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Abstract

The study of optimization and fixed point problems has remained as an attractive area
of research due to its paramount importance in several areas of mathematics and other
sciences. It constitutes a beautiful mixture of pure and applied analysis, topology, geom-
etry, statistics and mechanics. It has also found several applications in solving nonlinear
phenomena arising in diverse fields such as engineering, economics, biology, management
science, transportation, game theory, physics, computer tomography, etc.

In this thesis, we present some inertial iterative schemes with strong convergence theo-
rems for approximating solutions of certain optimization problems in real Hilbert spaces.
We further analyze a parallel combination extragradient method for finite family of pseudo-
monotone equilibrium problem and fixed point of demi-contractive mappings in real Hilbert
spaces. By combining Mann and Krasnolselskii methods with inertial extrapolation term,
we propose a new iterative method which converges strongly to a common solution of split
variational inclusion problem and equilibrium problem with para-monotone equilibria.

More so, we introduce a projection-contraction method for approximating solution of split
generalized equilibrium problem in real Hilbert space. We show that our projection-
contraction method converges at a linear rate of convergence. Moreover, we extend the
study of projection methods for solving variational inequality problem to reflexive Banach
spaces. We introduce a projection algorithm and prove a strong convergence theorem
for approximating solution of variational inequality problem in reflexive Banach spaces
and give an application of our result to approximating solution of equilibrium problem in
reflexive Banach space without prior knowledge of operator norms.

Furthermore, we introduce a totally relaxed subgradient extragradient method for approx-
imating a common solution of variational inequality and fixed point of quasi-nonexpansive
mapping in a 2-uniformly convex and uniformly smooth Banach space. We also study the
approximation of solution of variational inequality problem using projection-contraction
algorithm in real Hilbert space. Then, we extend the study of split equality monotone
inclusion problem to p-uniformly convex and uniformly smooth real Banach spaces.

Ultimately, we consider the approximation of common fixed points of k-strictly pseudo-
contractive mappings in a 2-uniformly smooth real Banach space. We introduce a class
of N-generalized Bregman nonspreading mappings and propose an iterative method for
approximating the common fixed points of this kind of mappings which is also a solution
of equilibrium problem in a reflexive Banach space. Numerical experiments are presented
to demonstrate the efficiency and performance of our algorithms in comparison with other
existing algorithms in literature. We also achieve strong convergence results using our
algorithms for approximating solutions of the underlying problems in each case.
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CHAPTER 1

Introduction

1.1 General Introduction

Nonlinear analysis which includes optimization problems such as variational inequalities,
Nash equilibrium problem, complementarity problem, convex minimization problem, vec-
tor optimization problem, minimax problem, saddle point problem and game theory, has
recently been studied as an effective and powerful tool for studying many real life problems.

The classical Variational Inequality Problem (VIP) introduced by Fichera [105, 106] and
Stampacchia [237] as an analytic tool for studying differential equations in finite dimen-
sional spaces has played an important role as a modelling tool in diverse fields such as
in economics, transportation, engineering, control theory, operation research, physics, me-
chanics and many others, see for example [3, 8, 28, 15, 91, 99, |. Let E be a Banach
space with dual E*, C' be a nonempty, closed and convex subset of £ and A : C'— E* be
a nonlinear operator. The VIP is defined as finding a point x* € C such that

(Az*,y—2*) >0, Vyek. (1.1.1)

We denote the set of solutions of the VIP (1.1.1) by Qyp.

The first general theorem for the existence and uniqueness of solution of VIP was proved
by Lions and Stampacchia [163] in 1967. Since then, several authors have introduced
various iterative methods for finding solutions of the VIP. One of the famous methods
for solving the VIP is the Extragradient Method (EM) introduced by Korpelevich [157] in
1976 (in finite dimensional Euclidean space) and is given as follows:

T € C,
Yn = Polzn, — pAzy), (1.1.2)
Tni1 = Po(vn — pAy,), Vn>1,

1



where C C RV, A: C — RY is a monotone, Lipschitz continuous operator with Lipschitz
constant L, pu € (0, %) and Po is the metric projection onto C. If the solution set Qy;p
is nonempty, then the sequence {z,} generated by EM converges weakly to an element
in Qyrp. The EM has received a great attraction from many authors who have extended
and generalized in both Hilbert and Banach spaces.

Note that the EM (1.1.2) requires two projections onto the set C' and two evaluations of A
per iteration. This makes the usage of EM (1.1.2) computationally expensive if the feasible
set C' is not so simple. A major improvement on the EM is to minimize the number of
evaluations of Py per iteration. An attempt in this direction was initiated by Y. Censor
et al. [67, 69] who modified the EM by replacing the second projection with a projection
onto a half-space. This new method which thus involves only one projection onto C' is
called the Subgradient Extragradient Method (SEM) and is given as follows:

Algorithm 1.1.1. (The Subgradient Extragradient method (SEM)).

ro € H,
n = B n A n)s
Yn = Fo(2n = pda) (1.1.3)
Qn:{ZGH: <xn_,UAxn_ymZ_yn> So}a
Tnt1 = P, (Tn — pAY,) .
Censor et al. [69] showed that if the solution set Qy;p is nonempty, the sequence {x,}

generated by SEM converges weakly to an element p € Qv p, where p = lim Py, . (z,).
n—oo

Also, using only a single projection onto C', Maingé and Gobinddass [173] (see also Maingé
[170]) obtained a weak convergence result for solving the VIP in a real Hilbert space by
means of a projected reflected gradient-type method [174] and inertial terms. Several other
alternatives to the EM have further been introduced in the literature (see, for example,

[ ? ? ? ? ? ? ’ ’ ])

Another important optimization problem which has found many applications in solving
real life problems is the Equilibrium Problem (EP) introduced by Blum and Oettli [35] as
a generalization of VIP. Let F': ' x C' = R be a bifunction, the EP is defined as finding
a point = € C' such that

F(z,y) >0, V yeC. (1.1.4)

We shall denote the set of solutions of EP by Qgp. Blum and Oettli [35] discussed some
existence theorems and variational principle for the EP and since then, various general-
izations of EP have been introduced and studied by many authors. The theory of EP has
also served as an important tool in studying a wide class of important nonlinear problems
arising in several branches of pure and applied sciences in a unified and general framework
(see, for instance [10, 32, 92, , , , , 184]).

The Generalized Mixed Equilibrium Problem (GMEP) is defined as finding a point z € C'
such that

where h : C' — FE is a nonlinear mapping and ¢ : C' — RU {400} is a proper convex lower
semicontinuous function.



If h =0, GMEP (1.1.5) reduces to the Mixed Equilibrium Problem (MEP) which is to
find a point x € C' such that

F(z,y) + o(y) —o(x) 20, Vyel. (1.1.6)

If  =01n (1.1.5), the GMEP reduces to a Generalized Equilibrium Problem (GEP) which
is to find a point x € C such that

F(z,y) + (hx,y —z) >0, VyeC. (1.1.7)

In particular, if h =0 and ¢ = 0 in (1.1.5), the GMEP reduces to the classical equilibrium
problem (1.1.4). The GMEP is very general in the sense that it includes as special cases,
optimization problem, variational inequality problem, fixed point problem, Nash equilib-
rium problem in noncooperative games, etc, see [62, 90, ).

The study of fixed point theory has also become a very powerful tool in nonlinear func-
tional analysis. Recently, fixed point methods have found many applications in many
fields of science such as biology, chemistry, economics, optimization theory, game theory,
engineering, astrophysics and physics. Fixed point theorems are mainly used in the study
of existence of solutions for nonlinear problems arising in physical science and biological
science. They also play fundamental roles in establishing the existence theory for solu-
tions of differential equations, integral equations, functional equations, partial differential
equations, eigen-value problems and two-point boundary value problems, see for instance

[77 ) ]

Let E be a Banach space and T': F — E be a mapping. A point x € E is called a fixed
point of T if
Tx = z. (1.1.8)

The set of fixed points of T" is denoted by F(7'). When T is a multi-valued mapping, e.g.
T :E — 2% then a point x € E is called a fixed point of T if 2 € Tx.

The study of fixed point theory was initiated by Poincare [206] in 1886, followed by Brouwer
[19] who proved a fixed point theorem for a square, a sphere and their n-dimensional
counterparts. Brouwer [10] result was further extended by Kakutani [142]. The Banach
contraction mapping principle by Stephan Banach [18] is also considered as one of the
fundamental principle in this field. It shows that a contraction mapping on a complete
metric space possesses a unique fixed point. The Banach contraction mapping principle is
remarkable in its simplicity, yet it is perhaps the most widely used fixed point theorem.
This is because the contraction condition on its mapping is easy to test and it requires
only the structure of a complete metric space for its setting.

The study of fixed points for multivalued contractions and nonexpansive mappings was
initiated by Nadler [190] and Markin [176] respectively, since then, there has been increas-
ing effort on the study of fixed points of multivalued mappings. Also, there are many
application of fixed point of multivalued mappings in convex optimization, differential
inclusions, fractals, discontinuous differential equations, optimal control, computing ho-
mology of maps, computer-assisted proofs in dynamics, digital imaging and economics
(e.g., [116, 111] and references cited therein).
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Let C' and @ be nonempty, closed and convex subsets of real Hilbert spaces H; and Hs,
respectively and A : H; — Hs be a linear operator. The Split Feasibility Problem (SFP)
is defined as finding a point z* such that

z*eC and Az" € Q. (1.1.9)

We shall denotes the set of solutions of the SFP by Qgpp. The SFP was originally intro-
duced by Censor and Elfving [64] (in finite dimensional Euclidean space) for modelling
phase retrieval, and later studied extensively as an extremely powerful tool for the treat-
ment of a widely range of inverse problems, such as medical image reconstruction and
intensity-modulated radiation therapy treatments; see e.g. [56, 63, 65, 71] for more de-
tails. When taking C' := R"Y and Q = {b} (b € RM), the SFP (1.1.9) immediately reduces
to the well known Linear Inverse Problem (LIP) which is to find z* € RY such that

Az =b. (1.1.10)

The LIP has a long history and its theory and algorithms have extensively been devel-
oped in the literature, see the monographs [103, ]. One of the most popular ways for
solving the LIP is to reformulate it as a least squares problem, which greatly facilitates
the employment of optimization algorithms for finding solutions of the resultant model.
Similarly, the SFP can be solved by equivalently reformulating it as the following convex
optimization problem:

min{%HAx—PQ(Aa:)HQ :xEC}7 (1.1.11)

where Py(-) is the projection onto the set ) defined by

Po(v) == argmin{||z —y|| : 2 € Q}, Vv e H.

In 2012, Ceng et al. [61] showed the following interesting relationship between VIP, fixed
point problem and the SFP.

Proposition 1.1.2. Suppose the SFP (1.1.9) is consistent, i.e., Qgspp is nonempty. Given
x* € Hy, then the following statements are equivalent:

(i) x* solves the SFP (1.1.9);
(11) x* solves the fized point equation
Po(I —~yA*(I — Pg)A)z* = a’;
(i1i) x* solves the VIP of finding x* € C' such that
(Vf(z"),y—a") =20, VyeCl,
where Vf = A*(I — Pg)A and A* is the adjoint of A.

Because of this fact, many fixed point algorithms have been proposed for solving the SFP
(1.1.9) in real Hilbert and Banach spaces.



1.2 Research Motivation

One of the popular methods used for accelerating the speed of convergence of iterative
schemes is the multi-step method which can be viewed as the following discretization of
the second-order dynamical system with friction:

E(t) +yi(t) + Ve(z(t) =0,

where v > 0 represents a friction parameter and ¢ : H — R is a differentiable function.
This can be formulated as a two-step heavy ball method, in which, given x,, and x,,_1, the
next point x,,; is determined via

Tp+1 — an + Ty Tpn — Tpn—1

for h > 0, which results in an iterative algorithm of the form

Tpy1 = Ty + B(xn - xn—l) - OévSO(xn), (121)

for each n > 0, where § = 1 — vh and a = h?. In 1964, Polyak [205] first used (1.2.1) to
solve the optimization problem:
min (),

for all € H and called it an inertial type extrapolation algorithm. In 1987, Polyak
[207] also considered the relationship between the heavy ball method and the following
conjugate gradient method

Tl = Tn + Bp(Tn — 1) — a, Veo(,), (1.2.2)

for each n > 0, where «,, and (3, can be choosen through different ways. It is obvious that
the only difference between the heavy ball method (1.2.1) and (1.2.2) is the choice of the
parameters.

From Polyak’s work, as an acceleration process, the inertial extrapolation algorithms
were widely studied. Most especially, recent researchers have constructed many iter-
ative algorithms by using inertial extrapolation, such as inertial extragradient method
[97], inertial proximal method [9, 187], inertial forward-backward method [196], inertial
proximal ADMM [73], fast iterative shrinkage thresholding algorithm FISTA [241, 72], iner-
tial forward-backward-forward algorithm [10], inertial proximal-extragradient method [39],
and inertial Mann method [254]. The inertial algorithm is a two-steps iterative method
and its main feature is that the next iterate is defined by using the previous two iterates.

By using the technique of the inertial extrapolation, in 2008, Maingé introduced the clas-
sical inertial Mann algorithm as follows:

{yn =T, + 671<mn - x”—l)’ (1.2.3)

Tpt+1 = (1 - An)yn + )\nTyn>

for each n > 1. He showed that the sequence {x,} converges weakly to a fixed point of T’
under the following conditions:



(A1) B, €[0,) for each n > 1, where a € [0, 1);
(A2) > Bullwn — p1]]? < +o0;

n=1
(A3) 0 <inf), <supA, < 1.

Note that for the condition (A2) to be satisfied, one needs to first calculate 3, at each
step of the iterations (see [186]). In 2015, Bot and Csetnek [11] removed the condition
(A2) and substituted (Al) and (A3) with the following conditions:

(B1) for each n > 1, {#,} C [0, ) is non-decreasing with 5; =0 and 0 < o < 1,
(B2) for eachn >1,

*(1+a)+ac § —afa(l + a) + ad + o]

0 0<A<A, < ,
~ 1—a? T T T T T+t a(l+a) +ad + 0]

where A\, 0,4 > 0.

Despite much effort been devoted on inertial algorithms, only weak convergence algorithms
have mostly been achieved by many authors in the literature. It is important to note
that strong convergence of iterative sequences for approximating solutions of optimization
problems are more desirable than their weak convergence counterpart as pointed out by
Bauschke and Combettes in [22]. Therefore, it is of great interest to develop inertial-type
algorithms with strong convergence sequences. In this thesis, we propose some inertial
algorithms with strong convergence properties for approximating solutions of certain op-
timization problems in real Hilbert spaces.

Furthermore, it was shown in [07] that the EM (1.1.2) and SEM (1.1.3) converge weakly
to a solution of VIP (1.1.1) if the underlying operator A is monotone and Lipschitz contin-
uous. When A is not monotone (say pseudo-monotone), both EM and SEM have failed to
converge to a solution of VIP (1.1.1). Hence, there is need to find appropriate methods for
solving VIP (1.1.1) when A is not monotone nor Lipschitz continuous. An attempt in this
direction was made by Tusem and Svaiter [138] who introduced a new projection algorithm
for approximating solution of VIP (1.1.1) where A is pseudo-monotone in a finite dimen-
sional space. Their algorithm is unique in the sense that it uses an Armijo line-searching
technique to determine the stepsize for the next iterate. The projection method involves
taking an arbitrary stepsize (3,, compute u, = Pc(x, — B,Ax,) and then try vectors of
the form y(«) = au, + (1 — o)z, with a € (0, 1] until a value of « is reached such that

)

(Ay(@), T — un) > ﬁ—||$n — [, (1.2.4)
for some fixed § € (0,1). Then, take y, = y(«) and compute the orthogonal projection
wy, of x, onto the hyperplane @, = {z € R™ : (Ay,,z — y,) = 0} and finally, take z,4;
as the orthogonal projection of w, onto C. Note that along the search for appropriate
a, the right hand-side of (1.2.4) is kept constant, and that, though A is evaluated at
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several points in the segment between w, and x,, no orthogonal projection onto C is
required during the process. Tusem and Svaiter [138] further proved a weak convergence
result using the projection algorithm for approximating solution of VIP (1.1.1) in a finite
dimensional space.

