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Abstract

The study of optimization and fixed point problems has remained as an attractive area
of research due to its paramount importance in several areas of mathematics and other
sciences. It constitutes a beautiful mixture of pure and applied analysis, topology, geom-
etry, statistics and mechanics. It has also found several applications in solving nonlinear
phenomena arising in diverse fields such as engineering, economics, biology, management
science, transportation, game theory, physics, computer tomography, etc.

In this thesis, we present some inertial iterative schemes with strong convergence theo-
rems for approximating solutions of certain optimization problems in real Hilbert spaces.
We further analyze a parallel combination extragradient method for finite family of pseudo-
monotone equilibrium problem and fixed point of demi-contractive mappings in real Hilbert
spaces. By combining Mann and Krasnolselskii methods with inertial extrapolation term,
we propose a new iterative method which converges strongly to a common solution of split
variational inclusion problem and equilibrium problem with para-monotone equilibria.

More so, we introduce a projection-contraction method for approximating solution of split
generalized equilibrium problem in real Hilbert space. We show that our projection-
contraction method converges at a linear rate of convergence. Moreover, we extend the
study of projection methods for solving variational inequality problem to reflexive Banach
spaces. We introduce a projection algorithm and prove a strong convergence theorem
for approximating solution of variational inequality problem in reflexive Banach spaces
and give an application of our result to approximating solution of equilibrium problem in
reflexive Banach space without prior knowledge of operator norms.

Furthermore, we introduce a totally relaxed subgradient extragradient method for approx-
imating a common solution of variational inequality and fixed point of quasi-nonexpansive
mapping in a 2-uniformly convex and uniformly smooth Banach space. We also study the
approximation of solution of variational inequality problem using projection-contraction
algorithm in real Hilbert space. Then, we extend the study of split equality monotone
inclusion problem to p-uniformly convex and uniformly smooth real Banach spaces.

Ultimately, we consider the approximation of common fixed points of k-strictly pseudo-
contractive mappings in a 2-uniformly smooth real Banach space. We introduce a class
of N -generalized Bregman nonspreading mappings and propose an iterative method for
approximating the common fixed points of this kind of mappings which is also a solution
of equilibrium problem in a reflexive Banach space. Numerical experiments are presented
to demonstrate the efficiency and performance of our algorithms in comparison with other
existing algorithms in literature. We also achieve strong convergence results using our
algorithms for approximating solutions of the underlying problems in each case.
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CHAPTER 1

Introduction

1.1 General Introduction

Nonlinear analysis which includes optimization problems such as variational inequalities,
Nash equilibrium problem, complementarity problem, convex minimization problem, vec-
tor optimization problem, minimax problem, saddle point problem and game theory, has
recently been studied as an effective and powerful tool for studying many real life problems.

The classical Variational Inequality Problem (VIP) introduced by Fichera [105, 106] and
Stampacchia [237] as an analytic tool for studying differential equations in finite dimen-
sional spaces has played an important role as a modelling tool in diverse fields such as
in economics, transportation, engineering, control theory, operation research, physics, me-
chanics and many others, see for example [3, 8, 28, 45, 91, 99, 102]. Let E be a Banach
space with dual E∗, C be a nonempty, closed and convex subset of E and A : C → E∗ be
a nonlinear operator. The VIP is defined as finding a point x∗ ∈ C such that

〈Ax∗, y − x∗〉 ≥ 0, ∀ y ∈ E. (1.1.1)

We denote the set of solutions of the VIP (1.1.1) by ΩV IP .

The first general theorem for the existence and uniqueness of solution of VIP was proved
by Lions and Stampacchia [163] in 1967. Since then, several authors have introduced
various iterative methods for finding solutions of the VIP. One of the famous methods
for solving the VIP is the Extragradient Method (EM) introduced by Korpelevich [157] in
1976 (in finite dimensional Euclidean space) and is given as follows:

x1 ∈ C,
yn = PC(xn − µAxn),

xn+1 = PC(xn − µAyn), ∀ n ≥ 1,

(1.1.2)

1



where C ⊆ RN , A : C → RN is a monotone, Lipschitz continuous operator with Lipschitz
constant L, µ ∈

(
0, 1

L

)
and PC is the metric projection onto C. If the solution set ΩV IP

is nonempty, then the sequence {xn} generated by EM converges weakly to an element
in ΩV IP . The EM has received a great attraction from many authors who have extended
and generalized in both Hilbert and Banach spaces.

Note that the EM (1.1.2) requires two projections onto the set C and two evaluations of A
per iteration. This makes the usage of EM (1.1.2) computationally expensive if the feasible
set C is not so simple. A major improvement on the EM is to minimize the number of
evaluations of PC per iteration. An attempt in this direction was initiated by Y. Censor
et al. [67, 69] who modified the EM by replacing the second projection with a projection
onto a half-space. This new method which thus involves only one projection onto C is
called the Subgradient Extragradient Method (SEM) and is given as follows:

Algorithm 1.1.1. (The Subgradient Extragradient method (SEM)).
x0 ∈ H,
yn = PC (xn − µAxn) ,

Qn = {z ∈ H : 〈xn − µAxn − yn, z − yn〉 ≤ 0},
xn+1 = PQn (xn − µAyn) .

(1.1.3)

Censor et al. [69] showed that if the solution set ΩV IP is nonempty, the sequence {xn}
generated by SEM converges weakly to an element p ∈ ΩV IP , where p = lim

n→∞
PΩV IP (xn).

Also, using only a single projection onto C, Maingé and Gobinddass [173] (see also Maingé
[170]) obtained a weak convergence result for solving the VIP in a real Hilbert space by
means of a projected reflected gradient-type method [174] and inertial terms. Several other
alternatives to the EM have further been introduced in the literature (see, for example,
[67, 104, 113, 135, 136, 138, 145, 180, 235]).

Another important optimization problem which has found many applications in solving
real life problems is the Equilibrium Problem (EP) introduced by Blum and Oettli [35] as
a generalization of VIP. Let F : C × C → R be a bifunction, the EP is defined as finding
a point x ∈ C such that

F (x, y) ≥ 0, ∀ y ∈ C. (1.1.4)

We shall denote the set of solutions of EP by ΩEP . Blum and Oettli [35] discussed some
existence theorems and variational principle for the EP and since then, various general-
izations of EP have been introduced and studied by many authors. The theory of EP has
also served as an important tool in studying a wide class of important nonlinear problems
arising in several branches of pure and applied sciences in a unified and general framework
(see, for instance [16, 32, 92, 110, 137, 149, 154, 184]).

The Generalized Mixed Equilibrium Problem (GMEP) is defined as finding a point x ∈ C
such that

F (x, y) + 〈hx, y − x〉+ φ(y)− φ(x) ≥ 0, ∀ y ∈ C, (1.1.5)

where h : C → E is a nonlinear mapping and φ : C → R∪{+∞} is a proper convex lower
semicontinuous function.
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If h = 0, GMEP (1.1.5) reduces to the Mixed Equilibrium Problem (MEP) which is to
find a point x ∈ C such that

F (x, y) + φ(y)− φ(x) ≥ 0, ∀ y ∈ C. (1.1.6)

If φ = 0 in (1.1.5), the GMEP reduces to a Generalized Equilibrium Problem (GEP) which
is to find a point x ∈ C such that

F (x, y) + 〈hx, y − x〉 ≥ 0, ∀ y ∈ C. (1.1.7)

In particular, if h = 0 and φ = 0 in (1.1.5), the GMEP reduces to the classical equilibrium
problem (1.1.4). The GMEP is very general in the sense that it includes as special cases,
optimization problem, variational inequality problem, fixed point problem, Nash equilib-
rium problem in noncooperative games, etc, see [62, 90, 109].

The study of fixed point theory has also become a very powerful tool in nonlinear func-
tional analysis. Recently, fixed point methods have found many applications in many
fields of science such as biology, chemistry, economics, optimization theory, game theory,
engineering, astrophysics and physics. Fixed point theorems are mainly used in the study
of existence of solutions for nonlinear problems arising in physical science and biological
science. They also play fundamental roles in establishing the existence theory for solu-
tions of differential equations, integral equations, functional equations, partial differential
equations, eigen-value problems and two-point boundary value problems, see for instance
[4, 5, 100, 277].

Let E be a Banach space and T : E → E be a mapping. A point x ∈ E is called a fixed
point of T if

Tx = x. (1.1.8)

The set of fixed points of T is denoted by F (T ). When T is a multi-valued mapping, e.g.
T : E → 2E, then a point x ∈ E is called a fixed point of T if x ∈ Tx.
The study of fixed point theory was initiated by Poincare [206] in 1886, followed by Brouwer
[49] who proved a fixed point theorem for a square, a sphere and their n-dimensional
counterparts. Brouwer [49] result was further extended by Kakutani [142]. The Banach
contraction mapping principle by Stephan Banach [18] is also considered as one of the
fundamental principle in this field. It shows that a contraction mapping on a complete
metric space possesses a unique fixed point. The Banach contraction mapping principle is
remarkable in its simplicity, yet it is perhaps the most widely used fixed point theorem.
This is because the contraction condition on its mapping is easy to test and it requires
only the structure of a complete metric space for its setting.

The study of fixed points for multivalued contractions and nonexpansive mappings was
initiated by Nadler [190] and Markin [176] respectively, since then, there has been increas-
ing effort on the study of fixed points of multivalued mappings. Also, there are many
application of fixed point of multivalued mappings in convex optimization, differential
inclusions, fractals, discontinuous differential equations, optimal control, computing ho-
mology of maps, computer-assisted proofs in dynamics, digital imaging and economics
(e.g., [116, 141] and references cited therein).
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Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,
respectively and A : H1 → H2 be a linear operator. The Split Feasibility Problem (SFP)
is defined as finding a point x∗ such that

x∗ ∈ C and Ax∗ ∈ Q. (1.1.9)

We shall denotes the set of solutions of the SFP by ΩSFP . The SFP was originally intro-
duced by Censor and Elfving [64] (in finite dimensional Euclidean space) for modelling
phase retrieval, and later studied extensively as an extremely powerful tool for the treat-
ment of a widely range of inverse problems, such as medical image reconstruction and
intensity-modulated radiation therapy treatments; see e.g. [56, 63, 65, 71] for more de-
tails. When taking C := RN and Q = {b} (b ∈ RM), the SFP (1.1.9) immediately reduces
to the well known Linear Inverse Problem (LIP) which is to find x∗ ∈ RN such that

Ax∗ = b. (1.1.10)

The LIP has a long history and its theory and algorithms have extensively been devel-
oped in the literature, see the monographs [103, 259]. One of the most popular ways for
solving the LIP is to reformulate it as a least squares problem, which greatly facilitates
the employment of optimization algorithms for finding solutions of the resultant model.
Similarly, the SFP can be solved by equivalently reformulating it as the following convex
optimization problem:

min

{
1

2
||Ax− PQ(Ax)||2 : x ∈ C

}
, (1.1.11)

where PQ(·) is the projection onto the set Q defined by

PQ(v) := argmin{||z − y|| : z ∈ Q}, ∀ v ∈ H2.

In 2012, Ceng et al. [61] showed the following interesting relationship between VIP, fixed
point problem and the SFP.

Proposition 1.1.2. Suppose the SFP (1.1.9) is consistent, i.e., ΩSFP is nonempty. Given
x∗ ∈ H1, then the following statements are equivalent:

(i) x∗ solves the SFP (1.1.9);

(ii) x∗ solves the fixed point equation

PC(I − γA∗(I − PQ)A)x∗ = x∗;

(iii) x∗ solves the VIP of finding x∗ ∈ C such that

〈∇f(x∗), y − x∗〉 ≥ 0, ∀ y ∈ C,

where ∇f = A∗(I − PQ)A and A∗ is the adjoint of A.

Because of this fact, many fixed point algorithms have been proposed for solving the SFP
(1.1.9) in real Hilbert and Banach spaces.
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1.2 Research Motivation

One of the popular methods used for accelerating the speed of convergence of iterative
schemes is the multi-step method which can be viewed as the following discretization of
the second-order dynamical system with friction:

ẍ(t) + γẋ(t) +∇ϕ(x(t)) = 0,

where γ > 0 represents a friction parameter and ϕ : H → R is a differentiable function.
This can be formulated as a two-step heavy ball method, in which, given xn and xn−1, the
next point xn+1 is determined via

xn+1 − 2xn + xn−1

h2
+ γ

xn − xn−1

h
+∇ϕ(xn) = 0,

for h > 0, which results in an iterative algorithm of the form

xn+1 = xn + β(xn − xn−1)− α∇ϕ(xn), (1.2.1)

for each n ≥ 0, where β = 1 − γh and α = h2. In 1964, Polyak [208] first used (1.2.1) to
solve the optimization problem:

minϕ(x),

for all x ∈ H and called it an inertial type extrapolation algorithm. In 1987, Polyak
[207] also considered the relationship between the heavy ball method and the following
conjugate gradient method

xn+1 = xn + βn(xn − xn−1)− αn∇ϕ(xn), (1.2.2)

for each n ≥ 0, where αn and βn can be choosen through different ways. It is obvious that
the only difference between the heavy ball method (1.2.1) and (1.2.2) is the choice of the
parameters.

From Polyak’s work, as an acceleration process, the inertial extrapolation algorithms
were widely studied. Most especially, recent researchers have constructed many iter-
ative algorithms by using inertial extrapolation, such as inertial extragradient method
[97], inertial proximal method [9, 187], inertial forward-backward method [196], inertial
proximal ADMM [73], fast iterative shrinkage thresholding algorithm FISTA [24, 72], iner-
tial forward-backward-forward algorithm [40], inertial proximal-extragradient method [39],
and inertial Mann method [254]. The inertial algorithm is a two-steps iterative method
and its main feature is that the next iterate is defined by using the previous two iterates.

By using the technique of the inertial extrapolation, in 2008, Maingé introduced the clas-
sical inertial Mann algorithm as follows:{

yn = xn + βn(xn − xn−1),

xn+1 = (1− λn)yn + λnTyn,
(1.2.3)

for each n ≥ 1. He showed that the sequence {xn} converges weakly to a fixed point of T
under the following conditions:
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(A1) βn ∈ [0, α) for each n ≥ 1, where α ∈ [0, 1);

(A2)
∞∑
n=1

βn||xn − xn−1||2 < +∞;

(A3) 0 < inf λn ≤ supλn < 1.

Note that for the condition (A2) to be satisfied, one needs to first calculate βn at each
step of the iterations (see [186]). In 2015, Bot and Csetnek [41] removed the condition
(A2) and substituted (A1) and (A3) with the following conditions:

(B1) for each n ≥ 1, {βn} ⊂ [0, α) is non-decreasing with β1 = 0 and 0 ≤ α < 1,

(B2) for each n ≥ 1,

δ >
α2(1 + α) + ασ

1− α2
, 0 ≤ λ ≤ λn ≤

δ − α[α(1 + α) + αδ + σ]

δ[1 + α(1 + α) + αδ + σ]
,

where λ, σ, δ > 0.

Despite much effort been devoted on inertial algorithms, only weak convergence algorithms
have mostly been achieved by many authors in the literature. It is important to note
that strong convergence of iterative sequences for approximating solutions of optimization
problems are more desirable than their weak convergence counterpart as pointed out by
Bauschke and Combettes in [22]. Therefore, it is of great interest to develop inertial-type
algorithms with strong convergence sequences. In this thesis, we propose some inertial
algorithms with strong convergence properties for approximating solutions of certain op-
timization problems in real Hilbert spaces.

Furthermore, it was shown in [67] that the EM (1.1.2) and SEM (1.1.3) converge weakly
to a solution of VIP (1.1.1) if the underlying operator A is monotone and Lipschitz contin-
uous. When A is not monotone (say pseudo-monotone), both EM and SEM have failed to
converge to a solution of VIP (1.1.1). Hence, there is need to find appropriate methods for
solving VIP (1.1.1) when A is not monotone nor Lipschitz continuous. An attempt in this
direction was made by Iusem and Svaiter [138] who introduced a new projection algorithm
for approximating solution of VIP (1.1.1) where A is pseudo-monotone in a finite dimen-
sional space. Their algorithm is unique in the sense that it uses an Armijo line-searching
technique to determine the stepsize for the next iterate. The projection method involves
taking an arbitrary stepsize βn, compute un = PC(xn − βnAxn) and then try vectors of
the form y(α) = αun + (1− α)xn with α ∈ (0, 1] until a value of α is reached such that

〈Ay(α), xn − un〉 ≥
δ

βn
||xn − un||2, (1.2.4)

for some fixed δ ∈ (0, 1). Then, take yn = y(α) and compute the orthogonal projection
wn of xn onto the hyperplane Qn = {x ∈ Rn : 〈Ayn, x − yn〉 = 0} and finally, take xn+1

as the orthogonal projection of wn onto C. Note that along the search for appropriate
α, the right hand-side of (1.2.4) is kept constant, and that, though A is evaluated at

6



several points in the segment between un and xn, no orthogonal projection onto C is
required during the process. Iusem and Svaiter [138] further proved a weak convergence
result using the projection algorithm for approximating solution of VIP (1.1.1) in a finite
dimensional space.

The projection method was later extended to an infinite dimensional Hilbert space by Bello
Cruz and Iusem [26]. Recently, Kanzow and Shehu [144] proved a strong convergence
theorem for solving VIP (1.1.1) by combining the projection method with a Halpern
method in a real Hilbert space H. They proposed the following scheme in particular.

Algorithm 1.2.1. Let {αn} and {βn} be sequences in (0, 1) and A : C → H be a monotone
and uniformly continuous operator. Define r(x) := x− PC(x− Ax) for all x ∈ C.
Step 0: Given γ, σ ∈ (0, 1), s > 0, x1 ∈ C and set n = 1.
Step 1: Set

wn = (1− αn)xn + αnx1.

Step 2: If r(wn) = 0, stop. Else, let yn(η) = (1 − η)wn + ηPC(wn − Awn), for η ∈ R.
Compute ηn as the maximum of the numbers s, sγ, sγ2, . . . such that

〈Ayn(ηn), r(wn)〉 ≥ σ

2
||r(wn)||2,

and define yn = yn(ηn).
Step 3: Compute λn =

〈Ayn, wn − yn〉
||Ayn||2

,

xn+1 = (1− βn)wn + βnPC(wn − λnAyn).
(1.2.5)

Step 4: Set n← n+ 1 and go to Step 1.

Motivated by the works of [26], [138] and [144], in this thesis, we extend the projection
method for solving pseudo-monotone VIP to a real reflexive Banach space. We also propose
other methods for approximating common solutions of VIP (1.1.1) and fixed point of
nonlinear mappings in real Hilbert spaces and 2-uniformly convex and uniformly smooth
Banach spaces.

One of the simplest methods for solving the SFP (1.1.9) is the CQ-algorithm introduced
by Bryne [56] in 2002. The CQ-algorithm is given as follows: for x0 ∈ C, compute

xn+1 = PC(xn − τnA∗(I − PQ)Axn), n ≥ 0, (1.2.6)

where the stepsize τn is chosen in the interval
(

0, 2
||A||2

)
, A∗ is the transpose of A and

PC and PQ are the orthogonal projections onto C and Q respectively. Note that the
determination of the stepsize τn depends on the operator norm ||A||. This implies that in
order to implement the CQ-algorithm, one has to first compute (or at least, estimate) the
matrix norm of A, which is in general not an easy task in practice. In order to overcome
this difficulty, there is a growing research on how to determine the best appropriate method
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for selecting the stepsize of the CQ-algorithm. Yang et al. [272] proposed the following
adaptive stepsize selection:

τn =
ρn

||A∗(I − PQ)Axn||
, (1.2.7)

where {ρn} is a sequence of positive real numbers, and Lopez et al. [166] recently intro-
duced the following adaptive stepsize method:

τn =
||(I − PQ)Axn||2
||A∗(I − PQ)Axn||2

. (1.2.8)

They showed that (1.2.7) and (1.2.8) are better selections compared to (1.2.6) of Bryne
[56]. However, they all established weak convergence results for solutions of the SFP
(1.1.9). Other notable modifications of CQ-algorithms can be found in [12, 13, 61] and
the references therein.

Furthermore, Schöpfer [226, 227] recently extended the study of SFP (1.1.9) to Banach
spaces such as the p-uniformly convex Banach spaces, which are also uniformly smooth.
This has opened a growing research in this direction on the SFP in Banach spaces; see,
for instance [168, 231, 232, 241, 246]. In this thesis, we introduce some iterative methods
for approximating solutions of split equality monotone inclusion problem in p-uniformly
convex real Banach spaces, which are also uniformly smooth. Our algorithms are designed
in such a way that they do not require prior estimate of the norms of the bounded operators.

1.3 Objectives of the Study

The main objectives of this study are:

(i) To introduce new inertial-type iterative algorithms for solving certain optimization
problems in real Hilbert spaces.

(ii) To extend the study of projection algorithm for solving the VIPs from a real Hilbert
space to a real reflexive Banach space.

(iii) To introduce some other projection methods which are simpler to execute and faster
than many existing algorithms for solving VIPs in the literature.

(iv) To introduce some projection methods for solving EPs in real Hilbert spaces.

(v) To propose some iterative methods which do not depend on the norms of the bounded
linear operator for solving SFP and it generalizations in real Banach spaces.

(vi) To introduce a new class of N -generalized Bregman nonspreading mapping, and
propose an iterative method for approximating its fixed point in real reflexive Banach
spaces.

(vii) To compare the efficiency and performance of our algorithms with some existing ones
in the literature.
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1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 1 (General introduction): In this chapter, we present a brief introduction,
research problem, motivation of our study and objectives of the research.

Chapter 2 (Preliminaries): In Chapter two, we give a background overview of some
definitions and introduce some basic concepts which are needed to achieve our results.

Chapter 3 (Inertial algorithms and optimization problems): In Chapter 3, we first
introduce an inertial gradient projection algorithm for approximating a common solution of
a classical minimization problem and finding fixed point of δ-demimetric mapping in a real
Hilbert space. We also introduce an inertial-viscosity subgradient extragradient method for
approximating solution of VIP and fixed point of multi-valued demi-contractive mappings
in real Hilbert spaces. Furthermore, we propose a modified Mann-inertial algorithm for
finding a common solution of split generalized mixed equilibrium problem and fixed point
of nonspreading mapping in real Hilbert spaces.

Chapter 4 (Equilibrium problems in Hilbert spaces): In this Chapter, we introduce
a parallel combination extragradient method for solving a finite family of pseudo-monotone
EPs and finding a common fixed point of a finite family of demi-contractive mappings
in Hilbert space. We also present a new inertial Mann-Krasnolselskii algorithm for ap-
proximating a common solution of split variational inclusion problem and EP with para-
monotone bifunction in real Hilbert space. Also, we introduce a projection-contraction
algorithm for GEP and finding common fixed point of multi-valued demi-contractive map-
ping in real Hilbert spaces.

Chapter 5 (Variational inequality problems in Hilbert and Banach spaces): In
this Chapter, we extend the projection algorithm for solving VIP from a real Hilbert space
to a real reflexive Banach space using the Bregman distance technique. We also present
a totally relaxed self-adaptive subgradient extragradient method with Halpern iterative
method for finding a common solution of VIP and fixed point of quasi-nonexpansive map-
ping in a 2-uniformly convex and uniformly smooth Banach space. Then, we propose an
extragradient method consisting of the Hybrid steepest descent method, a single projec-
tion method and an Armijo line searching technique for approximating a solution of VIP
and finding the fixed point of demi-contractive mapping in a real Hilbert space.

Chapter 6 (Split feasibility problem in Banach spaces): In Chapter 6, we intro-
duce an iterative algorithm and prove a strong convergence theorem without any prior
estimation of operator norms for solving split equality variational inclusion problem in
uniformly convex Banach spaces which are also uniformly smooth. We also present some
application of our result and provide a numerical example to show the behaviour of the
sequence generated by our algorithm.

Chapter 7 (Common fixed point problems in Banach spaces): In this Chapter,
we introduce an intermixed algorithm and prove a strong convergence theorem for approx-
imating individual fixed point of two strictly pseudocontractive mappings T and U in a
q-uniformly smooth Banach space which admits a weakly sequentially continuous dual-
ity mapping jp. Finally, we study some fixed point properties for N -generalized Bregman
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nonspreading mapping in reflexive Banach space. We introduce a hybrid iterative scheme
for finding a common solution of countable family of EP and fixed point of N -generalized
Bregman nonspreading mapping in a reflexive Banach space.

We stimulate our algorithms using MATLAB programming to establish the accuracy and
efficiency of our algorithms in each chapter.

Chapter 8 (Conclusion and contribution to knowledge): In this chapter, we give
a detailed summary of our results and also significant contribution of our research to the
existing literature. We also suggest some possible problems we intend to consider in our
future research work.
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CHAPTER 2

Preliminaries

In this chapter, we present some definitions and basic concepts which are relevant to this
study. Throughout this thesis, unless stated otherwise, E denotes a real Banach space
with dual E∗ where 〈·, ·〉 is the duality pairing between E and E∗. Also, H denotes a real
Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We write xn ⇀ x to indicate that
the sequence {xn} converges weakly to x and xn → x to indicate that the sequence {xn}
converges strongly to x.

2.1 Basic Definitions

We recall some basic definitions in functional analysis that are required for our work.

Definition 2.1.1. Let C be a nonempty, closed and convex subset of E and f : C →
R ∪ {+∞} be a mapping.

(i) The effective domain of f denoted by dom f is defined by

dom f := {v ∈ E : f(v) < +∞}.

(ii) The epigraph of f denoted by epi f is defined by

epi f := {(v, β) ∈ E × R : f(v) ≤ β}.

(iii) f is said to be convex if for all u, v ∈ E and λ ∈ [0, 1], we have

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v).
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(iv) f is lower semicontinuous at v0 ∈ dom f if and only if

f(v0) ≤ lim inf
v→v0

f(v).

(v) f is upper continuous at v0 ∈ dom f if and only if

f(v0) ≥ lim sup
v→v0

f(v).

Remark 2.1.1. The function f is lower semicontinuous if and only if its epigraph epi f is
closed. Also, f is said to be lower (resp. upper) semicontinuous on its domain if it is lower
(resp. upper) semicontinuous on every v ∈ dom f (see [23]).

Definition 2.1.2. Let x ∈ int(domf), for any y ∈ E, the directional derivative of f at x
is defined by

f o(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (2.1.1)

If the limit in (2.1.1) exists as t→ 0+ for each y, then the function f is said to be Gâteaux
differentiable at x. In this case, the gradient of f at x is the linear function ∇f(x), which
is defined by 〈∇f(x), y〉 := f o(x, y) for all y ∈ E. The function f is said to be Gâteaux
differentiable if it is Gâteaux differentiable at each x ∈ int(domf). When the limit as
t → 0+ in (2.1.1) is attained uniformly for any y ∈ E with ||y|| = 1, we say that f is
Fréchet differentiable at x. It is well known that f is Gâteaux (resp. Fréchet) differentiable
at x ∈ int(domf) if and only if the gradient ∇f is norm-to-weak∗ (resp. norm-to-norm)
continuous at x (see [21]).

Definition 2.1.3. Let f be a convex function. Then f is said to be differentiable at point
x ∈ E if the following set

∂f(x) := {e ∈ E : f(y) ≥ f(x) + 〈e, y − x〉, ∀ y ∈ E} (2.1.2)

is nonempty. Each element ∂f(x) is called a subgradient of f at x, ∂f(x) is the subdiffer-
ential of f at x and the inequality in (2.1.2) is said to be the subdifferential inequality of
f at x. We say that the function f is subdifferentiable on E, if f is subdifferentiable at
each x ∈ E.

Definition 2.1.4. Let C be a nonempty, closed and convex subset of H. The normal cone
to C at x ∈ H is defined by

NC(x) =

{
{u ∈ H : sup〈C − x, u〉 ≤ 0} if x ∈ C,
∅ otherwise.

The indicator function of C is the function iC : H → [−∞,+∞] such that

iC(x) =

{
0 if x ∈ C
+∞ otherwise.

iC is lower semicontinuous if and only if C is closed.
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Proposition 2.1.2. (Cioranescu [87]) Let f : E → R ∪ {+∞} be a proper convex lower
semicontinuous function. Then

(i) f is subdifferentiable on int(domf);

(ii) f is Gâteaux differentiable at x ∈ int(domf) if and only if its subgradient ∂f(x) =
∇f(x) is a singleton set.

The Frénchet conjugate of f is the function f ∗ : E∗ → R ∪ {+∞} defined by

f ∗(y∗) = sup{〈y∗, x〉 − f(x) : x ∈ E}.

Definition 2.1.5. The function f is called Legendre if it satisfies the following two con-
ditions:

(L1) f is Gâteaux differentiable, int(dom f) 6= ∅ and dom ∇f = int(dom f),

(L2) f ∗ is Gâteaux differentiable, int(dom f ∗) 6= ∅ and dom ∇f ∗ = int(dom f ∗).

The notion of Legendre function in infinite dimensional spaces was first introduced by
Bauschke, Borwein and Combettes in [21]. Their definition is equivalent to conditions
(L1) and (L2) because the space E is assumed to be reflexive (see [21], Theorem 5.4 and
5.6, p. 634). It is also well known that in reflexive Banach space, ∇f = (∇f ∗)−1 (see [36],
p. 83). When this fact is combined with conditions (L1) and (L2), we obtain

ran∇f = dom∇f ∗ = int(domf)∗,

ran∇f ∗ = dom∇f = int(domf).

It also follows that f is Legendre if and only if f ∗ is Legendre (see [21], Corollary 5.5,
p. 634) and that the functions f and f ∗ are Gâteaux differentiable and strictly convex in
the interior of their respective domains. When the Banach space E is smooth and strictly

convex, in particular, a Hilbert space, the function
1

p
||.||p with p ∈ (1,∞) is Legendre (cf.

[19], Lemma 6.2, p. 639). For further details on Legendre functions, see, [19, 21].

Definition 2.1.6. Let X be a normed linear space. A mapping T : X → X is said to be

1. continuous at an arbitrary point x0 ∈ X, if for each ε > 0, there exist a real number
δ > 0 such that for x ∈ X

||x− x0|| < δ =⇒ ||T (x)− T (x0)|| ≤ ε, (2.1.3)

2. L-Lipschitz if there exists a real constant L > 0 such that

||T (x)− T (y)|| ≤ L||x− y||, ∀x, y ∈ X, (2.1.4)

3. contraction if it is L−Lipschitz with L ∈ [0, 1),
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4. strictly contractive if it is L−Lipschitz with L ∈ (0, 1).

Definition 2.1.7. Let T : H → H be a nonlinear mapping. Then T is called

(a) monotone if

〈Tx− Ty, x− y〉 ≥ 0, ∀ x, y ∈ H, (2.1.5)

(b) α-strongly monotone, if there exists a constant α > 0 such that

〈Tx− Ty, x− y〉 ≥ α||x− y||2, ∀ x, y ∈ H, (2.1.6)

(c) β-inverse strongly monotone (shortly, β-ism), if there exists a constant β > 0 such
that

〈Tx− Ty, x− y〉 ≥ β||Tx− Ty||2, ∀ x, y ∈ H, (2.1.7)

(d) firmly nonexpansive, if it is β-ism with β = 1.

Remark 2.1.3. It is easy to observe that every β-ism operator is monotone and
1

β
−Lipschitz.

Definition 2.1.8. A multi-valued mapping M : H → 2H is called monotone if for all
x, y ∈ H such that u ∈Mx and v ∈My, then

〈x− y, u− v〉 ≥ 0. (2.1.8)

Definition 2.1.9. A multi-valued monotone mapping M : H → 2H is said to be maximal
if the graph of M (denoted by Gr(M)) is not properly contained in the graph of any
other monotone mapping. It is known that a multi-valued mapping M is maximal if and
only if for (x, u) ∈ H×H, 〈x−y, u−v〉 ≥ 0 for every (y, v) ∈ Gr(M) implies that u ∈Mx.

Lemma 2.1.4. (see, Rockafellar [220]): Let A : C → H be a monotone mapping and let
B : H → 2H be a mapping defined by

Bq =

{
Aq +NC(q), q ∈ C,
∅, q /∈ C. (2.1.9)

Then B is maximal monotone and x ∈ B−1(0) if and only if x ∈ ΩV IP .

Definition 2.1.10. Let H be a real Hilbert space. The mapping T : H → H is said to be

(a) nonexpansive if

||Tx− Ty|| ≤ ||x− y|| ∀x, y ∈ H,

(b) quasi-nonexpansive if, F (T ) 6= ∅ and

||Tx− Tp|| ≤ ||x− p||, ∀x ∈ H, p ∈ F (T ),

14



(c) firmly nonexpansive, if

||Tx− Ty||2 ≤ ||x− y||2 − ||(x− y)− (Tx− Ty)||2, ∀x, y ∈ H, (2.1.10)

(d) nonspreading, if for all x, y ∈ C, we have

2||Tx− Ty||2 ≤ ||Tx− y||2 + ||x− Ty||2,
equivalently, T is nonspreading if for all x, y ∈ C,

||Tx− Ty||2 ≤ ||x− y||2 + 2〈x− Tx, y − Ty〉,

(e) k-strictly pseudo-contractive mapping if for k ∈ [0, 1), we have

||Tx− Ty||2 ≤ ||x− y||2 + k||(x− y)− (Tx− Ty)||2, ∀x, y ∈ H, (2.1.11)

(f) k demi-contractive if F (T ) 6= ∅ and for k ∈ [0, 1), we have

||Tx− Tp||2 ≤ ||x− p||2 + k||x− Tx||2, ∀x ∈ H, p ∈ F (T ). (2.1.12)

Remark 2.1.5.

(i) It is clear that in a real Hilbert space H, (2.1.10) is equivalent to the definition of
firmly nonexpansive mapping in Definition 2.1.7 (d).

(ii) Also (2.1.12) is equivalent to

〈Tx− p, x− p〉||x− p||2 ≥ 1− k
2
||x− Tx||2, ∀x ∈ H, p ∈ F (T ).

We note that the following inclusions hold for the classes of the mappings:

firmly nonexpansive ⊂ nonexpansive ⊂ quasi nonexpansive ⊂ k strictly

pseudo-contractive ⊂ k demi-contractive. (2.1.13)

More so, it is well known that the demi-contractive mappings has the following property.

Lemma 2.1.6 (see [171], Remark 4.2). Let T : H → H be a k demi-contractive mapping
such that F (T ) 6= ∅. Then

(i) Tv = (1− v)I + vT is a quasi-nonexpansive mapping over C for every v ∈ [0, 1− k];

(ii) F (T ) is closed and convex.

Lemma 2.1.7. [268] Let λ be a number in (0, 1] and let µ > 0. Let B : H → H be a
k-Lipschitz and µ-strongly monotone mapping. Associating with a nonexpansive mapping
T : H → H, define a mapping T λ : H → H by

T λ = Tx− λBT (x), ∀ x ∈ H.
Then T λ is a contraction provided µ < 2η

k2 , that is,

||T λx− T λy|| ≤ (1− λτ)||x− y|| ∀ x, y ∈ H, (2.1.14)

where τ = 1−
√

1− µ(2η − µk2) ∈ (0, 1).
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Definition 2.1.11. A mapping T : H → H is said to be an α-averaged mapping if
T = (1 − α)I + αS, where α ∈ (0, 1), S : H → H is nonexpansive and I is the identity
operator on H.

Many nonlinear operators belong to the class of averaged mapping. For instance, the class
of firmly nonexpansive mapping is 1

2
-averaged.

The following lemmas will be used in the sequel.

Lemma 2.1.8. [55, 88] Let S, T, V : H → H be given nonlinear operators.

(i) If T = (1 − α)S + αV , for some α ∈ (0, 1), S is averaged and V is nonexpansive,
then T is averaged.

(ii) The composition of finitely many averaged mapping is averaged. In particular, if T1

is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then, the composition
T1T2 is α-averaged, where α = α1 + α2 − α1α2.

(iii) If {Ti} is a finite family of averaged mappings with a common fixed point, then

N⋂
i=1

F (Ti) = F (T1 . . . TN).

Lemma 2.1.9. [55, 179] Let U : H → H be a given operator, we have

(i) U is nonexpansive if and only if the complement I − U is 1
2
-ism.

(ii) If U is κ-ism, then for γ > 0, κU is κ
γ

-ism.

(iii) U is averaged if and only if the complement I −U is κ-ism for some κ > 1
2
. Indeed,

for α ∈ (0, 1), U is averaged if and only if I − U is 1
2α

-ism.

Definition 2.1.12. Let T : H → H be a nonlinear mapping. Then T is said to be a
δ-demimetric mapping if there exists δ ∈ (−∞, 1) such that

〈x− p, x− Tx〉 ≥ 1− δ
2
||x− Tx||2, ∀x ∈ dom(T ) and p ∈ F (T ). (2.1.15)

Equivalently, T is δ-demimetric, if there exists δ ∈ (−∞, 1) such that

||Tx− p||2 ≤ ||x− p||2 + δ||x− Tx||2, ∀x ∈ dom(T ) and p ∈ F (T ). (2.1.16)

The class of δ-demimetric was recently introduced by Takahashi [249] as a generalization of
k-strictly pseudo-contraction, firmly nonexpansive, quasi-nonexpansive and nonexpansive
mappings in a real Hilbert space.

We give the following examples of δ-demimetric mapping in a real Hilbert space.
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Example 2.1.10. Let H = R (the real line with usual metric). Define T : R → R by

Tx =
x

2
, for all x ∈ R. Clearly, F (T ) = {0}. Thus

〈x− p, x− Tx〉 = 〈x− 0, x− x

2
〉 = 〈x, x

2
〉 =

1

2
〈x, x〉

=
1

2

∣∣x∣∣2
≥

∣∣x
2

∣∣2
=

1− δ
2

∣∣x
2

∣∣2 =
1− δ

2

∣∣x− Tx∣∣2,
where δ = −1. From (2.1.15), we see that T is −1 demimetric.

Example 2.1.11. Let H be the real line and C = [−2, 1]. Define

Tx =


x+ 9

10
, x ∈ [0, 1],

3 + x

4
, x ∈ [−2, 0).

Obviously, F (T ) = {1}. We will show that there exists δ ∈ (−∞, 1) such that

|Tx− 1|2 ≤ |x− 1|2 + δ|x− Tx|2, ∀x ∈ [−2, 1].

Consider the following two cases:
Case (i): Let x ∈ [0, 1], then

|x− Tx|2 =
∣∣∣x− x+ 9

10

∣∣∣2 =
∣∣∣ 9

10
(x− 1)

∣∣∣2 =
81

100
|x− 1|2.

Also

|Tx− 1|2 =
∣∣∣x+ 9

10
− 1
∣∣∣2 =

1

100
|x− 1|2

= |x− 1|2 − 99

100
|x− 1|2

= |x− 1|2 − 99

81
× 81

100
|x− 1|2

≤ |x− 1|2 + δ1.
81

100
|x− 1|2,

for any δ1 ∈ [−99
81
, 1). Hence |Tx− 1|2 ≤ |x− 1|2 + δ1|x− Tx|2.

Case (ii): Let x ∈ [−2, 0), thus

|x− Tx|2 =
∣∣∣x− 3 + x

4

∣∣∣2 =
∣∣∣3(x− 1)

4

∣∣∣2 =
9

16
|x− 1|2.
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Then

|Tx− 1|2 =
∣∣∣3 + x

4
− 1
∣∣∣2 =

∣∣∣x− 1

4

∣∣∣2 =
1

16
|x− 1|2

= |x− 1|2 − 15

16
|x− 1|2

= |x− 1|2 − 15

9
.

9

16
|x− 1|2

≤ |x− 1|2 + δ2.
9

16
|x− 1|2,

for any δ2 ∈ [−15
9
, 1). Hence |Tx − 1|2 ≤ |x − 1|2 + δ1|x − Tx|2. In particular, choose

δ = min{δ1, δ2}. Thus, T is −15
9

-demimetric.

Definition 2.1.13. Let (X, d) be a complete metric space. A mapping f : X → X is
called a Meir-Keeler contraction [182] if for every ε > 0, there exists δ > 0 such that

d(x, y) < ε+ δ implies d(f(x), f(y)) < ε, (2.1.17)

for all x, y ∈ X. It is easy to show that the Meir-Keeler contraction mapping is a general-
ization of the contraction mapping in Definition 2.1.6.

Lemma 2.1.12. [243] Let f be a Meir-Keeler contraction on a convex subset C of a
Banach space E. Then for every ε > 0, there exists rε ∈ (0, 1) such that

||x− y|| ≥ ε ⇒ ||f(x)− f(y)|| ≤ rε||x− y||

for all x, y ∈ C.

Lemma 2.1.13. [182] A Meir-Keeler contraction defined on a complete metric space has
a unique fixed point.

Definition 2.1.14. [145] Let E be a real Banach space, then the operator A : C → E∗ is
said to be

(a) strongly monotone on C if there exists γ > 0 such that

〈Au− Av, u− v〉 ≥ γ||u− v||2 ∀ u, v ∈ C;

(b) monotone on C if
〈Au− Av, u− v〉 ≥ 0 ∀ u, v ∈ C;

(c) strongly pseudo-monotone on C if there exists γ > 0 such that

〈Au, v − u〉 ≥ 0⇒ 〈Av, v − u〉 ≥ γ||u− v||2, ∀ u, v ∈ C;

(d) pseudo-monotone on C if for all u, v ∈ C

〈Au, v − u〉 ≥ 0⇒ 〈Av, v − u〉 ≥ 0.
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Remark 2.1.14. If E is a Hilbert space, then the definition of monotone operator (b) is
the same as Definition 2.1.7(a). It is easy to see that the following implications hold:
(a) ⇒ (b), (a) ⇒ (c), (c) ⇒ (d) and (b) ⇒ (d). We present the following example of a
pseudo-monotone mapping which is neither strongly monotone nor monotone.

Example 2.1.15. [150] Let E = `2, the real Hilbert space whose elements are the square
summable sequences of real scalars, i.e.,

E = {x = (x1, x2, . . . , xk, . . . )
∣∣∣ ∞∑
k=1

|xk|2 < +∞}.

The inner product and norm on E are given by

〈x, y〉 =
∞∑
k=1

xkyk and ||x|| =
√
〈x, x〉,

where x = (x1, x2, . . . , xk, . . . ), and y = (y1, y2, . . . , yk, . . . ).
Let α, β ∈ R such that β > α > β

2
> 0 and

C = {x ∈ E : ||x|| ≤ α} and Ax = (β − ||x||)x.

It is easy to verify that ΩV IP = {0}. Now, let x, y ∈ C such that 〈Ax, y − x〉 ≥ 0, i.e.

(β − ||x||)〈x, y − x〉 ≥ 0.

Since β > α > β
2
> 0, the last inequality implies that 〈x, y − x〉 ≥ 0. Hence

〈Ay, y − x〉 = (β − ||y||)〈y, y − x〉
≥ (β − ||y||)〈y, y − x〉 − (β − ||y||)〈x, y − x〉
= (β − ||y||)||y − x||2 ≥ 0.

This means that A is pseudo-monotone on C. To show that A is not monotone on C, let

us consider x =
(β

2
, 0, . . . , 0, . . .

)
, y = (α, 0, . . . , 0, . . . ) ∈ C. Then, we have

〈Ax− Ay, x− y〉 =

(
β

2
− α

)3

< 0.

Definition 2.1.15. A bifunction f : C × C → R is called

(a) strongly monotone on C if there exists a constant α > 0 such that

f(x, y) + f(y, x) ≤ −α||x− y||2, ∀ x, y ∈ C;

(b) monotone on C if
f(x, y) + f(y, x) ≤ 0, ∀ x, y ∈ C;

(c) strongly pseudo-monotone on C if there is a constant α > 0 such that

f(x, y) ≥ 0⇒ f(y, x) ≤ −α||x− y||2, ∀ x, y ∈ C;
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(d) pseudo-monotone on C if

f(x, y) ≥ 0⇒ f(y, x) ≤ 0, ∀ x, y ∈ C.

It is easy to see that the following implications hold:

(a)⇒ (b)⇒ (d) and (a)⇒ (c)⇒ (d). (2.1.18)

The converse implication of (2.1.18) is not true in general.

Pseudo-monotone operators in the sense of Karamardian were introduced back in 1976 as
a generalization of monotone operators. This has been studied for the last 40 years and has
found many applications in variational inequality and economics. In case of gradient maps,
pseudo-monotonicity characterized the convexity of the underlying function [145]. Several
algorithms have been introduced for solving the EP when the bifunction g is monotone on
C (see, e.g. [33, 34, 90, 154, 155, 156]). However, when f is relaxed to be pseudo-monotone
on C, these approaches fail to work. Hence there has been an increasing effort on finding
suitable methods for solving EP where f is pseudo-monotone on C.

2.2 Metric Projection, Proximal and Resolvent Op-

erators

In this section, we briefly look at the properties of some essential operators in functional
analysis.

2.2.1 Metric projection operator

Definition 2.2.1. Let C be a nonempty, closed and convex subset of H. For every point
x ∈ H, there exists a unique nearest point in C denoted by PC(x) such that

||x− PC(x)|| ≤ ||x− y||, ∀ y ∈ C. (2.2.1)

The operator PC : H → C is called the metric projection of H onto C.

A very important inequality that characterizes the metric projection is stated below.

Proposition 2.2.1. [20] Let C be a nonempty closed convex subset of a Hilbert space H.
For arbitrary x ∈ H and z ∈ C. Then, z = PC(x) if and only if

〈x− z, y − z〉 ≤ 0, ∀y ∈ C. (2.2.2)

From Proposition 2.2.1, we deduce that:

(i) The metric projection is firmly nonexpansive, that is, for all x, y ∈ H,

||PC(x)− PC(y)||2 ≤ 〈x− y, PC(x)− PC(y)〉.
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(ii) For all x ∈ H and y ∈ C,

||x− PC(x)||2 + ||PC(x)− y||2 ≤ ||x− y||2. (2.2.3)

(iii) If C is a closed subspace, then PC coincides with the orthogonal projection from H
onto C, that is, x− PC(x) is orthogonal to C. Thus, for any y ∈ C,

〈x− PC(x), y〉 = 0.

If C is a closed convex subset with a particular simple structure, then the projection PC
has a closed form expression as describe below (see [177]):

1. If C = {x ∈ H : ||x − u|| ≤ r} is a closed ball centred at u ∈ H with radius r > 0,
then

PCx =


u+ r(x−u)

||x−u|| , if x /∈ C,

x, if x ∈ C.

2. If C = [a, b] is a closed rectangle in Rn, where a = (a1, a2, . . . , an)T and b =
(b1, b2 . . . , bn)T , then for 1 ≤ i ≤ n, PCx has the ith coordinate given by

(PCx)i =


ai, if xi ≤ ai,
xi, if xi ∈ [ai, bi],
bi, if xi > bi.

3. If C = {y ∈ H : 〈a, y〉 = α}is a hyperplane with a 6= 0 and α ∈ R, then

PCx = x− 〈a, x〉 − α||a||2 a.

4. If C = {y ∈ H : 〈a, y〉 ≤ α} is a closed halfspace, with a 6= 0 and α ∈ R, then

PCx =


x− 〈a,x〉−α||a||2 a, if 〈a, x〉 > α,

x, if 〈a, x〉 ≤ α.

(2.2.4)

5. If C is the range of a m× n matrix A with full cloumn rank, then

PCx = A(A∗A)−1A∗x,

where A∗ is the adjoint of A.
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2.2.2 Proximal and resolvent operators

Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function. The
proximal operator proxγf of f with respect to parameter γ > 0 is defined by

proxγf (x) = argmin
y∈H

(
f(y) +

1

2γ
||x− y||2

)
. (2.2.5)

The following is a useful property of the proximal operator.

Proposition 2.2.2. [23] Let f : H → R∪ {+∞} be a proper, convex and lower semicon-
tinuous function and γ > 0. Then the following holds:

(i) Let x, p ∈ H. Then

p = proxγf (x)⇔ 〈y − p, x− p〉+ f(p) ≤ f(y) ∀ y ∈ H.

(ii) proxγf and I − proxγf are firmly nonexpansive.

(ii) F (proxγf ) = Argmin f.

Definition 2.2.2. Let M : H → 2H be a set-valued mapping and γ > 0.

1. The resolvent of M with respect to the parameter γ is the operator

JMγ :=
1

γ
(I + γM)−1.

2. The Yosida approximation of M with respect to the parameter γ is define by

Mγ :=
1

γ
(I − JMγ ).

3. The zero set of M is the set M−1(0) define by

M−1(0) := {x ∈ H : 0 ∈M(x)}.

The following property of the resolvent operator will be used in this thesis.

Proposition 2.2.3 (Proposition 23.2 in [23]). Let M : H → 2H be a mapping, γ > 0 and
x, p ∈ H. Then the following hold:

(i) dom (JMγ ) = dom (Mγ) = ran(I + γM) and ran(JMγ ) = dom (M);

(ii) p ∈ JMγ (x)⇔ x ∈ p+ γMp⇔ x− p ∈ γMp⇔ (p, γ−1(x− p)) ∈ Gr(M);

(iii) p ∈Mγx⇔ p ∈M(x− γp)⇔ (x− γp) ∈ Gr(M).

Next, we present some important examples of resolvent operator.
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Example 2.2.4.

1. Let f : H → R∪ {+∞} be a proper, convex and lower semicontinuous function and
γ > 0. Then

J∂fγ = proxγf .

2. Let C be a nonempty closed convex subset of H and γ > 0. Setting f = iC , then
∂iC = NC and

J∂iCγ = proxγ∂iC = PC ,

where PC is the metric projection onto C.

3. Let x0 ∈ H and suppose H = L2([0, T ];H) and γ = 1. Let M be the time-derivative
operator (see Example 2.9 and Example 23.5 in [23])

M : H → 2H : x→
{
{x′}, if x ∈ W 1,2([0, T ];H) and x(0) = x0;

∅, otherwise.

Then dom(JM1 ) = H and for every x ∈ H

JM1 x : [0, T ]→ H : t 7→ exp−t x0 +

∫ t

0

exps−t x(s)ds.

2.3 Multivalued Mappings

A subset D of H is called proximal if for each x ∈ H, there exists y ∈ D such that

||x− y|| = d(x,D).

We denote by CB(H), CC(H) and P (H) the families of all nonempty closed bounded
subsets of H, nonempty closed convex subset of H and nonempty proximal bounded
subsets of H respectively. The Pompeiu-Hausdorff metric on CB(H) is defined by

H(A,B) := max{sup
x∈A

d(x,B), sup
y∈B

d(y, A)}

for all A,B ∈ CB(H). Let S : H → 2H be a multivalued mapping. An element p ∈ H
is called a fixed point of S if p ∈ Sp. We say that S satisfies the endpoint condition
if Sp = {p} for all p ∈ F (S). For multivalued mappings Si : H → 2H (i ∈ N) with
∩∞i=1F (Si) 6= ∅, we say Si satisfy the common endpoint condition if Si(p) = {p} for all
i ∈ N , p ∈ ∩∞i=1F (Si). We recall some basic definitions of multivalued mappings.

Definition 2.3.1. A multivalued mapping S : H → CB(H) is said to be

1. nonexpansive if
H(Sx, Sy) ≤ ||x− y||, ∀x, y ∈ H,

2. quasi-nonexpansive if F (S) 6= ∅ and

H(Sx, Sp) ≤ ||x− p||, ∀x ∈ H, p ∈ F (S),

23



3. λ-demi-contractive for 0 ≤ λ < 1 if F (S) 6= ∅, and

H(Sx, Sp)2 ≤ ||x− p||2 + λd(x, Sx)2, ∀x ∈ H, p ∈ F (S).

We note that the class of λ-demi-contractive mappings includes several other type of classes
of nonlinear mappings such as nonexpansive and quasi-nonexpansive.

The best approximation operator PS for a multivalued mapping S : H → P (H) is defined
by

PS(x) := {y ∈ Sx : ||x− y|| = d(x, Sx)}.
One can easily prove that F (S) = F (PS) and PS satisfies the endpoint condition. How-
ever, Song and Cho [236] gave an example of a best approximation operator PS which is
nonexpansive but S is not necessarily nonexpansive.

2.4 Some Notions on Geometric Properties of Banach

Spaces

We recall some important geometric properties of Banach spaces that relevant to this
study.

Definition 2.4.1. A Banach space E is said to be uniformly convex if given any ε > (0, 2],
there exist δ = δ(ε) > 0 such that for all x, y ∈ E satisfying ||x|| = 1, ||y|| = 1 and
||x− y|| ≥ ε, we have

∥∥1
2
(x+ y)

∥∥ < 1− δ.

Let dim(E) ≥ 2. The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined
by

δE(ε) := inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ||x|| = ||y|| = 1; ε = ||x− y||
}
.

E is said to be uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2] and p-uniformly
convex if there exists a constant Cp > 0 such that δE(ε) ≥ Cpε

p for any p ∈ (0, 2].

Definition 2.4.2. A normed linear space X is called strictly convex if for all x, y ∈ X
with x 6= y, ||x|| = ||y|| = 1, we have ||λx+ (1− λ)y|| < 1, for all λ ∈ (0, 1).

Proposition 2.4.1. [76] Every uniformly convex Banach space is strictly convex.

Remark 2.4.2. The space l∞ is not strictly convex. To see this, if we consider ū =
(1, 1, 0, 0, 0, ...) and v̄ = (−1, 1, 0, 0, 0, ...). Both ū, v̄ ∈ l∞. Taking ε = 1, then ||ū||∞ = 1 =

||v̄||∞ and ||ū− v̄||∞ = 2 > ε. However,

∥∥∥∥ ū+ v̄

2

∥∥∥∥
∞

= 1. Thus l∞ is not strictly convex.

Definition 2.4.3. A Banach space E is said to be smooth if for every x ∈ E, ||x|| = 1,
there exists a unique x∗ ∈ E∗ such that ||x∗|| = 1 and 〈x, x∗〉 = ||x||.
The modulus of smoothness of E is the mapping ρE : [0,∞)→ [0,∞) defined by

ρE(t) = sup
{ ||x+ y||+ ||x− y||

2
− 1 : ||x|| = 1, ||y|| ≤ t

}
.
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The Banach space E is said to be uniformly smooth if

lim
t→0

ρE(t)

t
= 0,

see Chidume [76]. Suppose that q > 1, then E is said to be q-uniformly smooth if there
exists cq > 0 such that ρE(t) ≤ cqt

q for all t > 0. It is well known that there is no
Banach space which is q-uniformly smooth with q > 2 (see [271, 247]). If E is q-uniformly
smooth, then E is uniformly smooth. Also, each uniformly convex Banach space E is
reflexive, strictly convex and every uniformly smooth Banach space E is a reflexive Banach
space with uniformly Gâteaux differentiable norm (see [244]). Typical examples of both
uniformly convex and uniformly smooth Banach spaces are Lp spaces, where 1 < p <∞.
Moreover, Lp is min{p, 2}-uniformly smooth for every p > 1.

Definition 2.4.4. Let E∗ be the dual space of a real Banach space E and p > 1. The
multi-valued mapping Jp : E → 2E

∗
defined by

JEp x = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||p, ||x∗|| = ||x||p−1} ∀ x ∈ E, (2.4.1)

is called the generalized duality mapping of E. In particular, JE2 = J is called normal-
ized duality mapping. The normalized duality mapping is known to have the following
properties (see [87]):

(i) If E is smooth, then J is single-valued and denoted by j.

(ii) If E is strictly convex, then J is one-to-one and strictly monotone, i.e.,

〈x− y, Jx− Jy〉 > 0 ∀ x, y ∈ E.

(iii) If E is reflexive, then J is surjective.

(iv) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on bounded
subset of E.

(v) If E∗ is uniformly convex, then J is single-valued, one-to-one and uniformly contin-
uous on bounded subsets of E.

The generalized duality mapping JEp is said to be weak-to-weak continuous if

xn ⇀ x⇒ 〈JEp (xn), y〉 → 〈JEp (x), y〉
holds true for any y ∈ E. It is worth noting that the lp (p > 1) space has such property,
but the Lp (p > 2) space does not share this property.

Let 1 < q ≤ 2 ≤ p with 1
p

+ 1
q

= 1. It is well known that E is p-uniformly convex and
uniformly smooth if and only if its dual space E∗ is q-uniformly smooth and uniformly
convex. Moreover, if E is reflexive and strictly convex with a strictly convex dual, then
(JEp )−1 = JE

∗
q is single-valued, one-to-one, surjective and it is the duality mapping from

E∗ into E and thus JEp J
E∗
q = IE

∗
and JE

∗
q JEp = IE, where IE and IE

∗
are the identity

operators on E and E∗ respectively. We note that in a real Hilbert space, the duality
mappings reduce to the identity mapping. For more information on geometry of Banach
spaces and duality mapping, see [76] and [87].

25



Definition 2.4.5. A mapping T with domain D(T ) and range R(T ) in E is called:

(i) λ-strictly pseudocontractive [50] if for all x, y ∈ D(T ), there exist λ > 0 and jq(x−
y) ∈ Jq(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ||x− y||q − λ||(I − T )x− (I − T )y||q, (2.4.2)

or equivalently

〈(I − T )x− (I − T )y, jq(x− y)〉 ≥ λ||(I − T )x− (I − T )y||q, (2.4.3)

(ii) accretive if for all x, y ∈ C and jp(x− y) ∈ Jp(x− y), we have

〈Tx− Ty, jp(x− y)〉 ≥ 0, (2.4.4)

(iii) µ-strongly accretive if for all x, y ∈ C, there exists µ > 0 and jp(x− y) ∈ Jp(x− y),
such that

〈Tx− Ty, jq(x− y)〉 ≥ µ||x− y||q. (2.4.5)

By Definition 2.4.5, we know that every λ-strictly pseudocontractive mapping is 1+λ
λ

-
Lipschitzian (see [75]). We also note that the class of λ-strict pseudocontractive mappings
properly contains the class of nonexpansive mappings. If λ ≡ 0 in (2.4.2), then the
mapping T is called pseudocontractive.
In a real Hilbert space H, it can easily be shown that for λ ∈ (0, 1

2
), (2.4.2) is equivalent

to (2.1.11) with k = 1− 2λ < 1.

Definition 2.4.6. Let C be a nonempty closed and convex subset of a real Banach space
E and K be a nonempty subset of C. A mapping QK : C → K is called a retraction of C
onto K if QKx = x for all x ∈ K. We say that QK is sunny if, for each x ∈ C and t ≥ 0,

QK(tx+ (1− t)QKx) = QKx,

whenever tx + (1 − t)QKx ∈ C. A sunny nonexpansive retraction is a sunny retraction
which is also nonexpansive. It is well known that if E := H is a Hilbert space, then the
sunny nonexpansive retraction QK coincides with the metric projection from C onto K.

Proposition 2.4.3. [212]: Let C be a closed and convex subset of a smooth Banach
space E. Let K be a nonempty subset of C, Q : C → K be a retraction and let j, jq be
the normalized and generalized duality mappings on E respectively. Then the following
statements are equivalent:
(a) Q is sunny and nonexpansive,
(b) ||Qx−Qy||2 ≤ 〈x− y, j(Qx−Qy)〉 for all x, y ∈ C,
(c) 〈x−Qx, j(y −Qx)〉 ≤ 0 for all x ∈ C and y ∈ K,
(d) 〈x−Qx, jq(y −Qx)〉 ≤ 0 for all x ∈ C and y ∈ K.
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2.5 The Bregman Distance and Some Related No-

tions

Definition 2.5.1. Let f : E → R∪{+∞} be a convex and Gâteaux differentiable function.
The function Df : domf× int(domf)→ [0,+∞) defined by

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉 (2.5.1)

is called the Bregman distance with respect to f , (see [44, 70]).

The Bregman distance does not satisfy the well-known properties of a metric, but it has
the following important properties:

Proposition 2.5.1. [21](Basic properties of Bregman distance) The following properties
follow directly from the definition of Bregman distance: Let u, v, x, y ∈ E, then

(i) Df (u, v) +Df (v, u) = 〈u− v,∇f(u)−∇f(v)〉;

(ii) Df (x, u) = Df (x, y) +Df (y, u) + 〈x− y,∇f(y)−∇f(u)〉;

(iii) Df (x, u) +Df (y, v) = Df (x, v) +Df (y, u) + 〈x− y,∇f(v)−∇f(u)〉.

Definition 2.5.2. Let f : E → R∪{+∞} be a convex and Gâteaux differentiable function.
The function f is called

(i) totally convex at x if its modulus of totally convexity at x ∈ int(domf), that is, the
bifunction vf : int(domf)× [0,+∞)→ [0,+∞), defined by

vf (x, t) := inf{Df (y, x) : y ∈ domf, ||y − x|| = t}, (2.5.2)

is positive for any t > 0,

(ii) totally convex if it is totally convex at every point x ∈ int(dom f),

(iii) totally convex on bounded subset B of E, if vf (B, t) is positive for any nonempty
bounded subset B, where the function vf : int(dom f)×[0,+∞)→ [0,+∞] is defined
by

vf (B, t) := inf{vf (x, t) : x ∈ B ∩ int(domf)}, t > 0. (2.5.3)

For further details and examples on totally convex functions, see [38, 58, 59].

Definition 2.5.3. [58, 216] Let f : E → R∪{+∞} be a convex and Gâteaux differentiable
function. The function f is called

(i) cofinite if domf ∗ = E∗,

(ii) coercive if lim
||x||→+∞

∣∣∣f(x)
||x||

∣∣∣ = +∞,
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(iii) sequentially consistent if for any two sequences {xn} and {yn} in E such that {xn}
is bounded,

lim
n→∞

Df (yn, xn) = 0⇒ lim
n→∞

||yn − xn|| = 0. (2.5.4)

Definition 2.5.4. Let E be a Banach space and let Br := {z ∈ E : ||z|| ≤ r} for all
r > 0. Then, a function f : E → R is said to be uniformly convex on bounded subsets of
E if ρr(t) > 0 for all t > 0, where ρr : [0,+∞)→ [0,∞] is defined by

ρr(t) = inf
x,y∈Br,||x−y||=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(αx+ (1− α)y)

α(1− α)
. (2.5.5)

The function ρr is called the gauge of uniform convexity of f . More so, the function
f : E → R ∪ {+∞} is called strongly coercive if

lim
||x||→+∞

(f(x)

||x||
)

= +∞.

Definition 2.5.5. Let f : E → R∪{+∞} be a convex and Gâteaux differentiable function.
The Bregman projection of x ∈ int(domf) onto the nonempty, closed and convex subset
C ⊂ int(domf) is defined as the necessarily unique vector ProjfC(x) ∈ C satisfying

Df (Proj
f
C(x), x) = inf{Df (y, x) : y ∈ C}. (2.5.6)

It is known from [59] that z = ProjfC(x) if and only if

〈∇f(x)−∇f(z), y − z〉 ≤ 0 for all y ∈ C. (2.5.7)

We also have

Df (y, Proj
f
C(x)) +Df (Proj

f
C(x), x) ≤ Df (y, x) for all x ∈ E, y ∈ C. (2.5.8)

Lemma 2.5.2. [213] (Characterization of Bregman Projection): Let f be totally con-
vex on int(domf). Let C be a nonempty, closed and convex subset of int(domf) and
x ∈int(domf), if ω ∈ C, then the following conditions are equivalent:

(a) the vector ω is the Bregman projection of x onto C, with respect to f ,

(b) the vector ω is the unique solution of the variational inequality

〈∇f(x)−∇f(z), z − y〉 ≥ 0 ∀y ∈ C,

(c) the vector ω is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x) ∀y ∈ C.

Definition 2.5.6. Let T : C → C be a mapping, a point x∗ ∈ C is called an asymptotic
fixed point of T if C contains a sequence {xn}∞n=1 which converges weakly to x∗ and
limn→∞ ||xn − Txn|| = 0. The set of asymptotic fixed points of T is denoted by F̂ (T ).

28



Definition 2.5.7. Let C be a nonempty, closed and convex subset of E. A mapping
T : C → int(dom f) is called

1. Bregman Firmly Nonexpansive (BFNE for short) if

〈∇f(Tx)−∇f(Ty), Tx− Ty〉 ≤ 〈∇f(x)−∇f(y), Tx− Ty〉 ∀x, y ∈ C. (2.5.9)

2. Bregman Strongly Nonexpansive (BSNE) with respect to a nonempty F̂ (T ) if

Df (p, Tx) ≤ Df (p, x), (2.5.10)

for all p ∈ F̂ (T ) and x ∈ C and if whenever {xn}∞n=1 ⊂ C is bounded, p ∈ F̂ (T ) and

lim
n→∞

(
Df (p, xn)−Df (p, Txn)

)
= 0,

it follows that

lim
n→∞

Df (Txn, xn) = 0.

3. Bregman Relative Nonexpansive (BRNE) if F (T ) 6= ∅,

Df (p, Tx) ≤ Df (p, x) ∀ x ∈ C, p ∈ F (T ) and F̂ (T ) = F (T ). (2.5.11)

4. Quasi-Bregman Nonexpansive (QBNE) if F (T ) 6= ∅ and

Df (p, Tx) ≤ Df (p, x) ∀x ∈ C, p ∈ F (T ). (2.5.12)

From the Definition 2.5.1, it is clear that (2.5.9) is equivalent to

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x).(2.5.13)

We note that in the case where F̂ (T ) = F (T ), the following inclusion holds

BFNE ⊂ BSNE ⊂ BRNE ⊆ QBNE. (2.5.14)

It is worth noting that the duality mapping JEp is actually the derivative of the function
fp(x) = 1

p
||x||p for 2 ≤ p < ∞. If f = fp, then the Bregman distance with respect to fp

now becomes

Dp(x, y) =
1

q
||x||p − 〈JEp x, y〉+

1

p
||y||p (2.5.15)

=
1

p
(||y||p − ||x||p) + 〈JEp x, x− y〉

=
1

q
(||x||p − ||y||p)− 〈JEp x− JEp y, y〉.

For the p-uniformly convex Banach space E, the metric and Bregman distance has the
following relation (see [227])

τ ||x− y||p ≤ Dp(x, y) ≤ 〈x− y, JEp x− JEp y〉, (2.5.16)
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where τ > 0 is some fixed number.

Similar to the metric projection, we define the Bregman projection with respect to Dp as

ΠCx := argmin
y∈C

Dp(x, y),

for all x ∈ E, which is the unique minimizer of the Bregman distance. The Bregman
projection is also characterized by the variational inequality:

〈JEp (x)− JEp (ΠCx), z − ΠCx〉 ≤ 0. ∀ z ∈ C, (2.5.17)

which implies that

Dp(ΠCx, z) ≤ Dp(x, z)−Dp(x,ΠCx), (2.5.18)

for all z ∈ C.
Following [6, 66], we make use of the function Vp : E∗ × E → [0,∞), defined by

Vp(x, y) :=
1

q
||x||q − 〈x, y〉+

1

p
||y||p, ∀ x ∈ E∗, y ∈ E. (2.5.19)

Then Vp is nonnegative and Vp(x, y) = Dp(J
E∗
p (x), y) for all x ∈ E∗ and y ∈ E. Moreover,

by the subdifferential inequality

〈f ′(x), y − x〉 ≤ f(y)− f(x),

with f(x) = 1
q
||x||q and x ∈ E∗, then f ′(x) = JE

∗
q . Then we have

〈JE∗

q (x), y〉 ≤ 1

q
||x+ y||q − 1

q
||x||q, (2.5.20)

and from (2.5.20), we obtain

Vp(x
∗ + y∗, x) =

1

q
||x∗ + y∗||q − 〈x∗ + y∗, x〉+

1

q
||x||p

≥ 1

q
||x∗||q + 〈y∗, JE∗

p (x∗)〉 − 〈x∗ + y∗, x〉+
1

q
||x||p

=
1

q
||x∗||q − 〈x∗, x〉+

1

p
||x||p + 〈y∗, JE∗

p (x∗)〉 − 〈y∗, x〉

=
1

q
||x∗||q − 〈x∗, x〉+

1

p
||x||p + 〈y∗, JE∗

p (x∗)− x〉

= Vp(x
∗, x) + 〈y∗, JE∗

p (x∗)− x〉, (2.5.21)

for all x ∈ E and x∗, y∗ ∈ E∗. In addition, Vp is convex in the first variable. Thus, for all
z ∈ E,

Dp(J
E∗

q

N∑
i=1

tiJ
E
p (xi), w) ≤

N∑
i=1

tiDp(xi, w), (2.5.22)
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where {xi} ⊂ E and {ti} ⊂ (0, 1) with
N∑
i=1

ti = 1.

Another important distance function we used in the thesis is the Lyapunov functional φ
on E × E defined by (see [6])

φ(x, y) = ||x||2 − 2〈x, J(y)〉+ ||y||2, ∀ x, y ∈ E. (2.5.23)

It is easy to see from the definition of φ that if E = H a real Hilbert space, φ(x, y) =
||x− y||2.

Proposition 2.5.3. The following properties clearly follows from the definition of φ :

D1. (||x|| − ||y||)2 ≤ φ(y, x) ≤ (||x||+ ||y||)2,

D2. φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉,

D3. for all x, y, z ∈ E and α ∈ (0, 1)

φ(x, J−1(αJy + (1− α)Jz)) ≤ αφ(x, y) + (1− α)φ(x, z).

We also note the following important relation.

Proposition 2.5.4. [191] Let E be a 2-uniformly convex and smooth Banach space. Then
for every x, y ∈ E,

φ(x, y) ≥ c1||x− y||2, (2.5.24)

where c1 > 0 is the 2-uniformly convexity constant of E.

Let E be a smooth, strictly convex and reflexive real Banach space and let C be a
nonempty, closed and convex subset of E. Following Alber [6], the generalized projec-
tion ΠC from E onto C is defined by

ΠC(x) := argmin
y∈C

φ(y, x), ∀ x ∈ E.

The existence and uniqueness of ΠC follows from the property of the functional φ(x, y)
and strict monotonicity of the mapping J (see, for instance [6, 244]). If E is a Hilbert
space, then ΠC is the metric projection of H onto C.

Lemma 2.5.5. [Characterization of Generalized Projection [6, 143]] Let E be a smooth,
strictly convex and reflexive Banach space and C be a nonempty closed and convex subset
of E. Then the following hold:

(a) φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), for all x ∈ C, y ∈ E,

(b) z = ΠCx⇔ 〈z − y, Jx− Jz〉 ≥ 0, for all y ∈ C.

Definition 2.5.8. A mapping S : C → C is said to be
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(i) φ−nonexpansive if
φ(Sy, Sx) ≤ φ(y, x), ∀ x, y ∈ C,

(ii) φ−quasi-nonexpansive if F (S) 6= ∅ and

φ(p, Sx) ≤ φ(p, x), ∀ x ∈ C, p ∈ F (S),

(iii) φ−relatively nonexpansive if F (S) 6= ∅,

φ(p, Sx) ≤ φ(p, x), ∀ x ∈ C, p ∈ F (S) and F (S) = F̂ (S).

Following Alber [6], we make use of the mapping V : E × E∗ → [0,∞) defined by

V (x, x∗) = ||x||2 − 2〈x, x∗〉+ ||x∗||2, (2.5.25)

for all x ∈ E and x∗ ∈ E∗. In other words, V (x, x∗) = φ(x, J−1(x∗)) for all x ∈ E and
x∗ ∈ E∗.

Lemma 2.5.6. [6] Let E be a reflexive, strictly convex and smooth Banach space, and let
V be as defined in (2.5.25). Then

V (x, x∗) + 2〈J−1(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗), (2.5.26)

for all x ∈ E and x∗, y∗ ∈ E∗

Remark 2.5.7. For a real Banach space E, the resolvent operator RM
λ associated with M

for λ > 0 is given as

RM
λ (x) := {z ∈ E : JEp x ∈ JEp z + λM(z)}.

Equivalently, RM
λ := (JEp + λM)−1JEp . RM

λ is single valued and also M−10 = F (RM
λ ) (see

Section 5 in [245]). It is well known that RM
λ is relative nonexpansive, that is

0 ≤ 〈RM
λ (x)−RM

λ (y), JEp (x)− JEp (RM
λ (x))− (JEp y −RM

λ (y))〉, (2.5.27)

for all x, y ∈ E; see Theorem 5.2 of [245]. Also, for any x ∈ E, u ∈ T−1(0) and λ > 0, we
have (see [213])

Dp(x,RλTx) +Dp(RλTx, u) ≤ Dp(x, u). (2.5.28)

2.6 Some other Important Results

In this section, we state some other important results which will be used in the sequel.

The following lemma is well known in Hilbert space; see for instance [22, 115].

Lemma 2.6.1. Let H be a real Hilbert space. Then the following hold: for all x, y ∈ H,

(i) ||x+ y||2 ≤ ||y||2 + 2〈x, x+ y〉,
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(ii) ||x− y||2 = ||x||2 + ||y||2 − 2〈x, y〉,

(iii) ||αx+ (1− α)y||2 = α||x||2 + (1− α)||y||2 − α(1− α)||x− y||2, for α ∈ [0, 1).

The following can easily be proved using Lemma 2.6.1 (ii).

Lemma 2.6.2. Let H be a real Hilbert space and a, b, c, d ∈ H. Then

〈a− b, c− d〉 =
1

2

(
||a− d||2 − ||a− c||2

)
+

1

2

(
||c− b||2 − ||d− b||2

)
.

Lemma 2.6.3. [79] Let H be a real Hilbert space, xi ∈ H, (1 ≤ i ≤ m) and {αi} ⊂ (0, 1)

with
m∑
i=1

αi = 1. Then the following identity holds:

∥∥∥ m∑
i=1

αixi

∥∥∥2

=
m∑
i=1

αi||xi||2 −
m∑

i,j=1,i 6=j

αiαj||xi − xj||2. (2.6.1)

Lemma 2.6.4 (see [122]). Let {hi}mi=1 be a finite family of convex functions defined on
H such that their level set is defined by Ci = {x ∈ H : hi(x) ≤ 0}, i = 1, 2, . . . , N , with
nonempty intersection. Let D = {x ∈ H :

∑m
i=1 βih

i(x) ≤ 0} with {βi}mi=1 ⊂ (0, 1) such
that

∑m
i=1 βi = 1. Then, the following properties are satisfied:

(i) If each Ci is a half space, i.e., hi(x) = 〈x, vi〉 − di with di ∈ R and vi ∈ H such that
vi 6= 0, in addition, if the vector group {vi}mi=1 is also linearly independent, then D
is a half space;

(ii) D is a closed ball if each Ci is a closed ball;

(iii) D is a closed ball if Ci is a closed ball or a half space and at least one of them is a
closed ball.

Lemma 2.6.5 (Demiclosedness principle in Hilbert spaces [115]). Let C be a closed and
convex subset of a Hilbert space H and T : C → C be a nonexpansive mapping with
F (T ) 6= ∅. If {xn} is a sequence in C weakly converging to p and if {(I−T )xn} converges
strongly to q, then (I − T )p = q. In particular, if q = 0, then p ∈ F (T ).

Lemma 2.6.6 (Demiclosedness principle in Banach spaces [242]). Let C be a nonempty
closed and convex subset of a q-uniformly smooth real Banach space E which admits weakly
sequentially continuous generalized duality mapping jp from E into E∗. Let T : C → C
be a nonexpansive mapping. Then, for all {xn} ⊂ C, if xn ⇀ x and xn − Txn → 0, then
x = Tx.

