-step is consistent (Meza et al., 2012). The E- and M-steps of the EM
and SAEM procedures are highlighted herein. For more points of interest, however,
see Jank (2006), Meza et al. (2012), or Kuhn & Lavielle (2004, 2005). Furthermore, de-
tails of these algorithms for estimating the parameters of the QR-LMM are presented
by (Galarza et al., 2015, 2017). “The SAEM algorithm was proven to be more effec-
tive for computing the ML estimates in mixed-effects models due to the reusing of
simulations from one iteration to the next in the smoothing phase of the algorithm”
(Meza et al., 2012; Kuhn & Lavielle, 2004, 2005; Galarza et al., 2015). The SAEM al-
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gorithm is implemented in the R package qrLMM().

Let `o(θ̂) = logf(Yobs; θ) denotes the maximization of log-likelihood function based
on the observed data (Yobs), q represents missing data, Ycom = (Yobs, q)

′ denotes
the complete data with observed and missing data, `c(Ycom; θ) be the complete log-
likelihood function, and θ̂k indicates the estimated value of θ at the kth iteration.
Then the EM algorithm in modeling with missing data, that maximizes `c(Ycom; θ) =

log f(Yobs, q; θ) iteratively and converges to a stationary point of the observed like-
lihood under mild regularity conditions (Meza et al., 2012; Galarza et al., 2015), go
through in two steps:

• E-step: Consists computing of the conditional expectation of `c(Ycom; θ)

S(θ|θ̂k) = E
{
`c(Ycom; θ)|Yobs, θ̂k

}
(4.34)

• M-step: Computes the parameter values θ̂k+1 as maximizing S(θ|θ̂k) with re-
spect to θ.

The SAEM algorithm, which replaces the E-step by stochastic approximation, pre-
sented by Galarza et al. (2015), is summarized as follows:

• Simulation (E-step): Generate q(`o, k) sample (simulation of the missing data
at iteration k), ` = 1, 2, ...,m, from the conditional distribution of the missing
data f(q|θk−1, Yobs)

• Stochastic approximation: Update S(θ|θ̂k) according to

S(θ|θ̂k) = S(θ|θ̂k−1) + δk

[
1

m

m∑

`=1

`c(Yobs, q(`o, k)|θ̂k; θ)− S(θ|θ̂k−1)

]
(4.35)

• M-step: Maximize θ̂k according to

θ̂k+1 = arg max
θ

S(θ|θ̂k),

this is equivalent to finding θ̂k+1 ∈ Θ such that S(θ̂k+1) ≥ S(θ̂k),

where δk is a smoothing parameter (a sequence of decreasing non-negative numbers)
as given by Kuhn & Lavielle (2004), and m is the number of simulations suggested
to be less than or equal to 20 (Galarza et al., 2015). The choice of δk recommended by
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Galarza et al. (2015) is given as follows:

δk =





1 for 1 ≤ k ≤ cW
1

k−cW for cW + 1 ≤ k ≤W,

where c ∈ (0, 1) is a cut point that regulates the percentage of initial iterations with
no memory, and W is the maximum number of iterations.

4.3.2 Quantile Regression for Longitudinal Count Data

As discussed in Subsection (4.2.4), the quantiles of count data must be integers due to
the fact that counts themselves are integers. Since the QR-LMM (Equation (4.21)) is a
model for continuous data, it is not directly applicable on counts. To date, the appli-
cation of QR for examining longitudinal count data is not fully developed. However,
the application of QR-LMM is proven to be applicable for count data.

Recall the count mean mixed model or Poisson mixed model (Section (4.3)) for a
discrete variable λij , written as

exp(x′ijβ + ui), i = 1, 2, ...,M ; j = 1, 2, ..., ni,

where random effect ui is assumed to be normally distributed with mean 0 and vari-
ance σ2, ui

iid∼ N(0, σ2
u).

This mean model needs to be improved in order to estimate quantiles of yij given xij
for a fixed τ ∈ (0, 1), Qτ (yij |xij). This will be fulfilled by jittering the data. Machado
& Silva (2005) had the idea of jittering in order to get continuous data as discussed
in Subsection (4.2.4). Jittering the longitudinal count data can also be applied in the
linear mixed model. The main idea is similar to the count data in linear models,
see Machado & Silva (2005), for more details. By adding a standard uniform r.v. uij
independent from yij and xij , a continuous observation zij can be obtained as

zij = yij + uij , i = 1, 2, ...,M ; j = 1, 2, ..., ni, (4.36)

where yij ’s are count observations, and uij ∼uniform(0, 1).

QR-LMM can be adapted on the continuous r.v. zij of Equation (4.32). Thus, the
longitudinal quantile of the jittered data zij for a fixed τ ∈ (0, 1) can be written as

Qτ (zij |xij) = τ + exp(x′ijβτ + ετ,ij) (4.37)
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For a fixed τ ∈ (0, 1) the quantile of the transformed jittered data T (zij , τ) can be
written as

Qτ (T (zij , τ)|xij) = x′ijβτ + ετ,ij , (4.38)

where

T (zij , τ) =





log(ξ), zij ≤ τ
log(zij − τ), zij > τ,

with a small value ξ. Thus, T−1(zij , τ) ≈ τ + exp(zij).

Since the transformed jittered data: y∗ij = T (zij , τ) is now continuous, as a result
the quantile count estimation could apply in the linear mixed models. This will lead
to the quantile estimator of y∗ij given xij as

Q̂τ (y∗ij |xij) = x′ijβ̂τ + ε̂τ,ij , i = 1, 2, ...,M ; j = 1, 2, ..., ni (4.39)

For a fixed τ ∈ (0, 1) the estimator for the τ -quantile of the observed counts (back-
transformed) yij given xij can be written as

Q̂τ (yij |xij) = dT−1(Q̂τ (zij |xij))− 1e
= dτ + exp(x′ijβ̂τ + ε̂τ,ij)− 1e

(4.40)

As in the QR model for independent data, the longitudinal quantile model works
on continuous data. That is why the count data needed to be made continuous
by Machado & Silva (2005) jittering method and a transformation in order to have
a QR-LMM as in Equation (4.21). After the estimation, a back-transformation of
the quantile estimators of the transformed jittered data will give the quantiles of the
counts.

4.4 Data example: CAPRISA 002 AI Study data

In this section, the estimation of quantile mixed-effects models of Galarza et al.
(2015) introduced in Section 4.3 is applied to the CAPRISA 002 Acute Infection Study
data. The data set, which is a subset of the Centre for the AIDS Programme of
Research in South Africa, consists of repeated CD4 count measurements and some
other covariates of 235 individuals. Each subject has been measured several times,
ranging from 2 to 61, with a median equal to 29. Table 4.1 illustrates a summary
of the patients’ baseline characteristics. The patients’ age at enrollment ranges from
18-59, with the median age being 25 years. Q0.05, which is a value that has 5% of the
observation smaller or equal to it, indicates that 5% of the patients had a square root
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of CD4 count below or equal to 16.4 at enrollment. Q0.95 is also a value that shows
95% of the observation smaller or equal to it; said otherwise, 5% of the patients
are greater than it. Therefore, Table 4.1 indicates 5% of the study participant had
a square root CD4 count greater than 31.4 at enrollment. Moreover, the study par-
ticipants had a mean BMI of 28.93 with minimum and maximum BMI of 17.89 and
54.89 at baseline. The median log baseline VL of the patients was 10.26 with mini-
mum and maximum log baseline VL of 0 (Not detected) and 15.52, respectively (IQR
= 2.91). Additional features on this dataset can be found in (Van Loggerenberg et al.,
2008; Mlisana et al., 2014). We analyze this dataset intending to explain the different
conditional distribution of the square-root-transformed CD4 count as a function of
sets of covariates of interest by modeling a framework of response quantiles.

Table 4.1: Summary of patients’ baseline characteristics

Analysis

Variables Mean Median Minimum Maximum Q0.05 Q0.95 IQR

SQRT CD4 count 23.44 22.89 13.49 39.49 16.4 31.4 5.78

Baseline BMI 28.93 27.24 17.89 54.89 20 43.7 9.66

Log Baseline VL 10.09 10.26 0 (undetected) 15.52 6.19 13.13 2.91

Age at baseline 27.15 25 18 59 20 41 8

Based on the results of the information criteria, we compare four models. The com-
parisons of the models were made based on the 0.5th quantile (median regression).
The linear quantile mixed-effects model with random intercept and slopes (Model
4, see Table 4.2) was selected as the best model because the chosen model achieved
the smallest Akaike information criteria (AIC), Bayesian information criteria (BIC),
Hannan-Quinn information criteria (HQC), and the largest Log-likelihood (LL) (Ta-
ble 4.2). Therefore, we examine the square-root-transformed CD4 count of HIV-
infected patients as a response while accounting for baseline BMI, age, log baseline
VL, and HAART initiation as predictor variables across various quantiles based on
Model 4 (Table 4.3). To get a complete picture of the effects, a series of QR-LMM
over the grid τ = {0.25, 0.5, 0.75} as well as estimation at τ = 0.05, 0.85, and 0.95 are
made.

Random effect models that were examined for analysis at 0.5th quantile:
Model 1: Time
Model 2: Intercept, Time
Model 3: Time,

√
Time
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Model 4: Intercept, Time,
√
Time

Table 4.2: Comparison of random effects models for QR-LMM at the 0.5th quantile

Random effects AIC BIC HQC LogLik

Model 1 39670.99 39725.84 39689.89 -19827.5

Model 2 35072.84 35141.41 35096.47 -17526.42

Model 3 35726.22 35794.79 35749.85 -17853.11

Model 4 33685.92 33781.91 33718.99 -16828.96

The linear mixed-effects model form of the data can be specified as:

yij = β1+β2ti+β3

√
ti+β4BMIi+β5LV Li+β6ARTi+β7Agei+b1i+b2iti+b3i

√
ti+εij

where yij is the transformed continuous form of CD4 count (
√
CD4count) at the jth

time point for the ith subject, t is the time measured in months from the start of the
study, BMI indicates the patient’s baseline BMI, LVL= log of baseline VL, ART is the
dichotomous HAART initiation (0 = pre-HAART, 1 = post-HAART), Age is patient’s
age at baseline, b1i indicates the random intercept, b2i and b3i indicates the random
slopes for subject i, and εij the measurement error term, assumed ALD, for 235 sub-
jects.

As can be viewed from Table 4.3, the intercept (β1), which is the predicted value
of the square-root-transformed CD4 count keeping all the other covariates constant,
differ significantly across the quantiles, while time (β2), square root of time (β3),
baseline BMI (β4), the log of baseline VL (β5), and post HAART initiation (β6) sig-
nificantly affect the CD4 count across all quantiles. In addition, although age (β7) is
found to have a positive and almost constant influence on the CD4 count across all
quantiles, its effect is non-significant (Table 4.3). We can also see from Table 4.3; there
is a remarkable positive effect of baseline BMI on the CD4 cell count (

√
CD4count)

from low quantiles to higher quantiles. Whereas, from low to more upper quantiles,
the negative effect of baseline VL on the count of CD4 cells increases gradually. This
indicates that when the VL at enrollment is high (baseline VL at higher quantiles),
its negative effect on the immune systems increases (Table 4.3). From low quan-
tiles to upper quantiles, the post HAART initiation effect on CD4 cell counts has an
increasing trend, and then at high quantile 0.95, its effect begins to decline.
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Table 4.3: Parameter estimates for CAPRISA 002 AI study data across several quantiles

Parameter Q̂0.05(SE) Q̂0.25(SE) Q̂0.5(SE) Q̂0.75(SE) Q̂0.85(SE) Q̂0.95(SE)

β1 19.99 (1.16)* 22.17 (1.4)* 24.63 (1.46)* 26.6 (1.42)* 27.97 (1.42)* 31.38 (1.39)*

β2 0.06 (0.01)* 0.07 (0.01)* 0.06 (0.013)* 0.05 (0.013)* 0.04 (0.01)* 0.034 (0.015)*

β3 -0.86 (0.14)* -0.87 (0.13)* -0.7 (0.11)* -0.59 (0.12)* -0.58 (0.124)* -0.385 (0.16)*

β4 0.05 (0.02)* 0.08 (0.02)* 0.082 (0.03)* 0.11 (0.03)* 0.13 (0.033)* 0.145 (0.031)*

β5 -0.56 (0.08)* -0.57 (0.1)* -0.64 (0.09)* -0.71 (0.09)* -0.714 (0.08)* -0.74 (0.084)*

β6 1.68 (0.05)* 2.13 (0.07)* 2.56 (0.08)* 3.02 (0.09)* 3.114 (0.098)* 2.29 (0.089)*

β7 0.021 (0.025) 0.03 (0.03) 0.03 (0.031) 0.029 (0.032) 0.026 (0.0321) 0.013 (0.03)

Log-lik -18454.68 -17169.85 -16828.96 -17344.63 -17952.5 -19088.77

AIC 36937.36 34367.69 33685.92 34717.25 35933 38205.55

• Significance at 5% level. See, Additional outputs (7), for more significant test results and confi-
dence intervals.

The results in graphical representation following QR-LMM over the framework of
quantiles τ = {0.05, 0.25, 0.5, 0.75, 0.85, 0.95} have appeared in Figure 4.2. The graph
shows that the 95% confidence interval for the covariates effect and the nuisance pa-
rameter σ. The figure reveals that the effect of baseline BMI (β4) and post HAAR
initiation (β6) become more prominent across quantile levels, with their effect be-
come more for higher conditional quantiles. In addition, although the effects of time
(β2) and baseline VL (β5) exhibit a significant positive and negative influence, re-
spectively, on the CD4 count across all quantiles, the difference changes with regard
to the conditional quantile been more vital for lower quantiles. The σ̂ is symmetric
about τ = 0.5, taking its maximum value at that point and decreasing for higher
quantiles. The convergence of estimates for all parameters was also evaluated using
the graphical criteria in Figure 4.3.

Some of the codes that were used for this section can be found here (Code 7.3 in the
Appendix A).
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4.4. Data example: CAPRISA 002 AI Study data

Figure 4.2: Point estimates and 95% confidence bands for model parameters following the
QR-LMM to the CAPRISA 002 AI Study data across various quantiles
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4.4. Data example: CAPRISA 002 AI Study data

Figure 4.3: Graphic overview of convergence for model parameters at 0.5th quantile (as an
example), produced from the qrLMM package using the CAPRISA 002 AI Study
data
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4.5 Summary

Mixed-effects models are well-established and popularly used approaches to exam-
ine the effect of longitudinal and/or repeated measurement data since they allow
us to study within- and between-subject variation by taking into account the depen-
dence of measurements of hierarchically structured data (Tian et al., 2020). How-
ever, mixed-effects models or more generally generalized mixed-effects models are
mainly based on the distributional assumption of Gaussian, Poisson, negative bino-
mial (Poisson-gamma mixture), and others for the outcome. Therefore, when the
assumption is not attainable (sometimes even after the transformation of the out-
come), the inferences based on these models are questionable. The ability to achieve
promised normality may be possible at some point but could not be guaranteed over
the full range of a relevant covariate such as age (Wei et al., 2006). Besides achieving
the normality assumption for the outcome, resolving the extremely skewed data in
applying mixed-effects models is another issue.

Further, mixed-effects models would be inadequate not only in estimating the lo-
cation but also in estimating the percentile of the conditional distribution of the out-
come while the sign of skewness of the distribution changes over the wide-ranging
of the outcome (Geraci & Bottai, 2007). There are many ways to relax normality and
overcome these issues. However, as is known, mixed-effects models focus mainly on
the mean change of the outcome variable Y conditionally on the covariatesX . Thus,
applying them may result in non-robust estimation when the interest is in studying
the effects across different quantile levels (outcome distribution) as well as for data
with outliers and non-normal errors.

In contrast to mean-based regression models, the QR model, which belongs to a ro-
bust statistical model family, avoid the difficulty of these issues by giving an overall
assessment of the covariate effects at different quantiles of the outcome and pro-
vides a complete picture of the relationships between the covariate and an outcome
that are missed by other regression methods (Cade & Noon, 2003). QR methods dig
deeper into the data, grab more information, and became more relevant.

QR apart from standard regression. By fitting models for more percentiles, one
can detect the heterogeneous effects of covariates at the conditional distribution of
the response, rather than just the conditional mean. That is especially useful when
valuable information lies in the tails. QR estimates avoid distributional assumption
forms such as those listed above for the random error term. However, the model’s
deterministic portion follows a parametric format (Cade & Noon, 2003). The con-
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ventional mean-based regression estimates the model parameters by minimizing the
sum of squares of residuals. In contrast, QR minimizes the sum of check loss func-
tions of the residuals, and the estimates are depending on the quantile level τ . Thus,
there is a distinct set of regression coefficients at each τ .

Recently, QR has also become practical for longitudinal and other forms of data
due to the recent advances in computing resources and the ready availability of
efficient LP algorithms, benefitting applications in various scientific areas (Huang
et al., 2017). For independent count data, if all count models fail, one can use
quantile count models that incorporate the idea of jittering. We illustrated the ap-
plicability of QR-LMM for longitudinal data. A series of QR-LMM over the grid
τ = {0.05, 0.25, 0.5, 0.75, 0.85, 0.95} were estimated (Table 4.3), and the results were
discussed.

Since quantile inference for discrete longitudinal data cannot thus be carried out di-
rectly yet, we followed the standard practice to model a continuous approximation
of the quantile function by using square-root-transformed CD4 count as the response
variable. Time since seroconversion, HAART initiation, and baseline characteristics
of the patients such as BMI, age, and VL was included in the study. It was found that
except age, all the studied variables significantly affected the count of CD4 cells of
HIV-infected patients across all quantiles. Although significant CD4 cell recovery in
response to post HAART initiation across all quantiles was recognized, HIV-infected
patients who were enrolled in the treatment with a high level of VL showed a sig-
nificant adverse effect on CD4 cell counts at upper quantiles.
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Chapter 5

Analyzing longitudinal CD4 count
of HIV-infected patients using

generalized additive mixed-effects
model

5.1 Introduction

Multiple linear regression models study linear relationships among two or multi-
ple independent variables and one dependent (response) variable. We can extend
the multiple linear regression model idea to the generalized linear model (GLM),
where the distribution of the outcome variable can include distributions other than
Gaussian. The response variable in GLM can be continuous, dichotomous, count, or-
dinal, categorical, and so on as long as its distribution is from an exponential family
(Dobson & Barnett, 2008; McCullagh & Nelder, 1989). Consider the response vari-
able whose domain is non-negative integer (count) values, which follows a Poisson
distribution; if there is no over or under-dispersion, the mean and variance are as-
sumed to be equal. However, the restriction (mean=variance) may not be satisfied
with many real-data applications. Sometimes the variance is greater than the mean,
and this phenomenon is called over-dispersion. One such model that works in such
a condition is the negative binomial regression model (Hilbe, 2011, 2014; Yirga et al.,
2020b). The negative binomial model is a generalization of the Poisson model, which
relaxes the restrictive assumption that the mean and variance are equal. It has vast
applications as a model for count data, especially for data showing over-dispersion
(Hilbe, 2011, 2014; Yirga et al., 2020b).
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The generalized linear model fails to consider the dependence of repeated observa-
tions over time. Therefore, it is necessary to extend the GLM to general linear mixed
models. Linear mixed models (LMMs) characterize an ordinary and conventional
type of regression method used to examine longitudinal studies data. The general
form of LMM can be expressed as

yij = β0 + β11x111 + · · ·+ βipxijp + bi0 + bi1zij1 + · · ·+ bipzijp + εij (5.1)

where yij is an outcome variable that indicates the jth measurement on the ith sub-
ject, xijp, j = 1, . . . , ni are the predictor variables, β0, β1, . . . , βip are fixed effects,
bi0, bi1, . . . , bip are random effects, and εij ’s are random errors. If we want to general-
ize expression (5.1), we do not need to assume that the outcome variable is normally
distributed. However, it has to follow a distribution from the exponential family.
At that point, we can combine the idea of the mixed model with the GLM; hence,
the resulted model is known as the generalized linear mixed model (GLMM) (Gbur
et al., 2012; Stroup, 2012).

GLMMs include random effects into the linear predictor g(·) as an extension of
GLMs. As an extension of the LMM, GLMMs contain fixed effects and random ef-
fects. This permits the modeling of correlated, conceivably non-normally distributed
data. This may overcome the modeling issue of over-dispersion in the longitudinal
and, at the same time, oblige the population heterogeneity (Gbur et al., 2012; Stroup,
2012). For these reasons, we used a negative binomial regression in the context of
GLMMs to examine the CD4 count of HIV-infected patients as a function of HAART
and other important factors parametrically in the previous study (Yirga et al., 2020b).
More particularly, the GLMM has the following structure

g(E[yij |u1, · · · , uq]) = β0 +

p∑

i=1

βijxij + b0 +

p∑

i=1

bijuk, (5.2)

where yij , i = 1, . . . , n; j = 1, . . . , p is the outcome variable whose conditional dis-
tribution given the set of q random effects (u1, . . . , uq) belongs to the exponential
family, xij ’s are sets of p explanatory variables describing the fixed effects, and g(·)
is the link function relating the conditional mean of the response to the predictors.
The literature on GLM, LMM, and GLMM is ubiquitous, and one can find some of
it here (Dobson & Barnett, 2008, 2018; McCullagh & Nelder, 1989; Pinheiro & Bates,
2006; Diggle et al., 2002; Demidenko, 2013; Gbur et al., 2012; Stroup, 2012; Wu &
Zhang, 2006; Jones, 1993; Verbeke & Molenberghs, 2009; Diggle et al., 2002; David-
ian & Giltinan, 2003; Diggle et al., 2002).
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GLMMs incorporate nonlinear functional forms of the covariate effects as quadratic,
square root, or cubic terms if these are thought to be necessary to provide an ade-
quate fit (Der & Everitt, 2012; Lin & Zhang, 1999). This implicates that parametric
regression models require the investigator to know in advance the functional form of
the explanatory variables in the data. If the investigator knows that form, paramet-
ric regression models may be the appropriate choice (Shadish et al., 2014). However,
the assumption of linear dependence of the outcome in parametric methods may not
always be desired. In most cases, the associations between the outcome variable and
explanatory variables may have an unidentified functional form. For such cases, the
study of semiparametric additive mixed models becomes essential. Moreover, there
will also be a complex form of relationships between the outcome variable and the
covariates. As it nearly always is in real data analysis, the covariates’ functional
forms are rarely known (Melesse & Zewotir, 2020; Shadish et al., 2014). Also, para-
metric models suffer from inflexibility in many applications because they are too re-
strictive or limited; sometimes, it is challenging to find the proper parametric model
(Wu & Zhang, 2006). Nonparametric regression methods have been developed to
overcome these difficulties, where flexible, functional forms can be estimated from
the data to capture possible complicated relationships between the response variable
and multiple explanatory variables (Fitzmaurice et al., 2008; Wu & Zhang, 2006).

Nonparametric regression approaches allow the data to determine the model’s ap-
propriate functional forms, which best describe the available data (Fitzmaurice et al.,
2008; Wu & Zhang, 2006; Ayele et al., 2014). This makes it important to fit a much
larger class of models by reducing possible modeling biases of parametric models
(Fitzmaurice et al., 2008; Wu & Zhang, 2006; Ayele et al., 2014). Nonparametric
modeling relaxes the usual assumption of linearity and allows us to investigate the
data more flexibly, revealing structures in the data that might otherwise be missed.
However, when the number of covariates in the model is large, many forms of non-
parametric approaches do not perform well. The inadequacy of data in this setting
causes the variances of the estimates to be unacceptably large. The issue of rapidly
increasing variance for increasing dimensionality is referred to as the “curse of di-
mensionality” (Xiang, 2001). Interpretability is also another issue with nonparamet-
ric techniques based on Kernel and Spline estimates, which are the most widely used
estimator in nonparametric models. The information based on these estimates is of-
ten difficult to comprehend (Xiang, 2001). Stone (1985) proposed an additive model
(AM) to overcome these difficulties. Thus, we first begin with the overview of AM
then discuss the form of the negative binomial regression in the generalized additive
mixed models setting in the next sections.
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5.2 Additive models

The AM is a generalization of the nonparametric version of the multiple linear re-
gression model. An AM with more than one explanatory variable can be expressed
as

Yi = X∗β +

p∑

i=1

fi(xi) + εi, with εi
iid∼ N(0, σ2) (5.3)

where Yi is vector of response variable, X∗ is a model matrix for all strictly para-
metric model components, β is the corresponding parameter vector, fi(·)’s are ar-
bitrary univariate and smooth (nonparametric) functions one for each xij ’s (covari-
ates), and εi’s are random errors (Hastie & Tibshirani, 1990; Hastie, 2017). In order
to be estimable, the smooth functions xi have to satisfy standard conditions such as
E(fi(xi)) = 0. These functions are not given in a parametric form but instead are
estimated in a nonparametric fashion (Xiang, 2001). Thus, the AM can deal with
nonlinearity in covariates that are not the main interest in a study and ’adjust’ for
those effects appropriately (Der & Everitt, 2012).

Additive models assess an additive estimation of the multivariate regression meth-
ods. The advantages of an additive estimation are at least twofold. First, on account
that each of the individual additive terms is assessed using a univariate smoother,
the “curse of dimensionality” is prevented at the cost of not approximating univer-
sally. Second, the individual terms’ estimates clarify how the dependent variable
changes with the corresponding independent variables (Xiang, 2001).

5.2.1 Smoothing function

A smoother is a tool for summarizing a response measurement trend as a function
of one or more predictor measurements x1, · · · , xp. It provides an estimate of the
trend that is less variable than the response variable itself. The vital property of
a smoother is its nonparametric nature. It assumes a flexible form for the depen-
dence of Y on x1, · · · , xp. Hastie & Tibshirani (1990) provided a brief discussion of
smoothers. With AMs, it is necessary to represent the smooth functions somehow
and choose how they should be. Hastie & Tibshirani (1990) suggest representing
AMs using spline-like penalized regression smoothers. Spline smoothing can be
used to describe smooth functions so that expression (5.3) becomes a linear model.
This is done by specifying a set of basis functions φij for each function so that the
smooth function can be represented as

fi(xi) =

q∑

j=1

βijφij(xi) = β′jφj (5.4)
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where xi’s are covariates, basis functions φij determine the spline, and βij ’s are coef-
ficients of the smooth, which will need to be estimated as part of the model set. Nat-
ural cubic spline, cubic smoothing splines, thin plate regression splines, and tensor
product bases are some of the examples of penalized regression smoothers (Wood,
2017; Hastie & Tibshirani, 1990; Hastie, 2017).

5.2.2 Formulation and Estimation

There are many ways available to approach the formulation and estimation of AMs.
The backfitting algorithm is a general algorithm that can fit an AM. The smooth func-
tions fi(·)’s are fitted one at a time by taking the residual yj−

∑
j 6=i fj(xj). Then they

are fitted against xi using a smoother function. The process is repeated until it con-
verges. Detailed discussion and formulation of the backfitting algorithm can be found
here (Friedman & Stuetzle, 1981; Hastie et al., 2009; Chambers, 1991). Familiar tools
for modeling and inference in multiple regression models are also available for AMs.
While AMs are used in various statistical data analyses, there are types of issues for
which they are not appropriate. For instance, the assumption of normality might
not be adequate for modeling count outcomes, limitations for large data-mining ap-
plications, and the backfitting algorithm fits all predictors, which is not feasible or
desirable when a large number are available (Xiang, 2001; Hastie & Tibshirani, 1990;
Hastie et al., 2009; Hastie, 2017). Generalized additive models (GAMs) of Hastie &
Tibshirani (1990) overcome these issues by extending AMs to a wide range of the ex-
ponential family of distributions, and not only the Gaussian. GAMs reduce to AMs
when the outcome is normally distributed (Ruppert et al., 2003; Melesse & Zewotir,
2020) (Hastie & Tibshirani, 1990; Wood, 2017).

5.3 Generalized additive models

GAMs enable the response variable’s mean to depend on an additive predictor through
a nonlinear link function (Xiang, 2001). The GAMs combine an additivity assump-
tion (Stone, 1985) that enables relatively many nonparametric relationships to be
explored simultaneously and the distributional flexibility of GLMs (Nelder & Wed-
derburn, 1972). A GAM has the following general structure

g(µi) = X∗β +

p∑

i=1

fi(xi) (5.5)

whereas usual xi’s are covariates, µi = E(Yi) is the conditional mean of the response
variable Y , which is linked to an additive function of the predictors through a link
function g(·), and fi(·)’s are unspecified smooth (nonparametric) functions (e.g., cu-
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bic smoothing spline, kernel smoothers, or thin-plate splines) (Hastie et al., 2009;
Wood, 2003; Ayele et al., 2014). Note that the response variable Y is from the ex-
ponential family of distribution, and g(·) is a known monotonic twice differentiable
link function (Hastie & Tibshirani, 1990). The GAMs are among those widely used
nonparametric methods for independent data (Melesse & Zewotir, 2020; Ruppert
et al., 2003; Chen, 2000). While the AM was estimated with penalized regression
smoothers, the GAM is represented by penalized likelihood maximization, where
the penalties are designed to suppress overly wiggly estimates of the fi terms (Wood,
2017).

5.4 Additive mixed model

Longitudinal data such as repeated measures taken on each of several subjects fre-
quently arises from many biological, ecological, and clinical studies and other scien-
tific areas. Parametric mixed-effects models are powerful, well developed, parsimo-
nious, and efficient tools, in particular, for modeling correlations and within/between-
subject variations of longitudinal data when the models are correctly specified (Pin-
heiro & Bates, 2006; Demidenko, 2013; Diggle et al., 2002; Wu & Zhang, 2006; Jones,
1993; Verbeke & Molenberghs, 2009; Diggle et al., 2002; Davidian & Giltinan, 2003;
Diggle et al., 2002). However, for many applications, as is said earlier, parametric
models are often restrictive and less robust against model assumptions. For instance,
in modeling the repeated outcome variable as a function of time and other covari-
ates, the time effect is usually too complicated to be model parametrically. Thus, to
relax these assumptions, nonparametric models have been developed for longitudi-
nal data analysis, but they are usually more complex (Wu & Zhang, 2006; Müller,
2012). Semiparametric mixed-effects models (SMMs), which retain nice features of
the mixed-effects modeling ideas and the nonparametric regression techniques, are
a good compromise for longitudinal data analysis. A detailed discussion of SMMs
can be found here (Ruppert et al., 2003; Wu & Zhang, 2006; Zeger & Diggle, 1994;
Zhang et al., 1998; Tao et al., 1999; Durbán et al., 2005; Fan & Li, 2004; Harezlak et al.,
2018).

Suppose that yij(i = 1, . . . , n; j = 1, . . . , ni) is the response for the ith subject at
time point tij , the SMM can be expressed as

yij = x′ijβ +

p∑

i=1

fi(xi) + z′ijbi +

p∑

i=1

Ui(xi) + εij (5.6)
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where β is a p × 1 vector of coefficients associated with covariates xij , fi(·)’s are
twice-differentiable smooth functions of time or nonparametric fixed effects, bi con-
sists of independent q × 1 vectors of random effects coefficients associated with co-
variates zij , Ui(·) is an independent and smooth random-effects’ process and εij

is an independent measurement error at a time tij that is not clarified by either
the fixed-effects component (x′ijβ +

∑p
i=1 fi(xi)) or the random-effects component

(z′ijbi +
∑p

i=1Ui(xi)) (Wu & Zhang, 2006; Zhang et al., 1998).

In general, SMM consists of the following four major components: parametric fixed-
effects (x′ijβ), nonparametric fixed-effects (fi(·)), parametric random-effects (z′ijbi),
and nonparametric random-effects (Ui(·)). Wu & Zhang (2006) provided a detailed
discussion of the different SMM types when one or two of the components expressed
in the model (5.6) are dropped. For example, when only the nonparametric random-
effects component is dropped, the SMM (5.6) reduces to expression (5.7), which is
also the same as when the random-effects are incorporated into the AM (5.3), and it
is referred to as additive mixed model (AMM)

yij = X∗β +

p∑

i=1

fi(xi) + z′ijbi + εij (5.7)

where X∗, β, (fi(·)), zij , bi, and εij are defined as in (5.3) and (5.6); εij ∼ N(0,R)

and bi ∼ N(0,Gθ). Both covariate matrix R and Gθ are positive-definite matrix de-
pending on a parsimonious set of covariate parameters (Melesse & Zewotir, 2020;
Ruppert et al., 2003; Zhang et al., 1998; Ayele et al., 2014). The AMM (5.7) is a
hybrid extension of LMMs and AMs (Hastie & Tibshirani, 1990; Zuur et al., 2009;
Mamouridis, 2011).

The AMM that is allowed to have some other distribution function and not only
the Gaussian will be the generalized additive mixed models (GAMMs) (Melesse
& Zewotir, 2020; Zuur et al., 2009; Mamouridis, 2011). A GAMM represents the
model with higher flexibility and complexity, where LMM in which part of the lin-
ear predictor is specified as a sum of smooth functions of one or more predictor
variables, and non-normally distributed outcomes are included (Melesse & Zewotir,
2020; Zuur et al., 2009; Mamouridis, 2011; Baayen et al., 2017; Lin & Zhang, 1999;
Wood, 2017; Berhane & Tibshirani, 1998). Thus, a GAMM can be viewed as additive
extensions of the GLMM (Melesse & Zewotir, 2020; Zuur et al., 2009; Mamouridis,
2011; Ayele et al., 2014; Wood, 2017).
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5.5 Additive negative binomial mixed-effects model

Recall the negative binomial mixed-effects model that specifies the expected number
of counts with mean µij and parameter θ that controls over-dispersion discussed in
our previous work Yirga et al. (2020b). We relate the conditional mean of the count
response to the linear predictors through the logarithmic link function. As a result,
we have

log(µij) = x′ijβ + z′ijbi

µij = exp{x′ijβ + z′ijbi}
(5.8)

where xij and zij are known vectors of covariates associated with count data yij , i =

1, · · · , n and j = 1, · · · , ni, conditional on a q-dimensional vector of subject-specific
random effects, bi, the counts of yij , with the assumption of gamma errors, has a
negative binomial distribution, yij |bi ∼ NB(µij , µij + θµ2

ij) (Hilbe, 2011, 2014; Yirga
et al., 2020b).

The additive negative binomial mixed-effects model replaces each or some of the
linear term with a more general functional form

log(µij) = X∗β +

p∑

i=1

fi(xi) + z′ijbi

µij = exp{X∗β +

p∑

i=1

fi(xi) + z′ijbi}
(5.9)

where again, each fi(·) is an unspecified smooth function. While the nonparametric
form for the functions fi(·) makes the model more flexible, the additivity is retained
and allows us to interpret the model in much the same way as GLMM form. The
additive negative binomial mixed-effects model is an example of a GAMM (Zuur
et al., 2009).

The general structure of GAMM can be written as follows

g(yij) = X∗β +

p∑

i=1

fi(xi) + z′ijbi + εij , (5.10)

where yij is non-normally distributed outcome, fi(·) is a centered twice-differentiable
smooth function, g(·) is a monotonic differentiable link function, and X∗, β, zij ,
bi, and εij are defined as in (5.3) and (5.6). Statistical inference for GAMM in-
volves inference of the nonparametric function fi(·), which requires smoothing pa-
rameters and estimates of the variance components. In the Gaussian response and
identity link function, the estimation of nonparametric functions, smoothing, and

129



5.6. Data example: CAPRISA data set

variance parameters in GAMM are achieved using restricted maximum likelihood
(REML) (Robinson et al., 1991; Silverman, 1985). For non-Gaussian response, pe-
nalized quasi-likelihood (PQL) (Breslow & Clayton, 1993) is the most widely used
approach to estimate the parametric and nonparametric functions in GAMM (Lin &
Zhang, 1999). A detailed discussion of PQL and several other approaches to estimate
the smoothing parameters and variance components in GAMM can be found in nu-
merous literature (Mamouridis, 2011; Kohn et al., 1991; Lin & Zhang, 1999; Zhang
et al., 1998; Green & Silverman, 1993; Wahba, 1985; Wu & Zhang, 2006; Müller, 2012).

5.6 Data example: CAPRISA data set

5.6.1 Application of additive negative binomial mixed-effects model

In this section, the additive negative binomial mixed-effects model discussed in Sec-
tion 5.5 is applied to the CAPRISA 002 AI Study data set. Tables 5.1 and 5.2 show the
descriptive baseline measures of the dataset for this study. The dataset consists of a
total number of 235 subjects. Each subject has been measured several times, ranging
from two to sixty-one, with a total of 7129 observations. From a total of 235 women,
105 (44.7%) were residing around Vulindlela (rural area), and 130 (55.3%) were resid-
ing around eThekwini (Durban, urban area), KwaZulu-Natal, South Africa. The par-
ticipants’ age at enrollment ranges from 18-59 years, with the mean age being 27.15
years and a standard deviation of 6.56. The average CD4 count and viral load at en-
rollment were 570 (range 182-1575) with a standard deviation of 229.6 and 140442.31
(range 1 (undetected) - 5510000) with a standard deviation of 454895.893, respec-
tively. Furthermore, the study participants had a mean BMI of 28.93 (range 17.89-
54.89) with a standard deviation of 7.4 at enrollment. The majority of the women,
182 (77.4%), had a stable partnership, 224 (95.3%) completed secondary school, and
most of them (78.8%) were self-reported sex workers (Mlisana et al., 2014; Van Log-
gerenberg et al., 2008; Yirga et al., 2020a,b).

Table 5.1: Baseline descriptive statistics for non-categorical variables

Analysis

Variables Mean Std.Err Minimum Maximum

CD4 cell counts (cells/µ L) 570 229.6 182 1575

HIV viral load (cells/mL) 140442.31 454895.893 1 (undetected) 5510000

Age (Years) 27.15 6.56 18 59

Body Mass Index 28.93 7.4 17.89 54.89
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Table 5.2: Baseline descriptive statistics for categorical variables

Variable Total Variable Total

Number of women 235 Marital Status

Place of residence No partner 43 (18.3%)

Rural 105 (44.7%) Stable partner 182 (77.4%)

Urban 130 (55.3%) Many partners 10 (4.3%)

Educational level

Primary schools 11 (4.7%)

Secondary schools 224 (95.3%)

In our previous work, Yirga et al. (2020b), we fitted a parametric negative bino-
mial mixed-effects model (NBMM) in the context of GLMM, assuming a linear re-
lationship between the outcome and covariate. Now we aim to model the effect of
time and some other covariates non-parametrically and incorporate parametric co-
variates using GAMM. Thus, in this study, we used an additive negative binomial
mixed-effects model with a nonparametric time, age, and baseline BMI effect while
the other covariates at hand remain parametric. The proposed model can be written
as follows

g(Yi) = β0 + β1baseline VLi + β2educationi + β3HAARTi + β4residencei
+β5marital statusi + f1(time in monthsi) + f2(agei)

+f3(baseline BMIi) + b0i + b1i(time in monthsi)

Yi ∼ NB(µij , µij + θµ2
ij); E(Yi) = µij ; V ar(Yi) = µij + θµ2

ij

µij = exp{β0 + β1baseline VLi + β2educationi + β3HAARTi + β4residencei
+β5marital statusi + f1(time in monthsi) + f2(agei)

+f3(baseline BMIi) + b0i + b1i(time in monthsi)}

where Yi is the vector of the response variable (number of CD4 cell), g(·) is the log
link function, NB is a negative binomial distribution with mean= µij and variance=µij+
θµ2

ij , βi’s are parametric regression coefficients, fi(X) are a smooth function of the
covariates X , and the random effects, bi ∼ N(0,Gθ) (Ruppert et al., 2003; Lin &
Zhang, 1999; Ayele et al., 2014; Melesse & Zewotir, 2020).