The projection method was later extended to an infinite dimensional Hilbert space by Bello
Cruz and Iusem [26]. Recently, Kanzow and Shehu [I11] proved a strong convergence
theorem for solving VIP (1.1.1) by combining the projection method with a Halpern
method in a real Hilbert space H. They proposed the following scheme in particular.

Algorithm 1.2.1. Let {a,,} and {B,} be sequences in (0,1) and A : C' — H be a monotone

and uniformly continuous operator. Define r(x) := x — Po(x — Az) for all x € C.
Step 0: Given v, 0 € (0,1), s >0, 1 € C and set n = 1.
Step 1: Set

wy, = (1 — o)z, + .

Step 2: If r(w,) = 0, stop. FElse, let y,(n) = (1 — n)w, + nPc(w, — Aw,,), for n € R.
Compute 1, as the mazimum of the numbers s, sy, sy?,... such that

(Ayn (), (wn)) 2 2w,

and define y, = Yn ().
Step 3: Compute

<Ayna Wy, — yn>
| Ay,l[> (1.2.5)

Ap =

Step 4: Set n <—n+ 1 and go to Step 1.

Motivated by the works of [20], [138] and [144], in this thesis, we extend the projection
method for solving pseudo-monotone VIP to a real reflexive Banach space. We also propose
other methods for approximating common solutions of VIP (1.1.1) and fixed point of
nonlinear mappings in real Hilbert spaces and 2-uniformly convex and uniformly smooth
Banach spaces.

One of the simplest methods for solving the SFP (1.1.9) is the CQ-algorithm introduced
by Bryne [50] in 2002. The CQ-algorithm is given as follows: for xy € C, compute

Tny1 = Po(x, — 1,A(I — Pg)Az,), n >0, (1.2.6)

where the stepsize 7, is chosen in the interval (O, W) , A* is the transpose of A and

Pc and Py are the orthogonal projections onto C' and () respectively. Note that the
determination of the stepsize 7,, depends on the operator norm || A||. This implies that in
order to implement the CQ-algorithm, one has to first compute (or at least, estimate) the
matrix norm of A, which is in general not an easy task in practice. In order to overcome
this difficulty, there is a growing research on how to determine the best appropriate method



for selecting the stepsize of the CQ-algorithm. Yang et al. [272] proposed the following
adaptive stepsize selection:

Pn

o = , (1.2.7)
[|A*(I = Po) Aw,||
where {p,} is a sequence of positive real numbers, and Lopez et al. [166] recently intro-
duced the following adaptive stepsize method:
I — Pg)Ax,|?

AT = Po) Az, |2

They showed that (1.2.7) and (1.2.8) are better selections compared to (1.2.6) of Bryne
[06]. However, they all established weak convergence results for solutions of the SFP

(1.1.9). Other notable modifications of CQ-algorithms can be found in [12, 13, (1] and
the references therein.
Furthermore, Schopfer [220, ] recently extended the study of SFP (1.1.9) to Banach

spaces such as the p-uniformly convex Banach spaces, which are also uniformly smooth.
This has opened a growing research in this direction on the SFP in Banach spaces; see,
for instance [168, , , , 2406]. In this thesis, we introduce some iterative methods
for approximating solutions of split equality monotone inclusion problem in p-uniformly
convex real Banach spaces, which are also uniformly smooth. Our algorithms are designed
in such a way that they do not require prior estimate of the norms of the bounded operators.

1.3 Objectives of the Study

The main objectives of this study are:

(i) To introduce new inertial-type iterative algorithms for solving certain optimization
problems in real Hilbert spaces.

(ii) To extend the study of projection algorithm for solving the VIPs from a real Hilbert
space to a real reflexive Banach space.

(iii) To introduce some other projection methods which are simpler to execute and faster
than many existing algorithms for solving VIPs in the literature.

(iv) To introduce some projection methods for solving EPs in real Hilbert spaces.

(v) To propose some iterative methods which do not depend on the norms of the bounded
linear operator for solving SFP and it generalizations in real Banach spaces.

(vi) To introduce a new class of N-generalized Bregman nonspreading mapping, and
propose an iterative method for approximating its fixed point in real reflexive Banach
spaces.

(vii) To compare the efficiency and performance of our algorithms with some existing ones
in the literature.



1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 1 (General introduction): In this chapter, we present a brief introduction,
research problem, motivation of our study and objectives of the research.

Chapter 2 (Preliminaries): In Chapter two, we give a background overview of some
definitions and introduce some basic concepts which are needed to achieve our results.

Chapter 3 (Inertial algorithms and optimization problems): In Chapter 3, we first
introduce an inertial gradient projection algorithm for approximating a common solution of
a classical minimization problem and finding fixed point of §-demimetric mapping in a real
Hilbert space. We also introduce an inertial-viscosity subgradient extragradient method for
approximating solution of VIP and fixed point of multi-valued demi-contractive mappings
in real Hilbert spaces. Furthermore, we propose a modified Mann-inertial algorithm for
finding a common solution of split generalized mixed equilibrium problem and fixed point
of nonspreading mapping in real Hilbert spaces.

Chapter 4 (Equilibrium problems in Hilbert spaces): In this Chapter, we introduce
a parallel combination extragradient method for solving a finite family of pseudo-monotone
EPs and finding a common fixed point of a finite family of demi-contractive mappings
in Hilbert space. We also present a new inertial Mann-Krasnolselskii algorithm for ap-
proximating a common solution of split variational inclusion problem and EP with para-
monotone bifunction in real Hilbert space. Also, we introduce a projection-contraction
algorithm for GEP and finding common fixed point of multi-valued demi-contractive map-
ping in real Hilbert spaces.

Chapter 5 (Variational inequality problems in Hilbert and Banach spaces): In
this Chapter, we extend the projection algorithm for solving VIP from a real Hilbert space
to a real reflexive Banach space using the Bregman distance technique. We also present
a totally relaxed self-adaptive subgradient extragradient method with Halpern iterative
method for finding a common solution of VIP and fixed point of quasi-nonexpansive map-
ping in a 2-uniformly convex and uniformly smooth Banach space. Then, we propose an
extragradient method consisting of the Hybrid steepest descent method, a single projec-
tion method and an Armijo line searching technique for approximating a solution of VIP
and finding the fixed point of demi-contractive mapping in a real Hilbert space.

Chapter 6 (Split feasibility problem in Banach spaces): In Chapter 6, we intro-
duce an iterative algorithm and prove a strong convergence theorem without any prior
estimation of operator norms for solving split equality variational inclusion problem in
uniformly convex Banach spaces which are also uniformly smooth. We also present some
application of our result and provide a numerical example to show the behaviour of the
sequence generated by our algorithm.

Chapter 7 (Common fixed point problems in Banach spaces): In this Chapter,
we introduce an intermixed algorithm and prove a strong convergence theorem for approx-
imating individual fixed point of two strictly pseudocontractive mappings 7" and U in a
g-uniformly smooth Banach space which admits a weakly sequentially continuous dual-
ity mapping j,. Finally, we study some fixed point properties for N-generalized Bregman
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nonspreading mapping in reflexive Banach space. We introduce a hybrid iterative scheme
for finding a common solution of countable family of EP and fixed point of N-generalized
Bregman nonspreading mapping in a reflexive Banach space.

We stimulate our algorithms using MATLAB programming to establish the accuracy and
efficiency of our algorithms in each chapter.

Chapter 8 (Conclusion and contribution to knowledge): In this chapter, we give
a detailed summary of our results and also significant contribution of our research to the
existing literature. We also suggest some possible problems we intend to consider in our
future research work.

10



CHAPTER 2

Preliminaries

In this chapter, we present some definitions and basic concepts which are relevant to this
study. Throughout this thesis, unless stated otherwise, E denotes a real Banach space
with dual E* where (-, -) is the duality pairing between F and E*. Also, H denotes a real
Hilbert space with inner product (-,-) and norm || - ||. We write z,, — z to indicate that
the sequence {z,} converges weakly to x and x, — x to indicate that the sequence {z,}
converges strongly to x.

2.1 Basic Definitions

We recall some basic definitions in functional analysis that are required for our work.

Definition 2.1.1. Let C' be a nonempty, closed and convex subset of £ and f : C' —
R U {400} be a mapping.

(i) The effective domain of f denoted by dom f is defined by
dom f:={ve E: f(v) <+oo}.
(ii) The epigraph of f denoted by epi f is defined by
epi [i={(v,f) € EXR: f(v) <5}
(iii) f is said to be convex if for all u,v € E and X € [0, 1], we have

fu+ (1 =Xv) <Af(u) + (1= A)f(v).
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(iv) f is lower semicontinuous at vy € dom f if and only if

f(vo) < liminf f(v).

V—V0

(v) f is upper continuous at vy € dom f if and only if

f(vo) = limsup f(v).
v—U0
Remark 2.1.1. The function f is lower semicontinuous if and only if its epigraph epi f is
closed. Also, f is said to be lower (resp. upper) semicontinuous on its domain if it is lower
(resp. upper) semicontinuous on every v € dom f (see [23]).

Definition 2.1.2. Let = € int(domf), for any y € E, the directional derivative of f at x
is defined by

f”(x,y) — lim f($ + ty) B f(x)

t—0t t

(2.1.1)

If the limit in (2.1.1) exists as t — 07 for each y, then the function f is said to be Gateaux
differentiable at z. In this case, the gradient of f at x is the linear function V f(x), which
is defined by (Vf(z),y) := f°(z,y) for all y € E. The function f is said to be Gateaux
differentiable if it is Gateaux differentiable at each z € int(domf). When the limit as
t — 0" in (2.1.1) is attained uniformly for any y € E with ||y|| = 1, we say that f is
Fréchet differentiable at x. It is well known that f is Gateaux (resp. Fréchet) differentiable
at = € int(domf) if and only if the gradient V f is norm-to-weak® (resp. norm-to-norm)
continuous at z (see [21]).

Definition 2.1.3. Let f be a convex function. Then f is said to be differentiable at point
x € FE if the following set

Of(x):={e€ E: f(y) > f(zx)+{e,y—x), Vyé€EE} (2.1.2)

is nonempty. Each element Jf () is called a subgradient of f at z, 0f(x) is the subdiffer-
ential of f at x and the inequality in (2.1.2) is said to be the subdifferential inequality of
f at . We say that the function f is subdifferentiable on F, if f is subdifferentiable at
each x € F.

Definition 2.1.4. Let C' be a nonempty, closed and convex subset of H. The normal cone
to C' at x € H is defined by

Ne(a) {u e H :sup(C — z,u) <0} if x € C|
T) =
¢ 0 otherwise.

The indicator function of C' is the function i : H — [—00, +00] such that

) 0 ifxed
2C(x)z{

+00 otherwise.

1¢ is lower semicontinuous if and only if C' is closed.
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Proposition 2.1.2. (Cioranescu [87]) Let f : E — R U {400} be a proper convez lower
semicontinuous function. Then

(i) f is subdifferentiable on int(domf);

(i) f is Gateaux differentiable at x € int(domf) if and only if its subgradient Of(z) =
Vf(x) is a singleton set.

The Frénchet conjugate of f is the function f*: E* — R U {400} defined by

[ (y*) =sup{(y",2) — f(z) : x € E}.

Definition 2.1.5. The function f is called Legendre if it satisfies the following two con-
ditions:

(L1) fis Gateaux differentiable, int(dom f) # () and dom V f = int(dom f),
(L2) f*is Gateaux differentiable, int(dom f*) # () and dom V f* = int(dom f*).

The notion of Legendre function in infinite dimensional spaces was first introduced by
Bauschke, Borwein and Combettes in [21]. Their definition is equivalent to conditions
(L1) and (L2) because the space E is assumed to be reflexive (see [21], Theorem 5.4 and
5.6, p. 634). It is also well known that in reflexive Banach space, Vf = (Vf*)~! (see [30],
p. 83). When this fact is combined with conditions (L1) and (L2), we obtain

ranV f = domV f* = int(domf)”,
ranV f* = domV f = int(domf).

It also follows that f is Legendre if and only if f* is Legendre (see [21], Corollary 5.5,
p. 634) and that the functions f and f* are Gateaux differentiable and strictly convex in
the interior of their respective domains. When the Banach space E is smooth and strictly

convex, in particular, a Hilbert space, the function —||.||” with p € (1, 00) is Legendre (cf.

[19], Lemma 6.2, p. 639). For further details on Legendre functions, see, [19, 21].

Definition 2.1.6. Let X be a normed linear space. A mapping 7" : X — X is said to be

1. continuous at an arbitrary point xy € X, if for each € > 0, there exist a real number
0 > 0 such that for x € X

|z — @o|| < § = [|T(z) — T(xo)|| < ¢, (2.1.3)

2. L-Lipschitz if there exists a real constant L > 0 such that

|T(x) =TI < Lilz = yll, Va,ye X, (2.1.4)

3. contraction if it is L—Lipschitz with L € [0, 1),
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4. strictly contractive if it is L—Lipschitz with L € (0, 1).

Definition 2.1.7. Let T : H — H be a nonlinear mapping. Then 7' is called

(a) monotone if

(Te —Ty,x—y) >0, Vaz,ye€H, (2.1.5)

(b) a-strongly monotone, if there exists a constant a > 0 such that

<T$—Ty,l’—y> Z(X||$—y||2, \V/x,?JEHa (216)

(c) [-inverse strongly monotone (shortly, S-ism), if there exists a constant 5 > 0 such
that

(d) firmly nonexpansive, if it is S-ism with § = 1.
1
Remark 2.1.3. Tt is easy to observe that every [-ism operator is monotone and — —Lipschitz.

Definition 2.1.8. A multi-valued mapping M : H — 27 is called monotone if for all
x,y € H such that u € Mz and v € My, then

(x —y,u—v) >0, (2.1.8)

Definition 2.1.9. A multi-valued monotone mapping M : H — 2 is said to be maximal
if the graph of M (denoted by Gr(M)) is not properly contained in the graph of any
other monotone mapping. It is known that a multi-valued mapping M is maximal if and
only if for (z,u) € Hx H, (x—y,u—wv) > 0 for every (y,v) € Gr(M) implies that u € Mz.

Lemma 2.1.4. (see, Rockafellar [220]): Let A : C — H be a monotone mapping and let
B : H — 2% be a mapping defined by

By — {Aq + Nelg),  q€C, (2.1.9)

0, q¢C.

Then B is mazimal monotone and x € B~1(0) if and only if x € Qyrp.