Lemma 2.6.7. [143] Let E be a uniformly convex and uniformly smooth real Banach space
and {xk}, {yk} be sequences in E such that either {xk} or {yk} is bounded. If

lim
k→∞

φ(xk, yk) = 0,

then lim
k→∞
||xk − yk|| = 0.
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Lemma 2.6.8. [268] Let E be a uniformly convex real Banach space. Let r > 0, then
there exists a strictly increasing continuous and convex function g : [0,∞) → [0,∞) such
that g(0) = 0 and the following inequality holds:

||λx+ (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 + λ(1− λ)g(||x− y||), (2.6.2)

for all x, y ∈ Br(0), where Br(0) := {v ∈ E : ||v|| ≤ r} and λ ∈ [0, 1].

Definition 2.6.1 (see [161, 180]). The Minty Variational Inequality Problem (MVIP) is
defined as finding a point x̄ ∈ C such that

〈Ay, y − x̄〉 ≥ 0, ∀y ∈ C. (2.6.3)

We denote by M(C,A), the set of solution of (2.6.3). Some existence results for the MVIP
has been presented in [161]. Also, the assumption that M(C,A) 6= ∅ has already been used
for solving ΩV IP in finite dimensional spaces (see e.g [235]). It is not difficult to prove that
pseudo-monotonicity implies property M(C,A) 6= ∅, but the converse is not true. Indeed,
let A : R→ R be defined by A(x) = cos(x) with C = [0, π

2
]. We have that ΩV IP = {0, π

2
}

and M(C,A) = {0}. But if we take x = 0 and y = π
2

in Definition 2.1.14(d), we see that
A is not pseudo-monotone.

Lemma 2.6.9 (see [180]). Consider the VIP (1.1.1). If the mapping h : [0, 1]→ E∗ defined
as h(t) = A(tx+ (1− t)y) is continuous for all x, y ∈ C (i.e., h is hemicontinuous), then
M(C,A) ⊂ ΩV IP . Moreover, if A is pseudo-monotone, then ΩV IP is closed, convex and
ΩV IP = M(C,A).

Lemma 2.6.10. [136] Let f be a totally convex and Gâteaux differentiable such that
domf = E. Then for all x∗ ∈ E∗ \ {0}, ỹ ∈ E, x ∈ H+ and x̄ ∈ H−, it holds that

Df (x̄, x) ≥ Df (x̄, z) +Df (z, x),

where z = argminy∈HDf (y, x) and H = {y ∈ E : 〈x∗, y − ỹ〉 = 0}, H+ = {y ∈ E :
〈x∗, y − ỹ〉 ≥ 0} and H− = {y ∈ E : 〈x∗, y − ỹ〉 ≤ 0}.

The following lemma was proved in Rn in [104] and it can easily be extended to a real
Banach space.

Lemma 2.6.11. Let E be a uniformly convex and uniformly smooth Banach space and C
be a nonempty closed and convex subset of E. For any x ∈ E and β > 0, we denote

rβ(x) := x− ΠCJ
−1(Jx− βAx), (2.6.4)

then
min{1, β}||r1(x)|| ≤ ||rβ(x)|| ≤ max{1, β}||r1(x)||.

Lemma 2.6.12. [165] Let H be a real Hilbert space. Let T : H → 2H be a maximal
monotone operator and S : H → H be an α-inverse strongly monotone mapping on H.
Define Kr := (I + rT )−1(x− rSx), r > 0, then we have

F (Kr) = (S + T )−1(0), (2.6.5)

where F (Kr) denotes the set of fixed points of Kr. Also, note that Kr is nonexpansive and
F (Kr) is closed and convex.
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Lemma 2.6.13. [86] Let H be a real Hilbert space and B : H → 2H be a set-valued
maximal monotone operator. For each x ∈ H, λ > 0 and JBλ (x) = (I + λB)−1(x), then

(i) JBλ is single-valued and firmly nonexpansive;

(ii) D(JBλ ) = H and Fix(JBλ ) = {x ∈ H : 0 ∈ B(x)};

(iii) ||x− JBλ x|| ≤ ||x− JBγ || for all 0 < λ < γ, x ∈ H;

(iv) Suppose B−1(0) 6= ∅. Then ||x− JBλ x||2 + ||JBλ x− y∗||2 ≤ ||x− y∗||2 for each x ∈ H
and y∗ ∈ B−1(0);

(v) Suppose B−1(0) 6= ∅. Then 〈x− JBλ x, JBλ x− y〉 ≥ 0 for each x ∈ H and y ∈ B−1(0).

Lemma 2.6.14. [223] Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and let f : E → R be a strictly convex and Gâteaux differentiable function.
Let g : C × C → R be a bifunction satisfying conditions (A1)-(A4). For all λ > 0 be any
given number and x ∈ E, there exists z ∈ C such that

g(z, y) +
1

r
〈∇(z)−∇(x), y − z〉 ≥ 0, ∀ y ∈ C. (2.6.6)

Define the resolvent mapping Tr : E → 2C as follows

Resfλ,g(x) = {z ∈ C : g(z, y) +
1

r
〈∇f(z)−∇f(x), y − z〉 ≥ 0, ∀ y ∈ C}, (2.6.7)

then, Resfλ,g has the following properties:

1. Resfλ,g is single-valued;

2. Resfλ,g is a firmly nonexpansive mapping, that is;

〈Resfλ,gz −Resfλ,gy,∇f(Resfλ,gz)−∇f(Resfλ,gy)〉
≤ 〈Resfλ,gz −Resfλ,gy,∇f(z)−∇f(y)〉 ∀z, y ∈ E; (2.6.8)

3. F (Resfλ,g) = ΩEP (g);

4. ΩEP (g) is closed and convex.

It is easy to see that the resolvent operator satisfies the following inequality: for all r > 0,
u ∈ EP (g) and x ∈ E, then

Df (x,Res
f
λ,gx) +Df (Res

f
λ,gx, u) ≤ Df (x, u). (2.6.9)

Lemma 2.6.15. [270] Let E be a uniformly smooth Banach space, C a closed nonempty
subset of E, T : C → C a nonexpansive mapping with F (T ) 6= ∅ and f : C → C a
contraction mapping. For each t ∈ (0, 1), define zt = tf(zt) + (1 − t)Tzt, then, {zt}
converges strongly to the unique fixed point x̄ of T as t → 0, where x̄ = QF (T )f(x̄) and
QF (T ) : C → F (T ) is the sunny nonexpansive retraction from C onto F (T ).
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Lemma 2.6.16. [181] Suppose q > 1. Then the following inequality holds:

ab ≤ 1

q
aq +

(q − 1

q

)
b

q
q−1

,

for arbitrary positive real numbers a, b.

Lemma 2.6.17. [75] Let E be a real Banach space. Then for all x, y ∈ E and jq(x+ y) ∈
Jq(x+ y), the following inequality holds:

||x+ y||q ≤ ||x||q + q〈y, jq(x+ y)〉. (2.6.10)

Lemma 2.6.18. [25] Let q > 1 and E be a real Banach space. Then the following are
equivalent:

(i) E is q-uniformly smooth.

(ii) There exists a constant cq (called the best q-uniformly smoothness constant) such
that for all x, y ∈ E,

||x+ y||q ≤ ||x||q + q〈y, Jq(x)〉+ cq||y||q, (2.6.11)

(iii) There exists a constant dq > 0 such that for all x, y ∈ E and α ∈ [0, 1],

||(1− α)x+ αy||q ≥ (1− α)||x||q + α||y||q − ωq(α)dq||x− y||q, (2.6.12)

where ωq(α) := αq(1− α) + α(1− α)q.

Lemma 2.6.19. [279] Let C be a nonempty closed and convex subset of a q-uniformly
smooth real Banach space E. Let T : C → C be a λ-strict pseudocontraction. For γ ∈ (0, 1),

define Sγx = (1 − γ)x + γTx. Then, as γ ∈ (0, a), a = min

{
1, ( qλ

cq
)

1
q−1

}
, Sγ : C → C is

nonexpansive and F (Sγ) = F (T ).

Lemma 2.6.20. [278] Let E be a real Banach space and C be a nonempty closed convex
subset of E. For each 1 ≤ i ≤ N, let Ti : C → C be a λi-strict pseudocontraction for some

0 ≤ λi < 1. Assume {ηi} is a sequence of positive numbers such that
N∑
i=1

ηi = 1. Then

N∑
i=1

ηiTi is a λ-strict pseudocontraction with λ = min{λi : 1 ≤ i < N}.
If in addition {Ti}Ni=1 has a common fixed point, then

F

(
N∑
i=1

ηiTi

)
= ∩Ni=1F (Ti).

Lemma 2.6.21. [193] Let r > 0 be a constant and let f : E → R be a continuous uniformly
convex function on bounded subsets of E. Then

f

(
∞∑
k=0

αkxk

)
≤

∞∑
k=0

αkf(xk)− αiαjρr(||xi − xj||), (2.6.13)

for all i, j ∈ N ∪ {0}, xk ∈ Br, αk ∈ (0, 1) and k ∈ N ∪ 0 with
∑∞

k=0 αk = 1, where ρr is
the gauge of uniform convexity of f .
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Lemma 2.6.22. [203] Let E be a real reflexive Banach space, let f : E → R ∪ {+∞}
be a proper semicontinuous function, then f ∗ : E∗ → R ∪ {+∞} is a proper weak∗ lower
semicontinuous and convex function. Thus, for all z ∈ E, one has

Df

(
z,∇f ∗(

N∑
i=1

ti∇f(xi))
)
≤

N∑
i=1

tiDf (z, xi). (2.6.14)

Lemma 2.6.23. [244] Let E be a reflexive Banach space, let f : E → R be a strong
coercive Bregman function and Vf : E × E∗ → [0,+∞) be defined by

Vf (x, x
∗) = f(x)− 〈x, x∗〉+ f ∗(x∗), x ∈ E, x∗ ∈ E∗, (2.6.15)

then the following assertions hold:

(i) Df (x,∇f(x∗)) = Vf (x, x
∗) for all x ∈ E and x∗ ∈ E∗,

(ii) Vf (x, x
∗) + 〈∇f ∗(x∗)− x, y∗〉 ≤ Vf (x, x

∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.
Lemma 2.6.24. [59] Let f : E → R∪{+∞} be a convex function whose domain contains
at-least two points. Then the following statements holds:

a. f is sequentially consistent if and only if it is totally convex on bounded subsets.

b. If f is lower semicontinuous, then f is sequential consistent if and only if it is uni-
formly convex on bounded subsets.

c. If f is uniformly strictly convex on bounded subsets, then it is sequentially consistent
and the converse implication holds when f is lower semicontinuous, Fréchet differ-
entiable on its domain, and the Fréchet derivative ∇f is uniformly continuous on
bounded subsets.

Remark 2.6.25. [216] If f is Fréchet differentiable and totally convex, then f is cofinite.

Lemma 2.6.26. [213] If f : E → R is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E∗.

Lemma 2.6.27. [216] Let A : E → 2E
∗

be a maximal monotone operator such that
A−1(0) 6= ∅ and the resolvent operator is defined by ResfA := (∇f +A)−1 ◦ ∇f . Then, for
all x ∈ E and q ∈ A−1(0), we have

Df (q, Res
f
rAx) +Df (Res

f
rAx, x) ≤ Df (q, x).

Lemma 2.6.28. [216] Let f : E → R be a Gâteaux differentiable and totally convex
function. If x0 ∈ E and the sequence {Df (xn, x0)} is bounded, then the sequence {xn} is
also bounded.

Lemma 2.6.29 (see Lemma 2.1 of [267]). Assume {sn} is a sequence of nonnegative real
numbers such that

sn+1 ≤ (1− αn)sn + αnδn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that
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(i)
∞∑
n=0

αn =∞,

(ii) lim sup
n→∞

δn ≤ 0 or
∞∑
n=0

|δnαn| <∞.

Then lim
n→∞

sn = 0.

Lemma 2.6.30 (see Lemma 2.5 of [269]). Let {an} be a sequence of nonnegative real
numbers satisfying the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 1,

where

(i) {αn} ⊂ [0, 1],
∞∑
n=1

αn =∞,

(ii) lim sup
n→∞

σn ≤ 0,

(iii) γn ≥ 0, (n ≥ 1) and
∞∑
n=1

γn <∞.

Then, an → 0 as n→∞.

Lemma 2.6.31 (see Lemma 3.1 of [169]). Let {αn} and {γn} be sequences of nonnegative
real numbers such that

αn+1 ≤ (1− δn)αn + βn + γn, n ≥ 1,

where {δn} is a sequence in (0, 1) and {βn} is a real sequence. Assume that
∞∑
n=0

βn < ∞.

Then, the following results hold:

(i) If βn ≤ δnM for some M ≥ 0, then {αn} is a bounded sequence.

(ii) If
∞∑
n=0

δn =∞ and lim sup
n→∞

βn
δn
≤ 0, then lim

n→∞
αn = 0.

Lemma 2.6.32 (see Lemma 2 of [207]). Let {vn} and {δn} be nonnegative sequences of
real numbers satisfying

vn+1 ≤ vn + δn

with
∑∞

n=1 δn < +∞. Then, the sequence {vn} is convergent.

Lemma 2.6.33 (see Lemma 1.3 of [228]). Let H be real Hilbert space, {an} be a sequence
of real numbers such that 0 < a < an < b < 1 for all n ≥ 1 and {vn}, {wn} be the sequences
in H such that

lim sup
n→∞

||vn|| ≤ c, lim sup
n→∞

||wn|| ≤ c, (2.6.16)

and for some c > 0,
lim sup
n→∞

||anvn + (1− an)wn|| = c.

Then limn→∞ ||vn − wn|| = 0.
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Lemma 2.6.34 (see Lemma 3.1 of [171]). Let {Γn} be a sequence of real numbers such
that there exists a subsequence {Γnj}j≥0 of {Γn} with Γnj < Γnj+1 for all j ≥ 0. Consider
the sequence of integers {τ(n)}n≥n0 defined by

τ(n) = max{k ≤ n : Γk < Γk+1}.

Then {τ(n)}n≥n0 is a non-decreasing sequence verifying lim
n→∞

τ(n) =∞, and for all n ≥ n0,

the following estimates hold:

Γτ(n) ≤ Γτ(n)+1, and Γn ≤ Γτ(n)+1.

Let l∞ be the Banach lattice of bounded real sequences with the supremum norm. It is
well known that there exists a bounded linear functional µ on l∞ such that the following
three conditions hold:

1. if {tn} in l∞ and tn ≥ 0 for every n ∈ N, then µ({tn}) ≥ 0,

2. if tn = 1 for every n ∈ N, then µ({tn}) = 1,

3. µ({tn+1}) = µ({tn}) for all {tn} in l∞.

Here, {tn+1} denotes the sequence (t2, t3, . . . , tn, tn+1, . . . ) in l∞. Such a functional µ is
called a Banach limit and the value of µ at {tn} in l∞ is denoted by µntn. Therefore,
condition (3) means µntn = µntn+1. If µ satisfies conditions (1) and (2), we call µ a mean
on l∞ (see, for example, [244] for more details).

Lemma 2.6.35. [132] Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E. Let f : E → R be strictly convex, continuous, strongly coercive, Gâteaux
differentiable, bounded and locally uniformly convex on E. Let T : C → C be a mapping.
Let {xn} be a bounded sequence of C and µ be a mean on l∞. Suppose that

µnDf (xn, T y) ≤ µnDf (xn, y) ∀y ∈ C.

Then T has a fixed point in C.
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CHAPTER 3

Inertial Algorithms and Optimization Problems

3.1 A Viscosity-Proximal Gradient Method with In-

ertial Extrapolation for Solving Minimization Prob-

lems in Hilbert Space

Consider the following Minimization Problem (shortly, MP)

minimize
{
g(x) + h(x)

}
, (3.1.1)

where h : H → R ∪ {+∞} is a proper, closed and convex function which is possibly
nonsmooth and g : H → R is a proper, closed, convex and continuously differentiable
function with gradient ∇g(·) which is Lipschitz continuous on H, i.e. there exists a
constant α > 0 such that

||∇g(x)−∇g(y)|| ≤ α||x− y||, ∀x, y ∈ H.

We shall assume that Problem (3.1.1) has a solution and denotes its set of solution by
ΩMP . One of the methods for approximating solutions of (3.1.1) is the Proximal Gradient
Method (PGM) which is given as follows: pick an initial point x1 ∈ H and compute

xn+1 = proxγnh(xn − γn∇g(xn)), n ≥ 1, (3.1.2)

where γn > 0 is a stepsize. When g ≡ 0 in (3.1.2), the PGM reduces to the classical
proximal point algorithm. The PGM can be shown to converge with rate O( 1

k
) when a

fixed stepsize γn = γ ∈ (0, 1
α

] is used (see [199, 90]). If α is unknown, the stepsize γn can
be found by using the line searching technique (see [25]). More so, if the condition

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2

α
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is satisfied, then the sequence {xn} generated by (3.1.2) converges weakly to a solution
in ΩMP . The PGM can as well be interpreted as a fixed point iteration. A point x∗ is a
solution of (3.1.1) if and only if it is a fixed point of the operator proxγh(I − γ∇g) (see
Section 4.2.1 in [199] and Proposition 3.2 in [269]).

When h = IC (the indicator function on a nonempty closed convex subset of H), the
PGM reduces to the well known Gradient Projection Algorithm (GPA) which is defined
as follows: for an initial guess x1 ∈ H,

xn+1 = PC(xn − γn∇g(xn)), n ≥ 1. (3.1.3)

The convergence of algorithm (3.1.3) depends on the behaviour of the gradient ∇g. It is
known that if ∇g is ν-strongly monotone operator, i.e. there exists ν > 0 such that

〈∇g(x)−∇g(y), x− y〉 ≥ ν||x− y||2, ∀ x, y ∈ C,

then, the operator PC(I−γ∇g) is a contraction; hence, the sequence {xn} defined by GPA
(3.1.3) converges strongly to a solution of (3.1.1). More general, if the sequence {γn} is
chosen to satisfy the property

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2ν

α2
,

then the sequence {xn} defined by (3.1.3) converges in norm to the unique solution of
(3.1.1). However, if the gradient ∇g fails to be strongly monotone, then the operator
PC(I − γ∇g) would fail to be a contraction. Consequently, the sequence {xn} generated
by (3.1.3) may fail to converge strongly (see Section 4 in [266]).

Recently, Xu [266] gave an alternative operator-oriented approach to the GPA (3.1.3). He
also constructed a counter-example which shows that the GPA does not converge in norm
in an infinite-dimensional space. He however, presented two modifications of the GPA
which are shown to have strong convergence. Very recently, motivated by the work of Xu
[266], Ceng et al. [62] proposed the following implicit algorithm:

xk = PC(αkγV xk + (1− αkµB)Tkxk),

and explicit formula

xn+1 = PC(αnγV xn + (1− αµB)Tnxn)

for finding the approximate minimizer of a constrained convex minimization problem and
prove that the sequence generated by their algorithms converge strongly to a solution of
the constrained convex minimization problem (see [62] for more details).

Also, Chembolle and Dossel [72] proved the weak convergence of the following modified
PGM with inertial extrapolation term in a real Hilbert space

xn = T (yn−1),

yn =
(
1− 1

tn+1

)
xn + 1

tn+1
un,

un = xn−1 + tn(xn − xn−1), n ≥ 1,

(3.1.4)
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equivalently, (3.1.4) can be written as

xn = T (yn−1),

yn = xn + αn(xn − xn−1), αn =
tn−1

tn+1

, for n ≥ 1,

where a > 2 is a positive real number, tn =
n+ a− 1

a
for all n ∈ N and Tx = proxγh(x−

γ∇g(x)).

Motivated by the works of Xu [266], Ceng et al. [62], Chembolle and Dossel [72], in Section
3.1, we present a viscosity-inertial proximal gradient algorithm for finding approximate so-
lution of the convex minimization problem (3.1.1) in a real Hilbert space. We also establish
a strong convergence theorem and provide some applications and numerical examples to
show the relevance of our results in this section.

3.1.1 Main results

First, we prove the following lemma which plays a crucial role in the proof of the main
theorem.

Lemma 3.1.1. Assume that the minimization problem (3.1.1) is consistent and gradient
∇g is Lipschitz continuous with Lipschitz constant L > 0. Let γ > 0 such that 0 < γ < 2

L
,

then the following inequality holds:

||proxγh(I − γ∇g)x− x||2 ≤ 2〈x− y, x− proxγh(I − γ∇g)x〉, (3.1.5)

for all x ∈ C and y ∈ ΩMP .

Proof. Since proxγh is firmly nonexpansive, then it is 1
2
-averaged. Also, the Lipschitz

condition on ∇g implies that ∇g is 1
L

-ism and by Lemma 2.1.9(ii), γ∇g is 1
γL

-ism. Hence,

by Lemma 2.1.9(iii), we have that I−γ∇g is γL
2

-averaged. It follows from Lemma 2.1.8(ii)

that the proxγh(I − γ∇g) is averaged with constant 2+γL
4

. In particular, proxγh(I − γ∇g)
is nonexpansive. Then, for any x ∈ C and y ∈ ΩMP , we have

||proxγh(I − γ∇g)x− y||2 = ||proxγh(I − γ∇g)x− proxγh(I − γ∇g)y||2
≤ ||x− y||2
= 〈x− y, x− proxγh(I − γ∇g)x+ proxγh(I − γ∇g)x− y〉
= 〈x− y, x− proxγh(I − γ∇g)x〉

+ 〈x− y, proxγh(I − γ∇g)x− y〉.

This implies that

〈proxγh(I − γ∇g)x− x, proxγh(I − γ∇g)x− y〉 ≤ 〈x− y, x− proxγh(I − γ∇g)x〉.

Thus

〈proxγh(I − γ∇g)x− x, proxγh(I − γ∇g)x− x+ x− y〉 ≤ 〈x− y, x− proxγh(I − γ∇g)x〉,
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which gives that

〈proxγh(I − γ∇g)x− x, proxγh(I − γ∇g)x− x〉 ≤ 〈x− y, x− proxγh(I − γ∇g)x〉
+〈x− y, x− proxγh(I − γ∇g)x〉,

therefore

||proxγh(I − γ∇g)x− x||2 ≤ 2〈x− y, x− proxγh(I − γ∇g)x〉.

Next, we present our iterative algorithm and prove its strong convergence to the solution
of MP (3.1.1).

Theorem 3.1.2. Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let g, h : H → R ∪ {+∞} be two proper convex lower semicontinuous functions such
that h is nonsmooth and the gradient ∇g is 1

L
-ism with L > 0. Let f : C → C be a Meir

Keeler contraction mapping, B : C → H be a strongly positive bounded linear operator
with coefficient τ > 0 such that 0 < ξ < τ

2
and T : C → C be a δ-demimetric mapping for

δ ∈ (−∞, 1) and F̂ (T ) = F (T ). Suppose Γ = ΩMP ∩F (T ) 6= ∅, let αn ∈ [0, 1], βn ∈ [0, 1),
wn, θn ∈ (0, 1) and γn > 0. Choose initial points x0, x1 ∈ H arbitrarily and let {xn}, {yn}
and {un} be generated by

yn = xn + βn(xn − xn−1),

un = (1− wn)yn + wnproxγnh(yn − γn∇g(yn)),

xn+1 = PC

(
αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun

)
, n ≥ 1,

(3.1.6)

where Tλn = (1 − λn)I + λnT for λn ∈ (0, 1). Assume that the following conditions are
satisfied:

(C1) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞,

(C2) lim
n→∞

βn
αn
||xn − xn−1|| = 0,

(C3) 0 < lim inf
n→∞

wn ≤ lim sup
n→∞

wn < 1,

(C4) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2
L

,

(C5) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1− δ.

Then, {xn} converges strongly to a point x̄, where x̄ = PΓ(I − B + ξf)(x̄) is the unique
solution of the variational inequality

〈(B − ξf)x̄, x̄− y〉 ≤ 0, y ∈ Γ. (3.1.7)
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Proof. Firstly, we show that {xn} is bounded. Let ε > 0 and x∗ ∈ Γ, since f is a Meir-
Keeler contraction, there exists ρε ∈ (0, 1) (by Lemma 2.1.12) such that

||f(xn)− f(x∗)|| ≤ ρε||xn − x∗||. (3.1.8)

From (3.1.6), we have

||yn − x∗|| = ||xn − x∗ + βn(xn − xn−1)||
≤ ||xn − x∗||+ βn||xn − xn−1||. (3.1.9)

Also

||un − x∗||2 = ||(1− wn)yn + wnproxγnh(I − γn∇g)yn − x∗||2
= ||(yn − x∗) + wn(proxγnh(I − γn∇g)yn − yn)||2
= ||yn − x∗||2 + 2wn〈yn − x∗, proxγnh(I − γn∇g)yn − yn〉

+w2
n||proxγnh(I − γn∇g)yn − yn||2. (3.1.10)

Using Lemma 3.1.1, we have that

||un − x∗||2 ≤ ||yn − x∗||2 − wn(1− wn)||proxγnh(I − γn∇g)yn − yn||2
≤ ||yn − x∗||2. (3.1.11)

Moreover, from the definition of δ-demimetric maps (2.1.15), we have

||Tλnun − x∗||2 = ||(un − x∗) + λn(Tun − un)||2
= ||un − x∗||2 − 2λn〈un − x∗, un − Tun〉+ λ2

n||un − Tun||2
≤ ||un − x∗||2 − λn(1− δ)||un − Tun||2 + λ2

n||un − Tun||2
= ||un − x∗||2 − λn(1− δ − λn)||un − Tun||2, (3.1.12)

and by condition (C5), we get

||Tλnun − x∗||2 ≤ ||un − x∗||2. (3.1.13)

Thus, we have from (3.1.6) that

||xn+1 − x∗|| = ||PC(αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun)− PCx∗||
≤ ||αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun − x∗||
= ||αn(ξf(xn)−Bx∗) + θn(xn − x∗) + ((1− θn)I − αnB)(Tλnun − x∗)||
≤ αn(ξ||f(xn)− f(x∗)||+ ||ξf(x∗)−Bx∗||) + θn||xn − x∗||

+((1− θn)I − αnτ)||Tλnun − x∗||
≤ αnξρε||xn − x∗||+ αn||ξf(x∗)−Bx∗||+ θn||xn − x∗||

+((1− θn)I − αnτ)||un − x∗||
≤ αnξρε||xn − x∗||+ αn||ξf(x∗)−Bx∗||+ θn||xn − x∗||

+((1− θn)I − αnτ)[||xn − x∗||+ βn||xn − xn−1||]
= (1− αn(τ − ξρε))||xn − x∗||+ αn||ξf(x∗)−Bx∗||

+((1− θn)I − αnτ)βn||xn − xn−1||

= (1− αn(τ − ξρε))||xn − x∗||+ αn(τ − ξρε)
{ξf(x∗)−Bx∗||

τ − ξρε
+

((1− θn)I − αnτ)βn||xn − xn−1||
αn(τ − ξρε)

}
. (3.1.14)
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Putting

σn =
((1− θn)I − αnτ

τ − ξρε

)βn
αn
||xn − xn−1||,

from condition (C2), it is easy to see that lim
n→∞

σn = 0, which implies that the sequence

{σn} is bounded. Let

M = max
{ ||ξf(x∗)−Bx∗||

τ − ξρε
, sup
n∈N

σn

}
,

by using Lemma 2.6.31(i) and (3.1.14), we have that the sequence {||xn−x∗||} is bounded.
This shows that {xn} is bounded and consequently, {un} and {yn} are bounded.

Note that

||yn − x∗||2 = ||xn − x∗ + βn(xn − xn−1)||2
= ||xn − x∗||+ 2βn〈xn − x∗, xn − xn−1〉+ β2

n||xn − xn−1||2. (3.1.15)

From Lemma 2.6.1(ii), we have

2〈xn − x∗, xn − xn−1〉 = ||xn − x∗||2 + ||xn − xn−1||2 − ||xn−1 − x∗||2, (3.1.16)

substituting (3.1.16) into (3.1.15), we get

||yn − x∗||2 = ||xn − x∗||2 + βn

[
||xn − x∗||2 + ||xn − xn−1||2 − ||xn−1 − x∗||2

]
+β2

n||xn − xn−1||2
≤ ||xn − x∗||2 + βn[||xn − x∗||2 − ||xn−1 − x∗||2]

+2βn||xn − xn−1||2. (3.1.17)

Now, put mn = αnξf(xn) + θnxn + ((1 − θn)I − αnB)Tλnun, using Lemma 2.6.1(i) and
(3.1.6), we have

||xn+1 − x∗||2 ≤ ||αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun − x∗||2
= ||αn(ξf(xn)−Bx∗) + θn(xn − x∗) + ((1− θn)I − αnB)(Tλnun − x∗)||2
≤ ||((1− θn)I − αnB)(Tλnun − x∗) + θn(xn − x∗)||2

+2αn〈ξf(xn)−Bx∗,mn − x∗〉
= ||((1− θn)I − αnB)(Tλnun − x∗)||2 + θ2

n||xn − x∗||2

+2θn

〈
((1− θn)I − αnB)(Tλnun − x∗), xn − x∗

〉
+2αn〈ξf(xn)−Bx∗,mn − x∗〉

≤ ((1− θn)I − αnτ)2||Tλnun − x∗||2 + θ2
n||xn − x∗||2

+2θn((1− θn)I − αnτ)||Tλnun − x∗||||xn − x∗||
+2αn〈ξf(xn)−Bx∗,mn − x∗〉

≤ ((1− θn)I − αnτ)2||Tλnun − x∗||2 + θ2
n||xn − x∗||2

+θn((1− θn)I − αnτ)[||Tλnun − x∗||2 + ||xn − x∗||2]

+2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ ((1− θn)I − αnτ)||Tλnun − x∗||2 + θn||xn − x∗||2

+2αn〈ξf(xn)−Bx∗,mn − x∗〉. (3.1.18)
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Thus, from (3.1.13) and (3.1.17), we have

||xn+1 − x∗||2 ≤ ((1− θn)I − αnτ)[||un − x∗||2 − λn(1− λn − δ)||un − Tun||2]

+θn||xn − x∗||2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ ((1− θn)I − αnτ)

{
||xn − x∗||2 + βn[||xn − x∗||2 − ||xn−1 − x∗||2]

+2βn||xn − xn−1||2
}
− λn(1− λn − δ)||un − Tun||2 + θn||xn − x∗||2

+2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ (1− αnτ)||xn − x∗||2 + βn[||xn − x∗||2 − ||xn−1 − x∗||2]

+2βn||xn − xn−1||2 − λn(1− λn − δ)||un − Tun||2
+2αn〈ξf(xn)−Bx∗,mn − x∗〉. (3.1.19)

Now we set Dn = ||xn − x∗||2 and consider the following two cases.
Case 1: Suppose there exists a natural number N such that Dn+1 ≤ Dn for all n ≥ N. In
this case, {Dn} is convergent. Since {xn} is bounded, it is easy to see that condition (C2)
implies βn||xn − xn−1|| → 0.

From (3.1.19), we have

λn(1− λn − δ)||un − Tun||2
≤ (1− αnτ)||xn − x∗||2 − ||xn+1 − x∗||2 + βn[||xn − x∗||2 − ||xn−1 − x∗||2]

+ 2βn||xn − xn−1||2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉
= (Dn −Dn+1) + βn(Dn −Dn−1) + 2βn||xn − xn−1||2
− αnτDn + 2αn〈ξf(xn)−Bx∗,mn − x∗〉.

Since {Dn} is convergent and αn → 0, we have

lim
n→∞

λn(1− λn − δ)||un − Tun||2 = 0,

using condition (C5), we obtain

lim
n→∞

||un − Tun|| = 0. (3.1.20)

This implies that

lim
n→∞

||Tλnun − un|| = lim
n→∞

||(1− λn)un + λnTun − un||
= lim

n→∞
λn||un − Tun|| = 0. (3.1.21)

Also, from (3.1.11) and (3.1.19), we see that

||xn+1 − x∗||2 ≤ ((1− θn)I − αnτ)[||un − x∗||2 − λn(1− λn − δ)||un − Tun||2]

+θn||xn − x∗||2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ ((1− θn)I − αnτ)||un − x∗||2 + θn||xn − x∗||2

+2αn〈ξf(xn)−Bx∗,mn − x∗〉
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≤ ((1− θn)I − αnτ)[||yn − x∗||2 − wn(1− wn)||proxγnh(I − γn∇g)yn − yn||2]

+θn||xn − x∗||2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ ((1− θn)I − αnτ)

{
||xn − x∗||2 + βn[||xn − x∗||2 − ||xn−1 − x∗||2] + 2βn||xn − xn−1||2

}
−wn(1− wn)||proxγnh(I − γn∇g)yn − yn||2 + θn||xn − x∗||2
+2αn〈ξf(xn)−Bx∗,mn − x∗〉

≤ (1− αnτ)||xn − x∗||2 + βn[||xn − x∗||2 − ||xn−1 − x∗||2] + 2βn||xn − xn−1||2
−wn(1− wn)||proxγnh(I − γn∇g)yn − yn||2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉.

Therefore,

wn(1− wn)||proxγnh(I − γn∇g)yn − yn||2
≤ (1− αnτ)||xn − x∗||2 − ||xn+1 − x∗||2 + βn[||xn − x∗||2 − ||xn−1 − x∗||2]

+ 2βn||xn − xn−1||2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉
= (Dn −Dn+1) + βn(Dn −Dn−1) + 2βn||xn − xn−1||2 − αnτ ||xn − x∗||2

+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉.

Since {Dn} is convergent and αn → 0, we have that

lim
n→∞

wn(1− wn)||proxγnh(I − γn∇g)yn − yn||2 = 0,

and by using condition (C3), we obtain

lim
n→∞

||proxγnh(I − γn∇g)yn − yn|| = 0. (3.1.22)

Clearly
||yn − xn|| ≤ βn||xn − xn−1|| → 0, as n→∞, (3.1.23)

and
||un − yn|| ≤ wn||proxγnh(I − γn∇g)yn − yn|| → 0, as n→∞,

hence

lim
n→∞

||un − xn|| ≤ lim
n→∞

(||un − yn||+ ||yn − xn||) = 0. (3.1.24)

Also from (3.1.6), we have

lim
n→∞

||mn − un|| ≤ lim
n→∞

(
αn||ξf(xn)−Bun||+ θn||xn − un||

+((1− θn)I − αnτ)||Tλnun − un||
)

= 0,

then from (3.1.24), we have

||mn − xn|| ≤ ||mn − un||+ ||un − xn|| → 0, as n→∞. (3.1.25)
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More so, by the firmly nonexpansivity of the PC and (2.2.3), we have that

||xn+1 − x∗||2 = ||PCmn − PCx∗||2
≤ ||mn − x∗||2 − ||PCmn −mn||2. (3.1.26)

Substituting (3.1.19) into (3.1.26), we get

||xn+1 − x∗||2 ≤ (1− αnτ)||xn − x∗||2 + βn[||xn − x∗||2 − ||xn−1 − x∗||2]

+2βn||xn − xn−1||2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉 − ||PCmn −mn||2,

therefore

||PCmn −mn||2 ≤ (1− αnτ)||xn − x∗||2 − ||xn+1 − x∗||2 + βn[||xn − x∗||2
−||xn−1 − x∗||2] + 2βn||xn − xn−1||2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉

= (Dn −Dn+1) + βn(Dn −Dn−1)− αnτ ||xn − x∗||2 + 2βn||xn − xn−1||2
+2αn〈ξf(xn)−Bx∗,mn − x∗〉,

then

lim
n→∞

||PCmn −mn|| = 0. (3.1.27)

Thus, we have from (3.1.25) and (3.1.27) that

lim
n→∞

||xn+1 − xn|| = lim
n→∞

(||xn+1 −mn||+ ||mn − xn||) = 0. (3.1.28)

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that xnj ⇀ x̄ ∈ C.
It follows from (3.1.23) and (3.1.24) that ynj ⇀ x̄ and unj ⇀ x̄ respectively. Since
proxγnh(I − γn∇g) is nonexpansive and limn→∞ ||yn − proxγnh(I − γn∇g)yn|| = 0, so by
the Demiclosedness principle (Lemma 2.6.5), we have that x̄ ∈ F (proxγnh(I − γn∇g)).
Hence, x̄ is a solution of the minimization problem (3.1.1), that is, x̄ ∈ ΩMP . Also,
since limn→∞ ||un − Tun|| = 0 and F̂ (T ) = F (T ), we have that x̄ ∈ F (T ). Therefore
x̄ ∈ Γ := ΩMP ∩ F (T ).

We now show that lim supn→∞〈(B − ξf)z, z − xn+1〉 ≤ 0, where z = PΓ(I − B + ξf)z.
Since xnj ⇀ x̄ and from (2.2.2), we have

lim sup
n→∞

〈(B − ξf)z, z − xn+1〉 = lim
j→∞
〈(B − ξf)z, z − xnj+1〉

= 〈(B − ξf)z, z − x̄〉 ≤ 0. (3.1.29)

Next, we show that xn → z as n→∞. From (2.2.2), (3.1.6) and (3.1.8), we have

||xnk+1 − z||2 = 〈PCmnk − z, PCmnk − z〉
= 〈PCmnk −mnk +mnk − z, PCmnk − z〉
= 〈PCmnk −mnk , PCmnk − z〉+ 〈mnk − z, xnk+1 − z〉
≤ 〈mnk − z, xnk+1 − z〉

48



= 〈αnkξf(xnk) + θnxnk + ((1− θnk)I − αnkB)Tλnkunk − z, xnk+1 − z〉
= αnk〈ξf(xnk)− ξf(z), xnk+1 − z〉+ αnk〈ξf(z)−B(z), xnk+1 − z〉

+θnk〈xnk − z, xnk+1 − z〉+ 〈((1− θnk)I − αnkB)(Tλnkunk − z), xnk+1 − z〉
≤ αnkξrε||xnk − z||||xnk+1 − z||+ θnk ||xnk − z||||xnk+1 − z||

+((1− θnk)I − αnkτ)||Tλnunk − z||||xnk+1 − z||
+αnk〈ξf(z)−Bz, xnk+1 − z〉

≤ αnkξrε||xnk − z||||xnk+1 − z||+ θnk ||xnk − z||||xnk+1 − z||
+((1− θnk)I − αnkτ)||unk − z||||xnk+1 − z||+ αnk〈ξf(z)−Bz, xnk+1 − z〉

≤ αnkξrε||xnk − z||||xnk+1 − z||+ θnk ||xnk − z||||xnk+1 − z||
+((1− θnk)I − αnkτ)[||xnk − z||+ βn||xnk − xnk−1||]||xnk+1 − z||
+αn〈ξf(z)−Bz, xnk+1 − z〉

= (1− αnk(τ − ξrε))||xnk − z||||xnk+1 − z||
+((1− θnk)I − αnkτ)βn||xnk − xnk−1||||xnk+1 − z||
+αnk〈ξf(z)−Bz, xnk+1 − z〉

≤ (1− αnk(τ − ξrε))
1

2
(||xnk − z||2 + ||xnk+1 − z||2)

+((1− θnk)I − αnkτ)βnk ||xnk − xnk−1||||xnk+1 − z||
+αnk〈ξf(z)−Bz, xnk+1 − z〉.

This implies that

||xnk+1 − z||2 ≤
(1− αnk(τ − ξrε))
1 + αnk(τ − ξrε)

||xnk − z||2 +
2((1− θnk)I − αnkτ)βnk

1 + αnk(τ − ξrε)
||xnk − xnk−1|| ×

||xnk+1 − z||+
2αnk

1 + αnk(τ − ξrε)
〈ξf(z)−Bz, xnk+1 − z〉

≤ (1− αnk(τ − ξrε))||xnk − z||2 +
2βnk

1 + αnk(τ − ξrε)
||xnk − xnk+1|| ×

||xnk+1 − z||+
2αnk

1 + αnk(τ − ξrε)
〈ξf(z)−Bz, xnk+1 − z〉

= (1− αnk(τ − ξrε))||xnk − z||2 +
2αn(τ − ξrε)

(1 + αnk × (τ − ξrε))(τ − ξrε)
×(βnk

αnk
||xnk − xnk−1||||xnk+1 − z||+ 〈ξf(z)−Bz, xnk+1 − z〉

)
= (1− pnk)||xnk − z||2 + pnkqnk , (3.1.30)

where pnk = αnk(τ − ξrε) and

qnk =

(
2||xnk+1 − z||

(1 + αnk(τ − ξrε))(τ − ξrε)

)
βnk
αnk
||xnk − xnk−1||

+
2

(1 + αnk(τ − ξrε))(τ − ξrε)
〈ξf(z)−Bz, xnk+1 − z〉. (3.1.31)

Applying Lemma 2.6.29 and using conditions (C1), (C2) and (3.1.29), we conclude that
the sequence {xnk} converges strongly to z. The contradiction permits us to conclude
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that xn → z, where z = PΓ(I − B + ξf)z which is the unique solution to the variational
inequality (3.1.7).

Case 2: Suppose there exists a subsequence {ni} of {n} such that Dni ≤ Dni+1 for all
i ∈ N. Then, by Lemma 2.6.34, there exists a non-decreasing sequence {mk} ⊂ N such
that mk → ∞, Dmk ≤ Dmk+1, for all k ∈ N. Let ε > 0 and ||xmk − x∗|| > ε, then, by
Lemma 2.1.12, there exists rε ∈ (0, 1) such that

||f(xmk)− f(x∗)|| ≤ rε||xmk − x∗||.

Following similar argument as in Case 1, we obtain ||ymk−proxγmkh(I−γmk∇g)ymk || → 0,
||umk − Tumk || → 0, ||umk − xmk || → 0 and ||xmk+1 − xmk || → 0 as k → ∞. Since {xmk}
is bounded, there exists a subsequence of {xmk} still denoted by {xmk} which converges
weakly to x̄. Suppose {xmk} is such that

lim sup
k→∞

〈ξf(x∗)−Bx∗, xmk+1 − x∗〉 = lim
k→∞
〈ξf(x∗)−Bx∗, xmk+1 − x∗〉.

It follows from Lemma (2.2.2) that

lim sup
k→∞

〈ξf(x∗)−Bx∗, xmk+1 − x∗〉 = lim
k→∞
〈ξf(x∗)−Bx∗, xmk+1 − x∗〉

= 〈ξf(x∗)−Bx∗, x̄− x∗〉 ≤ 0.

Hence
lim sup
k→∞

〈ξf(x∗)−Bx∗, xmk+1 − x∗〉 ≤ 0. (3.1.32)

Similarly as in (3.1.30), we obtain

||xmk+1 − x∗||2 ≤ (1− αmk(τ − ξrε))||xmk − x∗||2 +
2αmk

(1 + αmk(τ − ξrε))
×(βmk

αmk
||xmk − xmk+1||||xmk+1 − x∗||

+〈ξf(x∗)−Bx∗, xmk+1 − x∗〉
)
. (3.1.33)

Since Dmk ≤ Dmk+1, then from (3.1.33), we have

0 ≤ ||xmk+1 − x∗||2 − ||xmk − x∗||2

≤ (1− αmk(τ − ξrε))||xmk − x∗||2 +
2αmk

(1 + αmk(τ − ξrε))
× (3.1.34)(βmk

αmk
||xmk − xmk+1||||xmk+1 − x∗||+ 〈ξf(x∗)−Bx∗, xmk+1 − x∗〉

)
− ||xmk − x∗||2.

This implies that

αmk(τ − ξrε)||xmk − x∗||2 ≤
2αmk

(1 + αmk(τ − ξrε))
(βmk
αmk
||xmk − xmk+1||||xmk+1 − x∗||

+〈ξf(x∗)−Bx∗, xmk+1 − x∗〉
)
. (3.1.35)
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Hence, from condition (C2) and (5.2.32), we obtain

lim
n→∞

||xmk − x∗|| = 0. (3.1.36)

As a consequence, we obtain

||xmk+1 − x∗|| ≤ ||xmk+1 − xmk ||+ ||xmk − x∗|| → 0,

as n→∞. By Lemma 2.6.34, we have Dn ≤ Dmk+1 and thus

Dn = ||xn − x∗||2 ≤ ||xmk+1 − x∗||2 → 0, (3.1.37)

as n→∞. This implies that {xn} converges strongly to x∗. This complete the proof.

3.1.2 Applications.

In this subsection, we present some applications of Theorem 3.1.2.

1. Application to Monotone Variational Inequality Problem

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. The
Variational Inequality Problem (VIP) (1.1.1) is equivalent to finding a point x∗ ∈ C such
that (see [221])

0 ∈ (M +NC)x∗,

where NC is the normal cone operator of C and M : C → H is a monotone operator.
Note that the resolvent of the normal cone is the projection operator and that if M is
ν-ism, then the set ΩV IP is closed and convex. Also, if M : C → R ∪ {+∞} is a proper,
convex and lower semicontinuous function, then, the sugradient of M , i.e., ∂M is maximal
monotone operator (see [222]). Thus, setting M = g and NC = h in our Theorem 3.1.2,
we get the following strong convergence theorem for finding a common solution of VIP
(1.1.1) and fixed point of δ-demimetric mappings in a real Hilbert space.

Theorem 3.1.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Let M, : C → R ∪ {+∞} be a proper convex lower semicontinuous function such that the
gradient ∇M is 1

L
-ism with L > 0. Let f : C → C be a Meir Keeler contraction mapping,

B : C → H be a strongly positive bounded linear operator with coefficient τ > 0 such that
0 < ξ < τ

2
and T : C → C be a δ-demimetric mapping for δ ∈ (−∞, 1) and F̂ (T ) = F (T ).

Suppose Γ = ΩV IP ∩ F (T ) 6= ∅, let αn ∈ [0, 1], βn ∈ [0, 1), {wn} and {θn} are sequences
in (0, 1) and γn > 0. Choose initial points x0, x1 ∈ H arbitrarily and let {xn}, {yn} and
{un} be generated by

yn = xn + βn(xn − xn−1),

un = (1− wn)yn + wnproxγnh(yn − γn∇M(yn)),

xn+1 = PC [αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun], n ≥ 1,

(3.1.38)

where Tλn = (1 − λn)I + λnT for λn ∈ (0, 1). Assume that the following conditions are
satisfied:
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(C1) limn→∞ αn = 0 and
∑∞

n=1 αn =∞,

(C2) limn→∞
βn
αn
||xn − xn−1|| = 0,

(C3) 0 < lim infn→∞wn ≤ lim supn→∞wn < 1,

(C4) 0 < lim infn→∞ γn ≤ lim supn→∞ γn <
2
L

,

(C5) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1− δ.

Then, {xn} converges strongly to a point x̄, where x̄ = PΓ(I − B + ξf)(x̄) is the unique
solution of the variational inequality

〈(B − ξf)x̄, x̄− y〉 ≤ 0, y ∈ Γ. (3.1.39)

2. Application to Proximal Split Feasibility Problem

Let H1 and H2 be real Hilbert spaces, C and Q be nonempty closed and convex subset
of H1 and H2 respectively. Let R : H1 → R ∪ {+∞} and S : H2 → R ∪ {+∞} be
proper, convex and lower semicontinuous functions, and A : H1 → H2 be a bounded linear
operator. The Proximal Split Feasibility Problem (PSFP) is to find a point x∗ with the
property

x∗ ∈ argmin R such that Ax∗ ∈ argmin S, (3.1.40)

where
argmin S := {x ∈ H1 : S(x) ≤ S(y), ∀y ∈ H1},

and
argmin R := {u ∈ H2 : R(u) ≤ R(v), ∀v ∈ H2}.

We denote the solution set of the PSFP (3.1.40) by ΩPSFP . The PSFP was first introduced
by Moudafi and Thakur in [188]. By taking S = iC and R = iQ, the indicator functions on
C and Q respectively, the PSFP reduces to the Split Feasibility Problem (SFP) (1.1.9) in-
troduced by Censor and Elfving [66]. To solve the PSFP, it is very important to investigate
the following minimization problem: find a solution x∗ ∈ H1 such that

minimize
x∈H1

{R(x) + Sµ(Ax)}, (3.1.41)

where Sµ(y) = argmin
u∈H2

{S(u) +
1

2µ
||u− y||2} stands for the Moreau-Yosida approximation

of S with parameter µ [188]. By the differentiability of the Yosida approximation Sµ (see
[222]), we can add the subdifferentials and thus write

∂(R(x) + Sµ(Ax)) = ∂R(x) + A∗∇Sµ(Ax)

= ∂R(x) + A∗
(I − proxµS

µ

)
(Ax).

This implies that the optimality condition of (3.1.41) can then be written as

0 ∈ µ∂R(x) + A∗(I − proxµS)Ax, (3.1.42)
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where ∂R(x) stands for the subdifferential of R at x, i.e.

∂R(x) := {u ∈ H1 : R(y) ≥ R(x) + 〈u, y − x〉, ∀y ∈ H1}.

This inclusion in (3.1.42) yields the following equivalent fixed point formulation

proxγµR(I − γA∗(I − proxµS)A)x∗ = x∗. (3.1.43)

Hence, to solve (3.1.41), (3.1.43) suggest we consider the following split proximal algorithm:

xn+1 = proxγµR(xn − γnA∗(I − proxµS))Axn. (3.1.44)

Setting ∇g(x) = A∗(I − proxµS)Ax in Theorem 3.1.2, then ∇g is 1
ν
-ism with ν = ||A||

(see [55], Page 113). This implies that we can apply Theorem 3.1.2 to obtain solution of
PSFP in real Hilbert space. Thus, we give the following result which complement other
results in literature on finding solution of PSFP.

Theorem 3.1.4. Let C and Q be nonempty, closed and convex subsets of real Hilbert
spaces H1 and H2 respectively. Let A : H1 → H2 be a bounded linear operator, R : H1 →
R∪{+∞} and S : H2 → R∪{+∞} be two proper convex lower semicontinuous functions
such that Λ 6= ∅. Let f : C → C be a Meir Keeler contraction mapping, B : C → H be a
strongly positive bounded linear operator with coefficient τ > 0 such that 0 < ξ < τ

ρ
and

T : C → C be a δ-demimetric mapping for δ ∈ (−∞, 1). Suppose Γ = ΩPSFP ∩F (T ) 6= ∅,
let αn ∈ [0, 1], βn ∈ [0, 1), wn, θn ∈ (0, 1) and γn > 0. Choose initial points x0, x1 ∈ H1

arbitrarily and let {xn}, {yn} and {un} be generated by
yn = xn + βn(xn − xn−1),

un = (1− wn)yn + wnproxµnγnR(yn − γnA∗(I − proxµnS)Ayn),

xn+1 = PC [αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun], n ≥ 1,

(3.1.45)

where Tλn = (1 − λn)I + λnT for λn ∈ (0, 1). Assume that the following conditions are
satisfy:

(C1) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞,

(C2) lim
n→∞

βn
αn
||xn − xn−1|| = 0,

(C3) 0 < lim inf
n→∞

wn ≤ lim supn→∞wn < 1,

(C4) 0 < lim infn→∞ γn ≤ lim sup
n→∞

γn <
2
||A||2 ,

(C5) 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1− δ.

Then, {xn} converges strongly to a point x̄, where x̄ = PΓ(I − B + ξf)(x̄) is the unique
solution of the variational inequality

〈(B − ξf)x̄, x̄− y〉 ≤ 0, y ∈ Γ. (3.1.46)
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3.1.3 Numerical example

In this subsection, we give a numerical example by implementing our algorithm (3.1.45)
for solving PSFP (3.1.40).

Example 3.1.5. Let H1 = RN = H2 and S := ||.||2, the Euclidean norm on RN . It is
obvious that we can project onto the Euclidean unit ball Br as follows:

PBr(x) =

{
x
||x||2 , if ||x||2 > 1,

x, if ||x||2 ≤ 1.
(3.1.47)

In this case, the proximal operator is given by

proxS(x) =

{(
1− 1

||x||2

)
x, if ||x||2 ≥ 1,

0, if ||x||2 < 1.
(3.1.48)

This proximal operator is called the block soft thresholding. Also, let xi ∈ R, i =
1, 2, . . . , N . Define

ij(xj) = max
{
|xj| − 1, 0

}
, j = 1, 2, . . . , N,

and

R(x) =
N∑
j=1

ij(xj).

Then (see [90])

proxij(xj) =


xj, if |xj| < 1,

sign(xj), if 1 ≤ |xj| ≤ 2,

sign(xj − 1), otherwise,

(3.1.49)

and

proxR(x) =

(
proxi1(x1), proxi2(x2), . . . , proxiN (xN)

)
.

Suppose Ax = x ∈ RN . We consider the following PSFP:

find x∗ ∈ argmin R such that Ax∗ ∈ argmin S. (3.1.50)

Chosen αn =
1

n+ 1
, βn =

1

(n+ 1)3
, θn =

n

2(n+ 3)
, wn =

1

5(1 + 1
n
)

and λn =
n

2n+ 3
. Let

f(x) = x
2
, B(x) = x, T (x) = x

2
, ξ = 1, x0 = 0.5×randn(50, N) and x1 = 2×randn(50, N)

(randomly generated vectors in RN). Using
||xn+1 − xn||2
||x2 − x1||2

< 10−6 as the stopping criterion,

we consider various values of N and choices of γn as follows:

Case (i): N = 100, Case (ii): N = 500, Case (iii): N = 1000, Case (iv): N = 2000,

and

Choice (i): γn =
n

n+ 1
, Choice (ii) γn =

n

5n+ 7
, Choice (iii) γn = 0.7.

Remark 3.1.6. The numerical results (see Table 3.1 and Figures 3.1) show that there is no
significant change in the CPU time taken and the number of iterations for different values
of N and the stepsizes.
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Table 3.1: Table showing computation results for Example 3.1.5.

Choice (i) Choice (ii) Choice (iii)

Case (i) CPU time (sec) 0.0356 0.0399 0.0476
No. of Iter. 25 27 27

Case (ii) CPU time (sec) 0.2244 0.3913 0.5061
No. of Iter. 27 29 29

Case (iii) CPU time (sec) 0.4987 0.4095 0.5235
No. of Iter. 29 30 30

Case (iv) CPU time (sec) 1.0731 1.0912 0.8785
No. of Iter. 30 30 30

0 5 10 15 20 25 30 35 40

Iteration number (n)

0

1

2

3

4

5

6

||x
n+

1
-x

n
||

Choice 1
Choice 2
Choice 3

0 5 10 15 20 25 30 35 40

Iteration number (n)

0

2

4

6

8

10

12

||x
n+

1
-x

n
||

Choice 1
Choice 2
Choice 3

0 5 10 15 20 25 30 35 40

Iteration number (n)

0

2

4

6

8

10

12

14

16

18

||x
n+

1
-x

n
||

Choice 1
Choice 2
Choice 3

0 5 10 15 20 25 30 35 40

Iteration number (n)

0

5

10

15

20

25

||x
n+

1
-x

n
||

Choice 1
Choice 2
Choice 3

Figure 3.1: Example 3.1.5, Case (i); Case (ii), Case (iii); Case (iv).

3.2 A Self Adaptive Inertial Subgradient Extragra-

dient Algorithm for Variational Inequality and

Fixed Point of Multivalued Mappings in Hilbert

Spaces

In this section, we consider a new subgradient extragradient iterative algorithm with iner-
tial extrapolation for approximating a common solution of VIPs and fixed point problems
of a multivalued demi-contractive mapping in a real Hilbert space.

In 2011, Y. Censor, A. Gibali and S. Reich [69] studied the approximation of common
solution of a VIP and fixed point problem for a nonexpansive mapping. They proposed the
following Subgradient Extragradient Algorithm (SEM) with Halpern method and proved
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its weak convergence to a solution u∗ ∈ F (S) ∩ ΩV IP :
x0 ∈ H, µ > 0,

yn = PC (xn − µAxn) ,

Tn = 〈z ∈ H : 〈xn − µAxn − yn, z − yn〉 ≤ 0},
xn+1 = αnxn + (1− αn)SPTn(xn − µAyn).

(3.2.1)

Also, Thong and Hieu [256] proposed the following two algorithms for finding a common
element of the set of solutions of VIP and the fixed point of a demi-contractive mapping
in a real Hilbert space.

Algorithm 3.2.1 (THSEgM(I)).

x0 ∈ H,
yn = PC(xn − µAxn),

Tn = {x ∈ H : 〈xn − µAxn − yn, x− yn〉 ≤ 0},
zn = PTn(xn − µAyn),

xn+1 = (1− αn − βn)zn + βnSzn.

(3.2.2)

Algorithm 3.2.2 (THSEgM(II)).

x0 ∈ H,
yn = PC(xn − µAxn),

Tn = {x ∈ H : 〈xn − µAxn − yn, x− yn〉 ≤ 0},
zn = PTn (xn − µAyn) ,

xn+1 = (1− βn)αnzn + βnSzn,

(3.2.3)

where S : H → H is a λ-demi-contractive mapping with 0 ≤ λ < 1, and where {αn},
{βn} are sequences in (0, 1). Under suitable conditions on the parameters αn and βn, they
proved that the sequence {xn} generated by (3.2.2) and (3.2.3) converges strongly to a
solution p ∈ ΩV IP ∩ F (S).

Recently, Dong et al. [97] introduced the following inertial extragradient algorithm by
incorporating the inertial term in the extragradient method (1.1.2).

Algorithm 3.2.3 (Inertia Extragradient Algorithm (iEgA)).
wn = xn + αn(xn − xn−1),

yn = PC(wn − µF (wn)),

xn+1 = (1− λn)wn + λnPC(wn − µF (yn)),

(3.2.4)

where {αn} is a non-decreasing sequence with α1 = 0 and 0 ≤ αn ≤ α < 1 for any n ≥ 1
and λ, σ, δ > 0 are such that

δ >
α[(1 + µL)2α(1 + α) + (1− µ2L2)ασ + σ(1 + µL)2]

1− µ2L2

and

0 < λn ≤
δ(1− µ2L2)− α[(1 + µL)2α(1 + α) + (1− µ2L2)ασ + σ(1 + µL2)]

δ[(1 + µL)2α(1 + α) + (1− µ2L2)ασ + σ(1 + µL)2]
.
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Using the iEgA (3.2.4), Dong et al. [97] proved a weak convergence result for approximat-
ing the solution of the VIP (1.1.1) in a real Hilbert space.

Observe that the stepsize µ of the algorithms (3.2.1)-(3.2.4) plays an essential role in the
convergence properties of the iterative methods. The Lipschitz constant L is typically
assumed to be known, or at least estimated priorly. In many cases, this parameter is
unknown or difficult to approximate. Moreover, the stepsize defined by this constant is
often very small and deteriorates the convergence rate. In practice, a larger stepsize can
often be used and yield better numerical results. It is thus natural to ask the following
question:

Is it possible to have an inertial subgradient extragradient algorithm with self
adaptive stepsize which converges strongly to a common solution of a varia-
tional inequality and fixed point a problem?

It is our aim therefore to provide an affirmative answer to this question. Motivated by
the work of Censor et al [69], Thong and Hieu [256] and Dong et al. [97], we introduce an
inertial viscosity subgradient extragradient type algorithm with self adaptive stepsize.

3.2.1 Main results

In this subsection, we give a precise statement of our algorithm and discuss its strong
convergence analysis.

Let C be a nonempty, closed and convex subset of a real Hilbert space H and A : C → H be
a monotone and L-Lipschitz continuous mapping. For i = 1, 2, . . . ,m, let Si : H → CB(H)
be multivalued demi-contractive mappings with constant κi such that each I − Si are
demiclosed at zero, Si(p) = {p} for all p ∈ F (Si), and κ = max{κi}. Suppose

Γ = ΩV IP ∩
m⋂
i=1

F (Si) 6= ∅,

and let f : H → H be a λ-contraction with constant λ ∈ (0, 1). Let D be a bounded
operator with coefficient ρ > 0 such that 0 < ξ < ρ

λ
and let {εn}, {βn,i} and {δn} be

nonnegative sequences such that 0 < a ≤ εn, βn,i, δn ≤ b < 1, and let α ≥ 3.

Algorithm 3.2.4.

Step 0: Select initial guesses x0, x1 ∈ H and set n = 1.
Step 1: Given the (n− 1)th and nth iterates, choose αn such that we have 0 ≤ αn ≤ α̃n
with α̃n defined by

α̃n =

{
min

{
n−1

n+α−1
, εn
||xn−xn−1||

}
, if xn 6= xn−1,

n−1
n+α−1

, otherwise.
(3.2.5)

Step 2: Compute

un = xn + αn(xn − xn−1),

wn = PC(un − µnA(un)), (3.2.6)

57



where µn = σ̄δmn, σ̄ > 0, δ ∈ (0, 1) and mn is the smallest nonnegative integer such that

||A(un)− A(wn)|| ≤ η||un − wn||
µn

, η ∈ (0, 1). (3.2.7)

Step 3: Construct the set Qn defined by

Qn = {u ∈ H : 〈un − µnA(un)− wn, u− wn〉 ≤ 0},

and compute 
yn = PQn(un − µnA(wn)),

zn = βn,0yn +
∑m

i=1 βn,ivn,i,

xn+1 = δnξf(xn) + (1− δnD)zn,

(3.2.8)

where vn,i ∈ Siyn and
m∑
i=0

βn,i = 1. Set n := n+ 1 and go to Step 1.

Remark 3.2.5. Observe that if wn = un = xn and xn ∈ Sixn, then we are at a common
solution of the variational inequality (1.1.1) and a common fixed point of Si, for all i =
1, 2, . . . ,m. In our convergence analysis, we will implicitly assume that this does not occur
after finitely many iterations so that our Algorithm 3.2.4 generates an infinite sequence.
We will see in the following result that the stepsize rule defined by (3.2.7) is well defined.

Lemma 3.2.6. [104] There exists a nonnegative integer mn satisfying (3.2.7). In addition

µ∗ ≤ µn ≤ σ̄, where µ∗ = min

{
σ̄,
ηδ

L

}
.

In order to establish our main result, we make the following assumption:

(C1) lim
n→∞

δn = 0 and
∞∑
n=0

δn =∞,

(C2) lim inf
n→∞

(βn,0 − κ)βn,i > 0 for all i = 1, 2, ...,m,

(C3) εn = o(δn), i.e., lim
n→∞

εn
δn

= 0
(
e.g. εn =

1

(n+ 1)2
, δn =

1

n+ 1

)
.

Remark 3.2.7. Note that from (3.2.5) and Assumptions (C3), we have

lim
n→∞

αn||xn − xn−1|| = 0 and lim
n→∞

αn
δn
||xn − xn−1|| = 0. (3.2.9)

Also, note that Step 1 in our Algorithm 3.2.4 is easily implemented in numerical compu-
tation since the value of ||xn − xn−1|| is known a prori before choosing αn.

We proceed to prove the following lemmas before proving the convergence of our main
Algorithm 3.2.4.
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Lemma 3.2.8. The sequence {xn} generated by Algorithm 3.2.4 is bounded.

Proof. Let p ∈ Γ, then

||un − p|| = ||xn + αn(xn − xn−1)− p||
≤ ||xn − p||+ αn||xn − xn−1||. (3.2.10)

Also from (2.2.2) and (3.2.6), we get

||yn − p||2 = ||PQn(un − µnAwn)− p||2
≤ ||un − µnAwn − p||2 − ||un − µnAwn − yn||2
= ||un − µnAwn||2 − 2〈un − µnAwn, p〉+ ||p||2

−
[
||un − µnAwn||2 − 2〈un − µnAwn, yn〉+ ||yn||2

]
= ||p||2 − 2〈un, p〉+ ||un||2 − ||un||2 + 2µn〈Awn, p〉

+2〈un, yn〉 − 2µn〈Awn, yn〉 − ||yn||2
= ||un − p||2 − ||un − yn||2 + 2µn〈Awn, p− yn〉. (3.2.11)

Since A is monotone, then

〈Awn − Ap,wn − p〉 ≥ 0, for all n ≥ 1,

and hence
〈Awn, wn − p〉 ≥ 〈Ap,wn − p〉.

This implies that
〈Awn, wn − p〉 ≥ 〈Ap,wn − p〉 ≥ 0.

Therefore, we have

0 ≤ 〈Awn, wn − p〉
= 〈Awn, wn − yn + yn − p〉
= 〈Awn, wn − yn〉+ 〈Awn, yn − p〉.

Whence
〈Awn, p− yn〉 ≤ 〈Awn, wn − yn〉. (3.2.12)

Substituting (3.2.12) into (3.2.11), we get

||yn − p||2 ≤ ||un − p||2 − ||un − yn||2 + 2µn〈Awn, wn − yn〉
= ||un − p||2 − ||un − wn + wn − yn||2 + 2µn〈Awn, wn − yn〉
= ||un − p||2 −

[
||un − wn||2 + 2〈un − wn, wn − yn〉+ ||wn − yn||2

]
+2µn〈Awn, wn − yn〉

= ||un − p||2 − ||un − wn||2 − ||wn − yn||2
+2〈un − µnAwn − wn, yn − wn〉. (3.2.13)
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Using (3.2.7), we get

〈un − µnAwn − wn, yn − wn〉 = 〈un − µnAun − wn, yn − wn〉
+〈µnAun − µnAwn, yn − wn〉

≤ µn〈Aun − Awn, yn − wn〉
≤ η||un − wn|| · ||yn − wn||. (3.2.14)

Hence from (3.2.13) and (3.2.14), we get

||yn − p||2 ≤ ||un − p||2 − ||un − wn||2 − ||wn − yn||2 + 2η||un − wn|| · ||yn − wn||
≤ ||un − p||2 − ||un − wn||2 − ||wn − yn||2 + η(||un − wn||2 + ||wn − yn||2)

= ||un − p||2 − (1− η)||un − wn||2 − (1− η)||wn − yn||2. (3.2.15)

Thus

||yn − p||2 ≤ ||un − p||2. (3.2.16)

Furthermore, using Lemma 2.6.3, we have

||zn − p||2 =
∣∣∣∣∣∣βn,0yn +

m∑
i=1

βn,ivn,i − p
∣∣∣∣∣∣2

≤ βn,0||yn − p||2 +
m∑
i=1

βn,i||vn,i − p||2 −
m∑
i=1

βn,0βn,i||yn − vn,i||2

= βn,0||yn − p||2 +
m∑
i=1

βn,id
(
vn,i, Sip

)2 −
m∑
i=1

βn,0βn,i||yn − vn,i||2

≤ βn,0||yn − p||2 +
m∑
i=1

βn,iH
(
Siyn, Sip

)2 −
m∑
i=1

βn,0βn,i||yn − vn,i||2.

Thus

||zn − p||2 ≤ βn,0||yn − p||2 +
m∑
i=1

βn,i

(
||yn − p||2 + κid(yn, Siyn)2

)
−

m∑
i=1

βn,0βn,i||yn − vn,i||2

≤ βn,0||yn − p||2 +
m∑
i=1

βn,i||yn − p||2 +
m∑
i=1

βn,iκ||yn − vn,i||2

−
m∑
i=1

βn,0βn,i||yn − vn,i||2

= ||yn − p||2 −
m∑
i=1

(βn,0 − κ)βn,i||yn − vn,i||2, (3.2.17)

and by condition (C2), we get

||zn − p||2 ≤ ||yn − p||2. (3.2.18)
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Therefore, from (3.2.10), (3.2.16) and (3.2.18), we have

||xn+1 − p|| = ||δn(ξf(xn)−Dp) + (1− δnD)(zn − p)||
≤ δn||ξf(xn)−Dp||+ (1− δnρ)||zn − p||
≤ δn

[
||ξ(f(xn)− f(p)) + (ξf(p)−Dp)||

]
+ (1− δnρ)||zn − p||

≤ δnξλ||xn − p||+ δn||ξf(p)−Dp||+ (1− δnρ)[||xn − p||+ αn||xn − xn−1||]
= (1− δn(ρ− ξλ))||xn − p||+ δn||ξf(p)−Dp||+ (1− δnρ)αn||xn − xn−1||

= (1− δn(ρ− ξλ))||xn − p||+ (ρ− ξλ)δn

{ ||ξf(p)−Dp||
ρ− ξλ

+

(
1− δnρ
ρ− ξλ

)
αn
δn
||xn − xn−1||

}
. (3.2.19)

Note that supn≥1

(
1− δnρ
ρ− ξλ

)
αn
δn
||xn − xn−1|| exists by Remark 3.2.7 and let

M := max

{ ||ξf(p)−Dp||
||ρ− ξλ|| , sup

n≥1

(
1− δnρ
ρ− ξλ

)
αn
δn
||xn − xn−1||

}
.

Then we have

||xn+1 − p|| ≤ (1− δn(ρ− ξλ))||xn − p||+ δn(ρ− ξλ)M. (3.2.20)

Using Lemma 2.6.31(i) and (3.2.20), we have {||xn − p||} is bounded and thus {xn} is
bounded. Consequently, {un}, {Aun}, {wn}, {yn} and {zn} are all bounded.

Lemma 3.2.9. Let {xn} be a sequence generated by Algorithm 3.2.4. Put

sn = ||xn − p||2, ãn =
2δn(ρ− ξλ)

1− δnξλ
, bn =

1

2(ρ− ξλ)

(
2〈ξf(p) − Dp, xn+1 − p〉 + δnM1

)
,

for some M1 > 0 and cn =
αn||xn − xn−1||

1− δnξλ
M2, where M2 = supn≥1

(
(1− δnρ)2(||xn−p||+

||xn−1 − p||) + 2(1− δnρ)2||xn − xn−1||
)

and p ∈ Γ. Then, the following estimates hold:

(i) sn+1 ≤ (1− ãn)sn + ãnbn + cn,

(ii) −1 ≤ lim supn→∞ bn < +∞,

Proof. From (3.2.6), we have

||un − p||2 = ||xn + αn(xn − xn−1)− p||2
= ||xn − p||2 + 2αn〈xn − p, xn − xn−1〉+ α2

n||xn − xn−1||2. (3.2.21)

Using Lemma 2.6.1(ii), we have

2〈xn − p, xn − xn−1〉 = −||xn−1 − p||2 + ||xn − p||2 + ||xn − xn−1||2, (3.2.22)
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thus, substituting (3.2.22) into (3.2.21), we get

||un − p||2 = ||xn − p||2 + αn(−||xn−1 − p||2 + ||xn − p||2 + ||xn − xn−1||2)

+α2
n||xn − xn−1||2

≤ ||xn − p||2 + αn(||xn − p||2 − ||xn−1 − p||2)

+2αn||xn − xn−1||2. (3.2.23)

Now, from Lemma 2.6.1(i), we have

||xn+1 − p||2 = ||δn(ξf(xn)−Dp) + (1− δnD)(zn − p)||2
≤ (1− δnρ)2||zn − p||2 + 2δn〈ξf(xn)−Dp, xn+1 − p〉. (3.2.24)

It follows from (3.2.16), (3.2.18) and (3.2.21) that

||xn+1 − p||2 ≤ (1− δnρ)2||un − p||2 + 2δn〈ξf(xn)−Dp, xn+1 − p〉
= (1− δnρ)2

(
||xn − p||2 + αn

(
||xn − p||2 − ||xn−1 − p||2

)
+ 2αn||xn − xn−1||2

)
+2δn〈ξf(xn)−Dp, xn+1 − p〉

= (1− δnρ)2||xn − p||2 + αn(1− δnρ)2
(
||xn − p||2 − ||xn−1 − p||2

)
+2αn(1− δnρ)2||xn − xn−1||2 + 2δn〈ξf(xn)−Dp, xn+1 − p〉

≤ (1− δnρ)2||xn − p||2 + αn(1− δnρ)2(||xn − p||+ ||xn−1 − p||)||xn − xn−1||
+2αn(1− δnρ)2||xn − xn−1||2 + 2δn〈ξf(xn)−Dp, xn+1 − p〉. (3.2.25)

Also

2〈ξf(xn)−Dp, xn+1 − p〉 = 2〈ξ(f(xn)− f(p)) + ξf(p)−Dp, xn+1 − p〉
≤ 2ξλ||xn − p|| · ||xn+1 − p||+ 2〈ξf(p)−Dp, xn+1 − p〉
≤ ξλ(||xn − p||2 + ||xn+1 − p||2)

+2〈ξf(p)−Dp, xn+1 − p〉. (3.2.26)

Substituting (3.2.26) into (3.2.25), we have

||xn+1 − p||2 ≤
[
(1− δnρ)2 + δnξλ

]
||xn − p||2 + αn(1− δnρ)2(||xn − p||+ ||xn−1 − p||)×

||xn − xn−1||+ 2αn(1− δnρ)2||xn − xn−1||2 + δnξλ||xn+1 − p||2
+2δn〈ξf(p)−Dp, xn+1 − p〉

= (1− δn(2ρ− ξλ))||xn − p||2 + (δnρ)2||xn − p||2 + αn

[
(1− δnρ)2 ×

(||xn − p||+ ||xn−1 − p||) + 2(1− δnρ)2||xn − xn−1||
]
||xn − xn−1||

+δnξλ||xn+1 − p||2 + 2δn〈ξf(p)−Dp, xn+1 − p〉
≤ (1− δn(2ρ− ξλ))||xn − p||2 + δnξλ||xn+1 − p||2 + αn

[
(1− δnρ)2 ×

(||xn − p||+ ||xn−1 − p||) + 2(1− δnρ)2||xn − xn−1||
]
||xn − xn−1||

+δn(2〈ξf(p)−Dp, xn+1 − p〉+ δnM1)
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for some M1 ≥ 0. Hence

||xn+1 − p||2 ≤
(1− δn(2ρ− ξλ))

1− δnξλ
||xn − p||2 +

αn
1− δnξλ

||xn − xn−1||M2

+
δn(2〈ξf(p)−Dp, xn+1 − p〉+ δnM1)

1− δnξλ

=

(
1− 2δn(ρ− ξλ)

1− δnξλ

)
||xn − p||2 +

αn
1− δnξλ

||xn − xn−1||M2

+
2δn(ρ− ξλ)

1− δnξλ
× (2〈ξf(p)−Dp, xn+1 − p〉+ δnM1)

2(ρ− ξλ)
.

This establishes (i).

Next, we prove (ii). Since {xn} is bounded and δn ∈ (0, 1), then we have

sup
n≥0

bn ≤ sup
n≥0

1

2(ρ− ξλ)

(
2||ξf(p)−Dx∗|| · ||xn+1 − p||+M1

)
<∞.

We next show that lim sup
n→∞

bn ≥ −1. Assume the contrary, i.e., suppose lim sup
n→∞

bn < −1,

which implies that there exists n0 ∈ N such that bn ≤ −1 for all n ≥ n0. Hence, it follows
from (i) that

sn+1 ≤ (1− ãn)sn + ãnbn + cn

< (1− ãn)sn − ãn + cn

= sn − ãn(sn + 1) + cn

≤ sn − 2(ρ− ξλ)δn + cn.

By induction, we get

sn+1 ≤ sn0 − 2(ρ− ξλ)
n∑

i=n0

δi + cn for all n ≥ n0.

Taking lim sup of both sides in the last inequality (noting that cn → 0), we have

lim sup
n→∞

sn ≤ sn0 − lim
n→∞

2(ρ− ξλ)
n∑

i=n0

δi = −∞.

This contradicts the fact that {sn} is a nonnegative real sequence. Therefore, lim sup
n→∞

bn ≥
−1.

Remark 3.2.10. Since δn → 0 as n→∞, it is easy to check that ãn → 0, and by Remark
3.2.7, cn → 0 as n→∞.

We next state and prove our main theorem.