The R package mgcv was used to fit the above proposed model, using its gamm
command (Wood & Wood, 2015). Significantly, the gamm command will penalize
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‘wiggly’ lines to avoid overfitting, which suggests one can rappel all continuous co-
variates within smoothing functions. The model will then determine to what extent
the data supports a ‘wiggly’ shape (Shadish et al., 2014). It also has several options
available for controlling the model smoothness using splines. When the thin plate
(tp) shrinkages splines were used to fit the above model, convergence was reached.
Thin plate smoothers have the advantage of avoiding knot placement since they do
not depend on the number of knots selected. They also provide computationally effi-
cient and stable optimal approximations and can be constructed for smooths of more
than one covariate at a time (Wood, 2003). Furthermore, the shrinkage smoothers ob-
tained by using the bs option inside the s command are constructed so that smooth
terms can be penalized away altogether, not contribute to the model (Wood, 2017;
Zuur et al., 2009). The output is separated into parametric and smooth (nonpara-
metric) parts. The smooth coefficients, βi’s are hidden inside the smoothers and are
mostly uninterpretable. A smoother for the corresponding predictor can be fitted
using the s function in the gamm command (Wood & Wood, 2015). The amount of
smoothing of a smoother is expressed as effective degrees of freedom (edf), which
essentially gives information on how ‘wiggly’ the fitted line is. A high value of edf
(≥8) indicates that the curve is highly nonlinear, whereas a smoother with edf = 1

means a linear relationship to the outcome (Zuur et al., 2009; Shadish et al., 2014).

Table 5.3 presents the log of expected CD4 count as parameter coefficients and the
smooth terms’ approximate significance using the proposed additive negative bino-
mial mixed-effects model. Table 5.3 shows that baseline viral load and HAART ini-
tiation were found to have a significant effect on the progression of patients’ CD4
count. The ‘parametric coefficients’ part showed that the patients’ viral load at
baseline had a significant adverse effect in the log of expected CD4 count, even if
the change units are minimal. Moreover, the expected number of CD4 cells of the
patient-initiated on HAART would be expected to multiply by 1.233 (e0.2092) units
compared to pre HAART initiation while holding other variables constant.

The results of edf from Table 5.3 shows that the variables age (edf=14.24, p-value
≤ 2e-16) and time (edf=10.343, p-value ≤ 2e-16) found to have a strong significant
nonlinear effect on patients’ CD4 count. The amount of smoothing for baseline BMI
(edf=3.044, p-value=2.21e-06) indicates a significant nonlinear relationship with the
response variable. The resulting fitted penalized spline plot is shown in Figure 5.1.
The shaded region corresponds to pointwise approximate 95% confidence bands.
The Y-axis indicates the smooth term’s effect, where s is a smooth term, and the
number in the parenthesis shows the edf value of the corresponding smooth term
(Ayele et al., 2014). Visual inspection of Figure 5.1 shows that overall, the smoothers’
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Table 5.3: Parameter estimates and approximate significance of smooth terms using an ad-
ditive negative binomial mixed-effects model

Parameter coefficients Estimate Std.Err t-value p-value

Intercept 6.334e+00 1.172e-01 54.053 ≤ 2e-16

Baseline VL -1.581e-07 4.709e-08 -3.358 0.00079

Educational level (ref.= Primary school)

Secondary school -1.500e-01 1.056e-01 -1.420 0.15564

HAART initiation (ref.= Pre HAART initiation)

Post HAART initiation 2.092e-01 1.229e-02 17.021 ≤2e-16

Place of residence (ref.= Rural)

Urban 3.569e-02 4.367e-02 0.817 0.41375

Number of sexual partner (ref.= No partner)

Stable partner 4.490e-02 5.529e-02 0.812 0.41679

Many partner -6.587e-02 1.116e-01 -0.590 0.55521

Approximate significance of smooth terms

Smooth terms edf Ref.df F-value p-value

s(Age) 14.124 14.124 4.710 ≤ 2e-16

s(Time in months) 10.343 10.343 37.692 ≤ 2e-16

s(Baseline BMI) 3.044 3.044 9.759 2.21e-06
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shape suggests that the progression of patients’ CD4 count is higher after continuous
follow-up time; the increment rate is low for the first four years (48 months) and
steadily increasing afterward. The same relationships apply to the smooth terms
age and baseline BMI; the CD4 count is higher for older patients and for those who
have higher BMI at enrollment.

Figure 5.1: Estimated smooth curve for the GAMM model containing all smooth terms
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To validate the fitted model, model diagnostics graphs were plotted (Figure 5.2). The
normal Q-Q plot (upper left) shows some slight variation, but it is close to a straight
line, suggesting that the distributional assumption is reasonable (Figure 5.2). The
histogram of the residuals (lower left) is a bit more Gaussian. The plot of residuals
versus fitted values (linear predictor), the upper right plot, shows that the variance
is roughly constant as the mean increases. The response versus fitted values (lower
left) plot suggests a positive relationship between the observed response and the
fitted value (Figure 5.2).

Figure 5.2: Diagnostic plots for checking the adequacy of the fitted model

Some of the codes that were used for this section can be found here (Code 7.4 in the
Appendix A).
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5.7 Summary

Multiple linear regression assumes that the relationship between the response (Y )
and covariates (X) is linear or monotonic and constant across each variable’s do-
main and range. However, there is no reason why every single regression must be
linear or even have a particular structure, like being monotonic. To some extent,
one can address this issue using polynomials. However, polynomials are not al-
ways desirable in terms of the model fit’s properties; adding ever more powers of
the covariate (X) to the model results in a model selection problem. Adding more
powers to the covariate (X) in the polynomial model does not always improve the
model’s accuracy (Montgomery et al., 2021); instead, it could also result in a Runge
phenomenon. Nonparametric regression approaches such as Locally Weighted Scat-
terplot Smoothing, sometimes called LOESS smoother, on the other hand, could be
a better generalization since, in this method, there is no restriction on the functional
form between the outcome and the covariates, except that the functional form has to
be smooth. This means, if there is no restriction, the fits will be more computation-
ally intensive. However, if LOESS smoothers are correctly done, they give us extra
information from the data, but the information we get depends on the smoothing
parameter’s correct choice; the same applies to kernel smoothing. GAMs do offer a
solution to these issues. They give us a framework to model flexible nonlinear rela-
tionships in the data.

GAM is a generalization of the multiple linear regression model as also of the GLM,
where one can continue to model outcomes that arise from the exponential family
such as continuous, discrete, counts, proportions, and so on. GAMs are versatile
models used to understand better and analyze complex, nonlinear relationships in
the data. They can capture critical aspects of the relationship between the response
variable and the covariates by fitting the data with smooth or splines, which are
functions that can take on a wide variety of shapes. One can fit GAM using the gam
function from the mgcv package in R. When fitting GAM, the covariate (X) has to
rappel in the s (smooth) function to specify the relationship to be flexible. A GAM
can capture various nonlinear aspects because of the flexibility of these splines. The
flexible smooths in GAMs are constructed of many smaller functions; these are called
basis functions. Each smooth is the sum of several basis functions, and each basis
function is multiplied by a coefficient, each of which is a parameter in the model.
One can use GAMs to perform a multiple regression model that contains a mixture
of smooth, linear effects, continues, and counts, or categorical variables. Not every
term in a GAM has to be nonlinear. GAMs allow us to combine linear and nonlinear
terms; to add a linear term, we do not have to rappel the predictor term in the s
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function. Linear terms are useful when we have categorical variables as predictors
in GAM.

GAMM, a mixed-effects version of GAM, is the most powerful model to deal with
nonlinear trajectories in the longitudinal data. In this study, we have used an ad-
ditive negative binomial mixed-effects model, an example of a GAMM, to analyze
the longitudinal CD4 count of HIV-infected patients as a function of time, age, and
baseline BMI non-parametrically as well as some covariates at hand parametrically.
The analysis shows that the progression of CD4 count of the patient is significantly
increased after the patient had been initiated on HAART, and the baseline viral load
of the patient has shown a significant adverse effect in the progression of their CD4
count over time, as we would have expected. Our analysis also identified a signifi-
cant nonlinear effect of age, baseline BMI, and time. The results from the nonpara-
metric part of the model revealed that the progression of CD4 count is high for older
aged (≥ 40 years old) patients. Moreover, patients with higher BMI at baseline have
shown improvement from the treatment over time. However, it does not mean that
patients with higher BMI should be clinically ignored. Instead, the study confirms
that BMI contributes to drug metabolism and consequently influencing the progres-
sion and immunological responses of HAART. Furthermore, the significant nonlin-
ear time effect has shown patients’ CD4 count progression is low; the progression is
getting starting after many treatment visit times. Thus, the study suggests that ef-
fective HAART initiation after HIV exposure is necessary to suppress the increase of
viral loads to induce potential ART benefits that accrue over time, especially during
the COVID-19 infection since evidence are showing that HIV patients who are not
clinically and immunologically stable on HAART may be at higher risk of develop-
ing illness if they are infected with the coronavirus.
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Chapter 6

Additive quantile mixed effects
modelling with application to
longitudinal CD4 count data

6.1 Introduction

In this chapter, the topics nonparametric and additive quantile regression models
are discussed. We also introduced and applied the additive quantile mixed model
on real data sets as a general method for longitudinal data that has recently gained
popularity. Parametric models relate the mean of a response variable to a linear com-
bination of covariate effects and focus on the response’s average properties (Fenske
et al., 2011). Nevertheless, there are inevitable occasions when such parametric
models fail, and data analysis must turn to more flexible, nonparametric models
(Koenker, 2005a). Parametric models also assume a distribution for the outcome
variable as opposed to purely nonparametric models. However, most of the vast
literature on nonparametric regression also deals with the estimation of conditional
mean models. In addition, the conventional assumption of nonparametric regres-
sion theory that there is additive, independently, and identically distributed (iid)
error around a smooth underlying conditional mean function is highly implausible
in certain data settings (Koenker, 2005a). Thus, as in the parametric context, non-
parametric methods are usefully complemented by nonlinear estimation of families
of conditional quantile functions that relax the independence assumption (Koenker,
2005a). The use of parametric and nonparametric regression models for analyzing
patients’ CD4 count in most applications implies that the estimated effects describe
the average CD4 count. However, it is of even great interest to examine the quantile
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of the outcome distribution, such as the lower (≤ 25%) quantile, which identifies
patients at higher risk of developing illnesses.

As discussed in Chapter 4, quantiles, commonly symbolized by the Greek letter τ ,
are location and scale parameters simultaneously. For a given τ ∈ (0, 1), the τ th

quantile is the value of a random variable, where τ × 100% of its value lies below it.
In other words, it is the value where at most (1− τ)× 100% of the value lies above.
Thus, τ th quantiles close to 0.5-quantile give the median, which is a well-known lo-
cation parameter. On the other hand, τ th quantiles close to zero or one give an idea
of the scale. For instance, the interquartile range (IQR) is defined as the first quartile
subtracted from the third quartile: IQR = Q3 −Q1.

Quantile regression (QR) solutions are computed for a selected number of quan-
tiles, typically the three quantiles along with two extreme quantiles, that is, for
τ = {0.05, 0.25(Q1), 0.5(Q2), 0.75(Q3), 0.95}. This necessitates the search for a suit-
able compromise between the amount of output to manage and the results to inter-
pret and summarize (Davino et al., 2013). Although in many practical applications
of QR, the focus is on estimating a subset of quantiles, however, it is worth noticing
that it is possible to obtain estimates across the entire interval of conditional quan-
tiles; in particular, the set: {βτ : τ ∈ (0, 1)} (Koenker, 2005a).

QR is a versatile statistical method with many applications that complement mean
regression (Koenker & Bassett, 1978; Geraci, 2019). Thus, it emerged as an effec-
tive analytic technique in numerous study areas of science due to its competence to
drive inferences about individuals that rank below or above the conditional popu-
lation mean and/or focused on features of the response beyond its central tendency
(Buchinsky, 1998; Peterson & Krishnan, 2015; Sherwood et al., 2013; Yu et al., 2003;
Cade & Noon, 2003; Yirga et al., 2018; Koenker & Geling, 2001; Koenker et al., 2011;
Fenske et al., 2011; Geraci, 2019). QR is specifically appropriate for the parameters’
heterogeneous effect as it yields inferences that can be legitimate irrespective of the
true underlying distribution (Winkelmann, 2006; Geraci, 2019). QR techniques look
further into the data, get more information, and become more important (Huang
et al., 2017). By fitting models for more percentiles, one can detect the covariates’
heterogeneous effects at the conditional distribution of the response, rather than just
the conditional mean. That is especially useful when valuable information lies at
the bottom or top quantiles. “QR also enjoys several properties, including equiv-
ariance to monotone transformations and robustness to outliers” (Koenker, 2005b;
Gilchrist, 2000). A semiparametric extension of quantile regression models with dif-
ferent types of nonlinear effects included in the model equation leads to an additive
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quantile regression model (AQM) (Fenske et al., 2011). Such a model may reveal
systematic differences in dispersion, tail behavior, and other features with respect to
covariates (Koenker, 2005a).

6.2 Nonparametric quantile regression

In a parametric regression model, the function connecting the response variable’s
conditional values to the covariates is a prior known and fixed as a linear function.
However, in real data applications, such a linearity assumption might be substantial
and lead to one-sided results. Nonlinear assumptions between study variables oc-
cur in many research studies (Wu & Zhang, 2006; Fitzmaurice et al., 2008; Lindsey,
2001; Davidian & Giltinan, 2003). In the process of nonlinearity, there are various
modeling techniques one may consider. Nonparametric models, smoothing splines,
and transformation models are the most adopted strategies that consider analytical
framework such as types of sampling design (cross-sectional or longitudinal), kinds
of outcome (discrete or continuous), distributional assumptions (parametric or non-
parametric), and so on (Geraci, 2019). The effort required for the investigation might
have significant weight on the ultimate choice concerning which method to follow.
Lack of theory or computer programming can also move the needle towards one
decision over another (Geraci, 2019).

Nonparametric regression permits the presumption of linearity to be relaxed (Wu &
Zhang, 2006; Fitzmaurice et al., 2008; Fox, 2000) and limits the analysis to smooth and
continuous functions (Davino et al., 2013). Nonparametric regression, also known
as scatter smoothing, aims to distinguish the best regression function according to
the data distribution instead of estimating the parameters (Davino et al., 2013).

Recall the nonparametric regression model:

y =
n∑

i=1

fi(xi) + εi,

where the function fi(·) is unknown, and commonly assumed that the errors are
normally and identically distributed: εi ∼ NID(0, σ2) (Davino et al., 2013). Several
methods have been introduced to model nonparametric regression models; how-
ever, the most used techniques that have been extended to QR are local polyno-
mial regression (Chaudhuri, 1991) and smoothing splines (Hastie & Tibshirani, 1990;
Hendricks & Koenker, 1992): for further details, see Wu & Zhang (2006), Davino
et al. (2013), Fox (2000), Craig & Ng (2001), Koenker et al. (1992), Koenker et al.
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(2008), Cleveland & Loader (1996), and Koenker et al. (1994).

Recall the parametric QR model, which is given by

Yi = x′iβτi, i = 1, ..., n, 0 < τ < 1,

where Yi is the response variable, xi’s are covariates, βτi’s are the quantile specific
linear effects, and ετi is a random variable assumed to be an unknown error term on
which no specific distributional assumptions are made except that the distribution
is restricted to have the τ th quantile to be zero (Liu & Bottai, 2009; Lachos et al., 2015;
Fenske et al., 2011). For this reason, the parametric QR model aims at describing the
quantile function QYi(τ |xi) of the continuous outcome Yi conditional on covariate
vector xi at a given quantile τ , and this can be expressed as follows

QYi(τ |xi) = F−1
Yi

(τ |xi) = x′iβτi + ετi, with Qετi(τ |xi),

where Fτi is subject to Fτi(0) = τ , F−1
Yi

(·) is the inverse cumulative distribution func-
tion of Yi. For a comprehensive overview of QR, see, for example, Koenker (2005b),
Koenker & Hallock (2001), Koenker & Bassett (1978), Buchinsky (1998), or Yu et al.
(2003).

As much as the parametric QR assumptions enjoy a simple model structure, con-
venience of interpretation, and lower computational cost, it is not flexible enough
and hence carries the risk of model misidentifications for complex problems (Lin
et al., 2013). Nonparametric QR has become a viable alternative to avoid restrictive
parametric assumptions. Koenker et al. (1994) explored nonparametric QR in spline
models (quantile smoothing splines), which they defined as solutions to

min
f∈F

n∑

i=1

ρτ (yi − f(xi)) + λ

(∫ 1

0
|f ′′(x)|pdx

)1/p

, (6.1)

where ρτ (u) = u{τ − I(u < 0)}, p ≥ 1, is the so-called check (loss) function, the
parameter τ ∈ (0, 1) controls the quantile of interest, and λ ∈ R+ is a smoothing
parameter (Koenker & Bassett, 1978; Koenker et al., 1994).

As closely analogous to the parametric QR model (4.7), Koenker (2005a) generalized
the nonparametric QR models as

QYi(τ |xi) = f(xi, βi(τ)), (6.2)
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Then, Koenker (2005a) presented the τ th nonparametric QR estimator as

β̂i(τ) = arg min
β

n∑

i=1

ρτ (yi − f(xi, βi(τ))) (6.3)

Several techniques were proposed for nonparametric QR modelings, such as Bivari-
ate quantile smoothing spline (He et al., 1998) and Kernel quantile regression (Li
et al., 2007). However, nonparametric QR is an important yet challenging topic that
needs to be addressed in-depth (Lin et al., 2013). One can find a brief account of non-
parametric QR strategies in numerous studies; see, for example, Davino et al. (2013),
and Koenker (2005a). To account nonlinearity relationship between quantiles of the
outcome and covariates, Rigby & Stasinopoulos (2005) also proposed generalized
additive models for location, scale, and shape (GAMLSS). GAMLSS enables addi-
tional flexibility to fit the covariates’ nonlinear effect; however, they do not result
in easily interpretable expressions for the quantiles. They are based on specifying
distinct distributional parameters (Fenske et al., 2011). Instead, additive quantile re-
gression models (AQMs) allow for the inclusion of nonlinear covariate effects and
give more flexibility (Fenske et al., 2011).

6.3 Additive quantile regression

As we also discussed it in Chapter 5, additive models, introduced by Stone (1985),
Breiman & Friedman (1985), and Hastie & Tibshirani (1990), are flexible regression
tools that manipulate linear as well as nonlinear terms. The nonlinear terms in ad-
ditive models are modeled through smoothing splines (Geraci, 2019). They pro-
vide programmatic approaches for nonparametric (nonlinear in parameters) regres-
sion modelings; by restricting nonlinear covariate effects to be composed of low-
dimensional additive pieces so that we can overcome some of the worst aspects of
the notorious curse of dimensionality (Koenker et al., 2011). The literature on ad-
ditive models is vast (Hastie & Tibshirani, 1990; Stone, 1985; Der & Everitt, 2012;
Xiang, 2001; Wood, 2017). However, most of the work has been done based on esti-
mating conditional mean functions. The additive quantile regression model (AQM)
provides an attractive framework for parametric as well as nonparametric regres-
sion illustrations focused on features of the response beyond its central tendency
(Koenker et al., 2011; Fenske et al., 2011; Geraci, 2019).
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Fenske et al. (2011) defined the τ th AQMs that extend the linear predictor, x′iβτ , with
a sum of nonlinear functions of continuous covariates,

∑
fτj(·), as follows

QYi(τ |xi, zi) = x′iβτi +

q∑

j=1

fτj(zi) + ετi, j = 1, ..., q, (6.4)

where fτj denote generic functions of covariates zi for the ith observation, and al-
lows for the inclusion of different model terms such as nonlinear effects (smooth
functions) of zk, fτ (zk), and varying coefficient terms, z′kfτ (zk), where the effect of
the covariate z′k varies smoothly over the domain of zk according to some function
of fτ . However, the underlying assumption of the error term, ετi, remains the same
as in the QR model (4.7); see Fenske et al. (2011) for more details.

AQM estimates the additive effect using linear programming algorithms as in the
conventional QR model (Fenske et al., 2011). However, in the AQM case, deter-
mining adequate numbers and the position of knots is challenging. To avoid these
challenges, Fenske et al. (2011) used penalty methods such as quantile smoothing
splines of Koenker et al. (1994). Thus, the minimization problem of AQM that con-
sists of extra penalty term is given by (Fenske et al., 2011):

arg min
fτ

n∑

i=1

ρτ (yi − x′iβτi −
q∑

j=1

fτj(zi))− λV(f ′τ ), (6.5)

where V(f ′τ ) = sup
∑n−1

i=1 |f ′τ (zi+1) − f ′τ (zi)|, which represents the total variation of
the derivation f ′τ : [a, b] → R, where the sup is taken over all partitions a ≤ z1 <

· · · < zn < b, and λ is a tuning parameter that controls the smoothness of the es-
timated function also known as “total variation regularization”: see Fenske et al.
(2011), Koenker et al. (1994), Koenker et al. (2011) or Koenker (2005b) for more de-
tails.

6.4 Additive quantile mixed model

Additive mixed models (AMMs), an extension of additive models, have been devel-
oped precisely to incorporate linear and nonlinear effects, as well as random terms
when the data are sampled according to longitudinal designs (Wood, 2017; Geraci,
2019). AMMs have been integrated into QR methods to obtain robust results, not
only focused on features of the longitudinal outcome at its central tendency that
may not be the best location to characterize the data specifically when the errors are
non-normally distributed, and the location-shift hypothesis of the normal model is

143



6.4. Additive quantile mixed model

violated but also at conditional quantiles of the longitudinal outcome with no as-
sumption about the response or errors distribution apart from the distribution is
restricted to have the τ th quantile to be zero (Fenske et al., 2011; Liu & Bottai, 2009;
Lachos et al., 2015). Thus, additive quantile mixed models, which have gained pop-
ularity recently as a general method for longitudinal data, bring a comprehensive
and more complete picture of the nonparametric as well as the parametric effects
(Fenske et al., 2013; Geraci, 2019).

Fenske et al. (2013) proposed extending AMMs to the QR model for longitudinal
data that consists of fixed individual-specific intercepts and slopes modeled through
penalized splines of Ruppert et al. (2003). However, their model did not include
random-effects terms and did not allow individual-specific effects to have a gen-
eral covariance structure (Geraci, 2019). The version of Geraci (2019) additive QR
model for longitudinal data includes linear and nonlinear terms, as well as multiple
random effects to account for the correlation at the individual level with a general
variance-covariance matrix and allow for automatic smoothing selection within a
mixed model framework of Ruppert et al. (2003). Thus, as pointed out by Geraci
(2019), because of the following two basic ideas, his model shown to have superior
performance compared with the approach of Fenske et al. (2013): the first point is re-
garding the ith unit effects, which he assumed to be random instead of fixed so that
the covariance structure between effects can be introduced; the second point is that
instead of prior specification, the nonparametric term’s smoothing is automatically
estimated from the data (Geraci, 2019).

Geraci (2019) defined the τ th additive QR model for longitudinal data as

Qyij |ui,xi,zi(τ) = βτ,0 +

p∑

k=1

fkτ (xijk) + z′ijuτ,i,

j = 1, ..., ni, i = 1, ...,m, τ ∈ (0, 1),

(6.6)

where x′ij is the jth row of a known ni × p matrix Xi, z′ij is the jth row of a known
ni × q matrix Zi, yij is the jth observation of the response vector yi = (y11, ..., y1ni)

′

for the ith unit, fkτ (·) is a τ -specific, centered, twice-differentiable smooth function
of the kth component of x, and uτ,i is a q × 1 vector of values that collects ith unit
random effects associated with zij and its distribution is assumed to depend on a
τ -specific parameter (Geraci, 2019).

Geraci (2019) considered a spline model of the type: fτ (x) ≈ ∑H
h=1 Vτ ,hBh(x), to

model nonlinear functions of the components of x = (x1, ..., xs, xs+1, ..., xp)
′ that
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consists of the first s terms of nonlinear functions and p − s linear functions. The
Bh’s denote the basis functions (Vτ ), h’s represent the corresponding τ -specific coeffi-
cients ofBh’s andH indicates the number of knots (Geraci, 2019). The approximated
quantile function from the model (6.6) is then expressed as follows (Geraci, 2019):

Q∗yij |ui,xi,zi(τ) = βτ,0 +
s∑

k=1

Hk∑

h=1

Vτ ,hk B(k)
h (xijk) +

p∑

k=s+1

βτ ,k xijk + z′ijuτ,i (6.7)

In matrix notation, the ith unit of expression (6.6), which is then called additive quan-
tile mixed model (AQMM), is given by (Geraci, 2019)

Q∗yij |ui,xi,zi(τ) = Fiβτ +Ziuτ,i +BiVτ , (6.8)

where B(k)(xijk) is considered as Hk×1 vector of values taken by the kth spline
evaluated at xijk, Vτ,k = (Vτ,1, ...,Vτ,Hk)′ considered as the Hk×1 vector of spline
coefficients for the kth covariate, and H =

∑
kHk. Furthermore, Bi and Vτ , de-

fined, respectively, as the ni × H matrix with rows
(
B(1)(xij1)′, ..., B(s)(xijs)

′)′ and
(V ′τ,1, ...,V ′τ,s)′, Fi is the ni × (p − s + 1) matrix with rows (1, xij(s+1), ..., xijp)

′ and
βτ = (βτ,0, βτ,s+1, ..., βτ,p)

′ (Geraci, 2019).

The objective function of AQMM, where the vectors uτ,i and Vτ assumed to follow
zero-centered multivariate Gaussians with variance-covariance matrices

∑
τ and Φτ =⊕s

k=1 φτ ,k IHk , respectively, with selecting ρτ (r) =
∑n

j=1 rj{τ − I(rj < 0)} for a vec-
tor r = (r1, ..., rn)′, is given by Geraci (2019) as

M∑

i=1

ρτ (yi − Fiβτ −Ziuτ,i −BiVτ ) +

M∑

i=1

‖uτ,i‖2∑−1
τ

+

s∑

k=1

φ−1
τ,k‖Vτ,k‖2, (6.9)

where “uτ,i’s are assumed to be independent for different i (but may have a gen-
eral covariance matrix) and are independent from Vτ , and φτ,k’s are determine the
amount of smoothing for the nonparametric terms” (Geraci, 2019). Minimizing the
objective function of expression (6.9) proceeds as the same as minimizing the objec-
tive function of quantile mixed-effects models (Geraci & Bottai, 2007; Galarza et al.,
2015; Lachos et al., 2015) where the asymmetric Laplace distribution with a location
parameter µ, scale parameter σ > 0, and skewness parameter τ ∈ (0, 1) (Koenker
& Machado, 1999; Yu & Moyeed, 2001; Geraci & Bottai, 2007; Yu & Zhang, 2005),
employed as quasi-likelihood for fidelity term (Geraci, 2019). Further discussion of
AQMM is provided by Geraci (2019).
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6.5 Data example: Subset of the CAPRISA study data

In this section, we illustrate the use of the AQMM of Geraci (2019) introduced in
Section 6.4 on the Centre for the AIDS Programme of Research in South Africa
(CAPRISA) 002 Acute Infection Study data. As we mentioned in the previous chap-
ters, the CAPRISA study was effected at the Doris Duke Medical Research Insti-
tute (DDMRI) at the Nelson R Mandela School of Medicine of the University of
KwaZulu-Natal in Durban, South Africa (Van Loggerenberg et al., 2008; Yirga et al.,
2020b). Between August 2004 and May 2005, CAPRISA introduced a cohort study
registering high-risk HIV-negative women to a follow-up study with an intense on-
going examination. Women infected with HIV were recruited into the CAPRISA 002
Acute Infection (AI) study and then followed up carefully to study disease progres-
sion and CD4/viral load evolution (Garrett et al., 2018; Mlisana et al., 2014; Moosa
et al., 2018; Van Loggerenberg et al., 2008; Yirga et al., 2020a,b).

Once HIV-infected women were enrolled in CAPRISA’s AI Phase II study, their CD4
count and viral load will be measured and assessed regularly. When their CD4 count
≤ 350 cells/mm3 for more than two consecutive visits between six months or if they
are with AIDS-defining illness (WHO clinical stage 3-5), they would be referred to
a public government clinic for ARV treatment. However, according to the South
African National Department of Health, these patients would only start HAART
once their CD4 count is ≤ 200 cells/mm3, until 2015. With effect from the 1st of
January 2015, according to the National Department of Health, the criteria to start
HIV patients on early initiation of ART is CD4 count ≤ 500 cells/mm3 (Yirga et al.,
2020b). HIV-infected women in Phase II-IV were followed up until they are started
HAART. After that, they would be transitioned to Phase V and followed up for a
minimum of five years, or eligible participants would be offered to join immediately
into Phase V (Karim et al., 2017). After the five years of follow-up have been ac-
complished, participants would be offered an optional annual follow-up for up to
fifteen extra years to patients who recurred in Phase V (Karim et al., 2017). Fig. 6.1
illustrates the screening and enrolment process of the study data set. One can find
further detail on the study population’s design, development, and procedures here
(Garrett et al., 2018; Mlisana et al., 2014; Moosa et al., 2018; Van Loggerenberg et al.,
2008; Karim et al., 2017).
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Figure 6.1: Diagrammatic overview of the CAPRISA 002 AI cohort study design

Geraci (2019) illustrated the full range of AQMM that is described above. The pur-
pose of this analysis is to model the CD4 count of patients from KwaZulu-Natal,
South Africa, as part of a comprehensive study of HIV/AIDS. The results of this
study illustrate longitudinal CD4 counts among HIV-infected patients enrolled in
the CAPRISA 002 AI study by employing an AQMM. The median age of our sample
of 235 women was 25 years. Our sample consisted of 7019 measurements on 235
women from 18 to 59 years of age. There were multiple visits for all participants,
ranging from 2 to 61, with a median of 29.

Tables 6.1 and 6.2 show the descriptive measures of the study variables. descrip-
tive measures for the variables studied. Low (upper) quantiles are those where at
least 25% (75%) of the observations are at or below it, or 75% (25%) are at or above
it (Koenker, 2005a). In Table 6.1, it is shown that the median BMI for the partici-
pants was 26.84 (range 17.89 - 54.89). The median square root CD4 count and base-
line viral load were 22.98 cells/mm3 and 26600 copies, respectively. Of a total of
235 women, 105 (44.7%) lived around Vulindlela (rural area), and 130 (55.3%) lived
around eThekwini (Durban, urban area) in KwaZulu-Natal, South Africa (see Table
2). The majority of the women, 182 (77.4%), were in a stable partnership, 224 (95.3%)
completed secondary school (Table 6.2), and most of them (78.8%) were self-reported
sex workers (Van Loggerenberg et al., 2008; Mlisana et al., 2014; Yirga et al., 2020b).
Additional details are available here (Van Loggerenberg et al., 2008; Mlisana et al.,
2014; Moosa et al., 2018; Garrett et al., 2018) concerning the CAPRISA 002 AI study.
We analyze this data set intending to explain the different conditional distribution
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of the CD4 count by considering two covariates enter as nonparametric additive
effects: time and baseline BMI; as well as discrete, continuous, and categorical co-
variates enter in the model as parametric effects (see Tables 6.1 and 6.2). Fig. 6.2
shows observed square root transformed CD4 counts by treatment time and base-
line BMI, respectively, for a total of 7019 observations. The nonlinear patterns, which
connect the sample quantiles, are estimated conditionally on time and baseline BMI
for six quantile levels. The curves (nonlinear patterns) suggest the requirement of
some degree of smoothing (Fig. 6.2).

Figure 6.2: Observed CD4 counts (square root transformed) by time and baseline BMI across
quantile levels
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Following the AQMM of Geraci (2019), we used a transformed continuous form of
the outcome (i.e., square root CD4 count) for fitting purposes. Thus, the proposed
τ th AQMM form of our study, using expression (6.7), can be specified as

Q∗yij |ui,xi,zi(τ) = βτ,0 +

H1∑

h=1

Vτ ,1B(1)
h (timei) +

H2∑

h=1

Vτ ,2B(2)
h (BMIi)+

βτ ,1ARTi + βτ ,2 V Li + βτ ,3 residencei + βτ ,4 educationi

+ βτ ,5 partneri + βτ ,6 agei + uτ,0 + uτ,1(timei),

(6.10)

where yij is the square root transformed form of the outcome (
√

CD4 count) at the
jth time point for the ith subject, time is the time variable measured in months from
the start of the study, BMI indicates the patient’s baseline BMI, ART is the dichoto-
mous HAART initiation (0 = pre-ART, 1 = post-ART), VL is patient’s baseline viral
load, the residence is patient’s place of residence, education is the educational level
of participants, partner indicates the number of sexual partners of the participant,
age is participant age at enrolment, uτ,0 indicates the random intercept, and uτ,1 in-
dicates the random slope. The symbol τ specifies the quantile of interest; we made
the estimation at τ = 0.05, 0.25, 0.5, 0.75, 0.85, 0.95, and 0.99 to get the complete pic-
ture of the effects.

Table 6.1: Descriptive statistics for non-categorical variables

Descriptive measures

Variables Mean Median Minimum Maximum Q0.25 Q0.75 IQR

√
CD4count (cells/µ L) 23.26 22.98 5 44 20 26.19 6.19

Baseline VL (cells/mL) 130730.33 26600 1 (undetected) 5510000 5080 113000 107920

Age (Years) 27.15 25 18 59 22 30 8

Body Mass Index 28.98 26.84 17.89 54.89 23.33 32.96 9.63

Geraci (2019) employed the AQMM in the R package lqmm as an ad-on to fit ad-
ditive quantile mixed models, and it is available from the author’s GitHub plat-
form (https://github.com/marco-geraci/aqmm). As the same as the smooth
terms’ specification in the R package mgcv (Wood, 2017), one can enter smooth terms
continuous covariates within the s (smooth) function to control the model smooth-
ness using splines when fitting AQMM (Geraci, 2019). Furthermore, the shrinkage
smoothers obtained using the bs option inside the s command in the R package mgcv
are constructed so that smooth terms can be penalized away altogether, not con-
tribute to the model (Wood, 2017; Zuur et al., 2009). Thin plate smoother provides
statistical and computational efficiency, stable optimal approximations (especially
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Table 6.2: Baseline descriptive statistics for categorical variables

Variable Total Variable Total

Number of women 235 Number of sexual partners

Place of residence No partner (reference) 43 (18.3%)

Rural (reference) 105 (44.7%) Stable partner 182 (77.4%)

Urban 130 (55.3%) Many partners 10 (4.3%)

Educational level

Primary schools (reference) 11 (4.7%)

Secondary schools 224 (95.3%)

for large data sets), and can be constructed for smooths of more than one covariate
at a time (Wood, 2003; Geraci, 2019). Thus, it was used as a shrinkage spline to fit
the proposed model (6.10). The remaining parametric terms in the aqmm function
(Geraci, 2019) are specified as the same as in other R linear mixed model fitting func-
tions such as lqmm () and lme4 (). The output is separated into two parts: Parametric
part that includes estimated fixed effects with their standard errors (SE), in parenthe-
ses, and significant mixed effect representation of smoothing splines (see Table 6.3).
Since the smooth coefficients are mostly uninterpretable, we focus on their variances
to evaluate the spline coefficients’ penalty at various quantiles (see Table 6.4 and Ta-
ble 7.8 in Appendix B). However, their estimated smoothed effects are depicted in
Fig. 6.2. Table 6.4 also presents the estimated variance of the random effects from
the fitted model (6.10).

According to Table 6.3, the age effect is positive and significant at the bottom, me-
dian, and at τ = 0.75 quantile levels (see also Supplementary material 1). On the
other hand, the effect of education on square root of CD4 count does not seems to be
significant across all quantiles after the patient had been initiated on HAART. The
square root of CD4 count across all quantiles is affected by post-HAART initiation
as expected. A significant positive effect of HAART initiation on CD4 cell counts is
observed at the median quantile and becomes roughly constant at higher quantiles
(see Table 6.3 and Table 7.8 in Appendix B). In addition, patients with stable sexual
partners showed significant improvements in their CD4 cell count across all quan-
tiles. The CD4 cell count is significantly lowered in patients who have many sexual
partners, especially at the bottom (τ = 0.05) and at the top (τ = 0.95, 0.99) quantiles
(Table 6.3).

Furthermore, we found a clear indication, at the bottom (τ = 0.05) and more extreme
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Table 6.3: Parameter estimates followed by results of the smoothing terms from the AQMM
for the CAPRISA 002 AI study data across different quantiles

Fixed effects Q̂0.05 (SE) Q̂0.25 (SE) Q̂0.5 (SE) Q̂0.75 (SE) Q̂0.95 (SE)

Intercept 16.004 (0.6634) *** 19.647 (0.4749)*** 21.204 (0.5340) *** 24.167 (1.0536)*** 29.379 (0.6324) ***

Age 0.0398 (0.0156) ** 0.0209 (0.0114) . 0.0418 (0.0052) *** 0.0331 (0.0078)*** 0.0203 (0.0178)

Secondary school -0.4491 (0.5731) -0.4734 (0.4101) -0.0165 (0.6619) 0.0385 (1.0677) 0.8323 (0.5574)

Post HAART 0.7430 (0.0879) *** 1.5296 (0.0598)*** 1.5968 (0.0402) *** 1.5292 (0.0546)*** 1.7007 (0.1322) ***

Baseline VL -3.83e-06 (8.42e-07) *** -2.09e-06 (2.69e-07)*** -1.79e-06 (2.41e-07) *** -1.57e-06 (1.60e-07)*** -1.70e-06 (2.21e-07) ***

Urban -0.50002 (0.1668) ** 0.2499 (0.0545)*** 0.0998 (0.0334) ** 0.1275 (0.1436) -0.8846 (0.2216) ***

Stable partner 0.6135 (0.1655) *** 0.3046 (0.1549) . 0.5424 (0.1140) *** 0.4907 (0.1594)** 0.6339 (0.2960) *

Many partners -2.2771 (0.2707) *** -0.7858 (0.2589)** -0.8432 (0.1091) *** -1.1719 (0.2569)*** -3.6497 (0.4451) ***

Results of the smooth terms

s (Time) -2.5075 (0.5426) *** -2.3766 (0.5549)*** -2.1985 (0.4735) *** -2.2829 (0.4999)*** -2.3324 (0.4373) ***

s (Baseline BMI) 5.4382 (1.0786) *** 5.6868 (1.1094)*** 5.5767 (1.3014) *** 5.7904 (1.2077)*** 5.2604 (1.0753) ***

• Significance codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘ ’, 1.

• The reference categories are given in Table 6.2.

quantiles (τ = 0.85, 0.95, 0.99), that there is a significant negative effect of patients
who were residing around the urban area, on their CD4 cell count (see Table 6.3 and
Table 7.8 in Appendix B). Table 6.3 also shows that the negative effect of baseline vi-
ral load on the CD4 cell count is higher at the lower quantiles than at the median and
higher quantiles (see, also, Table 7.8 in Appendix B). In addition, R package aqmm ()
sample outputs using CAPRISA 002 AI study data at τ = 0.25, 0.75, 0.85, and 0.99

can be found in Table 7.8 in Appendix B.

Table 6.4: Estimated variance of the random effects and smooth terms from the AQMM for
the CAPRISA 002 AI study data

Q̂0.05 Q̂0.25 Q̂0.5 Q̂0.75 Q̂0.85 Q̂0.95 Q̂0.95

Variance of the random effects

σ̂0 (Intercept) 2.748e-02 8.687e-01 3.543e-02 2.453e-01 3.454e-01 4.675e-02 3.326e-03

σ̂0 (Time) 8.104e-18 1.929e-16 3.328e-17 5.451e-17 7.671e-17 1.044e-17 2.963e-18

Variance of the smooth terms

φ̂T ime 8.796 28.94 36.74 30.28 21.92 10.13 2.669

φ̂BaselineBMI 1876.501 6463.83 7823.81 6290.32 4979.39 2183.69 576.902
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The variance of the first smooth term (φ̂T ime) indicates a stronger penalty on the
spline coefficients at τ = 0.25, 0.5, 0.75, 0.85 quantiles than at the bottom and at the
top quantiles (Table 6.4). Similarly, the variance of the second smoother (φ̂BaselineBMI )
shows a strong penalty on the spline coefficients at τ = 0.25, 0.5, 0.75, 0.85 quantiles
than at the bottom and at more extreme quantiles. Table 4 shows that the random
effects’ variances have roughly constant variability of subject linear trends across the
fitted quantiles (see, also, Table 7.8 in Appendix B).