Definition 2.1.10. Let H be a real Hilbert space. The mapping T': H — H is said to be

(a) nonexpansive if

|[Te = Ty|| <|lz —yl| Vr,y€H,

(b) quasi-nonexpansive if, F(T) # () and

HTx—TpHSW—pHa V$EH7 pEF(T),
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(¢) firmly nonexpansive, if
1Tz = Tyl* < |lo —yll* = [z —y) — (T2 = Ty)II*, Yo,y € H,  (2.1.10)
(d) nonspreading, if for all x,y € C, we have
20Tz — Ty|l* < ||Tw — gl + ll — TP,
equivalently, T" is nonspreading if for all z,y € C,
1Tz = Ty||* < [l — ylI* + 2(z — T,y — Ty),
(e) k-strictly pseudo-contractive mapping if for k € [0,1), we have
T = Tyll* < [lz — yl* + kl|(z —y) = (Te = Ty)|]*, Ve,y€ H, (2.1.11)
(f) k demi-contractive if F(T') # () and for k € [0, 1), we have
Tz — Tp||? < ||z — pl|® + k||z — Tz||?, VaeH, peF(T).  (2.1.12)
Remark 2.1.5.

(i) It is clear that in a real Hilbert space H, (2.1.10) is equivalent to the definition of
firmly nonexpansive mapping in Definition 2.1.7 (d).

(ii) Also (2.1.12) is equivalent to
1—

k
5 ||x — Tz||>, Vre€H, pe F(T).

(Tz —p,x —p)|lz —pl|* >

We note that the following inclusions hold for the classes of the mappings:

firmly nonexpansive C nonexpansive C quast nonexpansive C k strictly

pseudo-contractive C k demi-contractive. (2.1.13)

More so, it is well known that the demi-contractive mappings has the following property.
Lemma 2.1.6 (see [171], Remark 4.2). Let T : H — H be a k demi-contractive mapping
such that F(T) # 0. Then
(i) T, = (1 —v)I +vT is a quasi-nonexpansive mapping over C' for every v € [0,1 — k|;
(ii) F(T) is closed and convex.

Lemma 2.1.7. [208] Let X be a number in (0,1] and let p > 0. Let B : H — H be a
k-Lipschitz and p-strongly monotone mapping. Associating with a nonexrpansive mapping
T :H — H, define a mapping T : H — H by
T =Tx — ABT(x), VazcH.
Then T? is a contraction provided ji < i—Z, that is,
[Tz = Ty|| < (1= A)lle —yl| Va,yeH, (2.1.14)

where T =1 — /1 — u(2n — pk?) € (0, 1).
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Definition 2.1.11. A mapping T : H — H is said to be an «a-averaged mapping if
T =(1—-a)l+ «aS, where a € (0,1), S : H — H is nonexpansive and [ is the identity
operator on H.

Many nonlinear operators belong to the class of averaged mapping. For instance, the class
of firmly nonexpansive mapping is %—averaged.

The following lemmas will be used in the sequel.

Lemma 2.1.8. [55, 83] Let S, T,V : H — H be given nonlinear operators.

(1)) If T = (1 —«a)S+ aV, for some a € (0,1), S is averaged and V is nonexpansive,
then T is averaged.

(i) The composition of finitely many averaged mapping is averaged. In particular, if Ty
is aq-averaged and Ty is ag-averaged, where ay,ay € (0,1), then, the composition
11T, is a-averaged, where o = o + g — Qg.

(111) If {T;} is a finite family of averaged mappings with a common fixed point, then

N
(F(T) = F(Ty...Ty).
i=1
Lemma 2.1.9. [55, 179] Let U : H — H be a given operator, we have

(i) U is nonexpansive if and only if the complement I — U is %—ism.
(i1) If U is k-ism, then for v >0, kU is = -ism.

(111) U is averaged if and only if the complement I — U is k-ism for some k > % Indeed,
fora € (0,1), U is averaged if and only if I — U is i—ism.

Definition 2.1.12. Let T': H — H be a nonlinear mapping. Then T is said to be a
d-demimetric mapping if there exists § € (—oo, 1) such that

(x —p,x—Tz) > |x — Tz|]>, Vo €dom(T) and pe F(T). (2.1.15)

Equivalently, T is d-demimetric, if there exists § € (—o0, 1) such that

[Tz —p||* < ||z —p||* + §||x — Tz|]?, Vo€ dom(T) and pe F(T). (2.1.16)
The class of d-demimetric was recently introduced by Takahashi [249] as a generalization of
k-strictly pseudo-contraction, firmly nonexpansive, quasi-nonexpansive and nonexpansive

mappings in a real Hilbert space.

We give the following examples of d-demimetric mapping in a real Hilbert space.
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Example 2.1.10. Let H = R (the real line with usual metric). Define T': R — R by
Ty = g, for all z € R. Clearly, F(T') = {0}. Thus

1
(¢—po—Tz) = (x—0x-3)=(z.3)= ()
Ly 2
= 1
€2
> |Z
> |2
1-9 1-9
- U= e
2 2 2
where 6 = —1. From (2.1.15), we see that T'is —1 demimetric.

Example 2.1.11. Let H be the real line and C' = [—2, 1]. Define

r+9
0,1
10 ) xe[? ]7
Txr =
3
ZI, x € [—2,0).

Obviously, F(T) = {1}. We will show that there exists § € (—o0o, 1) such that
Tz —1)? < |z — 1> + |z — Tz|?, Vo e [-2,1].

Consider the following two cases:
Case (i): Let x € [0,1], then

r+9)2 9 81
e =[S = S
o= Ta" = |z = =5 0@~ =1glr

Also
9 1
To -1 =[S 1) = e P
10 100
99
o - 2__ _2
= |z —1| 100 \
99 81
= 12 - e — 12
o =17 = g7 X Tggl= — 1
81
< Jr— 1248w — 12

for any 0; € [-57,1). Hence [Tz — 1> < |z — 1> + 1|z — Tz|*.

Case (ii): Let x € [—2,0), thus

3+ x
4

2 9

2_‘3@—1)

_T 2:) - =
|z — Tz x 1
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Then

3+ 2 x—1)2 1
T—12:’ 1 :) ‘:_ e
ITe =1 1 1 6"~

15
12— 212
1P - D)
15 9
= jz—1 - =]z -1
9 16
9
<z =1+ G|z — 1
for any 8y € [—2,1). Hence [Tz — 1> < |# — 1> 4+ 61|z — Tx|*. In particular, choose

6 = min{dy,d,}. Thus, T is —*2-demimetric.

Definition 2.1.13. Let (X,d) be a complete metric space. A mapping f : X — X is
called a Meir-Keeler contraction [182] if for every e > 0, there exists § > 0 such that

d(z,y) <e+ 6 implies d(f(z), f(y)) <e, (2.1.17)

for all z,y € X. It is easy to show that the Meir-Keeler contraction mapping is a general-
ization of the contraction mapping in Definition 2.1.6.

Lemma 2.1.12. [213] Let f be a Meir-Keeler contraction on a convexr subset C' of a
Banach space E. Then for every e > 0, there exists r. € (0,1) such that

lz—yllze = |lf(z) = FWIl < rellz—yll
for all x,y € C.

Lemma 2.1.13. [182] A Meir-Keeler contraction defined on a complete metric space has
a unique fized point.

Definition 2.1.14. [115] Let E be a real Banach space, then the operator A: C' — E* is
said to be

(a) strongly monotone on C' if there exists v > 0 such that
(Au— Av,u —v) > v|jlu—v|]* V u,veC;

(b) monotone on C' if
(Au— Av,u—v) >0 V wu,veC;

(c) strongly pseudo-monotone on C' if there exists v > 0 such that

(Au,v —u) > 0= (Av,v —u) > 3|ju —v|]*, Vu,veC;

(d) pseudo-monotone on C' if for all u,v € C

(Au,v —u) > 0= (Av,v —u) > 0.
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Remark 2.1.14. If E is a Hilbert space, then the definition of monotone operator (b) is
the same as Definition 2.1.7(a). It is easy to see that the following implications hold:
(a) = (b), (a) = (c¢), (¢) = (d) and (b) = (d). We present the following example of a
pseudo-monotone mapping which is neither strongly monotone nor monotone.

Example 2.1.15. [150] Let E = /{5, the real Hilbert space whose elements are the square
summable sequences of real scalars, i.e.,

E = {QZ = (l‘l,l'g,...,l’k,...)’ Z ’l’k|2 < +OO}
k=1
The inner product and norm on E are given by
<x,y> = Zxkyk and ||I’|| =V <IL‘,.I‘>,

k=1
where © = (x1, 29, ..., Zp,...), and ¥y = (Y1, Y2, - - s Yky - - - )-
Let o, 5 € R such that g > o > g > 0 and

C={zeFE:|lz|]| <a} and Az=(8—||z||)=.

It is easy to verify that Qy;p = {0}. Now, let z,y € C such that (Az,y — z) > 0, i.e.

(8 = l[z]]){z,y — =) = 0.

Since > a > g > 0, the last inequality implies that (z,y — z) > 0. Hence

(Ay,y —x) = B—Ilyl){y,y — )
> (B —=1lyl{y,y —z) = (B~ llyl){z,y — z)
= (B 1llyDlly —=|]* > 0.

This means that A is pseudo-monotone on C'. To show that A is not monotone on C, let

é,O,...,O,...), y=(,0,...,0,...) € C. Then, we have

us consider z = (2

3 3
(Ar — Ay, —y) = (E—a) < 0.

Definition 2.1.15. A bifunction f: C' x C' — R is called
(a) strongly monotone on C' if there exists a constant o > 0 such that
fl@.y) + fly,2) < —allz —yl]*, Vayedl;

(b) monotone on C' if
f@y) + fly,2) <0, Va,yel;

(c) strongly pseudo-monotone on C' if there is a constant o > 0 such that

f(r,y) > 0= fly,2) < —allzr —y|?, Yaz,yeC;
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(d) pseudo-monotone on C' if

flz,y) > 0= f(y,x) <0, Va,yecC.

It is easy to see that the following implications hold:
(a) = (b) = (d) and (a)= (c) = (d). (2.1.18)

The converse implication of (2.1.18) is not true in general.

Pseudo-monotone operators in the sense of Karamardian were introduced back in 1976 as
a generalization of monotone operators. This has been studied for the last 40 years and has
found many applications in variational inequality and economics. In case of gradient maps,
pseudo-monotonicity characterized the convexity of the underlying function [115]. Several
algorithms have been introduced for solving the EP when the bifunction g is monotone on
C (see, e.g. [33, 34,90, 154, 155, 156]). However, when f is relaxed to be pseudo-monotone
on (', these approaches fail to work. Hence there has been an increasing effort on finding
suitable methods for solving EP where f is pseudo-monotone on C'

2.2 Metric Projection, Proximal and Resolvent Op-
erators

In this section, we briefly look at the properties of some essential operators in functional
analysis.

2.2.1 Metric projection operator

Definition 2.2.1. Let C be a nonempty, closed and convex subset of H. For every point
x € H, there exists a unique nearest point in C' denoted by Po(z) such that

|z = Po(@)|| < |le—yll, VyeC. (2.2.1)

The operator Po : H — C'is called the metric projection of H onto C.

A very important inequality that characterizes the metric projection is stated below.

Proposition 2.2.1. [20] Let C be a nonempty closed convex subset of a Hilbert space H.
For arbitrary x € H and z € C. Then, z = Pco(x) if and only if

(x—z,y—2) <0, VyeC. (2.2.2)
From Proposition 2.2.1, we deduce that:

(i) The metric projection is firmly nonexpansive, that is, for all z,y € H,
| Pe(x) = Pe()I]” < (v =y, Pe(x) = Po(y)).
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(ii) Forallz € H and y € C,

|z = Pe(@)|]” + ||Pe(x) — ylI* < |lz -yl (2.2.3)

(iii) If C' is a closed subspace, then P coincides with the orthogonal projection from H
onto C, that is,  — Po(x) is orthogonal to C. Thus, for any y € C,

(x = Po(x),y) = 0.

If C is a closed convex subset with a particular simple structure, then the projection Pg
has a closed form expression as describe below (see [177]):

1. f C={x € H:|lxr—u| <r}isa closed ball centred at u € H with radius r > 0,

then
r(z—u) .
U T if v ¢ C,
Pcﬂf =
x, iteeC.
2. If C = Ja,b] is a closed rectangle in R", where a = (ai,as,...,a,)" and b =
(b1, by...,b,)T, then for 1 < i < n, Pox has the i coordinate given by
ai, ifz; <ay,
(ch)l = Xy, if x; € [Gi, bl],

bz‘, if ZT; > bz

3. If C ={y € H:{(a,y) = a}is a hyperplane with a # 0 and a € R, then

(a,x) — «

Pex =2 -
[lal|?

4. If C ={y € H : (a,y) < a} is a closed halfspace, with a # 0 and o € R, then

(a,x)—

1e% .
T — e @ if (a,x) > «,

x, if (a,x) < a.

5. If C is the range of a m x n matrix A with full cloumn rank, then
Pox = A(A*A) 't A%z,

where A* is the adjoint of A.
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2.2.2 Proximal and resolvent operators

Let f: H — RU {400} be a proper, convex and lower semicontinuous function. The
proximal operator prox.; of f with respect to parameter v > 0 is defined by

) 1
prozss() = argmin ( £ + -1l = o). (2.2.5)
yeH Y

The following is a useful property of the proximal operator.

Proposition 2.2.2. [279] Let f : H — RU {400} be a proper, convex and lower semicon-
tinuous function and v > 0. Then the following holds:

(i) Let x,p € H. Then
p=provy(z) < (y—p,x—p)+ f(p) < fly) VyeH.
(i1) prox.s and I — prox.s are firmly nonerpansive.
(it) F(prox.s) = Argmin f.
Definition 2.2.2. Let M : H — 2 be a set-valued mapping and v > 0.

1. The resolvent of M with respect to the parameter ~ is the operator

1
M . —1

2. The Yosida approximation of M with respect to the parameter « is define by

1
M, == —JM).

Y
3. The zero set of M is the set M ~1(0) define by
M 0):={zxe€H:0ec M(z)}.
The following property of the resolvent operator will be used in this thesis.

Proposition 2.2.3 (Proposition 23.2 in [23]). Let M : H — 2% be a mapping, v > 0 and
x,p € H. Then the following hold:

(i) dom (Jéw) = dom (M,) = ran(l +yM) and Tan((]ffw) = dom (M);

(it) pe JY(z) e xep+yMper—peyMp e (p,y (z—p) € Gr(M);

(i) p € Myx < pe M(zx—vp) < (x —p) € Gr(M).
Next, we present some important examples of resolvent operator.
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Example 2.2.4.

1. Let f: H— RU{+400} be a proper, convex and lower semicontinuous function and
~v > 0. Then
J?f = Prox.f.

2. Let C be a nonempty closed convex subset of H and vy > 0. Setting f = i¢, then
82’0 = NC and
i
JJ'¢ = proxyei. = Fo,

where P is the metric projection onto C'

3. Let xp € H and suppose H = L?([0,T]; H) and v = 1. Let M be the time-derivative
operator (see Example 2.9 and Example 23.5 in [23])

if e WbH([0,T];H) and z(0) = xo;

/
M:H—=2":. - {«,
(0, otherwise.

Then dom(JM) = H and for every x € H

t
JMg [0, T] — H : t — exp ' xg —|—/ exp® ' x(s)ds.
0

2.3 Multivalued Mappings

A subset D of H is called proximal if for each x € H, there exists y € D such that
||z =yl = d(z, D).