Theorem 3.2.11. Let C be a nonempty, closed and convex subset of a real Hilbert space
H, and let A : C → H be a monotone and L-Lipschitz continuous mapping. For each
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i = 1, 2, . . . ,m, let Si : H → CB(H) be multivalued demi-contractive mappings with
constant κi such that each I − Si are demiclosed at zero, Si(p) = {p} for all p ∈ F (Si),
i = 1, 2, . . . ,m and κ = max{κi}. Suppose Γ = ΩV IP ∩

⋂m
i=1 F (Si) 6= ∅. Let f : H → H

be a λ-contraction with constant λ ∈ (0, 1) and D be a bounded operator with coefficient
ρ > 0 such that 0 < ξ < ρ

λ
. Let {xn} be generated by Algorithm 3.2.4 and Assumptions

(C1)-(C3) are satisfied. Then the sequence {xn} converges strongly to a point z, where
z = PΓ(I −D + ξf)(z) is a unique solution of the variational inequality

〈(D − ξf)z, z − x〉 ≤ 0, x ∈ Γ. (3.2.27)

Proof. Let p ∈ Γ and denote ||xn − p||2 by Φn. We consider the following two possible
cases.
CASE A: Suppose there exists n0 ∈ N such that Φn is monotonically non-increasing for
all n ≥ n0. Since Φn is bounded, then it is convergent and so Φn − Φn+1 → 0 as n→∞.
We first show that ||wn − un|| → 0, ||vn,i − yn|| → 0 and ||xn+1 − xn|| → 0, as n → ∞.
From (3.2.15), (3.2.18) and (3.2.23), we have

||xn+1 − p||2 ≤ (1− δnρ)2||zn − p||2 + 2δn〈ξf(xn)−Dp, xn+1 − p〉
≤ (1− δnρ)2

{
||un − p||2 − (1− η)||un − wn||2 − (1− η)||wn − yn||2

}
+2δn〈ξf(xn)−Dp, xn+1 − p〉

≤ (1− δnρ)2
{
||xn − p||2 + αn(||xn − p||2 − ||xn−1 − p||2) + 2αn||xn − xn−1||2

−(1− η)||un − wn||2 − (1− η)||wn − yn||2
}

+2δn〈ξf(xn)−Dp, xn+1 − p〉. (3.2.28)

Therefore

(1− δnρ)2(1− η)||un − wn||2
≤ (1− δnρ)2||xn − p||2 + αn(1− δnρ)2(||xn − p||2 − ||xn−1 − p||2)

+ 2αn(1− δnρ)2||xn − xn−1||2 + 2δn〈ξf(xn)−Dp, xn+1 − p〉 − ||xn+1 − p||2
≤ Φn − Φn+1 + δnM3 + αn(1− δnρ)2(Φn − Φn−1)

+ 2αn(1− δnρ)2||xn − xn−1||+ 2δn〈ξf(xn)−Dp, xn+1 − p〉 → 0,

as n→∞ for some M3 > 0. Since δn → 0 as n→∞ and η ∈ (0, 1), then

lim
n→∞

||un − wn|| = 0. (3.2.29)

Similarly, from (3.2.28), we can also show that

lim
n→∞

||wn − yn|| = 0. (3.2.30)

Clearly from (3.2.6), we get

||un − xn|| = ||xn + αn(xn − xn−1)− xn||
= αn||xn − xn−1|| → 0, n→∞.
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Therefore

lim
n→∞

||wn − xn|| ≤ lim
n→∞

(||wn − un||+ ||un − xn||) = 0, (3.2.31)

and

lim
n→∞

||yn − xn|| ≤ lim
n→∞

(||yn − wn||+ ||wn − xn||) = 0. (3.2.32)

Also from (3.2.16), (3.2.17), (3.2.23) and (3.2.24), we obtain

||xn+1 − p||2 ≤ (1− δnρ)2||zn − p||2 + 2δn〈ξf(xn)−Dp, xn+1 − p〉

≤ (1− δnρ)2
{
||yn − p||2 −

m∑
i=1

(βn,0 − κ)βn,i||yn − vn,i||2
}

+2δn〈ξf(xn)−Dp, xn+1 − p〉
≤ (1− δnρ)2

{
||xn − p||2 + αn(||xn − p||2 − ||xn−1 − p||2) + 2αn||xn − xn−1||2

−
m∑
i=1

(βn,0 − κ)βn,i||yn − vn,i||2
}

+ 2δn〈ξf(xn)−Dp, xn+1 − p〉.

Hence

(1− δnρ)2

m∑
i=1

(βn,0 − κ)βn,i||yn − vn,i||2

≤ (1− δnρ)2||xn − p||2 + αn(1− δnρ)2(||xn − p||2 − ||xn−1 − p||2)

+ 2αn(1− δnρ)2||xn − xn−1||2 + +2δn〈ξf(xn)−Dp, xn+1 − p〉 − ||xn+1 − p||2
≤ Φn − Φn+1 + δnM3 + αn(1− δnρ)2(Φn − Φn−1) + 2αn(1− δnρ)2||xn − xn−1||2
+ 2δn〈ξf(xn)−Dp, xn+1 − p〉 → 0, as n→∞.

Therefore, using condition (C2), it follows that

lim
n→∞

||yn − vn,i|| = 0. (3.2.33)

Also

||zn − yn|| =
∥∥∥βn,0yn +

m∑
i=1

βn,ivn,i − yn
∥∥∥

≤ βn,0||yn − yn||+
m∑
i=1

βm,i||vn,i − yn|| → 0,

therefore
lim
n→∞

||zn − xn|| = lim
n→∞

(||zn − yn||+ ||yn − xn||) = 0.

Now from (3.2.6) and condition (C1), we get

||xn+1 − zn|| = ||δnξf(xn) + (1− δnD)zn − zn||
= δn||ξf(xn)−Dzn|| → 0,
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and therefore

||xn+1 − xn|| ≤ ||xn+1 − zn||+ ||zn − xn|| → 0, n→∞.

Next, we show that Ωw(xn) ⊂ ΩV IP ∩
⋂m
i=1 F (Si), where Ωw(xn) is the weak subsequential

limit of {xn}. Let x̄ ∈ Ωw(xn), and observe that there exists a subsequence {xnj} of {xn}
such that xnj ⇀ x̄ as j → ∞. Let {wnj} and {unj} be subsequences of {wn} and {un}
respectively. Consequently from (3.2.31), wnj ⇀ x̄ as j →∞. Let B be a mapping defined
by

Bv =

{
Av +NC(v), if v ∈ C,
∅ if v /∈ C.

By Lemma 2.1.4, B is maximal monotone and B−1(0) = ΩV IP . If we let (v, w) ∈ Gr(B),
then w ∈ Bv = Av +NC(v) and thus w − Av ∈ NC(v). This implies that

〈v − t, w − Av〉 ≥ 0, for all t ∈ C,

and in particular
〈v − wnj , w − Av〉 ≥ 0. (3.2.34)

Since wnj = PC(unj − µnjAunj), by the characterization of PC , we obtain

〈wnj − v, unj − µnjAunj − wnj〉 ≥ 0, for all v ∈ C.

Hence 〈
v − wnj ,

wnj − unj
µnj

+ Aunj

〉
≥ 0, for all v ∈ C. (3.2.35)

Therefore, we have from (3.2.34) and (3.2.35) that

〈v − wnj , w〉 ≥ 〈v − wnj , Av〉

≥ 〈v − wnj , Av〉 −
〈
v − wnj ,

wnj − unj
µnj

+ Aunj

〉
= 〈v − wnj , Av − Awnj〉+ 〈v − wnj , Awnj − Aunj〉 −

〈
v − wnj ,

wnj − unj
µnj

〉
≥ 〈v − wnj , Awnj − Aunj〉 −

〈
v − wnj ,

wnj − unj
µnj

〉
≥ 〈v − wnj , Awnj − Aunj〉 − ||v − wnj ||

∣∣∣∣∣∣wnj − unj
µnj

∣∣∣∣∣∣. (3.2.36)

Passing to the limit in the above inequality in (3.2.36) (using the continuity of A and
noting that lim infj→∞ µnj > 0), it follows from (3.2.29) that

〈v − x̄, w〉 ≥ 0.

Since B is maximal monotone, it follows that x̄ ∈ B−1(0), hence x̄ ∈ ΩV IP . On the other
hand, let {ynj} be a subsequence of {yn}. Note that ynj ⇀ x̄ as j → ∞ (by (3.2.32)).
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For each i = 1, 2, . . . ,m, I − Si are demiclosed at zero, then it follows from (3.2.33) that
x̄ ∈ F (Si). This implies that x̄ ∈ ⋂m

i=1 F (Si). Hence

x̄ ∈ ΩV IP ∩
m⋂
i=1

F (Si).

Next, we show that {xn} converges strongly to x∗, where x∗ = PΓ(I − D + ξf)x∗ is a
unique solution of the variational inequality

〈(D − ξf)x∗, x∗ − x〉 ≤ 0, x ∈ Γ.

To do this, we prove that lim supn→∞〈(D − ξf)x∗, x∗ − xn〉 ≤ 0. Choose a subsequence
{xnj} of {xn} such that

lim sup
j→∞

〈(D − ξf)x∗, x∗ − xn〉 = lim
j→∞
〈(D − ξf)x∗, x∗ − xnj〉.

Since xnj ⇀ x̄, and using (2.2.2), we have

lim sup
j→∞

〈(D − ξf)x∗, x∗ − xn〉 = lim
j→∞
〈(D − ξf)x∗, x∗ − xnj〉

= 〈(D − ξf)x∗, x∗ − x̄〉
= 〈x∗ − (I − (D − ξf))x∗, x∗ − x̄〉 ≤ 0. (3.2.37)

Now using Lemma 2.6.30, Lemma 3.2.9(i) and (3.2.37), we obtain that ||xn − x∗|| → 0,
which implies that {xn} converges strongly to x∗. This conclude Case A.

CASE B: Suppose {||xn − p||} is not monotonically decreasing. Choose some n0 large
enough and for all n ≥ n0, we define φ : N→ N by

φ(n) = max{k ∈ N : k ≤ n : φk ≤ φk+1}.
Clearly, φ is non-decreasing, where φ(n)→∞ as n→∞ and

0 ≤ ||xφ(n) − p|| ≤ ||xφ(n)+1 − p||, for all n ≥ n0.

A similar argument as in CASE A, we obtain

||wφ(n) − uφ(n)|| → 0, ||vφ(n),i − yφ(n)|| → 0, ||xφ(n)+1 − xφ(n)|| → 0,

as n→∞ and Ωw(xφ(n)) ⊂ ΩV IP ∩
⋂m
i=1 F (Si), where Ωw(xφ(n)) is the weak subsequential

limit of {xφ(n)}. Also, we have

lim sup
n→∞

〈(D − ξf)p, p− xφ(n)〉 ≤ 0. (3.2.38)

Now, from Lemma 3.2.7(i) we have

||xφ(n)+1 − p||2 ≤
(

1− 2δφ(n)(ρ− ξλ)

1− δφ(n)ξλ

)
||xφ(n) − p||2 +

2δφ(n)(ρ− ξλ)

1− δφ(n)ξλ
×

(2〈ξf(p)−Dp, xφ(n)+1 − p〉+ δφ(n)M)

+
αφ(n)M2||xφ(n) − xφ(n)−1||

1− δφ(n)ξλ
, (3.2.39)
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for some M > 0, where

M2 = sup
n≥1

(
(1− δφ(n)ρ)2(||xφ(n) − p||+ ||xφ(n)−1 − p||) + 2(1− δφ(n)ρ)2||xφ(n) − xφ(n)−1||

)
.

Since ||xφ(n) − p||2 ≤ ||xφ(n)+1 − p||2, then from (3.2.39), we obtain

0 ≤
(

1− 2δφ(n)(ρ− ξλ)

1− δφ(n)ξλ

)
||xφ(n) − p||2 +

2δφ(n)(ρ− ξλ)

1− δφ(n)ξλ
×

(2〈ξf(p)−Dp, xφ(n)+1 − p〉+ δφ(n)M)

+
αφ(n)M2||xφ(n) − xφ(n)−1||

1− δφ(n)ξλ
− ||xφ(n) − p||2.

Hence

2δφ(n)(ρ− ξλ)

1− δφ(n)ξλ
||xφ(n) − p||2 ≤

2δφ(n)(ρ− ξλ)

1− δφ(n)ξλ
(2〈ξf(p)−Dp, xφ(n)+1 − p〉+ δφ(n)M)

+
αφ(n)M2||xφ(n) − xφ(n)−1||

1− δφ(n)ξλ
.

Therefore,

||xφ(n) − p||2 ≤ 2〈ξf(p)−Dp, xφ(n)+1 − p〉+ δφ(n)M4

+
αφ(n)M2||xφ(n) − xφ(n)−1||

2δφ(n)(ρ− ξλ)
. (3.2.40)

Since {xφ(n)} is bounded and δφ(n) → 0, as n → ∞, then it follows from (3.2.38) and
Remark 3.2.7 that

lim
n→∞

||xφ(n) − p|| = 0. (3.2.41)

As a consequence, we obtain that for all n ≥ n0,

0 ≤ ||xn − p||2 ≤ max{||xφ(n) − p||2, ||xφ(n)+1 − p||2} = ||xφ(n)+1 − p||2.

Hence, limn→∞ ||xn − p|| = 0. This implies that {xn} converges strongly to p. This com-
pletes the proof.

Recall that the class of quasi-nonexpansive mappings is 0-demi-contractive. Thus, we can
also obtain the following result for approximating a common solution of the VIP and a
finite family of multivalued quasi-nonexpansive mappings.

Corollary 3.2.12. Let C be a nonempty, closed and convex subset of a real Hilbert space
H, and let A : C → H be a monotone and L-Lipschitz mapping. For each i = 1, 2, . . . ,m
let Si : H → CB(H) be multivalued quasi-nonexpansive mappings with constant such that
I − Si are demiclosed at zero, Si(p) = {p} for all p ∈ F (Si) and i = 1, 2, . . . ,m. Suppose
Γ = ΩV IP ∩

⋂m
i=1 F (Si) 6= ∅ and let f : H → H be a λ-contraction with constant λ ∈ (0, 1)

and let D be a bounded operator with coefficient ρ > 0 such that 0 < ξ < ρ
λ
. Let {xn} be
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generated by Algorithm 3.2.4 in which Assumptions (C1) and (C3) are satisfied. Then the
sequence {xn} converges strongly to a point z, where z = PΓ(I −D + ξf)(z) is a unique
solution of the variational inequality

〈(D − ξf)z, z − x〉 ≤ 0, x ∈ Γ. (3.2.42)

Remark 3.2.13. For suitable starting points, Algorithm 3.2.4 generates appropriate solu-
tions which approximate the whole solution set Γ as guaranteed by Theorem 3.2.11. This
is an interesting property which is different, for example, from the class of Tikhonov-type
regularization approaches where the corresponding sequences always converge to the same
solution.

3.2.2 Numerical example

In this subsection, we provide some numerical examples to compare our inertial viscosity
subgradient extragradient Algorithm 3.2.4 with Algorithms (3.2.2) and (3.2.3) of Thong
and Hieu [256] and, and with iEgA (3.2.4) of Dong et al. [97].

We start by giving the following example of multivalued λ-demi-contractive mapping given
by Jailoka and Suntai in [139]. Let H = R, and for each i ∈ N defined Si : R→ 2R by

Si =


[−(1 + 2i)x

2
,−(1 + i)x

]
, x ≤ 0,[

−(1 + i)x,
−(1 + 2i)x

2

]
, x > 0.

(3.2.43)

Then Si is λi-demi-contractive with λi =
4i2 + 8i

4i2 + 12i+ 9
∈ (0, 1).

Example 3.2.14. Many problems arising in signal and image processing can be formulated
as inverting the equation system

b = Bx+ e, (3.2.44)

where x ∈ RN is the unknown original image or data to be recovered, b ∈ RM is the vector
of noisy observations, e is an additive noise with bounded variance and B : RN → RM

is a bounded linear observation operator. In particular, we note that B is typically ill
behaved because it models an acquisition process that encounters loss of information.
When attempting to find sparse solutions to linear inverse problems of type (3.2.44), a
successful model is the convex unconstrained minimization problem

min
x∈RN

1

2
||b−Bx||2 + ν||x||1, (3.2.45)

where ν is a postive number, || · || is the Euclidean norm and || · ||1 is the l1 norm. The
aim of the l1 term, which is the convex sparsity-promoting penalty, is to make the small
component of x become zero. By means of convex analysis, one is able to show that a
minimizer to (3.2.45) is actually a solution to the LASSO problem

min
x∈RN

1

2
||b−Bx||2 subject to ||x||1 < t, (3.2.46)
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for any nonnegative real number t (see [108]). It is easy to see that the optimization
problem (3.2.46) is a special case of the variational inequality problem (1.1.1), where
A(x) = BT (Bx− b) and C = {x : ||x||1 ≤ t}. Hence, we can use the proposed Algorithm
(3.2.4) to approximate a solution of (3.2.44). The projection onto the closed l1 ball in RN

is computed through the soft thresholding operator defined by

PC(x) = S(x) = argminu∈RN
{
||x− u||2 + λ||x||1

}
,

for λ > 0. We set f(x) = x
16

, D(x) = x, σ = 6, δ = 0.9, η = 0.7, δn = 1
n+1

, εn = 1
(n+1)4 and

α = 3 in Algorithm 3.2.4, and for each n ∈ N and i ≥ 0, define

βn,i =


0 if n < i,

1− n
n+1

∑n
k=1

1
2k

if n = i,
1

2i+1

(
n
n+1

)
if n > i.

(3.2.47)

We set the image to go through a random blur and random noise and choose different
values of starting point as follows: x0 = −0.5 ∗ randn(N, 1) and x1 = 2 ∗ randn(N, 1),
where

Case(i) N = 100, Case(ii) N = 200 and Case(iii) N = 500.

We then plot the graphs of the error term (||xn+1 − xn||) against number of iterations for
Algorithm 3.2.4, THSEgM(i) and THSEgM(ii). The numerical result is shown in Table

3.2 and Figure 3.2. The stopping criterion used is
||xn+1 − xn||
||x2 − x1||

≤ 10−4.

Example 3.2.15. Suppose H = L2([0, 1]) with ||x||L2 :=
(∫ 1

0
|x(t)|2dt

) 1
2

and inner prod-

uct
〈x, y〉 :=

∫ 1

0
x(t)y(t)dt, for all x, y ∈ H. Define A : H → H by

A(x(t)) = max
{

0, x(t)
}
. (3.2.48)

It is easy to verify that A is 1-Lipschitz continuous and monotone on H. Let C := {x ∈
H : ||x|| ≤ 1} be the unit ball. It is known that

PC(x) =


x

||x||L2

if ||x||L2 > 1,

x if ||x||L2 ≤ 1.
(3.2.49)

For i = 1, 2, . . . ,m, let Si : L2([0, 1)])→ L2([0, 1]) be defined by

(Six)(t) =

∫ 1

0

x(t)dt, t ∈ [0, 1].

Clearly, Si is 0-demi-contractive and Γ = ΩV IP∩
⋂
i∈N F (Si) = {0}.We choose the following

starting points:
Case(i): x0(t) = t2 exp(7t) and x1(t) = 1

6
sin(−3t),

Case(ii): x0(t) = 0.5 cos(t) and x1(t) = cos(−10t),
Case(iii): x0(t) = 5 exp(t) and x1(t) = 2

3
cos(t).
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Let f(x) = x(t)
2
, D(x) =

∫ 1

0
x(t)dt, σ = 4, η = 0.5, δn = 1

n+1
, εn = 1

(n+1)2 , α = 3, and for

each i ∈ N∪ {0} βn,i = 1
n
. Using

||xn+1 − xn||
||x2 − x1||

< 10−6 as a stopping criterion, we plot the

garphs of ||xn+1−xn|| against the number of iterations for both Algorithm 3.2.4 and iEgA
(3.2.4). The numerical result is shown in Table 3.3 and Figures 3.3.

Table 3.2: Comparison of Algorithm 3.2.4, THSEgM(I) 3.2.2 and THSEgM(II) 3.2.3 for
Example 3.2.14.

Time Taken (Sec)
Case(i) Case(ii) Case(iii)

Algorithm 3.2.4 0.0052 0.0069 0.0096
THSEgM(I) 0.0155 0.0363 0.0312
THSEgM(II) 0.0367 0.0363 0.0383

Table 3.3: Comparison between Algorithm 3.2.4 and iEgA (3.2.4) for Example 3.2.15.

Time taken (Secs)

Algorithms Case(i) Case(ii) Case(iii)
Algorithm 3.2.4 0.3641 0.1257 0.2523
iEgA (3.2.4) 0.5260 0.3291 1.7566
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Figure 3.2: Example 3.2.14, Left: Case(i); Middle: Case(ii); Right: Case(iii).

3.3 An Inertial-Mann Algorithm for Split General-

ized Mixed Equilibrium Problem and Fixed Point

of Nonspreading Mapping in Hilbert Spaces

In this section, we study a split generalized mixed equilibrium problem and fixed point
problem for nonspreading mapping in real Hilbert spaces.

Let H1, H2 be real Hilbert spaces and C and Q be nonempty closed convex subsets of H1

and H2 respectively. Let Θ1 : C × C → R and Θ2 : Q×Q→ R be nonlinear bifunctions,
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Figure 3.3: Example 3.2.15, Left: Case(i); Middle: Case(ii); Right: Case(iii).

h1 : C → H1 and h2 : Q → H2 be nonlinear mappings, φ : C → R ∪ {+∞} and
ϕ : Q→ R∪{+∞} be proper lower semicontinuous and convex functions and A : H1 → H2

a bounded linear operator. The Split Generalized Mixed Equilibrium Problem (SGMEP)
is defined as follow: find a point x† ∈ C such that

Θ1(x†, x) + 〈h1(x†), x− x†〉+ φ(x)− φ(x†) ≥ 0, ∀x ∈ C,
with

y† = Ax† solves Θ2(y†, y) + 〈h2(y†), y − y†〉+ ϕ(y)− ϕ(y†) ≥ 0, ∀y ∈ Q.
(3.3.1)

The set of solutions of the SGMEP is denoted by ΩSGMEP := {x† ∈ GMEP (Θ1, h1, φ) :
Ax† ∈ GMEP (Θ2, h2, ϕ)}.
We present the following examples to show that ΩSGMEP is nonempty.

Example 3.3.1. Let H1 = H2 = R, C = [2,∞) and Q = (−∞,−4]. Let A(x) = −2x for
all x ∈ R, then A is a bounded linear operator. Let Θ1 : C ×C → R and Θ2 : Q×Q→ R
be define by Θ1(x, y) = y−x, Θ2(u, v) = 3(u−v); h1 : C → R and h2 : Q→ R be define by

h1(x) = x, h2(u) = 2u; φ : C → R∪{+∞} and ϕ : Q→ R∪{+∞} be defined by φ(x) =
x2

2
and ϕ(u) = 2u. Clearly, GMEP (Θ1, h, φ) = {2} and A(2) = −4 ∈ GMEP (Θ2, h2, ϕ).
Thus, ΩGMEP = {p ∈ GMEP (Θ1, h1, φ) : Ap ∈ GMEP (Θ2, h2, ϕ)} 6= ∅.

Example 3.3.2. Let H1 = R2 with the norm ||x̄|| =
√
x2

1 + x2
2 for x̄ = (x1, x2) ∈ R2

and H2 = R. Let C := {x̄ = (x1, x2) ∈ R2 : x2 − x1 ≥ 1} and Q = [1,∞). Define
Θ1(x̄, ȳ) = y2 − y1 − x2 + x1, where x̄ = (x1, x2), ȳ = (y1, y2) ∈ C, then Θ1 is a bifunction
from C × C → R. Let h1(x̄) = φ(x̄) = x2 − x1, then GMEP (Θ1, h1, φ) = {q̄ = (q1, q2) :
q2 − q1 = 1}. Also define Θ2(u, v) = v − u for all u, v ∈ Q, then Θ2 is a bifunction from
Q×Q to R and let h2(u) = 2u, ϕ(u) = u. For each x̄ = (x1, x2) ∈ H1, let A(x̄) = x2− x1,
then A is bounded linear operator from H1 into H2. Clearly, when q̄ ∈ GMEP (Θ1, h1, φ),
we have Aq̄ = 1 ∈ GMEP (Θ2, h2, ϕ). Thus ΩSGMEP = {q̄ ∈ GMEP (Θ1, h1, φ) : Aq̄ ∈
GMEP (Θ2, h2, ϕ)} 6= ∅.

Remark 3.3.3. We note that SGMEP in Example 3.3.1 lies in two different subsets of the
same space, while SGMEP in Example 3.3.2 lies in two different subsets of different spaces.
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In 2016, Suantai et al. [240] studied the Split Equilibrium Problem which is defined as:
find a point x∗ ∈ C such that

Θ1(x∗, x) ≥ 0, ∀x ∈ C, and y∗ = Ax∗ ∈ Q solves Θ2(y∗, y) ≥ 0, ∀y ∈ C, (3.3.2)

where Θ1 : C ×C → R and Θ2 : Q×Q→ R are nonlinear bifuncions. The set of solution
of (3.3.2) is denoted by ΩSEqP . The authors in [239] proposed the following iterative
algorithm to solve the problem of finding a common element in ΩSEqP and a fixed point
of a nonspreading multi-valued mapping in Hilbert spaces: Given {xn} by

x1 ∈ C arbitrarily,

un = TΘ1
rn (I − γA∗(I − TΘ2

rn )A)xn,

xn+1 = αnxn + (1− αn)Sun, ∀n ∈ N,
(3.3.3)

where TΘ1
rn is the resolvent operator defined in Lemma 3.3.5, {αn} ⊂ (0, 1), rn ∈ (0,∞)

and γ ∈ (0, 1
L

) such that L is the spectral radius of A∗A and A∗ is the adjoint of A,
S : C → K(C) is a nonspreading multi-valued mapping. Further, they proved that under
certain conditions, the sequence {xn} converges weakly to an element of F (S) ∩ ΩSEqP .

More recently, S.H. Rizvi [218] studied the following Split Mixed Equilibrium Problem
(SMEP ) in real Hilbert spaces: find a point x∗ ∈ C such that

Θ1(x∗, x) + 〈h1x
∗, x− x∗〉 ≥ 0, ∀x ∈ C,

with

y∗ = Ax∗ solves Θ2(y∗, y) + 〈h2y
∗, y − y∗〉 ≥ 0, ∀y ∈ Q,

(3.3.4)

where h1 : C → C and h2 : Q → Q are θ1, θ2-inverse strongly monotone mapping respec-
tively with θ = min(θ1, θ2). The set of solution of (3.3.4) is denoted by ΩSMEP . Observe
that when φ = ϕ = 0 in (3.3.1), we obtain (3.3.4). Thus, Problem (3.3.1) is more general
than Problem (3.3.4). Rizvi [218] introduced the following algorithm for solving (3.3.4)
and fixed point problem for a nonexpansive mapping S in real Hilbert spaces:

x0 = x ∈ C,
yn = TΘ1

rn (xn − rnφxn),

vn = TΘ2
rn (I − rnψ)Ayn,

zn = PC(yn + δA∗(vn − Ayn)),

xn+1 = βnxn + (1− βn)S[αnu+ (1− αn)zn], n ≥ 0,

(3.3.5)

where PC is the metric projection from H onto C, {rn} ⊂ (0, 2θ) and {αn}, {βn} ⊂ (0, 1).
The author also proved that under some mild conditions on αn, βn and rn, the sequence
{xn} converges strongly to a solution in ΩSMEP ∩ F (S).

By combining the Picard algorithm [205] and the conjugate gradient methods [195], Dong
and Yaun [98] accelerated the Mann algorithm and obtained the following faster algorithm:

dn+1 =
1

λ
(T (xn)− xn) + βndn,

yn = xn + λdn+1,

xn+1 = µαnxn + (1− µαn)yn,

(3.3.6)
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for each n ≥ 0, where µ ∈ (0, 1] and λ > 0. They proved that the iterative sequence {xn}
converges weakly to a fixed point of T provided that the nonnegative sequences {αn} and
{βn} satisfy the following conditions:

(BB1)
∞∑
n=0

µαn(1− µαn) =∞,

(BB2)
∞∑
n=0

βn <∞.

More so, the sequence {xn} is assumed to satisfied the following:

{T (xn)− xn} is bounded.

In this section, we introduce a modified-Mann algorithm for finding a common solution
of SGMEP and fixed point of nonspreading mapping in real Hilbert spaces. It is easy to
re-write (3.3.6) as the following inertial algorithm:{

wn = xn + θn(xn − xn−1),

xn+1 = µαnwn + (1− µαn)T (xn).
(3.3.7)

Motivated by the works of Suantai et al. [240], Rizvi et al. [218], Dong and Yuan [98], it is
our aim in this section to propose a new iterative algorithm for approximating a common
solution of (3.3.1) and fixed point of a nonspreading mapping in real Hilbert spaces. Our
algorithm is developed by modifying the accelerated Mann algorithm (3.3.6) combined
with a modified viscosity approximation method to obtain a new faster iterative algorithm
for finding a common solution of (3.3.1) and a fixed point of nonspreading mapping in
real Hilbert spaces. Further, our algorithm does not require any prior knowledge of the
operator norm.

For solving the SGMEP we make the following assumption:

Assumption 3.3.4. Let C be a nonempty closed and convex subset of a real Hilbert space
H. We make the following assumptions on the bifunction Θ : C × C → R:

LL1. Θ(x, x) = 0, for all x ∈ C,

LL2. Θ is monotone, i.e Θ(x, y) + Θ(y, x) ≤ 0, ∀x, y ∈ C,
LL3. for each x, y, z ∈ C, limt↓0 Θ(tz + (1− t)x, y) ≤ Θ(x, y),

LL4. for each x ∈ C, y 7→ Θ(x, y) is convex and lower semicontinuous,

The following lemma will also be used in this section.

Lemma 3.3.5. [159] Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let Θ : C × C → R be a bifunction which satisfies Assumption 3.3.4, h : C → H1 be
a nonlinear mapping and let φ : C → R ∪ {+∞} be a proper lower semicontinuous and
convex function. For r > 0 and x ∈ H1, define a resolvent function

TΘ
r (x) = {z ∈ C : Θ(z, y) + 〈h(z), y − z〉+ φ(y)− φ(z) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C},

for all x ∈ H. Then the following conclusions hold:
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(i) for each x ∈ H, TΘ
r (x) 6= ∅,

(ii) TΘ
r is single-valued,

(iii) TΘ
r is firmly nonexpansive, i.e for any x, y ∈ H,

||TΘ
r x− TΘ

r y||2 ≤ 〈TΘ
r x− TΘ

r y, x− y〉,

(iv) F (TΘ
r ) = GMEP (Θ, h, φ),

(v) GMEP (Θ, h, φ) is closed and convex.

3.3.1 Main results

Algorithm 3.3.6. Let C and Q be nonempty closed and convex subsets of real Hilbert
spaces H1 and H2, respectively, and let A : H1 → H2 be a bounded linear operator. Let
Θ1 : C × C → R and Θ2 : Q × Q → R be bifunctions satisfying Assumption 3.3.4. Let
h1 : C → H1 and h2 : Q→ H2 be θ1, θ2-inverse strongly monotone operators, respectively,
such that θ = max{θ1, θ2}. Let φ : C → R ∪ {+∞} and ϕ : Q → R ∪ {+∞} be proper,
lowersemicontinuous and convex functions, and let S : C → C be a nonspreading mapping
such that F (S) 6= ∅. Let f : H1 → H1 be a contraction mapping with constant β ∈ (0, 1)
and D be a bounded operator with coefficient γ̄ ∈ (0, 1) such that 0 < ξ < γ̄

β
. Choose an

initial point x1 ∈ H1 arbitrarily and let αn ∈ [0, 1], βn ∈ [0, 1], wn ∈ (0, 1), rn ∈ (0, 2θ)

and λ > 0. Assume that the nth iterate has been constructed, and set m1 =
γ1A∗(T

Θ2
r1
−I)Ax1

λ
.

We then compute the (n+ 1)th iterate via the formula
mn+1 =

γnA
∗(TΘ2

rn − I)Axn

λ
+ βnmn,

yn = xn + λmn+1,

zn = TΘ1
rn (I − rnh1)yn,

xn+1 = αnξf(xn) + (1− αnD)[(1− wn)zn + wnSzn],

(3.3.8)

for n ≥ 1, where A* is the adjoint operator of A. Further, we choose the stepsize γn such
that, if n ∈ O := {n : (I − TΘ2

rn )Axn 6= 0}, then

γn ∈
(

0,
2||(I − TΘ2

rn )xn||2
||A∗(I − TΘ2

rn )Axn||2
)
, ∀n ∈ O. (3.3.9)

Otherwise, γn = γ (γ being any nonnegative value).

Remark 3.3.7. Note that in (3.3.9), the choice of stepsize γn is independent of the norm
||A||. The value of γ does not influence the considered algorithm but was introduced just
for the sake of clarity. Furthermore, we will see from Lemma 3.3.8 that γn is well defined.

Lemma 3.3.8. Assume that ΩSGMEP := {q ∈ GMEP (Θ1, h1, φ) : Aq ∈ GMEP (Θ2, h2, ϕ)}
is nonempty. Then γn defined by (3.3.9) is well defined.
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Proof. We need to show that ||A∗(I − TΘ2
rn )Axn|| > 0. Take x ∈ Ω, then TΘ1

rn x = x and
TΘ2
rn Ax = Ax, and observe the following:

||(I − TΘ2
rn )Axn||2 = 〈(I − TΘ2

rn )Axn, (I − TΘ2
rn )Axn〉

= 〈(I − TΘ2
rn )Axn, Axn − Ax+ TΘ2

rn Ax− TΘ2
rn Axn〉

= 〈(I − TΘ2
rn )Axn, Axn − Ax〉+ 〈(I − TΘ2

rn )Axn, T
Θ2
rn Ax− TΘ2

rn Axn〉
= 〈A∗(I − TΘ2

rn )Axn, xn − x〉+ 〈(I − TΘ2
rn )Axn, T

Θ2
rn Ax− TΘ2

rn Axn〉
≤ ||A∗(I − TΘ2

rn )Axn|| × ||xn − x||+ ||(I − TΘ2
rn )Axn|| ×

||TΘ2
rn Ax− TΘ2

rn Axn||.

Consequently, for n ∈ O, that is ||(I−TΘ2
rn Axn)Axn|| > 0, we get ||A∗(I−TΘ2

rn Axn)Axn||×
||xn−x|| > 0 and ||(I−TΘ2

rn )Axn||× ||TΘ2
rn Ax−TΘ2

rn Axn|| > 0. Since ||A∗(I−TΘ2
rn )Axn||×

||xn − x|| > 0, we obtain that ||A∗(I − TΘ2
rn )Axn|| 6= 0. This implies that γn is well

defined.

We make the following assumptions on the control sequences:

Assumption 3.3.9. The sequences {αn} and {βn} in Algorithm 3.3.6 satisfy the follow-
ing:

(C1) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞,

(C2)
∞∑
n=0

βn <∞,

(C3) βn ≤ α4
n.

Furthermore, {xn} satisfies

(C4) {(TΘ2
rn − I)Axn} is bounded.

Before giving the convergence analysis of Algorithm 3.3.6, we first prove the following
result.

Lemma 3.3.10. Suppose that Γ := ΩSGMEP ∩F (S) 6= ∅ and {xn} is generated by (3.3.8).
Also, let Assumption 3.3.9 be satisfied and suppose rn satisfies the following condition:

(C5) 0 < lim inf
n→∞

rn ≤ lim sup
n→∞

rn ≤ 2θ.

Then, {mn} and {xn} are bounded, and consequently {yn} is bounded.

Proof. It follows from (C2) that lim
n→∞

βn = 0 and so there exists n0 ∈ N such that βn ≤
1

2
for

all n ≥ n0. Define a number N1 := max

{
max

1≤k≤n0

||mk||,
2

λ
supn≥1 ||γnA∗(TΘ2

rn − I)Axn||
}
.
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Then (C4) implies that N1 < ∞. Assume that ||mn|| ≤ N1 for some n ≥ n0, then the
triangle inequality ensures that

||mn+1|| =
∣∣∣∣∣∣γnA∗(TΘ2

rn − I)Axn

λ
+ βnmn

∣∣∣∣∣∣
≤ 1

λ
||γnA∗(TΘ2

rn − I)Axn||+ βn||mn|| ≤ N1, (3.3.10)

which means that ||mn+1|| ≤ N1 for all n ≥ 0, hence {mn} is bounded.

Also, the definition of {yn} implies that

yn = xn + λ
(1

λ
(γnA

∗(TΘ2
rn − I)Axn) + βnmn

)
= xn − γnA∗(I − TΘ2

rn )Axn + λβnmn.

Let p ∈ Γ, then

||yn − p|| = ||xn − γnA∗(I − TΘ2
rn )Axn + λβnmn − p||

≤ ||xn − γnA∗(I − TΘ2
rn )Axn − p||+ λβn||mn||. (3.3.11)

Observe that

||xn − γnA∗(I − TΘ2
rn )Axn − p||2

= ||xn − p||2 − 2γn〈xn − p,A∗(I − TΘ2
rn )Axn〉+ γ2

n||A∗(I − TΘ2
rn )Axn||2

= ||xn − p||2 − 2γn〈Axn − Ap, (I − TΘ2
rn )Axn〉+ γ2

n||A∗(I − TΘ2
rn )Axn||2

= ||xn − p||2 − 2γn〈TΘ2
rn Axn − Ap, (I − TΘ2

rn )Axn〉 − 2γn||(I − TΘ2
rn )Axn||2

+ γ2
n||A∗(I − TΘ2

rn )Axn||2. (3.3.12)

Since TΘ2
rn is firmly nonexpansive, then

||TΘ2
rn Axn − Ap||2 ≤ 〈TΘ2

rn Axn − Ap,Axn − Ap〉,

and so
〈TΘ2

rn Axn − Ap, TΘ2
rn Axn − Axn〉 ≤ 0. (3.3.13)

It follows from (3.3.12) and (3.3.13) that

||xn − γnA∗(I − TΘ2
rn )Axn − p||2

≤ ||xn − p||2 − 2γn||(I − TΘ2
rn )Axn||2 + γ2

n||A∗(I − TΘ2
rn )Axn||2

= ||xn − p||2 − γn
[
2||(I − TΘ2

rn )Axn||2 − γn||A∗(I − TΘ2
rn )Axn||2

]
≤ ||xn − p||2. (3.3.14)

Therefore, from (3.3.11) and (3.3.14), we get

||yn − p|| ≤ ||xn − p||+ λβnN1. (3.3.15)
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Again from (3.3.8), we use the fact that TΘ1
rn is firmly nonexpansive to show that

||zn − p||2 = ||TΘ1
rn (I − rnh1)yn − TΘ1

rn (I − rnh1)p||2
≤ ||(I − rnh1)yn − (I − rnh1)p||2
= ||(yn − p)− rn(h1yn − h1p)||2
= ||yn − p||2 − 2rn〈yn − p, h1yn − h1p〉+ r2

n||h1yn − h1p||2
≤ ||yn − p||2 − 2rnθ||h1yn − h1p||2 + r2

n||h1yn − h1p||2
= ||yn − p||2 − rn(2θ − rn)||h1yn − h1p||2. (3.3.16)

By condition (C5), we obtain

||zn − p||2 ≤ ||yn − p||2. (3.3.17)

Now define Un = (1− wn)I + wnS, and observe that

||Unzn − p|| = ||(1− wn)(zn − p) + wn(Szn − p)||
≤ (1− wn)||zn − p||+ wn||Szn − p||
≤ (1− wn)||zn − p||+ wn||zn − p||
= ||zn − p||.

Therefore, from (3.3.8), (3.3.15) and (3.3.17), we have

||xn+1 − p|| = ||αn(ξf(xn)−Dp) + (1− αnD)(Unzn − p)||
≤ αn||ξf(xn)−Dp||+ (1− αnγ̄)||Unzn − p||
≤ αn

[
||ξ(f(xn)− f(p)) + (ξf(p)−Dp)||

]
+ (1− αnγ̄)||zn − p||

≤ αnξβ||xn − p||+ αn||ξf(p)−Dp||+ (1− αγ̄)[||xn − p||+ λβnN1]

= (1− αn(γ̄ − ξβ))||xn − p||+ αn||ξf(p)−Dp||+ λβnN1

≤ max
{
||xn − p||,

||ξf(p)−Dp||
γ̄ − ξβ +

λN1

γ̄ − ξβ
}

...

≤ max
{
||x1 − p||,

||ξf(p)−Dp||
γ̄ − ξβ +

λN1

γ̄ − ξβ
}
. (3.3.18)

This implies that {xn} is bounded. It follows from (3.3.15) that {yn} is also bounded.

We now present the main theorem for the convergence analysis of Algorithm 3.3.6.

Theorem 3.3.11. Let C and Q be nonempty closed and convex subsets of real Hilbert
spaces H1 and H2, respectively, and A : H1 → H2 a bounded linear operator. Let Θ1 :
C × C → R and Θ2 : Q × Q → R be bifunctions satisfying Assumption 3.3.4. Let
h1 : C → H1 and h2 : Q→ H2 be θ1, θ2-inverse strongly monotone mappings, respectively,
such that θ = max{θ1, θ2}. Let φ : C → R ∪ {+∞} and ϕ : Q → R ∪ {+∞} be proper,
lowersemicontinuous and convex functions, and let S : C → C be a nonspreading mapping
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such that F (S) 6= ∅. Let f : H1 → H1 be a contraction mapping with constant β ∈ (0, 1),
and let D a bounded operator with coefficient γ̄ ∈ (0, 1) such that 0 < ξ < γ̄

β
. Choose an

initial value x1 ∈ H1 arbitrarily and let αn ∈ [0, 1], βn ∈ [0, 1], wn ∈ (0, 1), rn ∈ (0, 2θ)
and λ > 0. Suppose Γ := ΩSGMEP ∩ F (S) 6= ∅, Assumption 3.3.9, condition (C5) and the
following are satisfied:

(C6) lim inf
n→∞

rn > 0;

(C7) 0 < lim inf
n→∞

wn ≤ lim sup
n→∞

wn < 1.

Then the sequences {xn}, {yn} and {zn} generated by Algorithm 3.3.6 converge strongly to
a point z, where z = PΓ(I −D + ξf)(z) is a unique solution of the variational inequality

〈(D − ξf)z, z − x〉 ≤ 0, x ∈ Γ. (3.3.19)

Proof. Let p ∈ Γ, then from Lemma 2.6.1(i) and (3.3.14), we have

||yn − p||2 = ||xn − γnA∗(I − TΘ2
rn )Axn − p+ λβnmn||2

≤ ||xn − γnA∗(I − TΘ2
rn )Axn − p||2 + 2λβn〈yn − p,mn〉

≤ ||xn − p||2 + βnρn, (3.3.20)

where ρn := 2λ〈yn − p,mn〉. Using Lemma 3.3.10, it follows that {ρn} is bounded. Thus,
there exists N2 > 0 such that ρn ≤ N2 for all n ≥ 1. Hence, it follows from condition (C3)
that

||yn − p||2 ≤ ||xn − p||2 + 2α4
nN2. (3.3.21)

Furthermore, from (3.3.17) and (3.3.21), we have

||xn+1 − p||2 = ||αn(ξf(xn)−Dp) + (1− αnD)(Unzn − p)||2
≤ ||(1− αnD)(Unzn − p)||2 + 2αn〈ξf(xn)−Dp, xn+1 − p〉
≤ (1− αnγ̄)2||zn − p||2 + 2αnξ〈f(xn)− f(p), xn+1 − p〉

+2αn〈ξf(p)−Dp, xn+1 − p〉
≤ (1− αnγ̄)2||yn − p||2 + 2αnξ〈f(xn)− f(p), xn+1 − p〉

+2αn〈ξf(p)−Dp, xn+1 − p〉
≤ (1− αnγ̄)2

[
||xn − p||2 + 2α4N2

]
+ 2αnξβ||xn − p|| × ||xn+1 − p||

+2αn〈ξf(p)−Dp, xn+1 − p〉. (3.3.22)

We now divide the remaining proof of the theorem into two cases.
Case I: Suppose there exists n0 ∈ N such that {||xn − p||} is monotonically decreasing for
all n ≥ n0. Then {||xn − p||} converges as n→∞ and so

||xn − p||2 − ||xn+1 − p||2 → 0, n→∞.
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Note that, from (3.3.14), (3.3.20) and (3.3.21), we obtain

||yn − p||2 ≤ ||xn − p||2 − γn
[
2||(I − TΘ2

rn )Axn||2 − γn||A∗(I − TΘ2
rn )Axn||2

]
+2α4

nN2. (3.3.23)

Also from (3.3.22), we obtain

||xn+1 − p||2 ≤ (1− αnγ̄)2||yn − p||2 + 2αnξ〈f(xn)− f(p), xn+1 − p〉
+2αn〈ξf(p)−Dp, xn+1 − p〉

≤ ||yn − p||2 + 2αnξ〈f(xn)− f(p), xn+1 − p〉
+2αn〈ξf(p)−Dp, xn+1 − p〉. (3.3.24)

Substituting (3.3.23) into (3.3.24), we have

||xn+1 − p||2 ≤ ||xn − p||2 − γn
[
2||(I − TΘ2

rn )Axn||2 − γn||A∗(I − TΘ2
rn )Axn||2

]
+2αnξ〈f(xn)− f(p), xn+1 − p〉+ 2αn〈ξf(p)−Dp, xn+1 − p〉
+2α4

nN2. (3.3.25)

Putting Λn := 2||I − TΘ2
rn Axn||2 − γn||A∗(I − TΘ2

rn )Axn||2, then since αn → 0, as n → ∞,
it follows from (3.3.25) that

γnΛn ≤ ||xn − p||2 − ||xn+1 − p||2 + 2αnξ〈f(xn)− f(p), xn+1 − p〉
+2αn〈ξf(p)−Dp, xn+1 − p〉+ 2α4

nN2 → 0. (3.3.26)

From the condition on the stepsize given by (3.3.9), for a small ε > 0, we know that

γn <
2||(I − TΘ2

rn )Axn||2
||A∗(I − TΘ2

rn )Axn||2
− ε, (3.3.27)

which implies

γn||A∗(I − TΘ2
rn )Axn||2 < 2||(I − TΘ2

rn )Axn||2 − ε||A∗(I − TΘ2
rn )Axn||2

and thus we have

ε||A∗(I − TΘ2
rn )Axn||2 < 2||(I − TΘ2

rn )Axn||2 − γn||A∗(I − TΘ2
rn )Axn||2.

This implies that

ε||A∗(I − TΘ2
rn )Axn||2 < Λn → 0, as n→∞.

Hence

lim
n→∞

||A∗(I − TΘ2
rn )Axn||2 = 0. (3.3.28)
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Further, from (3.3.26) and (3.3.28), we get

0 < ε||(I−TΘ2
rn )Axn||2 ≤ γn||(I − TΘ2

rn )Axn||2

≤ ||xn − p||2 − ||xn+1 − p||2 + γ2
n||A∗(I − TΘ2

rn )Axn||2
+ 2αnξ〈f(xn)− f(p), xn+1 − p〉+ 2αn〈ξf(p)−Dp, xn+1 − p〉
+ 2α4

nN2 → 0, as n→∞, (3.3.29)

and hence
lim
n→∞

||(I − TΘ2
rn )Axn|| = 0. (3.3.30)

Also from (3.3.22), we obtain

||xn+1 − p||2 ≤ (1− αnγ̄)2||zn − p||2 + 2αnξ〈f(xn)− f(p), xn+1 − p〉
+2αn〈ξf(p)−Dp, xn+1 − p〉

≤ ||zn − p||2 + 2αnξβ||xn − p|| × ||xn+1 − p||
+2αn〈ξf(p)−Dp, xn+1 − p〉. (3.3.31)

Substituting (3.3.16) into (3.3.31), and from (3.3.21), we have

||xn+1 − p||2 ≤ ||yn − p||2 − rn(2θ − rn)||h1yn − h1p||2 + 2αnξβ||xn − p|| × ||xn+1 − p||
+2αn〈ξf(p)−Dp, xn+1 − p〉

≤ ||xn − p||2 + 2α4
nN2 − rn(2θ − rn)||h1yn − h1p||2 + 2αnξβ||xn − p|| ×

||xn+1 − p||+ 2αn〈ξf(p)−Dp, xn+1 − p〉.

Thus, we have

rn(2θ − rn)||h1yn − h1p||2 ≤ ||xn − p||2 − ||xn+1 − p||2 + 2αnξβ||xn − p|| · ||xn+1 − p||
+2αn〈ξf(p)−Dp, xn+1 − p〉 → 0, as n→∞.

Since {rn} ⊂ (0, 2θ), we conclude that

lim
n→∞

||h1yn − h1p||2 = 0. (3.3.32)

Further, observe that

||zn − p||2 = ||TΘ1
rn (yn − rnh1yn)− TΘ1

rn (p− rnh1p)||2
≤ 〈zn − p, (yn − rnh1yn)− (p− rnh1p)〉
≤ 1

2

{
||zn − p||2 + ||(yn − rnh1yn)− (p− rnh1p)||2 −

||(zn − p)− [(yn − rnh1yn)− (p− rnh1p)]||2
}
.

Hence

||zn − p||2 ≤ ||(yn − rnh1yn)− (p− rnh1p)||2 − ||(zn − yn) + rn(h1yn − h1p)||2
≤ ||yn − p||2 − ||zn − yn||2 + 2rn||zn − yn|| × ||h1yn − h1p||2. (3.3.33)
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From (3.3.31) and (3.3.33), we obtain

||xn+1 − p||2 ≤ ||yn − p||2 − ||zn − yn||2 + 2rn||zn − yn|| × ||h1yn − h1p||2
+2αnξβ||xn − p|| × ||xn+1 − p||+ 2αn〈ξf(p)−Dp, xn+1 − p〉

≤ ||xn − p||2 + 2α4
nN2 − ||zn − yn||2 + 2rn||zn − yn|| · |h1yn − h1p||2

+2αnξβ||xn − p|| × ||xn+1 − p||+ 2αn〈ξf(p)−Dp, xn+1 − p〉.

Therefore

||zn − yn||2 ≤ ||xn − p||2 − ||xn+1 − p||2 + 2α4
nN2 + 2rn||zn − yn|| · ||h1yn − h1p||2

+2αnξβ||xn − p|| × ||xn+1 − p||+ 2αn〈ξf(p)−Dp, xn+1 − p〉.

Since αn → 0 as n→∞, and using (3.3.32), we obtain

lim
n→∞

||zn − yn||2 = 0. (3.3.34)

Moreover

||Unzn − p||2 = ||(1− wn)zn + wnSzn − p||2
≤ (1− wn)||zn − p||2 + wn||Szn − p||2 − wn(1− wn)||Szn − zn||2
≤ (1− wn)||zn − p||2 + wn||zn − p||2 − wn(1− wn)||Szn − zn||2
= ||zn − p||2 − wn(1− wn)||Szn − zn||2
≤ ||xn − p||2 + 2α4

nN2 − wn(1− wn)||Szn − zn||2. (3.3.35)

Note that from (3.3.22), we have

||xn+1 − p||2 ≤ (1− αnγ̄)2||Unzn − p||2 + 2αn〈ξf(xn)−Dp, xn+1 − p〉
≤ ||Unzn − p||2 + 2αn〈ξf(xn)−Dp, xn+1 − p〉, (3.3.36)

then from (3.3.35) and (3.3.36), we get

wn(1− wn)||Szn − zn||2 ≤ ||xn − p||2 − ||xn+1 − p||2 + 2αn〈ξf(xn)−Dp, xn+1 − p〉
+2α4

nN2 → 0, as n→∞.

By condition (C7), we have

lim
n→∞

||Szn − zn|| = 0. (3.3.37)

Also

||Unzn − zn|| = wn||Szn − zn|| → 0, as n→∞. (3.3.38)

It is clear from (3.3.6) that

||xn+1 − Unzn|| = αn||ξf(xn)−DUnzn|| → 0, as n→∞, (3.3.39)

and
||yn − xn|| → 0, n→∞, (3.3.40)
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then, it follows from (3.3.34) and (3.3.40) that

||zn − xn|| ≤ ||zn − yn||+ ||yn − xn|| → 0, as n→∞. (3.3.41)

Furthermore, it follows from (3.3.38), (3.3.39) and (3.3.41) that

||xn+1 − xn|| ≤ ||xn+1 − Unzn||+ ||Unzn − zn||+ ||zn − xn|| → 0, as n→∞.

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that xnj ⇀ x̄.
It follows from (3.3.40) and (3.3.41) that ynj ⇀ x̄ and znj ⇀ x̄, respectively. Since
limn→∞ ||Szn − zn|| = 0, and by Lemma 2.6.5, we have x̄ ∈ F (S). Next, we show that
x̄ ∈ ΩSGMEP . Since zn = TΘ1

rn (yn − rnh1yn), then

Θ1(zn, y) + 〈h1zn, y − zn〉+ φ(y)− φ(zn) +
1

rn
〈y − zn, zn − yn〉 ≥ 0, ∀y ∈ C.

It follows from the monotonicity of Θ1 that

〈h1zn, y − zn〉+ φ(y)− φ(zn) +
1

rn
〈y − zn, zn − yn〉 ≥ Θ1(y, zn).

Replacing n by nj, we get

〈h1znj , y − znj〉+
1

rnj
〈y − znj , znj − ynj〉 ≥ Θ1(y, znj) + φ(znj)− φ(y). (3.3.42)

Further, for any t ∈ (0, 1] and y ∈ C, let yt = ty + (1− t)x̄. Since x̄ ∈ C and y ∈ C, then
yt ∈ C. So from (3.3.42), we have

〈yt − znj , h1yt〉 ≥ 〈yt − znj , h1yt〉 − 〈yt − znj , h1ynj〉 −
〈
yt − znj ,

znj − ynj
rnj

〉
+ Θ1(yt, znj)

+φ(znj)− φ(yt)

= 〈yt − znj , h1yt − h1znj〉+ 〈yt − znj , h1znj − h1ynj〉

−
〈
yt − znj ,

znj − ynj
rnj

〉
+ Θ1(yt, znj) + φ(znj)− φ(yt). (3.3.43)

From the Lipschitz continuity of h1 and limn→∞ ||zn−yn|| = 0, we obtain ||h1znj−h1ynj || →
0, as n → ∞. Also since h1 is monotone, we have 〈yt − znj , h1yt − h1znj〉 ≥ 0. Therefore,
by LL4 and the weak lower semicontinuity of φ, taking the limit of (3.3.43) as j →∞, we
have

〈yt − x̄, h1yt〉 ≥ Θ1(yt, x̄) + φ(x̄)− φ(yt). (3.3.44)

Hence, from LL1 and (3.3.44), we get

0 = Θ1(yt, yt) + φ(yt)− φ(yt)

≤ tΘ1(yt, y) + (1− t)Θ1(yt, x̄) + tφ(y) + (1− t)φ(x̄)− φ(yt)

= t(Θ1(yt, y) + φ(y)− φ(yt)) + (1− t)(Θ1(yt, x̄) + φ(x̄)− φ(yt))

≤ t(Θ1(yt, y) + φ(y)− φ(yt)) + (1− t)〈yt − x̄, h1yt〉
≤ t(Θ1(yt, y) + φ(y)− φ(yt)) + (1− t)t〈y − x̄, h1yt〉,
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which implies that

Θ1(yt, y) + (1− t)〈y − x̄, h1yt〉+ φ(y)− φ(yt) ≥ 0.

Letting t→ 0, we have

Θ1(x̄, y) + 〈y − x̄, h1x̄〉+ φ(y)− φ(x̄) ≥ 0, y ∈ C,
which implies that x̄ ∈ GMEP (Θ1, h, φ).

Since A is a bounded linear operator, Axnj ⇀ Ax̄. It follows from (3.3.30) that

TΘ2
rnj
Axnj ⇀ Ax̄, as j →∞.

By the definition of TΘ2
rnj
Axnj , we have

Θ2(TΘ2
rnj
Axnj , g) + 〈h2(TΘ2

rnj
Axnj), g − TΘ2

rnj
Axnj〉+ ϕ(g)− ϕ(TΘ2

rnj
Axnj)

+
1

rnj
〈y − TΘ2

rnj
Axnj , T

Θ2
rnj
Axnj − Axnj〉 ≥ 0, ∀g ∈ Q and y ∈ H2. (3.3.45)

Since Θ2 is upper semicontinuous in the first argument, taking limsup of the above in-
equality as j →∞, we get

Θ2(Ax̄, g) + 〈h2(Ax̄), g − Ax̄〉+ ϕ(g)− ϕ(Ax̄) ≥ 0, ∀g ∈ Q,
which implies Ax̄ ∈ GMEP (Θ2, h2, ϕ) and thus x̄ ∈ ΩSGMEP . Therefore x̄ ∈ Γ =
ΩSGMEP ∩ F (S).

We now show that {xn} converges strongly to z = PΓ(I −D+ ξf)(z) which is the unique
solution of the variational inequality (3.3.19). To do this, we first prove that
lim sup
n→∞

〈(D − ξf)z, z − xn〉 ≤ 0. Choose a subsequence {xnj} of {xn} such that

lim sup〈(D − ξf)z, z − xn〉 = lim
j→∞
〈(D − ξf)z, z − xnj〉.

Since xnj ⇀ x̄, we get

lim sup〈(D − ξf)z, z − xn〉 = lim
j→∞
〈(D − ξf)z, z − xnj〉

= 〈(D − ξf)z, z − x̄〉 ≤ 0.

Now from (3.3.22), we have

||xn+1 − z||2 ≤ (1− αnγ̄)2
[
||xn − z||2 + 2α4N2

]
+ 2αnξβ||xn − z|| · ||xn+1 − z||

+2αn〈ξf(z)−Dz, xn+1 − z〉
≤ (1− αnγ̄)2||xn − z||2 + αnξβ(||xn − z||2 + ||xn+1 − z||2)

+2αn〈ξf(z)−Dz, xn+1 − z〉+ 2α4
nN2

≤ (1− αnγ̄)||xn − z||2 + αnξβ(||xn − z||2 + ||xn+1 − z||2)

+2αn〈ξf(z)−Dz, xn+1 − z〉+ 2α4
nN2

≤
(

1− αn(γ̄ − ξβ)

1− αnξβ

)
||xn − z||2 +

2αn
1− αnξβ

(
〈ξf(z)−Dz, xn+1 − z〉+ α3

nN2

)
= (1− νn)||xn − z||+ νnδn, (3.3.46)
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where

νn =
αn(γ̄ − ξβ)

1− αnξβ
and δn =

2

γ̄ − ξβ [〈ξf(z)−Dz, xn+1 − z〉+ α3
nN2].

It is easy to verify that
∞∑
n=0

νn =∞ and lim sup
n→∞

δn ≤ 0. Therefore, from Lemma 2.6.29, we

get ||xn − z|| → 0, as n→∞ and hence {xn} converges strongly to z. From (3.3.40) and
(3.3.41), it is easy to see that {yn} and {zn} converge strongly z.

Case II: Assume that {||xn − p||} is not monotonically decreasing. For all n ≥ n0 (for
some n0 large enough), let τ : N→ N be defined by

τ(n) = max{k ∈ N : k ≤ n : τk ≤ τk+1}.

Clearly, τ is non-decreasing since τ(n)→∞ as n→∞ and

0 ≤ ||xτ(n) − p|| ≤ ||xτ(n)+1 − p||, ∀n ≥ n0.

Following a similar argument as in Case I, we have ||(I − TΘ2
rτ(n)

)Axτ(n)|| → 0, ||Szτ(n) −
zτ(n)|| → 0, and ||xτ(n)+1 − xτ(n)|| → 0. Also, we obtain

lim sup
n→∞

〈(D − ξf)p, p− xτ(n)〉 ≤ 0.

Now since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)} denoted by {xτ(nj)}
which converges weakly to x̄. Suppose {xτ(nj)} is such that

lim sup
n→∞

〈ξf(p)−Dp, xτ(n)+1 − p〉 = lim
j→∞
〈ξf(p)−Dp, xτ(nj)+1 − p〉.

Since xτ(n) ⇀ x̄, and from (3.3.19), we have

lim sup
n→∞

〈ξf(p)−Dp, xτ(n)+1 − p〉 = lim
j→∞
〈ξf(p)−Dp, xτ(nj)+1 − p〉

= 〈ξf(p)−Dp, x̄− p〉 ≤ 0.

Therefore
lim sup
n→∞

〈ξf(p)−Dp, xτ(n)+1 − p〉 ≤ 0. (3.3.47)

Similarly, as in (3.3.46) we obtain

||xτ(n)+1 − p||2 ≤ (1− ατ(n)γ̄)2
[
||xτ(n) − p||2 + 2α4N2

]
+ 2ατ(n)ξβ||xτ(n) − p|| ×

||xτ(n)+1 − p||+ 2ατ(n)〈ξf(p)−Dp, xτ(n)+1 − p〉

≤
(

1− ατ(n)(γ̄ − ξβ)

1− ατ(n)ξβ

)
||xτ(n) − p||2

+
2ατ(n)

1− ατ(n)ξβ
[〈ξf(p)−Dp, xτ(n)+1 − p〉+ α3

nN2]. (3.3.48)
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Since ||xτ(n) − p||2 ≤ ||xτ(n)+1 − p||2, then from (3.3.48), we have

0 ≤ ||xτ(n)+1 − p||2 − ||xτ(n) − p||2

≤
(

1− ατ(n)(γ̄ − ξβ)

1− ατ(n)ξβ

)
||xτ(n) − p||2 +

2ατ(n)

1− ατ(n)ξβ
[〈ξf(p)−Dp, xτ(n)+1 − p〉+ α3

nN2]

−||xτ(n) − p||2.

It follows that

γ̄ − ξβ
1− ατ(n)ξβ

||xτ(n) − p||2 ≤
2

1− ατ(n)ξβ
[〈ξf(p)−Dp, xτ(n)+1 − p〉+ α3

nN2].

Since ατ(n) → 0, as n→∞ and from (3.3.47), we have

lim
n→∞

||xτ(n) − p|| = 0.

As a consequence, we obtain for all n ≥ n0,

0 ≤ ||xn − p||2 ≤ max{||xτ(n) − p||2, ||xτ(n)+1 − p||2} = ||xτ(n)+1 − p||2.

Hence, limn→∞ ||xn−p|| = 0. This implies that {xn} converges strongly to p. This complete
the proof.

Remark 3.3.12. The condition that {(I − TΘ2
rn )Axn} is bounded is satisfied if the set of

solutions ΩSGMEP of SGMEP (3.3.1) is bounded. If ΩSGMEP is not bounded, then we need
to verify the condition that {(I − TΘ2

rn )Axn} is bounded before applying our algorithm.

3.3.2 Numerical example

In this subsection, we provide a numerical result to show the accuracy and efficiency of
our proposed algorithm.

Example 3.3.13. Let H1 = H2 = R and C = Q = [0, 2]. Define Θ1 : C × C → R by
Θ1(x, y) = −1

2
x2 + 1

2
y2, h1 : C → R by h1(x) = x and φ : C → R by φ(x) = 1

2
x2. It is easy

to see that
TΘ1
rn (z) =

z

3rn + 1
, ∀z ∈ R.

Also, let Θ2 : R×R→ R be defined by Θ2(u, v) = −3u2 +2uv+v2, h2 : Q→ R be defined
by h2(u) = 2u and ϕ : R→ R be defined by ϕ(u) = u2, then

TΘ2
rn (w) =

w

6rn + 1
, ∀w ∈ R.

Let A : R → R be defined by A(x) = 2x for all x ∈ R. Then A is a bounded linear
operator and AT (x) = 2x for all x ∈ R. Clearly, ΩSGMEP := {p ∈ GMEP (Θ1, h1, φ) :
Ap ∈ GMEP (Θ2, h2, ϕ)} = {0}. This shows that ΩSGMEP is bounded and thus, the
sequence {(I − TΘ2

rn )Axn} is also bounded.
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Define S : R→ R by

Sx =

{
x, if x ∈ (−∞, 1),

1, if x ∈ [1,+∞).
(3.3.49)

It is easy to see that S is nonspreading and Γ = {0}. Take ξ = 1, D = I, where I

is an identity mapping and f : R → R be defined by f(x) = x
2
. Choose αn =

1

n+ 1
,

wn =
1

5(1 + 1
n
)
, rn =

2

n+ 1
, βn =

1

2(n+ 1)4
and λ = 1.5, and set m1 =

γ1

1.5

( −24rn
6rn + 1

)
x1.

Then Algorithm 3.2.4 gives the following:

mn+1 =
γn
1.5

(
−24rn
6rn + 1

)xn +
mn

2(n+ 1)4
,

yn = xn + 1.5mn+1,

zn =
1

3rn + 1
(
n− 1

n+ 1
)yn,

xn+1 =
1

n+ 1
f(xn) +

n

n+ 1

[ 4n+ 5

5(n+ 1)
zn +

n

5(n+ 1)
Szn

]
, n ≥ 1.

(3.3.50)

We now make a different choice of the initial value x1 and use ε < 10−6 for the stopping
criterion.

Case 1: x1 = 0.0025, Case 2: x1 = 0.01, Case 3: x1 = 0.1, Case 4: x1 = 1.

We note that the choice of γn, as long as it is in the range, does not have any significant
effect on either the number of iterations, nor the cpu time. We compare the computational
result of Algorithm 3.3.6 with its unaccelerated form (i.e. taking βn = 0) and plot the
graphs of accuracy against number of iterations, and errors against number of iterations
(see Figure 3.4-3.7 and Table 3.4). This shows that Algorithm 3.3.6 converges faster and
is more efficient than its unaccelerated form (i.e. when βn = 0).
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Figure 3.4: x1 = 0.0025, Left: accuracy against number of iterations; Right: errors against
numbers of iterations.
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Figure 3.5: x1 = 0.01, Left: accuracy against number of iterations; Right: errors against
numbers of iterations.
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Figure 3.6: x1 = 0.1, Left: accuracy against number of iterations; Right: errors against
numbers of iterations.

1 2 3 4 5 6 7

Iteration number (n)

0

1

2

3

4

5

6

7

x n+
1

10-3

Algorithm 3.1
Unacclerated type

1 1.5 2 2.5 3 3.5 4

Iteration number (n)

0

1

2

3

4

5

6

7

E
rr

or
s

10-3

Algorithm 3.1
Unacclerated type

Figure 3.7: x1 = 1, Left: accuracy against number of iterations; Right: errors against
numbers of iterations.
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Table 3.4: Computation result for Example 3.3.13

Time Taken (Sec)

Algorithm 3.3.8 Unaccelerated alg.

x1 = 0.0025 0.0011 0.0277
x1 = 0.01 0.0020 0.0262
x1 = 0.1 0.0026 0.0357
x1 = 1 0.0038 0.1119
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CHAPTER 4

Equilibrium Problems in Hilbert Spaces

4.1 A Parallel Combination Extragradient Method

with Armijo Line Searching for Finding Common

Solutions of Finite Families of Equilibrium and

Fixed Point Problems

In this section, we focus on the approximation of a common solution of a Finite Family of
Equilibrium Problems (FEP), i.e., finding x∗ ∈ C := ∩Ni=1Ci such that

gi(x
∗, y) ≥ 0, ∀ y ∈ Ci, (4.1.1)

where Ci, i = 1, 2, . . . , N is a finite family of nonempty, closed and convex subsets of H,
gi : Ci×Ci → R is a finite family of bifunctions satisfying gi(x, x) = 0. We denote the set
of solution of (4.1.1) by ΩFEP .
Clearly, the FEP (4.1.1) with N = 1 is the EP (1.1.4). The motivation and inspiration for
studying the FEP originated from its importances and applications in Convex Feasibility
Problem (CFP), i.e.,

finding x∗ ∈ C := ∩Ni=1Ci 6= ∅. (4.1.2)

The CFP has received great attention due to its broad applicability in many areas of
applied mathematics such as image processing, computerized tomography and radiation
therapy treatment. It is also worth mentioning that the FEP (4.1.1) has find applications in
other areas of studies such as common fixed point problems, common solution of variational
inequality problems and common solution of minimization problems.

The bifunction g : C × C → R is said to satisfy Lipschitz-type condition, if there exists
two constants c1 > 0 and c2 > 0 such that

g(x, y) + g(y, z) ≥ g(x, z)− c1‖x− y‖2 − c2‖y − z‖2 ∀ x, y, z ∈ C. (4.1.3)
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Hieu et al. [130] introduced a parallel hybrid Mann-type extragradient method for solving
FEP (4.1.1). This algorithm was defined as follows:

Algorithm 4.1.1.

Step 0: Pick x0 ∈ C, 0 < λ < min
(

1
2c1
, 1

2c2

)
, n = 0 and the sequence {αn} ⊂ (0, 1) such that

lim supn→∞ αn < 1.

Step 1: Solve N strong convex programs in parallel

yin = argmin

{
λgi(xn, y) +

1

2
||xn − y||2 : y ∈ C

}
, i = 1, 2, . . . , N.

Step 2: Solve N strong convex program in parallel

zin = argmin

{
λgi(y

i
n, y) +

1

2
||xn − y||2 : y ∈ C

}
, i = 1, 2, . . . , N. (4.1.4)

Step 3: Find among zin, i = 1, 2, . . . , N, the farthest element from xn, i.e.,

in = argmin{||zin − xn|| : i = 1, 2, . . . , N}, z̄n := zinn .

Step 4: Find intermediate ujn in parallel

ujn = αnxn + (1− αn)Sj z̄n, j = 1, 2, . . . ,M.

Step 5: Find among ujn, j = 1, 2, . . . ,M, the farthest element xn, i.e.,

jn = argmin{||ujn − xn|| : j = 1, 2, . . . ,M}, ūn := ujnn .

Step 6: Construct two closed convex subsets of C

Cn = {v ∈ C : ||ūn − v|| ≤ ||xn − v||},
Qn = {v ∈ C : 〈x0 − xn, v − xn〉 ≤ 0}.

Step 7: The next iteration xn+1 is defined as

xn+1 = PCn∩Qn(x0).

If xn+1 = xn, then Stop. Otherwise set n← n+ 1 and go to Step 1.

Hieu et al. [130] proved that the sequence {xn} generated by the Algorithm 4.1.1 converges
strongly to a solution x ∈ ΩFEP

⋂∩Mj=1F (Ti) where Ti are nonexpansive mappings. Other
similar parallel methods which are modifications of Algorithm 4.1.1 can be found in (for
instance) [11, 10, 127].

However, we note the following problems:
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(p1) The convergence of Algorithm 4.1.1 requires the Lipschitz constants c1 and c2 to be
known (or at least) estimated a priori. In practice, it is too difficult to approximate
the Lipschitz constants.

(p2) Algorithm 4.1.1 needs to solve two or more strongly convex program in parallel at
each iteration. This can be computationally costly and consumes large memory size
if the feasible set is complex.

(p3) Also, Algorithm 4.1.1 requires at each step of the process, the computation of two
subsets Cn and Qn, their intersection, and the projection of x0 onto Cn ∩Qn. This
can be computationally expensive if the feasible set is complex.

Recently, Hieu [128] proposed the following parallel hybrid extragradient-cutting method
which does not require to solve many strongly convex problem at each iteration: Let Ci,
i = 1, 2, . . . , N be family of nonempty closed convex subsets of H.

Algorithm 4.1.2.

Step 0: Pick x0 ∈ H, n = 0, 0 < λ ≤ λin < µ < min
{

1
2c1
, 1

2c2

}
, γin ∈ [ε, 1

2
] for some

ε ∈ (0, 1
2
], k = 1, 2, . . . and i = 1, 2, . . . , N.

Step 1: Solve N strongly convex program in parallel

yin = argmin

{
λingi(xn, y) +

1

2
||xn − y||2 : y ∈ Ci

}
.

Step 2: Solve N strongly convex program in parallel

zin = argmin

{
λingi(y

i
n, y) +

1

2
||xn − y||2 : y ∈ Ci

}
.

Step 3: Determine the next approximation via

xn+1 = PCn∩Qn(x0),

where Cn :=
⋂N
i=1 C

i
n and

Ci
n := {z ∈ H : 〈xn − zin, z − xn − γin(zin − xn)〉 ≤ 0},

Qn := {z ∈ H : 〈x0 − xn, xn − z〉 ≥ 0}.
If xn+1 = x0, then Stop. Otherwise, set n← n+ 1 and go to Step 1.

Note that, although Algorithm 4.1.2 improves Algorithm 4.1.1, but it still incurred some
of the problems in Algorithm 4.1.1.

In order to address the problems (p1)-(p3), in this section, we introduce a parallel combi-
nation extragradient method with Armijo line search rule for finding a common solution
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x ∈ ΩFEP ∩
(⋂M

j=1 F (Sj)
)

, where gi : C × C → R i = 1, 2, . . . , N are finite family of

pseudo-monotone equilibrium bifunctions and Sj : H → CB j = 1, 2, . . . ,M are finite
family of multivalued demi-contractive mappings. The key of our new method is that for
the current iterate xn, the algorithm solves a single strongly convex program and deter-
mine an appropriate stepsize for the next step using an Armijo line searching rule. Then,
a new level set Dn is constructed using the convex combination of finite convex functions
and a projection PDn is made. The algorithm determines if a common solution is reached
using a convex combination of the demi-contractive mappings, else, it updates the new
iterate xn+1. The simplicity and ease of implementation are two of the advantages of
our method (in each iteration, a single strongly convex optimization program is solved
and only one projection is made). Also, our method does not involve the projection on
PCn∩Qn in Algorithm 4.1.1 and 4.1.2 and other similar ones. We prove that the sequences
generated by our algorithm also converge in norm to the unique solution x. This method
improves many of the existing methods in the literature.

Throughout this section, we assume that the bifunction g : C × C → R satisfies the
following assumptions:

A1. g is pseudo-monotone on C;

A2. g is jointly weakly continuous on C×C in the sense that, if x, y ∈ C and {xk}, {yk} ⊂
C converge weakly to x and y, respectively, then g(xk, yk)→ g(x, y) as k →∞;

A3. g(x, ·) is convex and subdifferentiable on C for every x ∈ C.

The following Lemmas would be useful for our result in this section.

Lemma 4.1.3. [92] Let C be a convex subset of a real Hilbert space H and ϕ : C → R be
a convex and subdifferentiable function on C. Then x∗ is a solution to the convex problem

minimize{ϕ(x) : x ∈ C}

if and only if 0 ∈ ∂ϕ(x∗) + NC(x∗), where ∂ϕ(x∗) denotes the subdifferential of ϕ and
NC(x∗) is the normal cone of C at x∗.

Lemma 4.1.4. [32] Let C ⊂ H be a closed convex subset and g : C ×C → R ∪ {+∞} be
an equilibrium bifunction satisfying Assumption A1 - A3. If the solution set ΩEP (g) 6= ∅,
then it is weakly closed and convex.

Lemma 4.1.5. [121] Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let h be a real-valued function on H and define D := {x ∈ C : h(x) ≤ 0}. If D is
nonempty and h is Lipschitz continuous on C with modulus θ > 0, then

d(x,D) ≥ θ−1 max{h(x), 0}, ∀x ∈ C,

where d(x,D) is the distance function from x to D.
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4.1.1 Main results

In this subsection, we give a precise statement of our algorithm and discuss its strong
convergence.

For i = 1, 2, . . . , N , let Ci be nonempty, closed and convex subsets of a real Hilbert space
H such that C :=

⋂N
i=1Ci. Let gi : Ci×Ci → R be bifunctions satisfying Assumptions A1

- A3. Let Sj : H → CB(H) (j = 1, 2, . . . ,M) be multivalued demi-contractive mappings
with constants κj such that I − Sj are demiclosed at zero, Sjp = {p} for all p ∈ F (Sj)
and κ = max{κj}. Suppose

Sol = ΩFEP

⋂(
∩Mj=1 F (Sj)

)
6= ∅.