Based on the seven fitted quantile levels (τ = 0.05, 0.25, 0.5, 0.75, 0.85, 0.95, 0.99), Fig.
6.3 depicts the two estimated smoothed covariate effects on patients’ CD4 counts.
Patients enrolled in the CAPRISA 002 AI study exhibit nonlinear time effects on CD4
counts that are prominent at all quantile levels. As the quantile increases, its effect
becomes stronger. However, it is after several treatment visits that such progress to-
wards higher CD4 counts occurs. Consequently, the progression is slow until about
50 months, then it increases steadily thereafter across all quantile levels (Fig. 6.3).

Furthermore, overall fit quantile levels, the significant smoothed baseline BMI ef-
fect on patients’ CD4 counts is roughly constant for patients with a baseline BMI
of about 40 but gradually improves from there. Because of this, patients with low
BMI need to be monitored carefully before and after HAART initiation. Despite this,
physicians should not ignore patients with high BMI. According to our studies and
other findings, a plausible explanation may be that BMI may affect drug metabolism
and, thus, the progress of HAART and its immunological responses (Palermo et al.,
2011; Li et al., 2019; Yirga et al., 2020a,b). Moreover, higher levels of BMI have a more
significant effect than lower levels (Fig. 6.3).

Some of the codes that were used for this section can be found here (Code 7.5 in the
Appendix A).
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Figure 6.3: Predicted smoothed covariate effects on the square root CD4 count of HIV-
infected patients recurred in the CAPRISA 002 AI study at various quantiles us-
ing AQMM
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6.6 Summary

In this chapter, we discussed the additive quantile model and also considered ad-
ditive quantile mixed models of Geraci (2019) to capture the parametric and non-
parametric covariate effects on the longitudinal CD4 count of HIV-infected patients
across various quantile levels. It turns out that this recently developed model can be
used to obtain robust results, not only at the central location of the longitudinal out-
come that may not be the best location to characterize the data but also at different
locations of the conditional distribution that communicates an inclusive and more
complete picture of the parametric as well as the nonparametric covariate effects.

A series of AQMM at τ = 0.05, 0.25, 0.5, 0.75, 0.85, 0.95, and 0.99 were performed,
and the results were discussed. According to the results, patients’ CD4 count is
markedly increased after HAART initiation, and their baseline viral load shows a
negative effect on the progression of their CD4 count over time, as we would have
expected. All fitted quantiles of the response variable were affected by a significant
nonlinear relationship between time and baseline BMI. Study results suggest that,
across all fitted quantile levels, the patient’s education level does not significantly in-
fluence the progression of CD4 counts over time. All but the most extreme quantiles
of HIV-positive patients showed a significant difference in the CD4 count regard-
less of their age. In addition, CD4 cell recovery was found to be significant across all
quantiles among patients with a stable sexual partner. Contrary to this, HIV-infected
patients with many sexual partners during the treatment period showed a negative
effect on CD4 cell count across all fitted quantile levels.

As we expected, the patient’s CD4 count significantly increased after HAART was
initiated, and their baseline viral load also showed a significant negative effect on the
patient’s CD4 count over time. Baseline BMI and time were also significant nonlinear
effects in our analysis. Further, patients with higher BMIs at baseline have improved
CD4 cell count over time after treatment. Despite this, higher BMI patients should
not be ignored clinically. This study instead suggests that BMI can influence drug
metabolism and, consequently, the immunological responses to HAART. According
to the nonlinear time effect, patients’ CD4 counts are not increasing rapidly over
time. The growth starts after multiple treatment visits. Hence, the study suggests
that HIV patients who are not clinically and immunologically stable on HAART
could experience increased risks if exposed to COVID-19, especially if they are not
on HAART immediately after HIV exposure.

One can estimate the covariate effects over the grid τ ∈ (0, 1) as per the analysis
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aspects. An investigator, however, should be cautious when using AQMM since the
method needs some adjustment to control the estimation algorithm and demands
more computing time to estimate the random effects (Geraci, 2019). For instance,
for this study, it took 2 – 3 hours to fit the proposed model (6.10) at a single τ as
like Geraci (2019). To overcome this computational burden, Geraci (2019) suggested
the necessity of further improvement to the AQMM. As the studied data is an on-
going study, there is a plan to extend AQMM application to gene expression studies
(machine learning framework) in future work since it produces satisfactory results.
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Chapter 7

Discussion and Conclusion

Parametric and nonparametric driven models for longitudinal forms of data analysis
more closely resemble mixed-effects models, and their extensions to the exponential
family of distribution, quantile regression-based, and additive-based models have
been the focus of this dissertation. These methodologies, with detailed discussion,
have been employed on the subset of the Centre for the AIDS Programme of Re-
search in South Africa’s (CAPRISA) data set. For a detailed discussion of types of
methodologies that are employed in this thesis, see Diggle et al. (2002), Pinheiro &
Bates (2006), Fitzmaurice et al. (2012), Der & Everitt (2012), Gbur et al. (2012), Zuur
et al. (2009), Molenberghs & Verbeke (2006), Liu (2015), Demidenko (2013), Hilbe
(2011, 2014), Koenker (2005a), Yu & Moyeed (2001), Yu & Zhang (2005), Machado &
Silva (2005), Geraci & Bottai (2014), Galarza et al. (2015), Xiang (2001), Hastie (2017),
Wood (2017), Stroup (2012), Fenske et al. (2011, 2013), Geraci (2019), and the refer-
ences therein.

This thesis began with reviewing and applying a mixed-effects model to visualize
and understand the longitudinal data set we used for analysis. In mixed-effects
models, we can account for random variation if one group has more variability
than another or if we want to analyze correlations over time. Unlike linear models,
mixed-effects models can be used to deal with multi-level, clusters, dependencies
in the data, and missing values. It also works well with unbalanced designs. Thus,
mixed-effects models are suitable for both complete and incomplete data. Therefore,
all of these make the mixed-effects model a powerful technique to study longitudi-
nal data. In Chapter 2, we have also discussed some of the terminologies in mixed-
effects models, such as the difference between fixed and random effects, different
types of random-effects models, and the ML and REML estimation techniques.
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The appropriate selection of random effects using the REML estimation technique
resulted in the random intercept and slopes model, which incorporated the inter-
cept, time, and square root of time, as the best model. A comparison of covariance
structures was made to have a valid inference about the mean structure. The results
of Chapter 2 suggested that the UN covariance structure was the best structure for
the fitted model. The result also confirmed that patients’ average CD4 count sig-
nificantly increased after the patient had been initiated on ART. It was found that
patients with higher BMI at the baseline showed a considerably increasing number
of CD4 counts after being initiated on HAART. Moreover, the result confirmed that
patients with higher viral load before the patient being initiated on HAART experi-
ence a significant adverse effect on the prognosis of patients CD4 count.

Influence and model diagnostics were also conducted in Chapter 2. Since our data
set is identified as unequally measured longitudinal data, a comparison of the three
commonly used spatial covariance structures: spatial exponential structure (SP(EXP)),
spatial spherical structure (SP(SPH)), and spatial Gaussian structure (SP(GAU)), were
conducted to measure the actual distance or variation among observations as well
as to account for spatial variability (heterogeneity). It was found that the SP(EXP) is
the best spatial covariance model. Note that the “spatial” indicated just the name of
the correlation structure that uses spatial in it.

Following the mixed-effects model that was conducted concentrating on the trans-
formed continuous normalized response variable (square root of CD4 count) was
extended to exponential families of distribution in Chapter 3 to analyze the non-
normal, over-dispersed, and non-transformed longitudinal count data. The general-
ized linear mixed-effects model (GLMM) allows for both normal and non-normally
distributed response variables; that is where it gets the “generalized” term form. It
also enables predictor variables to be either fixed and/or random (subject-specific)
effects, which is the “mixed” part of the model. GLMM incorporates random effects
to model the correlation between observations. GLMMs are also one of the most
valuable methods when the main scientific objective is to make inferences about
subject-specific effects. For these reasons, GLMMs cover a wide variety of models,
from simple linear regression to complex multi-level models for non-normal and
normal longitudinal forms of data.

The properties of mixed-effects models that include random effects and generalized
linear models that handle non-normal data by letting the errors take on exponen-
tial family of distribution can be combined to model such instances in a GLMM
framework effectively. Inference on the GLMM uses the same basic ideas as the
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conventional mixed-effects models and the generalized linear models. However, in
GLMMs, the mean of the response and the predictors are modeled through the link
functions.

For count data, over-dispersion is potentially one of the leading modeling topics
in applied statistics. If it is not taken into consideration, it may lead to an inadequate
result. Thus, a reasonable GLMM approach that manages over-dispersed longitudi-
nal count data is used in this chapter. Since a Poisson process is mainly used as an
initial point for modeling the stochastic differences of count data with the canonical
link being the log, the Poisson mixed-effects model was first employed in Chapter 3.
However, due to its lack of realistic properties, such as the restriction that the mean
and variance are equal, the Poisson mixed-effects model is replaced by the negative
binomial mixed-effects model. Thus, the later model showed appropriate properties
and out-performed the PMM model to manage the over-dispersion of our longitu-
dinal count data.

The parameter estimates based on the NBMM are not exceptionally different from
those based on PMM. However, as mentioned above, the PMM approach leads to
inadequate results when over-dispersion is present. Some of the available methods
to estimate the parameters in GLMMs were discussed. Our preference goes to the
Laplace approximation due to the fewer limitations than the Adaptive quadrature
and its accuracy, fast and plausibility to use the likelihood as well as the information
criteria.

Little’s missing completely at random (MCAR) test was used to check whether the
missing values in our data set are MCAR or not. It was found that the missing data
in the study variables of interest were not MCAR. Therefore, multiple imputation
techniques were used to handle missing values in the data set to validate parameter
estimates from the complete data set using NBMM. However, due to the relatively
low amount of missing data in the analysis variables, we did not find major differ-
ences. In both cases, analysis with missing values, and multiple imputation analy-
sis, covariates that were found to be significantly affecting CD4 count of the patient
were similar, and their respective parameter estimates are more close to each other.
Therefore, missing data analysis was not the scope of the study in any of the other
chapters in the thesis. It was found that the effect of treatment time, baseline BMI,
post-ART initiation, baseline viral load, and the number of sexual partners on the
patient’s CD4 count, as highly significant factors in Chapter 3.

Further, in Chapter 4, a quantile mixed-effects approach was proposed to detect the
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heterogeneous effects of covariates at the conditional distribution of the response.
Quantile regression offers an invaluable to discern effects that would be missed by
other conventional regression models, which analyze the sole conditional mean. Es-
timated effects of mixed-effects models and GLMMs are formulated on the response
variable through mean-based regression. However, this centrality-based inferential
system cannot represent the entire distribution of the outcome and, in some cases,
may not be the best location to characterize the longitudinal data. While regression
for medians can be seen as more robust than regressions to model the mean value,
quantile regression, a generalization of median regression, enables more fully to ex-
plore the data by modeling the conditional quantile at low or high quantiles such as
the 5th or 95th percentiles of the response distribution. For these reasons, quantile
regression emerged as an effective analytic technique in numerous study areas of
science.

Despite the fact quantile regression was primarily established in a univariate setting,
the considerable amount of longitudinal data recently dictates its extensions towards
a mixed-effects modeling system (Liu & Bottai, 2009; Geraci & Bottai, 2007; Galarza
et al., 2017). Quantile mixed-effects model has become practical for longitudinal
data analysis due to the recent computational advances and ready availability of
efficient linear programming algorithms. Thus, its application has received increas-
ing consideration in wide-ranging areas of study (Lachos et al., 2015; Fu & Wang,
2012; Geraci & Bottai, 2014; Galarza et al., 2015). Thus, the QR-LMM (Galarza et al.,
2017) for our longitudinal data is applied in this chapter. The QR-LMM concept is
similar to that of the conventional quantile regression for independent data. How-
ever, there are differences in the estimation due to the existence of random effects in
the QR-LMM. As in the linear model, the estimation of the regression parameter βτ
can be processed using the ML estimator problem by assuming an ALD unit error
model. At the same time, the random effects in the QR-LMM need to be predicted.
Thus, the QR-LMM estimator combines the ML estimator of βτ and the random ef-
fect predictor.

QR-LMM is a likelihood-based function that adopts an ALD for the error term, as
mentioned above, in which multiple random effects can be incorporated into the
model to account for the dependence among the longitudinal data. This method
uses the SAEM algorithm for determining exact ML estimates of the covariates ef-
fects and variance-covariance elements across a set of quantiles. We further applied
this methodology to a subset of CAPRISA data to justify how the procedure devel-
oped can be used to obtain robust parameter estimates when the interest is to get the
estimation at different locations of the conditional distribution, which then brings a
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comprehensive and more complete picture of the effects. A series of QR-LMM over
the grid τ = {0.05, 0.25, 0.5, 0.75, 0.85, 0.95} were estimated, and the results were
discussed. It was found that treatment time (measured in a month), ART-initiation,
baseline BMI, and baseline viral load, were significant factors of the patient’s CD4
count across all quantile levels.

Since there is always a complex form of relationships between the outcome vari-
able and the predictors, unknown covariates’ functional form, and inflexibility in
parametric models, the generalized additive mixed-effects approach is conducted in
Chapter 5. The objective of the chapter is to let the data decide the relationship be-
tween variables. Additive models and, more generally, generalized additive models
are a generalization of nonparametric regression models in which they deal with
non-linearity in covariates that are not the main interest in a study and adjust for
those effects appropriately while still retaining much of their interpretability. GAMs
enable the mean of the outcome to rely on an additive predictor via a nonlinear
link function. The GAMs consist of an additivity assumption that enables relatively
many nonparametric relationships to be examined simultaneously and the distribu-
tional flexibility of GLMs.

GAMs differ from conventional linear regression methods by allowing the so-called
smooth terms alongside parametric representations. The coefficients for the individ-
ual basis functions (knots) contained in a GAM smooth term are estimated in such a
way that the resulting curve has a controlled degree of wiggliness determined by the
smoothing parameter. The estimated degree of freedom (edf) is used to test the signif-
icance of the smoother term in GAMs; as a result, analysis results of GAMs always
come with these edf values. However, features of the smoothing function in GAM
are often examined by graphical visual inspection.

The generalized additive mixed model, a mixed-effects version of GAM, is another
powerful method that deals with non-normally distributed outcome, non-linear tra-
jectories in the longitudinal data using nonparametric regression, and accounts for
within-individual correlation (hierarchical structure of the data) by incorporating
random effects (Lin & Zhang, 1999). GAMMs extend the GLMMs by allowing con-
tinuous predictors to have a smooth functional impact on the mean response (Lin
& Zhang, 1999). GAMM can be fitted using the gamm or gamm4 function from the
mgcv package in R; the function gam.check () can be used to produce residual plots
(model-checking).

In Chapter 5, we employed an additive negative binomial mixed-effects model, an
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example of a GAMM that accommodate over-dispersion of the data, as an extension
to Section 3.6 and 3.7 to analyze the multiple repeated measures of patients’ CD4 cell
count, as a function of age, baseline BMI, and treatment time non-parametrically, and
baseline viral load, HAART initiation, level of education, place of residence, and the
number of sexual partners parametrically. The results of the analysis gave us more
insights to look into the functional relationship between the response variable and
the covariates. The study confirmed that the linear effect of HAART initiation and
baseline viral load have a significant positive and substantial adverse effect, respec-
tively, on the progression of patients’ CD4 cell count over time. Furthermore, the
analysis revealed that the relationship between patients’ CD4 count and each of the
nonparametric terms (age, baseline BMI, and time) could be better explained by a
nonlinear relationship.

In Chapter 6, we examined an extended form of additive mixed-effects model to
quantile-based regression. A comprehensive analysis of a variety of different co-
variate (parametric and nonparametric) effects was observed, not only at the mean
level of the longitudinal outcome, which is not necessarily the best place to char-
acterize the data but also across different locations of the conditional distribution.
Additive quantile mixed model (Geraci, 2019), is a recently developed model that
gained popularity as a general method for analysis of longitudinal data.

As previously discussed, quantiles, especially the median, are important to under-
stand and play a fundamental role in statistics. By definition, mean-based analysis
average out stronger and weaker effects. The averaging may even cancel out sym-
metric effects of some magnitudes but opposite signs on the tail of the distribution
(Geraci, 2019). Quantile-based regression emerged as an effective analytic technique
in numerous study areas of science due to its flexibility to make inferences focused
on features of the response beyond its central tendency. It is especially appropriate
for the parameters’ heterogeneous effect as it yields inferences that can be legitimate
irrespective of the true underlying distribution. Quantile regression techniques look
further into the data, get more information, and become an essential statistical tool
for addressing numerous research questions.

As part of this thesis, we have reviewed and applied few aspects of quantile-based
models. More effective work can also be done based on quantile regression and its
extension by other researchers. Apart from its wide-ranging scientific areas of appli-
cations, Koenker (2005b) quantile regression has also been extended to various sta-
tistical techniques: additive quantile regression, and additive quantile mixed model,
to say the least. Additive quantile regression combines quantile regression with an
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additive predictor that consists of smooth non-linear effects of continuous covari-
ates thereby enables a variety of covariate effects to be flexibly modeled (Fenske
et al., 2011). Furthermore, like the conventional additive model, the additive quan-
tile regression model does not require a predetermined functional fit but instead
determines the best fit from the data.

As an extension to AMMs, the additive quantile mixed model consider the effect
of linear and non-linear, as well as random effects across various quantiles of the
conditional distribution; thus, it has an advantage over the AMM in non-linear and
heteroscedastic cases (Geraci, 2019). The GAMLSS approach of Rigby & Stasinopou-
los (2005) that uses parametric methods based on flexible distributions can be con-
sidered as an equivalent alternative to fit the linear and non-linear trajectories of the
model at different quantiles. But, they do not provide easy coefficient interpreta-
tion of the quantile treatment effect of the covariates (Fenske et al., 2013; Geraci, 2019).
Geraci (2019)’s AQMM approach that aims at the conditional quantiles of the de-
pendent variable without assuming any distribution for the error term, estimate the
level of smoothing of the nonparametric terms automatically from the data, and
provides convenient regression coefficient interpretation as like the conventional
QR model, also has an advantage compared to GAMLSS and that of Fenske et al.
(2013)’s additive fixed effects quantile regression model for longitudinal data. In ad-
dition, AQMM has unique features compared to other alternative or additive-based
approaches; it provides the mixed-effects representation of smoothing splines that
leads to automatic smoothing selection and able to model the variance-covariance
matrix of the random effects (Geraci, 2019).

The measure of the accuracy of an estimate such as standard error and confidence
interval in AQMM is facilitated by the bootstrap method, which is a general re-
sampling procedure, adopted in Kleiner et al. (2014) as bag of little bootstraps (BLB)
approach (Geraci, 2019). The BLB approach includes features of both the bootstrap
and subsampling to obtain a robust, computationally efficient means of assessing
the quality of estimators (Kleiner et al., 2014). Confidence intervals resulted from
the bootstrap procedures implemented in quantile regression models have shown
asymptotically valid coverage probabilities (Hahn, 1995). Geraci & Bottai (2014) also
worked on bootstrapping confidence intervals in their linear quantile mixed models,
and they showed that the results have good coverage probabilities (Geraci, 2019).
Efron (1992) introduced the bootstrap technique as a computer-based method for
estimating the distributions of statistics using the observations of the sample. Boot-
strapping does not require any distributional assumptions, provides more accurate
inference even when the sample size is small, and can be applied to statistical meth-
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ods with sampling distributions that are difficult to drive asymptotically. The basic
idea of the bootstrapping method is that it selects an observation or random sample
from the original data, with replacement, to obtain an ideal estimate of the sampling
distribution of interest (e.g., variance, confidence intervals, prediction error) (Efron,
1992; Efron & Tibshirani, 1994).

The results from a series of AQMM at τ = 0.05, 0.25, 0.5, 0.75, 0.85, 0.95, and 0.99

were reported. Interestingly, the study revealed that except at the more extreme
quantile levels, patient’s age was found to have a significant linear effect on the pro-
gression of their CD4 count across the fitted quantiles. It was also observed that
significant CD4 cell recovery in response to patients with a stable sexual partner
across all fitted quantiles. In contrast, HIV-infected patients with many sexual part-
ners during the treatment period showed a significant adverse effect on CD4 cells
recovery across all fitted quantiles. Furthermore, as like Chapter 5 study result, the
analysis of AQMM also confirmed that time and baseline BMI were found to have a
significant nonlinear effect on the patients’ CD4 count across all fitted quantile lev-
els. In line with all the previous chapters, the result of the AQMM showed, across all
fitted quantiles, the progression of patients’ CD4 count is significantly increased af-
ter HAART initiation, and patients’ baseline viral load showed a significant adverse
effect on the recovery of their CD4 count over time.

In conclusion, in this dissertation, we reviewed and applied different parsimonious
longitudinal data-based modeling approaches. That includes mixed-effects model,
generalized linear mixed-effects models such as Poisson-based and negative binomial-
based models, quantile mixed-effects model, generalized additive mixed models
such as additive negative binomial mixed-effects model, and additive quantile mixed-
effects model to analyze the number of CD4 cells measured repeatedly in HIV-
infected patients enrolled in the CAPRISA study. In addition, several important data
features such as within-subject correlation, heterogeneity between subjects, varia-
tion at lower and higher levels of the design structure (fixed and random effects),
missing value analysis, identification of influential observations, models diagnosis,
covariance and spatial auto-correlation structures, over-dispersion, average effect
across the whole population and individual level, both non-Gaussian and trans-
formed Gaussian longitudinal forms of data, continuous and count forms of out-
comes, parametric and nonparametric covariate effects, and the association between
outcome and covariates across various quantile levels were also considered.

Although this dissertation research is motivated by the CAPRISA study data set, the
novel methodologies employed in this thesis have broader applications and flexibil-
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ity for investigators to explore further with their longitudinal forms of data. With
the growing recognition of the quantile-based regression model, we may also extend
our quantile-based model applications to other vital developments. The methodol-
ogy has been developed to various statistical methods such as quantile-based sur-
vival models for longitudinal data, machine learning frameworks, and other critical
areas.

Survival data analysis is part of statistical methods for data analysis for which the
outcome variable of interest is time until an event occurs (Kleinbaum et al., 2012).
When the event is more than one, the study is called competing risk analysis. The
idea of competing risks is that everyone in the study or real life is subject to several
hazards that cause an event or experience more than one type of a particular event
(competing events). What is typical about survival analysis are two things: usually,
survival time is not normally distributed, it is very often right-skewed, and survival
times are incomplete either due to censoring or truncation. Because of these two
reasons, survival data cannot be analyzed by standard statistical procedures such
as linear regression. Compared to the famous Cox models, quantile-based survival
analysis relaxes the proportional hazard assumptions, links the entire distribution of
an outcome to the covariates of interest, and provides considerably more flexibility
to explore the heterogeneous effects of covariates for a non-homogeneous popula-
tion (Koenker & Geling, 2001; Hong et al., 2019).

Most machine learning methods such as Random Forest, Neural Network, Kernel
functions, Support Vector Machines, and Gradient Boosting provide mean-based
prediction intervals and perform better when the outcome of interest follows a stan-
dard (Gaussian or uniform) probability distribution. However, when the distribu-
tion of the target variable is heteroscedastic and when we are interested in the pre-
diction intervals at various points, it is recommended to use quantile-based machine
learning approaches. These shall be the subject of future works.
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Appendix A: Codes
Sample statistical software codes used to analyze the data ex-
amples

############################### Chapter 2 #################################

Code 7.1: SAS and R codes for the data example in Section 2.6

libname mylib "C:\Users\216065934\Desktop\PhD_December";

PROC IMPORT OUT= WORK.dataMFile2

DATAFILE= "C:\Users\216065934\Desktop\PhD_December\Modified-

Quantile"

DBMS=SPSS REPLACE;

RUN;

/***********Exploratory Data Analysis************/

/*Overview of Data*/

proc contents data=WORK.acute;

run;

/*Freq, Means, Univariate*/

proc freq data=WORK.acute;

run;

proc univariate data=WORK.acute;

run;

proc means data=WORK.acute min mean max;

var p27v12 viralload;

run;

/************Testing normality*********************/

ods html;

ods graphics on;
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*title c=bib height=1 ’Testing normality of the actual response

variable (CD4 count) using histogram’;

proc sgplot data=dataM;

histogram CD4_count;

density CD4_count / type=normal;

run;

ods graphics off;

ods html close;

ods html;

ods graphics on;

*title c=bib height=1 ’Testing normality of the square root

transformed CD4 count using histogram’;

proc sgplot data=dataM;

histogram CD4_count;

density CD4_count / type=normal;

run;

ods graphics off;

ods html close;

/**********Calculating time variable from the data set*****/

data DataPostTime;

set time;

by p1v7;

retain date_lag;

if first.p1v7 then do;

time = 0;

date_lag = p27v8;

end;

else do;

time = (p27v8 - date_lag);

date_lag = p27v8;

end;

run;

proc export data=DataPostTime outfile="C:\Users\216065934\Desktop\

PhD\working data\DataPostTime.sav"

dbms=spss replace;

run;

data DataTotalTime;

set DataPostTime;

by p1v7;

retain total_lag;
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if first.p1v7 then do;

TotalTime= 0;

total_lag = time;

end;

else do;

TotalTime = (time + total_lag);

total_lag = (time + total_lag);

end;

run;

data DataTotalTimeWeek;

set DataTotalTime;

TotalTimeWeek = TotalTime/7;

run;

data DataTotalTimeMonth;

set DataTotalTimeWeek;

TotalTimeMonth = TotalTime/30;

run;

data DataTotalTimeYear;

set DataTotalTimeMonth;

TotalTimeYear = TotalTime/365;

run;

proc export data=DataTotalTimeYear outfile="C:\Users\216065934\

Desktop\PhD\working data\CAP002DataWithTime.sav"

dbms=spss replace;

run;

/************************Mean response profile plot************/

ods html;

ods graphics on;

proc sgplot data=dataM;

vline TotalTimeYear / response=p27v12 stat=mean group=ART

limitstat=stderr;

run;

ods graphics on;

ods html close;

ods html;

ods graphics on;

proc sgplot data=dataM;

vline TotalTimeYear / response=SQRT_CD4 stat=mean group=ART
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limitstat=stderr;

run;

ods graphics on;

ods html close;

/***************Baseline data**********/

data acuteCAP002baseline;

set acuteCAP002;

if dfseq=2000; *where "2000" is a vistcode;

run;

proc sort data=acuteCAP002baseline nodupkey;

by p1v7;

run;

proc export data=acuteCAP002baseline outfile="C:\Users\216065934\

Desktop\PhD\Ddata\acuteCAP002baseline.sav"

dbms=spss replace;

run;

/*************** Selecting random samples************************/

title ’Simple Random Sampling’;

proc surveyselect data=Baseline

method=srs n=15 out=AcuteSRS1;

run;

/***Individual profiles plot for CD4+ count in 15 randomly selected

individuals by Pre and Post ART initiation group***/

ods html;

ods graphics on;

proc sgpanel data=dataMS;

panelby ART / spacing=10;

series y=p27v12 x=TotalTimeMonth /group=ParticipantID;

run;

ods graphics on;

ods html close;

/*************Figure: 2.3 using R*********/

women1<- read.spss("DATACAPSrS.sav", to.data.frame = TRUE, use.

missings = TRUE)

head(women1)
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str(women1)

pp <- ggplot(data = women1, aes(x = TotalTimeMonth, y = SQRT_CD4 ,

group = ParticipantID))

pp + geom_line() + facet_wrap(˜ ParticipantID)

ppp + geom_line() + stat_summary(aes(group = 1), geom = "point",

fun.y = mean, shape = 17, size = 3) + facet_wrap( ˜

ParticipantID)

/***Selecting best random effect model and covariance structure***/

ods html;

ods graphics on;

proc mixed data=dataM1 covtest asycov asycorr ic method=REML PLOTS

(MAXPOINTS=none)= all;

class PID ART;

model SQRT_CD4= TotalTimeMonth SQRT_Time ART /s cl ddfm=bw;

random int TotalTimeMonth SQRT_Time/subject=PID g gcorr v vcorr

solution type=un; *type=un; *type=cs; *type=AR(1); *type=TOEP;

run;

ods graphics off;

ods html close;

/***Model 1: Intercept, time and SQRT_Time (Random intercept and

Random slopes model)***/

ods pdf file="C:\Users\216065934\Desktop\MixedModeldocument\

ProcMixedOutput.pdf";

ods html;

ods graphics on;

proc mixed data=dataM1 covtest asycov asycorr ic method=REML;

class PID BMI_category(ref="Normal weight") ART

Baseline_VL_category(ref="Low VL") NumberOfSexPartner Agegroup(

ref="<20") Educational_status Residence;

model SQRT_CD4= TotalTimeMonth SQRT_Time BMI_category ART

Baseline_VL_category NumberOfSexPartner Agegroup

Educational_status Residence/s cl ddfm=bw outp=predmixed;

random int TotalTimeMonth SQRT_Time/subject=PID solution type=un g

gcorr v vcorr; *type=un; *type=cs; *type=AR(1); *type=TOEP;

run;

ods graphics off;

ods html close;
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ods pdf close;

ods pdf close;

/***To see R-square and the fitted equation (Heat map)***/

ods html;

ods graphics on;

goptions reset=global gunit=pct ftext=swissb htitle=5 htext=3 ;

goptions rotate=landscape gsfname=graph2 gsfmode=append ;

title ’Fit Plot for Predicted CD4+ count’;

proc reg data=Predicted2 PLOTS(MAXPOINTS=none);

model Fitted_average_CD4_count = Observed_CD4_count;

plot Fitted_average_CD4_count*Observed_CD4_count/conf pred

modelfont=swiss modellab=’Sample plot’ modelht=4

statfont=swiss statht=4;

run;

ods graphics off;

ods html close;

/****************Diagnostics and influence analysis***************/

ods html;

ods graphics on;

proc mixed data=dataM1 method=REML PLOTS(MAXPOINTS=none)=all;

class PID BMI_category(ref="Normal weight") ART

Baseline_VL_category2(ref="Low VL") NumberOfSexPartner Agegroup(

ref="<20") Educational_status Residence_mod;

model SQRT_CD4= TotalTimeMonth SQRT_Time BMI_category ART

Baseline_VL_category2 NumberOfSexPartner Agegroup

Educational_status Residence_mod/s cl ddfm=bw influence(effect=

PID iter=5 est);

random int TotalTimeMonth SQRT_Time/subject=PID solution type=un;

run;

ods graphics off;

ods html close;

/***Diagnostics and influence analysis with spatial covariance

structure***/

ods html;

ods graphics on;

proc mixed data=dataM1 method=REML PLOTS(MAXPOINTS=none)=all;

class PID TimeMonth_factor BMI_category(ref="Normal weight") ART
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Baseline_VL_category2(ref="Low VL") NumberOfSexPartner Agegroup(

ref="<20") Educational_status Residence_mod;

model SQRT_CD4= TotalTimeMonth SQRT_Time BMI_category ART

Baseline_VL_category2 NumberOfSexPartner Agegroup

Educational_status Residence_mod/s cl ddfm=bw influence(effect=

PID iter=5 est);

repeated TimeMonth_factor/type=sp(exp)(TotalTimeMonth) local sub=

PID; *sp(exp), sp(sph), sp(gau);

*random int TotalTimeMonth SQRT_Time/subject=PID solution type=un;

run;

ods graphics off;

ods html close;

############################### Chapter 3 #################################

Code 7.2: SAS code for the data example in Section 3.7

/******************Individual profile plot********************/

proc sort data=dataM3 out=studyear; *dataM3 is a data set with 17

randomly selected individuals;

by p27v8 desending p27v8;

format p27v8 year4.;

run;

ods html;

ods graphics on;

proc sgplot data=studyear;

title c=bib height=1 ’Individual Profile Plot for CD4+ Count’;

xaxis label = "Year";

yaxis label = "Number of CD4+ cell";

series y=p27v12 x=TotalTimeYear/ group=PID;

run;

ods graphics on;

ods html close;

/*******GLMM with Poisson and Negative binomial ditribution******/

ods html;

ods graphics on;

proc glimmix data=MDA4 method=laplace plot=residualpanel(unpack

ilink)

plot=residualpanel(unpack noilink) plot=studentpanel(unpack noilink

);

class PID BMI_category(ref="Normal weight") ART
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Baseline_VL_category2(ref="Low VL") NumberOfSexPartner Agegroup(

ref="<20") Educational_status site;

model p27v12= TotalTimeMonth SQRT_Time BMI_category ART

Baseline_VL_category2 NumberOfSexPartner Agegroup

Educational_status site/dist= poisson solution link=log cl;

random int TotalTimeMonth SQRT_Time/subject=PID solution type=un;

run;

ods graphics off;

ods html close;

ods html;

ods graphics on;

proc glimmix data=MDA4 method=laplace plot=residualpanel(unpack

ilink)

plot=residualpanel(unpack noilink) plot=studentpanel(unpack noilink

);

class ParticipantID Timemonth_factor Baseline_BMI_category(ref="

Normal weight") ART Baseline_VL_category2(ref="Low VL")

Marital_status Agegroup(ref="<20") Educational_attainment

Residence_mod;

model p27v12= TotalTimeMonth SQRT_of_Time_month

Baseline_BMI_category ART Baseline_VL_category2 Marital_status

Agegroup Educational_attainment Residence_mod/dist= negbin

solution link=log cl;

random int TotalTimeMonth SQRT_of_Time_month/subject=ParticipantID

solution type=un;

output out = MDA5 pred=prob ;

run;

ods graphics off;

ods html close;

/***Predicted CD4 profile plot for selected individual using

Negative binomial mixed model***/

ods html;

ods graphics on;

*title c=bib height=1 ’Distribution of Month post infection’;

proc sgplot data=MDA5SRS;

title c=bib height=1 ’Prediction of Individual Profiles for CD4+

cell count ’;

xaxis label = "Time in Years";

yaxis label = "Predicted CD4 Count";

yaxis min=0 max=1200;

xaxis min=0 max=4;
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where PID between 141 and 205;

reg y=Predicted_CD4_Count x=TotalTimeYear/ group=PID nomarkers;

run;

ods graphics off;

ods html close;

/***Proc MIAnalyse for GLMM with Negative binomial distribution***/

ods html;

ods graphics on;

Proc MI data=MDA4 seed=69301 nimpute=10 out=MA ; *pctmissing(min=5

max=20);

class Baseline_BMIndex ART Baseline_VLoad Marital_status Agegroup

Educational_level Residence_mod;*/ref=first;

fcs nbiter=10 discrim(Baseline_BMIndex/details) discrim(ART/

details) discrim(Baseline_VLoad/details) discrim(Marital_status/

details) discrim(Agegroup/details)

discrim(Educational_level/details) discrim(Residence_mod/details)

regpmm(p27v12/details) regpmm(sqrtCD4/details) regpmm(

ViralLoad_mod/details) regpmm(weight/details)

regpmm(height/details) regpmm(age_at_specimen_collection/details)

regpmm(BMI/details);*regpmm Specifies the predictive mean

matching method;

var p27v12 sqrtCD4 ViralLoad_mod Baseline_BMIndex ART

Baseline_VLoad Marital_status Agegroup Educational_level weight

height age_at_specimen_collection Residence_mod BMI; *FCS (

Fully conditional specification);

run; *FCS REGPMM selects the FCS Predicted Mean Matching method to

impute missing data;

ods graphics off;

ods html close;

ods pdf file="C:\Users\216065934\Desktop_October\GLMM\GLMM_MIFinal.

pdf";

ods html;

ods graphics on;

proc glimmix data=MA method=laplace;

class PID Baseline_BMIndex(ref="Normal weight") ART

Baseline_VLoad(ref="Low VL") Marital_status Agegroup(ref="<20")

Educational_level Residence_mod;*/ref=first;

model p27v12= TotalTimeMonth SQRT_of_Time_month Baseline_BMIndex

ART Baseline_VLoad Marital_status Agegroup Educational_level

Residence_mod/dist= negbin solution link=log cl covb ddfm=

residual ;
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random int TotalTimeMonth SQRT_of_Time_month/subject=PID solution

type=un;

by _imputation_;

ods output parameterestimates=NBparms;

run;

ods graphics off;

ods html close;

ods pdf close;

ods pdf file="C:\Users\216065934\Desktop\PhD_October\GLMM\

GLMM_MIAnalyzeFinal.pdf";

ods html;

ods graphics on;

proc mianalyze parms=NBparms ; * (effectvar=rowcol); *covb=glmcovb

edf=218; *(classvar=full) (effectvar=rowcol);

class Baseline_BMIndex ART Baseline_VLoad Marital_status Agegroup

Educational_level Residence_mod;*/ref=first;

modeleffects intercept TotalTimeMonth SQRT_of_Time_month

Baseline_BMIndex ART Baseline_VLoad Marital_status Agegroup

Educational_level Residence_mod;

run;

ods graphics off;

ods html close;

ods pdf close;

/***Examining estimated random effects for the fitted NBMM***/

PROC IMPORT OUT= WORK.RE

DATAFILE= "C:\Users\Student\Desktop\QR\Eamining random effects_NBMM

- Copy.sav"

DBMS=SPSS REPLACE;

RUN;

ods html;

ods graphics on;

proc univariate data=WORK.RE;

qqplot Intercept Time_Month SQRTof_Time_month;

run;

ods graphics off;

ods html close;

ods html;

ods graphics on;

TITLE ’Histogram of the random effects’;
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PROC UNIVARIATE DATA = WORK.RE NOPRINT;

HISTOGRAM Intercept / NORMAL;

RUN;

ods graphics off;

ods html close;

ods html;

ods graphics on;

TITLE ’Histogram of the random effects’;

PROC UNIVARIATE DATA = WORK.RE NOPRINT;

HISTOGRAM Time_Month / NORMAL;

RUN;

ods graphics off;

ods html close;

ods html;

ods graphics on;

TITLE ’Histogram of the random effects’;

PROC UNIVARIATE DATA = WORK.RE NOPRINT;

HISTOGRAM SQRTof_Time_month / NORMAL;

RUN;

ods graphics off;

ods html close;

############################### Chapter 4 #################################

Code 7.3: R code for the data example in Section 4.4

### Densities of an Asymmetric Laplace Distribution using R ####

install.packages("ald")

library(ald)

sseqa = seq(-5,5,0.5)

densa = dALD(y=sseqa,mu=0,sigma=1,p=0.5)

plot(sseqa,densa,type = "l",lwd=2,col="forestgreen",xlab="x",ylab="

y", main="(a)")

densb = dALD(y=sseqa,mu=0,sigma=0.5,p=0.85)

plot(sseqa,densb,type = "l",lwd=2,col="forestgreen",xlab="x",ylab="

y", main="(b)")

densc = dALD(y=sseqa,mu=0,sigma=0.5,p=0.15)

plot(sseqa,densc,type = "l",lwd=2,col="yellow3",xlab="x",ylab="y",

main="(c)")
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densd = dALD(y=sseqa,mu=2,sigma=0.5,p=0.5)

plot(sseqa,densd,type = "l",lwd=2,col="yellow3",xlab="x",ylab="y",

main="(d)")

dense = dALD(y=sseqa,mu=0,sigma=2,p=0.5)

plot(sseqa,dense,type = "l",lwd=2,col="red",xlab="x",ylab="y", main

="(e)")

densf = dALD(y=sseqa,mu=0,sigma=0.2,p=0.5)

plot(sseqa,densf,type = "l",lwd=2,col="red",xlab="x",ylab="y", main

="(f)")