We denote by CB(H), CC(H) and P(H) the families of all nonempty closed bounded
subsets of H, nonempty closed convex subset of H and nonempty proximal bounded
subsets of H respectively. The Pompeiu-Hausdorff metric on CB(H) is defined by

H(A, B) := max{supd(z, B),supd(y, A)}

€A yeB

for all A,B € CB(H). Let S : H — 2 be a multivalued mapping. An element p € H
is called a fixed point of S if p € Sp. We say that S satisfies the endpoint condition
if Sp = {p} for all p € F(S). For multivalued mappings S; : H — 2% (i € N) with
N2, F(S;) # 0, we say S; satisfy the common endpoint condition if S;(p) = {p} for all
i€ N,penX F(S;). We recall some basic definitions of multivalued mappings.

Definition 2.3.1. A multivalued mapping S : H — C'B(H) is said to be

1. nonexpansive if
H(Sz, Sy) <[z —yll, Va,yeH,

2. quasi-nonexpansive if F(S) # () and
H(Sz,Sp) <|lz —pl|l, VeeH, peF(S),
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3. A-demi-contractive for 0 < A < 1 if F/(S) # 0, and
H(Sz,Sp)* < ||z — p||* + Ad(z, Sx)?, Vx € H, p € F(S).

We note that the class of A-demi-contractive mappings includes several other type of classes
of nonlinear mappings such as nonexpansive and quasi-nonexpansive.

The best approximation operator Pg for a multivalued mapping S : H — P(H) is defined
by

Ps(z) :=={y € Sz : ||z — y|| = d(z, Sz)}.
One can easily prove that F(S) = F(Ps) and Pgs satisfies the endpoint condition. How-

ever, Song and Cho [236] gave an example of a best approximation operator Pg which is
nonexpansive but S is not necessarily nonexpansive.

2.4 Some Notions on Geometric Properties of Banach
Spaces

We recall some important geometric properties of Banach spaces that relevant to this
study.

Definition 2.4.1. A Banach space E is said to be uniformly convex if given any € > (0, 2],
there exist § = d(¢) > 0 such that for all x,y € E satisfying ||z|| = 1, ||y|| = 1 and
||z — yl| > €, we have ||(z+y)|| <1-0.

Let dim(E) > 2. The modulus of convexity of E is the function dg : (0,2] — [0, 1] defined
by
rT+y

55(6) :=inf{1— :|rx||=|\y|r=1;e=nx—y\|}.

E is said to be uniformly convez if and only if 0z (e) > 0 for all € € (0,2] and p-uniformly
convez if there exists a constant C, > 0 such that 0p(e) > C,€? for any p € (0,2].

Definition 2.4.2. A normed linear space X is called strictly convex if for all x,y € X
with = # vy, ||z|| = ||y|| = 1, we have ||[Az + (1 — N)y|| < 1, for all X € (0,1).

Proposition 2.4.1. [76] Every uniformly convex Banach space is strictly convez.

Remark 2.4.2. The space [, is not strictly convex. To see this, if we consider u =
(1,1,0,0,0,...) and © = (—1,1,0,0,0,...). Both u,v € l,. Taking € = 1, then ||i||, =1 =

oy

19|00 and ||& — 0| = 2 > €. However, = 1. Thus I is not strictly convex.

[e.e]

Definition 2.4.3. A Banach space E is said to be smooth if for every z € E, ||z|| = 1,
there exists a unique z* € E* such that ||2*|| =1 and (x,z*) = ||z||.

The modulus of smoothness of E is the mapping pg : [0,00) — [0, 00) defined by

{Hwﬂ/H + [l — yl|
sup —

pe(t) = 5

Lellall =1, [yl <t
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The Banach space FE is said to be uniformly smooth if

t—0 t

see Chidume [76]. Suppose that ¢ > 1, then FE is said to be g-uniformly smooth if there
exists ¢, > 0 such that pg(t) < ¢,t¢ for all ¢ > 0. It is well known that there is no
Banach space which is g-uniformly smooth with ¢ > 2 (see [271, |). If E is gq-uniformly
smooth, then FE is uniformly smooth. Also, each uniformly convex Banach space E is
reflexive, strictly convex and every uniformly smooth Banach space F is a reflexive Banach
space with uniformly Gateaux differentiable norm (see [241]). Typical examples of both
uniformly convex and uniformly smooth Banach spaces are L,, spaces, where 1 < p < oo.
Moreover, L, is min{p, 2}-uniformly smooth for every p > 1.

Definition 2.4.4. Let E* be the dual space of a real Banach space E and p > 1. The
multi-valued mapping J, : £ — 2P defined by

E * * *\ x| -1

is called the generalized duality mapping of E. In particular, JF = J is called normal-
ized duality mapping. The normalized duality mapping is known to have the following
properties (see [37]):

(i) If E is smooth, then J is single-valued and denoted by ;.

(ii) If E is strictly convex, then J is one-to-one and strictly monotone, i.e.,

(x—y,Jr—Jy)y >0 VuzyekE.

(iii) If E is reflexive, then J is surjective.

(iv) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on bounded
subset of L.

(v) If E* is uniformly convex, then J is single-valued, one-to-one and uniformly contin-
uous on bounded subsets of E.

The generalized duality mapping Jf is said to be weak-to-weak continuous if

Ty =T = (Jf(a:n),y) — <Jf(aj),y>

holds true for any y € E. It is worth noting that the I, (p > 1) space has such property,
but the L, (p > 2) space does not share this property.

Let 1 < ¢ <2 < p with % + % = 1. It is well known that E is p-uniformly convex and
uniformly smooth if and only if its dual space E* is g-uniformly smooth and uniformly
convex. Moreover, if E is reflexive and strictly convex with a strictly convex dual, then
(JE)™' = JF" is single-valued, one-to-one, surjective and it is the duality mapping from
E* into E and thus JEJE" = 1% and JF'JF = I, where I” and I*" are the identity
operators on E and E* respectively. We note that in a real Hilbert space, the duality
mappings reduce to the identity mapping. For more information on geometry of Banach
spaces and duality mapping, see [76] and [37].
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Definition 2.4.5. A mapping 7" with domain D(T") and range R(T) in E is called:

(i) A-strictly pseudocontractive [50] if for all z,y € D(T'), there exist A > 0 and j,(z —
y) € Jy(x — y) such that

(Te =Ty, j(x —y)) <|lz—yll" = AT =T)z = (I =Tyl (2.4.2)
or equivalently
(I =Tz = (I =T)y,jo(x —y)) 2 N[ = T)x = (I =T)y||* (2.4.3)
(i) accretive if for all z,y € C and j,(x —y) € J,(z —y), we have

(Tx — Ty, jy(r — y)) >0, (2.4.4)

(ili) p-strongly accretive if for all x,y € C, there exists > 0 and j,(z —y) € J,(x — y),
such that

(Tz =Ty, jo(x —y)) = pllz —yl|". (2.4.5)

By Definition 2.4.5, we know that every A-strictly pseudocontractive mapping is %-
Lipschitzian (see [75]). We also note that the class of A-strict pseudocontractive mappings
properly contains the class of nonexpansive mappings. If A = 0 in (2.4.2), then the
mapping 7" is called pseudocontractive.

In a real Hilbert space H, it can easily be shown that for A € (0, %), (2.4.2) is equivalent

to (2.1.11) with k=1 —2X < 1.

Definition 2.4.6. Let C' be a nonempty closed and convex subset of a real Banach space
E and K be a nonempty subset of C. A mapping Q : C' — K is called a retraction of C'
onto K if Qgx = x for all x € K. We say that Qi is sunny if, for each x € C' and t > 0,

whenever tz 4+ (1 — t)Qxgx € C. A sunny nonexpansive retraction is a sunny retraction
which is also nonexpansive. It is well known that if £ := H is a Hilbert space, then the
sunny nonexpansive retraction ()i coincides with the metric projection from C onto K.

Proposition 2.4.3. [212]: Let C be a closed and conver subset of a smooth Banach
space E. Let K be a nonempty subset of C', QQ : C — K be a retraction and let j,j, be
the normalized and generalized duality mappings on E respectively. Then the following
statements are equivalent:

(a) Q is sunny and nonexpansive,

(5) 11Qz — Qy|? < (x — v, j(Qz — Qy)) for all .y € C,

(c) (x —Quz,j(y — Qx)) <0 forallz € C and y € K,

(d) (x — Qx, j,(y — Qz)) <0 for allz € C and y € K.
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2.5 The Bregman Distance and Some Related No-
tions

Definition 2.5.1. Let f : E — RU{+00} be a convex and Gateaux differentiable function.
The function Dy : domfx int(domf) — [0, +00) defined by

Dy(y,z) == fy) — f(z) —(V[f(z),y — z) (2.5.1)
is called the Bregman distance with respect to f, (see [11, 70]).

The Bregman distance does not satisfy the well-known properties of a metric, but it has
the following important properties:

Proposition 2.5.1. [21](Basic properties of Bregman distance) The following properties
follow directly from the definition of Bregman distance: Let u,v,xz,y € E, then

(i) Dy(u,v) + Dy(v,u) = (u—v,Vf(u) = Vf(v));
(ii) Dy(w,u) = Dy(x,y) + Ds(y,u) + (v —y,Vf(y) — Vf(u));
(iti) Dy(z,u) + D(y,v) = D(x,v) + Dy(y,u) + (z —y, Vf(v) — Vf(u)).

Definition 2.5.2. Let f : E — RU{+00} be a convex and Gateaux differentiable function.
The function f is called

(i) totally convex at x if its modulus of totally convexity at = € int(domf), that is, the
bifunction vy : int(domf) x [0, +00) — [0, +00), defined by

v(z,t) .= inf{Ds(y,z) : y € domf, ||y — z|| = t}, (2.5.2)
is positive for any ¢t > 0,
(ii) totally convex if it is totally convex at every point x € int(dom f),

(iii) totally convex on bounded subset B of E, if v(B,t) is positive for any nonempty
bounded subset B, where the function vy : int(dom f) %[0, +00) — [0, +00] is defined
by

ve(B,t) ;== inf{ve(x,t) : & € BNint(domf)}, ¢>0. (2.5.3)
For further details and examples on totally convex functions, see [38, 58, 59].

Definition 2.5.3. [58, 210] Let f : E— RU{+o00} be a convex and Gateaux differentiable
function. The function f is called

(i) cofinite if domf* = E*,

f(=z)

(ii) coercive if lim o

= 400,
[|z|| =400
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(iii) sequentially consistent if for any two sequences {z,} and {y,} in E such that {z,}
is bounded,

lim D¢(yn,z,) = 0= lim ||y, — z,|| = 0. (2.5.4)
n—o0

n—oo

Definition 2.5.4. Let E be a Banach space and let B, := {z € E : ||z|| < r} for all
r > 0. Then, a function f : EF — R is said to be uniformly convex on bounded subsets of
E if p,(t) > 0 for all ¢ > 0, where p, : [0, +00) — [0, o] is defined by

_ : af(z)+ (1 —a)f(y) — flaz+ (1 —a)y)
pr(t) - .t,yEBr,H:cllglJﬁ:t,aG(O,l) 04(1 — Oé) ’

(2.5.5)

The function p, is called the gauge of uniform convexity of f. More so, the function
[+ E— RU{+o0} is called strongly coercive if

@) o

[|2||—+00 ( |||

Definition 2.5.5. Let f : E — RU{+00} be a convex and Gateaux differentiable function.
The Bregman projection of z € int(domf) onto the nonempty, closed and convex subset
C C int(domf) is defined as the necessarily unique vector Projé(m) € C satisfying

Dy (Projl(z),z) = inf{Ds(y,z) : y € C}. (2.5.6)
It is known from [59] that z = Proj’(z) if and only if
(Vf(x) = Vf(2),y—2) <0  foralyeC. (2.5.7)

We also have
Df(y,Projé(x)) + Df(Projé(:L’),a:) < D¢(y,x) forallze B, ye C. (2.5.8)

Lemma 2.5.2. [213] (Characterization of Bregman Projection): Let f be totally con-
vexr on int(domf). Let C be a nonempty, closed and conver subset of int(domf) and
x €int(domf ), if w € C, then the following conditions are equivalent:

(a) the vector w is the Bregman projection of © onto C, with respect to f,

(b) the vector w is the unique solution of the variational inequality
(Vf(x) =V f(2),z—y) >0 Yy € C,
(c) the vector w is the unique solution of the inequality

Dy(y;z) + Dy(z,2) < Dy(y,x) Yy eC.

Definition 2.5.6. Let T : C' — C be a mapping, a point x* € C' is called an asymptotic
fixed point of T if C' contains a sequence {z,};>; which converges weakly to x* and
lim,, o ||2n — T'z,|| = 0. The set of asymptotic fixed points of T is denoted by F(T').
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Definition 2.5.7. Let C' be a nonempty, closed and convex subset of £. A mapping
T :C — int(dom f) is called

1. Bregman Firmly Nonexpansive (BFNE for short) if
(VF(Tx) = V(Ty), Ta — Ty) < (V(x) = Vf(3), T — Ty) ¥a,y € C. (2.5.9)

2. Bregman Strongly Nonexpansive (BSNE) with respect to a nonempty F(T') if
D¢(p,Tx) < Dy(p, ), (2.5.10)

for all p € F(T) and z € C and if whenever {z,}°°, C C is bounded, p € F(T) and

lim <Df(p, z,) — D¢(p, Txn)> =0,
n—oo

it follows that

lim Dy(Txy,z,) = 0.

n—o0

3. Bregman Relative Nonexpansive (BRNE) if F/(T') # 0,
D(p,Tx) < Dy(p,x) VaxeCpe F(T) and F(T)= F(T). (2.5.11)

4. Quasi-Bregman Nonexpansive (QBNE) if F(T') # () and
D¢(p,Tx) < D¢(p, ) Ve e C,pe F(T). (2.5.12)

From the Definition 2.5.1, it is clear that (2.5.9) is equivalent to
Dy(Tz,Ty)+ Dy(Ty,Tx) + Dy(Tx,x) + Dy(Ty,y) < Dy(Tz,y) + Ds(Ty, x).(2.5.13)
We note that in the case where F(T) = F(T), the following inclusion holds
BFNE C BSNEC BRNE C QBNE. (2.5.14)

It is worth noting that the duality mapping Jf is actually the derivative of the function

folz) = %Hpr for 2 < p < oc0. If f = f,, then the Bregman distance with respect to f,
now becomes

1 1
Dy(z,y) = 5|Ifcllp—<fo,y>+z—9l|yll” (2.5.15)
1
= 5(Hy\|”—Hflfl!”)+<fo,w—y>
1
= —(lzll" = llyl") = (L= = Ty y).
q

For the p-uniformly convex Banach space E, the metric and Bregman distance has the
following relation (see [227])

Tlle — yl|P < Dpa,y) < (x —y, JFx — JFy), (2.5.16)
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where 7 > 0 is some fixed number.

Similar to the metric projection, we define the Bregman projection with respect to D, as

Hex == argmin Dy(z,y),
yeC

for all x € E, which is the unique minimizer of the Bregman distance. The Bregman
projection is also characterized by the variational inequality:

(JP(x) — JP(ex), 2z — Hex) < 0.V z € C, (2.5.17)
which implies that
D,(Il¢cz, z) < Dy(z, z) — Dy(x,llcx), (2.5.18)
for all z € C.
Following [0, (0], we make use of the function V, : E* x E — [0, 00), defined by
Lo Lo .