Let {αn} and {δnj} be nonnegative sequences in (0, 1) such that
M∑
j=0

δn,j = 1.

Algorithm 4.1.6.

Step 0: Select the initial guess x1 ∈ C and let λ > 0, σ ∈ (0, λ
2
) and γ ∈ (0, 1). Set n = 1.

Step 1: Compute

wn = (1− αn)xn + αnx1, (4.1.5)

zin = argmin
{
gi(wn, y) +

λ

2
||y − wn||2 : y ∈ Ci

}
i = 1, 2, . . . , N. (4.1.6)

Set ri(wn) = wn − zin. If ri(wn) = 0, set wn = ūn and go to Step 4. Else, do Step 2.

Step 2: Compute yin = wn − γmnri(wn), where mn is the smallest nonnegative integer satis-
fying

gi(y
i
n, z

i
n) ≤ −σ||ri(wn)||2. (4.1.7)

Step 3: Define hin(x) = 〈w̄in, x−yin〉, where w̄in ∈ ∂gi(yin, ·)(yin) for i = 1, 2, . . . , N and x ∈ C.
Construct the set

Dn :=

{
x ∈ H :

N∑
i=1

βinh
i
n(wn) ≤ 0

}
, (4.1.8)

where {βin}Ni=1 ⊂ (0, 1) such that
∑N

i=1 β
i
n = 1. Compute

ūn = PDn(wn).

Step 4: Compute

xn+1 = δn,0ūn +
M∑
j=1

δn,jvn,j, (4.1.9)

where vn,j ∈ Sjūn. Set n← n+ 1 and go back to Step 1.
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Remark 4.1.7. Since Sol 6= ∅, then all the sets EP (gi) i = 1, 2, . . . , N and F (Sj) j =
1, 2, . . . ,M are nonempty. It follows from Lemma 3.2 of [263] and Lemma 4.1.4 that
the sets ΩEP (gi) and F (Sj) are closed and convex. Therefore, the solution set Sol is a
nonempty, closed and convex subset of C. Hence, given any initial guess x1 ∈ C, there
exists a unique element z = PSolx1.

In order to establish our main theorem, we make the following assumptions:

C1. lim
n→∞

αn = 0 and
∞∑
n=0

αn =∞,

C2. lim inf
n→∞

(δn,0 − κ)δn,i > 0 for all j = 1, 2, ...,M.

Next, we prove some preliminary results which will be used to prove our main theorem.
In the next result, we prove that the line searching rule define in Step 2 of Algorithm 4.1.6
is well defined.

Lemma 4.1.8. Let wn, y
i
n and zin be as defined in Algorithm 4.1.6. If wn 6= zin for each

i = 1, 2, . . . , N , then, there exists a smallest nonnegative integer mn such that

gi(y
i
n, z

i
n) ≤ −σ||ri(wn)||2.

Proof. We suppose by contradiction that for every nonnegative integer mn, we have

gi(wn − γmnri(wn), zin) > −σ||ri(wn)||2, ∀ i = 1, 2, . . . , N.

Passing limit to the above inequality as n→∞, by continuity of gi(·, y), we obtain

gi(wn, z
i
n) ≥ −σ||ri(wn)||2, ∀ i = 1, 2, . . . , N,

and so

gi(wn, z
i
n) + σ||wn − zin||2 ≥ 0, ∀ i = 1, 2, . . . , N. (4.1.10)

On the other hand, since zin is a solution to the strongly convex optimization problem
(4.1.6), then we have

gi(wn, y) +
β

2
||y − wn||2 ≥ gi(wn, z

i
n) +

β

2
||zin − wn||2, ∀ y ∈ Ci, i = 1, 2, . . . , N.

Putting y = wn in the last inequality, we have

gi(wn, z
i
n) +

β

2
||zin − wn||2 ≤ 0, ∀ i = 1, 2, . . . , N. (4.1.11)

Combining (4.1.10) and (4.1.11), we obtain

β

2
||zin − wn||2 ≤ σ||zin − wn||2, ∀ i = 1, 2, . . . , N.

Hence, we deduce that either β
2
≤ σ or zin = wn for all i = 1, 2, . . . , N . The first case

contradicts σ ∈
(
0, β

2

)
while the second case contradicts the fact that wn 6= zin for all

i = 1, 2, . . . , N .
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Lemma 4.1.9. Let x∗ ∈ Sol and for all i = 1, 2, . . . , N , let hin(x∗) = 〈w̄in, x∗ − yin〉 where
w̄in and yin are as defined in Algorithm 4.1.6. Then

hin(wn) ≥ γmnσ

1− γmn ||r
i(wn)||2. (4.1.12)

In addition, hin(x∗) ≤ 0 and if wn 6= zin, then hin(wn) > 0.

Proof. Since yin = wn − ri(wn), then

wn − yin =
γmn

1− γmn (yin − zin). (4.1.13)

Select w̄in ∈ ∂gi(yin, yin), then it follows from (4.1.7) and (4.1.13) that

hin(wn) = 〈w̄in, wn − yin〉
=

γmn

1− γmn 〈w̄
i
n, y

i
n − zin〉

≥ γmn

1− γmn
(
gi(y

i
n, y

i
n)− gi(yin, zin)

)
≥ γmn

1− γmn σ||r
i(wn)||2.

If wn 6= zin, then hin(wn) > 0. Furthermore, since x∗ ∈ Sol, we have gi(x
∗, y) ≥ 0 for

all y ∈ Ci, i = 1, 2, . . . , N . Since each gi is pseudo-monotone on Ci, then gi(y, x
∗) ≤ 0.

Therefore

hin(x∗) = 〈w̄in, x∗ − yin〉
≤ gi(y

i
n, x

∗)− gi(yin, yin)

≤ 0.

Remark 4.1.10. Lemma 4.1.9 shows that x∗ ∈ Di
n := {x ∈ H : hin(x) ≤ 0}, for each

i = 1, 2 . . . , N , hence x∗ ∈ Dn. Thus from Lemma 2.6.4, Dn is a nonempty, closed convex
subset of H. In particular, Dn is a half space.

Next, we show that the sequence {xn} generated by Algorithm 4.1.6 is bounded.

Lemma 4.1.11. Suppose Assumptions C1 and C2 are satisfied, then the sequence {xn}
generated by Algorithm 4.1.6 is bounded. If in addition {w̄n} is uniformly bounded and
Algorithm 4.1.6 does not terminate, then

||xn+1 − x∗||2 ≤ ||wn − x∗||2 −
(

γmnσ

K(1− γmn)
||wn − zin||2

)2

, (4.1.14)

where x∗ ∈ Sol, K > 0 and for all i = 1, 2, . . . , N .
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Proof. By the definition of Dn, it is easy to see from Lemma 4.1.9 that Sol ⊂ Dn holds
for all n ≥ 1. Hence, for any z ∈ Sol, we have from (2.2.3) that

||ūn − z||2 = ||PDn(wn)− z||2
≤ ||wn − z||2 − ||PDn(wn)− wn||2
= ||wn − z||2 − d(wn, Dn) i = 1, 2, . . . , N. (4.1.15)

Using Lemma 2.6.3, (4.1.9) and (4.1.15), we get

||xn+1 − z||2 =

∣∣∣∣∣∣∣∣δn,0(ūn − z)−
M∑
j=1

δn,j(vn,j − z)

∣∣∣∣∣∣∣∣2

≤ δn,0||ūn − z||2 +
M∑
j=1

δn,j||vn,j − z||2 − δn,0
M∑
n,j

δn,j||vn,j − ūn||2

≤ δn,0||ūn − z||2 +
M∑
j=1

δn,jH(Sjūn, Sjz)− δn,0
M∑
n,j

δn,j||vn,j − ūn||2

≤ δn,0||ūn − z||2 +
M∑
j=1

δn,j

(
||ūn − z||2 + κj||ūn − vn,j||2

)

−δn,0
M∑
n,j

δn,j||vn,j − ūn||2

≤ ||ūn − z||2 −
M∑
n=1

δn,j(δn,0 − κ)||ūn − vn,j||2

≤ ||wn − z||2 −
M∑
n=1

δn,j(δn,0 − κ)||ūn − vn,j||2. (4.1.16)

Hence from (4.1.5) and (4.1.16), we have

||xn+1 − z||2 ≤ ||αnx1 + (1− αn)xn − z||2 (4.1.17)

≤ αn||x1 − z||2 + (1− αn)||xn − z||2
≤ max{||x1 − z||2, ||xn − z||2}
...

≤ max{||x1 − z||2, ||x1 − z||2}
= ||x1 − z||2.

This implies that {xn} is bounded. Consequently, for i = 1, 2, . . . , N , {zin} and {yin} are
bounded. Also, suppose the sequence {w̄in} is uniformly bounded by K > 0 (cf. [219],
Theorem 24.5), i.e.,

||w̄in|| ≤ K ∀ n ∈ N, i = 1, 2, . . . , N.
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Combining Lemma 4.1.5, Lemma 4.1.9 and (4.1.15), we get

||uin − z||2 ≤ ||wn − z||2 −
(

1

K
hin(wn)

)2

≤ ||wn − z||2 −
(

γmnσ

K(1− γmn)
||ri(wn)||2

)2

= ||wn − z||2 −
(

γmnσ

K(1− γmn)
||wn − zin||2

)2

.

Therefore from (4.1.16), we have

||xn+1 − z||2 ≤ ||wn − z||2 −
(

γmnσ

K(1− γmn)
||wn − zin||2

)2

.

We are now in the position to prove the convergence of Algorithm 4.1.6. Note that if
xn = wn, ri(wn) = 0 for i = 1, 2, . . . , N and wn ∈ Sjwn for j = 1, 2, . . . ,M , we are at a
common solution x∗ ∈ Sol. In our convergence analysis, we will implicitly assume that
this does not occur after finitely many iterations so that our Algorithm 4.1.6 generates an
infinite sequence.

Theorem 4.1.12. For i = 1, 2, . . . , N , let Ci be nonempty, closed and convex subsets of a
real Hilbert space H such that C :=

⋂N
i=1Ci. Let gi : Ci×Ci → R be bifunctions satisfying

Assumptions A1 - A3. Let Sj : H → CB(H) (j = 1, 2, . . . ,M) be multivalued demi-
contractive mappings with constants κj such that I −Sj are demiclosed at zero, Sjp = {p}
for all p ∈ F (Sj) and κ = max{κj}. Suppose

Sol = ΩFEP

⋂(
∩Mj=1 F (Sj)

)
6= ∅.

Let {αn} and {δnj} be nonnegative sequences in (0, 1) and {xn} be generated by Algo-
rithm 4.1.6 and Assumptions C1 and C2 are satisfied. Then, the sequence {xn} converges
strongly to a point p ∈ Sol, where p = PSolx1.

Proof. Let z = PSolx1, using Lemma 2.6.1(i) and from (4.1.16), we have

||xn+1 − z||2 ≤ ||wn − z||2
= ||αnx1 + (1− αn)xn − z||2
≤ (1− αn)||xn − z||2 + 2αn〈x1 − z, wn − z〉
= (1− αn)an + αnbn, (4.1.18)

where an := ||xn−z||2 and bn = 2〈x1−z, wn−z〉. We show that {bn} satisfies the following:

−1 ≤ lim sup
n→∞

bn < +∞. (4.1.19)
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Since {xn} and {wn} are bounded, we have

sup
n≥1

bn ≤ 2 sup
n≥1
||x1 − z|| · ||wn − z|| <∞.

This implies that lim supn→∞ bn < ∞. Next, we show that lim supn→∞ bn ≥ −1. Assume
the contrary, i.e. lim supn→∞ bn < −1. Then, there exists n0 ∈ N such that bn < −1 for
all n ≥ n0. Thus we get from (4.1.18) that

an+1 ≤ (1− αn)an + αnbn

< (1− αn)an − αn
= an − αn(an + 1) ≤ an − αn.

Taking lim sup of both sides of the inequality above, we have

lim sup
n→∞

an ≤ an0 − lim
n→∞

n∑
i=n0

αi = −∞.

This contradicts the fact that {an} is a non-negative real sequence. Therefore lim supn→∞ bn ≥
−1.

Now from Lemma 4.1.11, we have

||xn+1 − z||2 ≤ ||wn − z||2 −
(

γmnσ

K(1− γmn)
||wn − zin||2

)2

≤ αn||x1 − z||2 + (1− αn)||xn − z||2 −
(

γmnσ

K(1− γmn)
||wn − zin||2

)2

.(4.1.20)

We next consider the following two possible cases.

CASE A: Suppose there exists n0 ∈ N such that {||xn−z||2} is monotonically nonincreasing
for all n ≥ n0. Since {xn} is bounded, then {||xn − z||2} is also bounded and so it follows
that ||xn − z||2 − ||xn+1 − z||2 → 0 as n → ∞. From (4.1.5) and using condition C1, we
get

||wn − xn|| = αn||x1 − xn|| → 0 , n→∞. (4.1.21)

Also using (2.2.3), we have

||uin − z||2 ≤ ||wn − z||2 − ||uin − wn|| ∀ i = 1, 2, . . . , N. (4.1.22)

This yields that

||uin − wn||2 ≤ ||wn − z||2 − ||uin − z||2
≤ ||αn(x1 − z) + (1− αn)(xn − z)||2 − ||xn+1 − z||2
≤ (1− αn)||xn − z||2 + 2αn〈x1 − z, wn − z〉 − ||xn+1 − z||2
→ 0, n→∞. (4.1.23)
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Also from (4.1.20), we get(
γmnσ

K(1− γmn)
||wn − zin||2

)2

≤ αn||x1 − z||2 + (1− αn)||xn − z||2

−||xn+1 − z||2 → 0, n→∞. (4.1.24)

Hence

lim
n→∞

γmnσ

K(1− γmn)
||wn − zin||2

exists. This implies that the sequence
{

γmnσ
K(1−γmn )

||wn − zin||2
}

is bounded. It is easy to

see from (4.1.24) that

lim
n→∞

γmn||wn − zin|| = 0, ∀ i = 1, 2, . . . , N. (4.1.25)

Next, we show that Ωw(xn) ⊂ Sol, where Ωw(xn) is the set of weak subsequential limit
of {xn}. Let x̄ ∈ Ωw(xn), there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̄
as k → ∞. Let {wnk} and {uink} be subsequences of {wn} and {uin} respectively for all
i = 1, 2, . . . , N . Consequently from (4.1.21) and (4.1.23), wnk ⇀ x̄ and uink ⇀ x̄ for all
i = 1, 2, . . . , N .

From (4.1.25), we get

lim
k→∞

γmnk ||wnk − zink || = 0, ∀ i = 1, 2, . . . , N. (4.1.26)

We claim that
lim
k→∞
||wnk − zink || = 0, ∀ i = 1, 2, . . . , N.

Indeed, let us consider two distinct cases depending on the behaviour of (the bounded)
sequence {γmn}.
(i): If lim infk→∞ γ

mnk > 0, then there exists γ̄ > 0 and a subsequence of {γmnk} still
denoted by {γmnk} such that for some k0 > 0, γmnk > γ̄ for all k ≥ k0. Using this fact
and (4.1.26), we have

lim
k→∞
||wnk − zink || = 0, ∀ i = 1, 2, . . . , N. (4.1.27)

Recall that wnk ⇀ x̄, this together with (4.1.27) implies that zink ⇀ x̄ as k → ∞ for all
i = 1, 2, . . . , N . By the definition of zink , i.e.

zink = argmin
{
gi(wnk , y) +

λ

2
||y − wnk ||2 : y ∈ C

}
, i = 1, 2, . . . , N,

we have
0 ∈ ∂gi(wnk , zink) + λ(zink − wnk) +NC(zink), ∀ i = 1, 2, . . . , N.

So there exists ēink ∈ ∂gi(wnk , zink), i = 1, 2, . . . , N such that

〈ēink , y − z
i
nk
〉+ λ〈zink − wnk , y − z

i
nk
〉 ≥ 0, ∀ y ∈ C. (4.1.28)
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Combining this with

gi(wnk , y)− gi(wnk , zink) ≥ 〈ē
i
nk
, y − zink〉, ∀ y ∈ C

yields

gi(wnk , y)− gi(wnk , zink) + λ〈zink − wnk , y − z
i
nk
〉 ≥ 0, ∀ y ∈ C. (4.1.29)

Since
〈zink − wnk , y − z

i
nk
〉 ≤ ||zink − wnk || · ||y − z

i
nk
||,

from (4.1.29), we get that

gi(wnk , y)− gi(wnk , zink) + λ||zink − wnk || · ||y − z
i
nk
|| ≥ 0, ∀ y ∈ C. (4.1.30)

Letting k →∞, by the weak continuity of gi and (4.1.27), from (4.1.30) we obtain

gi(x̄, y)− gi(x̄, x̄) ≥ 0, ∀ y ∈ C, i = 1, 2, . . . , N.

Hence

gi(x̄, y) ≥ 0, ∀ y ∈ C, i = 1, 2, . . . , N.

This implies that x̄ ∈ ΩFEP .

(ii): Suppose limk→∞ γ
mnk = 0. From the boundedness of {zink}, without loss of gen-

erality, we may assume that zink ⇀ z̄ as k → ∞. Replacing y by wnk in (4.1.29), we
get

gi(wnk , z
i
nk

) ≤ −λ||zink − wnk ||
2, ∀ i = 1, 2, . . . , N. (4.1.31)

On the otherhand, by the stepsize rule (3.1.9), for mnk − 1 we have

gi(wnk − γmnk−1ri(wnk), z
i
nk

) > −σ||ri(wnk)||2, ∀ i = 1, 2, . . . , N. (4.1.32)

Combining (4.1.31) and (4.1.32), we get

1

λ
gi(wnk , z

i
nk

) ≤ −||zink − wnk ||
2 <

1

σ
gi(wnk − γmnk−1ri(wnk), z

i
nk

). (4.1.33)

Taking limit of the above inequality (4.1.33) as k →∞, and using the weak continuity of
g, we get

1

λ
gi(x̄, z̄) ≤ − lim

k→∞
||zink − wnk ||

2 ≤ 1

σ
gi(x̄, z̄), ∀ i = 1, 2, . . . , N.

Therefore gi(x̄, z̄) = 0 and limk→∞ ||wnk − zink || = 0. Following similar process as (i), we
have x̄ ∈ ΩFEP .

Next, we show that x̄ ∈ ∩Mj=1F (Sj). From the definition of ūn, we have from (4.1.23) that

lim
n→∞

||ūn − wn|| = 0. (4.1.34)
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Using (4.1.16) and Lemma 2.6.1(i), we have

||xn+1 − z||2 ≤ ||wn − z||2 −
M∑
n=1

δn,j(δn,0 − κ)||ūn − vn,j||2

= ||αn(x1 − z) + (1− αn)(xn − z)||2 −
M∑
n=1

δn,j(δn,0 − κ)||ūn − vn,j||2

≤ (1− αn)||xn − z||2 + 2αn〈x1 − z, wn − z〉 −
M∑
n=1

δn,j(δn,0 − κ)||ūn − vn,j||2.

This implies that

M∑
n=1

δn,j(δn,0 − κ)||ūn − vn,j||2 ≤ (1− αn)||xn − z||2 + 2αn〈x1 − z, wn − z〉 − ||xn+1 − z||2.

Hence

lim
n→∞

M∑
n=1

δn,j(δn,0 − κ)||ūn − vn,j||2 = 0.

Using condition C2, we have

lim
n→∞

||ūn − vn,j|| = 0. (4.1.35)

Let {ūnk} be a subsequence of {ūn}. It follows from (4.1.34) that ūnk ⇀ x̄, hence by the
demiclosedness of Sj, j = 1, 2, . . . ,M , we have that x̄ ∈ F (Sj), for each j = 1, 2, . . . ,M .

This implies that x̄ ∈ ⋂M
j=1 F (Sj). Therefore x̄ ∈ Sol, which implies that Ωw{xn} ⊂ Sol.

Now we show that {xn} converges strongly to an element x∗ = PSolx1. To do this, we first
prove that lim supn→∞〈x1 − z, wn − z〉 ≤ 0. Choose a subsequence {wnk} of {wn} such
that

lim sup
n→∞

〈x1 − x∗, wn − x∗〉 = lim
k→∞
〈x1 − x∗, wnk − x∗〉.

Since ||xnk − wnk || → 0, and xnk ⇀ x̄ as n→∞, then from (2.2.2), we get

lim sup
n→∞

〈x1 − x∗, wn − x∗〉 = lim
k→∞
〈x1 − x∗, wnk − x∗〉

= 〈x1 − x∗, x̄− x∗〉 ≤ 0. (4.1.36)

Combining (4.1.18), (4.1.36) and Lemma 2.6.29, we get that {xn} converges strongly
to x∗ = PSolx1. Consequently from (4.1.21), (4.1.27) and (4.1.34), we obtain that the
sequences {wn}, {zin} and {ūn} converge strongly to x∗.

CASE B: Suppose {||xn − p||2} is not monotonically decreasing. The technique of proof
used here is adapted from [172, 171]. Put Γn := ||xn−z||2 and let τ : N→ N be a mapping
defined for all n ≥ n0 (for some n0 large enough) by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.
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Clearly τ is a non-decreasing sequence such that τ(n)→∞ as n→∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀ n ≥ n0.

From (4.1.20), we have

||xτ(n)+1 − z||2 ≤ ατ(n)||x1 − z||2 + (1− ατ(n))||xτ(n) − z||2

−
(

γmτ(n)σ

K(1− γmτ(n))
||wτ(n) − ziτ(n)||2

)2

≤ ||xτ(n) − z||2 −
(

γmτ(n)σ

K(1− γmτ(n))
||wτ(n) − ziτ(n)||2

)2

+ ατ(n)M
∗,

for some M∗ > 0. Therefore(
γmτ(n)σ

K(1− γmτ(n))
||wτ(n) − ziτ(n)||2

)2

≤ ||xτ(n) − z||2 − ||xτ(n)+1 − z||2 + ατ(n)M
∗

≤ ατ(n)M
∗ → 0, n→∞.

Hence

lim
n→∞

γmτ(n)||wτ(n) − ziτ(n)||2 = 0.

Just as in CASE A, we can show that limn→∞ ||wτ(n)−xτ(n)|| = limn→∞ ||uiτ(n)−wτ(n)|| = 0.

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)} still denoted by {xτ(n)}
which converges weakly to x̄ ∈ C. Similarly as in CASE A above, we can show that

lim
n→∞

||wτ(n) − ziτ(n)|| = lim
n→∞

||wτ(n) − ziτ(n)|| = lim
n→∞

||ūτ(n) − vτ(n),j|| = 0.

So x̄ ∈ Sol. Since ||wτ(n) − xτ(n)|| → 0, we get that lim supn→∞〈x1 − z, wτ(n) − z〉 ≤ 0.
Following (4.1.18), we have

||xτ(n)+1 − z||2 ≤ (1− ατ(n))||xτ(n) − z||2 + 2ατ(n)〈x1 − z, wτ(n) − z〉. (4.1.37)

By Lemma 2.6.29 and using conditions C1 and C2, we have from (4.1.37) that limn→∞ ||xτ(n)−
z|| = 0. Furthermore, for n ≥ n0, it is easy to see that Γn ≤ Γτ(n)+1. As a consequence, we
obtain for all sufficiently large n that 0 ≤ Γn ≤ Γτ(n)+1. Hence limn→∞ Γn = 0. Therefore
{xn} converge strongly to z. Consequently {wn}, {zin} and {ūn} converges strongly to z.
This completes the proof.

4.1.2 Numerical examples

In this subsection, we present some numerical examples for Algorithm 4.1.6. All the tests
were run using MATLAB 2014b programming on a HP personal computer with RAM 8gb.

Example 4.1.13. Let H = Rm and Ci = C, i = 1, 2, ...N, where the feasible set C is
defined by

C = {(x1, x2, . . . , xm) ∈ Rm : |xk| ≤ 1, k = 1, 2, . . . ,m}
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and consider the problem:

Find x ∈ Sol := ΩFEP ∩
( M⋂
j=1

F (Sj)
)
,

where gi : C × C → R is defined by

gi(x, y) =
m∑
k=1

(
piky

2
k − pikx2

k

)
, i = 1, 2, . . . , N

with pik ∈ (0, 1) randomly generated for all i = 1, 2, . . . , N , k = 1, 2, . . . ,m. Also, Sj :
Rm → CB(Rm) is defined as

Sjx =


[−(1 + 2j)x

2
,−(1 + j)x

]
, x ≤ 0,[

−(1 + j)x,
−(1 + 2j)x

2

]
, x > 0,

(4.1.38)

for all j = 1, 2, . . . ,M and x ∈ Rm. It can be easily shown that Sj is demi-contractive

with constant κj = 4j2+8j
4j2+12j+9

∈ (0, 1). It is also easy to verify that conditions A1 - A3
are satisfied, I − Sj is demiclosed at zero and Sj satisfies the end point condition. Also,
Sol = {x∗}, where x∗ = (0, 0, . . . , 0)T . For each n ∈ N, let αn = 1

2(n+1)
and let

δn,j =


1
2j

(
n−1
n

)
, if j < n,

1− n−1
n

(∑n
k=1

1
2k−1

)
if n = j,

0, otherwise.

It is easy to see that conditions (C1) and (C2) are also satisfied. We choose λ = 0.6,

σ = 0.25, γ = 0.48 and βin = 1
N
. Using ||xn+1−xn||

||x2−x1|| < 10−4 as our stopping criterion, we
choose x1 ∈ C generated randomly and take different values of N,M and m as follows:

Case I: N = 5, M = 5 and m = 5;
Case II: N = 10, N = 15 and m = 10;
Case III: N = 20, N = 20 and m = 20.

We compare the output of our Algorithm 4.1.6 with Algorithm 4.1.2 of Hieu [130]. We
also plot the graphs ||xn+1 − xn|| against the number of iteration. The numerical results
can be seen in Table 4.1 and Figure 4.1.

Example 4.1.14. Next, we consider a Nash-Cournot oligopolistic market equilibrium
problem model taken from [110, 189]. Assume that there are n companies producing a
common homogeneous commodity and that the price pi of company i depends on the
total quantity σx =

∑n
i=1 xi of the commodity. Let φi(xi) denotes the cost (tax and fee)

of company i for generating xi. Suppose that the profit of company i is given by

gi(x1, x2, . . . , xn) := xipi(σx)− φi(xi), i = 1, 2, . . . , n.
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Let Ci = [xmin
i , xmax

i ] be the strategy set of company i. Then, the strategy set of the
model is C := C1×C2× · · ·×Cn. Actually, each company seeks to maximize its profit by
choosing the corresponding production level under the presumption that the production
of the other companies is a parametric input. In this context, a Nash equilibrium is a
production pattern in which no firm can increase its profit by changing its controlled
variables. Thus under this equilibrium concept, each firm determines its best response
given other firms’ actions. One common approach use to solve this model is the Nash
equilibrium concept.

Mathematically, a point x∗ = (x∗1, x
∗
2, . . . , x

∗
n) ∈ C is said to be a Nash equilibrium point

if
gi(x

∗) ≥ gi(x
∗[xi]), ∀ xi ∈ Ci, i = 1, 2, . . . , n,

where the vector x∗[xi] stands for the vector obtained from x∗ by replacing x∗i with xi. By
taking g(x, y) := Φ(x, y)−Φ(x, x) with Φ(x, y) := −∑n

i=1 gi(x[yi]), the problem of finding
a Nash equilibrium point of the model can be formulated as follows:

Find x∗ ∈ C : g(x∗, x) ≥ 0, ∀ x ∈ C. (4.1.39)

Now, assume that the task-fee function φi(xi) is increasing and affine for each i ≥ 1. This
means that both the tax and fee for producing a unit commodity are increasing as the
quantity of the production is getting larger. In this situation, the bifunction g can be
formulated in the form:

g(x, y) = 〈Px+Qy + q, y − x〉,
where q ∈ Rn and P,Q are two matrices of order n such that Q is symmetric positive
semidefinite and Q− P is symmetric negative semidefinite. This shows that g is pseudo-
monotone. Using this model, our aim is to show the numerical behaviour of our proposed
Algorithm 4.1.6. We take the feasible set C as a box defined by

C = {x ∈ Rn : −2 ≤ xl ≤ 5, l = 1, 2, . . . , n}.

Let S : Rn → CB(Rn) be defined by

Sx =

{
{0}, if x < 0[
x
2
, x
]
, if x ≥ 0.

It can easily be verified that S is 0-demi-contractive mapping and I − S is demiclosed
at zero. Let the matrices P and Q be generated randomly such that their conditions are
satisfied and also the vector q be generated randomly. All the optimization subproblems
are efficiently solved by the function quadprog in Matlab. We take αn = 1

n+5
, δn = n

5n+3
,

σ = 0.01, γ = 0.8 and choose x1 ∈ Rn randomly (with n = 30, 50 and 70), we compare
the output of Algorithm 4.1.6 using the following values of the stepsize:

Case I: λ = 0.1, Case II: λ = 0.25, Case III: λ = 0.5.

The stopping criterrion used is ||xn+1−xn||
||x2−x1|| < 10−4. The numerical results are reported in

Table 4.2 and Figure 4.2.
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Remark 4.1.15. The numerical results from Example 4.1.14 shows that Algorithm 4.1.6 is
very efficient and easy to implement for solving the Nash Oligopolistic market equilibrium
problem. Irrespective of the choice of λ, there is no significant difference in the number of
iteration and CPU time taken.

Finally, we present an example in an infinite dimensional space setting. For simplicity, we
take N = M = 5.

Example 4.1.16. Let H = L2([0, 1]) with the inner product 〈x, y〉 =
∫ 1

0
x(s)y(s)ds and

the induced norm ||x||L =
∫ 1

0
|x(s)|2ds. For i = 1, 2, . . . , 5, we define the feasible set as

Ci := {x ∈ H : ||x||L ≤ 1}.

Let gi(x, y) be of the form 〈Aix, y−x〉 with the operator Ai : H → H define as (Aix)(t) =

max{0, x(t)
i
} for i = 1, 2...5. Then it can easily be verified that each gi is monotone (and so,

pseudo-monotone) on Ci. For j = 1, 2, . . . , 5, let Sj : H → CB(H) be defined by Sj(x)(t) =

[0, (x)(t)
2j

], then Sol = EP (g, C) ∩ F (S) = {0}. We take αn = 1
n
, δn,j = 1

M+1
, βin = 1

N
,

λ = 0.9, σ = 0.4, γ = 0.5 and ||xn+1−xn||
||x2−x1|| < 5× 10−6 as the stopping criterion. We choose

the following starting points: Case I: x1 = 4 sin( t
2
), Case II: x1 = 1

8
(cos(2t) − sin(3t)),

Case III: x1 = 2 cos(5t) exp(4t), Case IV: x1 = t2 sin(5πt), and then plot the graphs of
errors against the number of iterations in each case. The numerical results can be found
in Figure 4.3. From this results, we conclude that the change in the initial values does not
have any significant effect on the number of iterations and cpu time taken for execution
by the algorithm.

Table 4.1: Computation results of Algorithm 4.1.6 and Algorithm 4.1.2 for Example 4.1.13.

Algorithm 4.1.6 Algorithm 4.1.2

Case I CPU time (sec) 0.4365 1.0796
No. of Iter. 31 35

Case II CPU time (sec) 0.6885 3.0243
No. of Iter. 51 79

Case III CPU time (sec) 1.2867 7.7517
No. of Iter. 73 167

4.2 Inertial Mann-Krasnoselskii Algorithm with Self

Adaptive Stepsize for Split Variational Inclusion

Problem and Paramonotone Equilibria

In this section, we consider a Mann-Krasnoselskii algorithm with inertial extrapolation for
approximating a common solution of split variational inclusion problem and equilibrium
problem with paramonotone bifunction.
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Table 4.2: Computational result of Algorithm 4.1.6 for Example 4.1.14.

Case I Case II Case III

m = 20 CPU time (sec) 0.2232 0.2206 0.2135
No. of Iter. 9 9 10

m = 50 CPU time (sec) 0.1739 0.1955 0.1250
No. of Iter. 11 10 9

m = 70 CPU time (sec) 0.1368 0.1544 0.1153
No. of Iter. 11 11 9
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Figure 4.1: Example 4.1.13, Left: Case(i); Middle: Case(ii); Right: Case(iii).
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Figure 4.2: Example 4.1.14, Left: m = 20; Bottom: m = 50; Right m = 70.
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Figure 4.3: Example 4.1.16, Case I, Time: 10.5890sec; Case II, Time: 9.0166sec; Case III,
Time: 9.2805sec; Case IV, Time:9.0381sec.

Let B : H → 2H be a multi-valued maximal monotone mapping. The resolvent mapping
JBλ : H → H associated with B is defined by

JBλ (x) := (I + λB)−1(x), ∀ x ∈ H,
for some λ > 0, where I is the identity operator on H. We note that for all λ > 0, the
resolvent operator JBλ is single-valued, nonexpansive and firmly nonexpansive, see e.g [86].

In 2011, Moudafi [185] introduced the following Split Variational Inclusion Problem (shortly,
SVIP): Find x† ∈ H1 such that

0 ∈ B1(x†) and 0 ∈ B2(Ax†), (4.2.1)

where H1 and H2 are real Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-
valued maximal monotone operators, A : H1 → H2 is a linear bounded operator. As noted
in [66], the SVIP can be seen as generalization of split variational inequality problems, split
feasibility problems, split common fixed point problems and split equilibrium problems.
We denote the set of solutions of (4.2.1) by ΩSV IP .

For solving the SVIP, Bryne et al. [57] introduced the following iterative algorithm with
weak convergence property: For given x0 ∈ H1, compute iterative sequene {xn} by the
following scheme

xn+1 = JB1
λ (xn + γA∗(JB2

λ − I)Axn),

where λ > 0 and the stepsize γ is chosen such that γ ∈
(

0, 2
||A||2

)
. It is noted that

computation of the norm of the operator A may be difficult in practice.

In 2016, Chuang [84] studied the SVIP using the following descent projection method:

Algorithm 4.2.1. Descent Projection Algorithm (DPA)

Step 0: Set n = 1 and choose x1 ∈ H1.
Step 1: Given xn ∈ H1, compute {yn} using

yn = JB1
λn

[xn − γnA∗(I − JB2
λn

)Axn],
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where {λn} ⊂ (0,∞) and γn > 0 satisfying

γn||A∗(I − JB2
λn

)Axn − A∗(I − JB2
λn

)Ayn|| ≤ δ||xn − yn||, δ ∈ (0, 1).

Step 2: If xn = yn, STOP. Otherwise continue with Step 3.
Step 3: Compute xn+1 ∈ H1 using

xn+1 = JB1
λn

(xn − αnD(xn, yn)),

where
D(xn, yn) := xn − yn + γn[A∗(I − JB2

λn
)Ayn − A∗(I − JB2

λn
)Axn],

αn =
〈xn − yn, D(xn, yn)〉
||D(xn, yn)||2 .

Then update n := n+ 1 and go to Step 1.

For more details and recent results on SVIP, we refer the reader to [74, 85, 147, 253] and
references therein.

Recently, Yen et al. [276] proposed a projection based algorithm for solving the split feasi-
bility problem (SFP) (1.1.9) involving paramonotone equilibria and convex optimization.
They considered the following problem:

Find x∗ ∈ C : f(x∗, y) ≥ 0 ∀ y ∈ C and g(Ax∗) ≤ g(u) ∀ u ∈ H2, (4.2.2)

where g is a proper lower semicontinuous convex function on H2. They proposed the
following algorithm and proved its strong convergence to a solution of problem (4.2.2).

Algorithm 4.2.2. Mann-Krasnolselskii Proximal Algorithm (MKPA)

Initialization: Take positive parameters δ, ξ and real sequences {an}, {δn}, {βn}, {εn}, {ρn}
satisfying

0 < a < an < b < 1, 0 < ξ < ρn ≤ 4− ξ, δn > δ > 0, βn > 0, εn > 0, ∀ n ∈ N,

lim
n→∞

an =
1

2
,

∞∑
n=1

βn
an

= +∞,
∞∑
n=1

β2
n < +∞,

∞∑
n=1

βnεn
δn

< +∞.

Step 0: Choose x1 ∈ C and let n = 1.
Step n: Having xn ∈ C, take gn ∈ ∂εn2 f(xn, xn) and define

αn =
βn
γn

where γn = max{δn, ||gn||}.

Compute yn = PC(xn − αngn), i.e.,

〈yn − xn + αngn, x− yn〉 ≥ 0 ∀ x ∈ C.
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Take

µn =

{
0 if ∇h(yn) = 0,

ρn
h(yn)

||∇h(yn)||2 if ∇h(yn) 6= 0,

and compute

zn = PC(yn − µnA∗(I − proxλg)Ayn),

where

proxλg(u) := argmin

{
g(u) +

1

λ
||v − u||2 : v ∈ H2

}
,

and ∇h(x) := A∗(I − proxλg)Ax.
Let

xn+1 = anxn + (1− an)zn.

Motivated by the works of Moudafi [185], Chuang [86] and Yen [276], in this section, we
study the following problem:

Find x† ∈ C : f(x†, y) ≥ 0 ∀ y ∈ C, 0 ∈ B1(x†) and 0 ∈ B2(Ax†), (4.2.3)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal monotone operators,
A : H1 → H2 is a bounded operator and f : C × C → R is a bifunction satisfying
f(x, x) = 0. We denote the set of solutions of (4.2.3) with Γ, i.e., Γ := ΩEP (f) ∩ΩSV IP . It
is easy to see that Problem (4.2.3) contain Problems (4.2.1), EP (1.1.4) and (4.2.2).

We propose an inertial Mann-Krasnoelskii algorithm which converges strongly to a solution
of (4.2.3). The algorithm is designed in such a way that it stepsize is chosen self-adaptively,
and its strong convergence analysis does not require a prior estimate of the norm of the
bounded operator.

We make use of the following assumptions throughout this section.

Assumption 4.2.3.

(A1) H1 and H2 are real Hilbert spaces, and A : H1 → H2 is a bounded linear operator
with adjoint A∗ : H2 → H1.

(A2) B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal monotone operators.

(A3) The bifunction f : H ×H → R satisfies the following:

(B1) For each x ∈ C, f(x, x) = 0 and f(x, ·) is lower semicontinuous and convex on
C;

(B2) ∂λ2 f(x, x) is nonempty for any λ > 0 and x ∈ C and is bounded on any bounded
subset of C, where ∂λ2 f(x, x) denotes λ-subdifferential of the convex function
f(x, ·) at x, that is

∂λ2 (x, x) := {η ∈ H1 : 〈η, y − x〉+ f(x, x) ≤ f(x, y) + λ ∀ y ∈ C}.
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(B3) f is pseudo-monotone on C with respect to every solution of the EP, that is
f(x, x∗) ≤ 0 for any x ∈ C, x∗ ∈ ΩEP (f) and f satisfies the following condition,
which is called the para-monotonicity properly:

x∗ ∈ ΩEP (f), y ∈ C, f(x∗, y) = f(y, x∗) = 0⇒ y ∈ ΩEP (f).

(B4) For all x ∈ C, f(·, x) is weakly upper semicontinuous on C.

(A4) The problem (4.2.3) is consistent, i.e., its solution set Γ is nonempty.

4.2.1 Main results

Here, we present an inertial Mann-Krasnolselskii algorithm with self adaptive stepsize for
split variational inequality problem with para-monotone equilibria.

Algorithm 4.2.4. Inertial Mann-Krasnolselskii algorithm

Initialization: Pick x0, x1 ∈ H1, θ ∈ [0, 1), {εn} ⊂ [0,∞), {rn}, {an}, {ρn}, {βn}, {λn}
satisfying the following condition for each n ∈ N :

ρn > ρ > 0, 0 < a < an < b < 1, βn > 0, rn > 0, λn ≥ 0;

∞∑
n=1

εn <∞, lim
n→∞

an =
1

2
, lim inf

n→∞
rn > 0;

∞∑
n=1

βn
ρn

= +∞
∞∑
n=1

β2
n = +∞,

∞∑
n=1

βnλn
ρn

< +∞. (4.2.4)

[Step 1:] Given xn−1 and xn, choose αn such that 0 < αn ≤ ᾱn, where

ᾱn =

{
min

{
θ, εn
||xn−xn−1||2

}
if xn 6= xn−1,

θ otherwise.
(4.2.5)

Set
wn = xn + αn(xn − xn−1) (4.2.6)

[Step 2:] Compute
yn = JB1

rn [wn − ξnA∗(I − JB2
rn )Awn], (4.2.7)

where ξn is chosen such that

ξn =


2||(I−JB2

rn )Awn||2

||A∗(I−JB2
rn )Awn||2

, if JB2
rn Awn 6= Awn,

ξ, otherwise,
(4.2.8)

where ξ is any nonnegative value.
[Step 3:] Take ηn ∈ ∂λn2 f(yn, yn) and define

τn =
βn
γn

where γn = max{ρn, ||ηn||}.
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Compute
zn = PC(yn − τnηn). (4.2.9)

[Step 4:] Let
xn+1 = anxn + (1− an)zn. (4.2.10)

The following lemma can be obtained from Lemma 3.2 of [224].

Lemma 4.2.5. For every n ≥ 1, the following inequalities hold:

(i) τn||ηn|| ≤ βn;

(ii) ||zn − yn|| ≤ βn.

Lemma 4.2.6. The choice of the stepsize defined in (4.2.8) is well defined.

Proof. Take w ∈ SV IP (B1, B2), then JB1
r w = w and JB2

r Aw = Aw. Observe that

||(I − JB2
rn )Awn||2 = 〈(I − JB2

rn )Awn, (I − JB2
rn )Awn〉

= 〈(I − JB2
rn )Awn, Awn − Aw + JB2

rn Aw − JB2
rn Awn〉

= 〈(I − JB2
rn )Awn, Awn − Aw〉+ 〈(I − JB2

rn )Awn, J
B2
rn Aw − JB2

rn Awn〉
= 〈A∗(I − JB2

rn )Awn, wn − w〉+ 〈(I − JB2
rn )Awn, J

B2
rn Aw − JB2

rn Awn〉
≤ ||A∗(I − JB2

rn )Awn|| · ||wn − w||+ ||(I − JB2
rn )Awn|| ×

||JB2
rn Aw − JB2

rn Awn||.

Consequently, for n ∈ N, we get ||A∗(I − JB2
rn )Awn|| · ||wn−w|| ≥ 0 and ||(I − JB2

rn )Awn|| ·
||JB2

rn Aw−JB2
rn Awn|| ≥ 0. Since JB2

rn Awn 6= Awn, then we obtain ||A∗(I−JB2
rn )Awn|| · ||wn−

w|| > 0 and hence ||A∗(I − JB2
rn )Awn|| > 0. This implies that ξn defined in (4.2.8) is well

defined.

Lemma 4.2.7. Let x∗ ∈ Γ, then

||yn − x∗||2 ≤ ||xn − x∗||2 + αnc1||xn − xn−1||,

where c1 = supn≥1{||xn − x∗||+ ||xn−1 − x∗||+ 2||xn − xn−1||}.

Proof. Let x∗ ∈ Γ, then

||yn − x∗||2 = ||JB1
rn [wn − ξnA∗(I − JB2

rn )Awn]− JB1
rn x

∗||2
≤ ||wn − x∗ − ξnA∗(I − JB2

rn )Awn||2
= ||wn − x∗||2 − 2ξn〈(I − JB2

rn )Awn, Awn − Ax∗〉+ ξ2
n||A∗(I − JB2

rn )Awn||2
≤ ||wn − x∗||2 − ξn[2||(I − JB2

rn )Awn||2 − ξn||A∗(I − JB2
rn )Awn||2]. (4.2.11)

By the choice of ξn, we have

||yn − x∗||2 ≤ ||wn − x∗||2. (4.2.12)
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Also from (4.2.7), we have

||wn − x∗||2 = ||xn + αn(xn − xn−1)− x∗||2
= ||xn − x∗||2 + 2αn〈xn − x∗, xn − xn−1〉+ α2

n||xn − xn−1||2
≤ ||xn − x∗||2 + αn(||xn − x∗||2 − ||xn−1 − x∗||2) + 2αn||xn − xn−1||2
= ||xn − x∗||2 + αn(||xn − x∗||+ ||xn−1 − x∗||)||xn − xn−1||+ 2αn||xn − xn−1||2
= ||xn − x∗||2 + αn(||xn − x∗||+ ||xn−1 − x∗||+ 2||xn − xn−1||)||xn − xn−1||
≤ ||xn − x∗||2 + αnc1||xn − xn−1||, (4.2.13)

where c1 = supn≥1{||xn− x∗||+ ||xn−1− x∗||+ 2||xn− xn−1||}. From (4.2.12) and (4.2.13),
we have

||yn − x∗||2 ≤ ||xn − x∗||2 + αnc1||xn − xn−1||.

Lemma 4.2.8. Let x∗ ∈ Γ. Then for each n ≥ 1, we have

||zn − x∗||2 ≤ ||wn − x∗||2 + 2τnf(yn, x
∗) + 2τnλn + 2β2

n.

Proof. From Lemma 2.6.1(i), we get

||zn − x∗||2 = ||zn − yn + yn − x∗||2
≤ ||yn − x∗||2 + 2〈yn − zn, x∗ − zn〉. (4.2.14)

From (2.2.2) and (4.2.9), we have

〈zn − yn + τnηn, x− zn〉 ≥ 0 ∀ x ∈ C.

Taking x = x∗, we have

〈zn − yn + τnηn, x
∗ − zn〉 ≥ 0

⇔ 〈τnηn, x∗ − zn〉 ≥ 〈yn − zn, x∗ − zn〉.

Hence from (4.2.14), we have

||zn − x∗||2 ≤ ||yn − x∗||2 + 2〈τnηn, x∗ − zn〉
= ||yn − x∗||2 + 2〈τnηn, x∗ − yn〉+ 2〈τnηn, yn − zn〉. (4.2.15)

Since ηn ∈ ∂λn2 f(yn, yn), we have

f(yn, x
∗)− f(yn, yn) ≥ 〈ηn, x∗ − yn〉 − λn
⇔ f(yn, x

∗) + λn ≥ 〈ηn, x∗ − yn〉. (4.2.16)

On the other hand, from Lemma 4.2.5 it holds that

〈τnηn, yn − zn〉 ≤ τn||ηn||||yn − zn|| ≤ β2
n. (4.2.17)
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Combining (4.2.15), (4.2.16) and (4.2.17), we get

||zn − x∗||2 ≤ ||yn − x∗||2 + 2τnf(yn, x
∗) + 2τnλn + 2β2

n,

which together with (4.2.12) yields

||zn − x∗||2 ≤ ||wn − x∗||2 + 2τnf(yn, x
∗) + 2τnλn + 2β2

n.

We now give the convergence analysis of Algorithm 4.2.4 to solution of Problem (4.2.3).

Theorem 4.2.9. Suppose Assumption 4.2.3 holds and the sequence {xn} is generated by
Algorithm 4.2.4. Then, the sequence {xn} strongly converges to a solution of Problem
(4.2.3).

Proof. Claim 1: The sequence {||xn − x∗||2} is convergent for all x∗ ∈ Γ.

Since x∗ ∈ Sol(EP ), and f is pseudomonotone on C with respect to every solution of EP,
we have f(yn, x

∗) ≤ 0. By the definition of xn+1, we have

||xn+1 − x∗||2 = ||anxn + (1− an)zn − x∗||2
≤ an||xn − x∗||2 + (1− an)||zn − x∗||2. (4.2.18)

From Lemma 4.2.8 and (4.2.13), we have

||xn+1 − x∗||2 ≤ an||xn − x∗||2 + (1− an)[||wn − x∗||2 + 2τnf(yn, x
∗) + 2τnλn + 2β2

n]

≤ ||xn − x∗||2 + (1− an)αnc1||xn − xn−1||+ Λn, (4.2.19)

where Λn = 2(1− an)(τnλn + β2
n).

Since τn = βn
γn

with γn = max{ρn, ||ηn||},

∞∑
n=1

τnλn =
∞∑
n=1

βn
γn
λn ≤

∞∑
n=1

βn
ρn
λn < +∞.

Note that
∑∞

n=1 β
2
n < +∞ and 0 < a < an < b < 1 and thus, we have

∞∑
n=1

Λn < 2(1− a)
∞∑
n=1

(τnλn + β2
n) < +∞.

Also, we have from (4.2.6) that

αn||xn − xn−1||2 ≤ ᾱn||xn − xn−1||2 ≤ εn,

and therefore
∞∑
n=1

αn||xn − xn−1||2 <∞.
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Now using Lemma 2.6.32 and (4.2.19), we see that {||xn − x∗||2} is convergent for all
x∗ ∈ Γ. Hence, the sequence {xn} is bounded. Consequently, the sequences {wn}, {yn}
and {zn} are bounded.

Claim 2: lim supn→∞ f(yn, x
∗) = 0 for all x∗ ∈ Γ.

From (4.2.19), we see that

−2(1− an)τnf(yn, x
∗) ≤ ||xn − x∗||2 − ||xn+1 − x∗||2 + Λn

+(1− an)αnc1||xn − xn−1||. (4.2.20)

Summing up (4.2.20), we get

∞∑
n=1

−2(1− an)τnf(yn, x
∗) < +∞.

On the otherhand, using Assumption (A2) and the fact that {xn} is bounded, we get that
||ηn|| is bounded. Thus, there is a constant L > δ such that ||ηn|| ≤ L for every n ≥ 1,
and hence

γn
ρn

= max

{
1,
||ηn||
ρn

}
≤ L

ρ
.

Therefore

τn =
βn
γn
≥ ρ

L

βn
ρn
.

Since x∗ ∈ Γ, it follows from the pseudo-monotonicity of f that −f(yn, x
∗) ≥ 0 which

together with 0 < a < an < b < 1 implies

∞∑
n=1

(1− b)βn
ρn

(
− f(yn, x

∗)
)
< +∞.

Since
∑∞

n=1
βn
ρn

=∞, it implies that lim supn→∞ f(yn, x
∗) = 0.

Claim 3: For any x∗ ∈ Γ, let {ynj} be a subsequence of {yn} such that

lim sup
n→∞

f(yn, x
∗) = lim

j→∞
f(ynj , x

∗) (4.2.21)

and y∗ be a weak cluster point of {ynj}. Then y∗ belongs to ΩEP (f).

Without loss of generality, we can assume that ynj ⇀ y∗ as j →∞. Since f(·, x∗) is upper
semi-continuous and by Claim 2, we have

f(y∗, x∗) ≥ lim sup
j→∞

f(ynj , x
∗) = 0.

Since x∗ ∈ Γ and f is pseudo-monotone, we have f(y∗, x∗) ≤ 0 and so f(y∗, x∗) = 0. Again,
by the pseudo-monotonicity of f , f(x∗, y∗) ≤ 0 and hence f(y∗, x∗) = f(x∗, y∗) = 0. Then,
by the para-monotonicity of f (i.e., Assumption (A3)), we can conclude that y∗ is also a
solution of EP.

Claim 4: Every weak cluster point x̄ belongs to the solution set ΩSV IP .
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Let {xnj} be a subsequence of {xn} such that xnj ⇀ x̄. Observe that

∞∑
n=1

||wn − xn|| =
∞∑
n=1

αn||xn − xn−1|| <∞.

Hence
lim
n→∞

||wn − xn|| = 0. (4.2.22)

This implies that wnj ⇀ x̄, where {w
j
} is the subsequence of {wn}. From (4.2.11) and

(4.2.18), we have

||xn+1 − x∗||2 ≤ ||xn − x∗||2 − (1− an)ξn[2||(I − JB2
rn )Awn||2 + ξn||A∗(I − JB2

rn )Awn||2]

+(1− an)αnc1||xn − xn−1||+ Λn, (4.2.23)

where c1 and Λn are as defined in Lemma 4.2.7 and (4.2.19), respectively.

Put Θn = 2||(I − JB2
rn )Awn||2 + ξn||A∗(I − JB2

rn )Awn||2. It follows that

(1− an)ξnΘn ≤ ||xn − x∗||2 − ||xn+1 − x∗||2 + (1− an)αnc1||xn − xn−1||+ Λn.

This implies that

(1− b)
∞∑
n=1

ξnΘn < ||x0 − x∗||2 + (1− a)c1

∞∑
n=1

αn||xn − xn−1||+
∞∑
n=1

Λn < +∞.

Hence
lim
n→∞

ξnΘn = 0. (4.2.24)

Moreover, from the choice of ξn, for a small ε > 0, we have

ξn <
2||(I − JB2

rn )Awn||2
||A∗(I − JB2

rn )Awn||2
− ε.

This implies that

ξn||A∗(I − JB2
rn )Awn||2 < 2||(I − JB2

rn )Awn||2 − ε||A∗(I − JB2
rn )Awn||2

and thus

ε||A∗(I − JB2
rn )Awn||2 < 2||(I − JB2

rn )Awn||2 − ξn||A∗(I − JB2
rn )Awn||2.

Hence
ε||A∗(I − JB2

rn )Awn||2 < Θn → 0, as n→∞.
Therefore

lim
n→∞

||A∗(I − JB2
rn )Awn||2 = 0. (4.2.25)

Similarly from (4.2.23), we have

lim
n→∞

||(I − JB2
rn )Awn||2 = 0. (4.2.26)
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Furthermore from (4.2.7) and (4.2.11), we have

||yn − x∗||2 = ||JB1
rn [wn − ξnA∗(I − JB2

rn )Awn]− JB1
rn x

∗||2
≤ 〈yn − x∗, wn − ξnA∗(I − JB2

rn )Awn − x∗〉

=
1

2

{
||yn − x∗||2 + ||wn − x∗||2 − ||yn − wn + ξnA

∗(I − JB2
rn )Awn||2

}
≤ 1

2

{
||yn − x∗||2 + ||wn − x∗||2 − [||yn − wn||2

+ξ2
n||A∗(I − JB2

rn )Awn||2 − 2ξn||yn − wn|| × ||A∗(I − JB2
rn )Awn||]

}
.

Hence

||yn − x∗||2 ≤ ||wn − x∗||2 − ||yn − xn||2 + 2ξn||yn − wn|| ×
||A∗(I − JB2

rn )Awn||. (4.2.27)

From (4.2.12), (4.2.22) and (4.2.27), we have

||xn+1 − x∗||2 ≤ an||xn − x∗||2 + (1− an)||zn − x∗||2
≤ an||xn − x∗||2 + (1− an)||yn − x∗||2 + Λn

≤ an||xn − x∗||2 + (1− an)[||wn − x∗||2 − ||yn − wn||2 + Λn

+2ξn||yn − wn|| · ||A∗(I − JB2
rn )Awn||] + Λn

≤ ||xn − x∗||2 − (1− an)||yn − wn||2 + (1− an)αnc1||xn − xn−1||
+2(1− an)ξn||yn − wn|| · ||A∗(I − JB2

rn )Awn||+ Λn.

This implies that

(1− an)||yn − wn||2 ≤ ||xn − x∗||2 − ||xn+1 − x∗||2 + (1− an)αnc1||xn − xn−1||
+2(1− an)ξn||yn − wn|| · ||A∗(I − JB2

rn )Awn||+ Λn. (4.2.28)

It follows from (4.2.28) that

(1− b)
∞∑
n=1

||yn − wn||2 < ||x0 − x∗||2 + (1− a)c1

∞∑
n=1

αn||xn − xn−1||2

+2(1− a)
∞∑
n=1

ξn||yn − wn||| · ||A∗(I − JB2
rn )Awn||+

∞∑
n=1

Λn <∞.

Hence
lim
n→∞

||yn − wn|| = 0. (4.2.29)

From (4.2.22) and (4.2.29), we have

lim
n→∞

||yn − xn|| ≤ lim
n→∞

[||yn − wn||+ ||wn − xn||] = 0. (4.2.30)

Let {ynj} be a subsequence of {yn}, then ynj ⇀ x̄ as j → ∞. Since ynj = JB1
rnj

(wnj −
ξnjA

∗(I − JB2
rnj

)Awnj), we can write

(wnj − ynj) + A∗(I − JB2
rnj

)Awnj

rnj
∈ B1(ynj). (4.2.31)
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By passing to limit j → ∞ in (4.2.31) and by taking into account (4.2.25) and (4.2.29),
using the fact that the graph of a maximal monotone operator is weakly-strongly closed,
we obtain 0 ∈ B1(x̄). Furthermore since A is linear, we know that Awnj ⇀ Ax̄. Again by
(4.2.26) and the fact that the resolvet JB2

rn is nonexpansive and Lemma 2.6.5, we obtain
Ax̄ ∈ B2(Ax̄). Hence x̄ ∈ ΩSV IP . This complete the proof of Claim 4.

Note that since ||yn − xn|| → 0, as n → ∞, it follows from Claim 3 and Claim 4 that
x̄ ∈ Γ.

Claim 5: Finally, we show that {xn} converges strongly to x̄ ∈ Γ.

By claim 1, we can assume that

lim
n→∞

||xn − x̄|| = c < +∞.

From Lemma 4.2.5(ii) and (4.2.12), we have

||zn − x̄|| ≤ ||yn − x̄||+ ||zn − yn||
≤ ||wn − x̄||+ βn

≤ ||xn − x̄||+ |αn|||xn − xn−1||+ βn.

This implies that

lim sup
n→∞

||zn − x̄|| ≤ lim sup
n→∞

(||xn − x̄||+ |αn|||xn − xn−1||+ βn) = c.

By applying Lemma 2.6.33, with vn = xn − x̄, un = zn − x̄, we obtain

lim
n→∞

||zn − xn|| = 0.

Following similar argument as in the proof of Theorem 1 in [276], we see that

lim
n→∞

xn = x̄. (4.2.32)

Hence, the sequence {xn} converges strongly to x̄. This completes the proof.

4.2.2 Application

In this subsection, we give an application of the main result in Section 3 to approximating
solutions of certain nonlinear optimization problem.

Split Minimization Problem:

Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear operator.
Given some proper, lower semicontinuous and convex functions g1 : H1 → R∪ {+∞} and
g2 : H2 → R ∪ {+∞}, the Split Minimization Problem (SMP) is define as

find x̄ ∈ H1 suh that x̄ ∈ argmin g1 and Ax̄ ∈ argmin g2. (4.2.33)
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We denote the set of solution of the SMP (4.2.33) with ΩSMP . The SMP was first intro-
duced by Moudafi and Thakur [188] and has attracted lots of attention in recent years,
see for instance [1, 2, 275] and references therein. Further, the SMP have being applied in
the study of many applied science such as multi-resolution sparse regularization, Fourier
regularization, hard-constrained inconsistent feasibility and alternating projection signal
synthesis problems.

Recall that the subdifferential of g1 : H1 → R ∪ {+∞} is defined by

∂g1(x) := {x̄ ∈ H1 : g1(x) + 〈y − x, x̄〉 ≤ g1(y) for each y ∈ H1}

for each x ∈ H1. The proximity operator with respect to g1 is defined by

proxλ,g1(x) := argminz∈H1

{
g1(z) +

1

2λ
||x− z||2}

}
,

for all x ∈ H1 and λ > 0. It is well known that ∂g1 is maximal monotone and

0 ∈ ∂g1(x̄)⇔ x̄ = proxλg1(x̄).

By setting B1 = ∂g1 and B2 = ∂g2 in Algorithm 4.2.4, we see that Algorithm 4.2.4 reduces
to the following algorithm for solving the SMP.

Algorithm 4.2.10.
Initialization: Pick x0, x1 ∈ H1, θ ∈ [0, 1), {εn} ⊂ [0,∞), {an}, {rn}, {ρn}, {βn}, {λn}
satisfying the following condition for each n ∈ N :

ρn > ρ > 0, 0 < a < an < b < 1, βn > 0, rn > 0, λn ≥ 0;

∞∑
n=1

εn <∞, lim
n→∞

an =
1

2
, lim inf

n→∞
rn > 0;

∞∑
n=1

βn
ρn

= +∞
∞∑
n=1

β2
n = +∞,

∞∑
n=1

βnλn
ρn

< +∞.

[Step 1:] Given xn−1 and xn, choose αn such that 0 < αn ≤ ᾱn, where

ᾱn =

{
min

{
θ, εn
||xn−xn−1||2

}
if xn 6= xn−1,

θ otherwise.

Set
wn = xn + αn(xn − xn−1)

Step 2: Compute

yn = proxrn,g1 [wn − ξnA∗(I − proxrn,g2)Awn],
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where ξn is chosen such that

ξn =

{
2||(I−proxrn,g2 )Awn||2
||A∗(I−proxrn,g2 )Awn||2 , if proxrn,g2Awn 6= Awn,

ξ, otherwise,

where ξ is any nonnegative value.
Step 3: Take ηn ∈ ∂λn2 f(yn, yn) and define

τn =
βn
γn

where γn = max{ρn, ||ηn||}.

Compute
zn = PC(yn − τnηn).

Step 4: Let
xn+1 = anxn + (1− an)zn.

4.2.3 Numerical examples

In this subsection, we carry out some numerical experiments to test the accuracy and
efficiency of our algorithm. All computational tests are carried out using MATLAB 2019a

programming on a 8gb RAM personal computer.

Example 4.2.11. Let H = Rm and C be a box defined by C = {x ∈ Rm : −1 ≤ xi ≤ 1,
i = 1, 2, . . . ,m}. Define the bifunction f on C × C by

f(x, y) = (Px+Qy + q)T (y − x) ∀ x, y ∈ C,

where q ∈ Rm and P,Q are two matrices of order m such that Q is symmetric posi-
tive semidefinite and Q − P is negative semidefinite. It is easy to check that f satisfies
conditions (B1)-(B4). Precisely, in our example, we work with the Euclidean norm Rm

(with m = 50, 200, 500 and 1000). The vector q is the zero vector in Rm and the two
matrices P,Q are generated randomly such that their properties are satisfied using the
’gallery(’gcdmat’,m)’ function in MATLAB. The entries of matrix A ∈ Rm × Rm are
randomly generated in the interval [0, 1], B1 : Rm → 2Rm , B2 : Rm → 2Rm are define by
B1(x) = 2x and B2(x) = −5x. The sequences {βn}, {an}{ρn}, {rn}, {εn}, {λn} are chosen
such that

βn = 5
2n+1

, an = n−1
2n+5

, rn = 1
2
, εn = 1

(n+1)4 , λn = 0, ρn = 4,

τn = max{4, ||ηn||},

for each n ≥ 1. We compare the numerical results of Algorithm 4.2.4 and Algorithm
4.2.4 with αn = 0 choosing m = 50, 200, 500 and 1000. In each case, the initial vectors
x0 and x1 are also generated using rand(m, 1) and the stopping criteria used in each

case is ||xn+1−xn||
max{1,||xn||} < 10−6. The computational results are shown in Figure 4.4 and 4.5.

The horizontal and vertical axes show iteration n, as well as error(n) := ||xn − xn+1||
respectively.
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Next, we give an example in an infinite dimensional Hilbert space.

Example 4.2.12. Let H1 = H2 = L2([a, b]) with norm ||x||L2 =
(∫ a

b
|x(t)|dt

) 1
2 . Define

C ⊆ H1 and Q ⊆ H2 by C := {x ∈ L2([a, b]) : 〈u, x〉 ≤ z}, where 0 6= u ∈ L2([a, b]) and
z ∈ R, Q = {y ∈ L2([a, b]) : ||y − d||L2 ≤ r}, where d ∈ L2([a, b]) and radius r > 0. The
projection on C and Q are define by

PC(x) =

{
z−〈u,x〉
||u||2L2

u+ x, 〈u, x〉 > z,

x, 〈u, x〉 ≤ z,

and

PQ(y) =

{
d+ r y−d

||y−d|| , y /∈ Q,
y, y ∈ Q.

In this example, we consider B1 ≡ ∂iC and B2 ≡ ∂iQ, where iC and iQ are the indicator
functions on the sets C and Q respectively. Then, the resolvent operators with respect to
B1 and B2 are the metric projections PC and PQ respectively.

In particular, we choose

C = {x ∈ L2([0, 1]) : ||x(t)||L2 ≤ 1},

and

Q = {x ∈ L2([0, 1]) :

∫ 1

0

|x(t)− cos(t)|2dt ≤ 25}.

Define an operator F : C → L2([0, 1]) by F (x)(t) =
∫ 1

0
(x(t)−B(t, s)p(x(s)))ds+ q(t), for

all x ∈ C and t ∈ [0, 1], where

B(t, s) =
2tset+s

e
√
e2 − 1

, p(x) = cos(x), q(t) =
2tet

e
√
e2 − 1

.

As shown in [233], F is monotone and L-Lipschitz continuous with L = 2. Let f
(
x(t), y(t)

)
=

〈Fx(t), y(t)− x(t)〉, and Ax(t) = 3x(t). We consider the problem

Find x∗ ∈ C such that f(x∗, y) ≥ 0 ∀ y ∈ C, and y∗ = Ax∗ ∈ Q. (4.2.34)

Clearly, Problem (4.2.34) is a subclass of (4.2.3), hence, we can apply Algorithm 4.2.4 to
solving Problem (4.2.34). We choose the sequences {an}, {εn}, {βn}, {λn}, {ρn} such that

an =
1

2
, λn = 0.5, βn =

2n

7n+ 3
, εn =

1

(n+ 1)2
, ρn = 3.

Using ||xn+1−xn||
||x2−x1|| < 10−4 as stopping criterion with different choices of x0 and x1 given

below, we compare the numerical results of Algorithm 4.2.4 with MKPA (4.2.2) and DPA
(4.2.1):

(i) x1 = t2 − 2t+ 1 and x0 = 3 sin(2t);
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(ii) x1 = 2− exp(−2t) and x0 = 2t2 − 3t;

(iii) x1 = 3t
4

+ 5t
2

+ 1 and x0 = cos(5t);

(iv) x1 = 12t2

5
− 2 and x0 = exp(−2t)/7.

Remark 4.2.13. In conclusion, Example 4.2.11 shows that Algorithm 4.2.4 converges faster
than its non-inertial version (that is, with αn = 0). Also from Example 4.2.12, we see that
Algorithm 4.2.4 performs better than Algorithm 4.2.1 and Algorithm 4.2.2 in terms of
number of iteration and cpu-time taken.

Table 4.3: Computation result for Example 4.2.11.

Algorithm 4.2.4 Algorithm 4.2.4
with αn = 0

m = 50 CPU time (sec) 1.1185 1.15799
No. of Iter. 22 32

m = 200 CPU time (sec) 1.7821 2.1582
No. of Iter. 23 33

m = 500 CPU time (sec) 3.4738 10.7083
No. of Iter. 24 35

m = 1000 CPU time (sec) 8.2317 12.5352
No. of Iter. 24 35

Table 4.4: Computation result for Example 4.2.12.

Algorithm
4.2.4

KKPA 4.2.2 DPA 4.2.1

Case I CPU time (sec) 1.3210 2.9709 6.1351
No. of Iter. 17 23 40

Case II CPU time (sec) 10. 4288 20.2761 34.9238
No. of Iter. 21 28 48

Case III CPU time (sec) 1.5861 2.9477 6.1550
No. of Iter. 22 30 48

Case IV CPU time (sec) 2.3602 9.7439 17.3865
No. of Iter. 19 26 45

4.3 A New Efficient Method for Finding Common

Fixed Points and Solutions of Split Generalized

Equilibrium Problems in Hilbert Spaces

In this section, we introduce a new iterative algorithm for approximating solutions of split
generalized equilibrium problem and common fixed points of multivalued demi-contractive
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Figure 4.4: Example 4.2.11: m = 50; m = 200; m = 500; m = 1000.
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Figure 4.5: Example 4.2.12: Case I; Case II; Case III; Case IV.

mappings in real Hilbert spaces. We also study the rate of convergence of our proposed
algorithm which is shown to be O(1/t) convergence rate.

Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let Φ : C×C →
R and ϕ : C × C → R be two bifunctions. The Generalized Equilibrium Problem (GEP)
is defined as finding a point x∗ ∈ C such that

Φ(x∗, x) + ϕ(x∗, x) ≥ 0, ∀ x ∈ C. (4.3.1)

We denote the set of solutions of the GEP by ΩGEP . The GEP is very general in the sense
that it includes as particular cases, minimization problems, variational inequality prob-
lems, fixed point problems, mixed equilibrium problems and Nash equilibrium problems
in noncooperative games among others, see for instance [35, 62, 90, 109]. When ϕ ≡ 0,
the GEP reduces to the classical Equilibrium Problem EP (1.1.4) introduced by Blum and
Oettli [35].

Recently, Kazmi and Rizvi [148] introduced the Split Generalized Equilibrium Problem
(SGEP) in Hilbert space. Let C ⊆ H1 and Q ⊆ H2 be nonempty, closed and convex sets
and A : H1 → H2 be bounded linear operator. Let Φ, ϕ1 : C×C → R and Ψ, ϕ2 : Q×Q→
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R be bifunctions. The SGEP is defined as finding x∗ ∈ C such that

Φ(x∗, x) + ϕ1(x∗, x) ≥ 0, ∀ x ∈ C,
and

y∗ = Ax∗ ∈ Q solves Ψ(y∗, y) + ϕ2(y∗, y) ≥ 0, ∀ y ∈ Q.
We denote the set of solutions of the SGEP by ΩSGEP . The authors in [148] proposed
the following algorithm for approximating the solutions of the SGEP and fixed points of
nonexpansive semigroup in real Hilbert spaces:{

un = T
(Φ,ϕ1)
rn (xn + δA∗(T

(Ψ,ϕ2)
rn − I)Axn),

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnB) 1
sn

∫ sn
0
T (s)unds,

(4.3.2)

where T
(Φ,ϕ1)
rn is defined in Lemma 4.3.2, rn ∈ (0,∞), f : C → C is a contraction with

constant α ∈ (0, 1) and B is a strongly positive linear bounded self-adjoint operator on
H1 with constant γ̄ > 0 such that 0 < γ < γ̄

α
< γ + 1

α
, {sn} is a positive real sequence

diverging to +∞, δ ∈ (0, 1
L

), L being the spectral radius of the operator A∗A and {αn},
{βn} are sequences in (0, 1). The authors obtained a strong convergence theorem for the
sequence generated by algorithm (4.3.2) under some suitable conditions on αn, βn and sn.

Also, Deepho et al. [93] studied the common solution of SGEP, variational inequality prob-
lem and fixed point of countable family of nonexpansive mapping in Hilbert space. They
proposed the following algorithm and proved its strong convergence for approximating the
underlying problem under some mild conditions on the control sequences:

un = T
(Φ,ϕ1)
rn (xn + δA∗(T

(Ψ,ϕ2)
rn − I)Axn),

zn = PC(un − ξ2B2un),

yn = αnxn + (1− αn)SnPC(zn − ξ1B1zn),

Cn+1 = {z ∈ Cn : ||yn − z|| ≤ ||xn − z||},
xn+1 = PCn+1x0, ∀ n ∈ N

(4.3.3)

where B1, B2 are β1, β2-inverse strongly monotone operators from C into H1 respectively
and L is the spectral radius of the operator A∗A. Also αn ∈ (0, 1), ξ1 ∈ [a1, b1] ⊂ (0, 2β1),
ξ2 ∈ [a2, b2] ⊂ (0, 2β2), {rn} ⊂ (0,∞), δ ∈

(
0, 1

L

)
, satisfying

(AA1) 0 < a1 ≤ ξ1 ≤ b1 < 2β1,

(AA2) 0 < a2 ≤ ξ2 ≤ b2 < 2β2,

(AA3) lim inf
n→∞

rn > 0.

Very recently, Phuengrattana et al. [204] proposed the following hybrid algorithm and
proved its strong convergence to a solution of SGEP and common fixed point of countable
family of nonexpansive multivalued mapping Si:

x1 ∈ C,
un = T

(Φ,ϕ1)
rn (I − δA∗(I − T (Ψ,ϕ2)

rn )A)xn,

zn = α
(0)
n xn + α

(1)
n y1

n + · · ·+ α
(n)
n y

(n)
n , y

(i)
n ∈ Siun,

Cn+1 = {p ∈ Cn : ||zn − p|| ≤ ||xn − p||},
xn+1 = PCn+1x1, n ∈ N,

(4.3.4)
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where {α(i)
n } ⊂ (0, 1) satisfying

∑n
i=0 α

i
n = 1, {γn} ⊂ (0,∞) and δ ∈ (0, 1

L
), where L is the

spectral radius of A∗A.

However, we observe that the convergence of the iterative schemes (4.3.2), (4.3.3) and
(4.3.4) depends on the spectral radius of A∗A which require a prior knowledge of the norm
of the bounded operator A. This is very difficult to get in practice. Also, one can see that
algorithms (4.3.3) and (4.3.4) slightly improved algorithm (4.3.2), but the projection onto
Cn+1 can be computationally expensive when the feasible set C is not simple. This may
affect the usage and efficiency of algorithms (4.3.3) and (4.3.4).

In order to get an efficient method for approximating solution of SGEP, we introduce a new
iterative scheme for approximating solution of SGEP and common fixed point of countable
family of multivalued demi-contractive mappings in real Hilbert spaces. Our algorithm
neither requires a prior knowledge of the operator norm nor the projection onto Cn+1.
We prove a strong convergence theorem and show that our proposed method converges
at a rate of O(1/t). We also provide some numerical examples to show that our proposed
iterative scheme performs better than some existing algorithms in the literature.

For solving the SGEP, we need the following lemmas.

Lemma 4.3.1. [93] Let Φ : C ×C → R and ϕ : C ×C → R be two bifunctions satisfying
the following assumptions:

(D1) Φ(x, x) ≥ 0 for all x ∈ C;

(D2) Φ is monotone, i.e. Φ(x, y) + Φ(y, x) ≤ 0 for all x, y ∈ C;

(D3) Φ is upper hemicontinuous, i.e. for each x, y, z ∈ C,
lim sup
t→∞

Φ(tz + (1− t)x, y) ≤ Φ(x, y);

(D4) For each x ∈ C fixed, the function y 7→ Φ(x, y) is convex and lower semicontinuous;

(D5) ϕ(x, x) ≥ 0 for all x ∈ C;

(D6) For each y ∈ C fixed, the function x→ ϕ(x, y) is upper semicontinuous;

(D7) For each x ∈ C fixed, the function y → ϕ(x, y) is convex and lower semicontinuous,

and assume that for fixed r > 0 and z ∈ C, there exists a nonempty compact convex subset
K of H and x ∈ C ∩K such that

Φ(y, x) + ϕ(y, x) +
1

r
〈y − x, x− z〉 < 0, ∀ y ∈ C\K.

Lemma 4.3.2. (see Lemma 3 in [93]) Let C be a nonempty, closed and convex subset
of a real Hilbert space H. Assume that Φ, ϕ : C × C → R are bifunctions satisfying the
assumptions D1 - D7 in Lemma 4.3.1 and ϕ is monotone. For r > 0 and for all x ∈ H,
define a mapping T

(Φ,ϕ)
r : H → C as follows:

T (Φ,ϕ)
r (x) =

{
z ∈ C : Φ(z, y) + ϕ(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C

}
.

Then, the following hold:
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(i) T
(Φ,ϕ)
r is single-valued;

(ii) T
(Φ,ϕ)
r is firmly nonexpansive, i.e.

||T (Φ,ϕ)
r x− T (Φ,ϕ)

r y||2 ≤ 〈T (Φ,ϕ)
r x− T (Φ,ϕ)

r y, x− y〉 ∀ x, y ∈ H; (4.3.5)

(iii) F (T
(Φ,ϕ)
r ) = ΩGEP ;

(iv) ΩGEP is compact and convex.

In addition, the following lemma is a consequence of Lemma 4.3.2. It will be used in
establishing our main results.