############# Quantile mixed-effects modelling ###########

library(car)

library(effects)

library(foreign)

library(lattice)

library(psych)

library(ggplot2)

library(papeR)

quant<- read.spss("Modified-Quantile.sav", to.data.frame = TRUE,

use.missings = TRUE)

summary(quant)

hist(quant$sqrtCD4,ylab="Frequency",xlab="SQRT_CD4 cell count",main

="Histogram of CD4 count")

# descriptive statistics of CD4 by Baseline VL

tapply(quant$CD4_Count,quant$age_at_specimen_collection,mean)

tapply(quant$CD4_Count,quant$age_at_specimen_collection,sd)

# Or use describe() funtion from psych package

by(quant$CD4_Count,quant$age_at_baseline, describe)

by(quant$CD4_Count,quant$Baseline_VLoad, describe)

help(package = "qrLMM")

install.packages("qrLMM")

library(qrLMM)

quant$Educational_level<- as.factor(quant$Educational_level)

quant$Marital_status<- as.factor(quant$Marital_status)
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quant$Residence_mod<- as.factor(quant$Residence_mod)

quant$ART<- as.factor(quant$ART)

attach(quant)

names(quant)

str(quant)

y=sqrtCD4 #response_SQRT_CD4_Count

x=cbind(1,TotalTimeMonth,SQRT_of_Time_month, Baseline_BMI1,

Log_Baseline_VL,ART,Age) # design matrix for fixed effects

z=cbind(1,TotalTimeMonth,SQRT_of_Time_month) #design matrix for

random effects

fit.qmm<-QRLMM(y,x,z,group=PID,p=c(0.25,0.50,0.75),precision

=0.0001,MaxIter=500,M=20,cp=0.25,

beta=NA,sigma=NA,Psi=NA,show.convergence=TRUE,CI=95)

### At single quantile ###

fit.qmm1<-QRLMM(y,x,z,group=PID,p= 0.95 ,precision=0.0001,MaxIter

=500,M=20,cp=0.25,

beta=NA,sigma=NA,Psi=NA,show.convergence=TRUE,CI=95)

############################### Chapter 5 #################################

Code 7.4: R code for the data example in Section 5.6

GAMM<- read.spss("Modified-GAMM.sav", to.data.frame = TRUE, use.

missings = TRUE)

str(GAMM)

summary(GAMM)

attach(GAMM)

names(GAMM)

head(GAMM)

tail(GAMM)

install.packages("mgcv")

install.packages("nlme")

library(nlme)

library(mgcv) #For GAM and GAMM

GAMM$Number_of_sextual_partner<- as.factor(

GAMM$Number_of_sextual_partner)

GAMM$Highest_level_of_education<- as.factor(

GAMM$Highest_level_of_education)

GAMM$Educational_level<- as.factor(GAMM$Educational_level)
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GAMM$Marital_status<- as.factor(GAMM$Marital_status)

GAMM$Residence_mod<- as.factor(GAMM$Residence_mod)

GAMM$ART<- as.factor(GAMM$ART)

GAMM$PID<- as.factor(GAMM$PID)

### Modelling additive negative binomial mixed-effects model ###

gammNB<- gamm(CD4_Count˜s(Age, k=20, bs="tp")+s(Time_in_Months, k

=20, bs="tp")+s(Baseline_BMI1, k=20, bs="tp")+Educational_level+

ART+Baseline_VL1+Residence_mod+Marital_status, family = nb ,

method = "REML", random = list(PID=˜1+Time_in_Months),

data = GAMM) #Final model

summary(gammNB$gam)

summary(gammNB$lme)

gam.check(gammNB$gam)

plot(gammNB$lme, main="Standardized residuals")

plot(gamm$gam,shade = TRUE,shade.col = "palegreen",bty = "l")

anova(gammNB$gam)

intervals(gammNB$lme)

vis.gam(gammNB$gam)# 3-D plot

###To see plots in one group######

plot_numbers <- 1:4

layout(matrix(plot_numbers, ncol = 2, byrow = TRUE))

plot(gammNB$gam,shade = TRUE,shade.col = "palegreen",bty = "l",

plot_numbers)

###plot of residuals versus fitted values###

diagnostics <- data.frame(

residuals = residuals(gammNB$gam),

fitted = fitted(gammNB$gam))

ggplot(diagnostics, aes(fitted, residuals)) +

geom_point() +

geom_smooth(method = "loess")
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############################### Chapter 6 #################################

Code 7.5: R code for the data example in Section 6.5

To download and install Rtools-> https://cran.r-project.org/bin/

windows/Rtools/

To install and compile Rtools4 -> writeLines(’PATH="${RTOOLS40_HOME

}\\usr\\bin;${PATH}"’, con = "˜/.Renviron")

Run this->writeLines(’PATH="${RTOOLS40_HOME}\\usr\\bin;${PATH}"’,

con = "˜/.Renviron")

Sys.which("make")

install.packages("devtools")

library(devtools)

devtools::install_github("marco-geraci/aqmm")

library(aqmm)

#install.packages("marco-geraci/aqmm")

install.packages("quantreg")

qamm<- read.spss("Modified- Quantile2- copy.sav", to.data.frame =

TRUE, use.missings = TRUE)

summary(qamm)

attach(qamm)

# To get Geraci (2019) AQMM codes-> https://github.com/marco-geraci

/aqmm/blob/master/man/aqmm.Rd

qamm$Educational_level<- as.factor(qamm$Educational_level)

qamm$Marital_status<- as.factor(qamm$Marital_status)

qamm$Residence_mod<- as.factor(qamm$Residence_mod)

qamm$Agegroup<- as.factor(qamm$Agegroup)

qamm$ART<- as.factor(qamm$ART)

qamm$PID<- as.factor(qamm$PID)

library(repmis)

library(quantreg)

library(dplyr)

library(lubridate)

library(stringr)

library(ggplot2)

library(usethis)

library(devtools)

library(splines)

fitB.05 <- rq(sqrtCD4 ˜ bs(Baseline_BMI1, df=15), tau=0.05, data=

qamm)

fitB.25 <- rq(sqrtCD4 ˜ bs(Baseline_BMI1, df=15), tau=0.25, data=

qamm)

fitB.50 <- rq(sqrtCD4 ˜ bs(Baseline_BMI1, df=15), tau=0.50, data=
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qamm)

fitB.75 <- rq(sqrtCD4 ˜ bs(Baseline_BMI1, df=15), tau=0.75, data=

qamm)

fitB.85 <- rq(sqrtCD4 ˜ bs(Baseline_BMI1, df=15), tau=0.85, data=

qamm)

fitB.95 <- rq(sqrtCD4 ˜ bs(Baseline_BMI1, df=15), tau=0.95, data=

qamm)

fitB.99 <- rq(sqrtCD4 ˜ bs(Baseline_BMI1, df=15), tau=0.99, data=

qamm)

# Add quantiles to data frame

qamm<- qamm %>%

mutate(pc.99 = predict(fitB.99)) %>%

mutate(pc.95 = predict(fitB.95)) %>%

mutate(pc.85 = predict(fitB.85)) %>%

mutate(pc.75 = predict(fitB.75)) %>%

mutate(pc.50 = predict(fitB.50)) %>%

mutate(pc.25 = predict(fitB.25)) %>%

mutate(pc.05 = predict(fitB.05))

# plot

qamm %>%

ggplot(aes(x =Baseline_BMI1)) +

geom_point(aes(y = sqrtCD4)) +

geom_line(aes(y = pc.99, colour = ’0.99 Quantile’))+

geom_line(aes(y = pc.95, colour = ’0.95 Quantile’))+

geom_line(aes(y = pc.85, colour = ’0.85 quantile’))+

geom_line(aes(y = pc.75, colour = ’0.75 Quantile’)) +

geom_line(aes(y = pc.50, colour = ’Median’)) +

geom_line(aes(y = pc.25, colour = ’0.25 Quantile’)) +

geom_line(aes(y = pc.05, colour = ’0.05 Quantile’))+

scale_color_manual(’’, values = c(’0.99 Quantile’ = ’blue’, ’0.95

Quantile’ = ’orange’,’0.85 Quantile’ = ’red2’,’0.75 Quantile’ =

’red’, ’Median’ = ’yellow2’, ’0.25 Quantile’ = ’green’,’0.05

Quantile’ = ’slategrey’),

breaks = c(’0.99 Quantile’,’0.95 Quantile’,’0.85 Quantile’,’0.75

Quantile’, ’Median’, ’0.25 Quantile’,’0.05 Quantile’)) +

xlab(’Baseline BMI’) +

ylab(’SQRT CD4 Count’)

#########################################

str(qamm)

fitA.05 <- rq(sqrtCD4 ˜ bs(Time_in_Months, df=15), tau=0.05, data=
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qamm)

fitA.25 <- rq(sqrtCD4 ˜ bs(Time_in_Months, df=15), tau=0.25, data=

qamm)

fitA.50 <- rq(sqrtCD4 ˜ bs(Time_in_Months, df=15), tau=0.50, data=

qamm)

fitA.75 <- rq(sqrtCD4 ˜ bs(Time_in_Months, df=15), tau=0.75, data=

qamm)

fitA.90 <- rq(sqrtCD4 ˜ bs(Time_in_Months, df=15), tau=0.85, data=

qamm)

fitA.95 <- rq(sqrtCD4 ˜ bs(Time_in_Months, df=15), tau=0.95, data=

qamm)

fitA.99 <- rq(sqrtCD4 ˜ bs(Time_in_Months, df=15), tau=0.99, data=

qamm)

# Add quantiles to data frame

qammOP<- qammOP %>%

mutate(pc.99 = predict(fitA.99)) %>%

mutate(pc.95 = predict(fitA.95)) %>%

mutate(pc.85 = predict(fitA.90)) %>%

mutate(pc.75 = predict(fitA.75)) %>%

mutate(pc.50 = predict(fitA.50)) %>%

mutate(pc.25 = predict(fitA.25)) %>%

mutate(pc.05 = predict(fitA.05))

# plot

qamm %>%

ggplot(aes(x =Time_in_Months)) +

geom_point(aes(y = sqrtCD4)) + ylim(5,47)+

geom_line(aes(y = pc.99, colour = ’0.99 Quantile’))+

geom_line(aes(y = pc.95, colour = ’0.95 Quantile’))+

geom_line(aes(y = pc.85, colour = ’0.85 quantile’))+

geom_line(aes(y = pc.75, colour = ’0.75 Quantile’)) +

geom_line(aes(y = pc.50, colour = ’Median’)) +

geom_line(aes(y = pc.25, colour = ’0.25 Quantile’)) +

geom_line(aes(y = pc.05, colour = ’0.05 Quantile’))+

scale_color_manual(’’, values = c(’0.99 Quantile’ = ’blue’,’0.95

Quantile’ = ’orange’,’0.85 Quantile’ = ’red2’,’0.75 Quantile’ =

’red’, ’Median’ = ’yellow2’, ’0.25 Quantile’ = ’green’,’0.05

Quantile’ = ’slategrey’),

breaks = c(’0.99 Quantile’,’0.95 Quantile’,’0.95 Quantile’,’0.75

Quantile’, ’Median’, ’0.25 Quantile’,’0.05 Quantile’)) +

xlab(’Treatment time (in months)’) +
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ylab(’SQRT CD4 Count’)

####The Model###

aqmm1<- aqmm(sqrtCD4˜s(Time_in_Months, k=20, bs="tp")+s(

Baseline_BMI1, k=20, bs="tp")+Age+Educational_level+ART+

Baseline_VL1+Residence_mod+Marital_status, random=˜1+

Time_in_Months,

group = vistcode, knots = NULL, covariance = "pdDiag",data = qamm,

tau = 0.05, gamm = TRUE, gradHess = FALSE, fit = TRUE) # tau =

0.1, ..., 0.99

summary.aqmm(aqmm1)

#######For the predicted plot#####

aqmm1b<- aqmm(sqrtCD4˜s(Time_in_Months, k=20, bs="tp")+s(

Baseline_BMI1, k=20, bs="tp")+Age+Educational_level+ART+

Baseline_VL1+Residence_mod+Marital_status, random=˜1+

Time_in_Months,

group = PID, knots = NULL, covariance = "pdDiag",data = qamm, tau =

0.05, gamm = TRUE, gradHess = FALSE, fit = TRUE)

aqmm2b<- aqmm(sqrtCD4˜s(Time_in_Months, k=20, bs="tp")+s(

Baseline_BMI1, k=20, bs="tp")+Age+Educational_level+ART+

Baseline_VL1+Residence_mod+Marital_status, random=˜1+

Time_in_Months,

group = PID, knots = NULL, covariance = "pdDiag",data = qamm, tau =

0.25, gamm = TRUE, gradHess = FALSE, fit = TRUE)

aqmm3b<- aqmm(sqrtCD4˜s(Time_in_Months, k=20, bs="tp")+s(

Baseline_BMI1, k=20, bs="tp")+Age+Educational_level+ART+

Baseline_VL1+Residence_mod+Marital_status, random=˜1+

Time_in_Months,

group = PID, knots = NULL, covariance = "pdDiag",data = qamm, tau =

0.5, gamm = TRUE, gradHess = FALSE, fit = TRUE)

aqmm4b<- aqmm(sqrtCD4˜s(Time_in_Months, k=20, bs="tp")+s(

Baseline_BMI1, k=20, bs="tp")+Age+Educational_level+ART+

Baseline_VL1+Residence_mod+Marital_status, random=˜1+

Time_in_Months,

group = PID, knots = NULL, covariance = "pdDiag",data = qamm, tau =

0.75, gamm = TRUE, gradHess = FALSE, fit = TRUE)

aqmm5b<- aqmm(sqrtCD4˜s(Time_in_Months, k=20, bs="tp")+s(

Baseline_BMI1, k=20, bs="tp")+Age+Educational_level+ART+
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Baseline_VL1+Residence_mod+Marital_status, random=˜1+

Time_in_Months,

group = PID, knots = NULL, covariance = "pdDiag",data = qamm, tau =

0.85, gamm = TRUE, gradHess = FALSE, fit = TRUE)

aqmm6b<- aqmm(sqrtCD4˜s(Time_in_Months, k=20, bs="tp")+s(

Baseline_BMI1, k=20, bs="tp")+Age+Educational_level+ART+

Baseline_VL1+Residence_mod+Marital_status, random=˜1+

Time_in_Months,

group = PID, knots = NULL, covariance = "pdDiag",data = qamm, tau =

0.95, gamm = TRUE, gradHess = FALSE, fit = TRUE)

aqmm7b<- aqmm(sqrtCD4˜s(Time_in_Months, k=20, bs="tp")+s(

Baseline_BMI1, k=20, bs="tp")+Age+Educational_level+ART+

Baseline_VL1+Residence_mod+Marital_status, random=˜1+

Time_in_Months,

group = PID, knots = NULL, covariance = "pdDiag",data = qamm, tau =

0.99, gamm = TRUE, gradHess = FALSE, fit = TRUE)

#######

plot(Time_in_Months, sqrtCD4, xlab="Treatment time (in months)",

ylab="SQRT CD4 Count", ylim = range(15, 40), cex=0.0)

points(Time_in_Months, predict(aqmm1b), col = ’red’, pch = 16, cex

=0.0)

points(Time_in_Months, predict(aqmm2b), col = ’green’, pch = 16,

cex=0.0)

points(Time_in_Months, predict(aqmm3b), col = ’yellow2’, pch = 16,

cex=0.0)

points(Time_in_Months, predict(aqmm4b), col = ’black’, pch = 16,

cex=0.0)

points(Time_in_Months, predict(aqmm5b), col = ’red2’, pch = 16, cex

=0.0)

points(Time_in_Months, predict(aqmm6b), col = ’orange’, pch = 16,

cex=0.0)

points(Time_in_Months, predict(aqmm7b), col = ’blue’, pch = 16, cex
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=0.0)

lines(loess.smooth(Time_in_Months, predict(aqmm1b), span =0.1),col

=’slategrey’, lwd=1, lty=1)

lines(loess.smooth(Time_in_Months, predict(aqmm2b), span =0.1),col

=’green’, lwd=1, lty=1)

lines(loess.smooth(Time_in_Months, predict(aqmm3b), span =0.1),col

=’yellow2’, lwd=1, lty=1)

lines(loess.smooth(Time_in_Months, predict(aqmm4b), span =0.1),col

=’black’, lwd=1, lty=1)

lines(loess.smooth(Time_in_Months, predict(aqmm5b), span =0.1),col

=’red’, lwd=1, lty=1)

lines(loess.smooth(Time_in_Months, predict(aqmm6b), span =0.1),col

=’orange’, lwd=1, lty=1)

lines(loess.smooth(Time_in_Months, predict(aqmm7b), span =0.1),col

=’blue’, lwd=1, lty=1)

legend("topleft",c("Quantiles", "0.05","0.25", "0.5","0.75",

"0.85", "0.95", "0.99"),

col = c("gray90", "slategrey","green", "yellow2","black", "red","

orange", "blue"),

cex = 0.4,text.col = "black",lty = c(1),lwd=c(1),pch = c(-1),

merge = TRUE, bg = ’gray90’)

title(main= "Effect of treatment time")

####

plot(Baseline_BMI1, sqrtCD4, xlab="Baseline BMI", ylab="SQRT CD4

Count", ylim = range(15, 42), cex=0.0)

points(Baseline_BMI1, predict(aqmm1b), col = ’red’, pch = 16, cex

=0.0)

points(Baseline_BMI1, predict(aqmm2b), col = ’green’, pch = 16, cex

=0.0)

points(Baseline_BMI1, predict(aqmm3b), col = ’yellow2’, pch = 16,

cex=0.0)

points(Baseline_BMI1, predict(aqmm4b), col = ’black’, pch = 16, cex

=0.0)

points(Baseline_BMI1, predict(aqmm5b), col = ’red2’, pch = 16, cex

=0.0)
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points(Baseline_BMI1, predict(aqmm6b), col = ’orange’, pch = 16,

cex=0.0)

points(Baseline_BMI1, predict(aqmm7b), col = ’blue’, pch = 16, cex

=0.0)

lines(loess.smooth(Baseline_BMI1, predict(aqmm1b), span =0.1),col=’

slategrey’, lwd=1, lty=1)

lines(loess.smooth(Baseline_BMI1, predict(aqmm2b), span =0.1),col=’

green’, lwd=1, lty=1)

lines(loess.smooth(Baseline_BMI1, predict(aqmm3b), span =0.1),col=’

yellow2’, lwd=1, lty=1)

lines(loess.smooth(Baseline_BMI1, predict(aqmm4b), span =0.1),col=’

black’, lwd=1, lty=1)

lines(loess.smooth(Baseline_BMI1, predict(aqmm5b), span =0.1),col=’

red’, lwd=1, lty=1)

lines(loess.smooth(Baseline_BMI1, predict(aqmm6b), span =0.1),col=’

orange’, lwd=1, lty=1)

lines(loess.smooth(Baseline_BMI1, predict(aqmm7b), span =0.1),col=’

blue’, lwd=1, lty=1)

legend("topleft",c("Quantiles", "0.05","0.25", "0.5","0.75",

"0.85", "0.95", "0.99"),

col = c("gray90", "slategrey","green", "yellow2","black", "red","

orange", "blue"),

cex = 0.4,text.col = "black",lty = c(1),lwd=c(1),pch = c(-1),

merge = TRUE, bg = ’gray90’)

title(main = "Effect of baseline BMI")
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Table 7.1: Comparison of covariance structure using the fitted model (Model 1)

Information Criteria

Covariance Structure −2 log ` AIC AICC BIC CAIC HQIC

AR(1) 89116.94 89116.94 89161.09 89237.05 89259.05 89191.63

CS 89135.76 89179.76 89179.91 89255.87 89277.87 89210.45

Toep 89113.46 89159.46 89159.62 89239.03 89262.03 89191.54

UN 87781.28 87833.28 87833.48 87923.23 87949.23 87869.54

VC 88069.85 88115.85 88116.00 88195.42 88218.42 88147.93

ARH(1) 87968.69 88016.69 88016.86 88099.72 88123.72 88050.17

CSH 87893.60 87941.60 87941.78 88024.63 88048.63 87975.08

ToepH 87888.63 87938.63 87938.81 88025.12 88050.12 87973.50

Table 7.2: Unstructured covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) PID 0.1131

UN(2,1) PID 0.000739

UN(2,2) PID 0.000155

UN(3,1) PID -0.01754

UN(3,2) PID -0.00137

UN(3,3) PID 0.01556

Scale 0.04205
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Table 7.3: Comparison of fixed effects results across different covariance structure using
Model 1

UN AR(1) CS Toep

Covariates Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err

Intercept 6.4697 0.04982 6.4724 0.03423 6.4861 0.03410 6.4799 0.03439

Time in month 0.007824 0.000989 0.008516 0.01060 0.01439 0.01051 0.008272 0.01082

Sqrt Time -0.08649 0.009307 -0.08950 0.01180 -0.08434 0.01170 -0.08886 0.01201

ART Initiation (Post) 0.2301 0.01238 0.2284 0.01263 0.2363 0.01265 0.2277 0.01264

Baseline BMI category

Obese 0.4815 0.1113 0.6076 0.07836 0.5097 0.07765 0.6350 0.07813

Overweight 0.02561 0.04975 0.02687 0.03466 0.02072 0.03441 0.02970 0.03448

Underweight 0.005901 0.07927 0.09673 0.05503 0.03837 0.05470 0.09359 0.05481

Baseline HIV VL category

High VL -0.2393 0.05157 -0.3307 0.03345 -0.3234 0.03321 -0.3377 0.03330

Medium VL -0.1258 0.04587 -0.1527 0.03130 -0.1254 0.03112 -0.1567 0.03116

Undetectable 0.1377 0.2901 -0.04788 0.2242 0.1338 0.2256 -0.01985 0.2218

Number of sex partner

Many partners -0.1560 0.09394 -0.05213 0.06388 -0.1506 0.06352 -0.04274 0.06393

No partner -0.04821 0.04993 -0.03423 0.03459 -0.05490 0.03434 -0.03322 0.03438

Age group in years

20-29 0.01166 0.03104 0.02553 0.02516 0.006652 0.02519 0.02065 0.02543

30-39 0.02852 0.03432 0.04911 0.02849 0.03351 0.02850 0.04303 0.02871

40-49 -0.00719 0.04545 0.007849 0.04070 0.01926 0.04068 -0.00114 0.04084

50-59 -0.05694 0.06662 -0.06551 0.06134 -0.03957 0.06135 -0.06503 0.06143

≥ 60 0.2082 0.1532 -0.2185 0.1606 0.2020 0.1601 -0.1844 0.1612

Education level

Primary school -0.04509 0.09084 0.1126 0.06341 -0.00666 0.06299 0.09430 0.06306

Residence of participant

Rural -0.00373 0.03947 0.003881 0.02707 0.01729 0.02689 0.003076 0.02694

• The reference categories are the same as in Table 3.7.
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Chapter 4: Additional outputs

R package qrLMM() sample output using CAPRISA 002 AI Study dataset

209



Appendix B: Additional Results

Table 7.4: Parameter estimates at 0.05th quantile

Parameter Estimate St.error 95% C.I P-value

Intercept 19.99675 1.16072 (17.72173 22.27177) 0.00000

Time 0.06294 0.01473 (0.03407 0.09180) 0.00002

SQRT of Time -0.86567 0.14159 (-1.14319 -0.58815) 0.00000

Baseline BMI 0.05642 0.02067 (0.01590 0.09694) 0.00635

Log of baseline VL -0.56383 0.07799 (-0.71670 -0.41096) 0.00000

Post HAART initiation 1.68287 0.05379 ( 1.57744 1.78830) 0.00000

Age 0.02073 0.02500 (-0.02826 0.06972) 0.40688

Table 7.5: Parameter estimates at 0.25th quantile

Parameter Estimate St.error 95% C.I P-value

Intercept 22.17136 1.40335 (19.42079 24.92193) 0.00000

Time 0.06979 0.01369 (0.04296 0.09661) 0.00000

SQRT of Time -0.87112 0.12946 (-1.12486 -0.61738) 0.00000

Baseline BMI 0.07836 0.02432 ( 0.03070 0.12602 ) 0.00127

Log of baseline VL -0.56874 0.10345 (-0.77149 -0.36598) 0.00000

Post HAART initiation 2.12541 0.07329 (1.98176 2.26907 ) 0.00000

Age 0.02957 0.02972 (-0.02868 0.08781 ) 0.31975
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Table 7.6: Parameter estimates at 0.85th quantile

Parameter Estimate St.error 95% C.I P-value

Intercept 27.97228 1.42043 (25.18824 30.75631) 0.00000

Time 0.04132 0.01313 (0.01559 0.06705 ) 0.00165

SQRT of Time -0.58146 0.12470 (-0.82587 -0.33705) 0.00000

Baseline BMI 0.13131 0.03383 (0.06500 0.19762 ) 0.00010

Log of baseline VL -0.71471 0.08997 (-0.89105 -0.53837 ) 0.00000

Post HAART initiation 3.11409 0.09728 ( 2.92342 3.30476 ) 0.00000

Age 0.02576 0.03215 (-0.03725 0.08878 ) 0.42294

Table 7.7: Parameter estimates at 0.95th quantile

Parameter Estimate St.error 95% C.I P-value

Intercept 31.38118 1.39665 (28.64373 34.11862) 0.00000

Time 0.03366 0.01578 (0.00273 0.06459 ) 0.03293

SQRT of Time -0.38521 0.16218 (-0.70309 -0.06734 ) 0.01754

Baseline BMI 0.14515 0.03043 (0.08551 0.20480 ) 0.00000

Log of baseline VL -0.73982 0.08494 ( -0.90631 -0.57333) 0.00000

Post HAART initiation 2.28722 0.08890 (2.11298 2.46146) 0.00000

Age 0.01328 0.03032 (-0.04615 0.07271) 0.66130
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Chapter 6: Additional outputs

Table 7.8: R package additive quantile mixed model, aqmm(), sample outputs using
CAPRISA 002 Acute Infection Study data across various quantile levels
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Appendix C: Supplementary
Materials
C.1 Important Determinants and Inverse properties for differentiation of
matrix expression

Determinants
SupposeA is a square matrix having elements that are not functionally related. Then
denoting the cofactor of aij in |A| by |Aij |, we have

∂|A|
∂aij

= |Aij |
One particular case of which is

∂|A|
∂aij

= |Aji|, iff |A| is symmetric, not for i 6= j.
Then in place of the above expression, we have

∂|A|
∂θ

=
∂|A|
∂aij

∂aij
∂θ

+
∂|A|
∂aji

∂aji
∂θ

= |Aij |+ |Aji|
= 2|Aij |,

becauseA is symmetric. Hence, in general
∂|A|
∂aij

= (2− δij |Aij |) for symmetricA,
where δij is the Kronecker delta, δij = 0 for i 6= j and δij = 1 for i = j (Searle, 1982).
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Suppose that elements ofA are functions of scalar t. Then,

∂ log |A|
∂t

=
1

|A|
∂|A|
∂t

=
1

|A|
∑∑

i≤j

∂|A|
∂aij

∂aij
∂t

=
1

|A|
∑∑

i≤j
(2− δij)|Aij |

∂aij
∂t

=
1

|A|
∑

i

∑

j

|Aij |
∂aij
∂t

=
∑

i

∑

j

|Aij |
|A|

∂aij
∂t

=
∑

i

∑

j

aij
∂aij
∂t

= tr

[
(A−1)′

∂A

∂t

]

= tr

(
A−1∂A

∂t

)
, for A−1 = {aij}

This result is used in deriving maximum likelihood equations for estimating vari-
ance components in Section 2.4.

Inverse
The Inverse of a square matrix A, denoted A−1, is defined as a square matrix whose
elements follow the following property:

AA−1 = A−1A = I,

where I is the identity matrix. With scalar t, we define
∂A
∂t =

{
∂aij
∂t

}

withA non-singular,AA−1 = I gives
∂A
∂t A

−1 +A∂A−1

∂t = 0. Therefore,
∂A−1

∂t = −A−1 ∂A
∂t A

−1

C.2 Vectors orthogonal to columns of X (for REML equation)

Suppose the set of values k′Y is chosen such that no term in the fixed effects are
contained k′x = 0. Then x′k = 0 and, from the theory of solving linear equations
(Searle, 1982), k = [I − (x′)−x′]c for any vector c, of appropriate order. Therefore,
since (x−)′ is a generalized inverse of x′ we can write k′ = c′(I − xx−). Moreover,
because (x′x)−x′ is a generalized inverse of x another form for k′ is k′ = c′[I −
x(x′x)−x′]; as is c′(I − xx+) since x(x′x)−x′ = xx+. Thus, the two forms of k′ are

x′ = c′(I − xx−) or x′ = c′[I − x(x′x)−x′] = c′(I − xx+).
With M = I − x(x′x)−x′ = I − xx+, we therefore have k′ = c′M . With x of
order N ×p of rank r, there are only N − r linearly independent vectors k′ satisfying
k′x = 0 (Searle, 1982). Using a set of such N − r linearly independent vectors k′
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as rows of K ′, we then have the following theorem, for k′x = 0 with K′ having
maximum row rank N − r andK ′ = C′M for some C.

C.3 Cholesky decomposition

The classical approach to eliminate all sources of correlation by appropriate scaling
to check residuals in linear mixed models is applying the Cholesky decomposition
for the generation of transformed residuals that have constant variance and zero cor-
relation. The application of the Cholesky decomposition on the variance-covariance
matrix starts with construction of a lower triangular matrix for each subject, denoted
by Ĉi, which satisfies the condition:

V̂i = ĈiĈ
′
i,

where Ĉi represents the Cholesky root of V̂i, with Ĉ−1
i Yi having constant variance

and zero correlation Liu (2015).

Given the attached properties, the Ĉi matrix can be used to transform the correlated
residuals to correlation free transformed residuals. For the marginal distribution of
longitudinal data, the scaled residuals, denoted byRmi , are defined as

Rmi = Ĉ−1
i rmi = Ĉ−1

i (Yi −X ′iβ̂),
which have unit variance and zero correlation.

In mathematical form, if A is a symmetric positive definite matrix, then there ex-
ists an upper triangular matrix C such that

A = CC ′.

The right-hand side of the above equation is called the Cholesky decomposition of the
matrixA.

An example of a Cholesky decomposition is

[
4 10

10 169

]
=

[
2 0

5 12

][
2 5

0 12

]

• There exist fast and numerically stable algorithms for computing the Cholesky
decomposition, which is an important tool for matrix computations (Ruppert
et al., 2003; Gentle, 2009)
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C.4 Quantiles as solutions of a minimization problem

Let Y be a continuous random variable, the expected value of the absolute sum of
deviations from a given center c can be split into the following two terms:

E|Y − c| =
∫

y∈R
|Y − c|f(y)dy

=

∫

y<c
|Y − c|f(y)dy +

∫

y>c
f(y)dy

=

∫

y<c
(c− Y )f(y)dy +

∫

y>c
(Y − c)f(y)dy

Since the absolute value is a convex function, differentiating E|Y − c|with respect to
c and setting the partial derivatives to zero will lead to the solution for the minimum:

∂

∂c
E|Y − c|.

The solution to the above equation can be obtained applying the derivative and in-
tegrating per part as presented in Davino et al. (2013).

C.5 Gibbs Sampling

Gibbs sampling is a Markovian (Markov Chain) algorithm introduced by Geman
& Geman (1984) and has been mainly applied in the context of complex stochas-
tic models involving very large numbers of variables. Given an arbitrary starting
set of values U (0)

1 , U
(0)
2 , ..., U

(0)
k , we can draw U

(1)
1 ∼

[
U1|U (0)

2 , U
(0)
3 , ..., U

(0)
k

]
then

U
(1)
2 ∼

[
U2|U (1)

1 , U
(0)
3 , U

(0)
4 , ..., U

(0)
k

]
, U

(1)
3 ∼

[
U3|U (1)

1 , U
(1)
2 , U

(0)
4 , U

(0)
5 , ..., U

(0)
k

]
, and

so on, up to U
(1)
k ∼

[
Uk|U (1)

1 , U
(1)
2 , ..., U

(1)
k−1

]
, which is known as Gibbs sampling.

Thus, each variable is visited in the natural order and a cycle in this scheme requires k
random variate generations. After i such iterations we would arrive at (U

(i)
1 , ..., U

(i)
k ).

See Gelfand & Smith (1990), Gelfand et al. (1990), Geman & Geman (1984), Casella
& George (1992), Gelfand (2000), and the references therein, for further discussion.

Recently, Galarza et al. (2015) described the procedure of Gibbs sampler for obtain-
ing a sequence of observations which are approximated from the joint probability
distribution of two or more random variables using their full conditional distribu-
tion. One can refer to that reference for more details.
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Abstract
Background: This study aims to make use of  a longitudinal data modelling approach to analyze data on the number of  
CD4+cell counts measured repeatedly in HIV-1 Subtype C infected women enrolled in the Acute Infection Study of  the 
Centre for the AIDS Programme of  Research in South Africa.
Methodology: This study uses data from the CAPRISA 002 Acute Infection Study, which was conducted in South Africa. 
This cohort study observed N=235 incident HIV-1 positive women whose disease biomarkers were measured repeatedly at 
least four times on each participant.
Results: From the findings of  this study, post-HAART initiation, baseline viral load, and the prevalence of  obese nutrition 
status were found to be major significant factors on the prognosis CD4+ count of  HIV-infected patients.
Conclusion: Effective HAART initiation immediately after HIV exposure is necessary to suppress the increase of  viral 
loads to induce potential ART benefits that accrue over time. The data showed evidence of  strong individual-specific effects 
on the evolution of  CD4+ counts. Effective monitoring and modelling of  disease biomarkers are essential to help inform 
methods that can be put in place to suppress viral loads for maximum ART benefits that can be accrued over time at an 
individual level. 
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Background
Multilevel data modelling allows to account for the cor-
relation of  measurements, and include variables meas-
ured at different levels as well as model the variation at 
different levels. Longitudinal data, or repeated measure-
ments data is a specific form of  multilevel data. In lon-
gitudinal studies, repeated observations are made on an 
individual on one or more outcomes, including covar-
iate information at a baseline and over time. Measure-
ments made on the same individual are likely to be more 
similar than measurements made on different individu-
als. Thus, observations on the same individual will not 

be independent. That is, repeated measurements on the 
same subjects are bound to be correlated 1-3. 
Longitudinal data analysis is widely used for at least 
three reasons: to increase the sensitivity by making with-
in-subject comparisons, to study changes over time, and 
to use subjects efficiently once they are enrolled in a 
study4-6.  Repeated measurements can compensate for 
small sample sizes because an individual is observed 
more than once compared to a cross-sectional study. 
The need for the covariance structure of  the observed 
data makes longitudinal data analysis more complex 
than standard linear regression. For the inference to be 
substantial, the covariance among repeated measures 
must be appropriately modeled. Although the covari-
ance structure is not the prime interest of  the study, 
it is essential for valid inference 7,8. Therefore, a lot of  
efforts are needed at the beginning of  the statistical 
analysis to assess the covariance structure of  the data. 
Traditional methods for longitudinal data such as Anal-
ysis of  Variance (ANOVA) and Multivariate Analysis 
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of  Variance (MANOVA) are of  limited use because of  
the restrictive assumptions concerning the variance-co-
variance structure of  the repeated measures 9. For this 
reason, mixed-effects models have become popular for 
modelling longitudinal data. This statistical procedure 
also permits the estimation of  variability in hierarchical-
ly structured data and examines the impacts of  factors 
at distinctive levels 10,11. Since longitudinal studies are 
often faced with the incompleteness of  the data due to 
partially observed subjects, the mixed-effects model is 
by its very nature able to deal with unbalanced data of  
this nature.
Thus, this study was conducted to review the general 
Linear Mixed Model approach that can be extended for 
multivariate longitudinal data by assuming appropriate 
random effects. This method has the benefit of  having 
extra correlation evolving from the longitudinal data 
structure that can be modeled within the same frame-
work. Therefore, the focus of  this study is to adopt the 
mixed-effects model with appropriate random effects 
incorporated, including a flexible variance-covariance 
structure that gives the best fit as well as identifying 
whether specific clinical and sociodemographic factors 
present in the data (and their respective possible inter-
actions) influenced CD4 count in a cohort of  HIV-In-
fected Patients. The information and understanding of  
such factors are of  epidemiological importance. The 
results will be beneficial in developing tools to sup-
port clinicians in the identification of  factors related to 
HIV-Infected Patients. The results can be further used 
to shape communication and counseling strategies at 
the individual level before treatment initiation. 

Materials and methods
Data source: This study uses data from the Centre 
for the AIDS Programme of  Research in South Africa 
(CAPRISA) 002 Acute Infection Study. The study was 
conducted on HIV-infected women at the Doris Duke 
Medical Research Institute (DDMRI) at the Nelson 
R Mandela School of  Medicine of  the University of  
KwaZulu-Natal in Durban, South Africa. Between Au-
gust 2004 and May 2005, CAPRISA initiated a cohort 
study enrolling high-risk HIV negative women to fol-
low up. Women infected with HIV were recruited into 
the Acute Infection Study and then followed up closely 
to study disease progression and CD4/viral load evolu-
tion 12-14. Once HIV-Infected women enrolled in the AI 
study, their CD4 cell count and viral load were meas-
ured and assessed regularly. When their CD4 cell count 
is less than or equal to 350 cells/mm3 for more than two 

consecutive visits between 6 months or if  they were 
with AIDS-defining illness (WHO clinical stage 3-5), 
they would be referred to a public government clinic 
for ARV treatment. However, these patients would only 
start HAART once their CD4 cell count was less than 
200 cells/mm3, according to the National Department 
of  Health South Africa until 2015. With effect from 
the 1st January 2015, according to the National Depart-
ment of  Health, the criterion to start HIV patients on 
early initiation of  ART was a CD4 cell count less than 
or equal to 500 cells/mm3 32,33.