Then V}, is nonnegative and Vj,(z,y) = Dp(JF (z),y) for all z € E* and y € E. Moreover,
by the subdifferential inequality

(f'(x),y —z) < fly) — f(x),

with f(z) = é||m||q and x € E*, then f'(x) = J . Then we have

. 1 1
(Jy (@),y) < gyl = il (2.5.20)
and from (2.5.20), we obtain
* * 1 * *|1q * * 1 P
V(@ +yhz) = eyt = " 4y @)+l

1 * * * * * * 1
> glliv N7+ (" Jy (2") = (a +y,93)+a||96||p

1, . . 1 . _— .
= 5\\96 Hq—(x,m)Jr;HprJr(y,Jf (@) — (", x)

1 * * 1 * * *
= 5Hﬂf 19— (z ,w>+];\|fc!|p+<y Iy (@) — )

= Vp(z*,2) + (v, J7 (z*) — z), (2.5.21)

for all x € E and z*,y* € E*. In addition, V), is convex in the first variable. Thus, for all
z€F,

Dy(J7 Y TP (), w) <Y Dy (i, w), (2.5.22)



N
where {z;} C F and {t;} C (0,1) with > t;, = 1.
i=1

Another important distance function we used in the thesis is the Lyapunov functional ¢
on E x E defined by (see [0])

o(z,y) = ||2|* — 2(z, J(y)) + [|yl|>, Va,y€E. (2.5.23)

It is easy to see from the definition of ¢ that if £ = H a real Hilbert space, ¢(z,y) =
|z —ylf>.

Proposition 2.5.3. The following properties clearly follows from the definition of ¢ :

D1. ([lz]] = [lyl)? < ¢y, =) < (]| + ||yI])?,
D2, $(2,9) = 9, 2) + (2, y) +2a — 2,5 — Ty,
D3. for all x,y,z € E and o € (0,1)

¢($7 J_l(ajy + (1 - a)]z)) < a¢>(w,y) + (1 - 04)¢(93,z)

We also note the following important relation.

Proposition 2.5.4. [191] Let E be a 2-uniformly convex and smooth Banach space. Then
for every x,y € E,

o(z,y) > allz =yl (2.5.24)

where ¢; > 0 is the 2-uniformly convezity constant of E.

Let E be a smooth, strictly convex and reflexive real Banach space and let C' be a
nonempty, closed and convex subset of E. Following Alber [(], the generalized projec-
tion Ilo from F onto C' is defined by

o(z) := argmin ¢(y,x), Vx€E.
yeC

The existence and uniqueness of Il follows from the property of the functional ¢(z,y)
and strict monotonicity of the mapping J (see, for instance [0, ). If E is a Hilbert
space, then Il is the metric projection of H onto C.

Lemma 2.5.5. [Characterization of Generalized Projection [0, 1/3]] Let E be a smooth,
strictly convex and reflexive Banach space and C' be a nonempty closed and convexr subset
of E. Then the following hold:

(CL) ¢($,Hcy> + ¢(Hcyay> < ¢(3§',y), fOT’ all x € C; y e Ea
(b) z=1ex = (z—y,Jr—Jz) >0, forally € C.

Definition 2.5.8. A mapping S : C' — (' is said to be
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(i) ¢p—nonexpansive if
¢(Sy, Sz) < Py, x), Va,yeCl,

(ii) ¢p—quasi-nonexpansive if F'(S) # () and

o(p, Sz) < ¢(p,x), VaxeCl, peF(9),

(iii) ¢—relatively nonexpansive if F(S) # (),

o(p, Sz) < d(p,x), VaxeC, peF(S) and F(S) = F(9).

Following Alber [0], we make use of the mapping V : E x E* — [0, 00) defined by
Vi(z,2") = [lz|* — 2(z, 2") + ||2"]%, (2.5.25)

for all x € E and z* € E*. In other words, V(z,2*) = ¢(x, J ! (z*)) for all z € E and
x* e BT

Lemma 2.5.6. [0] Let E be a reflexive, strictly conver and smooth Banach space, and let
V' be as defined in (2.5.25). Then

Vi(w,2%) + 2007 (@%) — 2,57) < V(e,a" +y7), (2.5.26)
forallz € E and x*,y* € E*

Remark 2.5.7. For a real Banach space F, the resolvent operator Ry associated with M
for A > 0 is given as

RY(z):={z€ E:Jlx e Jlz+AM(2)}.

Equivalently, R} := (JF + AM)~'JF. R}" is single valued and also M~'0 = F(R}") (see

Section 5 in [245]). It is well known that R} is relative nonexpansive, that is
0 < (R (@) = Y (y), JE () — JERY (@) — (JFy — Y (3). (25.27)
for all z,y € F; see Theorem 5.2 of [245]. Also, for any z € E, u € T-1(0) and A > 0, we
have (see [213])
D,(z, Ryrx) + Dy(Ryrz,u) < Dy(z,u). (2.5.28)

2.6 Some other Important Results

In this section, we state some other important results which will be used in the sequel.

The following lemma is well known in Hilbert space; see for instance [22, 115].

Lemma 2.6.1. Let H be a real Hilbert space. Then the following hold: for all x,y € H,
(i) Iz +yll? < [lyl]” + 2(z, z + y),

32



(it) |lz = yll* = ll=[1* + lly[]* = 2{x, ),

(iii) |lax + (1 = a)y|]® = allz]]® + (L = a)|lyl|* — a(1 = a)||z = y[]*, for a € ]0,1).

The following can easily be proved using Lemma 2.6.1 (ii).

Lemma 2.6.2. Let H be a real Hilbert space and a,b,c,d € H. Then

1
(a=be—d) =5 (lla=d =lla=clP) + 5 (lle=dl" = ld = b[])

N | —

Lemma 2.6.3. [79] Let H be a real Hilbert space, x; € H, (1 <1 <m) and {o;} C (0,1)

with > a; = 1. Then the following identity holds:
i=1

m
| > o
i=1

Lemma 2.6.4 (see [122]). Let {h'}™, be a finite family of convex functions defined on
H such that their level set is defined by C* = {x € H : h'(z) <0}, i = 1,2,..., N, with
nonempty intersection. Let D = {x € H : " B;h'(x) < 0} with {B;}1%, C (0,1) such
that 31", B; = 1. Then, the following properties are satisfied:

2 m m
= aillwlP = ) ooyl — ) (2.6.1)
=1

i, =1,

(1) If each C* is a half space, i.e., h'(x) = (x,v;) — d; with d; € R and v; € H such that
v; # 0, in addition, if the vector group {v;}", is also linearly independent, then D
s a half space;

(11) D is a closed ball if each C" is a closed ball;

(iii) D is a closed ball if C* is a closed ball or a half space and at least one of them is a
closed ball.

Lemma 2.6.5 (Demiclosedness principle in Hilbert spaces [115]). Let C be a closed and
conver subset of a Hilbert space H and T : C — C be a nonexpansive mapping with
F(T) #0. If {x,} is a sequence in C' weakly converging to p and if {(I —T)x,} converges
strongly to q, then (I —T)p = q. In particular, if ¢ =0, then p € F(T).

Lemma 2.6.6 (Demiclosedness principle in Banach spaces [212]). Let C' be a nonempty
closed and convex subset of a g-uniformly smooth real Banach space E which admits weakly
sequentially continuous generalized duality mapping j, from E into E*. LetT : C — C

be a nonexpansive mapping. Then, for all {z,} C C, if v, = = and x, — Tz, — 0, then
x="Tz.

Lemma 2.6.7. [1/5] Let E be a uniformly convez and uniformly smooth real Banach space
and {x},{yr} be sequences in E such that either {x} or {yx} is bounded. If

k—o0
then lim ||z — yi|| = 0.
k—o0
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Lemma 2.6.8. [205] Let E be a uniformly convex real Banach space. Let r > 0, then
there exists a strictly increasing continuous and convez function g : [0,00) — [0,00) such
that g(0) = 0 and the following inequality holds:

Az + (1= Nyll* < All=]]* + (1= ]ly[* + AL = Vgl =yl (2.6.2)
for all z,y € B,(0), where B.(0) :={v € E: ||v|| <r} and X € [0,1].

Definition 2.6.1 (see [161, 180]). The Minty Variational Inequality Problem (MVIP) is
defined as finding a point € C' such that

(Ay,y —z) >0, YyeC. (2.6.3)

We denote by M(C, A), the set of solution of (2.6.3). Some existence results for the MVIP
has been presented in [161]. Also, the assumption that M (C, A) # () has already been used
for solving Qy7p in finite dimensional spaces (see e.g [235]). It is not difficult to prove that
pseudo-monotonicity implies property M (C, A) # (), but the converse is not true. Indeed,
let A: R — R be defined by A(z) = cos(x) with C' = [0, 7]. We have that Qy;p = {0, 5}
and M(C, A) = {0}. But if we take 2 = 0 and y = 7 in Definition 2.1.14(d), we see that
A is not pseudo-monotone.

Lemma 2.6.9 (see [180]). Consider the VIP (1.1.1). If the mapping h : [0,1] — E* defined
as h(t) = A(tx 4+ (1 — t)y) is continuous for all x,y € C (i.e., h is hemicontinuous), then

M(C,A) C Qurp. Moreover, if A is pseudo-monotone, then Qyp is closed, conver and
Quip = M(C, A).

Lemma 2.6.10. [150] Let f be a totally conver and Gateauz differentiable such that
domf = E. Then for all z* € E*\ {0}, y€ E, x € H" and & € H~, it holds that

Df(j’x) = Df(jaz) —l—Df(Z,:B),
where z = argmingegDys(y,x) and H = {y € E : (a*,y —y) =0}, H" = {y € E :
The following lemma was proved in R™ in [104] and it can easily be extended to a real
Banach space.

Lemma 2.6.11. Let E be a uniformly conver and uniformly smooth Banach space and C
be a nonempty closed and convexr subset of . For any x € E and > 0, we denote

rg(x) == — e (Jo — fA), (2.6.4)

then
min{1, BHIr: (@)]] < [Irs(@)]] < max{1, 8}/|n (2)]]

Lemma 2.6.12. [/65] Let H be a real Hilbert space. Let T : H — 22 be a mazimal
monotone operator and S : H — H be an a-inverse strongly monotone mapping on H.
Define K, := (I +rT) " (x — rSz), r > 0, then we have

F(K,)=(S+T)%0), (2.6.5)

where F(K,.) denotes the set of fixed points of K,.. Also, note that K, is nonexpansive and
F(K,) is closed and conver.
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Lemma 2.6.13. [50] Let H be a real Hilbert space and B : H — 28 be a set-valued
mazimal monotone operator. For each x € H, A\ > 0 and JZ(x) = (I + A\B)~'(z), then

(i) JP is single-valued and firmly nonexpansive;
(ii) D(JP)=H and Fiz(JP)={x € H:0 € B(z)};
(iii) ||v — J{z|| < |lx — JZ|| for all 0 < X\ <, x € H;

(iv) Suppose B=1(0) # 0. Then ||z — JPx||> + ||JEx — v*||*> < ||z — y*||* for each x € H
and y* € B~(0);

(v) Suppose B=1(0) # 0. Then (x — JPx, JPx —y) > 0 for each x € H and y € B7(0).

Lemma 2.6.14. [227] Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and let f : E — R be a strictly convex and Gateauz differentiable function.
Let g : C x C'— R be a bifunction satisfying conditions (A1)-(A4). For all A > 0 be any
giwen number and x € E, there exists z € C' such that

(zy) + %(V(Z) V() y—2) >0, ¥yeC. (2.6.6)

Define the resolvent mapping T, : E — 2° as follows
1
Res) (z) ={z € C: g(z,y) + AVf(2) = Vf(z),y—2) 20, Vy el (2.6.7)
then, Resf\cjg has the following properties:

1. Resi,g 15 single-valued;
2. Resig is a firmly nonexpansive mapping, that is;
(Resf\v’gz — Res{vgy,Vf(Resigz) — Vf(Resigy))
< (Res{vgz — Resf\ig% Vf(z)=Vf(y) Vz,y € E; (2.6.8)
3. F(Res{jg) = QEp(g);

4. Qpp(g) s closed and convex.

It is easy to see that the resolvent operator satisfies the following inequality: for all r > 0,
u € EP(g) and x € E, then

Dy(x, Res{’gw) + Df(Resf\c’gx, u) < Dy(z,u). (2.6.9)

Lemma 2.6.15. [270] Let E be a uniformly smooth Banach space, C' a closed nonempty
subset of E, T : C — C a nonexpansive mapping with F(T) # 0 and f : C — C a
contraction mapping. For each t € (0,1), define zz = tf(z) + (1 — t)Tz, then, {z}
converges strongly to the unique fived point T of T ast — 0, where T = Qp) f(Z) and
Qrr) : C — F(T) is the sunny nonexpansive retraction from C onto F(T).
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Lemma 2.6.16. [151] Suppose ¢ > 1. Then the following inequality holds:

1 TS
ab < —af + (q—>b '
q q

for arbitrary positive real numbers a, b.

Lemma 2.6.17. [7] Let E be a real Banach space. Then for all x,y € E and j,(v+y) €
J,(x +y), the following inequality holds:

[z +yll* < [l2l1* + q(y, Jo(x + y))- (2.6.10)

Lemma 2.6.18. [2)] Let ¢ > 1 and E be a real Banach space. Then the following are
equivalent:

(i) E is q-uniformly smooth.

(i) There exists a constant c, (called the best q-uniformly smoothness constant) such
that for all z,y € F,

|+ yl|” < |lzl|” + qly, Jo(x)) + cqlly[]%, (2.6.11)

(11i) There exists a constant d, > 0 such that for all x,y € E and « € [0, 1],
(1 = )z + ayl[” = (1 = a)l|z||! + al[y||! — wola)dqgllx —yl|* (2.6.12)
where wy(a) == a9(1 — a) + (1 — a)’.

Lemma 2.6.19. [279] Let C' be a nonempty closed and convex subset of a q-uniformly
smooth real Banach space E. Let T : C' — C be a A-strict pseudocontraction. For~y € (0,1),

define Syx = (1 —y)x +~yTx. Then, as v € (0,a), a = min {1, (%)ql} , Sy C— C s
nonezpansive and F(S,) = F(T).

Lemma 2.6.20. [275] Let E be a real Banach space and C' be a nonempty closed convex
subset of E. For each 1 <i < N, let T; : C — C be a \;-strict pseudocontraction for some
N

0 < X\ < 1. Assume {n;} is a sequence of positive numbers such that > n; = 1. Then
i=1

Z n:T; is a A-strict pseudocontraction with A = min{\; : 1 <i < N}.
-1

]f in addition {T;}., has a common fived point, then

(an z) miv1 (T3).

Lemma 2.6.21. [193] Letr > 0 be a constant and let f : E — R be a continuous uniformly
convex function on bounded subsets of E. Then

f (Z Oéﬂk) < () — aiagp (|| — a;l), (2.6.13)
k=0 k=0

for alli,j e NU{0}, 2 € By, oy € (0,1) and k € NUO with > ;o = 1, where p, is
the gauge of uniform convexity of f.
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Lemma 2.6.22. [203] Let E be a real reflexive Banach space, let f : E — R U {+o0}
be a proper semicontinuous function, then f*: E* — R U {400} is a proper weak* lower
semicontinuous and convexr function. Thus, for all z € E, one has

N N
D, <z,Vf*(Ztin(xi))> <3 t:Ds(z,,). (2.6.14)

i=1 i=1
Lemma 2.6.23. [211] Let E be a reflexive Banach space, let f : E — R be a strong

coercive Bregman function and Vi : E x E* — [0,+00) be defined by
Vi(z,2*) = f(z) — (x,2") + f*(2"), ze€E, z"e€k", (2.6.15)

then the following assertions hold:

(i) Dy(x,Vf(z*)) = Vi(x,2*) for all x € E and z* € E*,
(i) Vi(z,z*) + (Vf(z*) —z,y") < Vi(z,2* +y*) forallz € E and z*, y* € E*.