Lemma 4.3.3. Let Φ, ϕ : C × C → R be bifunctions satisfying the assumptions D1 -
D7 in Lemma 4.3.1 and ϕ be monotone. Suppose ΩGEP is non-empty. For all x ∈ H,
z ∈ F (T

(Φ,ϕ)
r ) and r > 0, we have

〈T (Φ,ϕ)
r x− z, T (Φ,ϕ)

r x− x〉 ≤ 0, (4.3.6)

and
||x− T (Φ,ϕ)

r x||2 + ||T (Φ,ϕ)
r x− z||2 ≤ ||x− z||2. (4.3.7)

Proof. It follows from Lemma 4.3.2 (ii) that

||T (Φ,ϕ)
r x− z||2 ≤ 〈T (Φ,ϕ)

r x− z, x− z〉.

This implies that
〈T (Φ,ϕ)

r x− z, T (Φ,ϕ)
r x− z − (x− z)〉 ≤ 0,

hence
〈T (φ,ϕ)

r x− z, T (Φ,ϕ)
r x− x〉 ≤ 0.

Also from Lemma 4.3.2 (ii), we have

||T (Φ,ϕ)
r x− z||2 ≤ 〈T (Φ,ϕ)

r x− z, x− z〉
= 〈T (Φ,ϕ)

r x− x+ x− z, x− z〉
= 〈T (φ,ϕ)

r x− x, x− z〉+ ||x− z||2
= 〈T (Φ,ϕ)

r x− x, x− T (Φ,ϕ)
r x+ T (Φ,ϕ)

r x− z〉+ ||x− z||2
= −||x− T (Φ,ϕ)

r x||2 + 〈T (Φ,ϕ)
r x− x, T (Φ,ϕ)

r x− z〉+ ||x− z||2.

Therefore, from (4.3.6), we have

||T (Φ,ϕ)
r x− z||2 + ||x− T (Φ,ϕ)

r x||2 ≤ ||x− z||2.
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4.3.1 Main results

In this subsection, we give a precise statement of our proposed algorithm and discuss its
convergence analysis for approximating the solutions of SGEP and common fixed point of
countable family of multivalued demi-contractive mappings in real Hilbert spaces.

Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2

respectively and A : H1 → H2 be a bounded linear operator. Let Φ, ϕ1 : C × C → R and
Ψ, ϕ2 : Q × Q → R be bifunctions satisfying assumption D1 - D7 in Lemma 4.3.1 and
for each i ∈ N, let Si : H1 → CB(H1) be multivalued demi-contractive mappings with
constants ki such that I − Si are demiclosed at zero and for each p ∈ F (Si), Si(p) = {p}.
Suppose

Sol := ΩSGEP ∩
∞⋂
i=1

F (Si) 6= ∅.

Let f : H1 → H1 be a ρ-contraction with constant ρ ∈ (0, 1) and D be a bounded operator
on H1 with coefficient τ̄ > 0 such that 0 < ξ < τ̄

ρ
. Let {rn} be a sequence in (0,∞), {αn}

and {βn,i} be sequences in (0, 1), {λn} be a sequence in (0,∞) and {xn} be a sequence
defined by the following algorithm.

Algorithm 4.3.4.

Step 0: Choose γ > 0, α, θ ∈ (0, 1) and γ ∈ (0, 2). Choose x1 ∈ H1 and set n = 1.

Step 1: Compute
yn = T (Φ,ϕ1)

rn (xn − λnA∗(I − T (Ψ,ϕ2)
rn )Axn), (4.3.8)

where λn = σηmn, σ > 0, η ∈ (0, 1) and mn is the smallest nonnegative integer such
that (see [151])

λn||A∗(I − T (Ψ,ϕ2)
rn )Axn − A∗(I − T (Ψ,ϕ2)

rn )Ayn|| ≤ θ||xn − yn||. (4.3.9)

Step 2: If xn = yn, then go to Step 3. Else, compute

d(xn, yn) = xn − yn − λn
[
A∗(I − T (Ψ,ϕ2)

rn )Axn − A∗(I − T (Ψ,ϕ2)
rn )Ayn

]
, (4.3.10)

and
wn = xn − γδnd(xn, yn) (4.3.11)

where

δn =

{
〈xn−yn,d(xn,yn)〉
||d(xn,yn)||2 , if d(xn, yn) 6= 0,

0 if d(xn, yn) = 0.
(4.3.12)

Step 3: Compute

xn+1 = αnξf(xn) + (1− αnD)

(
βn,0wn +

n∑
i=1

βn,ivn,i

)
, (4.3.13)

where vn,i ∈ Siwn. Set n = n+ 1 and go to Step 1.
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Remark 4.3.5. Note that if xn = yn and xn ∈ Sixn for each i = 1, 2, . . . , we are at a common
solution of SGEP and fixed points of Si. We will implicitly assume in our convergence
analysis that this does not occur after finitely many iterations so that Algorithm 4.3.4
generates an infinite sequence.

In order to establish the convergence of Algorithm 4.3.4, we make the following assump-
tions:

(C1) lim
n→∞

αn = 0 and
∞∑
n=0

αn =∞,

(C2) lim inf
n→∞

(βn,0 − k)βn,i > 0 for all i = 1, 2, ...,

(C3) lim inf
n→∞

rn > 0.

First, we show that the Algorithm 4.3.4 is well defined. To this end, it suffices to show
that the inner loop in the calculation of the stepsize in Step 2 is well defined.

Lemma 4.3.6. [104] The Armijo-line search rule (4.3.9) is well defined. More so

λ̄ ≤ λn ≤ σ, (4.3.14)

where λ̄ = min
{
σ, θη
||A||2

}
.

We proceed to prove the following lemmas before proving our main theorem.

Lemma 4.3.7. Let {xn}, {yn} and {wn} be sequences generated by Algorithm 4.3.4, then

||xn − yn||2 ≤
(1 + θ)2||xn − wn||2

(1− θ)2γ2
. (4.3.15)

Proof. From Algorithm 4.3.4, we have

〈xn − yn, d(xn, yn)〉 = 〈xn − yn, xn − yn − λn[A∗(I − T (Ψ,ϕ2)
rn )Axn − A∗(I − T (Ψ,ϕ2)

rn )Ayn]〉
= ||xn − yn||2 − λn〈xn − yn, A∗(I − T (Ψ,ϕ2)

rn )Axn − A∗(I − T (Ψ,ϕ2)
rn )Ayn〉

≥ ||xn − yn||2 − λn||xn − yn|| × ||A∗(I − T (Ψ,ϕ2)
rn )Axn

−A∗(I − T (Ψ,ϕ2)
rn )Ayn||

≥ (1− θ)||xn − yn||2. (4.3.16)

Also from the definitions of dn and wn, we obtain

δn〈xn − yn, d(xn, yn)〉 = ||δnd(xn, yn)||2

=
1

γ2
||wn − xn||2. (4.3.17)
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Note that

||d(xn, yn)||2 = ||xn − yn − λn[A∗(I − T (Ψ,ϕ2)
rn )Axn − A∗(I − T (Ψ,ϕ2)

rn )Ayn]||2

= ||xn − yn||2 + λ2
n||A∗(I − T (Ψ,ϕ2)

rn )Axn − A∗(I − T (Ψ,ϕ2)
rn )Ayn||2

+ 2λn〈xn − yn, A∗(I − T (Ψ,ϕ2)
rn )Axn − A∗(I − T (Ψ,ϕ2)

rn )Ayn〉
≤ ||xn − yn||2 + θ2||xn − yn||2 + 2λn||xn − yn|| · ||A∗(I − T (Ψ,ϕ2)

rn )Axn −
A∗(I − T (Ψ,ϕ2)

rn )Ayn||
≤ ||xn − yn||2 + θ2||xn − yn||2 + 2θ||xn − yn||2
= (1 + θ)2||xn − yn||2. (4.3.18)

Therefore from (4.3.12), (4.3.16) and (4.3.18), we get

δn =
〈xn − yn, d(xn, yn)〉
||d(xn, yn)||2 ≥ 1− θ

(1 + θ)2
. (4.3.19)

Consequently, we have from (4.3.16), (4.3.17) and (4.3.19)

||xn − yn||2 ≤
〈xn − yn, d(xn, yn)〉

(1− θ) =
1

δnγ2(1− θ) ||wn − xn||
2

≤ (1 + θ)2

(1− θ)2γ2
||wn − xn||2.

Lemma 4.3.8. Let z ∈ Sol. Then from Algorithm 4.3.4, we get

||wn − z||2 ≤ ||xn − z||2 −
(2− γ)

γ
||wn − xn||2. (4.3.20)

Proof. Since T
(Ψ,ϕ2)
rn is firmly nonexpansive, it is 1

2
- averaged, and thus I −T (Ψ,ϕ2)

rn is 1-ism
(see [55, 179]), i.e.

〈(I − T (Ψ,ϕ2)
rn )Ayn − (I − T (Ψ,ϕ2)

rn )Az,Ayn − Az〉 ≥ ||(I − T (Ψ,ϕ2)
rn )Ayn − (I − T (Ψ,ϕ2)

rn )Az||2.
(4.3.21)

From (4.3.21), we have

〈A∗(I − T (Ψ,ϕ2)
rn )Ayn − A∗(I − T (Ψ,ϕ2)

rn )Az, yn − z〉
= 〈(I − T (Ψ,ϕ2)

rn )Ayn − (I − T (Ψ,ϕ2)
rn )Az,Ayn − Az〉

≥ ||(I − T (Ψ,ϕ2)
rn )Ayn − (I − T (Ψ,ϕ2)

rn )Az||2. (4.3.22)

Since z ∈ Sol, then T
(Ψ,ϕ2)
rn Az = Az, and thus (I − T (Ψ,ϕ2)

rn )Az = 0. Therefore we have
from (4.3.22)

λn〈A∗(I − T (Ψ,ϕ2)
rn )Ayn, yn − z〉 ≥ λn||(I − T (Ψ,ϕ2)

rn )Ayn||2. (4.3.23)

However, observe from (4.3.6) that

〈yn − z, xn − λnA∗(I − T (Ψ,ϕ2)
rn )Axn − yn〉 ≥ 0. (4.3.24)
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On adding (4.3.23) and (4.3.24), we get

〈yn − z, d(xn, yn)〉 ≥ λn||(I − T (Ψ,ϕ2)
rn )Ayn||2. (4.3.25)

Also by Lemma 2.6.1 (ii), we have

||wn − z||2 = ||xn − γδnd(xn, yn)− z||2
≤ ||xn − z||2 − 2γδn〈xn − z, d(xn, yn)〉+ γ2δ2

n||d(xn, yn)||2. (4.3.26)

But
〈xn − z, d(xn, yn)〉 = 〈xn − yn, d(xn, yn)〉+ 〈yn − z, d(xn, yn)〉. (4.3.27)

Then from (4.3.12) and (4.3.25), we have

〈xn − z, d(xn, yn)〉 = δn||d(xn, yn)||2 + 〈yn − z, d(xn, yn)〉
≥ δn||d(xn, yn)||2 + λn||(I − T (Ψ,ϕ2)

rn )Ayn||2.

Hence, we get from (4.3.26) that

||wn − z||2 ≤ ||xn − z||2 − γδ2
n(2− γ)||d(xn, yn)||2 − γδnλn||(I − T (Ψ,ϕ2)

rn )Ayn||2
≤ ||xn − z||2 − γδ2

n(2− γ)||d(xn, yn)||2. (4.3.28)

From (4.3.11), we have that δ2
n||d(xn, yn)||2 = 1

γ2 ||wn− xn||2. Then it follows from (4.3.28)
that

||wn − z||2 ≤ ||xn − z||2 −
(2− γ)

γ
||wn − xn||2. (4.3.29)

Consequently since γ ∈ (0, 2), we get

||wn − z||2 ≤ ||xn − z||2. (4.3.30)

Now, we show that the sequences generated by Algorithm 4.3.4 are bounded.

Lemma 4.3.9. The sequence {xn} generated by Algorithm 4.3.4 is bounded. Consequently,
{f(xn)}, {yn}, {wn}, {d(xn, yn)} and {vn,i} are bounded, for each i = 1, 2, . . . .

Proof. Let us put zn = βn,0wn +
∑n

i=1 βn,ivn,i, and z ∈ Sol. Then using Lemma 2.6.3, we
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have

||zn − z||2 =
∣∣∣∣∣∣βn,0wn +

n∑
i=1

βn,ivn,i − z
∣∣∣∣∣∣2

≤ βn,0||wn − z||2 +
n∑
i=1

βn,i||vn,i − z||2 −
n∑
i=1

βn,0βn,i||wn − vn,i||2

≤ βn,0||wn − z||2 +
n∑
i=1

βn,id
(
vn,i, Siz

)2 −
n∑
i=1

βn,0βn,i||wn − vn,i||2

≤ βn,0||wn − z||2 +
n∑
i=1

βn,iH
(
Siwn, Siz

)2 −
n∑
i=1

βn,0βn,i||wn − vn,i||2

≤ βn,0||wn − z||2 +
n∑
i=1

βn,i

(
||wn − z||2 + κid(wn, Siwn)2

)
−

n∑
i=1

βn,0βn,i||wn − vn,i||2

≤ βn,0||wn − z||2 +
n∑
i=1

βn,i||wn − z||2 +
n∑
i=1

βn,iκ||wn − vn,i||2

−
n∑
i=1

βn,0βn,i||wn − vn,i||2

= ||wn − z||2 −
n∑
i=1

(βn,0 − κ)βn,i||wn − vn,i||2. (4.3.31)

It follows from (4.3.20) that

||zn − z||2 ≤ ||xn − z||2 −
n∑
i=1

(βn,0 − κ)βn,i||wn − vn,i||2, (4.3.32)

and using condition (C2), we get

||zn − z||2 ≤ ||xn − z||2. (4.3.33)

Therefore from (4.3.33), we get

||xn+1 − z|| = ||αn(ξf(xn)−Dz) + (1− αnD)(zn − z)||
≤ αn||ξf(xn)−Dz||+ (1− αnτ̄)||zn − z||
≤ αn

[
||ξ(f(xn)− f(z)) + (ξf(z)−Dz)||

]
+ (1− αnτ̄)||zn − z||

≤ αn

[
||ξ(f(xn)− f(z)) + (ξf(z)−Dz)||

]
+ (1− αnτ̄)||wn − z||

≤ αnξρ||xn − z||+ αn||ξf(z)−Dz||+ (1− αnτ̄)||xn − z||
= (1− αn(τ̄ − ξρ))||xn − z||+ αn||ξf(z)−Dz||

= (1− αn(τ̄ − ξρ))||xn − z||+ (τ̄ − ξρ)αn
||ξf(z)−Dz||

τ̄ − ξρ .
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Hence

||xn+1 − z|| ≤ max

{
||xn − z||,

||ξf(z)−Dz||
τ̄ − ξρ

}
...

≤ max

{
||x1 − z||,

||ξf(z)−Dz||
τ̄ − ξρ

}
.

Hence ||xn − z|| is bounded. This implies that {xn} is bounded.
Consequently, {f(xn)}, {yn}, {d(xn, yn)}, {wn} and {vn,i} are bounded.

Lemma 4.3.10. The sequence {xn} generated by Algorithm 4.3.4 satisfies the following
estimates:

(i) sn+1 ≤ (1− ãn)sn + ãnbn,

(ii) −1 ≤ lim supn→∞ bn < +∞,

where sn = ||xn − z||2, ãn = 2αn(τ̄−ξρ)
1−αnξρ , bn = 〈ξf(z)−Dz,xn+1−z〉

τ̄−ξρ + αnM
2(τ̄−ξρ)

, for z ∈ Sol and
some M > 0.

Proof. From (4.3.13) and (4.3.33), we have

||xn+1 − z||2 = ||αn(ξf(xn)−Dz) + (1− αnD)(zn − z)||2
≤ (1− αnτ̄)2||zn − z||2 + 2αn〈ξf(xn)−D(z), xn+1 − z〉
= (1− αnτ̄)2||xn − z||2 + 2αn〈ξ(f(xn)− f(z)) + ξf(z)−Dz, xn+1 − z〉
≤ (1− αnτ̄)2||xn − z||2 + 2αnξρ||xn − z||||xn+1 − z||

+2αn〈ξf(z)−Dz, xn+1 − z〉
≤ (1− 2αnτ̄ + (αnτ̄)2)||xn − z||2 + αnξρ(||xn − z||2 + ||xn+1 − z||2)

+ 2αn〈ξf(z)−Dz, xn+1 − z〉.

This implies that

||xn+1 − z||2 ≤
1− αn(2τ̄ − ξρ)

1− αnξρ
||xn − z||2 +

(αnτ̄)2

1− αnξρ
||xn − z||2

+
2αn

1− αnξρ
〈ξf(z)−Dz, xn+1 − z〉

=

(
1− 2αn(τ̄ − ξρ)

1− αnξρ

)
||xn − z||2 +

2αn(τ̄ − ξρ)

1− αnξρ
(〈ξf(z)−Dz, xn+1 − z〉

τ̄ − ξρ

+
αnM

2(τ̄ − ξρ)

)
,

for some M > 0. This establishes (i).

Next, we prove (ii). Since {xn} is bounded and αn ∈ (0, 1), then we have

sup
n≥0

bn ≤ sup
n≥0

1

τ̄ − ξρ
(
||ξf(z)−Dz|| · ||xn+1 − z||+M

)
<∞.
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We show that lim supn→∞ bn ≥ −1. Assume the contrary, i.e suppose lim supn→∞ bn < −1,
which implies that there exists n0 ∈ N such that bn ≤ −1 for all n ≥ n0. Hence, it follows
from (i) that

sn+1 ≤ (1− ãn)sn + ãnbn

< (1− ãn)sn − ãn
= sn − ãn(sn + 1)

≤ sn − 2αn(τ̄ − ξρ).

By induction, we get

sn+1 ≤ sn0 − 2(τ̄ − ξρ)
n∑

i=n0

αi for all n ≥ n0.

Taking lim sup of both sides in the last inequality, we have

lim sup
n→∞

sn ≤ sn0 − lim
n→∞

2(τ̄ − ξρ)
n∑

i=n0

αi = −∞.

This contradicts the fact that {sn} is a non-negative real sequence. Therefore, lim supn→∞ bn ≥
−1.

Lemma 4.3.11. Let {xnk} be a subsequence of {xn} defined by Algorithm 4.3.4 such that

xnk ⇀ q ∈ C. Suppose ||xn − yn|| → 0 and ||(I − T (Ψ,ϕ2)
rn )Axn|| → 0 as n → ∞. Then

q ∈ ΩSGEP .

Proof. Since ynk = T
(Φ,ϕ1)
rnk

(xnk − λnA∗(I − T
(Ψ,ϕ2)
rnk

)Axnk), we have

Φ(ynk , y) + ϕ1(ynk , y) +
1

rnk
〈y − ynk , ynk − xnk − λnkA∗(I − T (Ψ,ϕ2)

rnk
)Axnk〉 ≥ 0, ∀ y ∈ C.

This implies that

Φ(ynk , y) + ϕ1(ynk , y) +
1

rnk
〈y − ynk , ynk − xnk〉 −

1

rnk
〈y − ynk , λnkA∗(I − T (Ψ,ϕ2)

rnk
)Axnk〉 ≥ 0,

for all y ∈ C. It follows from the monotonicity of Φ and ϕ1 that

1

rnk
〈y − ynk , ynk − xnk〉 −

1

rnk
〈y − ynk , λnkA∗(I − T (Ψ,ϕ2)

rnk
)Axnk〉 ≥ Φ(y, ynk) + ϕ1(y, ynk).

Since ||xnk − ynk || → 0, then ynk ⇀ q as k →∞. Taking limit of the inequality above, we
get

Φ(y, q) + ϕ1(y, q) ≤ 0, ∀ y ∈ C. (4.3.34)

Let yt = ty + (1 − t)q for any t ∈ (0, 1] and y ∈ C. Consequently, we have yt ∈ C and
hence Φ(yt, q) + ϕ1(yt, q) ≤ 0. Using assumptions D1 and D4, we get

0 ≤ Φ(yt, yt)− ϕ1(yt, yt)

≤ t(Φ(yt, y) + ϕ1(yt, y)) + (1− t)(Φ(y1, q) + ϕ1(yt, q))

≤ t(Φ(yt, y) + ϕ1(yt, y)) + (1− t)(Φ(q, yt) + ϕ1(q, yt))

≤ Φ(yt, y) + ϕ1(yt, y).
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Letting t→ 0 and using assumption D3, we have the upper semicontinuity of ϕ1, we get

Φ(q, y) + ϕ1(q, y) ≥ 0, ∀ y ∈ C.

This implies that q ∈ ΩGEP .

Furthermore, since A is a bounded operator, then Aynk ⇀ Aq. Then, it follows from the

assumption that ||(I − T (Ψ,ϕ2)
rnk

)Axnk || → 0 that T
(Ψ,ϕ2)
rnk

)Axnk ⇀ Aq. By the definition of

T
(Ψ,ϕ2)
rnk

)Axnk , we have

Ψ(T (Ψ,ϕ2)
rnk

Axnk , y) + ϕ2(T (Ψ,ϕ2)
rnk

Axnk , y) +
1

rnk
〈y − T (Ψ,ϕ2)

rnk
Axnk , T

(Ψ,ϕ2)
rnk

Axnk − Axnk〉 ≥ 0,

for all y ∈ Q. Since both Ψ and ϕ2 are upper semicontinuous in the first argument, it
follows from the above inequality that

Ψ(Aq, y) + ϕ2(Aq, y) ≥ 0, ∀ y ∈ Q.

This shows that Aq ∈ ΩGEP . Therefore q ∈ ΩSGEP .

We now present the main convergence theorem in this section.

Theorem 4.3.12. Let C and Q be nonempty closed and convex subsets of real Hilbert
spaces H1 and H2 respectively and A : H1 → H2 be a bounded linear operator. Let
Φ, ϕ1 : C × C → R and Ψ, ϕ2 : Q×Q→ R be bifunctions satisfying assumption D1 - D7
in Lemma 4.3.1 and for each i ∈ N, let Si : H1 → CB(H1) be multivalued demi-contractive
mappings with constants ki such that I−Si are demiclosed at zero and for each p ∈ F (Si),
Si(p) = {p}. Suppose Sol := ΩSGEP ∩

⋂∞
i=1 F (Si) 6= ∅. Let f : H1 → H1 be a ρ-contraction

with constant ρ ∈ (0, 1) and D be a bounded operator on H1 with coefficient τ̄ > 0 such
that 0 < ξ < τ̄

ρ
. Let {rn} be a sequence in (0,∞), {αn} and {βn,i} be sequences in (0, 1)

and {λn} be a sequence in [a, b] ⊂ (0, 1
||A||2 ) such that conditions (C1) - (C3) are satisfied.

Then the sequence {xn} generated by Algorithm 4.3.4 converges strongly to a point x∗,
where x∗ = PSol(I −D + ξf)(x∗) is a unique solution of the variational inequality

〈(D − ξf)x∗, x∗ − z〉 ≤ 0, z ∈ Sol. (4.3.35)

Proof. Let x∗ ∈ Sol and put Γn = ||xn − x∗||2. We divide the proof into two cases.

Case 1: Suppose there exists n0 ∈ N such that {Γn} is decreasing. Then {Γn} converges
and

Γn − Γn+1 → 0, as n→∞. (4.3.36)

From (4.3.32), we have

||xn+1 − x∗||2 = ||αnξf(xn) + (1− αnD)zn − x∗||2
≤ (1− αnτ̄)2||zn − x∗||2 + 2αn〈ξf(xn)−Dx∗, xn+1 − x∗〉

≤ (1− αnτ̄)2

[
||xn − x∗||2 −

n∑
i=1

(βn,0 − k)βn,i||wn − vn,i||2
]

+ 2αn〈ξf(xn)−Dx∗, xn+1 − x∗〉.
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This implies that

(1− αnτ̄)2

n∑
i=1

(βn,0 − k)βn,i||wn − vn,i||2 ≤ (1− αnτ̄)2||xn − x∗||2 − ||xn+1 − x∗||2

+ 2αn〈ξf(xn)−Dx∗, xn+1 − x∗〉
≤ Γn − Γn+1 + 2αn〈ξf(xn)−Dx∗, xn+1 − x∗〉

+α2
nM,

for some M > 0. Since αn → 0, we have from (4.3.36) that

lim
n→∞

n∑
i=1

(βn,0 − k)βn,i||wn − vn,i||2 = 0.

Using condition (C2), we have

lim
n→∞

||wn − vn,i||2 = 0. (4.3.37)

Also from (4.3.31), we get

||xn+1 − x∗||2 = ||αnξf(xn) + (1− αnD)zn − x∗||2
≤ (1− αnτ̄)2||zn − x∗||2 + 2αn〈ξf(xn)−Dx∗, xn+1 − x∗〉
≤ (1− αnτ̄)2||wn − z||2 + 2αn〈ξf(xn)−Dx∗, xn+1 − x∗〉

≤ (1− αnτ̄)2

[
||xn − z||2 −

(2− γ)

γ
||wn − xn||2

]
+2αn〈ξf(xn)−Dx∗, xn+1 − x∗〉.

This implies that

(1− αnτ̄)2 (2− γ)

γ
||wn − xn||2 ≤ (1− αnτ̄)2||xn − z||2 − ||xn+1 − x∗||2

+ 2αn〈ξf(xn)−Dx∗, xn+1 − x∗〉.

Since αn → 0 as n→∞ and γ ∈ (0, 2), we have

lim
n→∞

||wn − xn|| = 0. (4.3.38)

Clearly from (4.3.15), we have

||xn − yn||2 ≤
(1 + θ)2

(1− θ)2γ2
||xn − wn||2 → 0 as n→∞.

Therefore
lim
n→∞

||xn − yn|| = 0. (4.3.39)

More so from (4.3.28), we have

||wn − x∗||2 ≤ ||xn − x∗||2 − γδnλn||(I − T (Ψ,ϕ2)
rn )Ayn||2.
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This means that

γδna||(I − T (Ψ,ϕ2)
rn )Ayn||2 ≤ ||xn − x∗||2 − ||wn − x∗||2

= ||wn − xn||(||xn − x∗||+ ||wn − x∗||)→ 0, as n→∞.

Hence
lim
n→∞

||(I − T (Ψ,ϕ2)
rn )Ayn|| = 0. (4.3.40)

Again, using Lemma 4.3.2(ii), we have

||Axn − T (Ψ,ϕ2)
rn Axn|| ≤ ||Axn − T (Ψ,ϕ2)

rn Axn − Ayn + T (Ψ,ϕ2)
rn Ayn||+ ||Ayn − T (Ψ,ϕ2)

rn Ayn||
≤ 2||A|| · ||xn − yn||+ ||(I − T (Ψ,ϕ2)

rn )Ayn||.

From (4.3.39) and (4.3.40), we get

lim
n→∞

||Axn − T (Ψ,ϕ2)
rn Axn|| = 0. (4.3.41)

Furthermore

||xn+1 − zn|| = ||αnξf(xn) + (1− αnD)zn − zn||
= αn||ξf(xn)−Dzn|| → 0 as n→∞,

and from (4.3.37), we have

||zn − wn|| =

∥∥∥∥∥βn,0wn +
n∑
i=1

βn,ivn,i − wn
∥∥∥∥∥

≤
n∑
i=1

βn,i||vn,i − wn|| → 0 as n→∞.

Therefore

||xn+1 − xn|| ≤ ||xn+1 − zn||+ ||zn − wn||+ ||wn − xn|| → 0 as n→∞. (4.3.42)

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that xnk ⇀ q. From
(4.3.38), we have that wnk ⇀ q. Now, using the fact that for each i = 1, 2, . . . , I − Si
is demiclosed at zero and since limk→∞ ||wnk − vnk,i|| = 0 (from (4.3.37)), we obtain that
q ∈ F (Si) for each i = 1, 2, . . . . Hence q ∈ ⋂∞i=1 F (Si). Also from (4.3.39), we have
ynk → q. Using Lemma 4.3.11 and (4.3.41), we have q ∈ ΩSGEP .
Therefore

q ∈ Sol := ΩSGEP ∩
∞⋂
i=1

F (Si).

Next, we show that {xn} converges strongly to x∗, where x∗ = PSol(I − D + ξf)x∗. To
do this, it suffices to show that lim supn→∞〈ξf(x∗) − Dx∗, xn+1 − x∗〉 ≤ 0. Choose a
subsequence {xnk} of {xn} such that

lim sup
n→∞

〈ξf(x∗)−Dx∗, xn+1 − x∗〉 = lim
k→∞
〈ξf(x∗)−Dx∗, xnk+1 − x∗〉.
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Since ||xn+1 − xn|| → 0 as n→∞, we have from (2.2.2) that

lim sup
n→∞

〈ξf(x∗)−Dx∗, xn+1 − x∗〉 = lim
k→∞
〈ξf(x∗)−Dx∗, xnk+1 − x∗〉

= 〈ξf(x∗)−Dx∗, q − x∗〉
≤ 0. (4.3.43)

Using Lemma 2.6.30, Lemma 4.3.10 (i) and (4.3.43), we obtain

lim
n→∞

||xn − x∗|| = 0. (4.3.44)

This implies that {xn} converges strongly to x∗.

Case II: Assume that {Γn} is not monotonically decreasing. For some n0 large enough,
define a mapping τ : N→ N for all n ≥ n0 defined by

τ(n) := max{j ∈ N : j ≤ n,Γj ≤ Γj+1}.

By Lemma 2.6.34, τ(n) is a non-decreasing sequence such that τ(n)→∞ as n→∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀ n ≥ n0.

Following same argument as in Case I, we have

limn→∞ ||wτ(n) − xτ(n)|| = limn→∞ ||xτ(n) − yτ(n)|| = limn→∞ ||Axτ(n) − T (Ψ,ϕ2)
rτ(n) Axτ(n)|| =

limn→∞ ||xτ(n)+1 − xτ(n)|| = 0,

and
lim sup
n→∞

〈(D − ξf)x∗, x∗ − xτ(n)+1〉 ≤ 0. (4.3.45)

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)} still denoted by {xτ(n)}
which converges weakly to z ∈ C. By similar argument as in Case I, we obtain z ∈ Sol :=
ΩSGEP ∩

⋂∞
i=1 F (Si).

Now from Lemma 4.3.10(i), we have

Γτ(n)+1 ≤ (1− aτ(n))Γτ(n) + aτ(n)bτ(n), (4.3.46)

where aτ(n) =
2ατ(n)(τ̄−ξρ)

1−ατ(n)ξρ
, bτ(n) =

〈ξf(x∗)−Dx∗,xτ(n)+1−x∗〉
τ̄−ξρ +

ατ(n)M

2(τ̄−ξρ)
, for some M > 0. Note

that aτ(n) → 0 as n→∞ and lim supn→∞ bτ(n) ≤ 0.

Since Γτ(n) ≤ Γτ(n)+1 and aτ(n) > 0, we have

||xτ(n) − x∗||2 ≤ bτ(n).

This implies that
lim sup
n→∞

||xτ(n) − x∗||2 = 0,

and thus
lim
n→∞

||xτ(n) − x∗|| = 0.
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Also from (4.3.46) we obtain

lim sup
n→∞

||xτ(n)+1 − x∗||2 ≤ lim sup
n→∞

||xτ(n) − x∗||2,

and thus
lim
n→∞

||xτ(n)+1 − x∗|| = 0.

Furthermore, for n ≥ n0, it is easy to see that Γn ≤ Γτ(n)+1. As a consequence, we obtain
that for all n ≥ n0

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

Hence Γn → 0 as n → ∞. That is, {xn} converges strongly to x∗. This completes the
proof.

The following is a direct consequence of Theorem 4.3.12 by taking ϕ1 = ϕ2 = 0.

Corollary 4.3.13. Let C and Q be nonempty closed and convex subsets of real Hilbert
spaces H1 and H2 respectively and A : H1 → H2 be a bounded linear operator. Let
Φ : C × C → R and Ψ : Q × Q → R be bifunctions satisfying assumption D1 - D4 in
Lemma 4.3.1 and for each i ∈ N, let Si : H1 → CB(H1) be multivalued demi-contractive
mappings with constants ki such that I−Si are demiclosed at zero and for each p ∈ F (Si),
Si(p) = {p}. Suppose Sol := ΩSEqP ∩

⋂∞
i=1 F (Si) 6= ∅. Let f : H1 → H1 be a ρ-contraction

with constant ρ ∈ (0, 1) and D be a bounded operator on H1 with coefficient τ̄ > 0 such
that 0 < ξ < τ̄

ρ
. Let {rn} be a sequence in (0,∞), {αn} and {βn,i} be sequences in (0, 1)

and {λn} be a sequence in [a, b] ⊂ (0, 1
||A||2 ) such that conditions (C1) - (C3) are satisfied.

Then the sequence {xn} generated by the following Algorithm 4.3.14 converges strongly
to a point x∗, where x∗ = PSol(I − D + ξf)(x∗) is a unique solution of the variational
inequality

〈(D − ξf)x∗, x∗ − z〉 ≤ 0, z ∈ Sol. (4.3.47)

Algorithm 4.3.14.

Step 0: Choose γ > 0, α ∈ (0, 1), θ ∈ (0, 1) and γ ∈ (0, 2). Let x1 ∈ H1 and set n = 1.

Step 1: Compute
yn = TΦ

rn(xn − λnA∗(I − TΨ
rn)Axn),

where λn = σηmn, σ > 0, η ∈ (0, 1) and mn is the smallest nonnegative integer such
that

λn||A∗(I − TΨ
rn)Axn − A∗(I − TΨ

rn)Ayn|| ≤ θ||xn − yn||.
Step 2: If xn = yn, then go to Step 3. Else, compute

d(xn, yn) = xn − yn − λn
[
A∗(I − TΨ

rn)Axn − A∗(I − TΨ
rn)Ayn

]
,

and
wn = xn − γδnd(xn, yn)

where

δn =

{
〈xn−yn,d(xn,yn)〉
||d(xn,yn)||2 , if d(xn, yn) 6= 0,

0 if d(xn, yn) = 0.
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Step 3: Compute

xn+1 = αnξf(xn) + (1− αnD)

(
βn,0wn +

n∑
i=1

βn,ivn,i

)
,

where vn,i ∈ Siwn. Set n = n+ 1 and go to Step 1.

4.3.2 Convergence rate

In this subsection, we study the rate of convergence of Algorithm 4.3.4.

Motivated by Nemirovski [194] and Tseng [261], Dong et al. [95] studied the convergence
rate for an extragradient method for solving variational inequality problems. they proved
that such sequence achieves O(1/t) convergence rate. In this section, we shall also show
that the proposed Algorithm 4.3.4 converges at the rate O(1/t). To the best of our
knowledge, no author have proved the convergence rate of an algorithm for solving the
split equilibrium problem.

For the sake of simplicity, we take the sequence {rn} to be r > 0.

Theorem 4.3.15. Let {xn}, {yn} and {wn} be the sequences generated by Algorithm 4.3.4.
For any t > 0 and γ ∈ (0, 2], we have a yt ∈ C which satisfies

〈A∗(I − TΨ,ϕ2
r )A∗u, yt − u〉 ≤

||x1 − u||2
2γΥt

, ∀u ∈ C, (4.3.48)

where

yt =
1

Υt

t∑
n=1

γλnδnyn and Υt =
t∑

n=1

λnδn. (4.3.49)

Proof. From (4.3.8) and (4.3.10), we have

yn = T (Φ,ϕ1)
r (yn − [λnA

∗(I − TΨϕ2
r )Ayn − d(xn, yn)]). (4.3.50)

We deduce from (4.3.6) and (4.3.50) that

〈u− yn, λnA∗(I − TΨϕ2
r )Ayn − d(xn, yn)〉 ≥ 0.

This implies that

〈u− yn, λnA∗(I − TΨϕ2
r )Ayn〉 ≥ 〈u− yn, d(xn, yn)〉. (4.3.51)

Also from (4.3.11), we get
γδnd(xn, yn) = xn − wn. (4.3.52)

It follows from (4.3.51) and (4.3.52) that

〈γδnλnA∗(I − TΨϕ2
r )Ayn, u− yn〉 ≥ 〈xn − wn, u− yn〉. (4.3.53)
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However, by Lemma 2.6.2, we have

〈xn − wn, u− yn〉 =
1

2

(
||xn − yn||2 − ||xn − u||2

)
+

1

2

(
||u− wn||2 − ||yn − wn||2

)
. (4.3.54)

Since wn = xn − γδnd(xn, yn), then

||xn − yn||2 − ||yn − wn||2 = ||xn − yn||2 − ||yn − xn − γδnd(xn, yn)||2
= 2γδn〈yn − xn, d(xn, yn)〉 − γ2δ2

n||d(xn, yn)||2
= 2γδ2

n||d(xn, yn)||2 − γ2δ2
n||d(xn, yn)||2

= γ(2− γ)δ2
n||d(xn, yn)||2. (4.3.55)

Putting (4.3.55) into (4.3.54), we obtain

〈xn − wn, u− yn〉+
1

2

(
||xn − u||2 − ||u− wn||2

)
=
γ(2− γ)δ2

n

2
||d(xn, yn)||2.

That is

〈γδnλnA∗(I − TΨϕ2
r )Ayn, u− yn〉+

1

2

(
||xn − u||2 − ||u− wn||2

)
≥ γ(2− γ)δ2

n

2
||d(xn, yn)||2.

Using the fact that T
(Ψ,ϕ2)
r is firmly nonexpansive and (4.3.22), we get

〈γδnλnA∗(I − TΨϕ2
r )Au, u− yn〉+

1

2

(
||xn − u||2 − ||u− wn||2

)
≥ γ(2− γ)δ2

n

2
||d(xn, yn)||2.

This means that

〈γδnλnA∗(I − TΨϕ2
r )Au, yn − u〉 ≤

1

2
||xn − u||2. (4.3.56)

Summing the inequality (4.3.56) over n = 1, . . . , t, we have

t∑
n=1

δnλn〈A∗(I − TΨϕ2
r )Au, yn − u〉 ≤

1

2γ
||x1 − u||2.

Then by using the notation of Υt and yt, we have

〈A∗(I − TΨϕ2
r )Au, yt − u〉 ≤

1

2γΥt

||x1 − u||2.

Remark 4.3.16. From Lemma 4.3.6, it follows that

Υt ≥ (t+ 1)λ̄,

thus Algorithm 3.2.4 has O(1/t) convergence rate (see [95]). In fact, for any bounded
subset D ⊂ C and given accuracy ε > 0, Algorithm 4.3.4 will achieve

〈A∗(I − TΨϕ2
r )Au, yt − u〉 ≤ ε, ∀u ∈ D

in at most t =

[
α2

2γλ̄cε

]
iterations, where yt is defined by (4.3.49), α = sup{||u−x1|| : u ∈

D} and c =
1− θ

(1 + θ)2
.

140



4.3.3 Numerical examples

In this subsection, we provide some numerical examples to demonstrate the performance
of our algorithm. All codes were written in MATLAB 2014(b) on a HP-Elitebook 6930 PC
with 8gb RAM.

Example 4.3.17. Let H1 = H2 = R3 and C = Q = [0, 10] × [0, 10] × [0, 10]. Let
A : H1 → H2 be defined by Ax = x

2
for each x ∈ H1. For x ∈ C, i = 1, 2, . . . , we define

Si : C → CB(C) as

Six =
[
0,

x

10i

]
for all i ∈ N.

Then Si is 0-demi-contractive mapping for all i ∈ N and
⋂∞
i=1 F (Si) = {0}. Define the

bifunctions Φ, ϕ1 : C ×C → R by Ψ(x, y) = 2x2 + xy − 3y2 and ϕ1(x, y) = x− y for each
x, y ∈ C. Also define Ψ, ϕ2 : Q×Q→ R by Ψ(u, z) = u2 +3uz−4z2 and ϕ2(u, z) = z2−u2

for each u, z ∈ Q. It is easy to check that

T (Φ,ϕ1)
r x =

x

7r + 1
,

and

T (Ψ,ϕ2)
r z =

z + r

5r + 1
.

For each n ∈ N, and i ≥ 0, let {βn,i} be defined by

βn,i =


1

bi+1

(
n
n+1

)
, n ≥ i+ 1,

1− n
n+1

n∑
k=1

1
bk

n = i,

0 n < i,

where b > 1. In this example, we set b = 5, then obtain

βn,i =



1
10

9
10

0 0 0 . . . 0 . . .
2
15

2
75

63
75

0 0 . . . 0 . . .
3
20

3
100

3
500

407
500

0 . . . 0 . . .
...

...
...

...
...

...
n

5(n+1)
n

52(n+1)
n

53(n+1)
n

54(n+1)
n

54(n+1)
. . . n

5i(n+1)
. . .

...
...

...
...

...
...

...


. (4.3.57)

For Algorithm 4.3.4, we set f(x) = x
5

and Dx = x, ξ = 0.7, rn = n
n+1

, αn = 1√
n+1

,

θ = 0.3, λn = θ
||A||2 , γ = 0.3. It can easily be checked that Φ,Ψ, ϕ1, ϕ2 and {rn} satisfy all

conditions in Theorem 4.3.12 with Sol = {0}. Let ε > 0, the algorithm stops if ||xn−x∗|| ≤
ε. For algorithm (4.3.2), we take T (s)x = x

1+2s
, f(x) = x

5
, Bx = x for all x ∈ H1 and set

sn = n, αn = 1√
n+1

, βn = 3n−2
7n+9

, ξ = 1, δ = 1
2
. In Table 4.5, for a given tolerance level

and randomly chosen initial points, we collect data of the number of iterations and time
required to execute both Algorithm 4.3.4 and (4.3.2).

From the given table, we deduce that for a given tolerance, Algorithm 4.3.4 takes significant
less number of iteration and CPU time compare to Algorithm (4.3.2).
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Example 4.3.18. In this example, we take H1 = H2 = R and C = Q = [−5, 5]. Define
Φ, ϕ1 : C ×C → R by Φ(x, y) = −3x+ xy+ 2y2 and ϕ1(x, y) = x2− xy for each x, y ∈ C.
Also, let Ψ, ϕ2 : Q→ R by Ψ(u,w) = −4u2 +uw+ 3w2 and ϕ2(u,w) = 2u(u−w) for each
u,w ∈ Q. It is easy to see that

T (Φ,ϕ1)
r x =

1− r
5r + 1

x,

and

T (Ψ,ϕ2)
r z =

1− 2r

7r + 1
z.

For i ∈ N, we define Si : C → CB([−5, 5]) by

Six =

{[
0, |x|

i+2

]
, if x < i+ 2,

[1, i+ 1] if x ≥ i+ 2.
(4.3.58)

It can easily be seen that Si is 0-demi-contractive for all i ∈ N and F (Si) = {0}. We also
define a bounded linear operator A : H1 → H2 by Ax = 3x. Thus, A∗x = 3x and ||A|| = 3.
It is clear that 0 ∈ Sol. For Algorithm 4.3.4, define f,D : R→ R by f(x) = 1

2
and Dx = 4

and take ξ = 1, γ = 0.5, and λn = θ
||A||2 , αn = 1

10(n+1)
and {βn,i} is as defined in Example

4.3.17. In Algorithm (4.3.2), we take B1(x) = x, B2(x) = 2x, ξ1 = 1
2
, ξ2 = 1, Sn(x) = x

2n
,

αn = 1
10(n+1)

, and δ = 1.2. Also in Algorithm (4.3.4), we choose α
(i)
n = βn,i defined in

(4.3.57) and take Si(x) to be as defined in (4.3.58). Using four various initial points and
||xn+1−xn||
||x2−x1|| < 10−4 as stopping criterion, we plot the graphs of error (||xn+1 − xn||) against

number of iterations in each case for the three algorithms. The numerical results can be
seen in Table 4.6, Figure 4.6.

Table 4.5: Comparison between Algorithm (4.3.2) and Algorithm 4.3.4

Tolerance Level Initial Points Algorithm (4.3.2) Algorithm (4.3.4)
x1 Iter. CPU time (secs) Iter. CPU time (secs)

ε = 10−4 (4, 0, 5) 24 0.0272 8 0.0091
ε = 10−5 (4, 0, 5) 29 0.0294 9 0.0051
ε = 10−6 (4, 0, 5) 34 0.0510 11 0.0082
ε = 10−4 (3, 2, 1) 23 0.0210 8 0.0016
ε = 10−5 (3, 2, 1) 28 0.0275 9 0.0067
ε = 10−6 (3, 2, 1) 33 0.0324 10 0.0067
ε = 10−4 (5, 8, 10) 25 0.0203 8 0.0061
ε = 10−5 (5, 8, 10) 30 0.0305 9 0.0067
ε = 10−6 (5, 8, 10) 35 0.0512 11 0.0134
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Table 4.6: Numerical result for for Example 4.3.18.

Alg. 4.3.4 Alg. (4.3.3) Alg. (4.3.4)

x1 = −1 CPU time (sec) 0.0032 0.0465 0.0109
No. of Iter. 7 33 13

x1 = 2.5 CPU time (sec) 0.0040 0.0408 0.0126
No. of Iter. 7 32 16

x1 = −3 CPU time (sec) 0.0096 0.0384 0.0103
No. of Iter. 8 33 15

x1 = 5 CPU time (sec) 0.0071 0.0532 0.0112
No. of Iter. 8 35 17
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Figure 4.6: Example 4.3.18, Top Left: Case I; Top Right: Case II; Bottom Left: Case III;
Bottom Right: Case IV.
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CHAPTER 5

Variational Inequality Problems in Hilbert and Banach Spaces

5.1 Strong Convergence Theorem for Solving Pseudo-

Monotone Variational Inequality Problem using

Projection Method in a Reflexive Banach Space

Very recently, Gibali [112] proposed a new Bregman projection method for solving the
VIP in a Hilbert space. Gibali’s algorithm is an extension of the subgradient extragradient
method of [69, 158, 256] with Bregman projection which makes only one projection per
iteration.

In this section, we introduce a projection-type algorithm for finding a common solution
of the variational inequality problem and fixed point problem in reflexive Banach space,
where A is pseudo-monotone and not necessarily Lipschitz continuous. Also, we present
an application of our result to approximating solution of pseudo-monotone equilibrium
problem in reflexive Banach space.

5.1.1 Main results

In this subsection, we give a precise statement of our projection-type method and discuss
some of its convergence analysis.

Let E be a real reflexive Banach space and let C be a nonempty, closed and convex subset
of E. Let f : E → R be a coercive, Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of E such that C ⊂ int(domf). Let
A : E → E∗ be a continuous pseudo-monotone operator and T : C → C be a Bregman
quasi-nonexpansive mapping such that Γ := ΩV IP ∩ F (T ) 6= ∅. Let {αn} and {βn} be

144



nonnegative sequences in (0, 1).

Algorithm 5.1.1.
Step 0: Select the initial points x1, u ∈ E, let γ, σ ∈ (0, 1) and s > 0. Choose λn ∈ [a, b]
such that 0 < a ≤ b and set n = 1.
Step 1: Compute

zn = ∇f ∗(∇f(xn)− λnAxn). (5.1.1)

Step 2: If xn = ProjfC(zn) and xn = Txn: STOP. Else, let yn(t) := (1−t)xn+tProjfC(zn)
for t ∈ R. Compute tn as the maximum of the numbers s, sγ, sγ2, . . . such that

〈Ayn(tn), xn − ProjfC(zn)〉 ≥ σDf (Proj
f
Czn, xn)

λn
, (5.1.2)

and define yn = yn(tn).
Step 3: Construct the set Qn define by Qn = {y ∈ E : 〈Ayn, y − yn〉 = 0} and compute

un = ProjfQn(∇f(xn)− λnAyn),

vn = ProjfC(un),

xn+1 = ∇f ∗
(
αn∇f(u) + (1− αn)(βn∇f(vn) + (1− βn)∇f(Tvn))

)
.

(5.1.3)

Set n← n+ 1 and go to Step 1.

Remark 5.1.2. Note that if xn − ProjfC(zn) = 0 and xn − Txn = 0, then we are at a
common solution of the VIP (1.1.1) and fixed point of the Bregman quasi-nonexpansive
mapping. In our convergence analysis, we will implicitly assume that this does not occur
after finitely many iterations so that Algorithm 5.1.1 generates an infinite sequences.

We first show that Algorithm 5.1.1 is well defined. To do this, it is sufficient to show that
the inner loop in the stepsize rule in Step 2 is well defined.

Lemma 5.1.3. (i) The stepsize process in Step 2 of Algorithm 5.1.1 is well defined.

(ii) Let {xn} and {yn} be sequences generated by Algorithm 5.1.1, then

〈Ayn, xn − yn〉 > 0.

Proof. (i) Assume that (5.1.2) does not hold for n ∈ N. This implies that

〈Ayn(tn), xn − ProjfCzn〉 <
σDf (Proj

f
Czn, xn)

λn
for n ∈ N.

Then, we have

〈A((1− sγm)xn + sγmProjfCzn), xn − ProjfCzn〉 <
σDf (Proj

f
Czn, xn)

λn
∀m ≥ 0.

Since A is continuous and yn(tn)→ xn as m→∞, it follows that

〈λnAxn, xn − ProjfCzn〉 < σDf (Proj
f
Czn, xn),
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equivalently, by (5.1.1), we have

〈∇f(xn)−∇f(zn), xn − ProjfCzn〉 < σDf (Proj
f
Czn, xn).

Applying the three point identity (Proposition 2.5.1 (ii)) to the left hand side of the above
inequality, we obtain

Df (Proj
f
Czn, xn) +Df (xn, zn)−Df (Proj

f
Czn, zn) < σDf (Proj

f
Czn, xn).

Since f is strictly convex and σ ∈ (0, 1), then

Df (xn, zn) < Df (Proj
f
Czn, zn).

This contradicts the definition of Bregman projection (see Definition 2.5.5). Hence, the
stepsize rule in Step 2 of Algorithm 5.1.1 is well defined.

(ii) Furthermore, from (5.1.2), we have

〈Ayn, xn − yn〉 = 〈Ayn, xn − (1− tn)xn − tnProjfCzn〉
= tn〈Ayn, xn − ProjfCzn〉

≥ σtnDf (Proj
f
Czn, xn)

λn
> 0.

In order to establish our main result, we make the following assumptions:

(C1) limn→∞ αn = 0 and
∑∞

n=0 αn =∞.

(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

We proceed to prove the following lemmas before proving the convergence of our main
Algorithm 5.1.1.

Lemma 5.1.4. The sequence {xn} generated by Algorithm 5.1.1 is bounded.

Proof. For each n ∈ N, define the sets:

Q−n := {u ∈ E : 〈Axn, u− xn〉 ≤ 0},

Qn := {u ∈ E : 〈Axn, u− xn〉 = 0},
and

Q+
n := {u ∈ E : 〈Axn, u− xn〉 ≥ 0}.

Let p ∈ Γ, then since A is pseudo-monotone, we have

〈Ap, x− p〉 ≥ 0⇒ 〈Ax, x− p〉 ≥ 0 ∀x ∈ E.

This implies that p ∈ Q−n for all n ∈ N. Furthermore, since we implicitly assumed that
Algorithm 5.1.1 does not terminate after finitely many steps with an exact solution, we
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have from Lemma 5.1.3(ii) that 〈Ayn, xn − yn〉 > 0. This implies that xn ∈ Q+
n and

xn /∈ Q−n for all n ∈ N . Therefore, using Lemma 2.6.10, we obtain

Df (p, xn) ≥ Df (p, un) +Df (un, xn). (5.1.4)

Now, since vn = ProjfC(un), then from (2.5.8), we have

Df (p, un) ≥ Df (p, vn) +Df (vn, un). (5.1.5)

Combining (5.1.4) and (5.1.5), we have

Df (p, xn) ≥ Df (p, vn) +Df (vn, un) +Df (un, xn).

This implies that

Df (p, vn) ≤ Df (p, xn)−Df (vn, un)−Df (un, xn). (5.1.6)

From (5.1.3) and (5.1.6), we have

Df (p, xn+1) ≤ Df

(
p,∇f ∗

(
αn∇f(u) + (1− αn)(βn∇f(vn) + (1− βn)∇f(Tvn))

))
,

= Vf

(
p, αn∇f(u) + (1− αn)(βn∇f(vn) + (1− βn)∇f(Tvn))

)
= Vf

(
p, αn∇f(u) + (1− αn)βn∇f(vn) + (1− αn)(1− βn)∇f(Tvn)

)
= f(p)−

〈
p, αn∇f(u) + (1− αn)βn∇f(vn) + (1− αn)(1− βn)∇f(Tvn)

〉
+f ∗

(
αn∇f(u) + (1− αn)βn∇f(vn) + (1− αn)(1− βn)∇f(Tvn)

)
≤ αnf(p)− αn〈p,∇f(u)〉+ αnf

∗(∇f(u)) + (1− αn)βnf(p)

−(1− αn)βn〈p,∇f(vn)〉+ (1− αn)βnf
∗(∇f(vn)) + (1− αn)(1− βn)f(p)

−(1− αn)(1− βn)〈p,∇f(Tvn)〉+ (1− αn)(1− βn)f ∗(∇f(Tvn))

= αnVf (p,∇f(u)) + (1− αn)βnVf (p,∇f(vn))

+(1− αn)(1− βn)Vf (p,∇f(Tvn))

= αnDf (p, u) + (1− αn)βnDf (p, vn) + (1− αn)(1− βn)Df (p, Tvn)

≤ αnDf (p, u) + (1− αn)Df (p, vn)

≤ αnDf (p, u) + (1− αn)Df (p, xn)

≤ max{Df (p, u), Df (p, xn)}
...

≤ max{Df (p, u), Df (p, x1)}.

Hence {Df (p, xn)} is bounded. Then by Lemma 2.6.28, we obtain that {xn} is bounded.

Remark 5.1.5. Since {xn} is bounded and A is continuous, it follows that {Axn} and {zn}
are bounded. Consequently, by the nonexpansivity of the projection operator and T , we
have that {yn}, {Ayn}, {un}, {vn} and {Tvn} are bounded.
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Lemma 5.1.6. Let {xn}, {yn}, {zn} and {un} be sequences generated by Algorithm 5.1.1.
Suppose there exist subsequences {xnk} and {unk} of {xn} and {un} respectively such that
limk→∞ ||xnk−unk || = 0. Let {ynk} and {znk} be subsequences of {yn} and {zn} respectively,
then

(a) limk→∞〈Aynk , xnk − ynk〉 = 0,

(b) limk→∞ ||ProjfC(znk)− xnk || = 0,

(c) 0 ≤ lim infk→∞〈Axnk , x− xnk〉, for all x ∈ C.

Proof. (a) Since un ∈ Qn, then we have

0 = 〈Aynk , unk − ynk〉 = 〈Aynk , unk − xnk〉+ 〈Aynk , xnk − ynk〉,

which implies that

〈Aynk , xnk − ynk〉 = 〈Aynk , xnk − unk〉
≤ ||Aynk ||∗||xnk − unk ||.

Taking the limit of the above inequality as k →∞ yields

lim
k→∞
〈Aynk , xnk − ynk〉 = 0.

(b) Let {tnk} be a subsequence of {tn}. We consider the following two cases based on the
behaviour of tnk .
Case I: Suppose limk→∞ tnk 6= 0; i.e., there exists some δ > 0 such that tnk ≥ δ > 0 for all
k ∈ N. It follows from Step 2 of Algorithm 5.1.1 that

〈Aynk , xnk − ynk〉 ≥
σDf (Proj

f
Cznk , xnk)

λn
.

Hence, from Lemma 5.1.6(a), we have

lim
k→∞

Df (Proj
f
Cznk , xnk) = 0.

Therefore using Lemma 2.6.24 (a), we obtain that

lim
k→∞
||ProjfCznk − xnk || = 0.

Case II: On the other hand, suppose tnk → 0 as k →∞. Let tnk < s so that the stepsize
get reduced at least once for all iterations belonging to this subsequence. This implies
that the trial stepsize does not satisfy the test from Step 2 of Algorithm 5.1.1. Assume
that limk→∞Df (Proj

f
Cznk , xnk) 6= 0, i.e., there exists a positive constant δ < +∞ such

that lim supk→∞(ProjfCznk , xnk) = δ.
Define ȳk = (1− tnk)xnk + tnkProj

f
C(znk). Then

ȳk − xnk = tnk(Proj
f
Cznk − xnk).

148



Since {ProjfCznk − xnk} is bounded and tnk → 0 as k →∞, it follows that limk→∞ ||ȳk −
xnk || = 0. From the stepsize rule in Step 2 and the definition of ȳk, we have

〈Aȳk, xnk − ProjfCznk〉 <
σDf (Proj

f
Cznk , xnk)

λnk
∀k ∈ N.

Since A is uniformly continuous on bounded subsets of C and σ ∈ (0, 1), we obtain that
there exists N ∈ N such that

〈λnkAxnk , xnk − ProjfCznk〉 < Df (Proj
f
Cznk , xnk) ∀k ∈ N, k ≥ N.

Therefore

〈∇f(xnk)−∇f(znk), xnk − ProjfCznk〉 < Df (Proj
f
Cznk , xnk), ∀k ∈ N, k ≥ N.

Using the three points identity (Proposition 2.5.1 (ii)) in the last inequality, we get

Df (Proj
f
Cznk , xnk) +Df (xnk , znk)−Df (Proj

f
Cznk , znk) < Df (Proj

f
Cznk , znk) ∀k ≥ N.

Hence
Df (xnk , znk) < Df (Proj

f
Cznk , znk) ∀k ≥ N.

This contradicts the definition of the Bregman projection. Hence limk→∞Df (Proj
f
Cznk , xnk) =

0. Therefore, by using Lemma 2.6.24 (a), we obtain thaat limk→∞ ||ProjfCznk − xnk || = 0.

(c) From (2.5.7), we have that

〈∇f(znk)−∇f(ProjfCznk), y − ProjfCznk〉 ≤ 0 ∀y ∈ C.

This implies from (5.1.1) that

〈∇f(xnk)−∇f(ProjfCznk), y − ProjfCznk〉 ≤ 〈λnkAxnk , y − ProjfCznk〉 ∀y ∈ C.

Therefore

〈∇f(xnk)−∇f(ProjfCznk),y − ProjfCznk〉+ 〈λnkAxnk , P rojfCznk − xnk〉
≤ 〈λnkAxnk , y − xnk〉 ∀y ∈ C. (5.1.7)

Since f is uniformly Fréchet differentiable on bounded subsets of E, by Lemma 2.6.26, ∇f
is norm-to-norm uniformly continuous on bounded subsets of E∗ and therefore, from (b),
we get

lim
k→∞
||∇f(ProjfC(znk))−∇f(xnk)||∗ = 0. (5.1.8)

Taking the limit of the inequality in (5.1.7) and noting that {λnk} ⊂ [a, b], we have

0 ≤ lim inf
k→∞

〈Axnk , y − xnk〉 ∀y ∈ C.

This completes the proof.

Lemma 5.1.7. The sequence {xn} generated by Algorithm 5.1.1 satisfies the following
estimates:
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(i) sn+1 ≤ (1− αn)sn + αnbn,

(ii) −1 ≤ lim supn→∞ bn < +∞,

where p ∈ Γ, sn = Df (p, xn), bn = 〈∇f(u)−∇f(p), xn+1 − p〉.

Proof. (i) Let wn = ∇f ∗(βn∇f(vn) + (1− βn)∇f(Tvn)) and p ∈ Γ, then from (5.1.3), we
have

Df (p, xn+1) = Df (p,∇f ∗(αn∇f(u) + (1− αn)∇f(wn)))

≤ Vf

(
p, αn∇f(u) + (1− αn)∇f(wn)− αn(∇f(u)−∇f(p))

)
+〈αn(∇f(u)−∇f(p)), xn+1 − p〉

= Vf

(
p, αn∇f(p) + (1− αn)∇f(wn)

)
+ αn〈∇f(u)−∇f(p), xn+1 − p〉

≤ (1− αn)Df (p, wn) + αn〈∇f(u)−∇f(p), xn+1 − p〉
= (1− αn)

(
Df (p,∇f ∗(βn∇f(vn) + (1− βn)∇f(Tvn)))

)
+αn〈∇f(u)−∇f(p), xn+1 − p〉

≤ (1− αn)βnDf (p, vn) + (1− αn)(1− βn)Df (p, Tvn)

+αn〈∇f(u)−∇f(p), xn+1 − p〉
≤ (1− αn)Df (p, vn) + αn〈∇f(u)−∇f(p), xn+1 − p〉. (5.1.9)

Therefore from (5.1.6), we have

Df (p, xn+1) ≤ (1− αn)
(
Df (p, xn)−Df (vn, un)−Df (un, xn)

)
+αn〈∇f(u)−∇f(p), xn+1 − p〉. (5.1.10)

Since {αn} ⊂ (0, 1), then

Df (p, xn+1) ≤ (1− αn)Df (p, xn) + αn〈∇f(u)−∇f(p), xn+1 − p〉. (5.1.11)

This established (i).
(ii) Since {xn} is bounded, then we have

sup
n≥0

bn ≤ sup ||∇f(u)−∇f(p)||∗||xn+1 − p|| <∞.

This implies that lim supn→∞ bn < ∞. Next, we show that lim supn→∞ bn ≥ −1. Assume
the contrary, i.e. lim supn→∞ bn < −1. Then there exists n0 ∈ N such that bn < −1, for
all n ≥ n0. Then for all n ≥ n0, we get from (i) that

sn+1 ≤ (1− αn)sn + αnbn

< (1− αn)sn − αn
= sn − αn(sn + 1) ≤ sn − αn.

Taking lim sup of both sides of the last inequality, we have

lim sup
n→∞

sn ≤ sn0 − lim
n→∞

n∑
i=n0

αi = −∞.
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This contradicts the fact that {sn} is a nonnegative real sequence. Therefore lim supn→∞ bn ≥
−1.

We are now in position to state and prove our main theorem.

Theorem 5.1.8. Let E be a real reflexive Banach space and let C be a nonempty, closed
and convex subset of E. Let f : E → R be a coercive, Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that C ⊂
int(domf). Let A : E → E∗ be a continuous pseudo-monotone operator and T : C → C be
a Bregman quasi-nonexpansive mapping such that F̂ (T ) = F (T ) and Γ := ΩV IP ∩F (T ) 6=
∅. Let {αn} and {βn} be nonnegative sequences in (0, 1) and such that conditions (C1)
and (C2) are satisfied. Let {xn} be generated by Algorithm 5.1.1. Then, the sequence {xn}
converges strongly to a point x̄ = ProjfΓ(u), where ProjfΓ is the Bregman projection from
C onto Γ.

Proof. Let p ∈ Γ, and denote Df (p, xn) by Φn. We consider the following two possible
cases.
CASE A: Suppose there exists n0 ∈ N such that Φn is monotonically non-increasing for
all n ≥ n0. Since Φn is bounded, then it is convergent and so Φn − Φn+1 → 0 as n→∞.

We first show that ||xn − un|| → 0, ||vn − Tvn|| → 0 and ||xn+1 − xn|| → 0 as n → ∞.
Since {αn} ⊂ (0, 1), we obtain from (5.1.10) that

(1− αn)Df (un, xn) ≤ (1− αn)Df (p, xn)−Df (p, xn+1) + αn〈∇f(u)−∇f(p), xn+1 − p〉.

Using condition(C1), we obtain that Df (un, xn) → 0 as n → ∞, hence from Lemma
2.6.24(a), we have

lim
n→∞

||un − xn|| = 0. (5.1.12)

Similarly from (5.1.10), we can obtain

lim
n→∞

||vn − un|| = 0. (5.1.13)

Hence

lim
n→∞

||vn − xn|| = 0. (5.1.14)

Recall that wn = ∇f ∗(βn∇f(vn) + (1− βn)∇f(Tvn)), from Lemma 2.6.21, we have

Df (p, wn) = Df (p,∇f ∗(βn∇f(vn) + (1− βn)∇f(Tvn)))

= Vf (p, βn∇f(vn) + (1− βn)∇f(Tvn))

= f(p)− 〈p, βn∇f(vn) + (1− βn)∇f(Tvn)〉+ f ∗(βn∇f(vn)

+(1− βn)∇f(Tvn))

≤ βnf(p)− βn〈p,∇f(vn)〉+ βnf
∗(∇f(Tvn)) + (1− βn)f(p)

−(1− βn)〈p,∇f(Tvn)〉+ (1− βn)f ∗(∇f(Tvn))

−βn(1− βn)ρr(||∇f(vn)−∇f(Tvn)||∗)
≤ βnDf (p, vn) + (1− βn)Df (p, Tvn)− βn(1− βn)ρr(||∇f(vn)−∇f(Tvn)||∗)
≤ Df (p, vn)− βn(1− βn)ρr(||∇f(vn)−∇f(Tvn)||∗). (5.1.15)
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Thus from (5.1.6), (5.1.10) and (5.1.15), we have

Df (p, xn+1) ≤ (1− αn)Df (p, vn)− (1− αn)βn(1− βn)ρr(||∇f(vn)−∇f(Tvn)||)
+αn〈∇f(u)−∇f(p), xn+1 − p〉

≤ (1− αn)Df (p, xn)− (1− αn)βn(1− βn)ρr(||∇f(vn)−∇f(Tvn)||∗)
+αn〈∇f(u)−∇f(p), xn+1 − p〉.

Hence

(1− αn)βn(1− βn)ρr(||∇f(vn)−∇f(Tvn)||) ≤ (1− αn)Df (p, xn)−Df (p, xn+1)

+αn〈∇f(u)−∇f(p), xn+1 − p〉.

It follows from conditions (C1), (C2) and the properties of ρr that

lim
n→∞

||∇f(vn)−∇f(Tvn)||∗ = 0. (5.1.16)

Since f is uniformly Fréchet differentiable on bounded subsets of E, by Lemma 2.6.26, it
is also uniformly continuous and ∇f is norm-to-norm uniformly continuous on bounded
subsets of E, hence from (5.1.16), we have

lim
n→∞

||f(vn)− f(Tvn)|| = 0, (5.1.17)

and

lim
n→∞

||vn − Tvn|| = 0. (5.1.18)

In addition, it is easy to see from definition of Bregman distance that Df (vn, T vn)→ 0 as
n→∞. Thus

Df (vn, xn+1) ≤ αnDf (vn, u) + (1− αn)βnDf (vn, vn) + (1− αn)(1− βn)Df (vn, T vn).

This implies that

lim
n→∞

||vn − xn+1|| = 0. (5.1.19)

Therefore from (5.1.14) and (5.1.19), we obtain

||xn+1 − xn|| ≤ ||xn+1 − vn||+ ||vn − xn|| → 0, as n→∞. (5.1.20)

Next, we show that Ωw(xn) ⊂ ΩV IP ∩ F (T ), where Ωw(xn) is the weak subsequential
limit of {xn}. Let x̄ ∈ Ωw(xn), there exists a subsequence {xnk} of {xn} such that
xnk ⇀ x̄ as k →∞. Consequently from (5.1.17), vnk ⇀ x̄. Since ||vnk − Tvnk || → 0, then

x̄ ∈ F̂ (T ) = F (T ). Furthermore, let z ∈ C be an arbitrary point and {εk} be a sequence
of decreasing non-negative numbers such that εk → 0 as k → ∞. Using Lemma 5.1.6(c),
we can find a large enough Nk such that

〈Axnk , z − xnk〉+ εk ≥ 0, ∀k ≥ Nk.
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This implies that
〈Axnk , z + εktk − xnk〉 ≥ 0, ∀k ≥ Nk, (5.1.21)

for some tk ∈ E satisfying 1 = 〈Axnk , tk〉 (since Axnk 6= 0). Since A is pseudo-monotone,
then we have from (5.1.21) that

〈A(z + εktk), z + εktk − xnk〉 ≥ 0, ∀k ≥ Nk. (5.1.22)

This implies that

〈Az, z − xnk〉 ≥ 〈Az − A(z + εktk), z + εktk − xnk〉 − εk〈Az, tnk〉 ∀k ≥ Nk. (5.1.23)

Since εk → 0 and A is continuous, then the right-hand side of (5.1.23) tends to zero. Thus,
we obtain that

lim inf
k→∞

〈Az, z − xnk〉 ≥ 0, ∀z ∈ C.

In view of Lemma 5.1.6(c), we have that

〈Az, z − x̄〉 = lim
k→∞
〈Az, z − xnk〉 ≥ 0, ∀z ∈ C.

Hence, from Lemma 2.6.9 we obtain that x̄ ∈ ΩV IP . Therefore x̄ ∈ Γ := ΩV IP ∩ F (T ).

We now show that {xn} converges strongly to x∗ = ProjfΓu. To do this, we first show that
lim supn→∞〈∇f(u) − ∇f(x∗), xn+1 − x∗〉 ≤ 0. Choose a subsequence {xnk} of {xn} such
that

lim sup
n→∞

〈∇f(u)−∇f(x∗), xn+1 − x∗〉 = lim
k→∞
〈∇f(u)−∇f(x∗), xnk+1 − x∗〉.

Since ||xnk+1−xnk || → 0 and xnk ⇀ x̄ as k →∞, then we have from Lemma 2.5.2(b) that

lim sup
n→∞

〈∇f(u)−∇f(x∗), xn+1 − x∗〉 = lim
k→∞
〈∇f(u)−∇f(x∗), xnk+1 − x∗〉

= 〈∇f(u)−∇f(x∗), x̄− x∗〉 ≤ 0. (5.1.24)

Now using Lemma 2.6.29, Lemma 5.1.7(i) and (5.1.24), we obtain that Df (x
∗, xn)→ 0 as

n → ∞. It follows from Lemma 2.6.24(a) that limn→∞ ||xn − x∗|| = 0. Therefore, {xn}
converges strongly to x∗ = ProjfΓu.

CASE B: Suppose {Df (p, xn)} is not monotonically decreasing. Let φ : N → N for all
n ≥ n0 (for some n0 large enough) be defined by

φn = max{k ∈ N : φk ≤ φk+1}.

Clearly, φ is non-decreasing, φ(n)→∞ as n→∞ and

0 ≤ Df (p, xφ(n)) ≤ Df (p, xφ(n)+1), ∀n ≥ n0.

Following similar argument as in CASE A, we obtain

||xφ(n) − uφ(n)|| → 0, ||vφ(n) − Tvφ(n)|| → 0, ||xφ(n)+1 − xφ(n)|| → 0
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as n→∞ and Ωw(xφ(n)) ⊂ ΩV IP ∩F (T ), where Ωw(xφ(n)) is the weak subsequential limit
of {xφ(n)}. Also,

lim sup
n→∞

〈∇f(u)−∇f(p), xφ(n)+1 − p〉 ≤ 0. (5.1.25)

From Lemma 5.1.7(i), we have that

Df (p, xφ(n)+1) ≤ (1− αφ(n))Df (p, xφ(n)) + αφ(n)〈∇f(u)−∇f(p), xφ(n)+1 − p〉.

Since Df (p, xφ(n)) ≤ Df (p, xφ(n)+1), then

0 ≤ Df (p, xφ(n)+1)−Df (p, xφ(n))

≤ (1− αφ(n))Df (p, xφ(n)) + αφ(n)〈∇f(u)−∇f(p), xφ(n)+1 − p〉 −Df (p, xφ(n)).

Hence from (5.1.25), we obtain

Df (p, xφ(n)) ≤ 〈∇f(u)−∇f(p), xφ(n)+1 − p〉 → 0, as n→∞.

As a consequence, we obtain that for all n ≥ n0,

0 ≤ Df (p, xn) ≤ max{Df (p, xφ(n)), Df (p, xφ(n)+1)} = Df (p, xφ(n)+1).

Hence
Df (p, xn)→ 0 as n→∞.

Therefore, from Lemma 2.6.24(a),

lim
n→∞

||xn − p|| = 0.

This implies that {xn} converges strongly to p. This completes the proof.

Remark 5.1.9. For a suitable starting point x1, Algorithm 5.1.1 generates appropriate
solution which approximates the whole solution set Γ as guaranteed by Theorem 5.1.8.
This is an interesting property which is different (for example) from the class of Tikhonov-
type regularization approaches where the corresponding sequences always converge to the
same solution. With this fact, one can get an idea of the geometric shape of the whole
solution set by using various starting point x1. In fact, if one has some a priori knowledge
regarding the location of a solution and is, therefore, interested in computing a particular
solution which is as close as possible to this prior knowledge, Algorithm 5.1.1 allows one
to take this knowledge into account by a suitable choice of x1.

The following is a direct consequence of our result.

Corollary 5.1.10. Let H be a real Hilbert space and C be a nonempty, closed and convex
subset of H. Let A : C → H be a continuous pseudo-monotone operator and T : C → C
be a quasi-nonexpansive mapping such that Γ := ΩV IP ∩ F (T ) 6= ∅. Let {αn} and {βn} be
nonnegative sequences in (0, 1) and such that conditions (C1) and (C2) are satisfied. Let
{xn} be generated by the following Algorithm:
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Algorithm 5.1.11.
Step 0: Select the initial points x1, u ∈ H, let γ, σ ∈ (0, 1) and s > 0. Choose λn ∈ [a, b]
such that 0 < a ≤ b and set n = 1.
Step 1: Compute

zn = xn − λnAxn. (5.1.26)

Step 2: If xn = PC(zn) and xn = Txn: STOP. Else, let yn(t) := (1− t)xn + tPC(zn) for
t ∈ R. Compute tn as the maximum of the numbers s, sγ, sγ2, . . . such that

〈Ayn(tn), xn − PC(zn)〉 ≥ σ||PCzn − xn||2
2λn

, (5.1.27)

and define yn = yn(tn).
Step 3: Construct the set Qn define by Qn = {y ∈ E : 〈Ayn, y − yn〉 = 0} and compute

un = PQn(xn − λnAyn),

vn = PC(un),

xn+1 = αnu+ (1− αn)(βnvn + (1− βnTvn).

(5.1.28)

Set n← n+ 1 and go to Step 1.

Then, the sequence {xn} generated by Algorithm 5.1.11 converges strongly to a point
x̄ = PΓ(u), where PΓ is the metric projection from C onto Γ.

Remark 5.1.12. Corollary 5.1.10 extends the work of Kanzow and Shehu [144] from mono-
tone VIP to common solution of pseudo-monotone VIP and fixed point of quasi-nonexpansive
mapping in a real Hilbert space.

5.1.2 Application to Equilibrium Problem

For solving the EP, we assume that the bifunction g satisfies the following:

Assumption 5.1.13.

(A1) g is weakly continuous on C × C,

(A2) g(x, ·) is convex lower semicontinuous and subdifferentiable on C for every fixed
x ∈ C,

(A3) for each x, y, z ∈ C, lim supt↓0 g(tx+ (1− t)y, z) ≤ g(y, z).

Lemma 5.1.14. [16] Let E be a nonempty convex subset of a Banach space E and f :
E → R be a convex and subdifferentiable function, then f is minimal at x ∈ E if and only
if

0 ∈ ∂f(x) +NC(x),

where NC(x) is the normal cone of C at x, that is, NC(x) := {x∗ ∈ E∗ : 〈x∗, x − z〉 ≥
0, ∀z ∈ C}.
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Lemma 5.1.15. [87] Let E be a real reflexive Banach space. If f and g are two convex
functions such that there is a point x0 ∈ dom f ∩ dom g where f is continuous, then

∂(f + g)(x) = ∂f(x) + ∂g(x) ∀x ∈ E.
Proposition 5.1.16. Let E be a real reflexive Banach space and C be a nonempty, closed
and convex subset of E. Let g : C × C → R be a bifunction such that g(x, x) = 0 and
f : E → R be a Legendre and totally coercive function. Then a point x∗ ∈ EP (C, g) if
and only if x∗ solves the following minimization problem:

min

{
λg(x, y) +Df (y, x) : y ∈ C

}
,

where x ∈ C and λ > 0.