Method
Mixed-effects modelling is an advanced and vital meth-
od in statistics. It is a well-known method; therefore, 
we summarize the key aspects of  the model relevant 
to the current study. The literature on mixed models is 
ubiquitous, and some of  it can be found in 2,3,5,6,9,11,15-18.
The use of  the mixed-effects model for longitudinal 
data helps to correctly account for the correlation of  
observations within a subject and also to quantify the 
heterogeneity between subjects due to unobserved 
factors. It is important that before its implementation, 
adequate sample size is determined based on prior in-
formation on the magnitude of  the correlation and the 
planned number of  observations per individual. By 
correctly estimating the sample size, we end up with 
correctly estimated standard errors (SEs), which will 
give reliable confidence intervals (CI) and p-values. We 
can use the mixed-effects model to account for varia-
tion at lower and higher levels of  the design structure. 
Accounting for variation at a lower level gives us more 
power for estimation at a higher level 3. A mixed model 
is made up of  fixed and random effects where the lat-
ter helps in accounting for correlation at a lower level 
within higher-level units. That is why mixed models are 
called “mixed” because the coefficients are a mix of  
fixed and random effects.
In more general terms, fixed effects or fixed factors are 
covariates that we anticipate will influence the outcome 
variable. They are what we call explanatory variables in 
a standard linear regression. For instance, in our case, 
we are interested in making conclusions about how 
the socio-economic, demographic, and treatment type 
(place of  residence, baseline BMI, baseline viral load, 
age, education level, marital status, HAART initiation, 
etc.) impacts the CD4+ count of  a patient. Therefore, 
these socio-economic, demographic, and treatment 
types are fixed effects, and CD4+ count of  a patient is 
the response variable. Thus, a fixed-effect is the param-
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eter of  interest. The overall intercept is not the variable 
of  interest, but of  course, it is a fixed effect. In addi-
tion to the fixed effects, we also incorporate random 
effects in the mixed-effect model. Random effects are 
grouping factors for which we are attempting to con-
trol. A random intercept allows a different intercept for 
each subject. A random effect for a variable enables the 
effect of  a variable on the outcome to differ between 
subjects. For example, a random effect could also be a 
random slope for a categorical variable. In general, in a 
mixed model, all of  the variables of  interest are added 
as fixed effects, but at least one and sometimes several 
of  the fixed effects variables may also be added as ran-
dom effects variables 19. Therefore, the idea is that the 
values of  a given random effect in the sample are a ran-
dom sample of  all possible values in the broader pop-
ulation (e.g., people in the sample are a random sample 
of  people in the population). Moreover, in longitudinal 
studies, time or a time-varying covariate X is often an 
explanatory variable of  interest, and the associations 
between explanatory variables and responses may vary 
between subjects. A model that allows heterogeneity 
in the intercept and heterogeneity in the magnitude of  
the slope between subjects is referred to as the random 
intercept and slope model. The random intercept and 
slope model is given by

 
where  is the time variable used as a predictor in the 
model.
A more general form of  the mixed model is expressed 
as

 
where  is an outcome variable that indicates the   
measurement on the  subject,  are 
the predictor variables,  are fixed effects, 

  are random effects, and  ’s are residuals.
In the current model, the square root of  CD4 count is 
used as the outcome because this transformation satis-
fies the normality assumption better than the untrans-
formed CD4+ cell counts. Hence the model of  interest 
is

 ,
where  

The general matrix specification of  the mixed model is

 
with  individuals and j  observa-
tions for individual i. Thus, Y is a N  vector of  the 

response variable,  is N   known 
design matrix that includes covariates for the fixed 
effects, β is p   vector of  fixed effects parameters, 

 is N   known design matrix for 
random effects,   is  vector of  random effects 
from a normal distribution with variance-covariance 
matrix G, and  is N   error vector from a normal 
distributionwith variance-covariance matrix R19.
Assumption: U and  are independent and each is nor-
mally distributed.

    or     

The distribution of  Y is a multivariate normal                    

distribution i.e. the vector of  outcomes 
is a multivariate normal distribution with mean vector   

and variance-covariance non-singular matrix V and 
its probability density function (pdf) is

 
The log-likelihood of  Y under this model is

 

=  
Therefore, the maximum likelihood estimate (MLE) 
of  is the one that maximizes the right-side of  the 
above expression 19.
Covariance or correlation structures that are most com-
monly used for longitudinal data analysis are compound 
symmetry (CS), unstructured (UN), First-order Autore-
gressive (AR (1)), and Toeplitz (Toep). These four com-
mon covariance structures are summarized in 5,7,8,16,19-22.
To decide which mixed-effects model fits the data best, 
we can use likelihood-based methods, i.e., either the 
likelihood ratio test (LRT) or Information Criteria (IC) 
such as Akaike Information Criteria (AIC) or Bayesian 
Information Criteria (BIC) method. The LRT, which 
is based on -distribution can be used to test nested 
models. The model with the lowest AIC and BIC is the 
best fitting model. That is, the AIC and BIC can be 
used to compare models such that the smaller of  any of  
these, the better between two or more competing mod-
els. The IC method is more general to compare two 
or more competing non-nested models. However, the 
LRT is the best method to compare nested models 23.
In mixed-models, we use maximum likelihood (ML) 
to estimate the fixed effects, the standard errors of  
the fixed effects, and the variance of  the random ef-
fects. The likelihood of  mixed effect models can be 
time-consuming computationally, but with advances in 
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statistical software, this has become an easily managea-
ble problem. Often the likelihood is solved by iteration 
until convergence. However, under ML estimation the 
residual variance and variance of  random effects are 
underestimated thus instead the restricted maximum 
likelihood (REML) estimation gives unbiased estimates 
of  variance parameters by taking into account the de-
grees of  freedom used to estimate the fixed effects 
hence variance parameter estimates are generally larger 
than those from ML estimation. However, REML uses 
the covariate mean structure (the number of  fixed ef-
fects) in the model estimation steps. That means we use 
REML when we are comparing two models that differ 
only in random effects (see page 352 in Der and Everitt, 
2012) 4,24. 
In general, when testing mixed-effects models that dif-
fer in variance components, we could either use REML 
or ML since they both give interpretable LRT and IC 
for such a comparison. However, testing and compar-
ing models that differ in fixed effects, then only ML, 
will provide us with interpretable LRT and IC. Howev-
er, ML does not take into account the degrees of  free-
dom for the loss of  fit in the estimation of  parameters, 
but REML does 19,20.

Results
Data for this study were obtained from the CAPRISA 
002: Acute infection Study, which was initiated between 
August 2004 and May 200513. The baseline character-
istics of  the datasets are given in Table 1. From a to-

tal of  235 women, 105 (44.7%) were residing around 
Vulindlela (rural site), and 130 (55.3%) were residing 
around eThekwini (Durban, urban site), KwaZulu-Na-
tal, South Africa. The average age at enrollment and 
baseline CD4+ cell counts was 27.15 years (range 18-
59) with a standard deviation of  6.56 and  570 (range  
182- 1575) with a standard deviation of   229.6, respec-
tively. The average follow-up time was 2.69 years, and 
the majority of  the women 182 (77.4%) had a stable 
partnership. Furthermore, from the total women in-
cluded in the study, the majority of  the 224 (95.3%) 
completed secondary/high education, and most of  
the women (78.8%) were self-reported sex workers13,34. 
There were a total of  7129 observations from the 235 
women, which consists of  a minimum of  four and a 
maximum of  sixty-one measurements of  CD4+ cell 
counts, among the subjects which were measured at 
different time points indicating that the number of  
measurements over all subjects was not equal. Further 
apart from an unequal number of  measurements across 
individuals, measurements were not taken at fixed time 
points, which implies the CAPRISA 002: Acute Infec-
tion Study is a highly unbalanced longitudinal data set 
that requires carefully designed modelling approaches.
Figure 1 (left panel) shows that CD4+ cell count distri-
bution is right-skewed, indicating non-normality; thus, 
a square root transformation to CD4+ cell count was 
performed to normalize the data, Figure 1 (right panel) 
shows that the square root transformed data conforms 
quite well to the normal distribution.

Table 1: Baseline characteristics of the motivated data set (CAPRISA 002), 2004-2018. 
 

Variable Total Variable Total 
Number of women 235 Marital Status 
Place of residence No partner 43 (18.3%) 
Rural 105 (44.7%) Stable partner 182 (77.4%) 
Urban 130 (55.3%) Many partners 10 (4.3%) 
Age at Seroconversion (Years)     
Mean (Std. Deviation) 27.15 (6.56) Educational Attainment 
<20 21 (8.9%) Primary schools (grade 0-7) 11 (4.7%) 
20-29 150 (63.8%) Secondary schools (grade 8-12) 224 (95.3%) 
30-39 50 (21.3%) Baseline CD4+ cell counts (cells/µL) 
40-49 12 (5.1%)          Mean (Std. Deviation)  570 ( 229.6) 
≥ 50 2 (0.9%) Baseline HIV viral load (cells/µL) 
Baseline Body Mass Index Undetectable VL (< 50)  1 (0.4%) 
Underweight 14 (6%) Low VL (50<VL<10000)  74 (31.5%) 
Normal weight 173 (73.6%) Medium VL (10000<VL<100000) 94 (40%) 
Overweight 41 (17.4%) High VL (≥100000) 66 (28.1%) 
Obese 7 (3%)     
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The spaghetti plots in Figure 2 illustrate the actual 
CD4+ cell count measurements for randomly chosen 
participants over time across pre and post ART initia-
tion groups. Since plots with all individual curves can be 
hard to distinguish for large sample size, we randomly 
chose 15 participants to construct such individual plots. 
From Figure 2, it can be seen that there is a decreasing 
trend of  CD4+ cell count overtime on patients before 

 

  

Figure 1: Distributional properties plot for original  
and square root transformed CD4 trajectories 
  

Highly Active Antiretroviral Therapy (HAART) initia-
tion, but an increasing trend of  CD4+ cell count over-
time for the same 15 randomly chosen patients initiated 
on HAART. Figure 2 also shows that there is evidence 
of  variability between individuals as well as variability 
within individuals. Besides, the individual profiles are 
not all of  the same lengths, an indication of  incom-
pleteness and missing data due to dropout or attrition.

 
Figure 2: Individual profiles plot of CD4+ count for the same 15 randomly selected 
individuals before and after HAART. 
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Figure 3 shows an array of  individual series from the 
CAPRISA 002: AI study. In each panel, the observed 
CD4 count for a single subject is plotted against the 
times that measurements were obtained. Such plots 
permit assessment of  the person response patterns and 
whether there is substantial heterogeneity within the tra-
jectories. Figure 3 shows that there can be variation in 
the “level” of  CD4 count for subjects. Subject PID=5 

in the first row second from left has CD4 counts great-
er than 500 for almost all times while PID= 110 in the 
third row lower-left corner has all measurements below 
500. Moreover, PID=30 in the first row third from left 
has all measurements almost constant around 500. Fur-
ther, individuals profile plots can be evaluated for the 
change over time 6. Figure 3 shows that most subjects 
are either relatively stable in their measurements over 
time, or tend to be increasing.

 
Figure 3: A sample of 15 individual CD4 trajectories versus time from the CAPRISA 002 AI Study 
  

Figure 4 shows the mean CD4 trajectories overtime for 
the pre and post ART initiation groups in the CARI-
SA 002: AI study. Overall the mean plots suggest that 
patients initiated on HAART have significant quadrat-
ic growth in the evolution of  CD4 count over time as 
what we would expect. Furthermore, the plots exhibit 
non-linearity implying factors that control the nonlinear 
effect that may need to be incorporated in the model. 
The inferential focus of  this study is on the mean re-

sponse of  a square root transformation to CD4+ cell 
count measure. First, an appropriate selection of  the 
random effects was also performed. That is the apprais-
al as to which of  the nonlinear components (the inter-
cept, time, or square root of  time) ought to have a ran-
dom component was made. To have a valid inference 
about the mean structure, the covariance structure must 
be incorporated into the statistical model 25. Hence, fol-
lowing the selection of  random components, a com-
parison of  covariance structure was made in the study. 
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 Figure 4: Mean CD4 trajectories over time by ART Initiation group, CAPRISA 002 AI study 

The following random effect models, which have the 
same fixed effects, were fitted for testing:
Model 1: Intercept, Time, Square root of  time   ( Ran-
dom intercept and slope model )
Model 2: Time, Square root of  time     ( Random slope 
model )
Model 3: Time only   ( Random slope model without quadratic 
effect )

Model 4: Intercept only ( Random intercept model )
All models were fitted using the REML estimation pro-
cedure, and model comparison is made using different 
Information Criteria. The AIC statistics show  that the 
random intercept and slope model is the preferable 
model among models listed above (Table 2).

Table 2: Model comparison using IC for random effects using REML estimation 
 
Random effect 

models 
Information Criteria 

Params -2log AIC AICC HQIC BIC CAIC 
Model 1 4 34392.7 34400.7 34400.7 34406.3 34414.6 34418.6 
Model 2 3 36567.8 36573.8 36573.8 36577.9 36584.1 36587.1 
Model 3 2 39832.4 39836.4 39836.4 39839.2 39843.3 39845.3 
Model 4 2 36363.7 36367.7 36367.7 36370.5 36374.6 36376.6 

  
To validate the random intercept and slope model 
(Model 1), a panel of  conditional studentized residu-
als for the square root CD4+ count was used. The re-
sult is presented in Figure 5. The panel consists of  a 
scatterplot of  the residuals, a histogram with normal 
density, a Q-Q plot, and summary statistics for the re-
siduals and the model fit. The residuals were randomly 
dispersed around zero, suggesting that their mean was 
approximately zero. The histogram follows a normal 
distribution indicating a constant variance. Hence, the 
fulfillment of  the assumption that the error term   
was normally distributed with mean 0 and variance  .

Table 3 shows the comparisons between the four dif-
ferent covariance structures that were considered in the 
model using REML under the same fixed effects model. 
The Information Criteria was used to compare models 
for the structure that gives a better fit.
 
The estimated unstructured covariance parameter de-
termines the matrix ( ) along with the estimated vari-
ance of  the random error term (, respectively, are given 
below for Model 1:

  and  
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Figure 5: Panel of conditional studentized residuals for the square root of CD4 count 

Table 4 shows the REML estimates for the fixed effects 
of  the random intercept and slope model (Model 1).
Fitted conditional model or the subject-specific profile 
of  the CD4+ count measure overtime ‘t’ for the two 

ART initiation groups can be summarized as follows:
For post ART initiation group

For pre ART initiation group
 

Table 3: Comparisons of covariance structure 
 
Covariance 
Structure 

Information Criteria 
Params -2log AIC AICC HQIC BIC CAIC 

AR(1) 3 35675.6 35681.6 35681.7 35685.8 35692.0 35695.0 
CS 3 35671.5 35677.5 35677.5 35681.7 35687.9 35690.9 

Toep 4 35671.4 35679.4 35679.4 35685.0 35693.2 35697.2 
UN 7 34087.1 34101.1 34101.1 34110.8 34125.3 34132.3 

  

Table 4: Fixed effect estimates of Model 1 for unstructured covariance structure 
 

Effect DF Estimate SE Pr > 
|t| 

95% C.I for 
Estimate 

Intercept 234 24.3062 0.3055 <.0001 (23.7043, 24.9081) 
Time in month 6781 0.09015 0.01072 <.0001 0.06913, 0.1112) 

Sqrt_Time 6781 -0.9554 0.1036 <.0001 (-1.1586,  -0.7523) 
ART Initiation 

(Post) 
195 2.4473 0.1348 <.0001 (2.1815, 2.7131) 

  

Table 4: Fixed effect estimates of Model 1 for unstructured covariance structure 
 

Effect DF Estimate SE Pr > 
|t| 

95% C.I for 
Estimate 

Intercept 234 24.3062 0.3055 <.0001 (23.7043, 24.9081) 
Time in month 6781 0.09015 0.01072 <.0001 0.06913, 0.1112) 

Sqrt_Time 6781 -0.9554 0.1036 <.0001 (-1.1586,  -0.7523) 
ART Initiation 

(Post) 
195 2.4473 0.1348 <.0001 (2.1815, 2.7131) 

  The above fitted conditional models are extended to 
incorporate the impact of  patient’s age, educational 
status, number of  sex partners, baseline BMI, baseline 
viral load, and ART initiation group with the square 

root of  CD4 count as the response. In addition to this, 
two-way interaction effects were evaluated within the 
modelling process. But, none of  the interaction effects 
was significant. The results of  the effects of  age, educa-
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tional status, and the number of  sex partners were not 
found to be significant. However, we incorporate them 
within the modelling process since factors with subject 
matter importance ought to be kept within the model to 
eliminate any confounding effects.
The results of  the fixed effect estimates are presented 
in Table 5. As seen from Table 5, the model intercept   

is equal to 25.2439, which is an estimate of  the 
mean square root CD4 count at baseline (i.e., month=0) 
subject to other effects with covariate values set to zero 
in the model. The Month effect is the 
slope or rate of  change in the mean square root CD4 
count per unit increase in the month among HIV in-
fected patients with other covariate values set to zero. 
In other words, the time (month) effect shows a signifi-
cant positive effect on the mean CD4 count with a rate 
of  0.06377 (p-value <0.0001) units per month. Hence 
square root CD4 count increases by 0.06377 for every 
month among patients, showing low progress of  CD4 
count over time. The effect of  the square root of  time 
(p-value < 0.0001) is also significant but appears to have 
an opposite effect on the square root CD4 count in a 
cohort of  HIV infected patients enrolled in the CAPRI-
SA 002 Acute Infection Study. The estimate for post-

HAART initiation shows a highly significant positive 
effect with a mean square root CD4 count of  2.1104 
units higher than the pre-HAART state. This implies, 
among patients in the post-HAART initiation group, 
their mean square root CD4 count increased by 2.1104, 
but this is not a slope. Relative to patients with normal 
weight status, patients with higher BMI (Obese) show a 
highly significant positive effect (p-value<0.0001) with 
8.0201 square root CD4 count higher than the refer-
ence group (Table 5). However, underweight patients 
(patients with low BMI) show no significant effect 
compared to the reference grop. After the patients had 
been initiated on HAART, the average square root CD4 
count among patients with a high value of  the viral load 
at baseline is -3.2552 (p-value<0.0001) units lower com-
pared to patients with low viral load at baseline. Moreo-
ver, after the patient had been initiated on HAART, the 
average square root CD4 count among patients with a 
medium viral load category at baseline is decreased by 
1.5696 (p-value=0.0029) units compared to the average 
square root of  CD4 count among patients with low vi-
ral load at baseline. Implying that patients with high and 
medium viral load at baseline have significantly lower 
mean CD4 count compared to patients with low viral 
load at baseline.

Table 5: Fixed effect estimates of the full Model 
 

Covariates Estimate SE Pr > |t| 95% C.I for Estimate 
Intercept 25.2439 0.6040 <.0001 (24.0536, 26.4342) 

Time in month 0.06377 0.009142 <.0001 (0.04585, 0.08169) 
Sqrt_Time -0.6674 0.09020 <.0001 (-0.8442, -0.4906) 

ART Initiation (Post) 2.1104 0.1647 <.0001 (1.7855, 2.4353) 
Baseline BMI category (ref.=Normal weight) 

Obese 8.0201 1.2896 <.0001 (5.4788, 10.5614) 
Overweight 0.4966 0.5799 0.3927 (-0.6461, 1.6394) 

Underweight 0.2486 0.9131 0.7856 (-1.5508, 2.0481) 
Baseline HIV viral load category (ref.= Low VL ) 

High VL -3.2552 0.5633 <.0001 (-4.3652, -2.1452) 
Medium VL -1.5696 0.5211 0.0029 (-2.5965, -0.5426) 
Undetectable 1.3418 3.3359 0.6879 (-5.2321, 7.9157) 

Number of sex partner (ref.= Stable partner) 
Many partners -1.4706 1.0859 0.1770 (-3.6105, 0.6693) 

No partner -0.6478 0.5791 0.2645 (-1.7889, 0.4933) 
Age group (ref.= < 20) 

20-29 0.06144 0.4231 0.8847 (-0.7742, 0.8971) 
30-39 0.1611 0.4780 0.7366 (-0.7831, 1.1053) 
40-49 0.2491 0.6420 0.6985 (-1.0190, 1.5172) 
50-59 -1.0100 1.0149 0.3212 (-3.0147, 0.9946) 
≥ 60 -0.7631 1.9554 0.6969 (-4.6254, 3.0991) 

Education attainment (ref.= Secondary or high school) 
Primary school 0.08077 1.0585 0.9392 (-2.0052, 2.1668) 

Residence of participant (ref.= Urban) 
Rural -0.2647 0.4539 0.5604 (-1.1593, 0.6298) 
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Spatial covariance structure measures the actual dis-
tance or variation among observations in space that are 
identified as unequally spaced longitudinal data 16,26. The 
objective of  including spatial covariance structure in 
mixed-effects models is to account for spatial variability 
(heterogeneity), failure to do so can result in erroneous 
conclusions. The spatial covariance structure model is

Where  ,  , and   indicates the nugget, the sill and 

the range (covariance structure model), respectively 16,26.
Table 6 shows a comparison of  the three commonly 
used spatial covariance structures: spatial exponen-
tial structure (SP(EXP)), spatial spherical structure 
(SP(SPH)), and spatial Gaussian structure SP(GAU). 
Since the exponential model has the smallest informa-
tion criteria statistics and the smallest -2log  suggests 
that the SP(EXP) structure is the best of  the three spa-
tial covariance models (Table 6).

Table 6: Comparison of spatial covariance models 
 

Spatial 
covariance 

Model Fitting Criteria 
Params -2log AIC AICC HQIC BIC CAIC 

SP(EXP) 9 33024.5 33042.5 33042.6 33055.1 33073.6 33082.6 
SP(SPH) 9 33039.1 33057.1 33057.1 33069.6 33088.2 33097.2 
SP(GAU) 9 33162.1 33180.1 33180.1 33192.7 33211.2 33220.2 

  

The estimate of  the sill ( ) is 9.7063, reported as “Var-
iance”, which corresponds to the variance of  observa-
tion (Table 7). The estimated range ( ) is 31.1376, 
which appears as “SP(EXP)”, which is the practical 
range or distance at which the spatial autocorrelation 
in the exponential model is three times this amount, 

. That is, observations separated 

by more than 93.4128 distance units are not spatially 
correlated. In other words, the distance units indicate 
that observations within a participant that are close in 
time to be more correlated than observations farther 
apart in time. The estimated nugget ( ) is 3.4986, which 
appears as “Residual”, that is the value at which   
or defined as Intercept in the spatial covariance structure 
model.

Table 7: Covariance Parameter Estimates of the full model 
 

Cov Parm Estimate SE Z 
Value 

Pr>Z 

UN(1,1) 3.3317 2.6772 1.24 0.1067 
UN(2,1) 0.05870 0.04370 1.34 0.1792 
UN(2,2) 0.004944 0.001733 2.85 0.0022 
UN(3,1) -0.3405 0.4031 -0.84 0.3983 
UN(3,2) -0.05410 0.01654 -3.27 0.0011 
UN(3,3) 0.6223 0.1798 3.46 0.0003 
Variance 9.7063 2.3528 4.13 <.0001 
SP(EXP) 31.1376 9.4724 3.29 0.0005 
Residual 3.4986 0.1008 34.70 <.0001 

  
  Figure 6 indicates the predicted profile plot for the 

average number of  CD4+ cell, based on Table 5 re-
sults obtained by the fitted mixed-effects model. The 

predicted values closely matched the observed CD4+ 
count mean profile, with an R2=0.75, suggested that 
the overall model fit was good (Figure 6).
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The fitted solid line in Figure 6 also indicates the es-
timated regression line between the observed CD4+ 
count and fitted values (Fitted= 148.07+0.7259 ob-
served), and the two dashed lines show both 95% con-
fidence interval and prediction interval.    
The overall influence diagnostic and diagnostics for the 

fixed effects are displayed graphically hereunder in Fig-
ure 7-11. Figure 7 shows the needle plot of  the Restrict-
ed Likelihood Distance (RLD) for the response variable 
(square root of  CD4+ count). The RLD plot suggests 
that the overall influence of  patients 5, 12, 29, 32, 55, 
84, and 188 stands out compared to those of  the rest of  
the patients (Figure 7).

 
 

                       Figure 7: Restricted Likelihood Distance 

PRESS statistics are sums of  squared PRESS residu-
als in the deletion sets (Schabenberger, 2005). Figure 8 
shows the scatter plot of  the PRESS statistics for the 

square root of  the CD4+ count. Large values of  the 
PRESS statistic for patients 5, 60, 84, 127, and 189 are 
noted.

Figure 6: Heat map of fitted average by observed CD4 count overlaid with the fitted line 
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A panel of  influence statistics for fixed effects and co-
variance parameters is presented in Figure 9. Cook’s D 
statistics measure the influence on the vector of  pa-
rameter estimates and the CovRatio statistic measures 
influence on the covariance matrix of  the parameter 
estimates. The patients with the most substantial effect 
on the fixed effect estimates are 5, 32, and 55 (Cook’s 
D Fixed effects). Cook’s D Covariance parameters in-
dicate that the influence of  patient 12, 84, and 188 far 

exceeds those of  other subjects in the study data sets. 
This is expected since their RLD is substantial, while 
their impact on the fixed effects was rather moderate. 
The CovRatio Covariance Parameters also shows that 
in the absence of  those patient’s observations, especial-
ly patient 84 and 188, the covariance parameters may 
be estimated much more precisely. Note that there are 
other sets of  observations, besides those patients listed 
above, that exerts influence on the chosen model (Mod-
el 1).  

    
                          
                   Figure 8: PRESS Statistics 

A panel of  deletion estimates for the response variable 
is displayed in Figures 10 and 11 to examine how the 
individual parameter estimates and covariance parame-
ters, respectively, react to the removal of  the influential 
sets of  observations27. Each cell in the panel (Figure 
10) displays the estimates of  few fixed effects that were 

included in the fitted model and each cell in Figure 11 
displays estimates of  the 3x3 variance-covariance ma-
trix of  the random coefficients and the estimate of  
SP(EXP) parameter following removal of  sets of  in-
fluential observations. Reference lines are drawn at the 
complete-data parameter estimates.

 
 

                  Figure 9: Influence statistics for the square root of CD4+ count 
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The focus of  Figure 10 is on the behavior of  individu-
al parameter estimates that react to the removal of  in-
fluential cases. Specifically, subjects 5, 44, 60, and 188 
indicate a substantial impact on the model fit of  the 
intercept. However, the removal of  these subjects does 
not at all influence the displayed fixed effects. On the 
other hand, subject 27 is identified as an additional in-
fluential case since it has a strong impact on the Obese 

BMI category (Figure 10). Subjects 5, 29, 73, and 85 are 
also identified as influential cases since their presence 
in the data reduces the estimate of  SP(EXP) parameter 
(Figure 11), substantially reducing the degree of  corre-
lation among data points from any patient. On the oth-
er hand, observation from subject 12 has the opposite 
effect. The temporal correlation drops when the impact 
of  this patient’s data is removed.

 
Figure 10: Fixed effects deletion estimates for square root of CD4+ count 

 
  

  

 
 

Figure 11: Covariance parameter deletion estimates for square root of CD4+ count 

 
Figure 10: Fixed effects deletion estimates for square root of CD4+ count 

 
  

  

 
 

Figure 11: Covariance parameter deletion estimates for square root of CD4+ count 

Discussion and Conclusion
Mixed-models are one of  the special statistical models 
that are useful in understanding longitudinal or repeat-
ed measures data. The models permit the examination 
of  the changes over time within and between subjects. 
In the presence of  fixed effects and random effects, the 
selection of  an appropriate mixed model is more com-
plicated than for a linear regression model. The fixed 
effect and the random effect structure are subordinate 
to each other, and the determination of  one influenc-
es the other28. In this study, a step-up model selection 

procedure was applied to find a reasonable model that 
fits the data, primarily since this procedure begins with 
the simplest possible model and is built up by includ-
ing more covariates within the model and hence does 
not have much numerical issue 1,18,28. In this study, the 
model where the intercepts and slopes were considered 
as random effects consolidated with the UN covariance 
structure was used. The results show that the prognosis 
of  the CD4 count of  a patient is significantly increased 
after the patient had been initiated on HAART as what 
we would anticipate. The impact of  HIV-infected pa-
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tients with the predominance of  obese nutrition sta-
tus (higher BMI) at baseline showed significance after 
patients had been initiated on HAART. Therefore, we 
ought to pay more consideration to the BMI of  HIV-in-
fected patients before and after HAART initiation. This 
may inform future techniques in studying the progres-
sion and the immunologic responses to treatment, but 
that does not infer that patients with higher BMI ought 
to be clinically ignored. Instead, based on this study and 
other findings, it appears that BMI contributes to some 
degree to drug metabolism and consequently influenc-
ing the proficiency of  HAART29,30. Moreover, our re-
sults also showed that the impact of  patients with high-
er viral load before the patient had been initiated on 
HAART significantly reduced their CD4 count. There-
fore, effective HAART initiation after HIV exposure 
is necessary to suppress the increase of  viral loads to 
induce potential ART benefits that accrue over time.

The results of  the influence diagnostics analysis for the 
CAPRISA 002 Acute Infection study using the cho-
sen mixed-effects model was also performed. Several 
cases were identified as influencing the analysis of  the 
fitted model. Influence diagnostics analysis is essential 
for statistical analysis to determine how individual ob-
servations or sets of  observations are influential that 
their presence or absence from the data impacts the 
analysis 31. The goal of  influence analysis is not to de-
termine observations for removal from the analysis, but 
to determine which cases exert undue influence on the 
analysis. Eliminating certain subjects from the data and 
base the final analysis on only the remainder is usually 
not the right action to take. The results of  a diagnostic 
influence analysis can be seen only in light of  the model 
we are working with 16.
Moreover, the data showed evidence of  strong individ-
ual-specific effects on the evolution of  CD4+ counts. 
The diagnostic plots also suggested a significant indi-
vidual heterogeneity between subjects both before and 
after HAART initiation.  Thus this may suggest that 
prescribing a common treatment or intervention over-
all patients may not be the best strategy. More research 
may be required to understand what factors cause pa-
tients to respond differently to treatment intervention, 
and such information may help to design treatment and 
intervention strategies that may be more efficient to a 
specific group of  patients rather than one treatment/
intervention fits all strategy.
The models depicted in this study may empower the 
description of  the effect of  several covariates on the 
square root CD4 count of  HIV-infected patients utiliz-

ing all accessible information. We believe that this sort 
of  analysis can be valuable to address several impor-
tant issues in public health as well as offer assistance in 
observing patients and checking the viability of  their 
medications. In this study, we have concentrated on 
the transformed normalized response data, which is 
the square root of  CD4 count, that is continuous and 
conditional on the explanatory variables, and random 
effects have a normal distribution. Mixed models with 
random effects can also be applied to non-normal re-
sponses.
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negative binomial mixed models 
for analyzing longitudinal CD4 
count data
Ashenafi A. Yirga1*, Sileshi F. Melesse1, Henry G. Mwambi1 & Dawit G. Ayele2

It is of great interest for a biomedical analyst or an investigator to correctly model the CD4 cell count 
or disease biomarkers of a patient in the presence of covariates or factors determining the disease 
progression over time. The Poisson mixed-effects models (PMM) can be an appropriate choice for 
repeated count data. However, this model is not realistic because of the restriction that the mean 
and variance are equal. Therefore, the PMM is replaced by the negative binomial mixed-effects 
model (NBMM). The later model effectively manages the over-dispersion of the longitudinal data. 
We evaluate and compare the proposed models and their application to the number of CD4 cells of 
HIV-Infected patients recruited in the CAPRISA 002 Acute Infection Study. The results display that the 
NBMM has appropriate properties and outperforms the PMM in terms of handling over-dispersion of 
the data. Multiple imputation techniques are also used to handle missing values in the dataset to get 
valid inferences for parameter estimates. In addition, the results imply that the effect of baseline BMI, 
HAART initiation, baseline viral load, and the number of sexual partners were significantly associated 
with the patient’s CD4 count in both fitted models. Comparison, discussion, and conclusion of the 
results of the fitted models complete the study.

Abbreviations
AI  Acute Infection
AIDS  Acquired immune deficiency syndrome
ART   Antiretroviral therapy
ARV  Antiretroviral (drug)
CAPRISA  Centre of the AIDS Programme of Research in South Africa
CD4  Cluster of difference 4 cell (T-lymphocyte cell)
GLM  Generalized linear model
GLMM  Generalized linear mixed model
HAART   Highly active antiretroviral therapy
HIV  Human immunodeficiency virus
MI  Multiple imputations
NBMM  Negative binomial mixed-effects model;
PMM  Poisson mixed-effects model
SE  Standard error
STD  Sexually transmitted disease
VL  Viral load refers to the number of HIV copies in a milliliter of blood (copies/ml)

After it is identified by scientists as the human immunodeficiency virus (HIV) and the cause of acquired immu-
nodeficiency syndrome (AIDS) in 1983, HIV has spread persistently, triggering one of the most severe pandemics 
ever documented in human history. More than 75 million individuals have been infected with HIV, more than 32 
million individuals have perished due to AIDS-related causes since the pandemic started, and 7000 new infec-
tions are reported daily. Worldwide, 37.9 million [32.7–44.0 million] individuals were HIV positive at the end of 
2018. Approximately 0.8% [0.6–0.9%] of grownup persons in the age range fifteen to forty-nine years worldwide 
are living with HIV, even though the problem of the epidemic continues to vary sizably between nations and 
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 regions1. Despite recent progressions in HIV prevention, care, and treatment, which has modestly decreased 
the total number of new infections and deaths every year, AIDS and AIDS-related illnesses are still among the 
driving causes of loss of life globally. Sub-Saharan Africa and Southern Africa, in specific, is right now the region 
most influenced by HIV/AIDS in the  world2. The HIV crisis in South Africa is critical. Since South Africa is at 
the epicenter of the HIV/AIDS epidemic, South African concerns are worldwide concerns, and lessons learned 
in South Africa are lessons for the universal community.

HIV/AIDS and other STD have an obliterating effect on women’s health, especially the well-being of younger 
ladies. “The consequences of HIV/AIDS attain beyond women’s health to their part as mothers and caregivers and 
their commitment to the economic support of their families. The social, development, and health consequences 
of HIV/AIDS and other sexually transmitted illnesses should be seen from a gender perspective”3–5. “It needs to 
be emphasized that, except for sex-specific issues, treatment algorithms for HIV-Infected women do not differ 
from men’s. Dialogs about the changing epidemiology of HIV will provide the clinician a system to decide who 
may be at high risk and to clarify the application of rules to avoid sequential HIV transmission. Even though 
antiretroviral recommendations presently remain the same for men and women, the survey of discoveries for 
early HIV infection and the individual difference in CD4 cell count/viral load of HIV-infected patient will permit 
the clinician to interpret prospective information appropriately and to address deception or distortion of this 
information by patients”6–8.

“CD4 cell counts deliver a sign of the wellbeing of an individual immune system (body’s natural defense 
system against pathogens, infections, and illnesses). It also provides information about disease progression. CD4 
cells are white blood cells (in a cubic millimeter of blood) that play an essential role in the immune system. A 
higher number shows a stronger immune system. The CD4 cell counts of a person who does not have HIV can 
be anything between 500 and 1500. Individuals living with HIV who have a CD4 count over 500 are usually in 
good health. Individuals living with HIV who have a CD4 cell count below 200 are at high risk of developing 
serious  illnesses9. HIV treatment is prescribed for all individuals living with HIV. It is particularly critical for 
patients with low CD4 count, which is superior to start treatment sooner, rather than later”6. The study of HIV 
infection at the acute stage is essential to the plan and advancement of HIV antibodies and techniques to attain 
an undetectable level of the infection without ART or a functional remedy. Researchers have managed to find out 
about the early events following infection by diagnosing HIV within a month, weeks, or even days of infection. 
Moreover, humans dwelling with HIV who are not on treatment or who are not virally suppressed can also have 
a compromised immune system (measured by a low CD4 count) that makes them at risk of the new and ongoing 
coronavirus disease 2019 (COVID-19) pandemic, opportunistic infections, and underlying illnesses. Whereas 
analysts accept that early diagnosis and prompt treatment of HIV are the stepping stones to a functional remedy, 
more studies are required to understand better the adaptive, innate, and host responses that regulate viral load 
set-point and subsequently diagnosis and infectiousness.

Count data are ubiquitous in public health investigations. This sort of data assumes only positive integer val-
ues (i.e., 0, 1, 2, …). The most commonly used method for count data is the Poisson distribution and its related 
enhancement, such as the Poisson-gamma mixture, which considers over-dispersion and heterogeneity in the 
model. This paper’s main contribution is the inclusion of the links between CD4 cell count and influencing 
covariates of biometric and demographic factors. Therefore, this study aims to cope with the statistical challenges 
of over-dispersion and incorporate within-subject correlation structures by applying NBMMs to longitudinal 
CD4 count data from the CAPRISA 002 AI Study and also detecting factors that are significantly associated with 
the response variable.

Materials and methods
Data description.  This study makes use of data from the CAPRISA 002 AI Study. The study was con-
ducted on HIV-infected women at the Doris Duke Medical Research Institute (DDMRI) at the Nelson R Man-
dela School of Medicine of the University of KwaZulu-Natal in Durban, South Africa. Between August 2004 and 
May 2005, CAPRISA introduced a cohort study recurring high-risk HIV negative women to a follow-up study. 
In the case of the data used in this paper as part of an ongoing study, women infected with HIV are enrolled in 
the study early, followed intensely, and monitored carefully to examine disease progression and CD4 count/viral 
load evolution. One can refer to studies by Van Loggerenberg et al.10 and Mlisana et al.11 for details on the design, 
development, and procedures of the study population.

Methods.  A linear model consists of a response variable Y , which is assumed to be normally distributed, 
and several predictors ( x1, x2, . . . , xp ). Multiple regression analysis studies the linear relationships among two or 
multiple independent variables and one dependent (response) variable. The multiple regression model is given 
by

where yi is the response variable, xi is a p× 1 vector of explanatory variables, β0 is the intercept, β is a p× 1 
vector of unknown regression coefficients, and εi

iid∼N
(
0, σ 2

)
 , which is a random error of observation i. We can 

extend these multiple linear regression model ideas to generalized linear models (GLM) where the distribu-
tion of the outcome variable can include distributions other than normal. The outcome yi can be continuous, 
dichotomous, count, ordinal, categorical, and so on as long as its distribution is from the exponential family. The 
exponential family of distributions incorporates numerous distributions that are valuable for viable modeling 
such as Poisson and Negative Binomial for count data; Binomial, Bernoulli, and Geometric for discrete data; 

yi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + εi = β0 + x
′

iβ + εi = β0 + β ′xi + εi , i = 1, . . . , n.
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Gamma, Normal, Inverse Gaussian, Beta, and Exponential for the study of continuous response data set. More 
details on exponential family and related topics can be found in Dobson et al.12.

A Poisson process is mainly used as an initial point for modeling the stochastic difference of count data 
around a theoretical expectation. However, in reality, the patient’s data have more differences than using the 
Poisson distribution. The model’s over-dispersion is accounted for because of different model assumptions about 
the variance changes with the expectation. To the value of statistical inferences, the choice of these assumptions 
has major consequences. Therefore, the negative binomial distribution parameterization is proposed because 
the method introduces various quadratic mean–variance relationships, incorporating the ones assumed in the 
most commonly used approaches.

The Poisson regression is a commonly-used statistical model for n responses y1, . . . , yn whose domain is 
non-negative integer values. Each yi is modeled as an independent Poisson ( �i ) random variable and distributed 
as yi

iid∼ Poisson ( �i ), where the parameter �i controls the count rate in the ith outcome. Thus, a model for the 
Poisson rate parameter �i is given by

or equivalently,

where xi1, . . . , xip are a set of p explanatory variables, and β =
(
β0, . . . ,βp

)
 are the regression coefficients. The 

probability mass function (pmf) of the Poisson random variable with parameter �i is given by

Since yi
iid∼ Poisson ( �i ), as a consequence, the likelihood function is equal to the product of their pmf and 

the log-likelihood function can be derived by taking the natural logarithm of the likelihood function, become

where �i is defined in terms of β0, . . . ,βp and the covariates xi1, . . . , xip in Eq. (1), the log-likelihood function 
can be expressed as

For a presentation of efficient computational methods for maximizing β̂ , and V
[

β̂
]

 , see  Hilbe13.
Suppose the response variable yi follows a Poisson distribution with mean �i and there is no over- or under-

dispersion, then var
(
yi

)
= �i that is the mean and variance are equal. The restriction (mean = variance) may not 

be satisfied with many real-world data. Sometimes the variance is greater than the mean, and this phenomenon is 
called over-dispersion. One such model that works in such a condition is the negative binomial regression model.