Lemma 2.6.24. [79] Let f : E — RU{+00} be a convex function whose domain contains
at-least two points. Then the following statements holds:

a. f is sequentially consistent if and only if it is totally convex on bounded subsets.

b. If f is lower semicontinuous, then fis sequential consistent if and only if it s uni-
formly convex on bounded subsets.

c. If f is uniformly strictly convex on bounded subsets, then it is sequentially consistent
and the converse implication holds when f is lower semicontinuous, Fréchet differ-
entiable on its domain, and the Fréchet derivative V f is uniformly continuous on
bounded subsets.

Remark 2.6.25. [216] If f is Fréchet differentiable and totally convex, then f is cofinite.

Lemma 2.6.26. [213] If f : E — R is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then V f is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E*.

Lemma 2.6.27. [216] Let A : E — 2E" be a mazimal monotone operator such that
A7Y(0) # 0 and the resolvent operator is defined by Resf1 = (Vf+ AoV f. Then, for
allz € E and g € A71(0), we have

Df(Qv RGSZAJT) + Df(R€S£A$7 JT) S Df(qv ZL‘)

Lemma 2.6.28. [216] Let f : E — R be a Gdteaux differentiable and totally conver
function. If xo € E and the sequence {D(x,, o)} is bounded, then the sequence {x,} is
also bounded.

Lemma 2.6.29 (see Lemma 2.1 of [267]). Assume {s,} is a sequence of nonnegative real
numbers such that
Sni1 < (1 —ap)sn + andy, n >0,

where {ay,} is a sequence in (0,1) and {5, } is a sequence in R such that
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(U Z Qp = 00,
n=0
(11) limsupd, <0 or > |0pa,| < oo.
n—00 n=0

Then lim s, = 0.

n—o0

Lemma 2.6.30 (see Lemma 2.5 of [209]). Let {a,} be a sequence of nonnegative real
numbers satisfying the following relation:

an—i—l S (1 - an)an _'_ OpOp + ’y'm n Z ]-7

where

(i) {an} € [0,1], i = 0,

(i) limsup o, <0,

n—o0

(i7i) v >0, (n>1) and > v, < oc.
n=1

Then, a, — 0 as n — oo.

Lemma 2.6.31 (see Lemma 3.1 of [169]). Let {a,} and {v,} be sequences of nonnegative
real numbers such that

Q41 S (]— - 5n)an + Bn + Tn n 2 ]-7

where {0,} is a sequence in (0,1) and {B,} is a real sequence. Assume that > 5, < 0.

n=0
Then, the following results hold:
(i) If B < 0,M for some M >0, then {a,} is a bounded sequence.
(i1) If > 6, = 00 and limsup@ <0, then lim «, = 0.
n=0 n—oo 5n n—oo
Lemma 2.6.32 (see Lemma 2 of [207]). Let {v,} and {d,} be nonnegative sequences of

real numbers satisfying
Un+1 S Un + 6n

with > 07 0, < 400. Then, the sequence {v,} is convergent.
Lemma 2.6.33 (see Lemma 1.3 of [228]). Let H be real Hilbert space, {a,} be a sequence

of real numbers such that 0 < a < a, < b <1 foralln > 1 and {v,}, {w,} be the sequences
in H such that

limsup ||v,|| < ¢, limsup ||w,]]| < e, (2.6.16)
and for some ¢ > 0,
lim sup ||anv, + (1 — a,)w,|| = c.
n—oo
Then lim,, o0 ||vn — wy|| = 0.
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Lemma 2.6.34 (see Lemma 3.1 of [171]). Let {I',} be a sequence of real numbers such
that there exists a subsequence {I'y, };>0 of {I'n} with 'y, < Ty 1y for all j > 0. Consider
the sequence of integers {T(n)}n>n, defined by

7(n) = max{k <n: Ty <1}

Then {1(n)}n>n, i a non-decreasing sequence verifying lim 7(n) = oo, and for alln > ny,
- n—oo

the following estimates hold:

FT(n) < FT(n)+17 and I, < Pr(n)—i—l-

Let [* be the Banach lattice of bounded real sequences with the supremum norm. It is
well known that there exists a bounded linear functional g on [*° such that the following
three conditions hold:

1. if {t,} in {* and t,, > 0 for every n € N, then u({t,}) >0,
2. if t,, =1 for every n € N, then u({t,}) =1,

3. p({tnt1}) = p({t,}) for all {¢,} in [*.

Here, {t,.1} denotes the sequence (t9,t3,...,tn, tni1,...) in {°°. Such a functional u is
called a Banach limit and the value of u at {t,} in [* is denoted by p,t,. Therefore,
condition (3) means fi,t, = pntn1. If psatisfies conditions (1) and (2), we call g a mean
on [* (see, for example, [2411] for more details).

Lemma 2.6.35. [172] Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E. Let f : E — R be strictly convex, continuous, strongly coercive, Gateauz
differentiable, bounded and locally uniformly convexr on E. Let T : C — C be a mapping.
Let {x,} be a bounded sequence of C' and p be a mean on [*°. Suppose that

,uan(xn; Ty) < ,LLan(xnvy) \V/y eC.

Then T has a fized point in C.
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CHAPTER 3

Inertial Algorithms and Optimization Problems

3.1 A Viscosity-Proximal Gradient Method with In-
ertial Extrapolation for Solving Minimization Prob-
lems in Hilbert Space

Consider the following Minimization Problem (shortly, MP)
minimize {g(z) + h(z)}, (3.1.1)

where h : H — R U {400} is a proper, closed and convex function which is possibly
nonsmooth and g : H — R is a proper, closed, convex and continuously differentiable
function with gradient Vg(-) which is Lipschitz continuous on H, i.e. there exists a
constant o > 0 such that

IVg(x) = Vgl < allz —yll, v,y e H.

We shall assume that Problem (3.1.1) has a solution and denotes its set of solution by
Qurp. One of the methods for approximating solutions of (3.1.1) is the Proximal Gradient
Method (PGM) which is given as follows: pick an initial point x; € H and compute

Tpi1 = pro<y,p(xn — WVg(z,)), n>1, (3.1.2)

where v, > 0 is a stepsize. When ¢ = 0 in (3.1.2), the PGM reduces to the classical
prozimal point algorithm. The PGM can be shown to converge with rate O(%) when a
fixed stepsize v, = v € (0, 2] is used (see [199, 90]). If o is unknown, the stepsize ~, can
be found by using the line searching technique (see [25]). More so, if the condition

2
0 < liminf~, <limsup~y, < —

n—0o0 n—00 «@
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is satisfied, then the sequence {z,} generated by (3.1.2) converges weakly to a solution
in Qp7p. The PGM can as well be interpreted as a fixed point iteration. A point z* is a
solution of (3.1.1) if and only if it is a fixed point of the operator proz,,(I — yVyg) (see
Section 4.2.1 in [199] and Proposition 3.2 in [269]).

When h = I (the indicator function on a nonempty closed convex subset of H), the
PGM reduces to the well known Gradient Projection Algorithm (GPA) which is defined
as follows: for an initial guess xy € H,

Tpi1 = Po(zn — v Vg(zn)), n>1. (3.1.3)

The convergence of algorithm (3.1.3) depends on the behaviour of the gradient Vg. It is
known that if Vg is v-strongly monotone operator, i.e. there exists v > 0 such that

(Vg(x)—Vg(y),x—y}ZV||x—yH2, v ZE,yEO,

then, the operator Po(I —vVg) is a contraction; hence, the sequence {x,} defined by GPA
(3.1.3) converges strongly to a solution of (3.1.1). More general, if the sequence {v,} is
chosen to satisfy the property

o : 2v

0 < liminf v, < limsup 7y, < —,

n—00 n—o00 «
then the sequence {z,} defined by (3.1.3) converges in norm to the unique solution of
(3.1.1). However, if the gradient Vg fails to be strongly monotone, then the operator
Pco(I — vVg) would fail to be a contraction. Consequently, the sequence {x,} generated
by (3.1.3) may fail to converge strongly (see Section 4 in [260]).

Recently, Xu [260] gave an alternative operator-oriented approach to the GPA (3.1.3). He
also constructed a counter-example which shows that the GPA does not converge in norm
in an infinite-dimensional space. He however, presented two modifications of the GPA
which are shown to have strong convergence. Very recently, motivated by the work of Xu
[266], Ceng et al. [62] proposed the following implicit algorithm:

T — Pc(ak”yV:ck + (1 — ak,uB)Tkmk),
and explicit formula
i1 = PolapyVa, + (1 — auB)T,x,)

for finding the approximate minimizer of a constrained convex minimization problem and
prove that the sequence generated by their algorithms converge strongly to a solution of
the constrained convex minimization problem (see [62] for more details).

Also, Chembolle and Dossel [72] proved the weak convergence of the following modified
PGM with inertial extrapolation term in a real Hilbert space

Tp = T(ynfl%
yo = (1 - #)xn + e, (3.1.4)
Up = Tp_1 + tn('rn - xnfl)v n > 17
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equivalently, (3.1.4) can be written as

Tn = T(yn71>7
tn—l

Y = Ty + an(xn - mn—l)a Qn = 5 for n Z 17
tn—i—l
. . n+a—1
where a > 2 is a positive real number, ¢, = ——— for all n € N and Tz = prox,(z —
a
TVg()).
Motivated by the works of Xu [266], Ceng et al. [62], Chembolle and Dossel [72], in Section

3.1, we present a viscosity-inertial proximal gradient algorithm for finding approximate so-
lution of the convex minimization problem (3.1.1) in a real Hilbert space. We also establish
a strong convergence theorem and provide some applications and numerical examples to
show the relevance of our results in this section.

3.1.1 Main results

First, we prove the following lemma which plays a crucial role in the proof of the main
theorem.

Lemma 3.1.1. Assume that the minimization problem (3.1.1) is consistent and gradient
Vg is Lipschitz continuous with Lipschitz constant L > 0. Let v > 0 such that 0 < v < %,
then the following inequality holds:

\lprox,n(I —yVg)z — z||* < 2(x — y,x — proz,(I —yVg)z), (3.1.5)
forallz € C and y € Qpp.

Proof. Since prox. is firmly nonexpansive, then it is %-averaged. Also, the Lipschitz

condition on Vg implies that Vg is f-ism and by Lemma 2.1.9(ii), yVyg is LL—ism. Hence,
v

by Lemma 2.1.9(iii), we have that I —yVg is Z--averaged. It follows from Lemma 2.1.8(ii)

that the prox.,(I —~vVyg) is averaged with constant %. In particular, proz.,(I —vVg)

is nonexpansive. Then, for any x € C' and y € 2);p, we have

lprovan(I =AVg)r —yl|* = |[lprown(l —Vg)x — prowv.n(I —1Vg)y|[*
< lz =yl
= (v —y,z —provyu(I —yVg)z + prox,(I —yVg)r —y)
= (v —y,x —prozy,(I —7yVg)z)
+ (x — y,prox,,(I —yVg)z — y).

This implies that

(proxpn(I —yVg)x — z,prox,,(I —yVg)xr —y) < (v —y,x — proz,,(I —yVg)z).
Thus

(proxyp(I —yVg)x — z,proxy,(I —yVg)r —x +x —y) < (x —y,x — prox,,(I —yVg)z),
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which gives that

(prox,,(I — 4V g)x — z, proxy,(I —yVg)z —x) < (x—y,x —prox,,(I —~yVg)x)
+(x —y,x — prox,, (I —yVg)z),

therefore
lproxn(I —yVg)z — z||* < 2(x — y, x — proz,(I — yVg)x).

]

Next, we present our iterative algorithm and prove its strong convergence to the solution

of MP (3.1.1).

Theorem 3.1.2. Let C' be a nonempty, closed and convexr subset of a real Hilbert space
H. Let g,h: H— RU {400} be two proper convexr lower semicontinuous functions such
that h is nonsmooth and the gradient Vg is %-ism with L > 0. Let f : C' — C be a Meir
Keeler contraction mapping, B : C — H be a strongly positive bounded linear operator
with coefficient 7 > 0 such that 0 < & < 5 and T : C' — C be a o-demimetric mapping for
§ € (—00,1) and F(T) = F(T). Suppose T = QupNF(T) # 0, let a,, € [0,1], B8, € [0,1),
Wy, 0, € (0,1) and 7, > 0. Choose initial points xg,x1 € H arbitrarily and let {x,},{y,}
and {u,} be generated by

Yn = Tn + Bn(xn - In—l)a
Up = (1 - wn)yn + wnprox’mh(yn - /Yan(yn))? (316)
vt = Pe (06l (@) + 0+ (1= 0] = 0uB) Ty u,), n> 1,

where Ty, = (1 — X\)I + N, T for N, € (0,1). Assume that the following conditions are
satisfied:

(C1) lim a, =0 and ) o, = o0,
n—o0 n=l

(C2) li_)m %][xn —x,1]| =0,

(C3) 0 < liminfw, < limsupw, <1,
n—oo

n—0o0

(C4) 0 < liggolf% < limsup~, < %,

n—oo

(C5) 0 <liminf A\, <limsup A, < 1—9.
n— o0

n—oo

Then, {x,} converges strongly to a point T, where T = Pr(I — B + £f)(Z) is the unique
solution of the variational inequality

(B=¢fz,z—y) <0, yel. (3.1.7)
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Proof. Firstly, we show that {z,} is bounded. Let ¢ > 0 and z* € T, since f is a Meir-
Keeler contraction, there exists p. € (0,1) (by Lemma 2.1.12) such that

From (3.1.6), we have

Also

||un, —

*||2

1£ () = F@)| < pelln — 2] (3.15)
yn — "Il = |lzn — 2" + Bulzn — zp-1)]
< o — 2| + Ballzn — ol (3.1.9)
= ||<1 - wn)yn + wn]”“Ox%h(] - %Vg)yn — J}*HQ

(Y — @) + wa (prozy, (I — V) yn — yn)|?

= |lyn — x*Hz + 2w (Yn — x*7pr0x7nh([ ~ YV G)Yn — Yn)
+wi| [proy,n(I =1V 9)yn — yall* (3.1.10)

Using Lemma 3.1.1, we have that

[ty — 37*“2 < |lyn — x*HQ —wy (1 — wn)Hproanh([ — YV G)Yn — ynHZ

< lyn — z*| % (3.1.11)

Moreover, from the definition of é-demimetric maps (2.1.15), we have

13, — 2"|* = [|(un — 27) + AT — wn)|[*

[t — 2% = 22X (U — 2, 0y — Tt + N2 ||, — Tt ||
< fug = I*HZ = A (1 = 0)|up — Tun||2 + /\?L“un - Tun||2
= |up — 2> = (1 = 8 — X)) ||un — Tun||?, (3.1.12)

and by condition (C5), we get

T, un — [ < Jup — 2| (3.1.13)

Thus, we have from (3.1.6) that

|04 — 27|

IA I IA

IA

IA

[ Po(oné f(@n) + Onn + (1 — 0n)] — anB)Th,un) — Pox”||
llané f(zn) + Opzn + (1 —0,)1 — a, B) Ty, up — |

o (&f () — Ba™) + On(2n — 27) + (1 — 02)] — 0, B)(Th, un — 27)|
an(E]|f (zn) = f(@)|] + |I€f (27) — B*|]) + O]z — 27|
+((1 = 0,)1 — )| Ty, un — =¥

anpelzn — «*[| + an||E f(27) — Ba™|| + Onl|zn — 27|

+((1 = 0,)I — ay7)||uy — x|

népellzn — (| + an||E f(27) — Ba™|| + 0|2, — 27|

+((1 = )1 — an7)[[|z — 2*[| + Bullzn — Tna]]]

(1 = an(T = &pe))||2n — 27[| + anl[Sf (z7) — Ba™|

+((1 = ) = ) Bl |70 — T

) — Br*

(1= (s = Epllon = 27| + an(r — o { L2
(1 = 0,)1 — 0nT) B |20 — T |

(T —&pe) } (3.1.14)
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Putting

(]' — QN)I — QT /Bn

On = < )_|’xn_$n—l|’7
T = fﬁs Ay,

from condition (C2), it is easy to see that lim o, = 0, which implies that the sequence

n—oo
{o,,} is bounded. Let

, SUP Op
T = fps neN

by using Lemma 2.6.31(i) and (3.1.14), we have that the sequence {||x,, —z*||} is bounded.
This shows that {z,} is bounded and consequently, {u,} and {y,} are bounded.