Proof. Let x∗ = argminy∈C

{
λg(x, y) + Df (y, x)

}
, then from Lemma 5.1.14 and 5.1.15,

we have
0 ∈ ∂λg(x, x∗) +∇Df (x

∗, x) +NC(x∗).

Hence, there exist w ∈ ∂g(x, x∗) and w̄ ∈ NC(x∗) such that

λw +∇f(x∗)−∇f(x) + w̄ = 0. (5.1.29)

Since w̄ ∈ NC(x∗), then 〈w̄, z − x∗〉 ≤ 0 for all z ∈ C. This together with (5.1.29) implies
that

〈λw +∇f(x∗)−∇f(x), z − x∗〉 ≥ 0 ∀ z ∈ C,
and hence

λ〈w, z − x∗〉 ≥ 〈∇f(x∗)−∇f(x), x∗ − z〉 ∀ z ∈ C. (5.1.30)

Also, since w ∈ ∂g(x, x∗), then

g(x, z)− g(x, x∗) ≥ 〈w, z − x∗〉 ∀ z ∈ C. (5.1.31)

Therefore from (5.1.30) and (5.1.31), we obtain

λ
(
g(x, z)− g(x, x∗)

)
≥ 〈∇f(x∗)−∇f(x), x∗ − z〉 ∀ z ∈ C. (5.1.32)

Replacing x with x∗ in (5.1.32) yields

g(x∗, z) ≥ 0, ∀z ∈ C. (5.1.33)

Hence, x∗ ∈ EP (C, g). The converse follows clearly.

Proposition 5.1.17. Let C be a nonempty closed convex subset of a real reflexive Banach
space E and f : E → R be a Legendre and totally coercive function. Let A : C → E∗ be a
nonlinear mapping such that x ∈ ΩV IP . Then x is the unique solution of the minimization
problem

min

{
λ〈Au, y − u〉+Df (y, u) : y ∈ C

}
,

where u ∈ C and λ > 0.
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Proof. Since x ∈ ΩV IP , then x = ProjfC(∇f ∗(∇f(x)−λAx)). By the definition of Bregman
projection, we have

ProjfC(∇f ∗(∇f(x)− λAx)) = min{Df

(
y,∇f ∗(∇f(x)− λAx)

)
: y ∈ C}

= min{f(y)− f(∇f ∗(∇f(x)− λAx))

−〈y −∇f ∗(∇f(x)− λAx),∇f(x)− λAx〉 : y ∈ C}.
Using the four point identity (Proposition 2.5.1(iii)), we get

ProjfC(∇f ∗(∇f(x)− λAx))

= min{f(y)− f(∇f ∗(∇f(x)− λAx))−Df (y,∇f ∗(λAx))−Df (∇f ∗(∇f(x)− λAx), x)

+Df (y, x) +Df (∇f ∗(∇f(x)− λAx),∇f ∗(λAx)) : y ∈ C}
= min{f(y)− f(∇f ∗(∇f(x)− λAx))− f(y) + f(∇f ∗(λAx)) + 〈y −∇f ∗(λAx), λAx〉
−Df (∇f ∗(∇f(x)− λAx), x) +Df (y, x) +Df (∇f ∗(∇f(x)− λAx),∇f ∗(λAx)) : y ∈ C}
= min{λ〈Ax, y − x〉+ λ〈Ax, x−∇f ∗(λAx)〉 − f(∇f ∗(∇f(x)− λAx)) + f(∇f ∗(λAx))

−Df (∇f ∗(∇f(x)− λAx, x)) +Df (y, x) +Df (∇f ∗(∇f(x)− λAx),∇f ∗(λAx)) : y ∈ C}
= min{λ〈Ax, y − x〉+Df (y, x) : y ∈ C}. (5.1.34)

Therefore
x∗ = argminy∈C{λ〈Ax, y − x〉+Df (y, x)}.

Recall that a mapping A : C → E∗ is pseudo-monotone if and only if the bifunction
g(x, y) = 〈Ax, y − x〉 is pseudo-monotone on C. Then, setting 〈Ax, y − x〉 = g(x, y) in
Theorem 5.1.8, by Proposition 5.1.16 and 5.1.17, we have the following result for approx-
imating solution of pseudo-monotone equilibrium problem.

Theorem 5.1.18. Let E be a real reflexive Banach space and let C be a nonempty, closed
and convex subset of E. Let f : E → R be a coercive, Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that
C ⊂ int(domf). Let g : C×C → R be a pseudo-monotone bifunction such that g(x, x) = 0
for all x ∈ C and satisfying Assumption 5.1.13. Let T : C → C be a Bregman quasi-
nonexpansive mapping with F̂ (T ) = F (T ) such that Γ := ΩEP (g) ∩ F (T ) 6= ∅. Let {αn}
and {βn} be nonnegative sequences in (0, 1) and such that conditions (C1) and (C2) are
satisfied. Let {xn} be generated by the following algorithm:

Algorithm 5.1.19.
Step 0: Select the initial points x1, u ∈ E, let γ, σ ∈ (0, 1) and s > 0. Choose λn ∈ [a, b]
such that 0 < a ≤ b and set n = 1.
Step 1: Compute

zn = argmin

{
λng(xn, y) +Df (y, xn) : y ∈ C

}
.

Step 2: If xn = zn and xn = Txn: STOP. Otherwise, let yn(t) := (1 − t)xn + tzn for
t ∈ R. Compute tn as the maximum of the numbers s, sγ, sγ2, . . . such that

g(yn(tn), xn − zn) ≥ σDf (zn, xn)

λn
,
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and define yn = yn(tn).
Step 3: Set wn = ∇f(xn) − λnyn. Compute un = ProjfQn(wn) where Qn := {x ∈ E :
〈w̄n, x− wn〉 = 0}, w̄n ∈ ∂g(wn, x− wn). Then compute{

vn = ProjfC(un),

xn+1 = ∇f ∗
(
αn∇f(u) + (1− αn)(βn∇f(vn) + (1− βn)∇f(Tvn))

)
.

(5.1.35)

Set n← n+ 1 and go to Step 1.

Then, the sequence {xn} converges strongly to a point x̄ = ProjfΓ(u), where ProjfΓ is
the Bregman projection from C onto Γ.

5.1.3 Numerical examples

In this subsection, we present two numerical examples which demonstrate the performance
of our Algorithm 5.1.1.

Example 5.1.20. Let E = Rn with standard topology and T : Rn → Rn be defined
by Tx = −1

2
x. Consider an operator A : Rm → Rm (m = 20, 50, 100, 200) define by

Ax = Mx+ q where
M = NNT + S +D,

N is a m × m matrix, S is a m × m skew-symmetric matrix, D is a m × m diagonal
matrix, whose diagonal entries are nonnegative so that M is positive definite and q is
a vector in Rm. The feasible set C ⊂ Rm is closed and convex (polyhedron) which is
defined as C = {x = (x1, x2, . . . , xm) ∈ Rm : Qx ≤ b}, where Q is a l ×m matrix and b
is a nonnegative vector. It is clear that A is monotone (hence, pseudo-monotone) and L-
Lipschitz continuous with L = ||M ||. For experimental purpose, all the entries of N,S,D
and b are generated randomly as well as the starting point x1 ∈ [0, 1]m and q is equal to
the zero vector. In this case, the solution to the corresponding variational inequality is {0}
and thus, Γ := ΩV IP ∩ F (T ) = {0}. We fix the stopping criterion as |xn+1−xn|

|x2−x1| = ε < 10−5,

σ = 0.7, γ = 0.9, s = 10, λn = 0.15 and let αn = 1
n+1

and βn = 1
4
. The projection onto

the feasible set C is carry-out by using the MATLAB solver ’fmincon’ and the projection
onto an hyperplane Q = {x ∈ Rm : 〈a, x〉 = 0} is defined by

PQ(x) = x− 〈a, x〉||a||2 a.

Since A is monotone, we compare the output of our Algorithm 5.1.1 with Algorithm 1.2.1.
The numerical result is reported in Figure 5.1 and Table 5.1. We see that our Algorithm
5.1.1 converges faster than Algorithm 1.2.1. This is expected because the stepsize rule in
STEP 2 of our algorithm tends to determine a larger stepsize closer to the solution of the
problem.

Next, we give an example of a pseudo-monotone VIP which is not a monotone VIP.
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Example 5.1.21. Let E = L2([0, 1]) and C = {u ∈ E : ||u|| ≤ 2}. Let B : C → R be an
operator defined by B(u) = 1

1+||u||2 and F : L2([0, 1])→ L2([0, 1]) be the Volterra integral

operator defined by F (u)(t) =
∫ t

0
u(s)ds for all u ∈ L2([0, 1]) and t ∈ [0, 1]. F is bounded,

linear and monotone (cf. Exercise 20.12 in [23]). Now define A : C → L2([0, 1]) by
A(u)(t) = (B(u)F (u))(t). Suppose 〈Au, v − u〉 ≥ 0 for all u, v ∈ C, then 〈Fu, v − u〉 ≥ 0.
Hence

〈Av, v − u〉 = 〈BvFv, v − u〉
= Bv〈Fv, v − u〉
≥ Bv(〈Fv, v − u〉 − 〈Fu, v − u〉)
= Bv〈Fv − Fu, v − u〉 ≥ 0. (5.1.36)

Thus, A is pseudo-monotone. To see that that A is not monotone, choose v = 1 and u = 2,
then

〈Av − Au, v − u〉 = − 1

10
< 0.

Now consider the VIP in which the underlying operator A is as defined above. Let T :
L2([0, 1])→ L2([0, 1]) be define by T (x)(t) =

∫ 1

0
x(t)dt, it is easy to verify that T is quasi-

nonexpansive and Γ := ΩV IP ∩ F (T ) = {0}. Choosing σ = 0.5, γ = 0.7, s = 5, λ = 0.34
and ε < 10−4. We plot the graph of ||xn+1−xn|| against number of iteration for Algorithm
5.1.1 using the following initial points:
Case I: x1 = t+ 0.5 ∗ cos(t), u = cos(5t),
Case II: x1 = 2t exp(−t), u = 1/ exp(t2 − 1),
Case III: x1 = 1

6
sin(−3t) + cos(t), u = cos(−2t),

Case IV: x1 = exp(−4t) + cos(12t), u = sin(5t).

The numerical result is reported in Figure 5.2. This shows that the change in the ini-
tial points does not have significant effect on the number of iteration nor CPU time for
Algorithm 5.1.1.

Finally, we give a concrete example in `p space (1 ≤ p < ∞ with p 6= 2) which is not a
Hilbert space. It is well known that the dual space (`p)

∗ is isomorphic to `q provided that
1
q

+ 1
p

= 1 (see for instance [43], Lemma 2.2, Page 11). Also, the `p space is a reflexive

Banach space and in this case, we take f(x) = 1
p
||x||p.

Example 5.1.22. Let E = `3(R) define by

`3(R) := {x̄ = (x1, x2, x3, . . . ), xi ∈ R :
∞∑
i=1

|xi|3 <∞},

with norm || · ||`3 : `3 → [0,∞) defined by

||x̄||`3 =

(
∞∑
i=1

|xi|3
) 1

3

,

for arbitrary x̄ = (x1, x2, x3, . . . ) in `3.
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Figure 5.1: Example 5.1.20, m = 20; m = 50; m = 100; m = 200.

Let C := {x ∈ E : ||x||`3 ≤ 1} and define the mapping A : C → (`3)∗ by

Ax = 2x+ (1, 1, 1, 0, 0, 0, . . . ),

with (x1, x2, x3, . . . ) ∈ `3(R). It is easy to show that A is monotone (hence, pseudo mono-
tone). Take Tx = x

2
, αn = 1

100n+1
, βn = 3n+5

7n+8
, σ = 0.14, γ = 0.4, s = 3, λ = 0.78. The

projections onto the feasibility set is carried out using optimization tool box in MATLAB.
We carried out two numerical tests for approximating the common solution of the VIP
and FPP using Algorithm 5.1.1. The initial value of x1 and fixed u used are

Case I: x1 = (0.3241, 0.5387,−0.1256, 0, 0, 0, . . . ) and u = (−0.0988, 0.2679, 0.2890, 0, 0, 0, . . . )

Case II: x1 = (−4.5289,−1.2345, 5.2238, 0, 0, 0 . . . ) and u = (1.3268,−5.3420, 3.2890, 0, 0, 0, . . . ),

with stopping criterion
||xn+1−xn||`3
||x2−x1||`3

< 10−7 in each case. The computational results obtain

for these tests can be seen in Table 5.2 and Table 5.3.

Remark 5.1.23. The numerical experiments showed that the performance of the algorithm
is essentially independent of the value of x1 used in the computation.

Table 5.1: Comparison between Algorithm 5.1.1 and Algorithm 1.2.1 for Example 5.1.20.

Algorithm 5.1.1 Algorithm 1.2.1

m = 20 CPU time (sec) 0.0065 0.0105
No. of Iter. 23 38

m = 50 CPU time (sec) 0.0118 0.0178
No. of Iter. 24 39

m = 100 CPU time (sec) 0.0189 0.0263
No. of Iter. 25 40

m = 200 CPU time (sec) 0.0160 0.0306
No. of Iter. 25 42
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Table 5.2: Computation result for Example 5.1.22, Case I; Time: 0.1336sec.

Iter. xn+1 ||xn+1 − xn||l3
1 (0.3241, 0.5387,−0.1256, 0, 0, 0, . . . )
2 (0.4549, 1.0860,−0.4436, 0, 0, 0, . . . ) 0.5831
3 (0.6304, 2.1364,−1.6952, 0, 0, 0, . . . ) 1.4617
4 (0.3343, 1.3639,−2.1382, 0, 0, 0, . . . ) 0.1507
5 (0.4774, 1.2958,−2.1483, 0, 0, 0, . . . ) 0.1481
10 (0.8247, 1.2461,−2.1254, 0, 0, 0, . . . ) 0.0335
20 (0.9056, 1.2781,−2.1054, 0, 0, 0, . . . ) 0.0015
30 (0.9101, 1.2793,−2.1043, 0, 0, 0, . . . ) 0.0001
40 (0.9104, 1.2794,−2.1042, 0, 0, 0, . . . ) 9.6527 e−6

50 (0.9105, 1.2794,−2.1042, 0, 0, 0, . . . ) 8.1868 e−7

59 (0.9105, 1.2794,−2.1042, 0, 0, 0, . . . ) 8.8898 e−8
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Figure 5.2: Example 5.1.21, Case I (CPU time: 1.4539sec); Case II (CPU time: 2.9472sec);
Case III (CPU time: 2.7043sec); Case IV (CPU time: 2.9142sec).
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Table 5.3: Computation result for Example 5.1.22, Case 2; Time: 0.2182sec.

Iter. xn+1 ||xn+1 − xn||l3
1 (−4.5289,−1.2345, 5.2238, 0, 0, 0 . . . )
2 (2.1415,−5.7883, 3.9968, 0, 0, 0, . . . ) 5.3096
3 (2.8089,−5.6600, 3.4229, 0, 0, 0, . . . ) 2.0383
4 (2.9175,−5.6352, 3.0466, 0, 0, 0, . . . ) 0.7875
5 (2.9970,−5.5380, 3.0342, 0, 0, 0, . . . ) 0.3794
10 (2.9923,−5.5568, 2.9463, 0, 0, 0, . . . ) 0.0333
20 (2.9978,−5.5481, 2.9573, 0, 0, 0, . . . ) 0.0045
30 (2.9985,−5.5470, 2.9588, 0, 0, 0, . . . ) 0.0006
40 (2.9986,−5.5468, 2.9590, 0, 0, 0, . . . ) 0.0001
50 (2.9986,−5.5470, 2.9573, 0, 0, 0, . . . ) 1.1574 e−5

60 (2.9986,−5.5470, 2.9573, 0, 0, 0, . . . ) 1.5821 e−5

70 (2.9986,−5.5470, 2.9573, 0, 0, 0, . . . ) 2.1626 e−7

74 (2.9986,−5.5470, 2.9573, 0, 0, 0, . . . ) 9.7559 e−8

5.2 A Totally Relaxed, Self-Adaptive Subgradient Ex-

tragradient Method for Variational Inequality and

Fixed Point Problems in a Banach Space

Recently, Chidume and Nnakwe [80] extends the subgradient extragradient method (3.2.1)
to a 2-uniformly convex and uniformly smooth Banach space E. This extension was
presented as follow:

x0 ∈ E, β > 0,

yk = ΠCJ
−1(Jxk − βAxk),

Qk = {x ∈ E : 〈x− yk, Jxk − βAxk − Jyk〉 ≤ 0},
xk+1 = ΠQkJ

−1(Jxk − βAyk), ∀ k ≥ 0,

(5.2.1)

where ΠC is the generalized projection from E onto C and J is the normalized duality
mapping from E to 2E

∗
. They proved the weak convergence of algorithm (5.2.1) to a solu-

tion of VIP (1.1.8). In order to obtain strong convergence of the subgradient extragradient
method in Banach space, Ying Liu [164] combined the Halpern method [117] with (5.2.1)
and introduced the following scheme:

yk = ΠCJ
−1(Jxk − βkAxk),

Qk = {w ∈ E : 〈w − yk, Jxk − βkAxk − Jyk〉 ≤ 0},
wk = ΠQkJ

−1(Jxk − βkAyk),
xk+1 = J−1(αkJx0 + (1− αk)Jwk), k ≥ 0,

(5.2.2)

where {αk} ⊂ [0, 1] satisfying lim
k→∞

αk = 0 and
∞∑
k=1

αk =∞, and {βk} ⊂ (0,∞).

162



However, we note the following problems:

P1. Although, the subgradient extragradient algorithms (5.2.1), (5.2.2) improved the
extragradient method (1.1.2), but they still preserved some of the weakness of the
extragradient method since there is need to calculate one projection onto C, that is
yk, per each iteration;

P2. The stepsize β, βk of the subgradient extragradient algorithms (5.2.1) and (5.2.2)
respectively require the condition

β, βk ∈
(

0,
c1

L

)
, (5.2.3)

to be satisfied, which require at least a prior estimate of the Lipschitz constant L,
where c1 is the 2-uniformly convexity constant of E. In practice, it is too difficult to
approximate the Lipschitz constant L.

As an attempt to solve Problem P1, He and Wu [123] introduced the Relaxed Subgradient
Extragradient Method (RSEM) in a Hilbert space. This RSEM is presented as follows:
Suppose C has the form C := {x ∈ H : c(x) ≤ 0} where c : H → R is an approximate
convex and lower semicontinuous function. Choose an arbitrary starting point x0 ∈ H,
given the current iterate xk, calculate the next iteration xk+1 via

yk = PCk(xk − βkAxk),
xk+1 = PQk(xk − βkAyk), (5.2.4)

where Ck and Qk are given by

Ck = {w ∈ H : c(xk) + 〈∇c(xk), w − xk〉 ≤ 0},
ak = xk − βkAxk − yk,

Qk =

{
{w ∈ H : 〈ak, w − yk〉 ≤ 0}, if ak 6= 0,

H, ifak = 0.
(5.2.5)

Motivated by the work of He and Wu [123] and the fact that in real-world application in
which the feasible set of the VIP (1.1.8) might has a compex structure, He et al. [124]
modified the RSEM (5.2.4) and introduced a Totally Relaxed and Self adaptive Subgradient
Extragradient Method (TRSSEM) for solving the VIP (1.1.8) in a Hilbert space. Let
Ci := {x ∈ H : hi(x) ≤ 0}, where hi : H → R for all i ∈ I = {1, 2, . . . ,m} are convex
functions. In the TRSSEM, the feasible set is defined as

C :=
m⋂
i=1

Ci.

Motivated by the TRSSEM of He et al. [124], Chidume and Nnakwe [80] and Ying Liu
[164], in this section, we propose a new TRSSEM with Halpern iteration for approximating
a common solution of VIP (1.1.8) and fixed point of quasi-nonexpansive mapping in a
2-uniformly convex and uniformly smooth Banach space. Comparing with the existing
subgradient extragradient algorithms for solving VIP (1.1.1) in Banach space, the following
are the advantages of the algorithm presented in this section:
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(a) the simplicity of calculating the projection onto C and Qk make our algorithm at-
tractive for computation;

(b) the introduction of an Armijo line search rule which makes the stepsize not to depend
on the Lipschitz constant makes our algorithm simple and easy for computation;

(c) the strong convergence guaranteed by our algorithm makes it a good candidate
scheme for finding common solution of VIP (1.1.1) and fixed point of quasi-nonexpansive
mapping.

5.2.1 Main results

In this subsection, we give a precise statement of our algorithm and discuss its strong
convergence.

Let E be a 2-uniformly convex and uniformly smooth Banach space and C be a nonempty,
closed convex subset of E. For i = 1, 2, . . . ,m, let hi : E → R be family of convex, weakly
lower semicontinuous and Gâteaux differentiable functions. LetA : C → E∗ be a monotone
operator which is uniformly continuous on bounded subsets of C and S : C → C be a
quasi-nonexpansive mapping such that Sol := ΩV IP ∩ F (S) is nonempty. Let {αk} and
{νk} be nonnegative real sequences in (0, 1) and I = {1, 2, . . . ,m}.

Algorithm 5.2.1.

Step 1: (Initialization) Pick x1 ∈ E, η, ρ ∈ (0, 1) and set k = 1.

Step 2: Given the current iterate xk, construct the family of half-spaces

Ci
k := {w ∈ E : hi(xk) + 〈h′i(xk), w − xk〉 ≤ 0}, i = 1, 2, ..,m, (5.2.6)

and set

Ck :=
m⋂
i=1

Ci
k, (5.2.7)

then compute
yk = ΠCkJ

−1(Jxk − βkA(xk)), (5.2.8)

where
βk = ρlk , (5.2.9)

and lk is the smallest nonnegative integer such that

βk||A(xk)− A(yk)|| ≤ η||xk − yk||. (5.2.10)

Step 3: If xk = yk (i.e., xk ∈ ΩV IP ), then set xk = wk and go to Stop 4. Otherwise, compute
the next iterate by

wk = ΠQkJ
−1(Jxk − βkA(yk)), (5.2.11)

where
Qk = {w ∈ E : 〈w − yk, Jxk − βkA(xk)− Jyk〉 ≤ 0}. (5.2.12)
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Step 4: Compute

xk+1 = J−1(αkJx1 + (1− αk)((1− νk)Jwk + νkJSwk)). (5.2.13)

Set k := k + 1 and go to Step 2.

Assumption 5.2.2. For the convergence of Algorithm 5.2.1, we make the following as-
sumption.

(C1) The feasible set C is defined by

C :=
m⋂
i=1

Ci, (5.2.14)

where Ci := {x ∈ E : hi(x) ≤ 0};

(C2) lim
k→∞

αk = 0 and
∞∑
k=1

αi =∞;

(C3) 0 < lim inf
k→∞

νk ≤ lim sup
k→∞

νk < 1.

Remark 5.2.3. From (5.2.7) and (5.2.14), it is easy to see that C ⊂ Ck. Indeed, for each
i ∈ I and x ∈ Ci, we have by the subdifferential inequality that

hi(xk) + 〈h′i(xk), x− xk〉 ≤ hi(x) ≤ 0.

By the definition of Ci
k in (5.2.6), we have that x ∈ Ci

k. Hence Ci ⊂ Ci
k for all i ∈ I and

therefore C ⊂ Ck for all k ≥ 1.

Lemma 5.2.4. If xk = yk for some k ≥ 0 in Algorithm 5.2.1 happened, then xk ∈ ΩV IP .

Proof. If xk = yk, then xk = ΠCkJ
−1(Jxk − βkAxk). We first show that xk ∈ Ck, that is,

xk ∈ Ci
k for each i ∈ I. By the definitions of Ci

k, we have hi(xk) + 〈h′i(xk), xk − xk〉 ≤ 0.
So hi(xk) ≤ 0 for each i ∈ I. This means that xk ∈ C.

By the variational characterization of the generalized projection ΠC onto C, we have

〈xk − w, Jxk − βkAxk − Jxk〉 ≥ 0, ∀ w ∈ C.

This implies that
βk〈Axk, w − xk〉 ≥ 0, ∀ w ∈ C.

Since βk > 0, we have xk ∈ ΩV IP .

Remark 5.2.5. Note that if xk = yk and xk = Sxk, we are at a common solution of the VIP
(1.1.1) and fixed point of S. In our convergence analysis, we will implicitly assume that
this does not occur after finitely many iterations so that our Algorithm 5.2.1 generates an
infinite sequence satisfying, in particular, xk − yk 6= 0 and xk − Sxk 6= 0 for all k ∈ N.

We will see in the following result that the Armijo line search rule define in (5.2.10) is well
defined.
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Lemma 5.2.6. There exists a nonnegative integer lk satisfying (5.2.10).

Proof. Let rβk(xk) := xk−ΠCkJ
−1(Jxk−βkAxk) and suppose rk0(xk) = 0 for some k0 ≥ 1.

Take lk = k0 which satisfies (5.2.10). Suppose rρk1 (xk) 6= 0 for some k1 ≥ 1 and assume
the contrary, that is,

ρl||Axk − A(ΠCkJ
−1(Jxk − ρlAxk))|| > η||xk − ΠCkJ

−1(Jxk − ρlAxk)||.

Then by Lemma 2.6.11 and the fact that ρ ∈ (0, 1), we obtain

||Axk − A(ΠCkJ
−1(Jxk − ρlAxk))|| >

η

ρl
||rρl(xk)||

≥ η

ρl
min{1, ρl}||r1(xk)||

= η||r1(xk)||. (5.2.15)

Using the fact that J and ΠCk are continuous, we have

ΠCkJ
−1(Jxk − ρlAxk)→ ΠCkxk, l →∞.

We now consider two cases; namely, when xk ∈ C and when xk /∈ C.

(i) If xk ∈ C, then xk ∈ Ck and so xk = ΠCkxk. Now, since rρk1 6= 0 and ρk1 ≤ 1, it
follows from Lemma 2.6.11 that

0 < ||rρk1 (xk)|| ≤ max{1, ρk1}||r1(xk)||
= ||r1(xk)||.

Letting l→∞ in (5.2.15), we have that

0 = ||Axk − Axk|| ≥ η||r1(xk)|| > 0.

This is a contradiction and so, (5.2.10) is valid.

(ii) xk /∈ C, then
ρl||Axk − yk|| → 0, l→∞,

while

lim
l→∞

η||rρl(xk)|| = lim
l→∞

η||xk − ΠCJ
−1(Jxk − ρlAxk)|| = η||xk − ΠCk(xk)|| > 0.

This is a contradiction. Therefore, the stepsize rule in (5.2.10) is well defined.

Remark 5.2.7. We note that if A is L-Lipschitz continuous on E, then supk≥1 lk < ∞.
Indeed, for all x, y ∈ E, we have that ρl||Ax − Ay|| ≤ ρlL||x − y|| and it suffices to take
l such that ρl ≤ η

L
. This does not depend on x and y. Also, note that supk≥1 lk < ∞

implies that infk≥1 βk > 0. This is important for our convergence analysis.
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We proceed to prove the following lemmas before proving the convergence of our main
Algorithm 5.2.1.

Lemma 5.2.8. The sequence {xk} generated by Algorithm 5.2.1 is bounded.

Proof. Let x∗ ∈ Sol, then we have from Lemma 2.5.25(a) that

φ(x∗, wk) = φ(x∗,ΠQkJ
−1(Jxk − βkAyk))

≤ φ(x∗, J−1(Jxk − βkAyk))− φ(wk, J
−1(Jxk − βkAyk))

= ||x∗||2 − 2〈x∗, Jxk − βkAyk〉 − ||wk||2 + 2〈wk, Jxk − βkAyk〉
= φ(x∗, xk)− φ(wk, xk) + 2βk〈x∗ − wk, Ayk〉
= φ(x∗, xk)− φ(wk, xk) + 2βk[〈x∗ − yk, Ayk − Ax∗〉+

〈x∗ − yk, Ax∗〉+ 〈yk − wk, Ayk〉]
≤ φ(x∗, xk)− φ(wk, xk) + 2βk[〈x∗ − yk, Ax∗〉+ 〈yk − wk, Ayk〉]
= φ(x∗, xk)− φ(wk, xk)− φ(yk, xk) + 2〈wk − yk, Jxk − Jyk〉 (5.2.16)

+2βk[〈x∗ − yk, Ax∗〉+ 〈yk − wk, Ayk〉]
= φ(x∗, xk)− φ(wk, yk)− φ(yk, xk)

+2〈wk − yk, Jxk − βkAyk − Jyk〉, (5.2.17)

where the inequality in (5.2.16) follows from property D2 of Proposition 2.5.3. By the
definition of Qk and Cauchy-Schwartz inequality, we have

2〈wk − yk, Jxk − βkAyk − Jyk〉 = 2〈wk − yk, Jxk − βkAxk − Jyk〉+

2βk〈wk − yk, Axk − Ayk〉
≤ 2βk||wk − yk||||Axk − Ayk||. (5.2.18)

Using (5.2.10) and Lemma 2.5.24 in (5.2.18), we have

2〈wk − yk, Jxk − βkAyk − Jyk〉 ≤ 2η||wk − yk||||yk − xk||

≤ 2η

√
φ(wk, yk)

c1

√
φ(yk, xk)

c1

≤ η

c1

(φ(wk, yk) + φ(yk, xk)). (5.2.19)

Therefore from (5.2.17) and (5.2.19), we have

φ(x∗, wk) ≤ φ(x∗, xk)−
(

1− η

c1

)
(φ(wk, yk) + φ(yk, xk)). (5.2.20)

From (5.2.13) and using property D3 of Proposition 2.5.3, we have

φ(x∗, xn+1) = φ(x∗, J−1(αkJx1 + (1− αk)((1− νk)Jwk + νkJSwk)))

= φ(x∗, J−1(αkJx1 + (1− αk)(1− νk)Jwk + (1− αk)νkJSwk))
≤ αkφ(x∗, x1) + (1− αk)(1− νk)φ(x∗, wk) + (1− αk)νkφ(x∗, Swk)

≤ αkφ(x∗, x1) + (1− αk)φ(x∗, wk). (5.2.21)
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It follows from (5.2.20) and (5.2.21) that

φ(x∗, xn+1) ≤ αkφ(x∗, x1) + (1− αk)φ(x∗, xk)

≤ max{φ(x∗, x1), φ(x∗, xk)}
...

≤ max{φ(x∗, x1), φ(x∗, x1)} = φ(x∗, x1). (5.2.22)

This implies that {φ(x∗, xk)} is bounded. Therefore {xk} is bounded. Consequently, since
A is uniformly continuous on bounded subsets of C, then {Awk} is bounded and by the
nonexpansiveness of the projection operator and mapping S, the sequence {yk}, {wk} and
{Swk} are bounded.

Note that within the proofs of our subsequent results, we define some auxiliary sequences
whose boundedness is stated without explicit proof, but that the corresponding proofs are
more or less the same as the proof given in Lemma 5.2.8

Lemma 5.2.9. Let {xk} and {yk} be two sequences generated by Algorithm 5.2.1 and
suppose that ||xk − yk|| → 0, k →∞. Let p ∈ C denotes the weak limit of the subsequence
{xkj} of the sequence {xk} for j ∈ N. Then p ∈ ΩV IP .

Proof. For all x ∈ C, using Lemma 2.5.5(b) and by the monotonicity of A, we have

0 ≤ 〈x− ykj , Jykj − Jxkj + βkjAxkj〉
= 〈x− ykj , Jykj − Jxkj〉+ βkj〈x− xkj , Axkj〉+ βkj〈xkj − ykj , Axkj〉
≤ 〈x− xkj , Jykj − Jxkj〉+ βkj〈x− xkj , Axkj〉+ βkj〈xkj − ykj , Axkj〉. (5.2.23)

Passing limit to the inequality in (5.2.23), we have

〈Ap, x− p〉 ≥ 0, ∀ x ∈ C. (5.2.24)

Therefore p ∈ ΩV IP .

Lemma 5.2.10. The sequence {xk} generated by Algorithm 5.2.1 satisfies the following
estimates:

(i) tk+1 ≤ (1− αk)tk + αkbk,

(ii) −1 ≤ lim supk→∞ bk < +∞,

where tk = φ(x∗, xk), bk = 〈Jx1 − Jx∗, xk+1 − x∗〉 and x∗ = ΠSolx1.
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Proof. Let zk = J−1((1− νk)Jwk + νkJSwk), then from Lemma 2.5.6, we have

φ(x∗, xn+1) = φ(x∗, αkJx1 + (1− αk)Jzk)
≤ V (x∗, αkJx1 + (1− αk)Jzk − αk(Jx1 − Jx∗))
−2〈−αk(Jx1 − Jx∗), J−1(αkJx1 + (1− αk)Jzk)− x∗〉

= V (x∗, αkJx
∗ + (1− αk)Jzk) + 2αk〈Jx1 − Jx∗, xk+1 − x∗〉

≤ αkφ(x∗, x∗) + (1− αk)φ(x∗, zk) + 2αk〈Jx1 − Jx∗, xk+1 − x∗〉
= (1− αk)φ(x∗, zk) + 2αk〈Jx1 − Jx∗, xk+1 − x∗〉
≤ (1− αk)(1− νk)φ(x∗, wk) + (1− αk)νkφ(x∗, Swk)

+2αk〈Jx1 − Jx∗, xk+1 − x∗〉
≤ (1− αk)φ(x∗, wk) + 2αk〈Jx1 − Jx∗, xk+1 − x∗〉
≤ (1− αk)φ(x∗, xk) + 2αk〈Jx1 − Jx∗, xk+1 − x∗〉.

This established (i). Next we prove (ii). Since {xk} is bounded, then we have

sup
k≥0

bk ≤ sup 2||Jx1 − Jx∗||||xk+1 − x∗|| <∞.

This implies that lim supk→∞ bk < ∞. Next, we show that lim supk→∞ bk ≥ −1. Assume
the contrary, i.e., lim supk→∞ bk < −1. Then there exists k0 ∈ N such that bk < −1, for
all k ≥ k0. Then for all k ≥ k0, we get from (i) that

tk+1 ≤ (1− αk)tk + αkbk

< (1− αk)tk − αk
= tk − αk(tk + 1) ≤ tk − αk.

Taking lim sup of both sides of the last inequality, we have

lim sup
k→∞

tk ≤ tk0 − lim
k→∞

k∑
i=k0

αi = −∞.

This contradicts the fact that {tk} is a nonnegative real sequence. Therefore lim supk→∞ bk ≥
−1.

We now presents our main theorem.

Theorem 5.2.11. Let C be a nonempty, closed convex subset of a 2-uniformly convex and
uniformly smooth real Banach space E and hi : E → R be family of convex, weakly lower
semicontinuous and Gâteaux differentiable functions, i = 1, 2, . . . ,m. Let A : C → E∗ be
a monotone operator which is uniformly continuous on bounded subsets of C, S : C → C
be a quasi-nonexpansive mapping and let {αk} and {νk} be nonnegative real sequences in
(0, 1). Suppose Sol = ΩV IP ∩ F (S) is nonempty and Assumption 5.2.2 is satisfied, then
the sequence {xk} generated by Algorithm 5.2.1 converges strongly to a unique solution
p = ΠSolx1.
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Proof. Let x∗ ∈ Sol, we divide the proof into two cases.

Case I: Suppose that there exists k0 ∈ N such that {φ(x∗, xk)} is non-increasing. Since
{φ(x∗, xk)} is bounded, then it is convergent and so

φ(x∗, xk)− φ(x∗, xk+1)→ 0, n→∞. (5.2.25)

Since zk = J−1((1− νk)Jwk + vkJSwk), then we have from Lemma 2.6.8 that

φ(x∗, zk) = φ(x∗, J−1((1− νk)Jwk + νkJSwk))

= V (x∗, (1− νk)Jwk + νkJSwk)

= ||x∗||2 − 2〈x∗, (1− νk)Jwk + νkJSwk〉+ ||(1− νk)Jwk + νkJSwk||2
≤ ||x∗||2 − 2(1− νk)〈x∗, Jwk〉 − 2νk〈x∗, JSwk〉+ (1− νk)||Jwk||2

+νk||JSwk||2 − g(||Jwk − JSwk||)
= (1− νk)φ(x∗, wk) + νkφ(x∗, Swk)− νk(1− νk)g(||Jwk − JSwk||)
≤ φ(x∗, wk)− νk(1− νk)g(||Jwk − JSwk||). (5.2.26)

Therefore from (5.2.13), (5.2.20) and (5.2.26), we have

φ(x∗, xk+1) = φ(x∗, J−1(αkJx1 + (1− αk)Jzk))
≤ αkφ(x∗, x1) + (1− αk)φ(x∗, zk)

≤ αkφ(x∗, x1) + (1− αk)φ(x∗, wk)− (1− αk)νk(1− νk)g(||Jwk − JSwk||)
≤ αkφ(x∗, x1) + (1− αk)φ(x∗, xk)− (1− αk)νk(1− νk)g(||Jwk − JSwk||).

Hence

(1− αk)νk(1− νk)g(||Jwk − JSwk||) ≤ αkφ(x∗, x1) + (1− αk)φ(x∗, xk)− φ(x∗, xk+1).

Using the fact that αk → 0 and (5.2.25), we have

νk(1− νk)g(||Jwk − JSwk||)→ 0, n→∞.

Therefore by condition (C3) and the property of g, we get

lim
k→∞
||Jwk − JSwk|| = 0. (5.2.27)

Since J−1 is norm-to-norm continuous on bounded subsets of E, then

lim
k→∞
||wk − Swk|| = 0. (5.2.28)

Furthermore from (5.2.20), we have

φ(x∗, wk) ≤ φ(x∗, xk)−
(

1− η

c1

)
(φ(wk, yk) + φ(yk, xk)),

therefore, it follows from (5.2.26) that

φ(x∗, xk+1) ≤ αkφ(x∗, x1) + (1− αk)φ(x∗, zk)

≤ αkφ(x∗, x1) + (1− αk)φ(x∗, xk)− (1− αk)
(

1− η

c1

)
(φ(wk, yk) + φ(yk, xk)).
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This implies that

(1− αk)
(

1− η

c1

)
(φ(wk, yk) + φ(yk, xk)) ≤ αkφ(x∗, x1) + (1− αk)φ(x∗, xk)− φ(x∗, xk+1).

Similarly, since αk → 0 and from (5.2.25), we have

φ(wk, yk) + φ(yk, xk)→ 0, n→∞,

which means that

lim
k→∞

φ(wk, yk) = lim
k→∞

φ(yk, xk) = 0. (5.2.29)

Since {xk}, {yk} and {wk} are bounded, then it follows from Lemma 2.6.7 that

lim
k→∞
||wk − yk|| = lim

k→∞
||yk − xk|| = 0. (5.2.30)

Also, it is easy to see from (5.2.28) that

φ(wk, zk) = φ(wk, J
−1((1− νk)Jwk + νkJSwk))→ 0, n→∞.

Hence, by Lemma 2.6.7 we have

lim
k→∞
||wk − zk|| = 0. (5.2.31)

Furthermore

||Jxk+1 − Jzk|| = αk||Jx1 − Jzk|| → 0, n→∞.

Since J−1 is norm-to-norm uniformly continuous on bounded subsets of E, we have

||xk+1 − zk|| → 0, n→∞.

Therefore

||xk+1 − xk|| ≤ ||xk+1 − zk||+ ||zk − wk||+ ||wk − xk|| → 0, n→∞. (5.2.32)

Now let Ωw(xk) denotes the set of all weak cluster point of {xk}, since ||xk − yk|| → 0 as
k →∞, it follows from Lemma 5.2.13 that Ωw(xk) ⊂ ΩV IP . Also, since ||wk − Swk|| → 0
and ||wk − xk|| → 0 as k → ∞, then we have that Ωw(xk) ⊂ F̂ (S) = F (S). Therefore
Ωw(xk) ⊂ Sol := ΩV IP

⋂
F (S).

We now show that the sequence {xk} converges strongly to a point p = ΠSolx1. Let {xkj}
be a subsequence of {xk} such that xkj ⇀ x̄ and

lim sup
k→∞

〈Jx1 − Jp, xk+1 − p〉 = lim
j→∞
〈Jx1 − Jp, xkj+1 − p〉.

Since ||xk+1 − xk|| → 0 as k →∞, we have from Lemma 2.5.5 (b) that

lim sup
k→∞

〈Jx1 − Jp, xk+1 − p〉 = lim
j→∞
〈Jx1 − Jp, xkj+1 − p〉

= 〈Jx1 − Jp, x̄− p〉 ≤ 0. (5.2.33)
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It follows from Lemma 2.6.30, Lemma 5.2.10(i) and (5.2.33) that φ(p, xk)→ 0 as k →∞.
Therefore by Lemma 2.6.7,

lim
k→∞
||p− xk|| = 0.

This implies that {xk} converges strongly to p = ΠSolx1.

Case II: Suppose there exists a subsequence {xkj} of {xk} such that

φ(x∗, xkj+1) > φ(x∗, xkj) ∀ k ∈ N.

From Lemma 2.6.34, there exists a non-decreasing sequence {mk} ⊂ N such that mk →∞
and the following inequality hold for all k ∈ N :

φ(x∗, xmk) ≤ φ(x∗, xmk+1) and φ(x∗, xk) ≤ φ(x∗, xmk+1). (5.2.34)

Note that from (5.2.20) and (5.2.21), we have

φ(x∗, xmk) ≤ φ(x∗, xmk+1) ≤ αmkφ(x∗, x1) + (1− αmk)φ(x∗, wmk)

≤ αmkφ(x∗, x1) + (1− αmk)φ(x∗, xmk)

−(1− αmk)
(

1− η

c1

)
(φ(wmk , ymk) + φ(ymk , xmk)).

Since αmk → 0, as k →∞, it follows that(
1− η

c1

)
(φ(wmk , ymk) + φ(ymk , xmk))→ 0, n→∞,

hence

lim
k→∞

φ(wmk , ymk) = lim
k→∞

φ(ymk , xmk) = 0.

Since {xmk}, {ymk} and {wmk} are bounded, we have from Lemma 2.6.7 that

lim
k→∞
||xmk − ymk || = lim

k→∞
||wk − ymk || = 0. (5.2.35)

Following similar method as in Case I, we have

lim
k→∞
||wmk − Swmk || = lim

k→∞
||xmk+1 − xmk || = 0. (5.2.36)

By Lemma 5.2.9 and (5.2.36), we have that Ωw(xmk) ⊂ Sol := ΩV IP

⋂
F (S), where

Ωw(xmk) is the set of all weak subsequential limit of {xmk}.
Since {xmk} is bounded, we can choose a subsequence of {xmk} still denoted by {xmk}
such that xmk ⇀ q as k →∞ and

lim sup
k→∞

〈Jx1 − Jx∗, xmk+1 − x∗〉 = lim
k→∞
〈Jx1 − Jx∗, xmk+1 − x∗〉.

Hence, from Lemma 2.5.5(b), we have

lim sup
k→∞

〈Jx1 − Jx∗, xmk+1 − x∗〉 = 〈Jx1 − Jx∗, q − x∗〉 ≤ 0. (5.2.37)
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From (5.2.34), we have

0 ≤ φ(x∗, xmk+1)− φ(x∗, xmk)

≤ (1− αmk)φ(x∗, xmk) + 2αmk〈Jx1 − Jx∗, xmk+1 − x∗〉 − φ(x∗, xmk).

Since αmk > 0, we have that

φ(x∗, xmk) ≤ 2〈Jx1 − Jx∗, xmk+1 − x∗〉.

Hence by (5.2.37), we have

φ(x∗, xmk)→ 0, n→∞,

and by Lemma 2.6.7, we have that limk→∞ ||xmk − x∗|| = 0. Consequently, we obtain

||xk − x∗|| → 0, n→∞. (5.2.38)

Therefore, the sequence {xk} converges strongly to x∗ = ΠSolx1. This completes the proof.

The following result can be obtained as a direct consequence of Theorem 5.2.11.

Theorem 5.2.12. Let H be a real Hilbert space and C be a nonempty, closed convex subset
H. Let hi : H → R be families of convex, weakly lower semicontinuous and Gâteaux dif-
ferentiable functions, i = 1, 2, . . . ,m let A : C → H be a monotone operator which is uni-
formly continuous on bounded subsets of C, S : C → C be a quasi-nonexpansive mapping
and let {αk} and {νk} be nonnegative real sequences in (0, 1). Suppose Sol = ΩV IP ∩F (S)
is nonempty and Assumption 5.2.2 is satisfied, then the sequence {xk} generated by the fol-
lowing Algorithm 5.2.13 converges strongly to a unique solution p = PSolx1, where PSolx1

is the metric projection onto Sol.

Algorithm 5.2.13.

Step 1: (Initialization) Pick x1 ∈ H, η, ρ ∈ (0, 1) and set k = 1.

Step 2: Given the current iterate xk, construct the family of half-spaces

Ci
k := {w ∈ E : hi(xk) + 〈h′i(xk), w − xk〉 ≤ 0}, i ∈ I,

and set
Ck :=

⋂
i∈I

Ci
k,

then compute
yk = PCk(xk − βkA(xk)),

where
βk = ρlk ,

and lk is the smallest nonnegative integer such that

βk||A(xk)− A(yk)|| ≤ η||xk − yk||.
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Step 3: If xk = yk (i.e., xk ∈ ΩV IP ), then set xk = wk and go to Stop 4. Otherwise, compute
the next iterate by

wk = PQk(xk − βkA(yk)),

where
Qk = {w ∈ E : 〈w − yk, xk − βkA(xk)− yk〉 ≤ 0}.

Step 4: Compute
xk+1 = αkx1 + (1− αk)((1− νk)wk + νkSwk).

Set k := k + 1 and go to Step 2.

5.2.2 Application to nonlinear Hammerstein integral equations

We now present a strong convergence theorem for approximating solution of a nonlinear
Hammerstein type integral equation.

A nonlinear integral equation of Hammerstein type (see for instance [119]) is one of the
form

u(x) +

∫
Ω

K(x, y)f(y, u(y))dy = h(x), (5.2.39)

where dy is a σ-finite measure on the measure space Ω; the real kernel K is defined on
Ω×Ω, f is a real-valued function defined on Ω×Ω and is in general nonlinear and h is a
given function on Ω. The nonlinear equations of Hammerstein type have proved to be one
of the areas in which the ideas and techniques of nonlinear functional analysis found vast
applications. This has drawn the attention of many authors who have studied its existence
and approximation of its solutions. In fact, several differential equation problems can be
recast into (5.2.39). This equation also plays crucial role in the study of theory of optimal
control systems and in automation and in network theory. See [46, 47, 48, 107, 77, 78,
133, 273] and references therein.

If we now define an operator T by

Tυ(x) =

∫
Ω

K(x, y)υ(y)dy, x ∈ Ω,

and denote by F the so-called superposition or Nemytskii operator corresponding to f ,
i.e., Fu(y) := f(y;u(y)) then, the integral equation (5.2.39) can be put in the operator
theoretic form as follows:

u+ TFu = 0, (5.2.40)

where, without loss of generality, we have taken h ≡ 0.

Several problems that arises in differential equations, for instance, elliptic boundary value
problems whose linear parts admits Green’s functions can be transformed into the form
of (5.2.40). Example is the problem of forced oscillations of finite amplitude of pendulum
given below.
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Example 5.2.14. (see [200]) The amplitude of oscillation x(t) is a solution of the problem{
d2x
dt2

+ a2 sin(x)(t) = y(t), t ∈ [0, 1]

x(0) = x(1) = 0,

where the driving force y(t) is periodical and odd. The constant a 6= 0 depends on the
length of the pendulum and on gravity. Since the Green’s function for the problem

x′′(t) = 0, x(0) = x(1) = 0

is a triangular function

h(u, t) =

{
t(1− u), 0 ≤ t ≤ u,

u(1− t), u ≤ t ≤ 1,

the problem (5.2.41) is equivalent to the nonlinear integral equation

x(t)−
∫ 1

0

h(u, t)[x(u)− a2 sin(x)(u)]du. (5.2.41)

If ∫ 1

0

h(u, t)x(u)du = g(t) and x(t) + g(t) = v(t),

then (5.2.41) can be written as the Hammerstein equation

v(t) +

∫ 1

0

h(u, t)f(u, v(u))du = 0,

where f(u, v(u)) = a2 sin(v(u)− g(u)).

Several existence and uniqueness results for equations of the Hammerstein type emphasize
the monotonicity of the operators T and F . A monotone operator describes any system
that grows with time-evolution equations. Typical examples where such evolution equa-
tions occur can be found in the heat, wave, or Schrödinger equations. It follows from the
existence results for equations of the Hammerstein type that for iterative approximation
of solutions of equations of the Hammerstein type, the monotonicity of operators T and
F is crucial.

The following lemmas will be needed in the sequel.

Lemma 5.2.15. [230] Let X be a real reflexive Banach space with dual X∗. Let E :=
X ×X∗ and with norm

||x||E :=

(
||x1||2X + ||x2||2X∗

) 1
2

, for x = [x1, x2] ∈ E.

Let E∗ := (X×X∗)∗ = X∗×X denotes the dual space of E. For arbitrary x = [x1, x2] ∈ E,
define the map jE : E → E∗ by

jE(x) = jE[x1, x2] := [jX(x1), jX
∗
(x2)],
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so that for arbitrary x = [x1, x2], y = [y1, y2] in E, the duality pairing 〈., .〉 is given by

〈x, jE(y)〉 = 〈x1, j
X(y1)〉+ 〈x2, j

X∗
(y2)〉.

Then

(i) jE is a duality mapping on E;

(ii) E is a real reflexive Banach space.

Lemma 5.2.16. [230] Let X be a real reflexive Banach space with dual X∗. Let F :
X → X∗ and T : X∗ → X be continuous monotone mappings. Let E := X × X∗ and
A : E → E∗ be a mapping defined by

Aw = (Fu− v, Tv + u), ∀ w = (u, v) ∈ E.

Then A is a monotone and continuous mapping.

Lemma 5.2.17. Let X be a real reflexive Banach space with dual X∗ and E := X ×X∗.
Let S1 : X → X and S2 : X∗ → X∗ be quasi-nonexpansive mappings. Define the mapping
S : E → E by Sw = (S1(u), S2(v)), ∀ w = (u, v) ∈ E. Then, S is quasi-nonexpansive
mapping.

Proof. Let x = (x1, x2) ∈ E and p = (p1, p2) ∈ F (S), where p1 ∈ F (S1) and p2 ∈ F (S2),
then

||Sx− p||E = ||(S1(x1), S2(x2))− (p1, p2)||E
= ||(S1(x1)− p1, S2(x2)− p2)||E

=

(
||S1x1 − p1||2X + ||S2x2 − p2||2X∗

) 1
2

≤
(
||x1 − p1||2X + ||x2 − p2||2X∗

) 1
2

= ||x− p||E.

Hence, S is quasi-nonexpansive mapping on E.

The following remark is very important for establishing our result.

Remark 5.2.18. Suppose u + TFu = 0 in X and A : E → E∗ is defined by Aw =
(Fu− v, Tv + u), for all w = (u, v) ∈ E. Note that for w∗ = (u∗, v∗) ∈ E,

0 = Aw∗ ⇐⇒ (0, 0) = (Fu∗ − v∗, T v∗ + u∗)

⇐⇒ v∗ = Fu∗ and 0 = u∗ + Tv∗

⇐⇒ 0 = u∗ + TFu∗. (5.2.42)

This implies that u∗ is a solution of u+ TFu = 0 if and only if w∗ is a solution of Aw = 0
for v∗ = Fu∗.
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Moreover, w∗ is a solution of Aw = 0 if and only if it is a solution of the variational
inequality [76]:

find w ∈ E such that 〈Aw, y − w〉 ≥ 0, ∀ y ∈ E.
Hence, we can apply Theorem 5.2.11 to solve (5.2.40). Hence using Theorem 5.2.11, we
have the following result for approximating solutions of the nonlinear Hammerstein integral
equation (5.2.40).

Theorem 5.2.19. Let X be a 2-uniformly convex and uniformly smooth Banach space
with dual X∗. Let F : X → X∗ and T : X∗ → X be continuous monotone mapping. Let
E := X × X∗ and hi : E → R be families of convex, weakly lower semicontinuous and
Gâteaux differentiable functions, i = 1, 2, . . . ,m. Let A : E → E∗ be a mapping defined by
Aw = (Fu− v, Tv+u), ∀ w = (u, v) ∈ E. Let S1 : X → X and S2 : X∗ → X∗ be quasi-
nonexpansive mappings and define S : E → E by Sw = (S1(u), S2(v)), ∀ w = (u, v) ∈ E.
Assume Ω is the set of solutions of (5.2.40) and Sol := Ω

⋂
F (S) 6= ∅. Let {αk} and

{βk} be nonnegative real sequences in (0, 1) and Assumption 5.2.2 be satisfied. Then, the
sequence {xk} = {(uk, vk)} generated by the following algorithm converges strongly to a
point p ∈ Sol := Ω

⋂
F (S).

Algorithm 5.2.20.

Step 1: (Initialization) Pick x1 = (u1, v1) ∈ E, η, ρ ∈ (0, 1) and set k = 1.

Step 2: Given the current iterate xk, construct the family of half-spaces

Ci
k := {w = (u, v) ∈ E : hi(xk) + 〈h′i(xk), w − xk〉 ≤ 0}, i ∈ I, (5.2.43)

and set
Ck :=

⋂
i∈I

Ci
k, (5.2.44)

then compute
yk = ΠCkJ

−1(Jxk − βkA(xk)), (5.2.45)

where
βk = ρlk , (5.2.46)

and lk is the smallest nonnegative integer such that

βk||A(xk)− A(yk)|| ≤ η||xk − yk||. (5.2.47)

Step 3: If xk = yk, then set xk = wk and go to Stop 4. Otherwise, compute the next iterate
by

wk = ΠQkJ
−1(Jxk − βkA(yk)), (5.2.48)

where

Qk = {w = (u, v) ∈ E : 〈w − yk, Jxk − βkA(xk)− Jyk〉 ≤ 0}. (5.2.49)

Step 4: Compute

xk+1 = J−1(αkJx1 + (1− αk)((1− νk)Jwk + νkJSwk)). (5.2.50)

Set k := k + 1 and go to Step 2.
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5.2.3 Numerical Examples

In this subsection, we consider two examples related to equations of Hammerstein type to
illustrate the performance of our Algorithm. All codes are written using MATLAB 2014b

on a HP Elitebook personal computer. We choose different choices of the initial values
in each example and test Algorithm 3.1 for solving the Hammerstein equation (5.2.40).

The stopping criterion used in both test is ||xk+1−xk||2
||x2−x1||2 = ||(uk+1,vk+1)−(uk,vk)||2

||(u2,v2)−(u1,v1)||2 < ε, where
ε is chosen appropriately. The projections onto the half-spaces Ck and Qk can be easily
calculated since they have the specific form which can be found in Chapter 2.

Example 5.2.21. Let E = R× R and C = C1 ∩ C2 ⊆ R× R, where

C1 := {(x1, x2) ∈ R× R : h1(x1, x2) = x2
1 + x2

2 − 4 ≤ 0},

and
C2 := {(x1, x2) ∈ R× R : h2(x1, x2) = x2

1 − x2 ≤ 0}.
Consider the Hammerstein equation

u+ TFu = 0

where Tu = max{0, u} for all u ∈ R and

Fu =

{
u, ||u|| ≤ 1,
u
||u|| , ||u|| > 1.

Define the mapping A : R× R→ R× R by

Aw = (Fu− v, Tv + u), ∀ w = (u, v) ∈ R× R,

and S : R× R→ R× R by

Sw =

(−u
2
,
−v
2

)
, ∀w = (u, v) ∈ R× R.

Clearly, F and T are continuous monotone, thus A is continuous and monotone (by Lemma
5.2.16). Also Sol := Ω ∩ F (S) = {0}. We choose αk = 1√

k+1
, νk = 3k

5k+1
, η = 0.5 and

ρ = 0.07 as our parameters which satisfy the desired requirements. Let ε = 10−5 and the
initial values as follows:

Case I: (10, 10), Case II: (−20, 5), Case III: (5,−10), Case IV: (−5,−5).

We plot the graphs of Error against number of iterations in each case. The numerical
results are reported in Figure 5.3.

Example 5.2.22. In this second example, we consider the infinite-dimensional space.
Let E = L2([0, 1]) × L2([0, 1]) with norm ||x||2 =

∫ 1

0
|x(t)|dt and inner product 〈x, y〉 =∫ 1

0
x(t)y(t)dt, x, y ∈ E. We define Ci := {x ∈ E : ||x||−1 ≤ 0}. Consider the Hammerstein

equation u+TFu = 0 in L2([0, 1]) with F being the Volteral integral which is defined by

(Fu)(t) =

∫ 1

0

u(s)ds,∀ u ∈ L2([0, 1]),
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and

(Tu)(t) =

{
(u)(t), ||u|| ≤ 1,
(u)(t)
||u|| , ||u|| > 1.

It is known that F is continuous and monotone (cf. Exercise 20.12 in [23], Page 308).
Define the mapping A : L2([0, 1])× L2([0, 1])→ L2([0, 1])× L2([0, 1]) by

Aw = (Fu− v, Tv + u), ∀ w = (u, v) ∈ L2([0, 1])× L2([0, 1]),

and S : L2([0, 1])× L2([0, 1])→ L2([0, 1])× L2([0, 1]) by

Sw = S(u, v)(t) =

∫ 1

0

(
u(t)

4
,
v(t)

8

)
dt.

Hence A is monotone and Sol := Ω ∩ F (S) = {0} in L2([0, 1]) × L2([0, 1]). Choose
αk = 1

5k+1
, νk = 8

9(k+1)
, η = 0.09

4
and ρ = 0.05. We also take ε = 2 × 10−3 and chose the

following input values:

Case I: (exp(−3t), t2 + 5t− 9),

Case II: (t2 − 1, cos(2t)),

Case III: (−(3t− 5)2, 4t2 + 3t+ 1).

We then plot the graphs of errors against the number of iterations in each case. The
numerical results are reported in Figure 5.4.

5.3 A Unified Algorithm for Solving Variational In-

equality and Fixed Point Problems with Applica-

tion to the Split Equality Problem

In this section, we propose a new extragradient method consisting of the Hybrid steepest
descent method, a single projection method and an Armijo line searching technique for
approximating a solution of variational inequality problem and finding the fixed point
of demi-contractive mapping in a real Hilbert space. The essence of this algorithm is
that a single projection is required in each iteration and the stepsize for the next iterate
is determined in such a way that there is no need for a prior estimate of the Lipschitz
constant of the underlying operator.

It is well known that x† solves the VIP (1.1.1) if and only if x† solves the fixed point
equation

x† = PC(x† − λAx†), λ > 0, (5.3.1)

or equivalently, x† solves the residual equation

rλ(x
†) = 0, where rλ(x

†) := x† − PC(x† − λAx†), (5.3.2)

for an arbitrary positive constant λ, see [114] for details.
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Figure 5.3: Example 5.2.21; Top Left x1 = (10, 10), Time = 0.0416sec; Top Right:
x1 = (−20, 5), Time = 0.0436sec; Bottom Left x1 = (5,−10), Time = 0.0422sec; Bottom
Right: x1 = (−5,−5), Time = 0.0533sec..

In order to obtain strong convergence of the Subgradrient Extragradient Algorithm (3.2.1),
Censor et al. [68] combined the subgradient extragradient method and the hybrid method
to obtain the following effective scheme for solving the VIP (1.1.1) and finding fixed point
of a nonexpansive mapping T .

yk = PC(xk − λAxk),
Dk = {w ∈ H : 〈xk − λAxk − yk, w − yk〉 ≤ 0},
zk = PDk(xk − λAyk),
tk = αkxk + (1− αk)[βkzk + (1− βk)Tzk],
Ck = {z ∈ H : ||tk − z|| ≤ ||xk − z||},
Qk = {z ∈ H : 〈xk − z, xk − x0〉 ≤ 0},
xk+1 = PCk∩Qk(x0).

(5.3.3)

As an improvement on (5.3.3), Maingé [171] further introduced the following hybrid ex-
tragradient viscosity method which does not involve computing the projection onto the
intersection Ck ∩Qk:

yk = PC(xk − λkAxk),
zk = PC(xk − λkAyk),
xk+1 = [(1− w)I + wT ]tk, tk = zk − αkBzk,

(5.3.4)
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Figure 5.4: Example 5.2.22; Top Left Case I, Time = 62.1391sec; Top Right: Case II,
Time = 45.6325sec; Bottom: Case III, Time = 40.5352.

where λk > 0, αk > 0 and w ∈ [0, 1] are suitable parameters, T : H → H is β-demi-
contractive mapping, A : C → H is a monotone and L-Lipschitz continuous mapping
and B : H → H is η-strongly monotone and κ-Lipschitz continuous mapping. Maingé
[171] proved that the sequence {xk} generated by (5.3.4) converges strongly to the unique
solution x∗ ∈ ΩV IP ∩ F (T ).

Recently, Hieu et. al. [131] modified algorithm (5.3.4) and proposed a two-step extragra-
dient viscosity method for solving similar problem in a Hilbert space. This method was
presented as follows:

yk = PC(xk − λkAxk),
zk = PC(yk − ρkAyk),
tk = PC(xk − ρkAzk),
xk+1 = (1− βk)vk + βkTvk, vk = tk − αkBtk,

(5.3.5)

where ρk > 0, 0 ≤ λk ≤ ρk, βk ∈ [0, 1], A, T and B are as defined for (5.3.4). We observe
that, although algorithm (5.3.5) does not contain (3.2.1), but the algorithm (5.3.5) requires
computation of more projections onto the feasible set. This can be costly if the feasible
set has a complex structure which may affects the usage of the algorithm.

Motivated by the above results, in this section, we present a unified algorithm which consist
of the combination of hybrid steepest descent method (also called general viscosity method
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[257]) and a projection method with an Armijo line searching rule for finding a common
solution of VIP (1.1.1) and fixed point of β-demi-contractive mapping in a Hilbert space.
Our contributions in this section is highlighted as follow:

(i) Our proposed algorithm requires only one projection onto the feasible set and no
other projection along each iteration process. This is in contrast to the above-
mentioned methods as well as many other recent results (such as [97, 144, 255, 256,
264]) which require more than one projection onto the feasible set in each iteration
process.

(ii) The underlying operator A of the VIP considered in our result is pseudo-monotone.
This extends the above results where the operator is assumed to be monotone.

(iii) In our result, the stepsize λk is determined via an Armijo line search rule. This is
very important because it helps us to avoid a prior estimate of the Lipschitz constant
L of the operator A used in the above mentioned results. In practice, it is too difficult
to approximate this Lipschitz constant.

(iv) The strong convergence guaranteed by our algorithm makes it a good candidate
method for approximating a common solution of VIP (1.1.1) and fixed point problem.

5.3.1 Main results

In this subsection, we give a precise statement of our algorithm and discuss its strong
convergence.

Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A : C → H
be a pseudo-monotone and L-Lipschitz continuous operator and T : C → C be a β-
demi-contractive mapping with constant β ∈ [0, 1) and demiclosed at zero. Suppose
Sol := ΩV IP

⋂
F (T ) 6= ∅, let B : H → H be a k-Lipschitzian and η-strongly monotone

mapping with k > 0 and η > 0 and f : H → H be a ρ-Lipschitz mapping with ρ > 0. Let
0 < µ < 2η

k2 and 0 < ξρ < τ, where τ = 1
2
µ(2η − µk2). Let {αk} and {vk} be sequences in

(0, 1) and {xk} be generated by the following algorithm:

Algorithm 5.3.1.

Step 0: Choose the initial guess x1 ∈ H and parameters θ, γ ∈ (0, 1), σ ∈ (0, 2). Set k = 1.

Step 1: Compute
yk = PC(xk − λkAxk), (5.3.6)

where λk = γlk , and lk is the smallest nonnegative integer satisfying

λk||A(xk)− A(yk)|| ≤ θ||xk − yk||. (5.3.7)

Step 2: Compute
d(xk, yk) = xk − yk − λk(Axk − Ayk), (5.3.8)
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wk = xk − σδkd(xk, yk), (5.3.9)

where

δk =


〈xk − yk, d(xk, yk)〉
||d(xk, yk)||2

, if d(xk, yk) 6= 0,

0, if d(xk, yk) = 0.
(5.3.10)

Step 3: Compute
xk+1 = αkξf(xk) + (1− αkµB)(vkTwk + (1− vk)wk). (5.3.11)

Set k := k + 1 and go to Step 1.

In order to establish the convergence of Algorithm 5.3.1, we make the following assumption:

(C1) limk→∞ αk = 0 and
∑∞

k=0 αk =∞;

(C2) lim infk→∞ λk > 0;

(C3) lim infk→∞(vk − β)vk > 0.

Remark 5.3.2. Observe that if xk = yk and xk−Txk = 0, then we are at a common solution
of the variational inequality (1.1.1) and fixed point of the demi-contractive mapping T . In
our convergence analysis, we will implicitly assume that this does not occur after finitely
many iterations so that our Algorithm 5.3.1 generates an infinite sequences. We will see in
the following result that the Algorithm 5.3.1 is well defined. In order to do this, it suffice
to show that the Armijo line searching rule define by (5.3.7) is well defined and δk 6= 0.

Lemma 5.3.3. There exists a nonnegative integer lk satisfying (5.3.7). In addition

δk ≥
(1− θ)
(1 + θ)2

. (5.3.12)

Proof. Let rλk(xk) = xk − PC(xk − λkAxk) and suppose rγk0 (xk) = 0 for some k0 ≥ 1.
Take lk = k0 which satisfy (5.3.7). Suppose rγk1 (xk) 6= 0 for some k1 ≥ 1 and assume the
contrary, that is

γl||Axk − A(PC(xk − γlAxk))|| > θ||rγl(xk)||.
Then it follow from Lemma 2.6.11 and the fact that γ ∈ (0, 1) that

||Axk − A(PC(xk − γlAxk))|| >
θ

γl
||rγl(xk)||

≥ θ

γl
min{1, γl}||r1(xk)||

= θ||r1(xk)||. (5.3.13)

Since PC is continuous, we have that

PC(xk − γlAxk)→ PC(xk), l→∞.

We now consider two cases, namely when xk ∈ C and xk /∈ C.
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(i) If xk ∈ C, then xk = PCxk. Now since rγk1 (xk) 6= 0 and γk1 ≤ 1, it follows from
Lemma 2.6.11 that

0 < ||rγk1 (xk)|| ≤ max{1, γk1}||r1(xk)||
= ||r1(xk)||.

Letting l→∞ in (5.3.13), we have that

0 = ||Axk − Axk|| ≥ θ||r1(xk)|| > 0.

This is a contradiction and so (5.3.7) is valid.

(ii) xk /∈ C, then

γl||Axk − yk|| → 0, l→∞, (5.3.14)

while

lim
l→∞

θ||rγl(xk)|| = lim
l→∞

θ||xk − PC(xk − γlAxk)|| = θ||xk − PCxk|| > 0.

This is a contradiction. Therefore, the Armijo line searching rule in (5.3.7) is well
defined.

On the other hand, since A is Lipschitz continuous, then, we have from (5.3.7) and (5.3.8)

〈xk − yk, d(xk, yk)〉 = 〈xk − yk, xk − yk − λk(Axk − Ayk)〉
= ||xk − yk||2 − λk〈xk − yk, Axk − Ayk〉
≥ ||xk − yk||2 − λk||xk − yk||||Axk − Ayk||
≥ ||xk − yk||2 − θ||xk − yk||2
= (1− θ)||xk − yk||2. (5.3.15)

Also,

||d(xk, yk)|| = ||xk − yk − λk(Axk − Ayk)||
≤ ||xk − yk||+ λk||Axk − Ayk||
≤ (1 + θ)||xk − yk||. (5.3.16)

Therefore from (3.1.15) and (5.3.16), we get

δk =
〈xk − yk, d(xk, yk)〉
||d(xk, yk)||2

≥ (1− θ)
(1 + θ)2

.

Now, we prove that the sequences {xk}, {yk} and {wk} generated by Algorithm 5.3.1 are
bounded.
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Lemma 5.3.4. The sequence {xk} generated by Algorithm 5.3.1 is bounded. In addition,
the following inequality is satisfied

||wk − x∗||2 ≤ ||xk − x∗||2 −
(2− σ)

σ
||wk − xk||2, (5.3.17)

where x∗ ∈ Sol.

Proof. Let x∗ ∈ Sol, then by Lemma 2.6.1(ii), we obtain

||wk − x∗||2 = ||xk − x∗ − σδkd(xk, yk)||2
= ||xk − x∗||2 − 2σδk〈xk − x∗, d(xk, yk)〉+ σ2δ2

k||d(xk, yk)||2 (5.3.18)

Observe that

〈xk − x∗, d(xk, yk)〉 = 〈xk − yk, d(xk, yk)〉+ 〈yk − x∗, d(xk, yk)〉. (5.3.19)

Since yk = PC(xk − λkAxk) and x∗ ∈ Sol, then by the variational characterization of PC ,
we have

〈xk − λkAxk − yk, yk − x∗〉 ≥ 0, (5.3.20)

and from the pseudo-monotonicity of A, we have

〈Ayk, yk − x∗〉 ≥ 0. (5.3.21)

Hence, combining (5.3.20) and (5.3.21), with the fact that λk > 0, we get

〈d(xk, yk), yk − x∗〉 ≥ 0. (5.3.22)

Thus from (5.3.22) and (5.3.19) , we get

〈xk − x∗, d(xk, yk)〉 ≥ 〈xk − yk, d(xk, yk)〉. (5.3.23)

Therefore (5.3.18) yields

||wk − x∗||2 ≤ ||xk − x∗||2 − 2σδk〈xk − yk, d(xk, yk)〉+ σ2δ2
k||d(xk, yk)||2

= ||xk − x∗||2 − 2σδk〈xk − yk, d(xk, yk)〉+ σ2δk〈xk − yk, d(xk, yk)〉
= ||xk − x∗||2 − σ(2− σ)δk〈xk − yk, d(xk, yk)〉. (5.3.24)

From the definition of δk and wk, we have

δk〈xk − yk, d(xk, yk)〉 = ||δkd(xk, yk)||2

=
1

σ2
||wk − xk||2. (5.3.25)

Substituting (5.3.25) into (5.3.24), we have

||wk − x∗||2 ≤ ||xk − x∗||2 −
(2− σ)

σ
||wk − xk||2.
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Hence

||wk − x∗||2 ≤ ||xk − x∗||2. (5.3.26)

Furthermore, observe that for any x, y ∈ H,

||(I − µB)x− (I − µB)y||2 = ||x− y||2 − 2µ〈x− y,Bx−By〉+ µ2||Bx−By||2
≤ (1− 2µη + µ2k2)||x− y||2
= (1− τ)2||x− y||2,

where τ = 1−
√

1− µ(2η − µk2). Also

||PSol(I − µB + ξf)x− PSol(I − µB + ξf)y||
≤ ||(I − µB + ξf)x− (I − µB + ξf)y||
≤ ||(I − µB)x− (I − µB)y||+ ξ||f(x)− f(y)||
≤ (1− τ)||x− y||+ ξρ||x− y||
= (1− (τ − ξρ))||x− y||.

This implies that PSol(I − µB + ξf) is a contraction mapping which means that there
exists a unique element x∗ ∈ H such that x∗ = PSol(I − µB + ξf)x∗.

Now let Tv = vT + (1− v)I, then by Lemma 2.1.6, Tv is quasi-nonexpansive and therefore

||xk+1 − x∗|| = ||αkξf(xk) + (1− αkµB)Tvkwk − x∗||
= ||αk(ξf(xk)− µBx∗) + (I − αkµB)Tvkwk − (I − αkµB)x∗||
= ||(I − αkµB)(Tvkwk − x∗) + αk(ξf(xk)− µBx∗ + ξf(x∗)− ξf(x∗))||
≤ ||(I − αkµB)(Tvkwk − x∗)||+ αkξ||f(xk)− f(x∗)||+ αk||ξf(x∗)− µBx∗||
≤ (1− αkτ)||Tvkwk − x∗||+ αkξρ||xk − x∗||+ αk||ξf(x∗)− µBx∗||
≤ (1− αkτ)||wk − x∗||+ αkρ||xk − x∗||+ αk||ξf(x∗)− µBx∗||
≤ (1− αkτ)||xk − x∗||+ αkξρ||xk − x∗||+ αk||ξf(x∗)− µBx∗||

= (1− αk(τ − ξρ))||xk − x∗||+ αk(τ − ξρ)
||ξf(x∗)− µB(x∗)||

τ − ξρ

≤ max

{
||xk − x∗||,

||ξf(x∗)− µB(x∗)||
τ − ξρ

}
...

≤ max

{
||x1 − x∗||,

||ξf(x∗)− µB(x∗)||
τ − ξρ

}
. (5.3.27)

This implies that {xk} is bounded in H. Consequently, from (5.3.26), {wk} is bounded
and since A is continuous, then {Axk} is bounded and therefore {yk} is bounded too.

Lemma 5.3.5. The sequence {xn} generated by Algorithm 5.3.1 satisfies the following
estimates:

(i) sk+1 ≤ (1− ak)sk + akbk,

186



(ii) −1 ≤ lim supk→∞ bk < +∞,

where sk = ||xk − x∗||2, ak = 2αk(τ−ξρ)
1−αkξρ

, bk = αkτ
2M1

2(τ−ξρ)
+ 1

τ−ξρ〈ξf(x∗)− µB(x∗), xk+1 − x∗〉,
for some M1 > 0, x∗ ∈ Sol.

Proof. Let x∗ ∈ Sol, then from Lemma 2.6.1(i) and (5.3.11), we have

||xk+1 − x∗||2 = ||αkξf(xk) + (1− αkµB)Tvkwk − x∗||2
= ||αk(ξf(xk)− µBx∗) + (I − αkµB)Tvkwk − (I − αkµB)x∗||2
≤ ||(1− αkµB)Tvkwk − (1− αkµB)x∗||2 + 2αk〈ξf(xk)− µB(x∗), xk+1 − x∗〉
≤ (1− αkτ)2||wk − x∗||2 + 2αkξ〈f(xk)− f(x∗), xk+1 − x∗〉

+2αk〈ξf(x∗)− µB(x∗), xk+1 − x∗〉

≤ (1− αkτ)2||xk − x∗||2 + 2αkξρ||xk − x∗||||xk+1 − x∗||
+2αk〈ξf(x∗)− µB(x∗), xk+1 − x∗〉

≤ (1− αkτ)2||xk − x∗||2 + αkξρ(||xk − x∗||2 + ||xk+1 − x∗||)
+2αk〈ξf(x∗)− µB(x∗), xk+1 − x∗〉.

This implies that

||xk+1 − x∗||2 ≤
(1− αkτ)2 + αkξρ

1− αkξρ
||xk − x∗||2 +

2αk
1− αkξρ

〈ξf(x∗)− µB(x∗), xk+1 − x∗〉

=

(
1− 2αk(τ − ξρ)

1− αkξρ

)
||xk − x∗||2 +

α2
kτ

2

1− αkξρ
||xk − x∗||2

+
2αk

1− αkξρ
〈ξf(x∗)− µB(x∗), xk+1 − x∗〉

≤
(

1− 2αk(τ − ξρ)

1− αkξρ

)
||xk − x∗||2

+
2αk(τ − ξρ)

1− αkξρ

{
αkτ

2M1

2(τ − ξρ)
+

1

τ − ξρ〈ξf(x∗)− µB(x∗), xk+1 − x∗〉
}

= (1− ak)sk + akbk,

where the exists of M1 follows from the boundedness of {xk}. This established (i).
Next, we proof (ii). Since {xk} is bounded and αk ∈ (0, 1), then we have that

sup
k≥0

bk ≤ sup
k≥0

1

2(τ − ξρ)

(
τ 2M1 + 2||ξf(x∗)− µB(x∗)||||xk+1 − x∗||

)
<∞.