If there is over-dispersion var
(
yi

)
= ��i and � > 1 . While if there is under-dispersion var

(
yi

)
= ��i and 

� < 1 that is var
(
yi

)
> E

(
yi

)
 , in this case, the Poisson distribution is no longer suitable. The method of moments 

solution for the dispersion parameter � is found from the sample relation that is var
(
yi

)
= �̂y . Therefore, 

�̂ = var(yi)
y  , and then if �̂ > 1 , evidence of over-dispersion. Data may be over-dispersed if the Pearson Chi-

Square ( χ2)/DF value is greater than 1.0. In general, when the value is greater than 2.0, it is an indication of over-
dispersion, it requires remedial  action13,14. Over-dispersed data can lead to underestimated SEs and inflated test 
 statistics13–16. In such circumstances, the negative binomial model can be utilized, and therefore the formulation 
can be expressed as yi ∼ NB(µi ,µi[1+ αµi]) , where α(α > 0) can be utilized to add flexibility, and plays the 
role of the scale parameter, for variance independently of the mean. The negative binomial model is a generali-
zation of the Poisson model, which relaxes the restrictive assumption that the variance and mean are  equal13–15. 
Just like the Poisson model, the negative binomial model is commonly utilized as a distribution for count data; 
however, it allows a variance higher than its mean. The most contrast between the NB and Poisson models is 
the extra parameter (scale parameter) that controls for the over-dispersion and, thus, the determination of the 
likelihood functions related to  them13,14. Estimation of the parameters can be accomplished through likelihood 
maximization by employing a nonlinear optimization  method13,14. The parametrization process of the negative 
binomial model is discussed later.

In general, for the inference of count data, the four most commonly used statistical model distributions are 
the Poisson, Negative Binomial, Hurdle, and Zero-Inflated regression models. The NB model addresses the issue 
of over-dispersion by including a dispersion parameter that relaxes the presumption of equal mean and variance 

ln �i = β0 + β1xi1 + . . .+ βpxip = β0 +
p

∑

j=1

βjxij

�i = eβ0+β1xi1+...+βpxip = e
β0+

p
∑

j=1
βjxij

(1)f
(
yi , �i

)
= e−�i�

yi
i

yi!
, yi = 0, 1, 2, · · ·

=
n

∑

i=1

[

yi ln (�i)− �i − ln yi!
]

ℓ
�

β0, . . . ,βp
�

=
n

�

i=1



yi





p
�

j=0

βjxij



− e

p
�

j=0
βjxij

− ln yi!





=
n

�

i=1

�

yix
′

iβ − exp
�

x
′

iβ
�

− ln yi!
�

.
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in the distribution whilst the Hurdle and Zero-Inflated regression models are utilized to handle the distribution 
of count outcome with excess  zeroes17–21.

The generalized linear model fails to consider the dependence of repeated observations over time. That means 
when data are measured repeatedly like CD4 counts of several individuals over time, the assumption of independ-
ence is no longer reasonable. Therefore, it is necessary to extend the GLM to generalized linear mixed-effects 
models, including a subject-specific random effect introduced in the linear predictor to seize the dependence.

Recall the linear mixed model:

where yij is an outcome variable, P is the predictor variable, β1, . . . ,βp are fixed effects, bi1, . . . , bip are random 
effects and εij ’s are residuals.

Suppose we want to generalize the above model. In that case, we do not need to assume that the outcome 
variable is normally distributed even after a transformation, such as the square root transformation for the CD4 
count. However, it has to follow a distribution from the exponential family; at that point, we can combine the 
mixed model’s idea with the generalized linear model. For instance, if yij is a count, we could look at Poisson 
regression. Hence the Poisson linear mixed model gets to be

In matrix notation form, the conditional mean of yij rely on fixed and random effects via the subsequent 
linear predictor:

where yij ’s are independent and have a Poisson distribution, conditional on a vector of random effects bi , with 
var

(
yij|bi

)
= E

(
yij|bi

)
, (i.e.,� = 1) , and x′

ij = z
′
ij =

(
1, tij

)
 . That is, the conditional mean of yij is associated 

with the linear predictor via a log link function, which is an example of a log-linear mixed-effects  model22,23.
Several methods are available to estimate the parameters ( βi ’s and bi’s) in GLMMs, which includes marginal 

quasi-likelihood (MQL), penalized (predictive) quasi-likelihood (PQL), the Laplace approximation, the Gauss-
Hermite quadrative and the Markov Chain Monte Carlo (MCMC)  method24–27. Our preference is for the Laplace 
approximation due to the fewer limitations than the Adaptive quadrature (method = quad). It is accurate, fast, 
and gives us the plausibility to use the likelihood and information  criteria26,28,29. However, R-side random effects 
are not supported for method = laplace or method = quad in the Proc Glimmix statement. Instead, Proc Glimmix 
uses a random statement and the residual option to model repeated (R-side) effects.

“The parameter estimates based on the mixed-effects negative binomial model are not exceptionally dif-
ferent from those based on mixed-effects Poisson model. However, the Poisson model underestimates the SEs 
when over-dispersion is present, leading to improper inference. A straightforward way to select between these 
two models is to compare them based on a few criteria, such as AIC and BIC”23. Where for the ICs, a lower 
value means that the model fits better than the competing model. We may, moreover, compare models utilizing 
−2loglikelihood , and the likelihood ratio test for nested models. To some degree, parameters in GLMMs have 
different interpretations than parameters in the conventional marginal models. In GLMMs, the regression coef-
ficients have subject-specific interpretations. Especially, they characterize the impact of variables on a particular 
subject’s mean response. More specifically, the β ′s are interpreted in terms of the effects of within-subject changes 
in explanatory variables on changes in an individual’s transformed mean response, while holding the remain-
ing covariates constant. Accordingly, βj is interpreted as the change in an individual’s log of response for a unit 
increase in xij , while holding other fixed variables constant for that individual. Since the elements of the fixed 
effects, βj , have interpretations conditional on bi , the ith individual’s random effects, they are regularly known 
as subject-specific regression coefficients. “Thus, GLMMs are most useful when the main scientific objective is 
to make inferences about individuals instead of the population average effects; the population averages are the 
targets of inference in marginal models”22.

The negative binomial (NB) distribution, also the result of a Poisson–Gamma mixture, has vast applications 
as a model for count data, especially for data showing over-dispersion. It has properties that are comparable to 
the Poisson model, as discussed above, in which the outcome variable Yi is modeled as a Poisson variable with a 
mean �i where the model error is assumed to follow a Gamma distribution. The Poisson-Gamma mixture model 
was developed to account for over-dispersion that is widely observed in discrete or count  data30. The pdf of the 
NB distribution is frequently expressed in terms of the mean � and dispersion parameter θ such that the prob-
ability of observing a non-negative integer k , which was given by  Demidenko31 parameterization of the negative 
binomial regression, discussed as follows:

If Y  takes discrete values with the conditional Poisson distribution: Pr(Y = k|�) = e−�
�
k

k!  , where � > 0 , 
� ∼ Gamma(α, θ) then the pdf of a two-parameter, α, and θ , Gamma distribution is given by:

Thus, the negative binomial (Poisson–Gamma) model can be defined as:

yij = (β0 + bi0)+ (β1 + bi1)X1ij + . . .+
(
βp + bip

)
Xpij + εij ,

log
(
E
(
yij

))
= β0 + β1x1ij + · · · + βpxpij + b0 + b1x1ij + · · · + bpxpij

log
{

E(yij|bi)
}

= ηij = x
′
ijβ + z

′
ijbi .

(2)f (�;α, θ) = �
α−1e−�/θ

θαŴ(α)
, � > 0, α > 0, θ > 0

(3)f (Y |�) = e−�
�
k

k!
�
α−1e−�/θ

θαŴ(α)
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It has also been defined in the literature as:

where the binomial coefficient is computed as 
(

α + k − 1
k

)

= (α+k−1)(α+k−2)...α
k! = (α+k−1)!

k!(α−1)!  . Note that for a 

positive integer α , we have Ŵ(α) = (α − 1)!.
For negative binomial distribution, E

(
y
)
= αθ , and var

(
y
)
= αθ(1+ θ) . For Poisson distribution, the mean 

and variance are equal, but the variance is higher than the mean by αθ2 for negative binomial. By applying some 
calculus, one can show that the Poisson distribution is a special case of the negative binomial distribution when 
α → ∞ and θ → 0 , such that the product, αθ = � , is kept constant. The parameter a = 1

α
 is associated with the 

“extra-Poisson” variation or over-dispersion because var
(
y
)
= �+ a�2 , which is quadratic in the mean, that is 

why the negative binomial model is referred to as the NB2 model. This interpretation justifies a (�, a) param-
eterization of the NB distribution as

where E
[

y
]

= � and var
[

y
]

= �+ a�2 , and a = 0 results in Poisson distribution. This latest parameterization is 
useful to specify the NB regression and for testing over-dispersion as H0 : a = 032.

The likelihood function for Eq. (2) is proportional to

Lawless32 notes that for any c > 0,Ŵ(k + c)/Ŵ(c) = c(c + 1)× · · · × (c + k − 1) for integer-valued k ≥ 1 , 

thus, Ŵ(α+k)
Ŵ(α)

= α(1+ α)× · · · × (k − 1+ α) . Hence, log
{

Ŵ(α+k)
Ŵ(α)

}

=
ki−1
∑

j=0
log

(

α + j
)

. This produces log L(β ,α) 

as follows

Therefore, applying the Poisson theorem with Gamma distribution leads to the negative binomial distribution. 
Furthermore, detailed discussions of estimating methods and characteristics of the negative binomial model are 
presented in numerous  literature13,14,25,30–32.

When repeated counts are measured on the same individual over time, the assumption of independence is 
no longer reasonable; instead, they are correlated. Subject-specific random effects can be added into the linear 
predictor to modeling such dependence. Let yij be the values of a count variable (non-negative integer value) 
for subject i at time point j . The count is assumed to be drawn from a Poisson distribution with errors assumed 
to have a normal distribution, εij ∼ N

(
0, σ 2

ε

)
 . Then, the Poisson mixed-effects model that specifies the expected 

number of counts is written as

where xij is the variable of interest, β is the vector of fixed effects (population-level effects), including an inter-
cept β0 , bi is the vector of random effects (subject-level effects) for the sample variables z ij , and εij is the random 
 errors22,23. Given the Poisson process for the count yij , the probability that yij = y , conditionally on the random 
effects bi , is given by

This addition also can be applied to the NBMM that allows over-dispersion by assuming a gamma distribu-
tion for the errors; instead of a normal distribution. Suppose that xij and z ij are known vectors of covariates 
associated with count data yij , i = 1, . . . , n and j = 1, . . . , ni , conditional on a q− dimensional vector of 
subject-specific random effects, bi , the counts of yij , with the assumption of gamma errors, has a negative bino-
mial distribution, yij|bi ∼ NB

(

µij ,µij + θµ2
ij

)

 , with µij = E
(

yij|bi
)

= exp
{

x
′
ijβ + z

′
ijbi

}

 . This indicates that 
the mean parameters µij of the negative binomial mixed-effects models are also related to the predictor variables 
xij , and the sample variables z ij through the logarithm link function: log

(
µij

)
= x

′
ijβ + z

′
ijbi + εij , which shows 

(4)=
(

α + k − 1
k

)(

θ

1+ θ

)k( 1

1+ θ

)α

= Ŵ(α + k)

k!Ŵ(α)

(

θ

1+ θ

)k( 1

1+ θ

)α

,

Pr(Y = k; �, a) =
(

k + 1
a − 1
k

)(

a�

1+ a�

)k( 1

1+ a�

)
1
a

,

L(β ,α) =
n
∏

i=1

Ŵ(α + ki)

ki!Ŵ(α)

(

θi

1+ θi

)ki( 1

1+ θi

)α

=
n

�

i=1





ki−1
�

j=0

log
�

α + j
�

− log ki! + ki log θi − ki log (1+ θi)+ α log 1− α log (1+ θi)





ℓ(β ,α) =
n

�

i=1





ki−1
�

j=0

log
�

α + j
�

− log ki! + ki log θi − (ki + α) log (1+ θi)





(5)log
(
µij

)
= x

′
ijβ + z

′
ijbi + εij ,

P
(

yij = y|bi , xij , z ij
)

=
e−µijµ

y
ij

y! = 1

y! e
−exp

(

x′ijβ+z ′ijbi
)

exp
(

x′ijβ + z ′ijbi
)y

= 1

y! exp
[(

x′ijβ + z ′ijbi
)y

− exp
(

x
′
ijβ + z

′
ijbi
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, y = 0, 1, 2, . . .
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that the model for the conditional mean of the NBMM is similar to that of PMM. However, the conditional vari-
ance of yij for NBMM is Var

(
yij|bi

)
= µij + θµ2

ij , which is greater than the conditional mean of PMM by θµ2
ij , 

specifically, because a gamma distribution is assumed for the exponentiated errors, exp
(
εij

)
 , with a mean of 1 

and variance θ22,31. Random effects are used to demonstrate multiple assets of variations and subject-specific 
effects. As a result, they avoid biased inference on the fixed effects. The random effects are assumed to have a 
multivariate normal distribution:

where � is a positive-definite variance–covariance matrix that accounts for the correlation of the random 
 effects33,34.

Ethics  approval  and  consent  to participate.  Ethical approval for the study was obtained from the 
Research Ethics Committee of the University of KwaZulu-Natal (E013/04), the University of the Witwatersrand 
(MM040202), and the University of Cape Town (025/2004). All participants provided written informed consent. 
All methods were performed following the relevant guidelines and regulations expressed in the Declaration of 
Helsinki.

Results
Table 1 shows the summary of CD4 count and its associated selected covariates in the CAPRISA 002 AI Study. 
The dataset included 235 subjects (7129 observations consists of a minimum of two and a maximum of sixty-one 
observations per subject). P-values demonstrated in Table 1 are obtained from the Chi-square test. At a 5% level 
of significance, the univariate cross-tabulation analysis uncovers that the patient’s baseline BMI, baseline VL, 
number of sexual partners, age, ART initiation, and education level are significantly associated with patient’s CD4 
count. Table 1 demonstrates that there is a high prevalence of CD4 count above 500 cells/mm3 among patients 
with normal weight and overweight status, which are 38.32 and 9.36%, respectively (p-value < 0.0001). Out of 
7129 observations, patients with an undetectable viral load at baseline indicate no sign of a CD4 count < 500 
cells/mm3 throughout the study.

Moreover, from Table 1, there is a high prevalence of CD4 count above 500 cells/mm3 for patients with low 
viral load at baseline (21.83%). This shows ART suppresses the amount of HIV viably in patient’s body fluids who 
have an undetectable and low viral load at baseline to the point where standard tests are incapable of detecting any 
HIV or can only find a little flow. There is also a high prevalence of CD4 count above 500 cells/mm3 for patients 
with a stable sexual partner (43.85%, p-value < 0.0001) compared to patients who have many sexual partners. 
A high prevalence of CD4 count above 500 cells/mm3 is observed among patients of the age group between 

(6)bi ∼ N(0,�)

Table 1.  Distribution of CD4 count and associated selected covariates with percent missing. The response 
variable (CD cell count) has 110 (1.5%) missing observations.

Covariates Level

CD4 count N (%)

p-value % Missing< 200 200–500 > 500

Baseline BMI category

Underweight 2 (0.03) 219 (3.12) 254 (3.62)

< 0.0001 0.0
Normal weight 114 (1.62) 2305 (32.84) 2690 (38.32)

Overweight 18 (0.26) 512 (7.29) 657 (9.36)

Obese 0 17 (0.24) 231 (3.29)

Baseline viral load

Undetected 0 0 16 (0.23)

< 0.0001 0.0
Low 20 (0.28) 791 (11.27) 1532 (21.83)

Medium 45 (0.64) 1209 (17.22) 1497 (21.23)

High 69 (0.98) 1053 (15) 787 (11.21)

Number of sexual partners

No partner 29 (0.41) 565 (8.05) 579 (8.25)

< 0.0001 0.0Stable partner 85 (1.21) 2274 (32.4) 3078 (43.85)

Many partners 20 (0.28) 214 (3.05) 175 (2.49)

Age group

< 20 1 (0.01) 130 (1.82) 121 (1.72)

< 0.0001 0.0

20–29 97 (1.38) 1872 (26.67) 1977 (28.17)

30–39 17 (0.24) 813 (11.58) 1255 (17.88)

40–49 19 (0.27) 203 (2.89) 369 (5.26)

50–59 0 35 (0.5) 91 (1.3)

 ≥ 60 0 0 19 (0.27)

Educational level
Primary school 3 (0.04) 104 (1.48) 181 (2.58)

0.0129 0.0
Secondary school 131 (1.87) 2949 (42.01) 3651 (52.02)

Place of residence
Rural 62 (0.88) 1467 (20.90) 1806 (25.73)

0.7176 0.06
Urban 72 (1.03) 1586 (22.6) 2026 (28.86)

ART initiation group
Pre ART 110 (1.57) 2566 (36.56) 2783 (39.65)

< 0.0001 0.0
Post ART 20 (24) 487 (6.94) 1049 (14.95)
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20–29 years and 30–39 years, which are 28.17 and 17.88%, respectively (p-value < 0.0001). The prevalence of 
CD4 count above 500 cells/mm3 is also observed among women patients who have higher/secondary school 
levels of education (52.02%, p-value = 0.0129). However, the place of residence is found not to be associated with 
patients’ CD4 count (p-value = 0.7176).

The individual profiles plot for 17 randomly selected HIV-Infected women enrolled in the CAPRISA 002 AI 
Study is shown in Fig. 1.

Analyzing data shown in Fig. 1, we can observe insights concerning the variability among individual patients 
at a given point in time, the variance within units over time, and the trends over time. Note that the space between 
the lines represents between unit variability, and the change in each line (slope) represents within variability. 
Moreover, as portrayed in Fig. 1, the number of CD4 cells seems to represent a slightly increasing pattern over 
time; however, the rate of increment is low. Additionally, Fig. 1 shows that there is wide variability in the num-
ber of CD4 cells and in the number of repeated measures (number of observations per subjects are not equal).

The results of the Fit statistics in Table 2 are obtainable because of method = Laplace in Proc Glimmix Pro-
cedure. These values are relative and valuable when we compare different model choices. The NB model’s Fit 
statistics are much smaller than the Poisson model (Table 2). For instance, AICC is 87833.48 for NB versus 
204893.1 for the Poisson. Also, the Pearson χ2/DF of 20.66 for the Poisson model is problematic (Table 3), indi-
cating evidence of over-dispersion in the data. Ideally, this value ought to be generally 1.0 when modeling count 
data with a Poisson distribution. The ratio of Pearson Chi-Square statistics is dropped from 20.66 to 0.91 under 
the NB model, which is close to one (Table 3), indicating that over-dispersion has been appropriately modeled 
and it is no longer an issue under the NB model.

In addition to the conditional fit statistics, any other diagnostic that may allow us to see over-dispersion in 
the Poisson model is a graphical representation (Fig. 2). We can get residual plots through Proc Glimmix using 
the Plot option. Here, we only focus on looking at residual versus predicted plots. Figure 2 (left panel) shows 

Figure 1.  Individual profiles plot of CD4 cell count for 17 randomly selected subjects.

Table 2.  Comparisons of fit statistics for the two distributions.

Distribution

Fit statistics

− 2 log likelihood AIC AICC BIC CAIC HQIC

Poisson 204,842.9 204,892.9 204,893.1 204,979.4 205,004.4 204,927.8

NB 87,781.28 87,833.28 87,833.48 87,923.23 87,949.23 87,869.54

Table 3.  Measure of over-dispersion between Poisson and negative binomial distribution.

Fit Statistics for Conditional Distribution Poisson NB

− 2 log L(CD4 counts/r. effects) 199,670.3 85,320.39

Pearson χ2 145,017.0 6396.89

Pearson χ2/DF 20.66 0.91
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the visual prove of over-dispersion. As the Predicted Mean ( µ̂ ) increases, the associated residuals become more 
broadly dispersed. The variance ought to increase as a function of the mean, but not as quickly as we see in this 
plot (Fig. 2). Also, Fig. 2 (right panel) shows prove of over-dispersion. The variance adjusted residuals are more 
variable around the lower point of the estimated Linear Predictor (η̂ ). On the model scale (Fig. 2 (right panel)), 
we should not see the variance adjusted residuals variable across different points of η̂ as we see in this  plot16,35. In 
other words, Fig. 2 (right panel) demonstrates that the empirical distribution of the residuals is not reasonably 
symmetric, and in general, it is not very informative.

The improvement in the Pearson χ2/DF and Fit statistics indicate that it is best to model data from this 
experiment with the NB distribution. Utilizing the proper distribution gives unbiased test statistics and SE 
estimates (Table 4).

In addition, the subsequent random effect models were taken into consideration for testing NBMMs:

Model 1: Intercept, Time,
√
Time.

Model 2: Intercept, Time.
Model 3: Intercept, 

√
Time.

Model 4: Time, 
√
Time.

Model 5: Intercept only.
Model 6: Time only.
Model 7: 

√
Time only.

We conclude that Model 1 is a preferable model among models listed above since it has the smallest information 
criteria. Moreover, a comparison of the covariance structure using the fitted model (Supplementary Table S1) 
and a comparison of fixed-effects results across different covariance structures using Model 1 (Supplementary 
Table S2) are made. The estimated unstructured covariance matrix ( D̂ ) for the GLMMs model that uses NB 
distribution is

Figure 2.  Data-scale raw residuals and Model-scale studentized residuals versus predicted values.

Table 4.  Comparison of random effect models.

Random effect models

Information criteria

− 2log ℓ AIC AICC BIC CAIC HQIC

Model 1 87,781.28 87,833.28 87,833.48 87,923.23 87,949.23 87,869.54

Model 2 88,603.50 88,649.50 88,649.66 88,729.07 88,752.07 88,681.58

Model 3 88,591.64 88,637.64 88,637.80 88,717.21 88,740.21 88,669.72

Model 4 89,156.39 89,202.39 89,202.55 89,281.96 89,304.96 89,234.47

Model 5 89,837.18 89,879.18 89,879.31 89,951.83 89,972.83 89,908.47

Model 6 92,302.08 92,344.08 92,344.21 92,416.73 92,437.73 92,373.37

Model 7 91,190.61 91,232.61 91,232.74 91,305.26 91,326.26 91,261.90
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The estimated scale parameter is 0.04205, which can be found in the “Covariance Parameter Estimates” output 
of the SAS PROC GLIMMIX (Laplace) procedure (see Supplementary Table S3). Therefore, the estimated con-
ditional variance of the count is µ̂i + 0.04205µ̂2

i  , where µ̂i is the conditional mean on the counting scale. “The 
Scale parameter measures the magnitude of over-dispersion and is practically equivalent to the mean square 
error in conventional theory analysis of variance”15.

Table 5 shows the overall effect of the selected factors within the fitted models. The results indicate that the 
effects of Time, Baseline BMI, HAART initiation group, baseline viral load, and the number of sexual partners on 
the patient’s CD4 count were found to be highly significant in both fitted models. However, the overall F-values 

D̂ =





0.1131 0.000739 −0.01754
0.000739
−0.01754

0.000155
−0.00137

−0.00137
0.01556





Table 5.  Type III Analysis of fixed effects for Poisson and NB distribution.

Effect Num DF Den DF

NB Poisson

F value Pr > F F value Pr > F

Time in month 1 235 62.53 < 0.0001 14.80 0.0002

Sqrt_Time 1 234 86.36 < 0.0001 48.41 < 0.0001

Baseline BMI category 3 6307 6.26 0.0003 6.31 0.0003

ART initiation 1 6307 345.45 < 0.0001 5890.28 < 0.0001

Baseline VL 3 6307 7.48 < 0.0001 12.79 < 0.0001

No. of sexual partners 2 6307 1.64 0.1935 1.85 0.1578

Age group 5 6307 1.46 0.1987 27.34 < 0.0001

Education level 1 6307 0.25 0.6196 0.15 0.6990

 Place of residence 1 6307 0.01 0.9246 0.11 0.7406

Table 6.  Parameter estimates using Poisson and NB mixed-effects model.

Covariates

Negative binomial mixed-effects model Poisson mixed-effects model

Estimate SE Pr >|t| 95% CI for NB estimate Estimate SE Pr >|t|

Intercept 6.4697 0.04982 < 0.0001 (6.3715, 6.5679) 6.4625 0.04264 < 0.0001

Time in month 0.007824 0.000989 < 0.0001 (0.005875, 0.009774) 0.006564 0.001706 0.0002

Sqrt_Time − 0.08649 0.009307 < 0.0001 (− 0.1048, − 0.06815) − 0.06839 0.009830 < 0.0001

ART initiation (post) 0.2301 0.01238 < 0.0001 (0.2058, 0.2543) 0.1947 0.002537 < 0.0001

Baseline BMI category (ref. = normal weight)

Obese 0.4815 0.1113 < 0.0001 (0.2633, 0.6996) 0.4985 0.1147 < 0.0001

Overweight 0.02561 0.04975 0.6067 (− 0.07191, 0.1231) 0.03131 0.05148 0.5431

Underweight 0.005901 0.07927 0.9407 (− 0.1495, 0.1613) 0.01691 0.08264 0.8379

Baseline HIV viral load category (ref. = low VL)

High VL − 0.2393 0.05157 < 0.0001 (− 0.3404, − 0.1382) − 0.3074 0.05065 < 0.0001

Medium VL − 0.1258 0.04587 0.0061 (− 0.2157, − 0.03585) − 0.1121 0.04686 0.0168

Undetectable 0.1377 0.2901 0.6351 (− 0.4310, 0.7064) 0.1199 0.2978 0.6872

Number of sexual partners (ref. = stable partner)

Many partners − 0.1560 0.09394 0.0967 (− 0.3402, 0.02811) − 0.1674 0.09908 0.0911

No partner − 0.04821 0.04993 0.3343 (− 0.1461, 0.04967) − 0.05913 0.05164 0.2522

Age group in years (ref. = < 20)

20–29 0.01166 0.03104 0.7072 (− 0.04919, 0.07251) − 0.00791 0.007830 0.3125

30–39 0.02852 0.03432 0.4060 (− 0.03876, 0.09580) − 0.01239 0.008474 0.1438

40–49 − 0.00719 0.04545 0.8743 (− 0.09629, 0.08191) − 0.03422 0.01112 0.0021

50–59 − 0.05694 0.06662 0.3927 (− 0.1875, 0.07365) − 0.1399 0.01549 < 0.0001

 ≥ 60 0.2082 0.1532 0.1741 (− 0.09205, 0.5084) − 0.3107 0.03519 < 0.0001

Education attainment (ref. = secondary or high school)

Primary school − 0.04509 0.09084 0.6196 (− 0.2232, 0.1330) − 0.03582 0.09263 0.6990

Residence of participant (ref. = urban)

Rural − 0.00373 0.03947 0.9246 (− 0.08112, 0.07365) 0.01337 0.04038 0.7406
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of the NB model were smaller than for the Poisson model. This can be supporting prove that over-dispersion 
can lead to inflated and biased F-values if we do not use the proper model in our analysis.

Table 6 shows the log of the expected CD4 count as a function of the selected predictor variables using a nega-
tive binomial mixed-effect model. The results indicate that time (month) significantly affects the CD4 count of a 
patient. We interpret the coefficient of the month as an average within-subject change in the logs of expected CD4 
count for patients would be expected to increase by 0.0078 units (p-value < 0.0001; 95% CI 0.005875, 0.009774), 
while holding other factors in the model constant. The square root of time shows a significant adverse effect in 
the logs of expected CD4 counts of a patient (Table 6). Compared to pre HAART initiation, the difference in 
the logs of CD4 counts of a patient who had been initiated on HAART would be expected to increase by 0.2301 
units (p-value < 0.0001; 95% CI 0.2058, 0.2543), holding other factors constant in the model. It can be observed 
that the difference in the logs of expected CD4 counts is expected to be 0.4815 units (p-value < 0.0001; 95% 
CI 0.2633, 0.6996) higher for patients with higher BMI (Obese) at baseline compared to patients with normal 
weight status holding other factors constant in the model. Those patients who had high and medium viral load 
at baseline, the difference in the logs of their expected CD4 counts were decreased by 0.2393 (p-value < 0.0001; 
95% CI − 0.3404, − 0.1382) and 0.1258 (p-value = 0.0061; 95% CI − 0.2157, − 0.03585), respectively, compared 
to patients who had low viral load at baseline while holding other factors in the model constant.

Furthermore, the SEs for the Poisson mixed-effects model were more likely to be underestimated and/or 
biased compared to those from a negative binomial mixed-effects model since the model is fitted by ignoring 
over-dispersion of the data (Table 6).

The prediction profile equation for the average number of CD4 cell following Table 6 results obtained by NB 
mixed-effects model is given as:

Taking antilog values on both sides of the above-predicted equation yields the expected number of counts, 
given by

The prediction of individual profiles, Fig. 3, presents the estimated trajectories for the average number of CD4 
cell under the estimates acquired by the negative binomial mixed-effect model with UN covariance structure 
consolidated with the model where the intercept and slope were considered as random effects (see Table 4 and 
Supplementary Table S1) for seven patients with particular profiles for four years. For instance, from CAPRISA 
002 AI Study, patient ID = 141, 22 years old female, with around 500 cells/mm3 CD4 cell count at baseline, low 
VL at baseline, had normal weight status at baseline, and have no sexual partner at the time of enrollment.

The second patient ID = 152, 34 years old female, with obese weight status at baseline, having stable sexual 
partner, high VL at baseline, and CD4 count at baseline below 500 cells/mm3. As a third example, we looked at 
patient ID = 172 who had undetected VL at baseline, with CD4 count at baseline above 500 cells/mm3, 29 years 
old female, with obese weight status at baseline and have a stable sexual partner. As a fourth example, we can also 
look at patient ID = 188, who had a high number of CD4 cells at baseline (1070 cells/mm3) with low VL at base-
line, 42 years old, had obese weight status at baseline, and have a stable sexual partner. As we would anticipate, 

log
(
µ̂i

)
= 6.4697+ 0.007824× time − 0.08649×

√
time + 0.2301

× postHAARTtreatment + 0.4815× obese − 0.2393

× highVL− 0.1258×mediumVL.

µ̂i = exp
(

6.4697+ 0.007824× time − 0.08649×
√
time + 0.2301× postHAARTtreatment

+0.4815× obese − 0.2393× highVL− 0.1258×mediumVL
)

.

Figure 3.  Prediction of 7 randomly selected individual profiles plot of CD4 count for 4 years.
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all seven individuals appeared to have an increased average number of CD4 cells over time, in line with their 
predicted individual profiles (Fig. 3). However, the increasing level or degree is different among individuals. This 
is due to factors related to this study and numerous other characteristics of these individuals, mainly (according 
to our research) for their VL at baseline, baseline BMI and the treatment (either the patient had effective HAART 
initiation after HIV exposure or not).

Moreover, for this study to yield meaningful results, we checked the missing values in the dataset using the 
Little’s MCAR test. The regular Little’s MCAR test gives us a χ2 distance of 4515.686 with a degree of freedom 106 
and p-value 0.000 (Little’s MCAR test: Chi-Square = 4515.686, DF = 106, sig. = 0.000). The analysis gives evidence 
that the missing data in the study variables of interest are not MCAR under significance level 0.000. Therefore, 
we used Multiple Imputation (MI) techniques to get a valid analysis for parameter estimates from the complete 
data set by fitting the chosen model. The MI procedure’s main concept is to replace each missing value with a 
set of m possible values. Generally, the imputation of dependent and independent variables is basic for getting 
unbiased estimates of the regression  coefficients36. Following Rubin’s (1987) terminology, the MI procedure 
includes three distinct phases: each missing value is imputed m times to generate m complete data sets, analyze 
each m complete data sets separately by using standard procedure and then combine the results to generate valid 
statistical inference about the model parameters from the m data set analysis using Rubin’s combine  rule37. SAS 
Proc MI can be used to create N number of imputation; after that, Proc MIAnalyze is used to pool the parameter 
estimates. A detailed discussion of missing data analysis and how missing data handled by statistical software 
can be found in numerous  literature37–44.

Table 7 shows a combined result for each parameter. The table also shows a 95% confidence interval, the 
minimum and maximum regression coefficients from the imputed data set, and the associated p-value. We can 
compare the results given in Table 7 with the results of applying the negative binomial mixed-effect model to 
the CAPRISA 002 AI data using incomplete cases (Table 6). Comparing the two different sets of results, we do 
not see that many exciting differences. In both cases, covariates that were found to be significantly affecting the 
patient’s CD4 count are similar, and their respective parameter estimates are more close to each other.

In general terms, a comparison of the results from data with missing value case analysis (Table 6) and multiple 
imputation analysis (Table 7) shows little difference between parameter estimates, SEs, and confidence intervals. 
In this case, the small difference in results and associated inferences is likely due to relatively low amounts of 
missing data in the analysis variables (Table 1). However, it will not always be true that results from incomplete or 
complete case analysis and a multiple imputation treatment of the data will lead to similar results and  inferences38. 
Finally, missing data is especially common in longitudinal data sets. Missingness can arise due to respondent 

Table 7.  Combined results of a negative binomial mixed-effects model analysis using MI Procedure to deal 
with the missing values.

Parameter

Parameter estimates (10 imputations)

Estimate SE Pr >|t| 95% confidence limits Minimum Maximum

Intercept 6.459413 0.049830 < 0.0001 (6.36175, 6.55708) 6.458658 6.460775

Time in month 0.007475 0.000975 < 0.0001 (0.00556, 0.00939) 0.007450 0.007508

Sqrt_Time − 0.083647 0.009266 < 0.0001 (− 0.10181, − 0.06549) − 0.083982 − 0.083434

ART initiation (Post) 0.224037 0.012594 < 0.0001 (0.19935, 0.24872) 0.223216 0.225014

Baseline BMI category (ref. = normal weight)

Obese 0.474714 0.109902 < 0.0001 (0.25931, 0.69012) 0.473892 0.475630

Overweight 0.024208 0.048971 0.6211 (− 0.07177, 0.12019) 0.023820 0.024529

Underweight 0.002070 0.078101 0.9789 (− 0.15101, 0.15515) 0.001321 0.003137

Baseline HIV viral load category (ref. = Low VL)

High VL − 0.239102 0.051294 < 0.0001 (− 0.33964, − 0.13857) − 0.239735 − 0.238839

Medium VL − 0.122078 0.045390 0.0072 (− 0.21104, − 0.03311) − 0.122251 − 0.121642

Undetectable 0.142848 0.286259 0.6178 (− 0.41821, 0.70391) 0.142510 0.143351

Number of sexual partners (ref. = stable partner)

Many partners − 0.153632 0.092090 0.0953 (− 0.33412, 0.02686) − 0.154667 − 0.152911

No partner − 0.046962 0.049227 0.3401 (− 0.14344, 0.04952) − 0.047267 − 0.046691

Age group in years (ref. = < 20)

20–29 0.013477 0.031659 0.6703 (− 0.04857, 0.07553) 0.012306 0.014325

30–39 0.033725 0.034974 0.3349 (− 0.03482, 0.10227) 0.032678 0.034744

40–49 − 0.005842 0.046177 0.8993 (− 0.09635, 0.08466) − 0.007790 − 0.004745

50–59 − 0.052070 0.067501 0.4405 (− 0.18437, 0.08023) − 0.054207 − 0.051024

≥ 60 0.206708 0.156046 0.1853 (− 0.09914, 0.51255) 0.205360 0.207553

Education attainment (ref. = secondary or high school)

Primary school − 0.046292 0.089605 0.6054 (− 0.22191, 0.12933) − 0.046602 − 0.046009

Residence of participant (ref. = urban)

Rural − 0.001916 0.038813 0.9606 (− 0.07799, 0.07416) − 0.002146 − 0.001596
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attrition, survey structure, file-matching issues, and refusal to answer sensitive questions such as certain health 
conditions, illegal behaviors, or  income38. Missing data can also arise due to death. A loss to follow-up due to 
death is qualitatively different from dropout due to other responses and, ordinarily, needs to be dealt with quite 
differently in the analysis of longitudinal  data9. Missing data is generally classified as Missing Completely at 
Random (MCAR), Missing at Random (MAR), or Not Missing at Random (NMAR)37,39,41,44–46.

Discussion and conclusion
GLMs extend the standard concept of linear models to outcome variables whose distribution is from a member 
of the exponential family. “GLM consists of three components: a stochastic component that characterizes the 
likelihood distribution of the response variable; a linear predictor that is a systematic component portraying the 
linear model characterized by the explanatory variables; and a link function that connect the mean of the response 
variable to a linear combination of the explanatory variables. Link functions that are commonly used for distribu-
tions are discussed in numerous literature”12,16,24,28,35,47–51. Parameters in GLM are estimated based on maximum 
likelihood principles. Different ways of transformations of the response variable make the transformed data to 
fulfill the linear model’s assumptions, such as approximately normally distributed and having stable variances. 
In a more common term, a transformation is a replacement that changes the shape of distribution or relation-
ship. However, transformation is often challenging for regression settings in which it additionally influences the 
practical relationship between the covariates and the outcome variable. In some cases, it is not perceived that 
the utilization of transformations changes the  model52.

Transformations are elaborative when a selected choice is not predetermined through different considera-
tions; that is, the selection of transformation is  subjective53. “GLMs avoid these problems since the data are no 
longer transformed; instead, a function of the means is modeled as a linear combination of the covariates”24,48. 
Sometimes, for example, for large values of the estimated coefficient, the use of a transformation is effective than 
using GLMs and Wald type statistics for  inference48,49. “In general, however, transformations rarely compete 
well with GLMs for adequately powered studies”48. Therefore, we analyzed the non-normal untransformed form 
of the CD4 cell count of a patient enrolled in the CAPRISA 002 AI Study in the context of GLMMs (Table 6).

Longitudinal studies, also called mixed-effects models, are used to study changes in the response variable over 
a relevant interval of time or space and the effects of different factors on these changes. The two fundamental 
issues in longitudinal studies are constructing an appropriate model for the mean and choosing a reasonable 
but parsimonious model for the covariance structure of longitudinal  data22. For these reasons, we have fitted an 
NBMM consolidated with the UN covariance structure since there was enough evidence of over-dispersion in 
the data. The chosen covariance structure gives the smallest information criteria (Supplementary Table S1). The 
comparisons between Poisson and negative binomial mixed-effects models were outlined in Table 6.

Moreover, comparisons of the covariance structure illustrated in Supplementary Table S1. GLMMs combine 
the GLMs with the LMMs. “As an extension of GLMs, they consolidate random effects into the linear predictor. 
As a mixed model, they contain at least one fixed effect and at least one random effect”54. Parameter estimation 
in GLMMs is also based on maximum likelihood principles; inferences for the parameters are readily obtained 
from classical maximum likelihood  theory22,54. “The two fundamental computational methods to attain solutions 
to the likelihood equations are a pseudo-likelihood, and integral approximation of the log-likelihood using either 
the Laplace or Gauss-Hermite quadrature strategies”16,40,55. Since pseudo-likelihood generates biased covariance 
parameter estimates when the number of observations per subject is small, it is especially inclined to biased 
estimates when the power is small and uses a pseudo-likelihood rather than a true likelihood, likelihood ratio, 
and fit statistics such as AICC and BIC have no clear meaning. However, the integral approximation uses the 
actual likelihood and grant us the appropriate likelihood ratio tests or information criteria, permitting compet-
ing models to be compared using these test statistics. Of these two, the Laplace method is best since quadrature 
is ordinarily computationally restrictive for regularly repeated measures. Moreover, the Laplace procedure is 
less computationally intensive than the quadrature procedure and is considerably more flexible in terms of the 
models with which it can be used. Detailed discussions of parameter estimation in GLMMs can be found in 
numerous  literature16,22,28,47,48,51. The fit statistics in Table 3 were obtained by using the Laplace method. If this 
method had not been specified on the SAS Proc Glimmix procedure, the default pseudo-likelihood method would 
have been used to fit the model. Because pseudo-likelihood is based on Tylor series approximation to the condi-
tional likelihood and not expressly on the conditional likelihood itself, a goodness of fit statistic which includes 
the Pearson χ2 that is particularly appropriate to the conditional distribution cannot be computed. Rather, the 
pseudo-likelihood approaches calculate a Generalized χ2 statistic that measures the combined fit of the conditional 
distribution of the counts and the random effects. Since it is not particular to solely the conditional distribution, 
it does not offer a clear cut diagnostic to evaluate the fit of the Poisson distribution to the  counts40.