Note that

Mzmax{”gf(w*) — Bl }»

|[yn — x*Hz = lzn — 2" + Bulw, — xnfl)Hz

= ||zp — 2| + 2Bn(@n — 2%, 20 — Tpy) + BE||Tn — T |]?. (3.1.15)
From Lemma 2.6.1(ii), we have
2x, — 2%, 2 — Tp1) = ||Tn — 2||? + |20 — 21| — |20t — 27)?, (3.1.16)
substituting (3.1.16) into (3.1.15), we get
lyn = 2"I1F = lzw — 2" + Ba | llzn — 2717 + [|2n — 2l = |20y — 27|
00|20 — 0|
< Alww — 2717 + Bulllzn — 2°|1* = [lzn- — 2"|I"]
428 |70 — 21| (3.1.17)
Now, put m, = a,{f(z,) + Opxn + (1 — 0,)] — o, B)T\, u,, using Lemma 2.6.1(i) and
(3.1.6), we have
||an§f(xn) + ann + ((1 - Qn)l - anB)TAnun - JI*||2
low (€f (20) = Bx™) + On(20 — 2%) + (1 = 00)] — 0a B) (T, up — 27)|[*
(1 = 0,)] — anB)(Th,un — %) + Op(zn — x*)HQ
+2an<§f(xn) — Bz®,m,, — ZL'*>
1((1 = 0.)1 = anB)(Tx,un — 27)||* + Oyl — 27|
—|—29n<((1 —0,)1 — o, B)(T), up, — %), x, — x*>
200 (§ f (2n) — Ba™, my — x7)
(1= 01 — ant)?|| T, — 2*|* + 07 |2 — ||
+20,((1 = 00)1 — )| T, un — *[|[|2n — 27|
+200 (§f (xn) — Ba™, my — x7)
(1= 01 — )| T, — 2°|* + 0|2 — ||
00 (1 = )] — ) 1T, 1 — 27[* + [ |20 — 27J7]
200 (Ef (xn) — Ba™, my — x7)
(1= 0u)1 — an7)|| Tyt — 2*[|* + O, — 27| |?
+2a,(Ef(xy,) — Bx™,m,, — x*). (3.1.18)

|Zns1 — 27

IN

IN

IN

IA
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Thus, from (3.1.13) and (3.1.17), we have

|znir — 2P < (1= 0)] — o) [[Jun — 2> = Aa(1 = Ay = 0)[Jun, — T ||?]
+0, |20 — :c*||2 + 20, (¢ f(x) — Bz, my, — x™)

< (1= 00T = awn){|fzn = 212+ Bullln — 27| = frs — 27
+2B, |z — xn—lHQ} =M1 = Ay = O)||un — T + O] — 2*[|?
+20, (€ f(x,) — Bz, m,, — )

< (= anm)llzn — 21 + Balllwn — 271 = |21 — 27|
+2B0| |70 — T 1| [P = A (1= Ny — )|ty — T ||?
+20, (& f(x,) — Bz, m,, — ). (3.1.19)

Now we set D,, = ||z, — z*||* and consider the following two cases.

Case 1: Suppose there exists a natural number N such that D,,,; < D, for all n > N. In
this case, {D,,} is convergent. Since {z,} is bounded, it is easy to see that condition (C2)
implies 5,||z, — x,—1|] — 0.

From (3.1.19), we have

A (1= Xy — 0)||un — Tun||2
< (1= anm)|Jan — 2*|]? = ||zngr — 2| * 4 Bulllan — 2*[]> = lzn_y — 2*[|?]
+ 2B||zn — Tna|]? + 200, (£ f () — Ba*,m,, — 2*)
- (Dn - Dn—i—l) + ﬁn(Dn - Dn—l) + 26n||xn - xn—1||2
— a,7D,, + 200, (£ f () — Bx*,m,, — x*).

Since {D,} is convergent and «,, — 0, we have

lim A, (1 — N, — 8)||un — Tu,|]* = 0,

n—oo

using condition (C5), we obtain

lim |Ju, — Tu,|| = 0. (3.1.20)
n—o0
This implies that
lm |1y, un —unl] = lm [|[(1 = N)un + ATuy, — uy|
n—oo n—oo
= lim \,|lu, — T'u,|| = 0. (3.1.21)
n—oo

Also, from (3.1.11) and (3.1.19), we see that

|z = 2% [P < (1= 0)T — anT)[[Jun — 27| = Aa(1 = A = 0)[[un — Tunl|?]
40, ||20 — 2*||? + 200, (Ef () — Bx*,m,, — x*)
< (1 =01 — )|y — 75*”2 + O |z, — x*||2
+2a, (£ f(2,) — Bx™,m,, — z*)
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< (=0 = anr)(llyn — 27(1* = wa(l — wp)|lproza,n(I = 1%V 9)yn — yal ]
+0p||7 — 2||* + 200, (& f () — Ba*,m,, — x*)
< (=001 = anr){llzw = "I + Bulllzn = "1 = znos = 2[17) + 28010 — 20}
—wi (1 = w)[|pro@y,w(I = 1V ) yn — yal[* + Oz, — 27|
+2a, (¢ f(x,) — Bx™,m,, — z*)
< (1 —anm)|fwn — $*||2 + Bulllzn — l‘*||2 —||zn-1 — m*HQ] + 2Bnl|@n — mn—1||2
_wn(l - wn)Hproxvnh(I - ’Yan)yn - yn|’2 + 2O‘n<£f($n) — Bx*,my, — JJ*>
Therefore,

W (1 = wp)|[prozy, w(I = 1V 9)yn — yull*
< (1= ant)l|zn — 2| = [Jenss — 2| + Balllzn — 2*[1* = [|2p-1 — 2*|]7]
+ 2Bnl|Tn — xn—1||2 + 200 (& f(2,) — Bx™,my, — )
= (Dy = Dyy1) + Bu(Dn — Dn1) + 28,7, — xn71’|2 — a7, — x*H2
+ 20, (Ef(x) — B, my, — x7).

Since {D,} is convergent and «,, — 0, we have that

lim wn(l - wn)Hpmx%h(I - ’Van)yn - ynHQ =0,

n—oo

and by using condition (C3), we obtain

nh_{gO HpT’OJC%h([ - ’Yan>yn - ynH = 0. (3'1'22)
Clearly
||yn_xn|| Sﬁn”xn_l‘n—lu _>07 as n — o0, (3123)
and
||wn, — yn || < wyllprozy,wn(I —%Va)yn — ynll = 0, asn — oo,
hence
i — < i — — = 0. .
i [[u, — ] < T ([ug — gl + [ — 2]]) = 0 (3.1.24)

Also from (3.1.6), we have

lim [y = wall < lim (anll€f (@) = Buall + ][0 — ua

n—oo
F((1 = )] = T[T 0 = )
= 0,

then from (3.1.24), we have

llmn — xal] < ||mn — unl| + ||tn — zn]| = 0, asn — co. (3.1.25)
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More so, by the firmly nonexpansivity of the P and (2.2.3), we have that

|[Tng1 — x*”Q = [|Pom, — PCJ:*H2
< lmn — 2*||* — || Pemn — ma||?. (3.1.26)

Substituting (3.1.19) into (3.1.26), we get

|zna —2*|? < (1= an7)|Jan — 2| + Bulllzn — 2*[)* = |lzn-1 — 2*|]
+280 |20 — zn—1||2 + 200, (& f(2n) — Ba™,my, — a*) — || Pemy, — mn||27

therefore
|| Pomy, — Tnn“2 < (1= apT)||zn — I*”Q —||7pg1 — :1:*||2 + Bulllzn — x*HZ
~|[zn-1 = 2*[]°] + 28u]|Tn — pa[|* + 200 (€ f (2) — B, my, — a¥)
= (Dn - Dn+1) + ﬁn(Dn - anl) - anTHxn - x*HQ + 2ﬁonn - xnleQ
+2an<£f(xn) - Bx*7mn - ‘T*>7
then

lim ||Pcm, —my|| =0. (3.1.27)
n—oo
Thus, we have from (3.1.25) and (3.1.27) that

tim [|z0 — 2] = i (llnar — mal | + [, — ,)) = 0. (3.1.28)

Since {w,} is bounded, there exists a subsequence {z,,} of {z,} such that z,, = 7 € C.
It follows from (3.1.23) and (3.1.24) that y,, — Z and w,, — T respectively. Since
proxa, ,(I — v,Vyg) is nonexpansive and lim,, o ||y — proz,n(I — v.Vg)ys|| = 0, so by
the Demiclosedness principle (Lemma 2.6.5), we have that z € F(proz.,,,(I — v, Vg)).
Hence, z is a solution of the minimization problem (3.1.1), that is, T € Qup. Also,
since limy o0 ||t — Tup|| = 0 and F(T) = F(T), we have that € F(T). Therefore
EEF:QMPQF(T)

We now show that limsup,_,. (B — &f)z, 2 — xp41) < 0, where z = Pr(I — B + £f)z.
Since z,,, — Z and from (2.2.2), we have

limsup((B — £f)z,2 — @py1) = Lm((B—£&f)z,2 — ap;41)

n—00 J—oo

= ((B=&f)z,2—1) <0 (3.1.29)

Next, we show that z, — z as n — oo. From (2.2.2), (3.1.6) and (3.1.8), we have

|| Znpt1 — sz Pemy,, — 2, Pomy, — 2)

— My, + M, — 2, Pomy, — 2)

PCTnn;C — My, PC”%L;C - Z> + <mnk — 2, Tng+1 — Z>

I
N
3
3
Eal

IN

Mpy, — 25 Tng+1 — Z>
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= <ank§f(x’nk) + gnxnk + ((1 - an)l - ankB)TAnkunk — 2 Tng+l T Z>
= Qp, <£f($nk) - ff(2>,$nk+1 - Z> + Oy, <€f<2) - B(Z)axnkJrl - Z>
+0nk <xnk % T+l T Z> + <((1 - enk)j - ankB)(T)\nkunk - Z)’ Lnp+1 — Z)

< anérellzn, = 2l = 2l + Oz, = 2z — 2
(1= 00, ) = 7T, = 71— 21
Fan {€f(2) = B2t — 2)

< cnérellzm, — lllzn = 2l + Onylone = 21l oness — 2
(1= 00)1 = )i, — 2l 0 = 2l + g (€4(2) = B2, Zauss = 2)

< o &rel|zn, — 2ll[|Tn1 — 2l 4 O[T, — 2|l Zn, 41 — 2]
(1= 00 ) = 7)o = 211+ Bullm, = g1 [ mg1 = 2]
(€S (2) = B2, — 2)

= (1= (7 = &) 2, — 2l onges — 2|
(1= 00 )T = 7)ol 20 = 1 s — 2]
Fan (€F(2) = B2yt — 2)

< (1= a7 = &) (len, = #IP + llzny 0 = 2IP)

+((1 - an)l - ankT)/Bnkank - xnk_1||||xnk+1 - Z||
+ank <£f(2) - BZ?‘/L‘TL]C-‘FI - Z>'

This implies that

2((1 = 0,,) 1 — aun, 7)
L+ o, (T —€7e)

<§f(21) - BZ, Tng+1 — Z>

2/87Lk
1+ o, (T — &re

(€f(2) = Bz, @n41 — 2)

200, (T = &7e) "
(1 + Oy, X (T - £Te))(7 - 57’5)

Bn
(% llan, = aalllns = 2l + (€£(2) = Bz zna = )

Nk

(L—an(r=&),

By,
e
L+ o, (T —€7e)

l#ne1 — 2" < = T X

lomes = A T T =)

< (L= an, (7= &r))llam, — 2" +

)Hxnk - xnk+1H X

1+ o, (T —€re)

= (1= o, (7= &ro)llzn, — 2[I" +

where p,, = a,, (7 —&re) and
— 2H$nk+1 — ZH Bnk
Qny, = ||'Ink - xnk_lH
(1+ an, (T —=Er ) (T —Ere) ) am,
2

+(1 + ank(T _ 67“6))(’7' _ 57”5) <§f(2) - BZ,ZL’nk+1 - Z> (3131)

Applying Lemma 2.6.29 and using conditions (C1), (C2) and (3.1.29), we conclude that
the sequence {z,,} converges strongly to z. The contradiction permits us to conclude
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that z,, — z, where z = Pr(I — B + £f)z which is the unique solution to the variational
inequality (3.1.7).

Case 2: Suppose there exists a subsequence {n;} of {n} such that D,, < D, ,; for all
i € N. Then, by Lemma 2.6.34, there exists a non-decreasing sequence {my} C N such
that my — oo, Dy, < D41, for all k € N. Let € > 0 and ||z,,, — 2*|| > €, then, by
Lemma 2.1.12, there exists r. € (0, 1) such that

1 (@my) = F @] < rellm, — 27

Following similar argument as in Case 1, we obtain ||y, —proz.,, n(I —Ym,V9)ym,|| = 0,
iy, — T || = 0, ||tmy, — Ty || — 0 and ||Zpmy+1 — T, || — 0 as & — oo. Since {z,,, }
is bounded, there exists a subsequence of {z,,,} still denoted by {z,,, } which converges
weakly to Z. Suppose {2, } is such that

limsup(£f(2*) — Ba™, 41 — @) = lIm (f(2") — Ba™, Tpyp1 — 7).
k—o0 k—o0

It follows from Lemma (2.2.2) that

lim Sup(&f(x*) - BI*, Tmp+1 — $*> - kllm <£f<x*> - B.T*; Tmy+1 — LC*>
k—o00 00
= (§f(e") = Bz", 2 —a") <0.