We next show that lim supk→∞ bk ≥ −1. Assume the contrary that lim supk→∞ bk < −1,
which implies that there exists k0 ∈ N such that bk ≤ −1 for all k ≥ k0. Hence, it follows
from (i) that

sk+1 ≤ (1− ak)sk + akbk

< (1− ak)sk − ak
= sk − ak(sk + 1)

≤ sk − 2(τ − ξρ)αk.
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By induction, we get that

sk+1 ≤ sk0 − 2(τ − ξρ)
k∑

i=k0

αi for all k ≥ k0.

Taking lim sup of both sides in the last inequality, we have that

lim sup
k→∞

sk ≤ sk0 − lim
k→∞

2(τ − ξρ)
k∑

i=k0

αi = −∞.

This contradicts the fact that {sk} is a nonnegative real sequence. Therefore, lim supk→∞ bk ≥
−1.

Lemma 5.3.6. Let {xkj} be subsequence of the sequence {xk} generated by Algorithm
5.3.1 such that xkj ⇀ p ∈ C. Suppose ||xk − yk|| → 0 as k → ∞ and lim infj→∞ λkj > 0.
Then

(i) 0 ≤ lim inf
j→∞

〈Axkj , x− xkj〉, for all x ∈ C;

(ii) p ∈ ΩV IP .

Proof. (i) Since ykj = PC(xkj − λkjAxkj), from the variational characterization of PC
(2.2.2), we have

〈xkj − λkjAxkj − ykj , x− ykj〉 ≤ 0, ∀ x ∈ C.

Hence

〈xkj − ykj , x− ykj〉 ≤ λkj〈Axkj , x− ykk〉
= λkj〈Axkj , xkj − ykj〉+ λkj〈Axkj , x− xkk〉

This implies that

〈xkj − ykj , x− ykj〉+ λkj〈Axkj , ykj − xkj〉 ≤ λkj〈Axkj , x− xkk〉. (5.3.28)

Fix x ∈ C and let j →∞ in (5.3.28), since ||xkj − ykj || → 0 and by condition (C2),
lim infj→∞ λkj > 0, we have

0 ≤ lim inf
j→∞

〈Axkj , x− xkj〉, ∀ x ∈ C. (5.3.29)

(ii) Let {εj} be a sequence of decreasing non-negative numbers such that εj → 0 as
j →∞. For each εj, we denote by N the smallest positive integer such that

〈Axkj , x− xkj〉+ εj ≥ 0, ∀ j ≥ N

where the existence of N follows from (i). This implies that

〈Axkj , x+ εjtkj − xkj〉 ≥ 0, ∀j ≥ N,
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for some tkj ∈ H satisfying 1 = 〈Axkj , tkj〉 (since Axkj 6= 0). Since A is pseudo-
monotone, then we have from (i) that

〈A(x+ εjtkj), x+ εjtkj − xkj〉 ≥ 0, ∀j ≥ N

which implies that

〈Ax, x− xkj〉 ≥ 〈Ax− A(x+ εjtkj), x+ εjtkj − xkj〉
−εj〈Ax, tkj〉 ∀ j ≥ N. (5.3.30)

Since εj → 0 and A is continuous, then the right hand side of (5.3.30) tends to zero.
Thus, we obtain that

lim inf
j→∞

〈Ax, x− xkj〉 ≥ 0, ∀ x ∈ C.

Hence

〈Ax, x− p〉 = lim
j→∞
〈Ax, x− xkj〉 ≥ 0, ∀ x ∈ C.

Therefore from Lemma 2.6.9, we obtain that p ∈ V I(C,A).

We are now in position to prove the convergence of our Algorithm.

Theorem 5.3.7. Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let A : H → H be a pseudo-monotone and L-Lipschitz continuous operator and T : C → C
be a β-demi-contractive mapping with constant β ∈ [0, 1) and demiclosed at zero. Suppose
Sol := ΩV IP

⋂
F (T ), let B : H → H be a k-Lipschitzian and η-strongly monotone mapping

with k > 0 and η > 0 and f : H → H be a ρ-Lipschitz mapping with ρ > 0. Let 0 < µ < 2η
k2

and 0 < ξρ < τ, where τ = 1
2
µ(2η − µk2). Let {αk} and {vk} be sequences in (0, 1),

{xk} such that Assumptions (C1)-(C3) are satisfied. Then sequence {xk} generated by
Algorithm 5.3.1 converges strongly to a point x†, where x† = PSol(I − µB + ξf)(x†) is a
unique solution of the variational inequality

〈(µB − ξf)x†, x† − x〉 ≤ 0, ∀ x ∈ Sol. (5.3.31)

Proof. Let x∗ ∈ Sol and put Γk := ||xk − x∗||2. We divide the proof into two cases.
Case I: Suppose that there exists k0 ∈ N such that {Γk} is monotonically non-increasing
for k ≥ k0. Then {Γk} converges and therefore

Γk − Γk+1 → 0, n→∞. (5.3.32)

Let zk = (1− vk)wk + vkTwk, then using Lemma 2.6.1(iii), we have

||zk − x∗||2 = ||(1− vk)(wk − x∗) + vk(Twk − x∗)||2
= (1− vk)||wk − x∗||2 + vk||Twk − x∗||2 − vk(1− vk)||wk − Twk||2
≤ (1− vk)||wk − x∗||2 + vk(||wk − x∗||2 + β||wk − Twk||2)

−vk(1− vk)||wk − Twk||2
= ||wk − x∗||2 − vk(1− vk − β)||wk − Twk||2. (5.3.33)
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Then, from Lemma (2.6.1)(i) and (5.3.17), we have

||xk+1 − x∗||2 = ||αkξf(xk) + (1− αkµB)zk − x∗||2
= ||αk(ξf(xk)− µB(x∗)) + (1− αkµB)(zk − x∗)||2
≤ (1− αkµB)2||zk − x∗||+ 2αk〈ξf(xk)− µBx∗, xk+1 − x∗〉
≤ (1− αkτ)(||wk − x∗||2 − vk(1− vk − β)||wk − Twk||2)

+2αk〈ξf(xk)− µBx∗, xk+1 − x∗〉

≤ (1− αkτ)

(
||xk − x∗||2 −

2− σ
σ
||wk − xk||2

)
−(1− αkτ)vk(1− vk − β)||wk − Twk||2
+2αk〈ξf(xk)− µBx∗, xk+1 − x∗〉. (5.3.34)

Hence

(1− αkτ)

(
2− σ
σ

)
||wk − xk||2 ≤ (1− αkτ)||xk − x∗||2 − ||xk+1 − x∗||2

+2αk〈ξf(xk)− µBx∗, xk+1 − x∗〉
≤ Γk − Γk+1 − αkM + 2αk〈ξf(xk)− µBx∗, xk+1 − x∗〉,

for some M > 0. Since αk → 0 and from (5.3.32), we have(
2− σ
σ

)
||wk − xk||2 → 0, n→∞.

Therefore

lim
k→∞
||wk − xk|| = 0. (5.3.35)

From (5.3.25), we have

〈xk − yk, d(xk, yk)〉 ≤
(1 + θ)2

(1− θ)σ2
||wk − xk||2. (5.3.36)

Using (5.3.15), we have

||xk − yk||2 ≤
(1 + θ)2

(1− θ)2σ2
||wk − xk||2. (5.3.37)

From (5.3.35) and (5.3.37), we have

||xk − yk|| → 0, n→∞. (5.3.38)

Therefore
||wk − yk|| ≤ ||wk − xk||+ ||xk − yk|| → 0, n→∞. (5.3.39)

Also from (5.3.34), we have

(1− αkτ)vk(1− vk − β)||wk − Twk||2 ≤ (1− αkτ)||xk − x∗||2 − ||xk+1 − x∗||2
+2αk〈ξf(xk)− µBx∗, xk+1 − x∗〉

≤ Γk − Γk+1 − αkM
+2αk〈ξf(xk)− µBx∗, xk+1 − x∗〉,
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for some M > 0. Since αk → 0 and from (5.3.32), we have

vk(1− vk − β)||wk − Twk||2 → 0, n→∞.

Therefore from condition (C3), we have

lim
k→∞
||wk − Twk|| = 0. (5.3.40)

Furthermore, from (5.3.40)

||zk − wk|| = ||(1− vk)wk + vkTwk − wk||
= vk||wk − Twk|| → 0, n→∞, (5.3.41)

and

||xk+1 − zk|| = ||αkξf(xk) + (1− αkµB)zk − zk||
= αk||ξf(xk)− µB(zk)|| → 0, n→∞. (5.3.42)

Therefore from (5.3.35), (5.3.41) and (5.3.42), we have

||xk+1 − xk|| ≤ ||xk+1 − zk||+ ||zk − wk||+ ||wk − xk|| → 0, n→∞. (5.3.43)

Since {xk} is bounded, there exists {xkl} of {xk} such that xkl ⇀ p ∈ H. From (5.3.40)
and the demiclosedness of I−T at zero, we have that p ∈ F (T ). Also, since ||xk−yk|| → 0,
we have from Lemma 5.3.6 that p ∈ ΩV IP . Therefore p ∈ Sol := ΩV IP ∩ F (T ).

Next we show that lim supk→∞〈(µB−ξf)x∗, x∗−xk〉 ≤ 0, where x∗ = PSol(I−µB+ξf)x∗

is the unique solution of the variational inequality

〈(µB − ξf)x∗, x− x∗〉 ≥ 0, ∀ x ∈ Sol.

We obtain from (2.2.2) and (5.3.43) that

lim sup
k→∞

〈(µB − ξf)x∗, x∗ − xk+1〉 = lim sup
l→∞

〈(µB − ξf)x∗, x∗ − xkl+1〉

= lim
l→∞
〈(µB − ξf)x∗, x∗ − p〉

≤ 0. (5.3.44)

Finally, we show that {xk} converges strongly to x∗. By Lemma 5.3.5(i), we obtain

Γk+1 ≤ (1− ak)Γk + akbk, (5.3.45)

where ak = 2αk(τ−ξρ)
1−αkξρ

, bk = αkτ
2M1

2(τ−ξρ)
+ 1

τ−ξρ〈ξf(x∗)−µB(x∗), xk+1−x∗〉, for some M1 > 0. It

is easy to see that ak → 0 and
∞∑
k=1

ak =∞. Also by (5.3.44), lim supk→∞ bk ≤ 0. Therefore,

using Lemma 2.6.30 in (5.3.45), we obtain

lim
k→∞
||xk − x∗|| = 0,
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and hence {xk} converges strongly to x∗ as k →∞.
Case II: Assume that {Γk} is not monotonically decreasing. Let τ : N→ N be a mapping
for all k ≥ k0 (for some k0 large enough) defined by

τ(k) := max{j ∈ N : j ≤ k,Γj ≤ Γj+1}.

Clearly, τ is a non decreasing sequence, τ(k)→ 0 as k →∞ and

0 ≤ Γτ(k) ≤ Γτ(k)+1, ∀ k ≥ k0.

Following similar process as in Case I, we have

||wτ(k) − Twτ(k)|| → 0, k →∞,

||xτ(k)+1 − xτ(k)|| → 0, k →∞,
and

lim sup
k→∞

〈(µB − ξf)x∗, x∗ − xτ(k)+1〉. (5.3.46)

Since {xτ(k)} is bounded, there exists a subsequence of {xτ(k)} still denoted by {xτ(k)}
which converges weakly to z ∈ C. By similar argument as in Case I, we conclude that
z ∈ Sol := ΩV IP ∩ F (T ). From Lemma 5.3.5(i), we have

Γτ(k)+1 ≤ (1− aτ(k))Γτ(k) + aτ(k)bτ(k). (5.3.47)

Also aτ(k) → 0 as k →∞ and lim supk→∞ bτ(k) ≤ 0.

Since Γτ(k) ≤ Γτ(k)+1 and aτ(k) > 0, we have

||xτ(k) − x∗|| ≤ bτ(k).

This implies that
lim sup
k→∞

||xτ(k) − x∗||2 = 0,

and thus
lim
k→∞
||xτ(k) − x∗|| = 0.

Also from (5.3.47) we obtain

lim sup
k→∞

||xτ(k)+1 − x∗||2 ≤ lim sup
k→∞

||xτ(k) − x∗||2.

Therefore
lim
k→∞
||xτ(k)+1 − x∗|| = 0.

Furthermore, for k ≥ k0, it is easy to see that Γτ(k) ≤ Γτ(k)+1 if k ≥ τ(k) (that is τ(k) < k),
because Γj ≥ Γj+1 for τ(k) + 1 ≤ j ≤ k. As a consequence, we obtain that for all k ≥ k0

0 ≤ Γk ≤ max{Γτ(k),Γτ(k)+1} = Γτ(k)+1.

Hence Γk → 0 as k → ∞. That is, {xk} converges strongly to x∗. This completes the
proof.
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5.3.2 Application to Split Equality Problem

Let H1, H2 and H3 be real Hilbert spaces, let C ⊂ H1 and Q ⊂ H2 be nonempty closed
convex sets, let A : H1 → H3 and B : H2 → H3 be bounded linear operators. The Split
Equality Problem (shortly, SEP) is to find (see [183])

x ∈ C, y ∈ Q such that Ax = By. (5.3.48)

The SEP allows asymmetric and partial relations between the variables x and y. If H2 =
H3 and B = I (the identity mapping), then the SEP reduces to the Split Feasibility
Problem (SFP) (1.1.9). The SEP (5.3.48) covers many situations, such as for instance in
domain decomposition for PDE’s, game theory and intensity-modulated radiation therapy
(IMRT) [15, 63].

In this subsection, we adapt our Algorithm 5.3.1 to solve the SEP (5.3.48). Before that,
let us first prove some lemmas which will be of help.

Lemma 5.3.8. [96] Let S = C ×Q ⊂ H := H1 ×H2. Define K := [A,−B] : H1 ×H2 →
H1 ×H2 and let K∗ be the adjoint operator of K, then the SEP (5.3.48) can be modified
as

Find z = (x, y) ∈ S such that Kw = 0, (5.3.49)

where w =

[
x
y

]
is the vector associated with z.

Lemma 5.3.9. Let H = H1×H2, define M : H → H by M(w) = M(u, v) := (φ1(u), φ2(v)),
w = (u, v) ∈ H, where φi : H → H are ki-Lipschitz and ηi-strongly monotone mapping
with ki > 0 and ηi > 0, i = 1, 2. Then M is k-Lipschitz and η-strongly monotone where
k = max{k1, k2} and η = min{η1, η2}.

Proof. Let x = (x1, y1), y = (x2, y2) ∈ H, then we have

〈Mx−My, x− y〉 = 〈(φ1(x1), φ2(y1))− (φ1(x2), φ2(y2)), (x1 − x2, y1 − y2)〉
= 〈(φ1(x1)− φ1(x2), φ2(y1)− φ2(y2)), (x1 − x2, y1 − y2)〉
= 〈φ1(x1)− φ1(x2), x1 − x2〉+ 〈φ2(y1)− φ2(y2), y1 − y2〉
≥ η1||x1 − x2||2 + η2||y1 − y2||2
≥ min{η1, η2}(||x1 − x2||2 + ||y1 − y2||2)

= η||x− y||2.
Hence M is η-strongly monotone , where η = min{η1, η2}. Also

||Mx−My||2 = ||(φ1(x1), φ2(y1))− (φ1(x2), φ2(y2))||2
= ||(φ1(x1)− φ1(x2), φ2(y1)− φ2(y2))||2
= ||φ1(x1)− φ1(x2)||2 + ||φ2(y1)− φ2(y2)||2
≤ k2

1||x1 − x2||2 + k2
2||y1 − y2||2

≤ max{k2
1, k

2
2}(||x1 − x2||2 + ||y1 − y2||2)

= k2||x− y||2.
Hence M is k-Lipschitz with k = max{k1, k2}.
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In a similar fashion as in Lemma 5.3.9, we can prove the following results.

Lemma 5.3.10. Let H := H1 ×H2, let f : H → H be defined by f(u, v) = (f1(u), f2(v)),
w = (u, v) ∈ H, fi : Hi → Hi is ρi-Lipschitz mapping with ρi > 0, i = 1, 2. Then f is
ρ-Lipschitz mapping with ρ =

√
max{ρ1, ρ2}.

Lemma 5.3.11. Let H := H1×H2, let T : H → H be defined by T (u, v) = (T1(u), T2(v)),
w = (u, v) ∈ H, Ti : Hi → Hi is βi-demi-contractive mapping with βi ∈ [0, 1), i = 1, 2.
Then T is β-demi-contractive mapping with β = max{β1, β2}.

We now adapts our algorithm to solving the SEP.

Let H, S, and K be as defined in Lemma 5.3.8. Let T be as defined in Lemma 5.3.11 such
that

ΩSEP := {(x, y) ∈ F (T1)× F (T2) : Ax = By} 6= ∅.
Let M and f as defined in Lemma 5.3.9 and Lemma 5.3.10 respectively such that 0 < µ <
2η
k2 and 0 < ξρ < τ, where τ = 1

2
µ(2η−µk2). Let {αk} and {vk} be sequences in (0, 1) and

{zk} = {(xk, yk)} be generated by the following Algorithm.

Algorithm 5.3.12.

Step 0: Choose initial guess z1 = (x1, y1) ∈ H and parameters θ, γ ∈ (0, 1), σ ∈ (0, 2). Set
k = 1.

Step 1: Compute
tk = PS(zk − λkK∗K(zk)), (5.3.50)

where λk = γlk , and lk is the smallest non-negative integer satisfying

λk||K∗K(zk)−K∗K(tk)|| ≤ θ||zk − tk||.

Step 2: Compute
d(zk, tk) = zk − tk − λk(K∗K(zk)−K∗K(tk)),

wk = zk − σδkd(zk, tk),

where

δk =


〈zk − tk, d(zk, tk)〉
||d(zk, tk)||2

if d(zk, tk) 6= 0,

0, if d(zk, tk) = 0.

Step 3: Compute
zk+1 = αkξf(zk) + (1− αkµM)(vkTwk + (1− vk)wk).

Set k ← k + 1 and go to Step 1.
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Remark 5.3.13. Let z = (x, y), we know that

PS(z) =
(
PC(x), PQ(y)

)
.

Also, since

K = [A,−B], and K∗ =

[
A∗

−B∗
]
,

then

K∗Kw =

[
A∗A −A∗B
−B∗A B∗B

] [
x
y

]
=

[
A∗(Ax−By)
B∗(Ax−By)

]
. (5.3.51)

Define the function F : H1 ×H2 → H1 by

F (x, y) = A∗(Ax−By),

and G : H1 ×H2 → H2 by
G(x, y) = B∗(By − Ax).

Now, by setting zk = (xk, yk), tk = (uk, vk) and wk = (sk, ek) in Algorithm 5.3.12, then
Algorithm 5.3.12 can be rewritten in the following simultaneous form:

Algorithm 5.3.14.

Step 0: Choose initial guess (x1, y1) ∈ H1 ×H2 and parameters θ, γ ∈ (0, 1), σ ∈ (0, 2). Set
k = 1.

Step 1: Compute {
uk = PC(xk − λkF (xk, yk)),

vk = PQ(yk − λkG(xk, yk)),
(5.3.52)

where λk = γlk , and lk is the smallest non-negative number satisfying

λ2
k(||F (xk, yk)− F (uk, vk)||2 + ||G(xk, yk)−G(uk, vk)||2)

≤ θ2(||xk − uk||2 + ||yk − vk||2). (5.3.53)

Step 2: Compute {
ck = (xk − uk)− λk(F (xk, yk)− F (uk, vk))

dk = (yk − vk)− λk(G(xk, yk)−G(uk, vk)),

and {
sk = xk − σδkck,
ek = yk − σδkdk,

(5.3.54)

where

δk =
〈xk − uk, ck〉+ 〈yk − vk, dk〉

||ck||2 + ||dk||2
. (5.3.55)
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Step 3: Compute {
xk+1 = αkξf1(xk) + (1− αkµφ1)(vkT1sk + (1− vk)sk),
yk+1 = αkξf2(yk) + (1− αkµφ2)(vkT2tk + (1− vk)ek).

(5.3.56)

Set k ← k + 1 and go to Step 1.

We now prove the convergence of Algorithm 5.3.14 using Algorithm 5.3.1.

Let (x∗, y∗) ∈ ΩSEP . Observe that

||sk − x∗||2 + ||tk − y∗||2 = ||xk − x∗ − σδkck||2 + ||yk − y∗ − σδkdk||2
≤ ||xk − x∗||2 + ||yk − y∗||2 − 2σδk(〈xk − x∗, ck〉+ 〈yk − y∗, dk〉)

+σ2δ2
k(||ck||2 + ||dk||2). (5.3.57)

But

〈xk − x∗, ck〉+ 〈yk − y∗, dk〉 = 〈xk − uk, ck〉+ 〈uk − x∗, ck〉
〈yk − vk, dk〉+ 〈vk − y∗, dk〉,

and
〈uk − x∗, ck〉+ 〈vk − y∗, dk〉 ≥ 0.

Hence

〈xk − x∗, ck〉+ 〈yk − y∗, dk〉 ≥ 〈xk − uk, ck〉+ 〈yk − vk, dk〉. (5.3.58)

Therefore from (5.3.57) and (5.3.58), we have

||sk − x∗||2 + ||yk − y∗||2 ≤ ||xk − x∗||2 + ||yk − y∗||2 − 2σδk(〈xk − uk, ck〉+ 〈yk − vk, dK〉)
+σ2δ2

k(||ck||2 + ||dk||2). (5.3.59)

From the definition of δk and (5.3.54), (5.3.54), we have

δk(〈xk − uk, ck〉+ 〈yk − vk, dk〉) = δ2
k(||ck||2 + ||dk||2)

=
1

σ2
(||sk − xk||2 + ||tk − yk||2). (5.3.60)

Hence from (5.3.59) and (5.3.60), we get

||sk − x∗||2 + ||yk − y∗||2 ≤ ||xk − x∗||2 + ||yk − y∗||2 −
(

2− σ
σ

)
(||sk − xk||2 + ||tk − yk||2).

≤ ||xk − x∗||2 + ||yk − y∗||2. (5.3.61)

Following similar approach as in (5.3.27), we get

||xk+1 − x∗||+ ||yk+1 − x∗|| ≤ max

{
||x1 − x∗||+ ||y1 − y∗||,

||ξ1f1(x∗)− µ1φ1(x∗)||
τ1 − ξρ1

+
||ξ2f2(y∗)− µ2φ2(y∗)||

τ2 − ξ2ρ2

}
.

Hence {||xk+1−x∗||+ ||yk+1−y∗||} is bounded and consequently, {||xk−x∗||}, {||yk−y∗||}
are bounded. Thus, {xk} and {yk} are bounded.
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Lemma 5.3.15. Suppose ΩSEP := {(x, y) ∈ C × Q : Ax = By} 6= ∅. Let λn be a se-
quence in (0, 2

||A||2+||B||2 ), such that (5.3.53) holds and suppose lim infn→∞ λn(2−λn(||A||2+

||B||2)) > 0, ||xk − uk|| → 0, ||yk − vk|| → 0 as k → ∞. Then, there exist (x̄, ȳ) ∈ ΩSEP

such that xkj ⇀ x̄ and ykj ⇀ ȳ, where {xkj} and {ykj} are subsequences of {xk} and {yk}
generated by Algorithm 5.3.14.

Proof. Let (x∗, y∗) ∈ ΩSEP , then from (5.3.52), we have

||uk − x∗||2 = ||PC(xk − λkF (xk, yk))− x∗||2
≤ ||xk − λk(A∗(Axk −Byk))− x∗||2
≤ ||xk − x∗||2 − 2λk〈Axk − Ax∗, Axk −Byk〉

+λ2
k||A||2||Axk −Byk||2. (5.3.62)

Similarly, we have

||vk − y∗||2 ≤ ||yk − y∗||2 + 2λk〈Byk −By∗, Axk −Byk〉
+λ2

k||B||2||Axk −Byk||2. (5.3.63)

Adding (5.3.62) and (5.3.63) while noting that Ax∗ = By∗, we have

||uk − x∗||2 + ||vk − y∗||2 ≤ ||xk − x∗||2 + ||yk − y∗||2 − λk(2− λk(||A||2 + ||B||2))×
||Axk −Byk||2. (5.3.64)

Also, note that

||uk − x∗||2 + ||vk − y∗||2 = ||uk − xk||2 + 2〈uk − xk, xk − xk − x∗〉
+||xk − x∗||2 + ||vk − yk||2 + 2〈vk − yk, yk − y∗〉
+||yk − y∗||2. (5.3.65)

Then from (5.3.64) and (5.3.65), we have

lim
k→∞
||Axk −Byk|| = 0. (5.3.66)

Without loss of generality, we may assume that xkj ⇀ x̄ and ykj ⇀ ȳ for some x̄ ∈ H1

and ȳ ∈ H2. Since {xk} is a sequence in C, we know that x̄ ∈ C. Similarly, ȳ ∈ Q. Since
xkj ⇀ x̄ and ykj ⇀ ȳ, it follows that Axkj ⇀ Ax̄ and Bykj ⇀ Bȳ. Hence Axkj − Bykj ⇀
Ax̄−Bȳ. By the lower semicontinuity of the squared norm, we have

||Ax̄−Bȳ||2 ≤ lim inf
k→∞

||Axkj −Bykj ||2 = lim
k→∞
||Axk −Byk||2 = 0.

Hence Ax̄ = Bȳ. Therefore (x̄, ȳ) ∈ Ω.

Now using Lemma 5.3.15 and following the line of argument in Theorem 5.3.7, we can
prove the following result.

Theorem 5.3.16. Let H, S, and K be as defined in Lemma 5.3.8. Let T be as defined
in Lemma 5.3.11 such that Γ := {(x, y) ∈ F (T1) × F (T2) : Ax = By} 6= ∅. Let M and f
be as defined in Lemma 5.3.9 and Lemma 5.3.10 respectively such that 0 < µ < 2η

k2 and
0 < ξρ < τ, where τ = 1

2
µ(2η − µk2). Let {αk} and {vk} be sequences in (0, 1) satisfying

condition (C1) and (C3) and let λn be a sequence in (0, 2
||A||2+||B||2 ), such that (5.3.53) holds

and lim infn→∞ λn(2− λn(||A||2 + ||B||2)) > 0. Then the sequence {(xk, yk)} generated by
Algorithm 5.3.14 converges strongly to a solution (u, v) ∈ Γ.
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5.3.3 Numerical examples

In this subsection, we present three numerical examples which demonstrate the perfor-
mance of our Algorithm 5.3.1. Let T : H → H be defined by

Tx =

{
−9

2
x, if x ≤ 0,

−2x, if x > 0.
(5.3.67)

It easy to see that T is demi-contractive mapping with β = 77
121
, and F (T ) = {0}. We let

f = I, B = 1
2
I, then ρ = 1 and η = 1 = k. Hence 0 < µ < 2η

k2 = 2. Let us choose µ = 1 so

that τ = 1 −
√

1− µ(2η − µk2) = 1. As 0 < ξρ < τ, we have ξ ∈ (0, 2). Without loss of
generality, we choose ξ = 1.

In each example, we fix the stopping criterion as ||xk+1 − xk|| = ε < 10−5, σ = 0.7,
γ = 0.54, λk = 0.15 and let αk = 1

k+1
and vk = 2k+3

4k+12
. The projection onto the feasible

set C is carry-out by using the MATLAB solver ’fmincon’ and the projection onto an
hyperplane Q = {x ∈ H : 〈a, x〉 = 0} is defined by

PQ(x) = x− 〈a, x〉||a||2 a.

Example 5.3.17. First, we consider the Hp-Hard problem. Let A : Rm → Rm define by
Ax = Mx+ q where

M = NNT + S +D,

N is a m × m matrix, S is a m × m skew-symmetric matrix, D is a m × m diagonal
matrix, whose diagonal entries are nonnegative so that M is positive definite and q is a
vector in Rm. The feasible set C ⊂ Rm is the closed and convex polyhedron which is
defined as C = {x = (x1, x2, . . . , xm) ∈ Rm : Qx ≤ b}, where Q is a l ×m matrix and b
is a nonnegative vector. It is clear that A is monotone (hence, pseudo-monotone) and L-
Lipschitz continuous with L = ||M ||. For experimental purpose, all the entries of N,S,D
and b are generated randomly as well as the starting point x1 ∈ [0, 1]m and q is equal to
the zero vector. In this case, the solution to the corresponding variational inequality is
{0} and also, Sol := ΩV IP ∩ F (T ) = {0}. We take m = 50, 100, 200 and compare the
output of Algorithm 5.3.1 with Algorithm (5.3.5) and Algorithm (5.3.3). The numerical
results are reported in Table 5.4 and Figure 5.5.

Example 5.3.18. Let H = L2([0, 2π]) with norm ||x|| = (
∫ 2π

0
|x(t)|2dt) 1

2 and inner

product 〈x, y〉 =
∫ 2π

0
x(t)y(t)dt, x, y ∈ H. The operator A : H → H is defined by

Ax(t) = 1
2

max{0, x(t)}, t ∈ [0, 2π] for all x ∈ H. It can easily be verified that A is Lip-

schitz continuous and monotone. The feasible set C = {x ∈ H :
∫ 2π

0
(t2 + 1)x(t)dt ≤ 1}.

Observe that Sol = {0}. We choose the following starting points and compare the result
of Algorithm 5.3.1 with Algorithm (5.3.5) and Algorithm (5.3.3).

(i) x1 =
1

3
t2 exp(−3t), (ii) x1 =

1

200
sin(3πt)cos(2πt), (iii) x1 =

1

50
cos(3t) exp(2t).

The numerical results are shown in Table 5.5 and Figure 5.6.
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Example 5.3.19. Finally, we consider the Kojima-Shindo nonlinear complementarity
problem (NCP) which was considered in [174], where n = 4 and the mapping A is defined
by

A(x1, x2, x3, x4) =


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2
3x2

1 + x1x2 + 2x2
2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

 . (5.3.68)

The feasible set C = {x ∈ R4
+ : x1 + x2 + x3 + x4 = 4}. We choose the following starting

points and test our Algorithm 5.3.1 with Algorithm (5.3.5).

(i) x1 = (2, 0, 0, 2), (ii) x1 = (1, 1, 1, 1), (iii) x1 = (1, 2, 0, 1).

The results are summarized in Table 5.6 and Figure 5.7.

Table 5.4: Numerical results for Example 5.3.17.

Alg. 5.3.1 Alg. 5.3.5 Alg. 5.3.3

m = 50 CPU time (sec) 3.7937 12.5925 9.5794
No. of Iter. 8 8 30

m = 100 CPU time (sec) 4.7710 15.6752 12.5470
No. of Iter. 9 9 31

m = 200 CPU time (sec) 5.2795 16.6502 13.5667
No. of Iter. 10 10 33

Table 5.5: Numerical results for Example 5.3.18.

x1 = Alg. 5.3.1 Alg. 5.3.5 Alg. 5.3.3
1
3
t2 exp(−3t) CPU time (sec) 0.4405 0.9491 1.5811

No. of Iter. 6 12 28
1

200
sin(3πt)cos(2πt)CPU time (sec) 0.4423 0.5964 6.4044

No. of Iter. 7 9 29
1
50

cos(3t) exp(2t) CPU time (sec) 3.6693 5.2286 7.0858
No. of Iter. 7 14 34

Table 5.6: Numerical result for for Example 5.3.19.

x1 = Alg. 5.3.1 Alg. 5.3.5

(2, 0, 0, 2) CPU time (sec) 2.4540 6.0885
No. of Iter. 9 6

(1, 1, 1, 1) CPU time (sec) 4.2861 16.6686
No. of Iter. 10 18

(1, 2, 0, 1) CPU time (sec) 6.8174 15.6381
No. of Iter. 24 19
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Figure 5.5: Example 5.3.17, Left: m = 50; Middle: m = 100; Right: m = 200.

Iteration number (k)
0 5 10 15 20 25 30

||x
k+

1
 -

 x
k||

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Alg 3.1
Alg (1.10)
Alg (1.8)

Iteration number (k)
0 5 10 15 20 25 30

||x
k+

1
 -

 x
k||

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Alg 3.1
Alg (1.10)
Alg (1.8)

Iteration number (k)
0 5 10 15 20 25 30 35

||x
k+

1
 -

 x
k||

# 10-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Alg 3.1
Alg (1.10)
Alg (1.8)

Figure 5.6: Example 5.3.18, Left: x1 = 1
3
t2 exp(−3t); Middle: x1 = 1

200
sin(3πt)cos(2πt);

Right: x1 = 1
50

cos(3t) exp(2t).
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Figure 5.7: Example 5.3.18, Left: x1 = (2, 0, 0, 2); Middle: x1 = (1, 1, 1, 1); Right: x1 =
(1, 2, 0, 1).
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CHAPTER 6

Split Feasibility Problems in Banach Spaces

Let E1 and E2 be Banach spaces and let C and Q be nonempty closed convex subsets of E1

and E2 respectively. Let A : E1 → E2 ba a bounded linear operator and A∗ : E∗2 → E∗1 be
the adjoint of A. Recently, the study of SFP (1.1.9) in real Banach spaces has experienced
an explosive attention after Schöpfer extend the SFP (1.1.9) from real Hilbert space to
p-uniformly convex real Banach spaces which are also uniformly smooth. He introduced
the following algorithm and proved its weak convergence to solution of SFP (1.1.9) in
Banach space: for x1 ∈ E1, set

xn+1 = ΠCJ
E∗

1
[
JE1(xn)− tnA∗JE2(Axn − PQ(Axn))

]
, n ≥ 1, (6.0.1)

where ΠC denotes the Bregman projection from E1 onto C and JE is the duality mapping
with the condition that JEp is weak-to-weak continuous. Based on an idea in Nakajo and
Takahashi [192], Wang [265] introduced the following algorithm with strong convergence
property: for any initial guess x0 ∈ E1, define {xn} recursively by

yn = Txn,

Dn = {u ∈ E : Dp(yn, u) ≤ Dp(xn, u)},
En = {u ∈ E : 〈xn − u, JEp x0 − JEp xn〉 ≥ 0},
xn+1 = ΠDn∩En(x0),

(6.0.2)

where Txn is defined for each n ∈ N by

Tnx =

{
ΠCi(n)

(x) 1 ≤ i(n) ≤ r,

J
E∗

1
q [JE1

p x− tnA∗JE2
p (I − PQi(n)

)Ax],

i : N→ I is the cyclic control mapping i(n)− n mod(r + s) + 1, and tn satisfies

0 < t ≤ tn ≤
(

q

Cq||A||p
) 1

q−1

.
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Motivated by the ongoing effort on SFP (1.1.9) in Banach spaces, in this chapter, we
introduce some new iterative methods for solving SFP (1.1.9) and its generalizations in
real Banach spaces.

6.1 Split Equality Variation Inclusion Problems in

Banach Spaces without Operator Norms

Let E1, E2, E3 be Banach spaces, M1 : E1 → 2E
∗
1 and M2 : E2 → 2E

∗
2 be maximal monotone

operators. The Split Equality Variational Inclusion Problem SEVIP is defined as: Find
x∗ ∈ E1 and y∗ ∈ E2 such that{

0 ∈M1(x∗) and 0 ∈M2(y∗),
Ax∗ = By∗,

(6.1.1)

where A : E1 → E3 and B : E2 → E3 are bounded linear operators.

In this section, we introduce an iterative algorithm with a self adaptive stepsize and prove
a strong convergence theorem for approximating solution of SEVIP (6.1.1) in p-uniformly
convex Banach spaces which are also uniformly smooth such that the ardours task of
computing operator norms is avoided.

6.1.1 Main result

Theorem 6.1.1. Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are
also uniformly smooth. Let C and Q be nonempty closed and convex subsets of E1 and E2

respectively, A : E1 → E3 and B : E2 → E3 be bounded linear operators. Let T1 : E1 →
2E

∗
1 and T2 → 2E

∗
2 be maximal monotone operators such that Γ := {(x̄, ȳ) ∈ T−1

1 (0) ×
T−1

2 (0);Ax̄ = Bȳ} is nonempty. For fixed u ∈ E1 and v ∈ E2, choose an initial guess
x1 ∈ E1 and y1 ∈ E2 arbitrarily and let {αn} ⊂ [0, 1]. Assume that the nth iterate
(xn, yn) ∈ E1×E2 has been constructed; then we calculate the (n+1)th iterate (xn+1, yn+1)
via the formula

un = RλT1J
E∗

1
q (JE1

p (xn)− tnA∗JE3
p (Axn −Byn)),

xn+1 = J
E∗

1
q (αnJ

E1
p (u) + (1− αn)JE1

p (un)),

vn = RλT2J
E∗

2
q (JE2

p (yn) + tnB
∗JE3

p (Axn −Byn)),

yn+1 = J
E∗

2
p (αnJ

E2
p (v) + (1− αn)JE2

p (vn)),

(6.1.2)

where λ > 0, A∗ and B∗ are the adjoints of A and B respectively and the stepsize tn is
choosen in such a way that

tn ∈
(
ε,
( q||Axn −Byn||p
Cq||A∗JE3

p (Axn −Byn)||q +Qq||B∗JE3
p (Axn −Byn)||q

−ε
) 1
q−1
)
, n ∈ Ω, (6.1.3)

for small enough ε, otherwise tn = t(t being any nonegative value ), where the set of indices
Ω = {n : Axn −Byn 6= 0}. Suppose the following conditions are satisfied:
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(i) lim
n→∞

αn = 0,

(ii)
∑∞

n=0 αn =∞.

Then, the sequence {(xn, yn)} strongly converges to (x̄, ȳ) = (ΠΓ1u,ΠΓ2v), where Γi = {z ∈
Ei : 0 ∈ Ti(z)} for i = 1, 2, and ΠΓ1 and ΠΓ2 are the Bregman projections onto Γ1 and Γ2

respectively.

Proof. We divide the proof into three steps:
STEP 1: We show that the step size (6.1.3) is well define. Observe that for any (x, y) ∈ Γ,
we have

〈A∗JE3
p (Axn −Byn), xn − x〉 = 〈JE3

p (Axn −Byn), Axn − Ax〉, (6.1.4)

and

〈B∗JE3
p (Axn −Byn), y − yn〉 = 〈JE3

p (Axn −Byn), By −Byn〉. (6.1.5)

By adding (6.1.4) and (6.1.5) and taking into account the fact Ax = By, we have

||Axn −Byn||p = 〈A∗JE3
p (Axn −Byn), xn − x〉+ 〈B∗JE3

p (Axn −Byn), y − yn〉
≤ ||A∗JE3

p (Axn −Byn)||||Axn − x||+ ||B∗JE3
p (Axn −Byn)||||y − yn||.

Therefore, for n ∈ Ω, that is, ||Axn − Byn|| > 0, we have ||A∗JE3
p (Axn − Byn)|| 6= 0 and

||B∗(Axn −Byn)|| 6= 0. Thus tn is well defined.

STEP 2: We show that the sequences {xn} and {yn} are bounded. Now let (x∗, y∗) ∈ Γ,
then from (6.1.2), we have that

Dp(un, x
∗) = Dp(RλT1J

E∗
1

q (JE1
p (xn)− tnA∗JE3

p (Axn −Byn)), x∗)

≤ Dp(J
E∗

1
q (JE1

p (xn)− tnA∗JE3
p (Axn −Byn)), x∗)

=
1

q
||JE1

p (xn)− tnA∗JE3
p (Axn −Byn)||q − 〈JE1

p (xn), x∗〉

+tn〈A∗JE3
p (Axn −Byn), x∗〉+

1

p
||x∗||p

≤ 1

q
||JE1

p (xn)||q − tn〈JE3
p (Axn −Byn), Axn〉+

Cq
q
tqn||A∗JE3

p (Axn −Byn)||q

−〈JE1
p (xn), x∗〉

+tn〈JE3
p (Axn −Byn), Ax∗〉+

1

p
||x∗||p

=
1

q
||xn||p − 〈JE1

p (xn), x∗〉+
1

p
||x∗||p − tn〈JE3

p (Axn −Byn), Axn − Ax∗〉

+
Cq
q
tqn||A∗JE3

p (Axn −Byn)||q

= Dp(xn, x
∗)− tn〈JE3

p (Axn −Byn), Axn − Ax∗〉

+
Cqt

q
n

q
||A∗JE3

p (Axn −Byn)||q. (6.1.6)
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Following similar process as above, we obtain

Dp(vn, y
∗) ≤ Dp(J

E∗
2

q (JE2
p (yn) + tnB

∗JE3
p (Axn −Byn)), y∗) (6.1.7)

≤ Dp(yn, y
∗)− tn〈JE3

p (Axn −Byn), By∗ −Byn〉

+
Qqt

q
n

q
||B∗JE3

p (Axn −Byn)||q. (6.1.8)

Adding (6.1.6) and (6.1.8), noting that Ax∗ = By∗, we have

Dp(un, x
∗) +Dp(vn, y

∗) ≤ Dp(xn, x
∗) +Dp(yn, y

∗)− tn
[
||Axn −Byn||p

−t
q−1
n

q
(Cq||A∗JE3

p (Axn −Byn)||q

+Qq||B∗JE3
p (Axn −Byn)||q)

]
. (6.1.9)

Thus
Dp(un, x

∗) +Dp(vn, y
∗) ≤ Dp(xn, x

∗) +Dp(yn, y
∗). (6.1.10)

Also from (6.1.2), we have

Dp(xn+1, x
∗) = Dp(J

E∗
1

q (αnJ
E1
p (u) + (1− αn)JE1

p (un)), x∗)

≤ αnDp(u, x
∗) + (1− αn)Dp(un, x

∗).

Similarly, we have

Dp(yn+1, y
∗) ≤ αnDp(v, y

∗) + (1− αn)Dp(vn, y
∗). (6.1.11)

Hence

Dp(xn+1, x
∗) +Dp(yn+1, y

∗) ≤ αn(Dp(u, x
∗) +Dp(v, y

∗)) + (1− αn)×
(Dp(un, x

∗) +Dp(vn, y
∗))

≤ αn(Dp(u, x
∗) +Dp(v, y

∗)) + (1− αn)×
(Dp(xn, x

∗) +Dp(yn, y
∗))

≤ max{Dp(u, x
∗) + (Dp(v, y

∗), Dp(xn, x
∗) +Dp(yn, y

∗)}
...

≤ max{Dp(u, x
∗) + (Dp(v, y

∗), Dp(x1, x
∗) +Dp(y1, y

∗)}.

Thus {Dp(xn+1, x
∗)+Dp(yn+1, y

∗)} is bounded. Consequently, {Dp(xn, x
∗)} and {Dp(yn, y

∗)}
are bounded. It therefore, follows that {xn}, {yn}, {un} and {vn} are bounded.

STEP 3: Next, we prove that {xn} converges strongly to x̄ = ΠΓ1u and {yn} converges
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strongly to ȳ = ΠΓ2v. From (6.1.2), we have that

Dp(xn+1, x
∗) = Dp(J

E∗
1

q (αnJ
E1
p (u) + (1− αn)(un)), x∗)

= Vp(αnJ
E1
p (u) + (1− αn)(un), x∗)

= Vp(αnJ
E1
p (u) + (1− αn)(un)− αn(JE1

p (u)− JE1
p (x∗)), x∗)

+〈αn(JE1
p (u)− JE1

p (x∗)), JE
∗
1

q (αnJ
E1
p (u) + (1− αn)(un))− x∗〉

= Vp(αnJ
E1
p (x∗) + (1− αn)(un), x∗) + αn〈JE1

p (u)− JE1
p (x∗), xn+1 − x∗〉

= Dp(J
E∗

1
q (αnJ

E1
p (x∗) + (1− αn)(un)), x∗) + αn〈JE1

p (u)− JE1
p (x∗), xn+1 − x∗〉

≤ αnDp(x
∗, x∗) + (1− αn)Dp(un, x

∗) + αn〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
= (1− αn)Dp(un, x

∗) + αn〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉. (6.1.12)

Similarly, we have

Dp(yn+1, y
∗) ≤ (1− αn)Dp(vn, y

∗) + αn〈JE2
p (u)− JE2

p (y∗), yn+1 − y∗〉. (6.1.13)

Therefore, from (6.1.10) we have

Dp(xn+1, x
∗) +Dp(yn+1, y

∗) ≤ (1− αn)(Dp(un, x
∗) +Dp(vn, y

∗))

+αn(〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), yn+1 − y∗〉)

≤ (1− αn)(Dp(xn, x
∗) +Dp(yn, y

∗))

+αn(〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), yn+1 − y∗〉). (6.1.14)

Now, we set Θn(x∗, y∗) := Dp(xn, x
∗) + Dp(yn, y

∗), and divide the remaining part of the
proof into two cases.
Case A: Suppose there exists n0 ∈ N such that {Θn(x∗, y∗)} is monotonically non-
increasing for all n ≥ n0. Then {Θn(x∗, y∗)} converges as n→∞ and so

Θn(x∗, y∗)−Θn+1(x∗, y∗)→ 0, n→∞.

Let Mn := Cq||A∗JE3
p (Axn − Byn)||q + Qq||B∗JE3

p (Axn − Byn)||q, then from (6.1.9), we
have

tn

[
||Axn −Byn||p −

tq−1
n

q
Mn

]
≤ Dp(xn, x

∗) +Dp(yn, y
∗)

−(Dp(un, x
∗) + (Dp(vn, y

∗)), (6.1.15)

and therefore,

tn

[
||Axn −Byn||p −

tq−1
n

q
Mn

]
≤ Dp(xn, x

∗) +Dp(yn, y
∗)− (Dp(un, x

∗) + (Dp(vn, y
∗))

= Θn(x∗, y∗)−Θn+1(x∗, y∗) + Θn+1(x∗, y∗)

−(Dp(un, x
∗) + (Dp(vn, y

∗)). (6.1.16)
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Moreover, it follows from (6.1.14) and (6.1.16) and the fact that αn → 0 as n→∞ that

tn

[
||Axn −Byn||p −

tq−1
n

q
Mn

]
≤ Θn(x∗, y∗)−Θn+1(x∗, y∗) + (1− αn)(Dp(un, x

∗) +Dp(vn, y
∗))

+αn(〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), yn+1 − y∗〉)

−(Dp(un, x
∗) + (Dp(vn, y

∗))→ 0, n→∞. (6.1.17)

Again, by the condition on the stepsize tn, we have that

tq−1
n <

q||Axn −Byn||p
Mn

− ε,

which implies that
tq−1
n Mn < q||Axn −Byn||p − εMn,

and thus
εMn

q
< ||Axn −Byn||p −

tq−1
n

q
Mn → 0, n→∞.

Therefore,

Cq||A∗JE3
p (Axn −Byn)||q +Qq||B∗JE3

p (Axn −Byn)||q → 0, n→∞.
It follows that

lim
n→∞

||A∗JE3

p (Axn −Byn)||q = 0 and lim
n→∞

||B∗JE3

p (Axn −Byn)||q = 0. (6.1.18)

Also, we have from (6.1.17) that

tn||Axn −Byn||p ≤ αn(Dp(u, x
∗) +Dp(v, y

∗))− (1− αn)Θn(x∗, y∗)−Θn+1(x∗, y∗)

+
tqn
q
Mn → 0, n→∞. (6.1.19)

Hence,

lim
n→∞

||Axn −Byn||p = 0. (6.1.20)

Let an = J
E∗

1
q (JE1

p (xn) − tnA∗JE3
p (Axn − Byn)) and bn = JE2

q (JE2
p (yn) + tnB

∗JE3
p (Axn −

Byn)), then un = RλT1an and vn = RλT2bn. Following similar argument as in (6.1.6),
(6.1.7),(6.1.8) and (6.1.9) we obtain

Dp(an, x
∗) +Dp(bn, y

∗) ≤ Dp(xn, x
∗) +Dp(yn, y

∗).

It follows from (2.5.28) that

Dp(an, un) +Dp(bn, vn) = Dp(an, RλT1an) +Dp(bn, RλT2bn)

≤ (Dp(an, x
∗) +Dp(bn, y

∗))− (Dp(un, x
∗) +Dp(vn, y

∗))

≤ (Dp(xn, x
∗) +Dp(yn, y

∗))− (Dp(un, x
∗) +Dp(vn, y

∗))

= (Dp(xn, x
∗) +Dp(yn, y

∗))− (Dp(xn+1, x
∗) +Dp(yn+1, y

∗))

+(Dp(xn+1, x
∗) +Dp(yn+1, y

∗))− (Dp(un, x
∗) +Dp(vn, y

∗))

≤ (Dp(xn, x
∗) +Dp(yn, y

∗))− (Dp(xn+1, x
∗) +Dp(yn+1, y

∗))

+αn(Dp(u, x
∗) +Dp(v, y

∗)) + (1− αn)(Dp(un, x
∗) +Dp(vn, y

∗))

−(Dp(un, x
∗) +Dp(vn, y

∗))→ 0, n→∞.
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Hence,
lim
n→∞

Dp(an, un) = 0, and lim
n→∞

Dp(bn, vn) = 0.

Therefore,

lim
n→∞

||an − un|| = 0, and lim
n→∞

||bn − vn|| = 0. (6.1.21)

Since E1 and E2 are uniformly smooth, then JE1
p and JE2

p are uniformly continuous on
bounded subsets of E1 and E2, respectively. Thus

lim
n→∞

||JE1
p an − JE1

p un|| = 0, and lim
n→∞

||JE2
p bn − JE2

p vn|| = 0. (6.1.22)

It follows from the definition of an that

0 ≤ ||JE1
p (an)− JE1

p (xn)||
≤ tn||A∗||||JE3

p (Axn −Byn)||
= tn||A∗||||Axn −Byn||p−1 → 0, n→∞.

Since J
E∗

1
q is norm-to-norm uniformly continuous on bounded subsets of E∗1 , we have

lim
n→∞

||an − xn|| = 0, n→∞. (6.1.23)

Similarly, we can show that

lim
n→∞

||bn − yn|| = 0, n→∞. (6.1.24)

It follows therefore from (6.1.21) that

||un − xn|| ≤ ||un − an||+ ||an − xn|| → 0, n→∞, (6.1.25)

and
||vn − yn|| ≤ ||vn − bn||+ ||bn − yn|| → 0, n→∞.

Furthermore, from (6.1.2), we have

Dp(xn+1, un) ≤ αnDp(u, un) + (1− αn)Dp(un, un)

= αnDp(u, un)→ 0, n→∞,

and

Dp(yn+1, vn) ≤ αnDp(v, vn) + (1− αn)Dp(vn, vn)

≤ αnDp(v, vn)→ 0, n→∞.

Hence
lim
n→∞
||xn+1 − un|| = lim

n→∞
||yn+1 − vn|| = 0.

This together with (6.1.25) implies that

||xn+1 − xn|| ≤ ||xn+1 − un||+ ||un − xn|| → 0, (6.1.26)
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and
||yn+1 − yn|| ≤ ||yn+1 − vn||+ ||vn − yn|| → 0, n→∞.

Since {xn} and {yn} are bounded, there exist subsequences {xni} of {xn} and {yni} of {yn}
such that xni ⇀ x̄ ∈ ω(xn) and yni ⇀ ω(yn) respectively. Now, since lim

n→∞
||un − xn|| = 0

and lim
n→∞
||vn − yn|| = 0, we obtain uni ⇀ x̄ and vni ⇀ ȳ. Let (z, u) ∈ G(T1), that is

z ∈ T1u. Since uni = RλT1ani for all λ > 0, we have

JE1
p ani ∈ (JE1

p + λT1)uni ,

which implies that
1

λ
(JE1
p ani − JE1

p uni) ∈ T1uni .

By the maximal monotonicity of T1, we have

〈z − 1

λ
(JE1
p ani − JE1

p uni), u− uni〉 ≥ 0,

which implies that

〈z, u− uni〉 ≥
1

λ
〈u− nni , JE1

p ani − JE1
p uni〉.

It follows from (6.1.22) and the fact that uni ⇀ x̄ that

〈z, u− x̄〉 ≥ 0.

Since T1 is maximal monotone, we have 0 ∈ T1x̄.
Following similar analysis as above, we obtain 0 ∈ T2ȳ.

Now, since A : E1 → E3 and B : E2 → E3 are bounded linear operators, we have
Axni ⇀ Ax̄ and Byni ⇀ Bȳ. By the weak lower semicontinuity of the norm and (6.1.20),
we have

||Ax̄−Bȳ|| ≤ lim inf
i→∞

||Axni −Byni || = 0.

Hence, Ax̄ = Bȳ.
We now show the sequence {(xn, yn)} strongly converges to (x∗, y∗) = (ΠΓ1u,ΠΓ2v). From
(6.1.14), we have

Dp(xn+1, x
∗) +D(yn+1, y

∗) ≤ (1− αn)(Dp(xn, x
∗) +Dp(yn, y

∗))

+αn(〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉
+〈JE2

p (v)− JE2
p (y∗), yn+1 − y∗〉). (6.1.27)

Choose subsequences {xnj} of {xn} and {ynj} of {yn} such that

lim sup
n→∞

〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉 = lim
j→∞
〈JE1

p (u)− JE1
p (x∗), xnj+1 − x∗〉,

and

lim sup
n→∞

〈JE2
p (v)− JE2

p (y∗), yn+1 − y∗〉 = lim
j→∞
〈JE2

p (v)− JE2
p (y∗), ynj+1 − y∗〉.
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Since xnj ⇀ x̄ and ynj ⇀ ȳ, it follows from (2.5.17) that

lim sup
n→∞

〈JE1
p (u)− JE1

p (x∗), xn+1 − x∗〉 = lim
j→∞
〈JE1

p (u)− JE1
p (x∗), xnj+1 − x∗〉

= 〈JE1
p (u)− JE1

p (x∗), x̄− x∗〉 ≤ 0, (6.1.28)

and

lim sup
n→∞

〈JE2
p (v)− JE2

p (y∗), yn+1 − y∗〉 = lim
j→∞
〈JE2

p (v)− JE2
p (y∗), ynj+1 − y∗〉

= 〈JE2
p (v)− JE2

p (y∗), ȳ − y∗〉 ≤ 0. (6.1.29)

Using Lemma 2.6.29 in (6.1.27), we conclude that

Dp(xn, x
∗) +Dp(yn, y

∗)→ 0, n→∞. (6.1.30)

Thus, Dp(xn, x
∗)→ 0 and Dp(yn, y

∗)→ 0, n→∞. Therefore xn → x∗ and yn → y∗.

Case 2: Assume that {Θn(x∗, y∗)} is not monotonically decreasing. Let τ : N → N be a
mapping for all n ≥ n0 (for some n0 large enough) defined by

τ(n) = max{k ∈ N : k ≤ n, τk ≤ τk+1}.

Clearly, τ is a non-decreasing sequence such that τ(n)→∞, as n→∞ and

0 ≤ Θτ(n)(x
∗, y∗) ≤ Θτ(n)+1(x∗, y∗), ∀n ≥ n0.

Following similar analysis as in Case 1, we conclude that lim
n→∞
||Axτ(n) − Byτ(n)|| = 0;

lim
n→∞
||xτ(n)+1 − xτ(n)|| = 0 and lim

n→∞
||yτ(n)+1 − yτ(n)|| = 0. Also we have that

lim sup
n→∞

〈JE1
p (u)−JE1

p (x∗), xτ(n)+1−x∗〉 ≤ 0 and lim sup
n→∞

〈JE2
p (v)−JE2

p (y∗), yτ(n)+1−y∗〉 ≤ 0.

(6.1.31)

Now, since {xτ(n)} and {yτ(n)} are bounded, there exist subsequences of {xτ(n)} and {yτ(n)}
still denoted as {xτ(n)} and {yτ(n)} which converge weakly to x̄ ∈ E1 and ȳ ∈ E2 respec-
tively. From (6.1.14), we have

Θτ(n)+1(x∗, y∗) ≤ (1− ατ(n))Θτ(n)(x
∗, y∗) + ατ(n)(〈JE1

p (u)− JE1
p (x∗), xτ(n)+1 − x∗〉

+〈JE2
p (v)− JE2

p (y∗), yτ(n)+1 − y∗〉). (6.1.32)

Since Θτ(n)(x
∗, y∗) ≤ Θτ(n)+1(x∗, y∗), it follows from (6.1.32) that

Θτ(n)(x
∗, y∗) ≤ 〈JE1

p (u)− JE1
p (x∗), xτ(n)+1 − x∗〉+ 〈JE2

p (v)− JE2
p (y∗), yτ(n)+1 − y∗〉.

Then from (6.1.31), we have that

lim
n→∞

Θτ(n)(x
∗, y∗) = lim

n→∞
(Dp(xτ(n), x

∗) +Dp(yτ(n), y
∗)) = 0.
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Hence, lim
n→∞

Dp(xτ(n), x
∗) = 0 and lim

n→∞
Dp(yτ(n), y

∗) = 0.

Thus we have lim
n→∞
||xτ(n) − x∗|| = 0 and lim

n→∞
||yτ(n) − y∗|| = 0. As a consequence, we

obtain for all n ≥ n0,

0 ≤ Θn(x∗, y∗) ≤ max{Θτ(n)(x
∗, y∗),Θτ(n)+1(x∗, y∗)} = Θτ(n)+1(x∗, y∗).

Hence, lim
n→∞

Θn(x∗, y∗) = lim
n→∞

(Dp(xn, x
∗) +Dp(yn, y

∗)) = 0.

Thus,
lim
n→∞

Dp(xn, x
∗) = lim

n→∞
Dp(yn, y

∗) = 0.

Therefore, we have

lim
n→∞
||xn − x∗|| = 0 and lim

n→∞
||yn − y∗|| = 0.

This implies that the sequences {(xn, yn)} strongly converges to (x∗, y∗) = (ΠΓ1u,ΠΓ2v).

6.1.2 Applications

Split Equality Feasibility Problem:

Let E be a p-uniformly real Banach space which is also uniformly smooth. Given a proper,
convex and lower semicontinuous function f : E → R∪ {+∞}, the subdifferential of such
function is the mapping ∂f : E → 2E

∗
defined by

∂f(x) = {x∗ ∈ E∗ : f(x)− f(u) ≤ 〈x− u, x∗〉, ∀ u ∈ E}.

We define the resolvent Rλ∂iC
of ∂iC for λ > 0 as

Rλ∂iC
x = (JEp + λ∂iC )−1JEp x,

for all x ∈ E. By definitions, we obtain

∂iCx = {x∗ ∈ E∗ : iCx+ 〈x∗, u− x〉 ≤ iCu, ∀ u ∈ E}
= {x∗ ∈ E∗ : 〈x∗, u− x〉 ≤ 0, ∀ u ∈ C}
= NCx,

for all x ∈ C. Hence, for λ > 0, we have that

u = Rλ∂iC
x ⇔ JEp x ∈ JEp u+ λ∂iCu⇔ JEp (x− u) ∈ λNCu

⇔ 〈JEp (x− u), z − u〉 ≤ 0, ∀ z ∈ C
⇔ u = ΠCx.

Now, let E1, E2 and E3 be Banach spaces, C and Q be nonempty, closed and convex
subsets of E1 and E2 respectively and A : E1 → E3 and B : E2 → E3 be bounded linear
operators. The Split Equality Feasibility Problem (SEFP) is defined as

find x∗ ∈ C and y∗ ∈ Q such that Ax∗ = By∗. (6.1.33)
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With E2 = E3 and B = I the identity mapping in (6.1.33), the SEFP reduces to the SFP.
Setting T1 = ∂iC and T2 = ∂iQ in Theorem 6.1.1, then the algorithm (6.1.2) becomes

un = ΠCJ
E∗

1
q (JE1

p (xn)− tnA∗JE3
p (Axn −Byn)),

xn+1 = J
E∗

1
q (αnJ

E1
p (u) + (1− αn)JE1

p (un)),

vn = ΠQJ
E∗

2
q (JE2

p (yn) + tnB
∗JE3

p (Axn −Byn)),

yn+1 = J
E∗

2
p (αnJ

E2
p (v) + (1− αn)JE2

p (vn)),

(6.1.34)

and so we obtain a strong convergence result for approximation of solution of SEFP in
Banach spaces.

Split Equality Convex Minimization Problem:

Let E be a p-uniformly convex real Banach space which is also uniformly smooth and
C be nonempty closed convex subset of E. Let φ : C → R be a proper convex lower
semicontinuous function. We know that the subdifferential ∂φ is maximal monotone and
the resolvent operator Rλ∂φ = proxλφ where

proxλφx = argmin
u∈E

{φ(u) +
1

2λ
Dp(u, x)},

for each x ∈ E (see [216] for more details).
Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also uniformly
smooth and C and Q be nonempty closed convex subsets of E1 and E2 respectively. Let
A : E1 → E3 and B : E2 → E3 be bounded linear operators. The Split Equality Convex
Minimization Problem (SECMP) is define as: find x∗ ∈ E1 and y∗ ∈ E2 such that{

x∗ = argmin
x∈E1

φ(x) and y∗ = argmin
y∈E2

ψ(y)

Ax∗ = By∗,
(6.1.35)

where φ : C → R and ψ : Q→ R are proper convex lower semicontinuous functions. Now,
by setting T1 = prox∂φ and T2 = prox∂ψ in Theorem 6.1.1, then the Algorithm (6.1.2)
becomes 

un = proxλφJ
E∗

1
q (JE1

p (xn)− tnA∗JE3
p (Axn −Byn)),

xn+1 = J
E∗

1
q (αnJ

E1
p (u) + (1− αn)JE1

p (un)),

vn = proxλψJ
E∗

2
q (JE2

p (yn) + tnB
∗JE3

p (Axn −Byn)),

yn+1 = J
E∗

2
p (αnJ

E2
p (v) + (1− αn)JE2

p (vn)),

(6.1.36)

and so we obtain a strong convergence result for approximating solutions of SECMP in
Banach spaces.

Split Equality Equilibrium Problem:

Let F : C × C → R be a bifunction, we define a multi-valued mapping AF : E → 2E
∗

by

AF (x) :=

{
{z ∈ E∗ : F (x, y) ≥ 1

r
〈JEp y − JEp x, z〉, ∀ y ∈ C}; x ∈ C,

∅; x /∈ C. (6.1.37)

211



Then, we know that ΩEP = A−1
F 0 and AF is a maximal monotone operator with dom(AF )⊂

C (see [248]). Further, for any x ∈ E and r > 0, the resolvent T Fr of F coincides with the
resolvent of AF , that is

T Fr x = (JEp + rAF )−1JEp x.

Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also uniformly
smooth and C and Q be nonempty closed convex subsets of E1 and E2 respectively. Let
A : E1 → E3 and B : E2 → E3 be bounded linear operators. Let F : C × C → R and
G : Q×Q→ R be bifunctions. The Split Equality Equilibrium Problem (SEEP) is defined
as: Find x∗ ∈ C and y∗ ∈ Q such that{

F (x∗, x) ≥ 0 ∀ x ∈ C, G(y∗, y) ≥ 0 ∀ y ∈ Q
and Ax∗ = By∗.

(6.1.38)

Setting RλT1 = T Fr and RλT2 = TGr in Theorem 6.1.1, then the algorithm (6.1.2) becomes
un = T FrnJ

E∗
1

q (JE1
p (xn)− tnA∗JE3

p (Axn −Byn)),

xn+1 = J
E∗

1
q (αnJ

E1
p (u) + (1− αn)JE1

p (un)),

vn = TGrnJ
E∗

2
q (JE2

p (yn) + tnB
∗JE3

p (Axn −Byn)),

yn+1 = J
E∗

2
p (αnJ

E2
p (v) + (1− αn)JE2

p (vn)),

(6.1.39)

for rn > 0, and so we obtain a strong convergence result for approximation of solution of
the SEEP in Banach spaces.

Application to Saddle Points Problem

Let X and Y be two Hilbert spaces and E = X × Y . Let L : E → R ∪ {−∞,+∞} be
a function such that L(x, y) is convex in x ∈ X and concave in y ∈ Y, (convex-concave
function). To such a function, Rockafellar [222] associated the operator TL defined by

TL = ∂1L× ∂2(−L),

where ∂1 (resp. ∂2) stands for the subdifferential of L with respect to the first (resp. the
second) variable. TL is a maximal monotone operator if and only if L is closed and convex
in Rockafellar sense (see [222]).
Moreover, it is well known that (x∗, y∗) is a saddle point of L, namely:

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀ (x, y) ∈ E,

if and only if the following inclusion holds

(0, 0) ∈ TL(x∗, y∗).

The proximal operator associated with TL is define by

proxλL(x, y) = arg minmax
(u,v)

{L(u, v) +
1

2λ
||x− u||2 − 1

2λ
||y − v||2},
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for all (x, y) ∈ E. Now, if in Problem (6.1.1), we set E1 = X1 × Y1, E2 = X2 × Y2,
E3 = X3 × Y3 and T1 = TL1 , T2 = TL2 , where Li (i = 1, 2) are convex-concave functions
on Ei for i = 1, 2, respectively. Then, we have the following split equality saddle point
problem: find (x∗1, y

∗
1) ∈ E1 and (x∗2, y

∗
2) ∈ E2 such that

(x∗1, y
∗
1) = arg minmax

(x1,y1)

L1(x1, y1)

(x∗2, y
∗
2) = arg minmax

(x2,y2)

L2(x2, y2)

and A(x∗1, y
∗
1) = B(x∗2, y

∗
2),

(6.1.40)

where A : E1 → E3 and B : E2 → E3 are bounded linear operators. Then we can obtain
the following strong convergence result from Theorem 6.1.1.

Theorem 6.1.2. Let Xi and Yi be real Hilbert spaces for i = 1, 2, 3. Let E1 = X1 × Y1,
E2 = X2 × Y2, E3 = X3 × Y3. Let C and Q be nonempty closed convex subset of E1 and
E2 respectively, A : E1 → E3 and B : E2 → E3 be bounded linear operators. Let Li : Ei →
R ∪ {−∞,+∞} be convex-concave functions, for i = 1, 2, 3. and Γ := {x̄ = (x1, x2) ∈
T−1
L1

(0, 0), ȳ = (y1, y2) ∈ T−1
L2

(0, 0) ;Ax̄ = Bȳ} is nonempty. For fixed ū = (u1, u2) ∈ E1

and v̄ = (v1, v2) ∈ E2, choose an initial guess x̄1 ∈ E1 and ȳ1 ∈ E2 arbitrarily. Let
{αn} ⊂ [0, 1]. Assume that the nth iterate x̄n = (xn,1, xn,2) ∈ E1 and ȳn = (yn,1, yn,2) ∈ E2

have been constructed; then we calculate the (n+ 1)th iterate (x̄n+1, ȳn+1) via the formula
ūn = proxλL1(x̄n)− tnA∗(Ax̄n −Bȳn),
x̄n+1 = αn(ū) + (1− αn)ūn,
v̄n = proxλL2(ȳn) + tnB

∗(Ax̄n −Bȳn),
ȳn+1 = αn(v̄) + (1− αn)v̄n,

(6.1.41)

where λ > 0, A∗ and B∗ are the adjoints of A and B respectively and the stepsize tn is
choosen in such a way that

tn ∈
(
ε,

2||Ax̄n −Bȳn||2
||A∗(Ax̄n −Bȳn)||2 + ||B∗(Ax̄n −Bȳn)||2 − ε

)
, n ∈ Ω,

for small enough ε, otherwise tn = t (t being any nonegative value ), where the set of
indices Ω = {n : Ax̄n −Bȳn 6= 0}. Suppose the following conditions are satisfied:

(i) lim
n→∞

αn = 0,

(ii)
∑∞

n=0 αn =∞.

Then, the sequences {(x̄n, ȳn)} strongly converges to (x̄, ȳ) = (PΓ1ū, PΓ2 v̄), where Γi =
{z̄ ∈ Ei : 0 ∈ TLi(z̄)} for (i = 1, 2), PΓ1 and PΓ2 are the metric projections onto Γ1 and
Γ2 respectively.
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6.1.3 Numerical Example

For simplicity, we take E1 = E2 = E3 = R, with p = 2. Let A(x) = x, B(x) = 2x, T1(x) =
2x and T2(x) = 3x. Choose λ = 2 and αn = 1√

n
, then algorithm (6.1.2) becomes{

xn+1 = 1√
n
u+ (

√
n−1

5
√
n

)(xn − tn(xn − 2yn))

yn+1 = 1√
n
v + (

√
n−1

7
√
n

)(yn + 2tn(xn − 2yn)),
(6.1.42)

where the step size tn is chosen in such a way that

tn ∈
(
ε,

2||Axn −Byn||2
||AT (Axn −Byn)||2 + ||BT (Axn −Byn)||2 − ε

)
, n ∈ Ω,

for small enough ε, otherwise tn = t (t being any nonegative value ), where the set of
indices Ω = {n : Axn −Byn 6= 0}.
We make different choice of u, v, x1, and y1 and use ε < 10−2, for the stopping criterion.
Case 1:
(i) Take x1 = 1, y1 = −1, u = 0.5 and v = 1.
(ii) Take x1 = 0.25, y1 = 0.005, u = −0.0675 and v = 0.001.
Case 2:
(i) Take x1 = −0.02, y1 = −0.005, u = 0.1 and v = 1.
(ii) Take x1 = −0.0005, y1 = −0.12, u = 1 and v = 0.001.
We note that the choice of tn, as long as it is in the range, does not have any significant
effect on both the number of iterations and cpu time. Mathlab version R2014a is used to
obtain the graphs of errors against number of iterations, execution time against accuracy
and number of iterations against accuracy.
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Figure 6.1: Case 1(i): errors vs number of iterations (top); execution time vs accuracy
(bottom left); number of iterations vs accuracy (bottom right).
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Figure 6.2: Case 1(ii): errors vs number of iterations (top); execution time vs accuracy
(bottom left); number of iterations vs accuracy (bottom right).
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Figure 6.3: Case 2(i): errors vs number of iterations (top); execution time vs accuracy
(bottom left); number of iterations vs accuracy (bottom right).
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Figure 6.4: Case 2(ii): errors vs number of iterations (top); execution time vs accuracy
(bottom left); number of iterations vs accuracy (bottom right).
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CHAPTER 7

Common Fixed Point Problems

7.1 An Intermixed Algorithm for Two λ-Strict Pseu-

docontraction Mappings in q-Uniformly Smooth

Banach Space

In 2010, Chidume and Shahzad [81] established a weak convergence result for fixed point
of pseudocontractive mapping in some uniformly smooth real Banach space which is also
uniformly convex. In particular, they proved the following theorem.

Theorem 7.1.1. Let E be a uniformly smooth real Banach space which is also uniformly
convex and C be a nonempty closed convex subset of E. Let T : C → C be a λ-strict
pseudocontraction for some 0 ≤ λ < 1 with F (T ) 6= ∅. For a fixed x0 ∈ C, defined a
sequence {xn} by

xn+1 = (1− αn)xn + αnTxn, (7.1.1)

where {αn} is a real sequence in [0, 1] satisfying the following conditions: (i)
∑∞

n=0 αn =∞,
(ii)

∑∞
n=0 α

2
n <∞. Then {xn} converges weakly to a fixed point of T.

However, Cholamjiak and Suntai [82] improved and extended the result of [81] from a
real-uniformly smooth Banach space which is also uniformly convex to a real uniformly
convex Banach space which has a Fréchet differentiable norm.
Recently, Cholamjiak and Suntai [83] established a strong convergence result for a count-
able family of strictly pseudocontractive mappings in a q-uniformly smooth and uniformly
convex real Banach space E with nonempty closed and convex subset C which admits
a weakly sequentially continuous duality mapping jq using the following algorithm: for
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x1 ∈ C, {
yn = QC [(1− αn)xn],
xn+1 = (1− βn)xn + βn[(1− γn)yn + γnTnyn], n ≥ 1,

(7.1.2)

where QC is a sunny nonexpansive retraction of E onto C, Tn : C → C is a countable
family of strictly pseudocontractions, {αn}, {βn}, and {γn} are real sequences in (0, 1)
which satisfy the following conditions:
(C1)

∑∞
n=1 αn =∞ and limn→∞ αn = 0,

(C2) 0 < lim supn→∞ βn ≤ lim supn→∞ βn < 1,

(C3) 0 < a ≤ γn ≤ µ, µ = min{1, ( qλ
cq

)
1
q−1}.

Furthermore, Yao et. al. [274] first introduced the intermixed algorithm for approximating
fixed points of two strict pseudocontractive mappings independently in a real Hilbert space.
They proved the following strong convergence theorem:

Theorem 7.1.2. (Theorem 3.3 of [274]): Let C be a nonempty closed convex subset of a
real Hilbert space H. Let T, S : C → C be a λ-strictly pseudocontraction with F (T ) 6= ∅
and F (S) 6= ∅. Let f : C → H be a ρ1-contraction and g : C → H be a ρ2-contraction. Let
k ∈ (0, 1 − λ) be a constant. For arbitrarily given x0 ∈ C, y0 ∈ C, let the sequence {xn}
and {yn} be generated iteratively by{

xn+1 = (1− βn)xn + βnPC [αnf(yn) + (1− k − αn)xn + kTxn], n ≥ 0,
yn+1 = (1− βn)yn + βnPC [αng(xn) + (1− k − αn)yn + kSyn], n ≥ 0,

(7.1.3)

where {αn} and {βn} are two real number sequences in (0, 1). Suppose the following con-
ditions are satisfied

(C1). limn→∞ αn = 0 and
∑∞

n=0 =∞,

(C2). βn ∈ [ξ1, ξ2] ⊂ (0, 1) for all n ≥ 0.

Then the sequences {xn} and {yn} converges strongly to the fixed points PF (T )f(y∗) and
PF (S)g(x∗) of T and S respectively, where x∗ ∈ F (T ) and y∗ ∈ F (S).

We note that in (7.1.3), the definition of {xn} involves {yn} and as well the definition of
{yn} involves {xn}. Also, the intermixed algorithm can be use to find the common fixed
point of the two strict pseudocontraction mappings T and S in a real Hilbert space.

Motivated by the result of [274], we introduce a new intermix algorithm for approximating
fixed points of two strict pseudocontractions and further obtained a strong convergence
result in q-uniformly smooth Banach space which admits weakly sequentially continuous
duality mapping jq.

7.1.1 Main result

Theorem 7.1.3. Let C be a nonempty closed and convex subset of a real q-uniformly
smooth Banach space E which admits a weakly sequentially continuous generalized duality
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mapping jq. Let f : C → C be a ρ1-contraction and g : C → C be a ρ2-contraction. Let
T : C → C be a λ1-strict pseudocontaction and U : C → C be a λ2-strict pseudocontraction
such that F (T ) 6= ∅, F (U) 6= ∅ and λ = min{λ1, λ2}. For arbitrarily given x1 ∈ C and
y1 ∈ C, let the sequence {xn} and {yn} be generated iteratively by{

xn+1 = αnf(yn) + (1− αn)[snTxn + (1− sn)xn] n ≥ 1,
yn+1 = αng(xn) + (1− αn)[snUyn + (1− sn)yn] n ≥ 1,

(7.1.4)

where {αn} and {sn} are two real sequences in (0, 1) satisfying the following conditions:

C1. limn→∞ αn = 0 and
∑∞

n=1 =∞,

C2. 0 < a ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ min{1, (λq
cq

)
1
q−1 }.