The Pearson χ2/DF gives the goodness of fit statistic to evaluate over-dispersion within the Poisson model. 
Since the variance and mean of the Poisson are equal, the scale parameter (α) is 1. If the Poisson assumption is 
fulfilled, the Pearson χ2/DF ought to be close to 1. Its estimated value of 20.66 (Table 3) indicated solid prove 
of over-dispersion under the Poisson model. “Over-dispersion would mean more variability shown by the data 
than would be assumed under a given statistical model”20. Over-dispersion could be an issue that should not be 
disregarded in the statistical inferences. The essential and most critical outcome of over-dispersion is its effect 
on SEs and test statistics. This was demonstrated in Table 5, uncorrected analysis of over-dispersed data (Poisson 
model) consequences underestimated SEs, leading to biased estimates and inflated test statistics. “It is basic to 
check for over-dispersion when fitting a GLM or a GLMM to guarantee that inferences derived from the fitted 
model are precise”20. Over-dispersion is an implication that the fitted model is incorrect, and adjustments are 
required. “The two most commonly used approaches in GLMMs, to avoid unwanted outcomes outlined above, 
are: adjusting the SEs and test statistics by incorporating an adjustment for over-dispersion in the model or 



13

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16742  | https://doi.org/10.1038/s41598-020-73883-7

www.nature.com/scientificreports/

assume a different probability distribution for the counts that more reasonably approximate the method by which 
over-dispersion emerge”48. Because the second strategy of assuming a different distribution is a reasonable and 
suggested methodology, it was illustrated in Table 5 in which the negative binomial distribution substitutes the 
Poisson distribution as the conditional distribution of the outcome. The NB distribution is the foremost candidate 
as an alternative to the  Poisson13,14. The Pearson χ2/DF value of 0.91 (Table 3) shows that the negative binomial 
gives a much-improved fit of the data compared to the Poisson model. This is one of a reasonable GLMMs 
approach for managing with over-dispersion.

Supplementary Table S2 outlined that the fixed effects are significantly influenced by the covariance structure. 
Furthermore, the covariance structure also impacted the random effects estimate: the time effects and their SEs. 
The SEs tend to be affected more than the estimates. The selection of covariance structures subjects for non-
normally distributed data, just as it does for normally distributed data. The fit statistics related to pseudo-likelihood 
estimation are not comparable among models. Consequently, the fit statistics cannot be used to select between 
competing for covariance structures. Therefore, the choice of covariance structure is not as straightforward for 
non-normal longitudinal response data as it is under normality  assumption15,52,55–58. However, for the GLMM 
approach, the situation is better. As we discussed previously, since the GLMM characterizes an exact probability 
process under the Laplace method, fit statistics such as AICC and BIC can be  obtained57. Thus, for GLMMs, 
covariance structures selection can continue much as it does for normally distributed data as long as either 
Laplace (preferable) or quadrature techniques are used. Moreover, while we have incorporated a parametric 
spatial covariance structure for the fitted negative binomial mixed-effects model, other procedures to account 
for spatial variation are of interest. Our study methodology, in theory, can be extended to deal with this issue 
using a GLMM for spatial  data29. Therefore, we leave this and other attainable extensions for future studies.

Along this line, it would be fascinating to extend this study to the quantile mixed-effects model. Most longitu-
dinal modeling techniques are primarily based on mean regression to focus only on the average effect of covariate 
and the mean trajectory of the longitudinal outcome, which is constant throughout the population. But, such 
average effects are not always of interest in lots of study areas and sometimes quite heterogeneous. Thus, quantile 
mixed-effects model has the capacity, at both the population and individual level, to discover heterogeneous 
covariates effects, and describe variations in longitudinal studies at different quantiles of the response variable, 
and hence leads to more efficient estimates, especially when the errors are over-dispersed59,60.

Data availability
The datasets used for this study can be obtained by requesting the corresponding author on reasonable request.
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Additive quantile mixed effects 
modelling with application 
to longitudinal CD4 count data
Ashenafi A. Yirga1*, Sileshi F. Melesse1, Henry G. Mwambi1 & Dawit G. Ayele2

Quantile regression offers an invaluable tool to discern effects that would be missed by other 
conventional regression models, which are solely based on modeling conditional mean. Quantile 
regression for mixed-effects models has become practical for longitudinal data analysis due to the 
recent computational advances and the ready availability of efficient linear programming algorithms. 
Recently, quantile regression has also been extended to additive mixed-effects models, providing 
an efficient and flexible framework for nonparametric as well as parametric longitudinal forms of 
data analysis focused on features of the outcome beyond its central tendency. This study applies the 
additive quantile mixed model to analyze the longitudinal CD4 count of HIV-infected patients enrolled 
in a follow-up study at the Centre of the AIDS Programme of Research in South Africa. The objective 
of the study is to justify how the procedure developed can obtain robust nonlinear and linear effects 
at different conditional distribution locations. With respect to time and baseline BMI effect, the study 
shows a significant nonlinear effect on CD4 count across all fitted quantiles. Furthermore, across all 
fitted quantiles, the effect of the parametric covariates of baseline viral load, place of residence, and 
the number of sexual partners was found to be major significant factors on the progression of patients’ 
CD4 count who had been initiated on the Highly Active Antiretroviral Therapy study.

Abbreviations
AMM  Additive mixed model
QR  Quantile regression
AQM  Additive quantile model
AQMM  Additive quantile mixed model
GAMLSS  Generalized additive model for location, scale, and shape
CAPRISA  Centre of the AIDS Programme of Research in South Africa
HIV  Human immunodeficiency virus
AIDS  Acquired immune deficiency syndrome
CD4  Cluster of difference 4 cell (t-lymphocyte cell)
VL  Viral load refers to the number of HIV copies in a milliliter of blood (copies/ml)
STD  Sexually transmitted diseases
ART   Antiretroviral therapy
ARV  Antiretroviral (drug)
HAART   Highly active antiretroviral therapy
WHO  World Health Organization

Parametric models relate the mean of a response variable to a linear combination of covariate effects and focus 
on the response’s average  properties1. Nevertheless, there are inevitable occasions when such parametric mod-
els fail, and data analysis must turn to more flexible, nonparametric  models2. Parametric models also assume a 
distribution for the outcome variable as opposed to purely nonparametric models. However, most of the vast 
literature on nonparametric regression also deals with the estimation of conditional mean models. In addition, 
the conventional assumption of nonparametric regression theory that there is additive, independently, and 
identically distributed (iid) error around a smooth underlying conditional mean function is highly implausible 
in certain data  settings2. Thus, as in the parametric context, nonparametric methods are usefully complemented 
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by nonlinear estimation of families of conditional quantile functions that relax the independence  assumption2. 
The use of parametric and nonparametric regression models for analyzing patients’ CD4 count in most applica-
tions implies that the estimated effects describe the average CD4 count. However, it is of even great interest to 
examine the quantile of the outcome distribution, such as the lower ( ≤ 25%) quantile, which identifies patients 
at higher risk of developing illnesses.

Quantiles, commonly symbolized by the Greek letter τ , are location and scale parameters simultaneously. 
For a given τ ∈ (0, 1) , the τ th quantile is the value of a random variable, where τ × 100% of its value lies below it. 
In other words, it is the value where at most (1− τ )× 100% of the value lies above. Thus, τ th quantiles close to 
0.5-quantile give the median, which is a well-known location parameter. On the other hand, τ th quantiles close 
to zero or one give an idea of the scale. For instance, the interquartile range (IQR) is defined as the 0.75 quantile 
minus the 0.25 quantile: IQR = Q3 − Q1.

Quantile regression (QR) solutions are computed for a selected number of quantiles, typically the three quan-
tiles along with two extreme quantiles, that is, for τ = {0.05, 0.25(Q1), 0.5(Q2), 0.75(Q3), 0.95} . This necessitates 
the search for a suitable compromise between the amount of output to manage and the results to interpret and 
summarize. Although in many practical applications of QR, the focus is on estimating a subset of quantiles, how-
ever, it is worth noticing that it is possible to attain estimates across the entire interval of conditional quantiles; 
in particular, the set: {βτ : τ ∈ (0, 1)}2.

QR is a versatile statistical method with many applications that complement mean  regression3,4. Thus, it 
emerged as an effective analytic technique in numerous study areas of science due to its competence to drive 
inferences about individuals that rank below or above the conditional population mean and/or focused on 
features of the response beyond its central  tendency4–13. QR is specifically appropriate for the parameters’ het-
erogeneous effect as it yields inferences that can be legitimate irrespective of the true underlying  distribution4,14. 
QR techniques look further into the data, get more information, and become more  important15. By fitting models 
for more percentiles, one can detect the covariates’ heterogeneous effects at the conditional distribution of the 
response, rather than just the conditional mean. That is especially useful when valuable information lies at the 
bottom or top quantiles. “QR also enjoys several properties, including equivariance to monotone transformations 
and robustness to outliers”2,16. A semiparametric extension of quantile regression models with different types 
of nonlinear effects included in the model equation leads to an additive quantile regression model (AQM)12. 
Such a model may reveal systematic differences in dispersion, tail behavior, and other features for  covariates2.

Additive mixed models (AMMs), an extension of additive models, have been developed precisely to incorpo-
rate linear and nonlinear effects, as well as random terms when the data are sampled according to longitudinal 
 designs4,17. AMMs have been integrated into QR methods to obtain robust results, not only focused on features 
of the longitudinal outcome at its central tendency that may not be the best location to characterize the data 
specifically when the errors are non-normally distributed, and the location-shift hypothesis of the normal model 
is violated but also at conditional quantiles of the longitudinal outcome with no assumption about the response 
or errors distribution apart from the distribution is restricted to have the τ th quantile to be zero. Thus, additive 
quantile mixed models, which have gained popularity recently as a general method for longitudinal data, bring 
a comprehensive and more complete picture of the nonparametric as well as the parametric  effects1,4.

CD4 cell count levels signify the well-being of an individual immune system (body’s natural defense system 
against pathogens, infections, and illnesses). The CD4 cell counts of a person who does not have HIV can be 
between 500 and 1500 per cubic millimeter. Individuals living with HIV who have a CD4 count over 500 but 
whose immune response is still strong are usually in good health. However, individuals living with HIV who 
have a CD4 count below 200 are at high risk of developing severe illnesses and  death18,19.

With the CD4 count at deficient levels, patients’ immunity is weak. If HIV-infected patients are not on treat-
ment or not virally suppressed, they become vulnerable to acquire opportunistic infections (OIs), making them 
at risk of the new and ongoing coronavirus disease 2019 (COVID-19) infection and underlying  illness18. The 
best strategy to avoid these infections and diseases is by enhancing the immune function level through HAART, 
a combination of multiple antiretroviral (ARV) drugs. HAART’s fundamental goal is to prolong or stop the 
progression to AIDS and loss of life for those infected with HIV by suppressing and preventing the virus from 
making copies of itself. When the virus’s level (viral load) in the blood is low or undetectable, there is less damage 
to the body’s immune system and fewer HIV infection complications. Even though HIV treatment is prescribed 
for all individuals living with HIV, it is particularly critical for patients with low CD4 count to start treatment 
sooner rather than later and adhere to the treatment  schedule18,20. While researchers believe that early diagnosis 
and effective treatment are essential to effective control, more research is needed to understand better the adap-
tive, innate, and host responses that alter viral load set-point and consequently prognosis and  infectiousness18,20.

The need for good and better health is one of each human being’s fundamental rights without qualification of 
race, religion, gender, political conviction, financial, or social condition. Women’s health includes their emotional, 
social, and physical welfare and is determined by these factors and the economic setting of their lives, as well as 
by biology. However, health issues evade the longer part of women. In national and universal forums, women 
have emphasized that equality, the sharing of family duties, development, and peace are necessary conditions 
to achieve good health all through the life cycle. Women are biologically and socially more vulnerable to HIV 
infection, especially in developing  countries21–24.

HIV/AIDS and other sexually transmitted diseases (STD) have a devastating effect on women’s health, mostly 
young ladies. The consequences of HIV/AIDS go beyond women’s health to include their families’ economic sup-
port and livelihoods. Thus, the social, development, and health consequences of HIV/AIDS and other sexually 
transmitted diseases have strong gender dimensions that cannot be  ignored23–25. Understanding the changing 
epidemiology of HIV using statistical disease models will allow the clinician to decide who may be at high risk 
and clarify the application of rules to avoid sequential HIV  transmission18,20,26,27. Although antiretroviral (ARV) 
recommendation presently remains the same for all individuals living with HIV, examining the progression of 
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CD4 count or evolution of the viral load using data-driven models will allow the clinician to interpret potential 
information accurately and cope with misdirection or distortion of the information due to patient-specific 
 effects18,26–28. This study is a continuation of our previous work in Yirga et al.18. This study aims to analyze the 
longitudinal CD4 count of HIV-infected patients involved in a CAPRISA study using AQMM and justify how 
the method evolved can be used to attain robust nonparametric as well as parametric effects at various locations 
of the conditional distribution that brings a comprehensive and more complete picture of the covariate effects. 
The use of AQMM has many advantages. Additive nonparametric effects models are not new in the applied 
statistics literature. To implement these methods, Koenker et al.47 introduce smoothing penalties for total varia-
tion, especially for the nonparametric components of the model. Researchers are also eager to learn what are the 
factors influencing the CD4 count (high or low) in HIV studies. AQMMs are the best way to answer this question.

Materials and methods
Data description. This study used data from the Centre for the AIDS Programme of Research in South 
Africa (CAPRISA). The CAPRISA study was effected at the Doris Duke Medical Research Institute (DDMRI) 
at the Nelson R Mandela School of Medicine of the University of KwaZulu-Natal in Durban, South  Africa18,29. 
Between August 2004 and May 2005, CAPRISA introduced a cohort study registering high-risk HIV-negative 
women to a follow-up study with an intense ongoing examination. Women infected with HIV were recruited 
into the CAPRISA 002 Acute Infection (AI) study and then followed up carefully to study disease progression 
and CD4/viral load  evolution18,20,29–32.

Once HIV-infected women were enrolled in CAPRISA’s AI Phase II study, their CD4 count and viral load 
were measured and assessed regularly. When their CD4 count ≤ 350 cells/mm3 for more than two consecutive 
visits between six months or if they are with AIDS-defining illness (WHO clinical stage 3–5), they would be 
referred to a public government clinic for ARV treatment. However, according to the South African National 
Department of Health, these patients would only start HAART once their CD4 count is ≤ 200 cells/mm3, until 
2015. With effect from the 1st of January 2015, according to the National Department of Health, the criteria to 
start HIV patients on early initiation of ART is CD4 count of 500 cells/mm3 or less than  that20. HIV-infected 
women in Phase II–IV were followed up until they are started HAART. After that, they would be transitioned to 
Phase V and followed up for a minimum of five years, or eligible participants would be offered to join immedi-
ately into Phase  V33. After the five years of follow-up have been accomplished, participants would be offered an 
optional annual follow-up for up to fifteen extra years to patients who recurred in Phase  V33. Figure 1 illustrates 
the screening and enrolment process of the study data set. One can find further detail on the study population’s 
design, development, and procedures  here29–33.

Consent for publication. Not applicable.

Methods
Parametric regression models typically use a linear function to connect the conditional values of the response 
variable to the covariates. In real-world applications, however, biased or invalid results might result from such a 
linearity assumption. Many studies use nonlinear assumptions between  variables34–37. One may consider various 

Figure 1.  Diagrammatic overview of the CAPRISA 002 AI cohort study design.
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modeling techniques when dealing with nonlinearity. The most popular nonparametric models, smoothing 
splines, and transformation models use parameters such as sampling designs (cross-sectional or longitudinal), 
outcomes (discrete or continuous), distribution assumptions (parametric or nonparametric), and so  on2. In 
choosing which method to follow, the amount of effort expended during the investigation may have a significant 
influence. Likewise, lacking theory or programming can lead to a certain decision being made over  another2.

Nonparametric regression permits the presumption of linearity to be  relaxed34,35,38 and limits the analysis 
to smooth and continuous  functions39. Nonparametric regression, also known as scatter smoothing, aims to 
distinguish the best regression function according to the data distribution instead of estimating the  parameters39.

The nonparametric regression model is given by.

where the function fi(·) is unknown, and commonly assumed that the errors are normally and identically dis-
tributed: εi ∼ NID

(

0, σ 2
)

39. Several methods have been introduced to model nonparametric regression models; 
however, the most used techniques that have been extended to QR are local polynomial  regression40 and smooth-
ing  splines41,42: for further details, see Wu and  Zhang34,  Fox38, Davino et al.39, Craig and  Ng43, Koenker et al.44, 
 Koenker45, Cleveland and  Loader46, or Koenker et al.47.

The parametric QR model is given by.

where Yi is the response variable, xi ’s are covariates, βτ i ’s are the quantile specific linear effects, and ετ i is a random 
variable assumed to be an unknown error term on which no specific distributional assumptions are made except 
that the distribution is restricted to have the τ th quantile to be  zero12,48,49. For this reason, the parametric QR 
model aims at describing the quantile function QYi (τ |xi) of the continuous outcome Yi conditional on covariate 
vector xi at a given quantile τ , and this can be expressed as follows 

where Fτ i is subject to Fτ i(0) = τ , F−1
Yi

(·) is the inverse cumulative distribution function of Yi . For a compre-
hensive overview of QR, see, for example,  Koenker2, Konker and  Basset3,  Buchinsky5, Yu et al.9, or Koenker and 
 Hallock50.

As much as the parametric QR assumptions enjoy a simple model structure, convenience of interpretation, 
and lower computational cost, it is not flexible enough and hence carries the risk of model misidentifications for 
complex  problems51. Nonparametric QR has become a viable alternative to avoid restrictive parametric assump-
tions. Koenker et al.47 explored nonparametric QR in spline models (quantile smoothing splines), which they 
defined as solutions to

where ρτ (u) = u{τ − I(u < 0)}, p ≥ 1 , is the so-called check (loss) function, the parameter τ ∈ (0, 1) controls 
the quantile of interest, and � ∈ R+ is a smoothing  parameter3,47.

As closely analogous to the parametric QR model (3),  Koenker2 generalized nonparametric QR models as

Then,  Koenker2 formulated the τ th nonparametric QR estimator as

Several techniques were proposed for nonparametric QR modelings, such as Bivariate quantile smoothing 
 spline52 and Kernel quantile  regression53. However, nonparametric QR is an important yet challenging topic 
that needs to be addressed in-depth51. One can find a brief account of nonparametric QR strategies in numer-
ous studies; see, for example,  Koenker2 or Davino et al.39. To account for the nonlinearity relationships between 
quantiles of the outcome and covariates, Rigby and  Stasinopoulos54 also proposed generalized additive models 
for location, scale, and shape (GAMLSS). GAMLSS enables additional flexibility to fit the covariates’ nonlinear 
effects; however, they do not result in easily interpretable expressions for the quantiles. They are based on speci-
fying distinct distributional  parameters12. Instead, additive quantile regression models (AQMs) allow for the 
inclusion of nonlinear covariate effects and give more  flexibility12.

Additive models, introduced by Hastie and  Tibshirani41,  Stone55, and Breiman and  Friedman56, are flexible 
regression tools that manipulate linear as well as nonlinear terms. The nonlinear terms in additive models are 
modeled through smoothing  splines4. They provide programmatic approaches for nonparametric (nonlinear in 
parameters) regression modelings; by restricting nonlinear covariate effects to be composed of low-dimensional 
additive pieces so that we can overcome some of the worst aspects of the notorious curse of  dimensionality11. 
The literature on additive models is  vast17,41,55,57,58. However, most of the work has been done based on estimating 
conditional mean functions. The additive quantile regression model (AQM) provides an attractive framework 

(1)y =
n∑

i=1

fi(xi)+ εi ,

(2)Yi = x
′
iβτ i + ετ i , i = 1, . . . , n, 0 < τ < 1,

(3)QYi (τ |xi) = F−1
Yi

(τ |xi) = x
′
iβτ i + ετ i , with Qετ i (τ |xi) ∼ Fτ i ,

(4)

(5)QYi (τ |xi) = f (xi ,βi(τ ))

(6)β̂ i(τ ) = argmin
β

n
∑

i=1

ρτ
(

yi − f (xi ,β(τ))
)
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for parametric as well as nonparametric regression illustrations focused on features of the response beyond its 
central  tendency4,11,12.

Fenske et al.12 defined the τ th AQMs that extend the linear predictor, x′
iβτ , with a sum of nonlinear functions 

of continuous covariates, 
∑

fτ j(·) , as follows.

where  fτ j denote generic functions of covariates z i for the ith observation, and allows for the inclusion of dif-
ferent model terms such as nonlinear effects (smooth functions) of zk , fτ (zk) , and varying coefficient terms, 
z
′
kfτ (zk) , where the effect of the covariate z ′k varies smoothly over the domain of zk according to some functions 

of fτ . However, the underlying assumption of the error term, ετ i , remains the same as in the QR model (3); see 
Fenske et al.12 for more details.

AQM estimates the additive effect using linear programming algorithms as in the conventional QR  model12. 
However, in the AQM case, determining adequate numbers and the position of knots is challenging. To avoid 
these challenges, Fenske et al.12 used penalty methods such as quantile smoothing splines of Koenker et al.47. 
Thus, the minimization problem of AQM that consists of extra penalty term is given  by12:

where v
(

f
′
τ

)

= sup
n−1
∑

i=1

∣

∣

∣
f
′
τ (zi+1)− f

′
τ (zi)

∣

∣

∣
 , represents the total variation of the derivation f ′τ : [a, b] → R , where 

the sup is taken over all partitions a ≤ z1 < . . . < zn < b , and � is a tuning parameter that controls the smooth-
ness of the estimated function also known as “total variation regularization”: see  Koenker2, Fenske et al.12, or 
Koenker et al.47 for more details.

Fenske et al.1 proposed extending AMMs to the QR model for longitudinal data that consists of fixed individ-
ual-specific intercepts and slopes modeled through penalized splines of Ruppert et al.59. However, their model 
did not include random-effect terms and did not allow for individual-specific effects to have a general covari-
ance  structure4. The version of  Geraci4 additive QR model for longitudinal data includes linear and nonlinear 
terms, as well as multiple random effects to account for the correlation at the individual level with a general 
variance–covariance matrix and allow for automatic smoothing selection within a mixed model framework of 
Ruppert et al.59. Thus, as pointed out by  Geraci4, because of the following two basic ideas, his model was shown 
to have superior performance compared with the approach of Fenske et al.1: the first point is regarding the ith 
unit effects, which he assumed to be random instead of fixed so that the covariance structure between effects 
can be introduced; the second point is that instead of prior specification, the nonparametric term’s smoothing 
is automatically estimated from the  data4.

Geraci4 defined the τ th additive QR model for longitudinal data as

where x′
ij is the jth row of a known ni × p matrix X i , z

′
ij is the jth row of a known ni × q matrix Zi , yij is the jth 

observation of the response vector yi =
(

y11, . . . , y1ni
)′

 for the ith unit, f kτ (·) is a τ-specific, centered, twice-
differentiable smooth function of the kth component of x , and uτ ,i is a q× 1 vector of values that collects ith unit 
random effects associated with zij and its distribution is assumed to depend on a τ-specific  parameter4.

Geraci4 considered a spline model of the type: fτ (x) ≈
∑H

h=1 vτ ,h Bh(x) , to model nonlinear functions of the 
components of  x = (x1, . . . , xs , xs+1, . . . , xp)

′ that consists of the first s terms of nonlinear functions and p− s 
linear functions. The Bh ’s denote the basis functions ( vτ ), h ’s represent the corresponding τ-specific coefficients 
of Bh ’s and H indicates the number of  knots4. The approximated quantile function from the model (9) is then 
expressed as  follows4:

In matrix notation, the ith unit of expression (10), which is then called additive quantile mixed model 
(AQMM), is given  by4

where B(k)
(

xijk
)

 is considered as Hk×1 vector of values taken by the kth spline evaluated at xijk , 
vτ ,k = (vτ ,1, . . . , vτ ,Hk

)
′ considered as the Hk×1 vector of spline coefficients for the kth covariate, and H =

∑

k

Hk . 

Furthermore, Bi and vτ , defined, respectively, as the ni ×H matrix with rows 
(

B(1)
(

xij1
)′
, . . . ,B(s)

(

xijs
)′)′

 and 

(7)QYi (τ |xi , z i) = x
′
iβτ i +

q∑

j=1

fτ j(z i)+ ετ i , j = 1, . . . , q,

(8)argmin
fτ

n
�

i=1

ρτ



yi − x
′
iβτ i −

q
�

j=1

fτ j(z i)



− �v
�

f
′
τ

�

,

(9)Qyij |ui ,xi ,z i (τ ) = βτ ,0 +
p

∑

k=1

f kτ
(

xijk
)

+ z
′
ijuτ ,i ,

j = 1, . . . , ni , i = 1, . . . ,m, τ ∈ (0, 1),

(10)Q∗
yij |ui ,xi ,z i (τ ) = βτ ,0 +

s
∑

k=1

Hk
∑

h=1

vτ ,hk B
(k)
h

(

xijk
)

+
p

∑

k=s+1

βτ ,k xijk + z
′
ijuτ ,i

(11)Q∗
yi |ui ,xi ,z i (τ ) = F iβτ + Ziuτ ,i + Bivτ ,
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(

v
′
τ ,1, . . . , v

′
τ ,s

)′

 , F i is the ni ×
(

p− s + 1
)

 matrix with rows 
(

1, xij(s+1), . . . , xijp
)′ and βτ =

(

βτ ,0,βτ ,s+1, . . . ,βτ ,p
)′

4.
The objective function of AQMM, where the vectors uτ ,i and vτ are assumed to follow zero-centered multi-

variate Gaussian distributions with variance–covariance matrices Στ and Φτ = ⊕s
k=1φτ ,k IHk

 , respectively, with 
selecting ρτ (r) =

n
∑

j=1
rj
{

τ − I
(

rj < 0
)}

 for a vector r = (r1, . . . , rn)
′
 , is given by  Geraci4 as

where “ uτ ,i ’s are assumed to be independent for different i (but may have a general covariance matrix) and are 
independent of vτ , and φτ ,k ’s determine the amount of smoothing for the nonparametric terms”4. Minimizing 
the objective function of expression (12) proceeds as the same as minimizing the objective function of quan-
tile mixed-effects  models49,60,61 where the asymmetric Laplace distribution with a location parameter µ , scale 
parameter σ > 0 , and skewness parameter τ ∈ (0, 1)60,62–64, are employed as quasi-likelihood for the fidelity  term4. 
Further discussion of AQMM is provided by  Geraci4.

Ethical approval and consent to participate. The study was approved by the Research Ethics Com-
mittee of the University of KwaZulu-Natal (E013/04), the University of the Witwatersrand (MM040202), and 
the University of Cape Town (025/2004). All participants provided written informed consent. All methods were 
performed following the relevant guidelines and regulations expressed in the Declaration of Helsinki.

Results
Geraci4 illustrated the full range of AQMM that is described above. The purpose of this analysis is to model the 
CD4 count of patients from KwaZulu-Natal, South Africa, as part of a comprehensive study of HIV/AIDS. The 
results of this study illustrate longitudinal CD4 counts among HIV-infected patients enrolled in the CAPRISA 
002 AI study by employing an AQMM. The median age of our sample of 235 women was 25 years. Our sample 
consisted of 7019 measurements on 235 women from 18 to 59 years of age. There were multiple visits for all 
participants, ranging from 2 to 61, with a median of 29.

Tables 1 and 2 show descriptive measures for the variables studied. Low (upper) quantiles are those where 
at least 25% (75%) of the observations are at or below it, or 75% (25%) are at or above  it2. In Table 1, it is shown 
that the median BMI for the participants was 26.84 (range 17.89–54.89). The median square root CD4 count and 
baseline viral load were 22.98 cells/mm3 and 26,600 copies, respectively. Of a total of 235 women, 105 (44.7%) 
lived around Vulindlela (rural area), and 130 (55.3%) lived around eThekwini (Durban, urban area) in KwaZulu-
Natal, South Africa (see Table 2). The majority of the women, 182 (77.4%), were in a stable partnership, 224 
(95.3%) completed secondary school (Table 2), and most of them (78.8%) were self-reported sex  workers18,29,31. 
Additional details are available  here29–32 concerning the CAPRISA 002 AI study. We analyze this study data set 
intending to explain the different conditional distribution of the CD4 count by considering two covariates entered 
as nonparametric additive effects: time and baseline BMI; as well as discrete (baseline viral load), continuous 
(age), and categorical covariates (place of residence, educational level, and the number of sexual partners) entered 
in the model as parametric effects (see Tables 1, 2). Figure 2 shows observed square root transformed CD4 counts 

(12)
M
∑

i=1

ρτ
(

yi − F iβτ − Ziuτ ,i − Bivτ
)

+
M
∑

i=1

||uτ ,i||2�−1
τ

+
s

∑

k=1

φ−1
τ ,k ||vτ ,k||

2,

Table 1.  Descriptive statistics for non-categorical variables.

Variable

Descriptive measures

Mean Median Minimum Maximum Q0.25 Q0.75 IQR

SQRT_CD4 count (cells/µL) 23.26 22.98 5 44 20 26.19 6.19

Baseline VL (cells/mL) 130,730.33 26,600 1 (undetected) 5,510,000 5080 113,000 107,920

Age (Years) 27.15 25 18 59 22 30 8

Baseline BMI 28.98 26.84 17.89 54.89 23.33 32.96 9.63

Table 2.  Baseline descriptive statistics for categorical variables.

Variable Total Variable Total

Place of residence Number of sexual partners

Rural (reference) 105 (44.7%) No partner (reference) 43 (18.3%)

Urban 130 (55.3%) Stable partner 182 (77.4%)

Educational level Many partners 10 (4.3%)

Primary schools (reference) 11 (4.7%) Number of women 235

Secondary schools 224 (95.3%)
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by treatment time and baseline BMI, respectively, for a total of 7019 observations. The nonlinear patterns, which 
connect the sample quantiles, are estimated conditionally on time and baseline BMI for six quantile levels. The 
curves (nonlinear patterns) suggest the requirement of some degree of smoothing (Fig. 2).

Following the AQMM of  Geraci4, we used a transformed continuous form of the outcome (i.e., square root 
CD4 count) for fitting purposes. Thus, the proposed τ th AQMM form of our study, using expression (10), can 
be specified as

where yij is the square root transformed form of the outcome ( 
√
CD4count ) at the jth time point for the ith 

subject, time is the time variable measured in months from the start of the study, BMI indicates the patient’s 
baseline BMI, ART is the dichotomous HAART initiation (0 = pre-ART, 1 = post-ART), VL is patient’s baseline 
viral load, the residence is patient’s place of residence, education is the educational level of participants, partner 
indicates the number of sexual partners of the participant, age is participant age at enrolment, uτ ,0 indicates the 
random intercept, and uτ ,1 indicates the random slope. The symbol τ specifies the quantile of interest; we made 
the estimation at τ = 0.05, 0.25, 0.5, 0.75, 0.85, 0.95, and 0.99 to get the complete picture of the effects.

Geraci4 employed the AQMM in the R package lqmm as an ad-on to fit additive quantile mixed models. As 
the same as the smooth terms’ specification in the R package mgcv17, one can enter continuous covariates within 
the s (smooth) function to control the model smoothness using splines when fitting  AQMM4. Furthermore, the 
shrinkage smoothers obtained using the bs option inside the s command in the R package mgcv are constructed 
so that smooth terms can be penalized away altogether, not contribute to the  model17,65. Thin plate smoother pro-
vides statistical and computational efficiency, stable optimal approximations (especially for large data sets), and 
can be constructed for smooths of more than one covariate at a  time4,66. Thus, it was used as a shrinkage spline 
to fit the proposed model (13). The remaining parametric terms in the aqmm  function4 are specified the same 
way as in other R linear mixed model fitting functions such as lqmm () and lme4 (). The output is separated into 
two parts: Parametric part that includes estimated fixed effects, with their standard errors (SE), in parentheses, 
and significant mixed effect representation of smoothing splines (see Table 3). Since the smooth coefficients are 
mostly uninterpretable, we focus on their variances to evaluate the spline coefficients’ penalty at various quantiles 
(see Table 4 and Supplementary information). However, their estimated smoothed effects are depicted in Fig. 3. 
Table 4 also presents the estimated variance of the random effects from the fitted model (13).

According to Table 3, the age effect is positive and significant at the bottom, median, and at τ = 0.75 quantile 
levels (see also Supplementary information). On the other hand, the effect of education on square root CD4 
count does not seems to be significant across all quantiles after the patient had been initiated on HAART. The 
square root CD4 count across all quantiles is affected by post-HAART initiation as expected. A significant posi-
tive effect of HAART initiation on CD4 cell counts is observed at the median quantile and becomes roughly 
constant at higher quantiles (see Table 3 and Supplementary information). In addition, patients with stable sexual 
partners showed significant improvements in their CD4 cell count across all quantiles. The CD4 cell count is 
significantly lowered in patients who have many sexual partners, especially at the bottom ( τ = 0.05 ) and at the 
top ( τ = 0.95, 0.99 ) quantiles (Table 3).

(13)
Q∗
yij |ui ,xi ,z i (τ ) = βτ ,0 +

H1∑

h=1

vτ ,1 B
(1)
h (timei)+

H2∑

h=1

vτ ,2 B
(2)
h (BMIi)+ βτ ,1 ARTi

+ βτ ,2 VLi + βτ ,3 residencei + βτ ,4 educationi + βτ ,5 partneri

+ βτ ,6 agei + uτ ,0 + uτ ,1(timei),

Figure 2.  Observed CD4 counts (square root transformed) by time and baseline BMI.
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Furthermore, we found a clear indication, at the bottom ( τ = 0.05 ) and more extreme quantiles 
( τ = 0.85, 0.95, 0.99 ), that there is a significant negative effect of patients who were residing around the urban 
area on their CD4 cell count (see Table 3 and Supplementary information). Table 3 also shows that the negative 
effect of baseline viral load on the CD4 cell count is higher at the lower quantiles than at the median and higher 
quantiles (see also, Supplementary information). In addition, R package aqmm() sample outputs using CAPRISA 
002 AI study data at τ = 0.25, 0.75, 0.85, and 0.99 can be found in Supplementary information.

The variance of the first smooth term ( φ̂Time ) indicates a stronger penalty on the spline coefficients at 
τ = 0.25, 0.5, 0.75, 0.85 quantiles than at the bottom and at the top quantiles (Table 4). Similarly, the variance of 
the second smoother ( φ̂BaselineBMI ) shows a strong penalty on the spline coefficients at  τ = 0.25, 0.5, 0.75, 0.85 
quantiles than at the bottom and at more extreme quantiles. Table 4 shows that the random effects’ variances 
have roughly constant variability of subject linear trends across the fitted quantiles (see, also, Supplementary 
information).

Based on the seven fitted quantile levels ( τ = 0.05, 0.25, 0.5, 0.75, 0.85, 0.95, 0.99 ), Fig. 3 depicts the two 
estimated smoothed covariate effects on patients’ CD4 counts. Patients enrolled in the CAPRISA 002 AI study 
exhibit nonlinear time effects on CD4 counts that are prominent at all quantile levels. As the quantile increases, 
its effect becomes stronger. However, it is after several treatment visits that such progress towards higher CD4 
counts occurs. Consequently, the progression is slow until about 50 months, then it increases steadily thereafter 
across all quantile levels (Fig. 3).

Furthermore, overall fit quantile levels, the significant smoothed baseline BMI effect on patients’ CD4 counts 
is roughly constant for patients with a baseline BMI of about 40 but gradually improves from there. Because 
of this, patients with low BMI need to be monitored carefully before and after HAART initiation. Despite this, 
physicians should not ignore patients with high BMI. According to our studies and other findings, a plausible 
explanation may be that BMI may affect drug metabolism and, thus, the progress of HAART and its immuno-
logical  responses20,67,68. Moreover, higher levels of BMI have a more significant effect than lower levels (Fig. 3).

Discussion and conclusion
As a cutting-edge statistical method for modeling percentiles of response variables conditioned on respective 
covariates, quantile regression is the most widely used. While regression for medians may be seen as more robust 
than regression for the mean, QR, a generalization of median regression, allows better exploration of data by 
allowing the modeling of conditional quantiles at low or high extents, such as the 5th and 95th percentiles. As 

Table 3.  Parameter estimates followed by results of the smoothing terms from the AQMM for the CAPRISA 
002 AI study data across different quantiles. *Significance codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘ ’, 1. The 
reference categories are given in Table 2.

Fixed effects Q̂0.05 (SE) Q̂0.25 (SE) Q̂0.5 (SE) Q̂0.75 (SE) Q̂0.95 (SE)

Intercept 16.004 (0.6634)*** 19.647 (0.4749)*** 21.204 (0.5340)*** 24.167 (1.0536)*** 29.379 (0.6324) ***

Age 0.0398 (0.0156)** 0.0209 (0.0114) 0.0418 (0.0052)*** 0.0331 (0.0078)*** 0.0203 (0.0178)

Secondary school − 0.4491 (0.5731) − 0.4734 (0.4101) − 0.0165 (0.6619) 0.0385 (1.0677) 0.8323 (0.5574)

Post HAART 0.7430 (0.0879)*** 1.5296 (0.0598)*** 1.5968 (0.0402)*** 1.5292 (0.0546)*** 1.7007 (0.1322)***

Baseline VL − 3.83e−06 
(8.42e−07)***

− 2.09e−06 
(2.69e−07)***

− 1.79e−06 
(2.41e−07)***

− 1.57e−06 
(1.60e−07)***

− 1.70e−06 
(2.21e−07)***

Urban − 0.50002 (0.1668)** 0.2499 (0.0545)*** 0.0998 (0.0334)** 0.1275 (0.1436) − 0.8846 (0.2216)***

Stable partner 0.6135 (0.1655)*** 0.3046 (0.1549) 0.5424 (0.1140)*** 0.4907 (0.1594)** 0.6339 (0.2960)*

Many partners − 2.2771 (0.2707)*** − 0.7858 (0.2589)** − 0.8432 (0.1091)*** − 1.1719 (0.2569)*** − 3.6497 (0.4451)***

Results of the smooth terms

s (Time) − 2.5075 (0.5426)*** − 2.3766 (0.5549)*** − 2.1985 (0.4735)*** − 2.2829 (0.4999)*** − 2.3324 (0.4373)***

s (Baseline BMI) 5.4382 (1.0786)*** 5.6868 (1.1094)*** 5.5767 (1.3014)*** 5.7904 (1.2077)*** 5.2604 (1.0753)***

Table 4.  Estimated variance of the random effects and smooth terms from the AQMM for the CAPRISA 002 
AI study data.

Results across different quantiles

Q̂0.05 Q̂0.25 Q̂0.5 Q̂0.75 Q̂0.85 Q̂0.95 Q̂0.99

Variance of the random effects

σ̂0(Intercept) 0.02748 0.8687 0.0354 0.2453 0.3454 0.0467 0.0033

σ̂0(Time) 8.104e−18 1.929e−16 3.328e−17 5.451e−17 7.671e−17 1.044e−17 2.963e−18

Variance of the smooth terms

φ̂Time 8.796 28.94 36.74 30.28 21.92 10.13 2.669

φ̂BaselineBMI 1876.501 6463.83 7823.81 6290.32 4979.39 2183.69 576.902
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a result, QR is becoming more common in clinical, biomedical, and other health-related research. Mean-based 
regression is used to formulate mixed-effects models and their estimated effects on the response variable. In 
some cases, this centrality-based inference method may not be the optimal method for dealing with the data 
since the data may not adequately represent their distribution. It has recently been demonstrated that QR has 
the potential to be extended to a mixed-effects modeling setting, even though QR was initially developed in a 
univariate  setting48,60,61. Studies of quantile mixed-effects models have received increasing  attention15,48,60,61,69–76.

Quantile mixed-effects models have been extended to additive models to obtain robust results across various 
quantile levels of the longitudinal outcome, which brings a rigorous covariates’  effect74–76. The additive version 
of the quantile mixed-effects model has gained a great deal of popularity, as discussed above; because it offers an 
efficient and flexible framework for nonlinear and linear longitudinal forms of data analysis focused on features 
of the outcome beyond its central  tendency1,4,11,12,47,73,75,76.

In this study, we investigated the effect of multivariate additive quantile mixed models of  Geraci4 on the 
longitudinal CD4 count of HIV-infected patients across different quantile levels according to parametric and 
nonparametric covariate effects. By using this recently developed model, robust results are obtained, not only 
at the central location of the longitudinal outcome that may not be the best place to analyze the data but also at 
different points of the conditional distribution that gives an inclusive and more complete picture of the parametric 
as well as the nonparametric covariate effects.

A series of AQMM at τ = 0.05, 0.25, 0.5, 0.75, 0.85, 0.95 , and 0.99 were performed, and the results were dis-
cussed. According to the results, patients’ CD4 count is markedly increased after HAART initiation, and their 
baseline viral load shows a negative effect on the progression of their CD4 count over time, as we would have 
expected. All fitted quantiles of the response variable were affected by a significant nonlinear relationship between 
time and baseline BMI. Study results suggest that, across all fitted quantile levels, the patient’s education level 
does not significantly influence the progression of CD4 counts over time. All but the most extreme quantiles of 
HIV-positive patients showed a significant difference in the CD4 count regardless of their age. In addition, CD4 
cell recovery was found to be significant across all quantiles among patients with a stable sexual partner. Contrary 
to this, HIV-infected patients with many sexual partners during the treatment period showed a negative effect 
on CD4 cell count across all fitted quantile levels.

As we expected, the patient’s CD4 count increased significantly after HAART was initiated, and their base-
line viral load also showed a significant negative effect on the patient’s CD4 count over time. Baseline BMI and 
time were also significant nonlinear effects in our analysis. Further, patients with higher BMIs at baseline have 
improved CD4 cell count over time after treatment. Despite this, higher BMI patients should not be ignored 

Figure 3.  Predicted smoothed covariate effects on the square root CD4 count of HIV-infected patients recurred 
in the CAPRISA 002 AI study at various quantiles using AQMM.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17945  | https://doi.org/10.1038/s41598-021-97114-9

www.nature.com/scientificreports/

clinically. This study instead suggests that BMI can influence drug metabolism and, consequently, the immu-
nological responses to HAART. According to the nonlinear time effect, patients’ CD4 counts are not increasing 
rapidly over time. The growth starts after multiple treatment visits. Hence, the study suggests that HIV patients 
who are not clinically and immunologically stable on HAART could experience increased risks if exposed to 
COVID-19, especially if they are not on HAART immediately after HIV exposure.

One can estimate the covariate effects over the grid τ ∈ (0, 1) as per the analysis aspects. An investigator, 
however, should be cautious when using AQMM since the method needs some adjustment to control the estima-
tion algorithm and demands more computing time to estimate the random  effects4. For instance, for this study, 
it took 2–3 h to fit the proposed model (13) at a single τ as like  Geraci4. To overcome this computational burden, 
 Geraci4 suggested the necessity of further improvement to the AQMM. As the studied data set is an ongoing 
study, there is a plan to extend AQMM application to genetics in future work since it produces satisfactory results.

Data availability
The dataset used for this study can be obtained by requesting Dr. Nonhlanhla Yende-Zuma (Head of Biostatistics 
Unit, CAPRISA, Email: Nonhlanhla.Yende@caprisa.org) on reasonable request.
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Application of quantile mixed-effects model 
in modeling CD4 count from HIV-infected 
patients in KwaZulu-Natal South Africa
Ashenafi A. Yirga1* , Sileshi F. Melesse1, Henry G. Mwambi1 and Dawit G. Ayele2 

Abstract 

Background: The CD4 cell count signifies the health of an individual’s immune system. The use of data-driven mod-
els enables clinicians to accurately interpret potential information, examine the progression of CD4 count, and deal 
with patient heterogeneity due to patient-specific effects. Quantile-based regression models can be used to illustrate 
the entire conditional distribution of an outcome and identify various covariates effects at the respective location.

Methods: This study uses the quantile mixed-effects model that assumes an asymmetric Laplace distribution for the 
error term. The model also incorporated multiple random effects to consider the correlation among observations. 
The exact maximum likelihood estimation was implemented using the Stochastic Approximation of the Expectation–
Maximization algorithm to estimate the parameters. This study used the Centre of the AIDS Programme of Research 
in South Africa (CAPRISA) 002 Acute Infection Study data. In this study, the response variable is the longitudinal 
CD4 count from HIV-infected patients who were initiated on Highly Active Antiretroviral Therapy (HAART), and the 
explanatory variables are relevant baseline characteristics of the patients.

Results: The analysis obtained robust parameters estimates at various locations of the conditional distribution. For 
instance, our result showed that baseline BMI (at τ = 0.05: β̂4 = 0.056, p−value < 0.0064; at τ = 0.5 : β̂4 = 0.082,

p−value < 0.0025; at τ = 0.95 : β̂4 = 0.145, p−value < 0.0000 ), baseline viral load (at τ = 0.05: β̂5 = −0.564, p−value

< 0.0000; at τ = 0.5 : β̂5 = −0.641, p−value < 0.0000; at τ = 0.95 : β̂5 = −0.739, p−value < 0.0000 ), and 
post-HAART initiation (at τ = 0.05: β̂6 = 1.683, p−value < 0.0000; at τ = 0.5 : β̂6 = 2.560, p−value < 0.0000;

at τ = 0.95 : β̂6 = 2.287, p−value < 0.0000 ) were major significant factors of CD4 count across fitted quantiles.

Conclusions: CD4 cell recovery in response to post-HAART initiation across all fitted quantile levels was observed. 
Compared to HIV-infected patients with low viral load levels at baseline, HIV-infected patients enrolled in the treat-
ment with a high viral load level at baseline showed a significant negative effect on CD4 cell counts at upper quan-
tiles. HIV-infected patients registered with high BMI at baseline had improved CD4 cell count after treatment, but 
physicians should not ignore this group of patients clinically. It is also crucial for physicians to closely monitor patients 
with a low BMI before and after starting HAART.

Keywords: Quantile regression, Quantile mixed model, Stochastic approximation of the expectation maximization, 
Asymmetric Laplace distribution, CD4 count, CAPRISA
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Background
CD4 cell counts indicate a sign of the wellbeing of the 
immune system for an individual. It also provides infor-
mation about disease progression. The number of CD4 
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cells of an individual who does not have HIV could 
be somewhere in the range of 500 to 1500  cells/mm3. 
“Individuals living with HIV who have a CD4 count 
above 500  cells/mm3 are usually in good health. Indi-
viduals living with HIV who have a CD4 cell count less 
than 200 cells/mm3 are at high risk of developing severe 
sickness” [1]. HIV therapy is recommended for all indi-
viduals infected with HIV. It is particularly critical for 
patients with low CD4 count to preferably starting 
treatment sooner rather than later, under the current 
WHO recommendation for individuals who test HIV 
positive [2].

The classical regression model about the mean has 
been the commonly applied statistical procedure to 
depict the effects of explanatory variables for continu-
ous outcomes. Despite this, such results based on a fixed 
location of the response distribution may not be relevant 
in many areas, and sometimes the fields of application 
are diverse. Numerous investigators, economic experts, 
monetary stakeholders, clinicians, and legislators have 
revealed a growing interest in group differences across 
the whole population instead of relying solely on the 
average [3–6]. Another approach to studying the central 
location is median regression. The median regression 
approach is robust to the manifestation of outliers and 
when the error distribution is not correctly specified [3, 
7].

Quantile regression (QR) was popularized by Koenker 
and Bassett [7]. It is an extension of median regression 
to examine the covariates’ influence on different quan-
tiles of the entire response distribution. Fixed effects 
could have different impacts across various quantile 
levels. QR allows for a wide range of applications, for 
example, investigating the 5th or 25th percentile (lower 
quantiles) of the response (e.g., CD4 count distribution 
of HIV infected patient) might be of interest in study-
ing patients with lower CD4 cell counts, where individu-
als are at higher risk of developing illnesses. Therefore, 
it is important to study the response distribution across 
all quantiles (e.g., at different CD4 count distribution), 
rather than only the central tendency, such as in mean or 
median regression.

In recent years, mixed quantile regression models have 
become a widely used technique in statistical studies. By 
using quantile-based regression model, it is possible to 
examine the location, scale, and shape of the distribution 
of responses to get an idea of how the covariates affect 
the distribution of responses. It is also more robust to 
outliers when compared to conventional mean regression 
and is invariant to monotonic transformations. There is 
no need to make any Gaussian assumptions concerning 
the response with quantile regression, and further it is 
capable of handling heavy-tailed and asymmetric data. 

As a result, CD4 count can be modeled very well using 
this method.

Many longitudinal studies gather a great deal of infor-
mation about repeated measures that are crucial for 
analyzing disease progression in clinical studies. For 
example, repeated counts of CD4 cells are vital to HIV/
AIDS monitoring; for instance, low levels of CD4 counts 
are signs of serious viral load accumulation, disease pro-
gression, and the need for therapy intervention. Physi-
cians also use them to identify the advantages of medical 
involvement and the risk factors that may lead to poor 
outcomes. In practical statistics, mixed-effects models 
have become quite popular. As a result of their ability to 
handle both between-subjects and within-subjects vari-
ability in longitudinal data, they are often used to ana-
lyze longitudinal data [8]. Mixed-effects models and their 
estimated effects are formulated on the response variable 
via mean regression, accounting for between-subject het-
erogeneity through normally distributed subject-specific 
random effects and random errors. Mixed-effects models 
have been studied extensively (see, for example, [8–12]). 
There are also various strategies applicable to handle 
longitudinal data, for instance, generalized estimat-
ing equations which are conceptually generalized linear 
mixed-effects models. However, all these techniques limit 
the investigation of variations between subjects based on 
the mean of the response variable, and the latter utilize 
parametric models based on the normal distributional 
assumption [3].

Moreover, in some cases, it could be challenging to 
obtain appropriate transformation to normality for the 
response variable, or some strategy to account for out-
liers may be required. An adequate solution to all these 
issues is given by concentrating on the conditional quan-
tiles of the longitudinal outcome [13]. “Conditional QR 
methods, dealing with the complete conditional distri-
bution of the response variable, have been developed 
to grant an analysis of variable effects at any subjective 
quantiles of the response distribution. Furthermore, QR 
techniques do not require any distributional assumption 
on the error; besides that, the error term has a zero-con-
ditional quantile, like the ALD” [14].

The QR method was initially developed in a univariate 
setting. However, the large amount of longitudinal data 
has recently dictated its extension into a mixed-effects 
modeling system by either the distribution-free way [15–
17] or the likelihood-based way in most cases following 
the ALD [18–21]. The likelihood-based quantile mixed 
model additionally makes use of different parametric dis-
tributions, such as an infinite mixture of Gaussian den-
sities [22] and a direct parametric maximum likelihood 
(ML) approach [23]. The distribution-free approaches 
that consist of fixed-effects and weighted generalized 
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estimating equations consider the use of independent 
estimating equations that ignore correlations between 
repeated measurements which leads to loss of efficiency 
[5, 17, 20]. Meanwhile, Geraci and Bottai [19] suggested 
a likelihood-based QR model for longitudinal data that 
accounts for within-subject dependence by incorporating 
subject-level random effects and modeling the residual 
distribution with an ALD. Liu and Bottai [24] developed 
a likelihood-based method to estimate parameters of 
conditional quantile functions with random effects by 
incorporating an ALD for the random error term that is 
not restricted to be normal. The within-subject correla-
tion is taken into consideration by incorporating random 
effects to get unbiased parameter estimates [24]. The 
application of QR for mixed-effects models has received 
increasing consideration in wide-ranging areas of study, 
including marine biology, environmental science, car-
diovascular disease, and ophthalmology [19, 20, 25–28]. 
Following the version of the quantile mixed model of 
Galarza [18], this study aims to model the longitudi-
nal CD4 count of HIV-infected patients using quantile 
mixed-effects models using the likelihood-based func-
tion that uses ALD for the error term. The study employs 
data from the CAPRISA 002 AI Study. In this study, we 
will demonstrate how quantile mixed model can be used 
to estimate covariate effects at different locations of the 
conditional distribution that communicates a wide-range 
and more complete picture of the effects.

Methods
Data description
This study used the Centre of the AIDS Programme of 
Research in South Africa (CAPRISA) 002 Acute Infec-
tion (AI) Study data conducted at the Doris Duke Medi-
cal Research Institute (DDMRI) at the Nelson R Mandela 
School of Medicine of the University of KwaZulu-Natal 
(UKZN) in Durban, South Africa [29–33]. CAPRISA 
started the CAPRISA 002 AI study between August 2004 
and May 2005 by enrolling women who are at high risk 
of HIV infection for follow-up with an intense on-going 
examination to help estimate HIV infection rates within 
the study, including providing intense aftercare advice 
to those dropping out prematurely, the careful follow-up 
to study disease progression, and CD4 count and viral 
load evolution [29–33]. Detail description of the design, 
development, and procedures of the CAPRISA 002 AI 
study population can be found here [29, 30].

When an infected person’s body indicates symptoms of 
being incapable of adequately controlling the virus and 
their CD4 count drops below a specific cut point, they 
were initiated on therapy. A deficient level of CD4 count 
causes the weak immune system of an HIV-infected 
person. In the absence of treatment or without viral 

suppression, the person is susceptible to opportunistic 
infections (OIs). This increases the risk of the new and 
ongoing Coronavirus Disease 2019 (COVID-19) infec-
tions and underlying illnesses [31–33]. HAART is an 
effective way of preventing these infections and diseases. 
By suppressing and preventing the virus from making 
copies of itself, HAART aims to decelerate or prevent 
the progression to AIDS and loss of life for HIV-infected 
people. The body’s immune system is less damaged, and 
HIV infection complications are decreased when the 
level of the virus in the blood is low or “undetectable” 
through HAART [31–33]. This is also significantly reduc-
ing the likelihood of transmitting HIV to partners.

The HIV/AIDS epidemic and other sexually transmit-
ted diseases severely impact human health, especially the 
well-being of women and young girls [31–33]. “The con-
sequences of HIV/AIDS stretch beyond women’s health 
to their part as moms and caregivers and their commit-
ment to their families’ economic support. The social, 
development, and health consequences of HIV/AIDS and 
other sexually transmitted illnesses ought to be consid-
ered from a gender perspective” [34–36]. Apart from sex-
specific issues, HIV therapy algorithms for women are 
similar to that of men [31]. The interaction between the 
clinician and the changing HIV epidemiology will pro-
vide the clinician with a technique to identify patients at 
high risk of HIV infection and clarify which rules should 
be applied to avoid sequential HIV transmission [31–33]. 
Although ART suggestions are the same for all patients, 
the study of CD4 count of HIV-infected patients, in 
conjunction with individual differences, will help clini-
cians to get through and interpret potential information 
precisely due to patient specific-specific effects [31, 33, 
37–39].

Quantile mixed‑effects model
Quantile regression (QR) is an advanced statistical tech-
nique to study the predictors’ heterogeneous effects at 
the conditional distribution of the outcome. Instead 
of modeling only the mean value like the conventional 
regression methods, quantile regression enables more 
fully to explore the data by modeling the conditional 
quantiles, for example, the 5th and 95th percentiles of 
the response distribution [33]. For these reasons, it has 
become more prevalent in several epidemiological and 
economics studies. For instance, Yirga et  al. [40] stud-
ied how children’s BMI varies with age and other factors 
using quantile regression. There are several other applica-
tions of quantile regression based on uncorrelated data, 
among which public health, bioinformatics, health care, 
environmental science, ecology, microarray data analysis, 
and survival data analysis [13, 41–51].
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The quantile level is frequently signified by the 
Greek letter τ , and the conditional quantile of y given 
x is often written as Qτ (y|x) . The quantile level τ is 
the probability Pr[y ≤ Qτ (y|x)] , and it is the value of 
y below which the proportion of the conditional 
response population is τ . For a random variable y with 
a probability distribution function F

(
y
)
= Pr

(
Y ≤ y

)
 , 

the τ quantile of y is defined as the inverse func-
tion Q(τ) = inf

{
y : F(y) ≥ τ

}
 , τǫ(0, 1) . Particularly, 

the median is Q(0.5) . Let yi denote a scalar response 
variable with conditional cumulative distribution 
function Fyi , whose shape is unspecified and xi the 
corresponding covariates vector of dimension k × 1 
for subject i, i = 1, . . . , n . Then, following Koenker 
and Basset (1978), the τ th(0 < τ < 1) quantile regres-
sion modeled is written as Qτ

(
yi|xi

)
= x

′

i
βτ , where 

Qτ

(
yi|xi

)
≡ F−1

yi
(•) , which is the quantile function 

(or the inverse cumulative distribution function) of yi 
given xi estimated at τ , and βτ is a column vector of 
regression parameters corresponding to the τ th quan-
tile. On the other hand, this expression can be written 
as

where εi is the error term whose distribution (with den-
sity fτ (•) ) is restricted to have the τ th quantile to be zero, 
that is, 

∫ 0
−∞

fτ (εi)dεi = τ [24, 52]. “The error density 
fτ (•) is often left unspecified in the classical literature” 
[52]. Thus, the estimator β̂τ proceeds through linear pro-
gramming (LP) by minimizing

where ρτ (•) is the so  called loss (or check) function 
defined by ρτ (u) = u(τ − I{u < 0}) with u being a real 
number and I{•} is the indicator function. Thus, β̂τ is 
called the τ th quantile regression estimate [5, 13, 43, 
53]. The parameter βτ and its estimator β̂τ depends on 
the quantile τ , because of different choices of τ estimate 
different values of β [24]. For this reason, the interpreta-
tion of βτ is specific to the quantile being estimated, the 
intercept term denotes the baseline predicted value of the 
response at specific quantile τ , while each coefficient can 
be interpreted as the rate of change of the τ th response 
quantile per unit change in the value of the correspond-
ing predictor variable (ith regressor) keeping all the other 
covariates constant.

The objective function of the conditional quantile esti-
mator, β̂τ , in Eq. (2) proceeds by minimizing

(1)Qτ

(
y|xi

)
= x

′

iβτ + εi, withQεi(τ |xi) = 0,

(2)β̂τ = argmin
βǫRP

∑n

i=1
ρτ (yi − x

′

iβτ ),

where i : yi ≥ x
′

i
β for under prediction, and i : yi < x

′

i
β 

for overprediction [5]. Since the above objective function 
is nondifferentiable, the gradient optimization methods 
are not applicable; instead, LP methods can be used to 
obtain H(βτ ) [41, 54, 55]. For more details and a sum-
mary of quantile regression, see, for example, Davino 
et al. [3], Konker and Basset [7], Konker [13], Buchinsky 
[41], Koenker and Hallock [43], or Yu et al. [49].

As the check function (ρτ (•)) in Eq.  (2) is not differen-
tiable at zero, we cannot extract specific solutions to the 
minimization problem. Hence, LP procedures are often 
used to achieve a relatively fast computation of H(βτ ) [52, 
56]. A natural link between minimization of the quantile 
check function and ML theory is given by the assumption 
that the error term in Eq.  (1) follows an ALD [53, 57]. A 
connection between the minimization of the sum in Eq. (2) 
and the ML theory is provided by ALD [58]. Other forms 
of Laplace distribution were summarized by Kotz et al. [59] 
and Kozubowski and Nadarajah [60]. ALD that is closely 
associated with the loss function for QR has been exam-
ined in several works of literature [19, 24, 52, 57, 58].

The conventional QR is based on the median, or other 
quantile levels, by assuming a continuous or Gaussian 
distribution. QR has been extended to count regression, 
which is a special case of the discrete variable model [55, 
56, 61–64]. However, the distribution function of a dis-
crete random variable is not continuous, and the objective 
function of the conditional quantile Qτ (y|x) for a discrete 
distribution cannot be a continuous function of x such 
as exp(x′

β) [61]. Machado and Silva [64] overcome this 
restriction by developing a continuous random variable 
whose quantiles have a one-to-one relation with the quan-
tiles of y , a count variable. When count data consists of 
severe outliers or multiple distributional components that 
do not reflect a known underlying probability distribution, 
quantile count models may be a useful alternative. Further-
more, QR models all of the quantiles of the discrete distri-
bution and covers the entire range of counts [62]. Detailed 
discussions about quantile count models for independent 
data are available in Winkelmann [61], Machado and Silva 
[64], Hilbe [62, 63], Cameron and Trivedi [55, 56], and a 
recent application of this model can be found in Winkel-
mann [65] and Miranda [66].

(3)

H
(
βτ

)
=

∑

i

τ |εi| +
∑

i

(1− τ )|εi|

=

n∑

i:yi≥x
′

i
βτ

τ |yi − x
′

iβτ |

+

n∑

i:yi<x
′

i
βτ

(1− τ )|yi − x
′

iβτ |, 0 < τ < 1
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Mixed-effects models characterize an ordinary and con-
ventional type of regression methods used to examine 
data coming from longitudinal studies. The general linear 
mixed-effects model is defined as

where Y i is the ni × 1 vector of the response variable, X
′

i 
is a known ni × p design matrix that includes covariates 
for the fixed effects, β is p× 1 vector of population-aver-
aged fixed-effects, Z

′

i with the dimension of ni × r known 
design matrix for random effects, ui is r × 1 vector of 
random effects, ui ∼ N (0,�u), and εij is the independent 
and identically distributed random errors, εij ∼ N (0, σ 2) . 
Thus, the τ th quantile linear mixed-effects model, which 
were developed by Geraci and Bottai [20] as an extension 
of the QR model with a random intercept of Geraci and 
Bottai [19], of a continuous response Y i , has the form

where yij is the response of subject i at j th measurement, 
xij indicates covariate vector of i th subject at j th meas-
urement for fixed effects, zij indicates covariate vector of 
i th subject at j th measurement for the random effects ui , 
and random errors ετ ,ij ∼ ALD(0, σ , τ ) , which are also 
dependent on τ . βτ is the coefficient of fixed-effects cor-
responding to the τ th quantile, and the response variable 
yij , conditional on xij , ui , for i = 1, . . . , n, j = 1, . . . , ni and 
σ are assumed to be conditionally independently distrib-
uted as ALD with the density given by

The random effects ( ui’s) are assumed to be distributed 
as ui

iid
∼ Nr(0,�) , where the dispersion matrix  � = �(α) 

relies on unknown and reduced parameters α , which 
is the distinct elements of � , and the random errors 
εij ∼ ALD(0, σ) [18, 52]. Then a likelihood for yij at τ th 
quantile is

Based on the likelihood of conditional quantile of yij , 
it is suggested that the maximization of the likelihood in 
Eq. (5) with respect to the parameter βτ is equivalent to 
the minimization of the loss function in Eq. (7). Thus, we 
can estimate the coefficient of fixed-effects correspond-
ing to the τ th quantile ( βτ ) by minimizing the objective 
function of Eq. (6), which can be expressed as

Y i = X
′

iβ + Z
′

iui + εij , i = 1, . . . , n, j = 1, . . . , ni,

(4)Qτ

(
yij|xij ,ui

)
= x

′

ijβτ + z
′

ijui + ετ ,ij , 0 < τ < 1

(5)

f
(
yij |xij ,ui , σ

)
=

τ (1− τ )

σ
exp

{

−ρτ

(
yij − x

′

ijβτ − z
′

ijui

σ

)}

.

(6)

L
(
βτ , σ , τ

)
=

τn(1− τ )n

σ n
exp

{

−

n∑

i=1

∑ni

j=1
ρτ

(
yij − x

′

ijβτ − z
′

ijui

σ

)}

More details regarding the estimation process of quan-
tile mixed-effects models are available here [18, 19, 24, 
58].

Stochastic approximation of the expectation maximization
The study examines quantile regression for linear mixed-
effects models (QR-LMM) of Galarza [18] that follows 
the SAEM algorithm for determining exact ML estimates 
of the fixed-effects and the general variance–covariance 
matrix �τ = �(θτ ) of the random effects parameters 
for the specific quantile. The Expectation–Maximiza-
tion algorithm, also known as the EM algorithm, which 
was suggested by Dempster et al. [67], is a popular tech-
nique for iterative computation of ML estimates when 
the observations are regarded as incomplete data, which 
incorporates the ordinary or standard elements of miss-
ing data; however, it is much broader than that [68]. 
There are two steps in every iteration of the EM algo-
rithm: an expectation, or E-step, followed by a maximiza-
tion (M-step). “In the former action, the incomplete data 
are estimated given the observed data and current esti-
mate of the model parameters under the assumption of 
missing at random (MAR) for the incomplete data. In the 
later step, the likelihood function is maximized under the 
assumption that the incomplete/missing data is known” 
[67]. The detailed explanations of these processes, their 
related analytical clarifications for successively more 
common sorts of models, and the basic theory underly-
ing the EM algorithm are given by Dempster et al. [67]. 
A book devoted entirely to the general formulation of 
the EM algorithm and its basic properties and applica-
tions has been provided by McLachlan and Krishnan 
[68]. Moreover, the success of the EM algorithm is well 
documented and can be found in numerous statistical 
literature.

Even though the EM algorithm is popular, Delyon 
et al. [69] pointed out that, in some situations, it is not 
applicable due to the fact that the E-step cannot be car-
ried out in a closed-form. To deal with these issues, 
Delyon et al. [69] presented a simulation-based SAEM 
algorithm based on stochastic approximation (SA) as 
an elective to the MCEM, standing for Monte Carlo 
EM. “While the MCEM requires a consistent incre-
ment of the simulated data and regularly a substantial 
number of simulations, the SAEM versions guarantee 
convergence with a fixed and/or small simulation size” 
[69–71]. The SAEM algorithm restores the E-step of the 

(7)

H∗(βτ ) = min
βτ

∑n

i=1

∑ni

j=1
ρτ

(
yij − x

′

ijβτ − z
′

ijui

σ

)
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EM algorithm by one iteration of a stochastic (proba-
bilistic) approximation procedure, whereas the M-step 
is consistent [71]. The E- and M-steps of the EM and 
SAEM procedures are highlighted as follows.

Let �o(̂θ) = logf (Yobs; θ) denotes the maximi-
zation of log-likelihood function based on the 
observed data (Yobs) , and given q represents miss-
ing data, Ycom = (Yobs, q)

′ denotes the complete data 
with observed and missing data, thus �c(Ycom; θ) be 
the complete log-likelihood function, and θ̂k indi-
cates the evaluation of θ at the k th iteration. Then 
the EM algorithm with missing data that maximizes 
�c(Ycom; θ) = logf (Yobs, q; θ) iteratively and converges 
to a stationary point of the observed likelihood under 
mild regularity conditions [18, 71], go through in two 
steps:

• E-step: Consists computing of the conditional 
expectation of �c(Ycom; θ).

• M-step: Computes the parameter values θ̂k+1 by 
maximizing S

(

θ|̂θk

)

 with respect to θ.
 The SAEM algorithm, on the other hand replaces 

the E-step by stochastic approximation, presented 
by Galarza [18] summarized as follows:

• Simulation (E-step): Generate q(�o, k) sample 
(simulation of the missing data at iteration k ), 
� = 1, 2, . . . ,m , from the conditional distribution of 
the missing data f

(
q|θk−1,Yobs

)
.

• Stochastic approximation: Update S
(

θ|̂θk

)

 accord-
ing to

• M-step: Maximize θ̂k according to

this is equivalent to finding θ̂k+1ǫ� such that 
S
(

θ̂k+1

)

≥ S
(

θ̂k

)

∀θǫ� , where δk is a smoothing param-
eter (a sequence of decreasing non-negative numbers) 
as given by Kuhan and Lavielle [72, 73], and m is the 
number of simulations suggested to be less than or 
equal to 20 [18]. The choice of δk recommended by 
Galarza [18] is given as follows:

S
(

θ|̂θk

)

= E
{

�c(Ycom; θ)|Yobs, θ̂k
}

S
�

θ|�θk

�

= S
�

θ|�θk−1

�

+ δk




1

m

m�

�=1

�c
�

Yobs, q
�
�o, k

�
|�θk; θ

�

− S
�

θ|�θk−1

�





θ̂k+1 = argmax
θ

S
(

θ|̂θk

)

,

where cǫ(0, 1) is a cut point that regulates the percentage 
of initial iterations with no memory, and W  is the maxi-
mum number of iterations.

For more points of interest, however, see Jank [70], 
Meza et al. [71], or Kuhn and Lavielle [72, 73]. Further-
more, details of these algorithms for estimating the 
parameters of the QR-LMM are presented by Galarza 
[18] and Galarza et  al. [21]. “The SAEM algorithm has 
proven to be more effective for computing the ML esti-
mates in mixed-effects models due to the reusing of 
simulations from one iteration to the next in the smooth-
ing phase of the algorithm” [18, 71–73]. The SAEM algo-
rithm is employed in the R package qrLMM.

Results
CD4 cells are the utmost target of HIV infection, and the 
CD4 count is used as a health marker for an individual’s 
immune system. Hence, it is of interest to investigate 
the evolution of CD4 count and disease progression 
of an individual over time, especially for HIV-infected 
patients. Consequently, this study analyzes the repeated 
CD4 count of HIV-positive patients registered in the 
CAPRISA 002 AI study by employing a parametric quan-
tile regression mixed-effects model based on the asym-
metric Laplace distribution. The CAPRISA 002 AI study 
dataset consists of repeated CD4 count measurements 
and some other covariates of 235 individuals. There were 
a total of 7019 observations from the 235 women; each 
subject was measured several times, ranging from 2 to 
61 months, with a median equal to 29. Table 1 illustrates 

a summary of the patients’ baseline characteristics. The 
patients’ age at enrollment ranges from 18 to 59, with the 
median age being 25  years. Q0.05 , which is a value that 
has 5% of the observation smaller or equal to it, indicates 
that 5% of the patients had a square root of CD4 count 
below or equal to 16.4 at enrollment. Q0.95 is similarly 
a value that shows 95% of the observation smaller or 
equal to it; said otherwise, 5% of the patients are greater 
than it. Therefore, Table 1 indicates 5% of the study par-
ticipant had a square root CD4 count greater than 31.4 
at enrollment. Moreover, the study participants had a 
mean BMI of 28.93 with minimum and maximum BMI of 
17.89 and 54.89 at baseline. The median log baseline VL 
of the patients was 10.26 with minimum and maximum 

δk =

{
1 for 1 ≤ k ≤ cW

1
k−cW

for cW + 1 ≤ k ≤ W ,
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log baseline VL of 0 (Not detected) and 15.52, respec-
tively (IQR = 2.91). Additional features on this dataset 
can be found here [29, 30, 32, 33]. We analyze this dataset 
intending to explain the different conditional distribution 
of the square-root-transformed CD4 count as a func-
tion of sets of covariates of interest through modeling a 
framework of response quantiles.

The linear mixed-effects model form of the data can be 
specified as:

where yij is the transformed continuous form of CD4 
count ( 

√

CD4 count ) at the jth time point for the ith 
subject, t is the time measured in months from the 
start of the study, BMI indicates the patient’s baseline 
BMI, LVL = log of baseline VL, ART is the dichotomous 

HAART initiation (0 = pre-HAART, 1 = post-HAART), 
Age is patient’s age at baseline, b1i indicates the random 
intercept, b2i and b3i indicates the random slopes (for 
time and square root time respectively) for subject i , and 
εij the measurement error term, assuming ALD, for 235 
subjects.

The information criteria are used to compare four 
models. The models were compared based on the 0.5th 
quantile (median regression). The linear quantile mixed-
effects model with random intercept and slopes (Model 
4, see Table  2) was selected as the best model because 
the chosen model achieved the smallest Akaike infor-
mation criteria (AIC), Bayesian information criteria 
(BIC), Hannan–Quinn information criteria (HQC), and 
the largest Log-likelihood (LL) (see Table  2). Therefore, 
we examine the square-root-transformed CD4 count 

yij =β1 + β2ti + β3
√

ti + β4BMIi

+ β5LVLi + β6ARTi + β7Agei + b1i

+ b2iti + b3i
√

ti + εij,

of HIV-infected patients as a response while account-
ing for Baseline BMI, age, log baseline VL, and HAART 
initiation as predictor variables across various quan-
tiles based on Model 4 (Table  3). A series of QR-LMM 
at τ = 0.05, 0.25, 0.5, 0.75, 0.85 , and 0.95 are performed 
to get a complete picture of the effects (see, Table 3, and 
Additional files 1, 2).

Random effect models that were examined for the 
analysis

As can be observed from Table  3, the intercept ( β1 ), 
which is the predicted value of the square-root-trans-
formed CD4 count keeping all the other covariates zero, 
differ significantly across the quantiles, while time ( β2 ), 
square root of time ( β3 ), baseline BMI (β4) , the log of 
baseline VL ( β5 ), and post HAART initiation ( β6 ) sig-
nificantly affect the CD4 count across all quantiles. In 
addition, although age ( β7 ) is found to have a positive 
and almost constant influence on the CD4 count across 
all quantiles, its effect is non-significant (Table  3). We 
can also see from Table 3; there is a remarkable positive 
effect of baseline BMI on square root CD4 cell count 
( 
√

CD4 count ) from low quantiles to higher quantiles. 
Whereas, from low to more upper quantiles, the negative 
effect of baseline VL on the count of CD4 cells increases 
gradually. This indicates that when the VL at enrollment 
is high (baseline VL at higher quantiles), its negative 

Model 1: Time (Random slope model )
Model 2: Intercept, Time (Random intercept and slope model )

Model 3: Time,
√

Time (Random slopes model )

Model 4: Intercept, Time,
√

Time (Random intercept and slopes model )

Table 1 Summary of patients’ baseline characteristics

Variable Analysis

Mean Median Minimum Maximum Q0.05 Q0.95 IQR

SQRT_CD4 count 23.44 22.89 13.49 39.49 16.40 31.40 5.78

Baseline BMI 28.93 27.24 17.89 54.89 20 43.70 9.66

Log_Baseline VL 10.09 10.26 0 (undetected) 15.52 6.19 13.13 2.91

Age at baseline 27.15 25 18 59 20 41 8

Table 2 Comparison of random effects models for QR-LMM at 
the 0.5th quantile

Random effects AIC BIC HQC LL

Model 1 39,670.99 39,725.84 39,689.89 − 19,827.50

Model 2 35,072.84 35,141.41 35,096.47 − 17,526.42

Model 3 35,726.22 35,794.79 35,749.85 − 17,853.11

Model 4 33,685.92 33,781.91 33,718.99 − 16,828.96
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effect on the immune systems increases (Table 3). From 
low quantiles to upper quantiles, the post HAART ini-
tiation effect on CD4 cell counts has an increasing trend, 
and then at high quantile 0.95, its effect begins to decline.

R package qrLMM() sample outputs using CAPRISA 
002 Acute Infection Study data across all fitted quantile 
levels can be found in Additional files 1, 2.

The results in graphical representation follow-
ing QR-LMM over the framework of quantiles 
τ = {0.05, 0.25, 0.5, 0.75, 0.85, 0.95} are displayed in Fig. 1. 
The graph shows that the 95% confidence interval for 
the covariates effect and the nuisance parameter σ . The 
figure reveals that the effect of baseline BMI ( β4 ), and 
post HAART initiation ( β6 ) become more prominent 
across quantile levels, with their effect becoming more 
for higher conditional quantiles. Additionally, although 
the effects of time (β2) and baseline VL ( β5 ) exhibit a sig-
nificant positive and negative influence, respectively, on 
CD4 counts across all quantiles, the difference changes 
with regard to the lower quantiles. The σ̂ is symmetric 
about τ = 0.5 , taking its maximum value at that point 
and decreasing for higher quantiles. The convergence of 
estimates for all parameters was also evaluated using the 
graphical criteria (see Additional files 1, 2).

Conclusions
This study considered a quantile mixed-effects model 
with a likelihood-based function that adopts an ALD for 
the error term. We used the SAEM algorithm for deter-
mining exact ML estimates of the covariates effect and 
variance–covariance elements across a set of quantiles. 
We applied this methodology to the CAPRISA 002 AI 
Study data and illustrated how the procedure can be used 
to obtain robust parameters estimates when the interest 
is to get the estimation not only on the central location 

but also on the non-central locations of the conditional 
distribution, which brings a comprehensive and more 
complete picture of the effects. A series of QR-LMM at 
τ = 0.05, 0.25, 0.5, 0.75, 0.85 and 0.95  were estimated 
(Table 3, and Additional files 1, 2), and the results were 
discussed.

Since quantile inference for discrete longitudinal 
data cannot thus be carried out directly yet, we mod-
eled a continuous approximation form of the quantile 
function by using square-root-transformed CD4 count 
as the response variable. Time since seroconversion, 
HAART initiation, and baseline characteristics of the 
patients such as BMI, age, and VL was included in 
the study. It was found that except age, all the stud-
ied variables were found to have a significant effect 
on CD4 cell counts of HIV-infected patients across 
all quantiles. Although significant CD4 cell recov-
ery in response to post HAART initiation across all 
quantiles was recognized, HIV-infected patients who 
were enrolled in the treatment with a high level of 
VL showed a significant negative effect on CD4 cell 
counts at upper quantiles [33]. Even though patients 
with higher BMI at baseline have improved CD4 cell 
count overtime after the treatment, they should not be 
ignored clinically. The study also suggested that physi-
cians should carefully monitor patients with low BMI 
before and after the treatment because BMI can influ-
ence drug metabolism and, consequently, the immuno-
logical response to HAART [31, 33]. With the growing 
recognition of the quantile mixed-effects model, it 
looks practical that the methodology will be extended 
to a vast range of statistical applications such as binary 
data, multi-level models, survival analysis, and other 
areas of application, and these shall be the subject of 
future works.

Table 3 Parameter estimates for CAPRISA 002 AI study data across several quantiles

* Significance at 5% level. See, Additional file 1, for more significant test results and confidence intervals

Parameter Q̂0.05 (SE) Q̂0.25 (SE) Q̂0.5 (SE) Q̂0.75 (SE) Q̂0.85 (SE) Q̂0.95 (SE)

Intercept 19.996 (1.161)* 22.171 (1.403)* 24.628 (1.464)* 26.595(1.419)* 27.972 (1.420)* 31.381 (1.397)*

Time 0.063 (0.015)* 0.069 (0.013)* 0.056 (0.013)* 0.046 (0.013)* 0.041 (0.013)* 0.034 (0.015)*

SQRT of time − 0.866 (0.142)* − 0.871 (0.129)* − 0.695 (0.117)* − 0.593 (0.119)* − 0.581 (0.124)* − 0.385 (0.162)*

Baseline BMI 0.056 (0.021)* 0.078 (0.024)* 0.082 (0.026)* 0.112 (0.032)* 0.131 (0.033)* 0.145 (0.030)*

Log of baseline VL − 0.564 (0.078)* − 0.568 (0.103)* − 0.641 (0.096)* − 0.713 (0.093)* − 0.714 (0.089)* − 0.739 (0.084)*

Post HAART initiation 1.683 (0.054)* 2.125 (0.073)* 2.560 (0.088)* 3.021 (0.096)* 3.114(0.097)* 2.287 (0.089)*

Age 0.021 (0.025) 0.029 (0.029) 0.029 (0.031) 0.029 (0.032) 0.026 (0.032) 0.013 (0.030)

Log-lik − 18,454.68 − 17,169.85 − 16,828.96 − 17,344.63 − 17,952.50 − 19,088.77

AIC 36,937.36 34,367.69 33,685.92 34,717.25 35,933 38,205.55
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Fig. 1 Point estimates and 95% confidence bands for model parameters following the QR-LMM to the CAPRISA 002 AI Study data across various 
quantiles
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