Then, {xn} and {yn} converge strongly to fixed points QF (T )f(ȳ) and QF (U)g(x̄) respec-
tively, where x̄ ∈ F (T ) and ȳ ∈ F (U), QF (T ) is the sunny nonexpansive retraction from C
onto F (T ) and QF (U) is the sunny nonexpansive retraction from C onto F (U).

Proof. Let x∗ ∈ F (T ) and y∗ ∈ F (U), we define Ts := (1−s)I+sT and Us := (1−s)I+sU
where I : C → C is the identity mapping. Note that Ts and Us are nonexpansive,
F (Ts) = F (T ) and F (Us) = F (U). Let ρ = max{ρ1, ρ2}, then

||xn+1 − x∗|| = ||αnf(yn) + (1− αn)Tsnxn − x∗||
= ||αn(f(yn)− x∗) + (1− αn)(Tsnxn − x∗)||
≤ αn||f(yn)− x∗||+ (1− αn)||Tsnxn − x∗||
≤ αn(||f(yn)− f(y∗)||+ ||f(y∗)− x∗||) + (1− αn)||xn − x∗||
≤ αnρ1||yn − y∗||+ αn||f(y∗)− x∗||+ (1− αn)||xn − x∗||
≤ αnρ||yn − y∗||+ αn||f(y∗)− x∗||+ (1− αn)||xn − x∗||. (7.1.5)

Similarly, we obtain that

||yn+1 − y∗|| ≤ αnρ||xn − x∗||+ αn||g(x∗)− y∗||+ (1− αn)||yn − y∗||. (7.1.6)

Therefore from (7.1.5) and (7.1.6), we have

||xn+1 − x∗||+ ||yn+1 − y∗|| ≤ (1− (1− ρ)αn)(||xn − x∗||+ ||yn − y∗||)
+αn(||f(y∗)− x∗||+ ||g(x∗)− y∗||)

≤ max
{
||xn − x∗||+ ||yn − y∗||,

||f(y∗)− x∗||+ ||g(x∗)− y∗||
1− ρ

}
...

≤ max
{
||x1 − x∗||+ ||y1 − y∗||,

||f(y∗)− x∗||+ ||g(x∗)− y∗||
1− ρ

}
.

Hence, {xn} and {yn} are bounded. Consequently, {Txn} and {Uyn} are bounded.
Furthermore, by (2.6.10) we have

||xn+1 − x∗||q = ||αn(f(yn)− x∗) + (1− αn)(Tsnxn − x∗)||q
≤ ||(1− αn)(Tsnxn − x∗)||q + qαn〈f(yn)− x∗, jq(xn+1 − x∗)〉.(7.1.7)
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Moreover, by (2.6.11) we have

||(1− αn)(Tsnxn − x∗)||q ≤ (1− αn)||Tsnxn − x∗||q
= (1− αn)||sn(Txn − xn) + (xn − x∗)||q
≤ (1− αn)[||xn − x∗||q − qsn〈xn − Txn, j(xn − x∗)〉

+sqncq||xn − Txn||q]
≤ (1− αn)[||xn − x∗||q − qsnλ1||xn − Txn||q

+sqncq||xn − Txn||q]
≤ (1− αn)[||xn − x∗||q − qsnλ||xn − Txn||q

+sqncq||xn − Txn||q]
= (1− αn)||xn − x∗||q − sn(1− αn)×

(qλ− sq−1
n cq)||xn − Txn||q. (7.1.8)

Also by Lemma 2.6.16, we have

qαn〈f(yn)− x∗, jq(xn+1 − x∗)〉 = qαn〈f(yn)− f(y∗) + f(y∗)− x∗, jq(xn+1 − x∗)〉
≤ qαnρ||yn − y∗||||xn+1 − x∗||q−1

+qαn〈f(y∗)− x∗, jq(xn+1 − x∗)〉

≤ qαnρ
(1

q
||yn − y∗||q +

q − 1

q
||xn+1 − x∗||

q(q−1)
q−1

)
+qαn〈f(y∗)− x∗, jq(xn+1 − x∗)〉

= αnρ(||yn − y∗||q + (q − 1)||xn+1 − x∗||q)
+qαn〈f(y∗)− x∗, jq(xn+1 − x∗)〉. (7.1.9)

Substituting (7.1.8) and (7.1.9) into (7.1.7), we have that

||xn+1 − x∗||q ≤ (1− αn)||xn − x∗||q − sn(1− αn)(qλ− sq−1
n cq)||xn − Txn||q

+αnρ(||yn − y∗||q + (q − 1)||xn+1 − x∗||q)
+qαn〈f(y∗)− x∗, jq(xn+1 − x∗)〉. (7.1.10)

Following similar process as above, we obtain

||yn+1 − y∗||q ≤ (1− αn)||yn − y∗||q − sn(1− αn)(qλ− sq−1
n cq)||yn − Uyn||q

+αnρ(||xn − x∗||q + (q − 1)||yn+1 − y∗||q)
+qαn〈g(x∗)− y∗, jq(yn+1 − y∗)〉. (7.1.11)

Therefore from (7.1.10) and (7.1.11), we have

(1− αnρ(q − 1))(||xn+1 − x∗||q + ||yn+1 − y∗||q)
≤ (1− (1− ρ)αn)(||xn − x∗||q + ||yn − y∗||q)
+ qαn(〈f(y∗)− x∗, jq(xn+1 − x∗)〉+ 〈g(x∗)− y∗, jq(yn+1 − y∗)〉)
− sn(1− αn)(qλ− sq−1

n cq)(||xn − Txn||q + ||yn − Uyn||q).
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Hence,

||xn+1 − x∗||q + ||yn+1 − y∗||q ≤
1− (1− ρ)αn
1− αnρ(q − 1)

(||xn − x∗||q + ||yn − y∗||q) (7.1.12)

+
qαn

1− αnρ(q − 1)
(〈f(y∗)− x∗, jq(xn+1 − x∗)〉

+〈g(x∗)− y∗, jq(yn+1 − y∗)〉)

−sn(1− αn)(qλ− sq−1
n cq)

1− αnρ(q − 1)
(||xn − Txn||q + ||yn − Uyn||q).

The rest of the proof will be divided into two cases.
CASE 1: Suppose {||xn − x∗||q + ||yn − y∗||q} is monotonically nonincreasing, then

(||xn − x∗||q + ||yn − y∗||q)− (||xn+1 − x∗||q + ||yn+1 − y∗||q)→ 0, n→∞.

This implies from (7.1.12) and condition (C2) that

||xn − Txn||q + ||yn − Uyn||q → 0, n→∞.

Hence,
||xn − Txn|| → 0 and ||yn − Uyn|| → 0, n→∞.

Moreover,
||Tsnxn − xn|| = βn||xn − Txn|| → 0, n→∞, (7.1.13)

and
||Usnyn − yn|| = βn||yn − Uyn|| → 0, n→∞. (7.1.14)

Also,

||xn+1 − xn|| ≤ αn||f(yn)− xn||+ (1− αn)||Tsnxn − xn|| → 0, n→∞,

and
||yn+1 − yn|| ≤ αn||g(xn)− yn||+ (1− αn)||Usnyn − yn|| → 0, n→∞.

Since {xn} and {yn} are bounded, there exist subsequences {xnk} of {xn} and {ynk} of {yn}
such that xnk ⇀ x̄ ∈ C and ynk ⇀ ȳ ∈ C. By (7.1.13), (7.1.14) and the demiclosedness
principle of I − Ts and I −Us at 0, we have that x̄ ∈ F (Ts) and ȳ ∈ F (Us). Consequently,
by Lemma 2.6.19, we have that x̄ ∈ F (T ) and ȳ ∈ F (U).

Next we show that xn → x̂ and yn → ŷ where x̂ = QF (T )f(ŷ) and ŷ = QF (U)g(x̂). Observe
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that from (7.1.12), we have

||xn+1 − x̂||q + ||yn+1 − ŷ||q ≤
[
1− (1− ρ)αn − αnρ(q − 1)

1− αnρ(q − 1)

]
(||xn − x̂||q + ||yn − ŷ||q)

−sn(1− αn)(qλ− sq−1
n cq)

1− αnρ(q − 1)
(||xn − Txn||q + ||yn − Uyn||q)

+
qαn

1− αnρ(q − 1)
(〈f(ŷ)− x̂, jq(xn+1 − x̂)〉

+〈g(x̂)− ŷ, jq(yn+1 − ŷ)〉)

≤
[
1− (1− ρ)αn − αnρ(q − 1)

1− αnρ(q − 1)

]
(||xn − x̂||q + ||yn − ŷ||q)

+
qαn

1− αnρ(q − 1)
(〈f(ŷ)− x̂, jq(xn+1 − x̂)〉

+〈g(x̂)− ŷ, jq(yn+1 − ŷ)〉). (7.1.15)

In view of Lemma 2.6.29, put

cn = ||xn − x∗||q + ||yn − y∗||q, Θn =
(1− ρ)αn − αnρ(q − 1)

1− αnρ(q − 1)
,

δn =
qαn

(1− ρ)αn − αnρ(q − 1)
(〈f(y∗)− x∗, jq(xn+1 − x∗)〉+ 〈g(x∗)− y∗, jq(yn+1 − y∗)〉.

Then, it follows from (7.1.15) that

cn+1 ≤ (1−Θn)cn + Θnδn.

Since {αn} ⊂ (0, 1) and
∑∞

n=1 αn =∞, we have that Θn ∈ (0, 1),
∑∞

n=1 Θn =∞. In order
to show that cn → 0, it is sufficient to prove that lim supk→∞ δn ≤ 0.

Choose subsequences {xnk} and {ynk} of {xn} and {yn} respectively, such that

lim sup
n→∞

〈f(ŷ)− x̂, jq(xn+1 − x̂)〉 = lim
k→∞
〈f(ŷ)− x̂, jq(xnk+1 − x̂)〉

and
lim sup
n→∞

〈g(x̂)− ŷ, jq(yn+1 − ŷ)〉 = lim
k→∞
〈g(x̂)− ŷ, jq(ynk+1 − ŷ)〉.

Since xnk ⇀ x̄ and ynk ⇀ ȳ, it follows from Proposition 2.4.3 that

lim sup
n→∞

〈f(ŷ)− x̂, jq(xn+1 − x̂)〉 = lim
k→∞
〈f(ŷ)− x̂, jq(xnk+1 − x̂)〉

= 〈f(ŷ)− x̂, jq(x̄− x̂)〉 ≤ 0, (7.1.16)

and

lim sup
n→∞

〈g(x̂)− ŷ, jq(yn+1 − ŷ)〉 = lim
k→∞
〈g(x̂)− ŷ, jq(ynk+1 − ŷ)〉

= 〈g(x̂)− ŷ, jq(ȳ − ŷ)〉 ≤ 0. (7.1.17)

Thus, it follows from Lemma 2.6.29 and (7.1.15) that ||xn− x̂||q + ||yn− ŷ||q → 0, n→∞,
which implies that xn → x̂ and yn → ŷ.
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Case 2: Assume that {||xn − x∗|| + ||yn − y∗||} is not monotonically decreasing. Let
τ : N→ N be a mapping for all n ≥ n1 (for some n1 large enough) defined by

τ(n) = max{k ∈ N : k ≤ n, τk ≤ τk+1}.

Clearly, τ is a non-decreasing sequence such that τ(n)→∞, as n→∞ and

0 ≤ ||xτ(n) − x∗||+ ||yτ(n) − y∗|| ≤ ||xτ(n)+1 − x∗||+ ||yτ(n)+1 − y∗||, ∀n ≥ n1.

Now, since {xτ(n)} and {yτ(n)} are bounded, there exist subsequences of {xτ(n)} and {yτ(n)}
still denoted as {xτ(n)} and {yτ(n)} which converge weakly to x̄ and ȳ respectively.

After a similar argument as in Case 1, we have ||xτ(n)−Txτ(n)|| → 0, ||yτ(n)−Uyτ(n)|| → 0,
||xτ(n)+1 − xτ(n)|| → 0 and ||yτ(n)+1 − yτ(n)|| → 0 as n→∞.
Also following the same line of argument as in (7.1.16) and (7.1.17), we have

lim sup
k→∞

〈x̂− f(ŷ), jq(x̂− xτ(n)+1)〉 ≤ 0, (7.1.18)

and
lim sup
k→∞

〈ŷ − g(x̂), jq(ŷ − yτ(n)+1)〉 ≤ 0. (7.1.19)

From (7.1.12), we have

0 ≤
(
||xτ(n)+1 − x̂||q + ||yτ(n)+1 − ŷ||q

)
−
(
||xτ(n) − x̂||q + ||yτ(n) − ŷ||q

)
≤

[
1− (1− ρ)ατ(n) − ατ(n)ρ(q − 1)

1− ατ(n)ρ(q − 1)

]
(||xτ(n) − x̂||q + ||yτ(n) − ŷ||q)

−(||xτ(n) − x̂||q + ||yτ(n) − ŷ||q)
+

qατ(n)

1− ατ(n)ρ(q − 1)
(〈f(ŷ)− x̂, jq(xτ(n)+1 − x̂)〉+ 〈g(x̂)− ŷ, jq(yτ(n)+1 − ŷ)〉)

−
sτ(n)(1− ατ(n))(qλ− sq−1

τ(n)cq)

1− ατ(n)ρ(q − 1)
(||xτ(n) − Txτ(n)||q + ||yτ(n) − Uyτ(n)||q).

Thus, we have

(1− ρq)(||xτ(n) − x̂||q + ||yτ(n) − ŷ||q) ≤ q(〈f(ŷ)− x̂, jq(xτ(n)+1 − x̂)〉
+〈g(x̂)− ŷ, jq(yτ(n)+1 − ŷ)〉).

Since ατ(n) → 0, from (7.1.18) and (7.1.19), we have

||xτ(n) − x̂||q + ||yτ(n) − ŷ||q → 0, n→∞. (7.1.20)

Thus we have lim
n→∞
||xτ(n) − x̂|| = 0 and lim

n→∞
||yτ(n) − ŷ|| = 0.

As a consequence, we obtain for all n ≥ n1

0 ≤ ||xτ(n) − x̄||q + ||yτ(n) − ŷ||q ≤ max{||xτ(n) − x̂||q + ||yτ(n) − ŷ||q,
||xτ(n)+1 − x̂||q + ||yτ(n)+1 − ŷ||q}
= ||xτ(n)+1 − x̂||q + ||yτ(n)+1 − ŷ||q. (7.1.21)
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Hence, lim
n→∞
||xτ(n) − x̂||q + ||yτ(n) − ŷ||q = 0. Therefore, we have

lim
n→∞
||xn − x̂|| = 0 and lim

n→∞
||yn − ŷ|| = 0.

This implies that the sequences xn → x̂ and yn → ŷ. This completes the proof.

As consequence of Theorem 7.1.3, we consider the approximation of common fixed point of
two λ-strict pseudocontractive mappings in q-uniformly smooth real Banach space which
admits weakly sequentially continuous duality mapping jq.
Suppose F (T ) 6= ∅, F (U) 6= ∅ and let Γ = F (T ) ∩ F (U) 6= ∅. Now, putting yn = xn and
g(x) = f(x) in Theorem 7.1.3, by adding xn+1 and yn+1, we have

xn+1 = αnf(xn) + (1− αn)
[
sn

1

2
(T + U)xn + (1− sn)xn

]
. (7.1.22)

Let G := 1
2
(T + U), then by Lemma 2.6.20, G is λ-strictly pseudocontraction where

λ = min{λ1, λ2} and F (G) = Γ.
Thus, the following result is obtained from Theorem 7.1.3.

Corollary 7.1.4. Let C be a nonempty closed and convex subset of a real q-uniformly
smooth Banach space E which admits a weakly sequentially continuous generalized duality
mapping jq and with the best q-uniformly smoothness constant cq > 0. Let f : C → C be
a ρ-contraction. Let G := 1

2
(T + U) where T : C → C is a λ1-strict pseudocontaction

and U : C → C is a λ2-strict pseudocontraction such that F (T ) 6= ∅, F (U) 6= ∅ and
λ = min{λ1, λ2}. Suppose Γ := F (T ) ∩ F (U) 6= ∅. For arbitrarily given x1 ∈ C, let the
sequence {xn} be generated iteratively by{

xn+1 = αnf(xn) + (1− αn)
[
snGxn + (1− sn)xn

]
n ≥ 1, (7.1.23)

where {αn} and {sn} are two real sequences in (0, 1) satisfying the following conditions:

C1. limn→∞ αn = 0 and
∑∞

n=1 αn =∞,

C2. 0 < a ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ min{1, (λq
cq

)
1
q−1 }.

Then, {xn} converges strongly to the common fixed point QΓf(x̂) of T and U , where x̂ ∈ Γ
and QΓ is the sunny nonexpansive retraction from C onto Γ.

Corollary 7.1.5. Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let f : C → C be a ρ1-contraction and g : C → C be a ρ2-contraction. Let T : C → C
be a κ1-strict pseudocontaction and U : C → C be a κ2-strict pseudocontraction such that
F (T ) 6= ∅, F (U) 6= ∅ and κ = min{κ1, κ2}. For arbitrarily given x1 ∈ C and y1 ∈ C, let
the sequence {xn} and {yn} be generated iteratively by{

xn+1 = αnf(yn) + (1− αn)[snTxn + (1− sn)xn] n ≥ 1,
yn+1 = αng(xn) + (1− αn)[snUyn + (1− sn)yn] n ≥ 1,

(7.1.24)

where {αn} and {sn} are two real sequences in (0, 1) satisfying the following conditions:
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C1. limn→∞ αn = 0 and
∑∞

n=1 αn =∞,

C2. 0 < a ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ 1.

Then, {xn} and {yn} converge strongly to fixed points PF (T )f(ŷ) and PF (U)g(x̂) respectively,
where x̂ ∈ F (T ) and ŷ ∈ F (U), PF (T ) is the metric projection from C onto F (T ) and PF (U)

is the metric projection from C onto F (U).

7.2 Convergence Theorem for the Class of of N-Generalized

Bregman Nonspreading Mapping in Banach Spaces

In this section, we introduce the class of N -generalized Bregman nonspreading mapping
in reflexive Banach spaces. We propose an hybrid iterative scheme for finding a common
solution of a countable family of equilibrium problems and a fixed point of a mapping in
reflexive Banach spaces.

Definition 7.2.1. Let C be a nonempty, closed and convex subset of a reflexive Banach
space E. A mapping T : C → C is said to be

(a) Bregman nonexpansive [213] if

Df (Tx, Ty) ≤ Df (x, y) ∀x, y ∈ C;

(b) Bregman nonspreading [153] if

Df (Tx, Ty) +Df (Ty, Tx) ≤ Df (Tx, y) +Df (Ty, x), ∀x, y ∈ C,

(c) (α, β, γ, δ)-generalized Bregman nonspreading [7] if there exist α, β, γ, δ ∈ R such
that

αDf (Tx, Ty) + (1− α)Df (x, Ty) + γ{Df (Ty, Tx)−Df (Ty, x)}
≤ βDf (Tx, y) + (1− β)Df (x, y) + δ{Df (y, Tx)−Df (y, x)}, ∀x, y ∈ C.

(d) n-generalized Bregman nonspreading mapping if there exist αi, βi, γi, δi ∈ R, i =
1, 2, . . . , n such that

n∑
k=1

αkDf (T
n+1−kx, Ty) + (1−

n∑
k=1

αk)Df (x, Ty) +
n∑
k=1

γk{Df (Ty, T
n+1−kx)−Df (Ty, x)}

≤
n∑
k=1

βkDf (T
n+1−kx, y) + (1−

n∑
k=1

βk)Df (x, y) +
n∑
k=1

δk{Df (y, T
n+1−kx)−Df (y, x)},

(7.2.1)

for all x, y ∈ C.
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Remark 7.2.1. From Definition 7.2.1, it is obvious that

(i) every 1-generalized Bregman nonspreading mapping is (α, β, γ, δ)-generalized Breg-
man nonspreading.

(ii) The class of (1, 1, 1, 0)-generalized Bregman nonspreading mappings is Bregman non-
spreading.

(iii) Also, the class of (1, 0, 0, 0)-generalized Bregman nonspreading mappings is Bregman
nonexpansive.

(iv) If E is smooth and strictly convex and f(x) = 1
2
||x||2, then the class of n-generalized

Bregman nonspreading mapping reduces to the class of n-generalized nonspreading
mapping introduced by Takahashi et al. [250].

We next present an example of a n-generalized Bregman nonspreading mapping with
n = 2.

Example 7.2.2. Let E = R and f(x) =
x4

2
, then the associated Bregman distance is

given by Df (x, y) = 1
2
x4 + 3

2
y4 − 2xy3, ∀x, y ∈ R. Define T : [0, 4]→ [0, 4] by

Tx =

{
0, if x ∈ [0, 4),

1, if x = 4.
(7.2.2)

It is easy to show that T is 2-generalized Bregman nonspreading with constants α1 = 1
2
,

α2 = 3
4
, β1 = 1

3
, β2 = 2

3
, γ1 = 1

4
, γ2 = 4

5
, δ1 = 1

2
, δ2 = 1

2
and F (T ) = {0}.

7.2.1 Main results

In this subsection, we present the existence and some properties of fixed points of n-
generalized Bregman nonspreading mapping in a reflexive Banach space. This result ex-
tends the corresponding results of [250] and [161] to reflexive Banach space.

Proposition 7.2.3. Let E be a real reflexive Banach space and let C be a nonempty, closed
and convex subset of E. Let f : E → R be a strictly convex and Gâteaux differentiable
function and T : C → C be a n-generalized Bregman nonspreading mapping. Then, the
following are equivalent

(i) F (T ) is nonempty;

(ii) {Tmz} is bounded for some z ∈ C and m ∈ N.

Proof. First we show that (i)⇒ (ii). Suppose F (T ) 6= ∅, then {Tmz} = {z} for z ∈ F (T ).
So {Tmz} is bounded. Next, we show that (ii) implies (i). Let {Tmz} be bounded for some
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z ∈ C. Since T is n-Bregman generalized nonspreading, then there exist αi, βi, γi, δi ∈ R
for i = 1, 2, . . . , n, such that

n∑
k=1

αkDf (T
n+1−kx, Ty) + (1−

n∑
k=1

αk)Df (x, Ty)

+
n∑
k=1

γk{Df (Ty, T
n+1−kx)−Df (Ty, x)}

≤
n∑
k=1

βkDf (T
n+1−kx, y) + (1−

n∑
k=1

βk)Df (x, y)

+
n∑
k=1

δk{Df (y, T
n+1−kx)−Df (y, x)}, (7.2.3)

for all x, y ∈ C. Replacing x by Tm−1z in (7.2.3), we have that for any y, z ∈ C,

n∑
k=1

αkDf (T
n+1−kTm−1z, Ty) + (1−

n∑
k=1

αk)Df (T
m−1z, Ty)

+
n∑
k=1

γk{Df (Ty, T
n+1−kTm−1z)−Df (Ty, T

m−1z)}

≤
n∑
k=1

βkDf (T
n+1−kTm−1z, y) + (1−

n∑
k=1

βk)Df (T
m−1z, y)

+
n∑
k=1

δk{Df (y, T
n+1−kTm−1z)−Df (y, T

m−1z)}. (7.2.4)

Since {Tmz} is bounded, we can apply Banach limit µ to both sides of (7.2.4), then we
have

µm

( n∑
k=1

αkDf (T
m+n−kz, Ty) + (1−

n∑
k=1

αk)Df (T
m−1z, Ty)

+
n∑
k=1

γk{Df (Ty, T
m+n−kz)−Df (Ty, T

m−1z)}
)

≤ µm

( n∑
k=1

βkDf (T
m+n−kz, y) + (1−

n∑
k=1

βk)Df (T
m−1z, y)

+
n∑
k=1

δk{Df (y, T
m+n−kz)−Df (y, T

m−1z)}
)
.
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Thus, we obtain

n∑
k=1

αkµmDf (T
m+n−kz, Ty) + (1−

n∑
k=1

αk)µmDf (T
m−1z, Ty)

+
n∑
k=1

γk{µmDf (Ty, T
m+n−kz)− µmDf (Ty, T

m−1z)}

≤
n∑
k=1

βkµmDf (T
m+n−kz, y) + (1−

n∑
k=1

βk)µmDf (T
m−1z, y)

+
n∑
k=1

δk{µmDf (y, T
m+n−kz)− µmDf (y, T

m−1z)}. (7.2.5)

Then

n∑
k=1

αkµmDf (T
mz, Ty) + (1−

n∑
k=1

αk)µmDf (T
mz, Ty)

+
n∑
k=1

γk{µmDf (Ty, T
mz)− µmDf (Ty, T

mz)}

≤
n∑
k=1

βkµmDf (T
mz, y) + (1−

n∑
k=1

βk)µmDf (T
mz, y)

+
n∑
k=1

δk{µmDf (y, T
mz)− µmDf (y, T

mz)}.

Hence
µmDf (T

mz, Ty) ≤ µmDf (T
mz, y).

Therefore by Lemma 2.6.35, T has a fixed point in C. This completes the proof.

The following results follow as direct consequences of Theorem 7.2.3.

Corollary 7.2.4. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex Banach space E, let p be a real number such that 1 < p < +∞ and let f be a
function defined by f(x) = 1

p
||x||p and T : C → C be a n-generalized Bregman nonspreading

mapping. Then, the following assertions are equivalent:

(i) F (T ) is nonempty;

(ii) {Tmz} is bounded for some z ∈ C.

Corollary 7.2.5. Let C be a nonempty bounded closed convex subset of a real reflexive
Banach space E and f : E → R be a strictly convex and Gâteaux differentiable function.
Let T : C → C be a n-generalized Bregman nonspreading mapping. Then, T has a fixed
point.

Remark 7.2.6. Corollary 7.2.4 is a generalization of the corresponding result in Theorem
3.2 of [250], where the equivalence between the two assertions was shown for p = 2.
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We now show another important property of the fixed points of n-generalized Bregman
nonspreading mapping.

Proposition 7.2.7. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and f : E → R be a strictly convex and Gâteaux differentiable function.
Let T : C → C be a n-generalized Bregman nonspreading mapping such that F (T ) 6= ∅.
Then F (T ) is closed and convex.

Proof. Let u ∈ F (T ), then putting u = x ∈ F (T ) in (7.2.1), we have

n∑
k=1

αkDf (u, Ty) + (1−
n∑
k=1

αk)Df (u, Ty) +
n∑
k=1

γk{Df (Ty, u)−Df (Ty, u)}

≤
n∑
k=1

βkDf (u, y) + (1−
n∑
k=1

βk)Df (u, y) +
n∑
k=1

δk{Df (y, u)−Df (y, u)},

which implies that

Df (u, Ty) ≤ Df (u, y), ∀u ∈ F (T ), y ∈ C. (7.2.6)

This means that T is quasi-Bregman nonexpansive. Now let {xn} ⊂ F (T ) such that
xn → p. Then

Df (p, Tp) = lim
n→∞

Df (xn, Tp) ≤ Df (xn, p) = Df (p, p) = 0.

Hence, p ∈ F (T ). Therefore F (T ) is closed.

Next, we show that F (T ) is convex. For any x, y ∈ F (T ) and λ ∈ (0, 1), let z = λx+ (1−
λ)y. Then

Df (z, Tz) = f(z)− f(Tz)− 〈∇f(Tz), z − Tz〉
= f(z)− f(Tz)− 〈∇f(Tz), λx+ (1− λ)y − Tz〉
= f(z) + λDf (x, Tz) + (1− λ)Df (y, Tz)− λf(x)− (1− λ)f(y)

≤ f(z) + λDf (x, z) + (1− λ)Df (y, z)− λf(x)− (1− λ)f(y)

= f(z)− f(z)− 〈∇f(z), λx+ (1− λ)y − z〉
= f(z)− f(z)− 〈∇f(z), z − z〉
= 0. (7.2.7)

Hence, z = Tz. Therefore, F (T ) is convex.

Using Corollary 7.2.5 and Proposition 7.2.7, we prove the following common fixed point
theorem for a commutative family of n-generalized Bregman nonspreading mapping in a
reflexive Banach space.

Theorem 7.2.8. Let f : E → R be a strictly convex and Gâteaux differentiable function,
C be a nonempty bounded closed convex subset of a real reflexive Banach space E and let
{Tα}α∈I be a commutative family of n-generalized Bregman nonspreading mappings from
C into itself. Then {Tα}α∈I has a common fixed point.
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Proof. By Theorem 7.2.7, we know that F (Tα) is a closed convex subset of C. Since E
is reflexive and C is a bounded closed and convex subset, C is weakly compact. To show
that ∩α∈IF (Tα) is nonempty, it is sufficient to show that {F (Tα)}α∈I has a nonempty finite
intersection property.

Now, let {T1, T2, . . . , TN} be a commutative finite family of n-generalized Bregman non-
spreading mapping from C into itself. We prove by induction that {T1, T2, . . . , TN} has a
common fixed point. To do this, we start by showing the case for N = 2. By Corollary
7.2.5 and Theorem 7.2.7, F (T1) is nonempty, bounded, closed and convex. Let u ∈ F (T1),
since T1T2 = T2T1, then we have T1T2u = T2T1u = T2u. This implies that T2u ∈ F (T1).
Hence, F (T1) is T2-invariant. Thus, the restriction of T2 to F (T1) is a n-generalized Breg-
man nonspreading self mapping. By Corollary 3.1.1, T2 has a fixed point in F (T1), that
is, we have z ∈ F (T1) such that T2z = z. Hence, z ∈ F (T1) ∩ F (T2).

Suppose that for some N ≥ 2, Γ = ∩Nk=1F (Tk) is nonempty. Then Γ is a nonempty,
bounded, closed and convex subset of C and the restriction of TN+1 to Γ is a n-generalized
Bregman nonspreading self mapping. By Corollary 3.1.1, TN+1 has a fixed point in Γ. This
implies that Γ ∩ F (TN+1) is nonempty. Hence, ∩N+1

k=1 F (Tk) is nonempty. This completes
the proof.

The following result will be used in the sequel.

Proposition 7.2.9. Let E be a real reflexive Banach space and let C be a nonempty, closed
and convex subset of E. Let f : E → R be a strongly coercive Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let
T : C → C be a n-generalized Bregman nonspreading mapping. Then, for any x, y ∈ C,
αi, βi, γi, δi ∈ R, for i = 1, 2, . . . , n, we have

0 ≤
n∑
k=1

(βk − αk)
(
Df (T

n+1−kx, Ty)−Df (x, Ty)
)

+Df (Ty, y)

+〈∇f(Ty)−∇f(y),
n∑
k=1

βk(T
n+1−kx− x) + x− Ty〉

+
n∑
k=1

δk{Df (y, T
n+1−kx)−Df (y, x)}

−
n∑
k=1

γk{Df (Ty, T
n+1−kx)−Df (Ty, x)}. (7.2.8)

Proof. From the definition of n-generalized Bregman nonspreading mapping, we have

n∑
k=1

αkDf (T
n+1−kx, Ty) + (1−

n∑
k=1

αk)Df (x, Ty) +
n∑
k=1

γk{Df (Ty, T
n+1−kx)−Df (Ty, x)}

≤
n∑
k=1

βkDf (T
n+1−kx, y) + (1−

n∑
k=1

βk)Df (x, y) +
n∑
k=1

δk{Df (y, T
n+1−kx)−Df (y, x)},

(7.2.9)
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for all x, y ∈ C. This implies that

0 ≤
n∑
k=1

βkDf (T
n+1−kx, y) + (1−

n∑
k=1

βk)Df (x, y) +
n∑
k=1

δk{Df (y, T
n+1−kx)−Df (y, x)}

−
n∑
k=1

αkDf (T
n+1−kx, Ty)− (1−

n∑
k=1

αk)Df (x, Ty)

−
n∑
k=1

γk{Df (Ty, T
n+1−kx)−Df (Ty, x)}.

Hence, from the three points identity (Proposition 2.5.1(ii)), we have

0 ≤
n∑
k=1

βk

(
Df (T

n+1−kx, Ty) +Df (Ty, y) + 〈∇f(Ty)−∇f(y), T n+1−kx− Ty〉
)

+(1−
n∑
k=1

βk)
(
Df (x, Ty) +Df (Ty, y) + 〈∇f(Ty)−∇f(y), x− Ty〉

)
−

n∑
k=1

αkDf (T
n+1−kx, Ty)− (1−

n∑
k=1

αk)Df (x, Ty)

−
n∑
k=1

γk{Df (Ty, T
n+1−kx)−Df (Ty, x)}+

n∑
k=1

δk{Df (y, T
n+1−kx)−Df (y, x)}.

Therefore

0 ≤
n∑
k=1

(βk − αk)
(
Df (T

n+1−kx, Ty)−Df (x, Ty)
)

+Df (Ty, y)

+〈∇f(Ty)−∇f(y),
n∑
k=1

βk(T
n+1−kx− x) + x− Ty〉

+
n∑
k=1

δk{Df (y, T
n+1−kx)−Df (y, x)} −

n∑
k=1

γk{Df (Ty, T
n+1−kx)−Df (Ty, x)}.

The following result is another important property which characterized the n-generalized
Bregman nonspreading mapping.

Proposition 7.2.10. Let T : C → C be a n-generalized Bregman nonspreading mapping.
Suppose F (T ) 6= ∅, then T is Bregman relatively nonexpansive.

Proof. It is clear that

Df (p, Tx) ≤ Df (p, x) ∀p ∈ F (T ), x ∈ C.

We show that F̂ (T ) = F (T ). It is easy to see that F (T ) ⊂ F̂ (T ). Now let p ∈ F̂ (T ), that
is, there exist a sequence {xn} ⊂ C such that xn ⇀ p and ||xn − Txn|| → 0. Since f is
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uniformly Frćhet differentiable on bounded subsets of E, then ∇f is uniformly continuous
and thus

lim
n→∞

||f(xn)− f(Txn)|| = lim
n→∞

||∇f(xn)−∇f(Txn)|| = 0. (7.2.10)

Putting x = xn and y = q in Proposition 7.2.9, we have

0 ≤
n∑
k=1

(βk − αk)
(
Df (T

n+1−kxn, T q)−Df (xn, T q)
)

+Df (Tq, q)

+〈∇f(Tq)−∇f(q),
n∑
k=1

βk(T
n+1−kxn − xn) + xn − Tq〉

+
n∑
k=1

δk{Df (q, T
n+1−kxn)−Df (q, xn)} −

n∑
k=1

γk{Df (Tq, T
n+1−kxn)−Df (Tq, xn)}.(7.2.11)

Observe that

Df (T
n+1−kxn, T q)−Df (xn, T q) = f(T n+1−kxn)− f(Tq)− 〈∇f(Tq), T n+1−kxn − Tq〉

−f(xn) + f(Tq) + 〈∇f(Tq), xn − Tq〉
= f(T n+1−kxn)− f(xn) + 〈∇f(Tq), xn − Tq〉
−〈∇f(Tq), T n+1−kxn − Tq〉 (7.2.12)

= f(T n+1−kxn)− f(xn) + 〈∇f(Tq), xn − T n+1−kxn〉.

Similarly

Df (q, T
n+1−kxn)−Df (q, xn) = f(xn)− f(T n+1−kxn) + 〈∇f(xn), T n+1−kxn − xn〉

+〈∇f(xn)−∇f(T n+1−kxn), q − xn〉, (7.2.13)

and

Df (Tq, T
n+1−kxn)−Df (Tq, xn) = f(xn)− f(T n+1−kxn) + 〈∇f(xn), T n+1−kxn − xn〉

+〈∇f(xn)−∇f(T n+1−kxn), T q − xn〉. (7.2.14)

Substituting (7.2.12), (7.2.13) and (7.2.14) into (7.2.11), we have

0 ≤
n∑
k=1

(βk − αk)
(
f(T n+1−kxn)− f(xn) + 〈∇f(Tq), xn − T n+1−kxn〉

)
+Df (Tq, q)

+〈∇f(Tq)−∇f(q),
n∑
k=1

βk(T
n+1−kxn − xn) + xn − Tq〉

+
n∑
k=1

δk{f(xn)− f(T n+1−kxn) + 〈∇f(xn), T n+1−kxn − xn〉

+〈∇f(xn)−∇f(T n+1−kxn), q − xn〉}

−
n∑
k=1

γk{f(xn)− f(T n+1−kxn) + 〈∇f(xn), T n+1−kxn − xn〉

+〈∇f(xn)−∇f(T n+1−kxn), T q − xn〉}. (7.2.15)
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Taking limit as n→∞ in (7.2.15) and using (7.2.10), we have

0 ≤ Df (Tq, q) + 〈∇f(Tq)−∇f(q), q − Tq〉.

Using the four points identity (Proposition 2.5.1(iii)), we have

0 ≤ Df (Tq, q) +Df (Tq, Tq)−Df (Tq, q)−Df (q, T q) +Df (q, q)

= −Df (q, T q).

Thus Df (q, T q) ≤ 0 and then Df (q, T q) = 0. Since f is strictly convex, we have q = Tq.

Hence, q ∈ F (T ). Therefore F̂ (T ) ⊂ F (T ). This thus implies that F̂ (T ) = F (T ).

Convergence analysis

Let {αn,i : n, i ∈ N, 1 ≤ i ≤ N} be sequences of real numbers such that {αn,i} ⊂ (0, 1). We
define the following Wn : C → C mapping generated by T i, i = 1, 2, . . . , N and {αn,i},
where T i : C → C is a finite family of n-generalized Bregman nonspreading mappings.

Sn,0x = x,

Sn,1x = ∇f ∗[αn,1∇f(T 1x) + (1− αn,1)∇f(x)]

Sn,2x = ∇f ∗[αn,2∇f(T 2Sn,1x) + (1− αn,2)∇f(Sn,1x)]

Sn,3x = ∇f ∗[αn,3∇f(T 3Sn,2x) + (1− αn,3)∇f(Sn,2x)]
... (7.2.16)

Sn,N−1x = ∇f ∗[αn,N−1∇f(TN−1Sn,N−2x) + (1− αn,N−1)∇f(Sn,N−2x)]

Wn = Sn,N = ∇f ∗[αn,N∇f(TNSn,N−1x) + (1− αn,N)∇f(Sn,N−1x)].

Using the above definition, we have the following lemma.

Proposition 7.2.11. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and let f : E → R be a coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let {T i}Ni=1

be a finite famiy of n-generalized Bregman nonspreading mapping of C into itself such
that

⋂N
i=1 F (T i) 6= ∅. Let {αn,i} be real sequence in (0, 1) such that lim infn→∞ αn,i > 0,

∀i ∈ {1, 2, . . . , N}. Let Wn be a Bregman W-mapping generated by T 1, T 2, . . . , TN in
(7.2.16). Then

(i) ∩Ni=1F (T i) = F (Wn),

(ii) Wn is Bregman quasi-nonexpansive,

(iii) If in addition, T i is Bregman relatively nonexpansive mapping, for each i, then Wn

is Bregman relatively nonexpansive.

Proof. Let x ∈ ∩Ni=1F (T i). Then T ix = x, i = 1, 2, . . . , N. From (7.2.16), we have that
Sn,1x = x, Sn,2x = x, . . . , Sn,Nx = x. Thus ∩Ni=1F (T i) ⊂ F (Wn). Conversely, let y ∈
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F (Wn) and x ∈ ∩Ni=1F (T i). Then

Df (x, y) = Df (x,Wny)

= Df (x,∇f ∗(αn,N∇f(TNSn,N−1y) + (1− αn,N)∇f(Sn,N−1y)))

= f(x)− 〈x, αn,N∇f(TNSn,N−1y)〉+ (1− αn,N)∇f(Sn,N−1y)〉
+f ∗(αn,N∇f(TNSn,N−1y) + (1− αn,N)∇f(Sn,N−1y))

≤ αn,N(f(x)− 〈x,∇f(TNSn,N−1y) + f ∗(∇f(TNSn,N−1y)))

+(1− αn,N)(f(x)− 〈x,∇f(Sn,N−1y)〉+ f ∗(∇f(TNSn,N−1y)))

−αn,N(1− αn,N)ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y)||)
= αn,NDf (x, T

NSn,N−1y) + (1− αn,N)Df (x, Sn,N−1y)

−αn,N(1− αn,N)ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y))

≤ Df (x, Sn,N−1y)− αn,N(1− αn,N)ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y)||)
...

≤ Df (x, y)− αn,1(1− αn,1)ρ∗r(||∇f(T 1y)−∇f(y)||)
−αn,2(1− αn,2)ρ∗r(||∇f(T 2Sn,1y)−∇f(Sn,1y)||)− . . .
−αn,N(1− αn,N)ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y)||). (7.2.17)

This implies that

αn,1(1− αn,1)ρ∗r(||∇f(T 1y)−∇f(y)||) = αn,2(1− αn,2)ρ∗r(||∇f(T 2Sn,1y)−∇f(Sn,1y)||)
= · · · = αn,N(1− αn,N)ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y)||) = 0.

Then by the property of ρ∗r from Lemma 2.6.21 and the norm-to-norm continuity of ∇f ∗,
we have

T 1y = y,

T 2Sn,1y = Sn,1y,
...

TNSn,N−1 = Sn,N−1y.

It follows that

Df (y, Sn,1y) = Df (y,∇f ∗(αn,1∇f(T 1y) + (1− αn,1)∇f(y)))

≤ αn,1Df (y, T
1y) + (1− αn,1)Df (y, y) = 0.

Therefore y ∈ F (Sn,1) and consequently, y ∈ F (T 1). Following similar argument, we have

that y ∈ F (T i) for i = 1, 2, . . . , N and hence y ∈ ⋂N
i=1 F (T i).
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(ii) Let y ∈ F (Wn). Then

Df (y,Wnx) = Df (y,∇f ∗(αn,N∇f(TNSn,N−1x) + (1− αn,N)∇f(Sn,N−1x)))

≤ αn,NDf (y, T
NSn,N−1x) + (1− αn,N)Df (y, Sn,N−1x)

≤ αn,NDf (y, Sn,N−1x) + (1− αn,N)Df (y, Sn,N−1x)

= Df (y, Sn,N−1x)

= Df (y,∇f ∗(αn,N−1∇f(TN−1Sn,N−2x) + (1− αn,N−1)∇f(Sn,N−2x)))

≤ αn,N−1Df (y, T
N−1Sn,N−2x) + (1− αn,N−1)Df (y, Sn,N−2x)

≤ Df (y, Sn,N−2x)
...

≤ Df (y, x).

(iii) Let {xn} ⊂ C such that xn ⇀ x̄ and ||Wnxn− xn|| → 0 as n→∞. From (7.2.17), we
have

Df (x̄,Wnxn) ≤ Df (x̄, xn)− αn,1(1− αn,1)ρ∗r(||∇f(T 1xn)−∇f(xn)||) (7.2.18)

−αn,2(1− αn,2)ρ∗r(||∇f(T 2Sn,1xn)−∇f(Sn,1xn)||)− . . .
−αn,N(1− αn,N)ρ∗r(||∇f(TNSn,N−1xn)−∇f(Sn,N−1xn)||).

Using three points identity (Proposition 2.5.1(ii)), we obtain

Df (x̄, xn)−Df (x̄,Wnxn) = 〈x̄− xn,∇f(Wnxn)−∇f(xn)〉 −Df (xn,Wnxn). (7.2.19)

Since xn ⇀ x̄ and limn→∞ ||xn −Wnxn|| = 0, we obtain

|Df (x̄, xn)−Df (z̄,Wnxn)| ≤ ||x̄− xn||||∇f(Wnxn)−∇f(xn)|| −Df (xn,Wnxn)→ 0,(7.2.20)

as n→∞. Therefore from (7.2.18), we have

αn,1(1− αn,1)ρ∗r(||∇f(T 1xn)−∇f(xn)||)+
αn,2(1− αn,2)ρ∗r(||∇f(T 2Sn,1xn)−∇f(Sn,1xn)||) + . . .

+ αn,N(1− αn,N)ρ∗r(||∇f(TNSn,N−1xn)−∇f(Sn,N−1xn)||) ≤ Df (x̄, xn)−Df (x̄, xn).

Taking limit as n→∞, using (7.2.20) and property of ρ∗r, yields

lim
n→∞

||∇f(T 1xn)−∇f(xn)|| = lim
n→∞

||∇f(T 2Sn,1xn)−∇f(Sn,1xn)|| =
· · · = lim

n→∞
||∇f(TNSn,N−1xn)−∇f(Sn,N−1xn)|| = 0.

By the norm-to-norm uniform continuity of ∇f on bounded subset of E∗, it follows that

lim
n→∞

||T 1xn − xn|| = lim
n→∞

||T 2Sn,1xn − Sn,1xn|| = . . .

= lim
n→∞

||TNSn,N−1xn − Sn,N−1xn|| = 0. (7.2.21)

We next prove that Sn,ixn − xn → 0 for each i = 1, 2, . . . , N − 1. From (7.2.16), we get

Dp(xn, Sn,1xn) = Df (xn,∇f ∗[αn,1∇f(T 1xn) + (1− αn,1)∇f(xn)])

≤ αn,1Df (xn, T
1xn) + (1− αn,1)Df (xn, xn).
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Taking limit as n→∞ and using (7.2.21), we have

lim
n→∞

Df (xn, Sn,1xn) = 0,

hence

lim
n→∞

||Sn,1xn − xn|| = 0.

Thus

||T 2Sn,1xn − xn|| ≤ ||T 2Sn,1xn − Sn,1xn||+ ||Sn,1xn − xn|| → 0 n→∞.

Similarly, we have

Df (xn, Sn,2xn) = Df (xn,∇f ∗[αn,2∇f(T 2Sn,1xn) + (1− αn,2)∇f(Sn,1xn)])

≤ αn,2Df (xn, T
2Sn,1xn) + (1− αn,2)Df (xn, Sn,1xn).

Taking limit as n→∞, we have

lim
n→∞

Df (xn, Sn,2xn) = 0,

and hence

lim
n→∞

||Sn,2xn − xn|| = 0.

Following similar approach as above, we have

lim
n→∞

||Sn,3xn − xn|| = lim
n→∞

||Sn,4xn − xn|| = · · · = lim
n→∞

||Sn,N−1xn − xn|| = 0.

Therefore

lim
n→∞

||Sn,ixn − xn|| = 0 for each i = 1, 2, . . . , N − 1.

This together with the Bregman relative nonexpansiveness of each T i for i = 1, 2, . . . , N,
implies that x̄ ∈ F (Sn,i) for i = 1, 2, . . . , N. Hence x̄ ∈ F (Wn). This therefore implies that
Wn is Bregman relatively nonexpansive.

We now present our iterative algorithm. In solving the EP(g) (1.1.4), we assume that the
bifunction g satisfies the following assumptions:

(A1) g(x, x) = 0 for all x ∈ C;

(A2) g is monotone, that is g(x, y) + g(y, x) ≤ 0 for all x, y ∈ C;

(A3) For all x, y, z ∈ C
lim sup
t↓0+

g(tz + (1− t)x, y) ≤ g(x, y);

(A4) For all x ∈ C, g(x, ·) is convex and lower semicontinuous.
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Theorem 7.2.12. Let C be a nonempty, closed and convex subset of a real reflexive Banach
space E and f : E → R be a coercive Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of E. For i = 1, 2, . . . , N, let {αn,i} ⊂
(0, 1), T i : C → C be a finite family of n-generalized Bregman nonspreading mappings
and Wn : C → C be a Bregman W-mapping generated by {αn,i} and T 1, T 2, . . . , TN in
(7.2.16). Let gj : C×C → R be bifunctions satisfying assumptions (A1)-(A4) and suppose

Γ :=
⋂N
i=1 F (T i) ∩⋂∞j=1EP (gj) 6= ∅. Define the sequence {xn} by the following process

x0 = x ∈ C,C0 = Q0 = C,

zn = ∇f ∗[βn,0∇f(xn) +
∑∞

j=1 βn,j∇f(Resfλn,gjxn)],

yn = ∇f ∗[δn∇f(xn) + (1− δn)∇f(Wnzn)],

Cn =
{
z ∈ C : Df (z, yn) ≤ Df (z, xn)

}
,

Qn =
{
z ∈ C : 〈∇f(x)−∇f(xn), xn − z〉 ≥ 0

}
,

xn+1 = ProjfCn∩Qnx,

(7.2.22)

for all n ≥ 0, where {λn} ⊂ (0,∞), {βn,j} and {δn} are sequences in [0, 1) satisfying the
following control conditions:

(i)
∑∞

j=0 βn,j = 1, ∀ n ∈ N ∪ {0};

(ii) There exists k ∈ N such that lim inf
n→∞

βn,jβn,k > 0, ∀j ∈ N ∪ {0};

(iii) 0 ≤ δn < 1, ∀n ∈ N and lim infn→∞ δn < 1;

(iv) lim inf
n→∞

λn > 0.

Then, the sequence {xn} converges strongly to ProjfΓx as n→∞.

Proof. We divide the proof into several steps.

Step 1: We show that Γ ⊂ Cn ∩Qn and xn+1 is well defined.
It is clear that Cn and Qn are closed and convex. Then Cn ∩Qn is closed and convex for
n ≥ 0. Obviously, Γ ⊂ C0 ∩Q0. Suppose Γ ⊂ Cm ∩Qm for some m ∈ N. Let p ∈ Γ, then

Df (p, ym) = Df (p,∇f ∗[δm∇f(xm) + (1− δm)∇f(Wmzm)])

= Vf (p, δm∇f(xm) + (1− δm)∇f(Wmzm))

= f(p)− 〈p, δm∇f(xm) + (1− δm)∇f(Wmzm)〉+ f ∗(δm∇f(xm)

+(1− δm)∇f(Wmzm))

≤ δm[f(p)− 〈p,∇f(xm)〉+ f ∗(xm)] + (1− δm)[f(p)− 〈p,∇f(Wmzm)〉
+f ∗(Wmzm)]− δm(1− δm)ρ∗r(||xm −Wmzm||)

≤ δmDf (p, xm) + (1− δm)Df (p, zm)− δm(1− δm)ρ∗r(||xm −Wnzm||)

= δnDf (p, xm) + (1− δm)Df (p,∇f ∗[βm,0∇f(xm) +
∞∑
j=1

βm,j∇f(ResfEP (g)xm)])

−δm(1− δm)ρ∗r(||xm −Wmzm||).
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Hence

Df (p, ym) ≤ δmDf (p, xm) + (1− δm)[βm,0Df (p, xm) +
∞∑
j=1

βm,jDf (p,Res
f
EP (g)xm)

−βm,0
∞∑
j=1

βm,jρ
∗
r(||xm −ResfEP (g)xm||)]− δm(1− δm)ρ∗r(||xm −Wmzm||)

≤ δmDf (p, xm) + (1− δm)[βm,0Df (p, xm) +
∞∑
j=1

βm,jDf (p, xm)]

−(1− δm)βm,0

∞∑
j=1

βm,jρ
∗
r(||xm −ResfEP (g)xm||)− δn(1− δm)ρ∗r(||xm −Wmzm||)

= Df (p, xm)− (1− δm)βm,0

∞∑
j=1

βm,jρ
∗
r(||xm −ResfEP (g)xm||)

−δn(1− δn)ρ∗r(||xm −Wmzm||) (7.2.23)

≤ Df (p, xm).

Hence p ∈ Cm, which implies that Γ ∈ Cm. Since xm+1 = ProjfCm∩Qmx, then 〈∇f(x) −
∇f(xm+1), z−xm+1〉 ≤ 0 ∀ z ∈ Cm∩Qm. In particular, 〈∇f(x)−∇f(xm+1), p−xm+1〉 ≤ 0
∀p ∈ Γ. Thus p ∈ Qm+1. This proves that Γ ⊂ Cm+1 ∩ Qm+1. Therefore Γ ⊂ Cn ∩ Qn

∀ n ≥ 0. Consequently, since Cn ∩ Qn is closed and convex, then xn+1 = Prof fCn∩Qnx is
well-defined.

Step 2: We prove that {xn}, {yn}, {zn}, {Resfλn,gjxn} and {Wnzn} are bounded.

Since Γ ⊂ Cn ∩Qn for every n ≥ 0 and xn+1 = ProjfCn∩Qnx, then

Df (p, xn+1) ≤ Df (p, x) ∀ n ≥ 0. (7.2.24)

So {Df (p, xn)} is bounded and hence there exists a constant M > 0 such that

Df (p, xn) ≤M ∀ n ∈ N ∪ {0}.

In view of Lemma 2.6.28, we conclude that the sequence {xn} is bounded. Similarly, the
sequences {yn}, {zn}, {Resfλn,gjxn} and {Wnzn} are bounded.

Step 3: Next, we show that limn→∞ ||xn+1 − xn|| = 0, limn→∞ ||Resfλn,gjxn − xn|| = 0 and

limn→∞ ||Wnzn − zn|| = 0.

Since xn+1 ∈ Cn ∩Qn ⊂ Qn and xn = ProjfQn(x), we have

Df (xn+1, P roj
f
Qn

(x)) +Df (Proj
f
Qn

(x1), x) ≤ Df (xn+1, x).

Thus
Df (xn+1, xn) +Df (xn, x) ≤ Df (xn+1, x). (7.2.25)

Therefore the sequence {Df (xn, x)} is non-decreasing and thus limn→∞Df (xn, x) exists.
Hence, it follows that limn→∞Df (xn+1, xn) = 0, and by Lemma 2.6.24, we have

lim
n→∞

||xn+1 − xn|| = 0. (7.2.26)
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Also, since xn+1 ∈ Cn, we have

Df (xn+1, yn) ≤ Df (xn+1, xn).

This yields that limn→∞Df (xn+1, yn) = 0 and thus

lim
n→∞

||xn+1 − yn|| = 0.

Therefore from (7.2.26) and (7.2.27), we get

lim
n→∞

||yn − xn|| = 0. (7.2.27)

By the uniform continuity of f and ∇f on bounded subsets of E and E∗ respectively, we
have

lim
n→∞

||f(yn)− f(xn)|| = 0 (7.2.28)

and

lim
n→∞

||∇f(yn)−∇f(xn)||∗ = 0. (7.2.29)

Furthermore,

Df (p, xn)−Df (p, yn) = f(p)− f(xn)− 〈p− xn,∇f(xn)〉 − f(p) + f(yn) + 〈p− yn,∇f(yn)〉
= f(yn)− f(xn) + 〈p− yn,∇f(yn)〉 − 〈p− xn,∇f(xn)〉
= f(yn)− f(xn) + 〈xn − yn,∇f(yn)〉 − 〈p− xn,∇f(yn)−∇f(xn)〉.

Therefore from (7.2.27) - (7.2.29), we get

lim
n→∞

[Df (p, xn)−Df (p, yn)] = 0. (7.2.30)

Note that from (7.2.23), we have

Df (p, yn) ≤ Df (p, xn)− (1− δn)βn,0

∞∑
j=1

βn,jρ
∗
r(||xn −Resfλn,gjxn||)

−δn(1− δn)ρ∗r(||xn −Wnzn||).

Using the property of ρ∗r and conditions (ii) and (iii) together with (7.2.30), we have

lim
n→∞

||xn −Resfλn,gjxn|| = 0 (7.2.31)

and

lim
n→∞

||xn −Wnzn|| = 0. (7.2.32)

By the uniform continuity of ∇f on bounded subsets of E∗, we have

lim
n→∞

||∇f(xn)−∇f(Resfλn,gjxn)|| = 0.
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Hence from (7.2.22), we get

lim
n→∞

||∇f(zn)−∇f(xn)||′ = lim
n→∞

∞∑
j=1

βn,j||∇f(Resfλn,gjxn)−∇f(xn)||′ = 0.

Furthermore, since f is Fréchet differentiable on bounded subset of E, then ∇f ∗ is uni-
formly continuous on bounded subsets of E∗. Thus

lim
n→∞

||zn − xn|| = 0. (7.2.33)

Therefore

lim
n→∞

||Wnzn − zn|| = lim
n→∞

[||Wnzn − xn||+ ||xn − zn||] = 0. (7.2.34)

Since {xn} is bounded, there exists a subsequence {xnk} of {xn} which converges weakly
to q ∈ E. Since ||Wnzn− zn|| → 0 and ||zn−xn|| → 0 as n→∞, then from Lemma 2.6.14
we have that q ∈ F (Wn). Hence q ∈ ⋂N

i=1 F (T i).

Also from Lemma 2.6.14, we have for each j = 1, 2, . . .

gj(Res
f
λn,gj

xn, y) +
1

λn
〈y −Resfλn,gjxn,∇f(Resfλn,gjxn)−∇f(xn)〉 ≥ 0 ∀y ∈ C.

Hence

gj(Res
f
λnk ,gj

xnk , y) +
1

λnk
〈y −Resfλnk ,gjxnk ,∇f(Resfλnk ,gj

xnk)−∇f(xnk)〉 ≥ 0 ∀y ∈ C.

From the assumption (A2), we have

1

λnk
||y−Resfλnk ,gjxnk ||||∇f(Resfλnkgj

xnk)−∇f(xnk)||

≥ 1

λnk
〈y −Resfλnk ,gjxnk ,∇f(Resfλnk ,gj

xnk)−∇f(xnk)〉

≥ −gj(Resfλnkgjxnk , y) ≥ gj(y,Res
f
λnk ,gj

xnk) ∀y ∈ C.

Taking the limit as k →∞ in the above inequality, from (A4) and condition (iv), we have
xnk → q, ||∇f(Resfλnk ,gj

xnk) − ∇f(xnk)|| → 0, we have that gj(y, q) ≤ 0 for all y ∈ C.

For 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)q. Noting that yt ∈ C, which yields
gj(yt, q) ≤ 0. It therefore follows from (A1) that

0 = gj(yt, yt) ≤ tgj(yt, y) + (1− t)gj(yt, q) ≤ tgj(yt, y).

That is gj(yt, y) ≥ 0.

Let t ↓ 0, from (A3), we obtain gj(q, y) ≥ 0 for any y ∈ C, j = 1, 2, . . . . This implies that

q ∈ ⋂∞j=1EP (gj). Therefore q ∈ Γ :=
⋂N
i=1 F (T i) ∩⋂∞j=1EP (gj).

Now since xn+1 = ProjfCn∩Qnx, we have

〈∇f(x)−∇f(xn+1), xn+1 − z〉 ≥ 0, ∀z ∈ Cn ∩Qn.
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Since Γ ⊂ Cn ∩Qn, we have

〈∇f(x)−∇f(xn+1), xn+1 − z〉 ≥ 0 ∀z ∈ Γ.

Taking the limit of the above inequality, we have

〈∇f(x)−∇f(q), q − z〉 ≥ 0 ∀z ∈ Γ.

Therefore q = ProjfΓx. This completes the proof.

7.2.2 Application to zeros of Maximal monotone operators

Sabach [223] showed that under some properties of the function f , the solution set of the
equilibrium problem is equivalent to the set of zeros of a maximal monotone operator,
that is the points x∗ ∈ dom A such that

0∗ ∈ Ax∗, (7.2.35)

where A : E → 2E
∗

is a maximal monotone operator. We denotes the set of zeros of A
by A−1(0∗). An operator A : E → 2E

∗
is said to be monotone if for any x, y ∈ dom A, we

have
ξ ∈ Ax and µ ∈ Ay ⇒ 〈ξ − µ, x− y〉 ≥ 0.

Let g : C ×C → R be a bifunction and define the following operator Ag : E → 2E
∗

in the
following manner

Ag(x) =

{
{ξ ∈ E∗ : g(x, y) ≥ 〈ξ, y − x〉 ∀y ∈ C}, x ∈ C,
∅ x /∈ C. (7.2.36)

The following result was proved for the mapping Ag in [223].

Proposition 7.2.13. (Sabach [223]) Let C be a nonempty, closed and convex subset of
a reflexive Banach space E and let f : E → R be a coercive Legendre function which
is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E.
Assume that the bifunction g : C × C → R satisfies conditions (A1)-(A4), then:

(i) EP (g) = A−1
g (0∗);

(ii) Ag is maximal monotone operator;

(iii) Resfg = ResfAg .

Based on the above result, we propose the following corollary which can be obtain from
Theorem 7.2.12 for finding common fixed point of finite family of n-generalized Bregman
nonspreading mapping and zeros of maximal monotone operators in reflexive Banach space.
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Theorem 7.2.14. Let C be a nonempty, closed and convex subset of a real reflexive Banach
space E and f : E → R be a coercive Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of E. For i = 1, 2, . . . , N, let {αn,i} ⊂
(0, 1), T i : C → C be finite family of n-generalized Bregman nonspreading mappings and
Wn : C → C be a Bregman W-mapping generated by {αn,i} and T 1, T 2, . . . , TN in (7.2.16).
Let gj : C × C → R be bifunctions satisfying assumptions (A1)-(A4), Agj : E → 2E

∗
be

as defined in (7.2.37) for j = 1, 2, . . . and suppose Γ :=
⋂N
i=1 F (T i) ∩⋂∞j=1 A

−1
gj

(0∗) 6= ∅.
Define the sequence {xn} by the following process

x0 = x ∈ C,C0 = Q0 = C,

zn = ∇f ∗[βn,0∇f(xn) +
∑∞

j=1 βn,j∇f(ResfAgj
xn)],

yn = ∇f ∗[δn∇f(xn) + (1− δn)∇f(Wnzn)],

Cn =
{
z ∈ C : Df (z, yn) ≤ Df (z, xn)

}
,

Qn =
{
z ∈ C : 〈∇f(x)−∇f(xn), xn − z〉 ≥ 0

}
,

xn+1 = ProjfCn∩Qnx,

(7.2.37)

for all n ≥ 0, where {βn,j} and {δn} are sequences in [0, 1) satisfying the following control
conditions:

(i)
∑∞

j=0 βn,j = 1, ∀ n ∈ N ∪ {0};

(ii) There exists k ∈ N such that lim infn→∞ βn,jβn,k > 0, ∀j ∈ N ∪ {0};

(iii) 0 ≤ δn < 1, ∀n ∈ N and lim infn→∞ δn < 1.

Then, the sequence {xn} converges strongly to ProjfΓx as n→∞.
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CHAPTER 8

Conclusion, Contribution to Knowledge and Future research

8.1 Conclusion

In this thesis, we presented some inertial-type iterative schemes with strong convergence
properties for approximating solutions of certain optimization problems and finding fixed
point of nonlinear mappings in real Hilbert spaces. We compared the performance of our
algorithms against existing algorithms in the literature using MATLAB programming.
In each case, we found that each of our proposed algorithms performs better than some
related algorithms in the literature.

Also, we studied the approximation of common solution of non-monotone equilibrium
problem and fixed point problem in real Hilbert spaces. We proved strong convergence
theorems and provided numerical examples to show the accuracy and efficiency of our
algorithms. We then introduced a new projection contraction type algorithm for solving
split generalized equilibrium problem and finding common fixed point of finite family
of nonlinear mappings in real Hilbert spaces. We also showed that our new projection
algorithm converges at the rate of O(1/t).

Furthermore, we extended the study of projection method for solving VIP from a real
Hilbert space to a reflexive Banach space. We introduced a new projection method with
Armijo-line search technique for solving pseudo-monotone VIPs in real reflexive Banach
spaces. We also introduced a totally relaxed self-adaptive subgradient extragradient al-
gorithm for finding common solution of VIP and fixed point problem in a 2-uniformly
convex and uniformly smooth real Banach spaces. Then, we proposed another new pro-
jection contraction algorithm and proved strong convergence theorems for VIP and fixed
point problems in real Hilbert spaces. We gave an application of our results to approx-
imating solutions of split equality problem in Hilbert spaces. In each case, we provided
some numerical examples to illustrate the performance of our algorithms.
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Also, we extended the study of split equality monotone inclusion problem from real Hilbert
spaces to p-uniformly convex and uniformly smooth real Banach spaces. We introduced a
new iterative scheme and proved a strong convergence result for approximating solution
of split equality monotone inclusion problem in p-uniformly convex and uniformly smooth
real Banach spaces. We then presented some applications of our result to solving some
other optimization problems in real Banach spaces.

More so, we introduced an intermixed iterative algorithm for approximating individual
fixed point of two k-strictly pseudo-contractive mappings in a p-uniformly smooth Banach
space. Using our result, we were proposed an algorithm for approximating a common
fixed point for the two k-strictly pseudo-contractive mappings. Finally, we introduced a
class of N -generalized Bregman nonspreading mapping in a reflexive Banach space. We
also studied some fixed point properties for this new class of mapping. Then, we proposed
an hybrid iterative scheme for approximating the common fixed points of finite family of
N -generalized Bregman nonspreading mappings which is also a solution to an equilibrium
problem in a reflexive Banach space. We gave an application of our result to approximating
zeros of maximal monotone operators in a reflexive Banach space.

8.2 Contribution to Knowledge

We highlight some contributions in this thesis as follows:

(i) Our main theorem in Section 3.1 improved the corresponding results of Chembolle
and Dossel [72], Cai and Shehu [60], Tian and Huang [258], Xu [266] and Shehu
[234].

(ii) In Section 3.2, we improved the results of Kraikew and Saejung [158], Thong and
Hieu [254, 255] and Dong et al. [97] by using a self-adaptive stepsize selection
technique which does not require a prior estimate of the Lipschitz constant of the
monotone operator.

(iii) Also in Section 3.3, our results generalized the results of Suantai et al. [240], [197]
and Rizvi [218].

(iv) Our results in Section 4.1 generalized the results of Dinh and Muu [94], Hieu [127]
and many other related results in the literature. It also improved the corresponding
results of Hieu et al. [129] and [130] by constructing a sublevel set using convex
combination of finite family of convex functions and does not involve the projection
onto the intersection of Cn and Qn.

(v) In Section 4.2, we improved and generalized the results of Chuang [85] and Yen [276]
by introducing a simpler inertial Mann-Krasnoselskii algorithm in a real Hilbert
space.

(vi) Our results in Section 4.3 extended and generalized the results of Kazmi and Rizvi
[148], Deepho et al [93] and Phuengrattana et al. [204] in unified ways.

243



(vii) Section 5.1 extended the results of Kanzow and Shehu [144] from Hilbert space to a
reflexive Banach space and from monotone variational inequality problem to pseudo-
monotone variational inequality problem. It also improved many existing results such
as [80, 113, 112, 158, 254] where the operator is required to satisfy Lipschitz and
monotone conditions.

(viii) Our result in Section 5.2 improved the results of He et al. [124, 123], Chidume and
Nnakwe [80].

(ix) Our results in Section 5.3 improved the results of [97, 144, 256, 254, 255] which
requires more than one projection onto the the feasible set.

(x) In Section 6.1, we extended the results of [226, 227, 230, 232, 246] to a split equality
monotone inclusion problem in p-uniformly convex and uniformly smooth Banach
spaces.

(xi) Our results in Section 7.1 improved and generalized the results of Chidume and
Shahzad [80], Cholamjiak and Suantai [239] in Banach spaces. We also extend the
intermixed algorithm in [274] to a p-uniformly smooth Banach space.

(xii) In Section 7.2, we generalized the results of [146, 153, 217, 215] to N -generalized
Bregman nonspreading mapping in reflexive Banach spaces. We also extend the
results of [250, 251] to a reflexive Banach space.

8.3 Future Research

In our future research, we will like to study the approximation of solutions of optimization
and fixed point problems in Hadamard spaces such as the CAT(0) spaces, CAT(k) spaces,
p-uniformly convex metric spaces and R-tree spaces.
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[173] P.E. Maingé, M.L Gobinddass, Convergence of one-step projected gradient methods
for variational inequalities, J. Optim. Theory Appl., 171 (2016), 146–168.

[174] Y.V. Malitsky, Projected reflected gradient methods for monotone variational in-
equalities, SIAM J. Optim., 25 (2015), 502-520.

256



[175] W. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc., 4 (1953),
506-510.

[176] J. T. Markin, Continuous dependence of fixed point sets, Proc. Am. Math.Soc., 38
(1973), 545-547.

[177] V. Martin-Márquez, Fixed Point Approximation methods for nonexpansive map-
pings, PhD. Thesis submitted to Departmento de Analisis Matematico, Universidad
de Sevilla (Spanish), 2010.

[178] V. Mart́ın-Márquez, S. Reich, S. Sabach, Right Bregman nonexpansive operators in
Banach spaces, Nonliear Analy., 75 (14) (2012), 5448-5465.

[179] C. Martinez-Yanes, H.K. Xu: Strong convergence of the CQ method for fixed-point
iteration processes. Nonlinear Anal., 64, 2400–2411 (2006)

[180] J. Mashreghi, M. Nasri, Forcing strong convergence of Korpelevich’s method in
Banach spaces with its applications in game theory, Nonlinear Analy., 72 (2010),
2086-2099.

[181] D.S. Mitrinovia, Analytic inequalities, Spinger, New York (1979).

[182] A. Meir, E. Keeler: A theorem on contraction mappings, J. Math. Anal. Appl., 28,
326 - 329 (1969)

[183] A. Moudafi, A relaxed alternating CQ-algorithm for convex feasibility problems,
Nonlinear Anal., 79, (2013), 117-121.

[184] A. Moudafi, Seconder order differential proximal methods for equilibrium problems,
J. Inequal. Pure Appl. Math., 4(1) (2003), Arti. 18.

[185] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150
(2011), 275-283.

[186] A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math.
Anal. Appl., 241 (2000), 46-55.

[187] A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for mono-
tone operators, J. Comput. Appl. Math., 155(2), (2003), 447-454.

[188] A. Moudafi, B.S. Thakur, Solving proximal split feasibility problems without prior
knowledge of operator norms, Optim. Lett., 8(7) (2014), 2099-2110.

[189] L.D. Muu, V.H. Nguyen, and N.V. Quy, On Nash–Cournot oligopolistic market
equilibrium models with concave cost functions, J. Global Optim., 41 (2008), 351 –
364.

[190] S.B. Jr. Nadler, Multivalued contraction mappings. Pac. J. Math., 30 (1969), 475-
488.

257



[191] K. Nakajo, Strong convergence for gradient projection method and relatively non-
expansive mappings in Banach spaces, Appl. Math. Comput., 271, (2015), 251–258.

[192] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive map-
pings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372–379.

[193] E. Naraghirad and J-C yao, Bregman weak relatively nonexpansive mappings in Ba-
nach spaces, Fixed Point Theory and Appl., (2013), Volume 2013, Article ID: 141,2013.

[194] A. Nemirovski, Prox-method with rate of convergence O(1/t) for variational inequal-
ity with Lipschitz continuous monotone operators and smooth convex-concave saddle
point problems, SIAM J. Optim., 15 (2005) 229–251.

[195] J. Nocedal, S. J., Wright, Numerical Optimization, Spinger Series in Operations
Research and Financial Engineering, Vol 2, 2nd Edition, Spinger, Berlin, 2006.

[196] P. Ochs, Y. Chen, T. Brox, P.T. iPiano, inertial proximal algorithm for non-convex
optimization. SIAM J. Imaging Sci., 7 (2014), 1388–1419.

[197] N. Onjai-uea, W. Phuengrattana, On solving split mixed equilibrium problems and
fixed point problems of hybrid-type multivalued mappings in Hilbert spaces, J. Ineq.
Appl., 137 (2017), 14 pp.

[198] M.O. Osilike and D.I. Igbokwe, Weak and strong convergence theorems for fixed
points of pseudocontractions and solutions of monotone type operator equations,
Comput. Math. Appl., 40 (2000), 559-567.

[199] N. Parith, S. Boyd: Proximal Algorithms, Foundations and Trends in Optimization,
1(3) (2013), 123-231.

[200] D. Pascali, S. Sburlan, Nonlinear Mappings of Monotone Type, Editura Academiae,
Bucharest, Romania, 1978.

[201] G.B. Passty, Ergodic convergence to a zero of the sum of monotone operators in
Hilbert space, J. Math. Anal. Appl., 72 (1979), 383-390.

[202] J.-C. Pesquet, N. Putselnik, A parallel inertial proximal optimization method, Pa-
cific Jour. Optim., 8 (2) (2012), 273-306.

[203] R.R. Phelps, Convex functions, Monotone Operators and Differentiablity, Lecture
Notes In Mathematics 1364, 2nd Edition, Spinger, Berlin,1993.

[204] W. Phuengrattana and K. Lerkchaiyaphum, On solving the split generalized equi-
librium problem and the fixed point problem for a countable family of nonexpansive
multivalued mappings, Fixed Point Theory Appl., (2018), 2018:6

[205] E. Picard, Memoire sur la theorie des equations aux derives partielles et la methode
des approximation successive, J. Math. Pures et Appl., 6 (1890), 145-210.

[206] H. Poincare, Surless courbes define barles equations differentiate less, J. de Math.,
2 (1886), 54-65.

258



[207] B. T. Polyak, Introduction to optimization, Translations series in mathematics and
engineering, Optimization Software, New York: Optimization Software Inc. Publica-
tions Division (1987).

[208] B.T. Polyak, Some methods of speeding up the convergence of iteration methods,
U.S.S.R. Comput. Math. Math. Phys., 4 (5) (1964), 1-17.

[209] X. Qin, S.Y. Cho, L. Wang, Convergence of apliting algorithms for the sum of two
accretive operators operators with applications, Fixed Point Theory Appl., 2014, 166
(2014).

[210] T.D. Quoc, P.N. Anh, L.D. Muu, Dual extragradient algorithms extended to equi-
librium problems, J. Global Optim., 52(1), (2012), 139–159.

[211] T.D. Quoc, L.D. Muu, V.H. Nguyen, Extragradient algorithms extended to equilib-
rium problems, Optimization, 57, (2008), 749–776.

[212] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal.
Appl. 44 (1973), 57–70.

[213] S. Reich, S. Sabach, A strong convergence theorem for proximal type- algorithm in
reflexive Banach spaces, J. Nonlinear Convex Anal., 10(2009), 471-485.

[214] S. Reich, S. Sabach, Existence and approximation of fixed points of Bregman firmly-
nonexpansive mappings in reflexive Banach spaces, ”in Fixed point Algorithms for
inverse problems in science and engineering, Spinger Optimization and Its Application,
New York, USA, (2011), 301-316.

[215] S. Reich and S. Sabach, Three strong convergence theorems regarding iterative meth-
ods for solving equilibrium problems in reflexive Banach spaces, Contemp. Math. 568
(2012), 225–240.

[216] S. Reich and S. Sabach, Two strong convergence theorem for a proximal method in
reflexive Banach spaces, Numer. Funct. Anal. Optim. 31(13) (2010),22-44.

[217] S. Reich, S. Sabach, Two strong convergence theorems for Bregman strongly nonex-
pansive operators in reflexive Banach spaces, Nonlinear Anal., 73(1)(2010), 122-135.

[218] Rizvi S. H., A strong convergence theorem for split mixed equilibrium and fixed
point problems for nonexpansive mappings in Hilbert space, J. Fixed Point Thoery
Appl., 2018, 20(8), DOI: 10.1007/s11784-018-0487-8.

[219] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[220] R.T. Rockafellar, Monotone operators and the proximal point algorithms, SIAM J.
Control Optim., 14(5), (1976), 877-898.

[221] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators,
Trans. Amer. Math. Soc., 149, 75-88 (1970)

[222] R. T. Rockafellar and R. Wets, Variational Analysis, Springer, Berlin 1988.

259



[223] Sabach S., Products of finite many resolvents of maximal monotone mappings in
reflexive Banach space, SIAM J. Optim, 21 (2011), 1289-1308.

[224] P. Santos, S. Scheimberg, An inexact subgradient algorithm for equilibrium prob-
lems, Comput. Appl. Math., 30 (2011), 91–107

[225] H. Schaefer, ber die Methods Sukzessiver Approximationen, (German), Jber.
Deutsch. Math. Verein, 59 (1957), Abt 1, 131-140.
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