Hence
limsup(é f(z*) — Bx*, xp, 41 — ™) < 0. (3.1.32)

k—o0

Similarly as in (3.1.30), we obtain

*112 *[12
T, —x < (1 —op (T —Er))|lxm, — + X
|21 — 27| ( (7= Er)llem, — 27| 0o (r—&r))
Bin .
(E™ e, = By llmg 1 = 2
mg

+{Ef(2") = Ba", &pyr1 — x*)). (3.1.33)

Since Dy,, < Dy, +1, then from (3.1.33), we have

0 < lzmerr — 2 = |z, — 2|
20
< (1—ay (1= )|z, — o>+ i x 3.1.34
< (- am (= Ellom — I+ o ey (3.1.34)
ﬁm * * * * *
(Bl = Tl [Eme 1 — [+ (EF(@") = B, Bmr = 27) ) = [[m, — 2"
my
This implies that
20 v
_ _a*[]2 < my ( mg _ o
Oémk(T €T6)||$mk z || - (1—|—Oémk<7__€7”e)) amkamk xmk+1||||$mk+1 T ||
HEF(2¥) — Br*, 1 — x*>). (3.1.35)
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Hence, from condition (C2) and (5.2.32), we obtain
nh—>r£lo ||Zm, —2*|| = 0. (3.1.36)
As a consequence, we obtain
|1 — 27| < NJems1 = Toy || + [T, — %] = 0,
as n — 00. By Lemma 2.6.34, we have D,, < D,,, 11 and thus
D, = ||z, — 2*||* < [|Tmer — 2*])* = 0, (3.1.37)
as n — oco. This implies that {x,} converges strongly to z*. This complete the proof.

O

3.1.2 Applications.

In this subsection, we present some applications of Theorem 3.1.2.

1. Application to Monotone Variational Inequality Problem

Let H be a real Hilbert space and C' be a nonempty closed convex subset of H. The
Variational Inequality Problem (VIP) (1.1.1) is equivalent to finding a point z* € C' such
that (see [221])

0e (M + Nc)x*,

where N¢ is the normal cone operator of C' and M : C' — H is a monotone operator.
Note that the resolvent of the normal cone is the projection operator and that if M is
v-ism, then the set Qyp is closed and convex. Also, if M : C' — RU {+oc0} is a proper,
convex and lower semicontinuous function, then, the sugradient of M, i.e., M is maximal
monotone operator (see [222]). Thus, setting M = g and No = h in our Theorem 3.1.2,
we get the following strong convergence theorem for finding a common solution of VIP
(1.1.1) and fixed point of J-demimetric mappings in a real Hilbert space.

Theorem 3.1.3. Let C' be a nonempty, closed and convex subset of a real Hilbert space H .
Let M,: C' — RU {400} be a proper convex lower semicontinuous function such that the
gradient VM s %—ism with L > 0. Let f: C — C be a Meir Keeler contraction mapping,
B : C — H be a strongly positive bounded linear operator with coefficient T > 0 such that
0<é¢<FandT :C — C be ad-demimetric mapping for § € (—oo, 1) and F(T) = F(T).
Suppose I' = Quip N F(T) # 0, let o, € [0,1], B, € [0,1), {w,} and {0,,} are sequences
in (0,1) and v, > 0. Choose initial points xo,x1 € H arbitrarily and let {z,},{yn} and
{u,} be generated by

Yn = Tn + Bn(xn - xn—1)7
Up = (1 - wn)?/n + winOSC»ynh(yn - ’YnVM<yn))7 (3138)
Tntl = Pc[()éngf(l’n> + Ony + ((1 - en)l - anB>T)\nun]a n > 1,

where Ty, = (1 — A\)I + N\, T for A, € (0,1). Assume that the following conditions are
satisfied:
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(C1) lim, oo, =0 and Y | o, = 00,

(C2) lim,, o g—’;Hxn — 1z, 1|] =0,

(C3) 0 < liminf, ., w, <limsup,,_,. w, <1,
(C4) 0 < liminf, o v, < limsup, . Vn < %,

(C5) 0 < liminf,, . A, <limsup,,_,. A, <1—96.

Then, {x,} converges strongly to a point T, where T = Ppr(I — B + £f)(T) is the unique
solution of the variational inequality

(B=¢f)z,z—y) <0, yel. (3.1.39)

2. Application to Proximal Split Feasibility Problem

Let Hy and H, be real Hilbert spaces, C' and () be nonempty closed and convex subset
of Hy and Hj respectively. Let R : Hi — RU {400} and S : Hy — R U {400} be
proper, convex and lower semicontinuous functions, and A : H; — H, be a bounded linear
operator. The Proximal Split Feasibility Problem (PSFP) is to find a point z* with the
property

" € argmin R such that Az™ € argmin S, (3.1.40)

where

argmin S :={x € Hy : S(x) < S(y), Vy € H,},
and

argmin R:={u € Hy: R(u) < R(v), Yv € Hy}.
We denote the solution set of the PSFP (3.1.40) by Qpgrp. The PSFP was first introduced
by Moudafi and Thakur in [188]. By taking S = i and R = i, the indicator functions on
C and @ respectively, the PSFP reduces to the Split Feasibility Problem (SFP) (1.1.9) in-
troduced by Censor and Elfving [66]. To solve the PSFP, it is very important to investigate
the following minimization problem: find a solution 2* € H; such that

minimize{R(z) + S, (Az)}, (3.1.41)

rEH,

1
where S, (y) = argmin{S(u)+ 2—Hu — y|[*} stands for the Moreau-Yosida approximation
u€Hso /,L

of S with parameter p [188]. By the differentiability of the Yosida approximation S,, (see
[222]), we can add the subdifferentials and thus write

O(R(z) + Su(Az)) = OR(z) + A*VS,(Axz)

— OR(z) + Mw

; )(Ax).

This implies that the optimality condition of (3.1.41) can then be written as
0€ poR(xz)+ A*(I — prox,s)Ax, (3.1.42)
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where OR(z) stands for the subdifferential of R at x, i.e.
OR(z) :={ue H,: R(y) > R(z) + (uv,y —x), Yy €& Hy}.
This inclusion in (3.1.42) yields the following equivalent fixed point formulation
prox,g(I —yA* (I — prox,s)A)z* = z*. (3.1.43)

Hence, to solve (3.1.41), (3.1.43) suggest we consider the following split proximal algorithm:

Tpy1 = Provyur(T, — A (I — proz,s))Az,. (3.1.44)

Setting Vg(z) = A*(I — prox,s)Az in Theorem 3.1.2, then Vg is 1-ism with v = [|A]|
(see [55], Page 113). This implies that we can apply Theorem 3.1.2 to obtain solution of
PSFP in real Hilbert space. Thus, we give the following result which complement other
results in literature on finding solution of PSFP.

Theorem 3.1.4. Let C' and () be nonempty, closed and convex subsets of real Hilbert
spaces Hy and Hy respectively. Let A : Hy — Hs be a bounded linear operator, R : Hy —
RU{+o00} and S : Hy — RU {400} be two proper convex lower semicontinuous functions
such that A # 0. Let f: C — C be a Meir Keeler contraction mapping, B : C — H be a
strongly positive bounded linear operator with coefficient 7 > 0 such that 0 < £ < % and
T :C — C be a §-demimetric mapping for 6 € (—oo,1). Suppose I' = Qpspp N F(T) # 0,
let ay, € 10,1], B, € [0,1), wy,0, € (0,1) and v, > 0. Choose initial points xg,x1 € Hy
arbitrarily and let {x,},{y,} and {u,} be generated by

Yn = Tn + Bn(xn - xn—1)7
Up = (1 — wy)Yp + W prox 8 (Yn — 1A (I — prox,, s)Ay,), (3.1.45)
Tpni1 = Polan&f(x,) + 0pz, + (1 —0,)] — o, B)Ty,up], n>1,

where Ty, = (1 — X)) + N\, T for A, € (0,1). Assume that the following conditions are
satisfy:

(C1) lim a, =0 and ) o, = 0,
n—o0

n=1
(C2) lim 067"|]xn —x,1]| =0,
n—oo "
(C3) 0 < liminfw, <limsup,,_,. w, <1,
n—oo

2
EYRK

(C4) 0 < liminf, o 7y, < limsup -y, <

n—oo

(C5) 0 < liminf A\, < limsup A, <1 —19.
n—o0

n—oo

Then, {x,} converges strongly to a point T, where T = Ppr(I — B + £f)(T) is the unique
solution of the variational inequality

(B-¢flz,z—y) <0, yel. (3.1.46)
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3.1.3 Numerical example

In this subsection, we give a numerical example by implementing our algorithm (3.1.45)
for solving PSFP (3.1.40).

Example 3.1.5. Let H; = RY = H, and S := ||.||2, the Euclidean norm on RY. Tt is
obvious that we can project onto the Euclidean unit ball B, as follows:

L’ ) > 17
Py ()= TR lell (3.1.47)
X, if ||zl < 1.
In this case, the proximal operator is given by
1— = ' > 1
07 Zf ||.T||2 < 1.

This proximal operator is called the block soft thresholding. Also, let z; € R, ¢ =
1,2,..., N. Define

i;(z;) :max{|xj| — 1,0}, j=1,2,...,N,

and v
R(z) = Z%(%)
j=1

Then (see [90])

Ljs Zf |x]’ <1,

prox; (z;) = { sign(z;), if 1<]z;| <2, (3.1.49)

sign(z; — 1), otherwise,

and

proxg(z) = (p'r’oxil(xl),prosci2 (x2),...,prox;, (xN))

Suppose Az = x € RY. We consider the following PSFP:

find 2" € argmin R such that Ax™ € argmin S. (3.1.50)
1 1 1
Chosenozn:—,Bn:—,ﬁn:L,wn:—land/\n: n . Let
n+1 (n+1)3 2(n+ 3) 514 2) 2n +3

fx)=35,B(x) =x,T(x) =5,§ =1, 19 = 0.5 xrandn(50, N) and x; = 2 x randn(50, N)
|[Tn41 — @all2
w2 — 212
we consider various values of N and choices of v, as follows:

Case (i): N =100, Case (ii): N =500, Case (iii): N = 1000, Case (iv): N = 2000,

randomly generated vectors in RY). Usin < 1079 as the stopping criterion,
yg g g

and
n

n+1’ Sn+ T
Remark 3.1.6. The numerical results (see Table 3.1 and Figures 3.1) show that there is no
significant change in the CPU time taken and the number of iterations for different values
of N and the stepsizes.

Choice (i): v, = Choice (ii) 7, = Choice (iii) =, = 0.7.
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Table 3.1: Table showing computation results for Example 3.1.5.

I Choice (i) Choice (ii) Choice (iii) |
Case (i) CPU time (sec)  0.0356 0.0399 0.0476
No. of Iter. 25 27 27
Case (ii) CPU time (sec) 0.2244 0.3913 0.5061
No. of Iter. 27 29 29
Case (iii) CPU time (sec)  0.4987 0.4095 0.5235
No. of Iter. 29 30 30
Case (iv) CPU time (sec) 1.0731 1.0912 0.8785
No. of Iter. 30 30 30
il g
\ \
. .

Figure 3.1: Example 3.1.5, Case (i); Case (ii), Case (iii); Case (iv).

3.2 A Self Adaptive Inertial Subgradient Extragra-
dient Algorithm for Variational Inequality and
Fixed Point of Multivalued Mappings in Hilbert
Spaces

In this section, we consider a new subgradient extragradient iterative algorithm with iner-
tial extrapolation for approximating a common solution of VIPs and fixed point problems

of a multivalued demi-contractive mapping in a real Hilbert space.

In 2011, Y. Censor, A. Gibali and S. Reich |

| studied the approximation of common

solution of a VIP and fixed point problem for a nonexpansive mapping. They proposed the
following Subgradient Extragradient Algorithm (SEM) with Halpern method and proved
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its weak convergence to a solution u* € F(S) N Qyp :

o€ H, pu>0,
yn:PC<xn_,uAmn)a

(3.2.1)
1T, = <Z cH: <$H_MA$n_ynaz_yn> < 0}7
Tpt1 = Ay + (1 — ) SPr, (x, — nAy,).
Also, Thong and Hieu [256] proposed the following two algorithms for finding a common

element of the set of solutions of VIP and the fixed point of a demi-contractive mapping
in a real Hilbert space.

Algorithm 3.2.1 (THSEgM(I)).

(ZL'() € H,
Yn = Po(xn — pAz,),
(T =A{z € H: (xn, — pAz, — yn, v — yn) < 0}, (32.2)

zn = Pr,(x, — pAy,),
\xn—i-l - (1 — Qp — Bn)zn + anzn
Algorithm 3.2.2 (THSEgM(II)).

(

xo € H,
Yn = PC(In - MAIn)a
T,={z € H: (v, — pAzx, — yn,x — y,) < 0}, (3.2.3)

Zn = PTn (xn - ,UAyn) )
Tnt1 = (1 - 6n>an2n + ﬁnSZna

where S : H — H is a \-demi-contractive mapping with 0 < A < 1, and where {a,},
{Bn} are sequences in (0,1). Under suitable conditions on the parameters o, and 3, they
proved that the sequence {x,} generated by (3.2.2) and (3.2.3) converges strongly to a
solution p € Qyrp N F(S).

\

Recently, Dong et al. [97] introduced the following inertial extragradient algorithm by
incorporating the inertial term in the extragradient method (1.1.2).

Algorithm 3.2.3 (Inertia Extragradient Algorithm (iEgA)).

Wy = Ty + Oén(xn - xnfl)a
Tn41 = (1 - )\n)wn + /\nPC(wn - UF(yn»v

where {a,} is a non-decreasing sequence with a; =0 and 0 < a,, < a < 1 for anyn > 1
and A\, 0,0 > 0 are such that

af(1+ pl)?a(l+a)+ (1 — p?L*)aoc + o(1 + pL)?
1— p?L?

o>

and

0(1 = p*L?) — of(1 + pL)*a(l + o) + (1 — p*L*)ao + o(1 + pL?)]

0< A, <
O[(1 4 pL)?a(l 4+ o) + (1 — p?L?)aoc + o(1 + pL)?]
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Using the iEgA (3.2.4), Dong et al. [97] proved a weak convergence result for approximat-
ing the solution of the VIP (1.1.1) in a real Hilbert space.

Observe that the stepsize u of the algorithms (3.2.1)-(3.2.4) plays an essential role in the
convergence properties of the iterative methods. The Lipschitz constant L is typically
assumed to be known, or at least estimated priorly. In many cases, this parameter is
unknown or difficult to approximate. Moreover, the stepsize defined by this constant is
often very small and deteriorates the convergence rate. In practice, a larger stepsize can
often be used and yield better numerical results. It is thus natural to ask the following
question:

Is it possible to have an inertial subgradient extragradient algorithm with self
adaptive stepsize which converges strongly to a common solution of a varia-
tional inequality and fized point a problem?

It is our aim therefore to provide an affirmative answer to this question. Motivated by
the work of Censor et al [69], Thong and Hieu [256] and Dong et al. [97], we introduce an
inertial viscosity subgradient extragradient type algorithm with self adaptive stepsize.

3.2.1 Main results

In this subsection, we give a precise statement of our algorithm and discuss its strong
convergence analysis.

Let C' be a nonempty, closed and convex subset of a real Hilbert space H and A : C' — H be
a monotone and L-Lipschitz continuous mapping. Fori=1,2,... ,m,let S; : H — CB(H)
be multivalued demi-contractive mappings with constant k; such that each I — .5; are
demiclosed at zero, S;(p) = {p} for all p € F(S;), and k = max{k;}. Suppose

F:QVIPmmF(Si) # (),
i=1
and let f : H — H be a A-contraction with constant A € (0,1). Let D be a bounded
operator with coefficient p > 0 such that 0 < { < £ and let {¢,}, {8,;} and {d,} be

)
nonnegative sequences such that 0 < a < €, 3,,,0, < b <1, and let a > 3.

Algorithm 3.2.4.

Step 0: Select initial guesses xg,x1 € H and set n = 1.

Step 1: Given the (n — 1)th and nth iterates, choose o, such that we have 0 < a,, < @,
with &, defined by

: n—1 €n .
ayy = min {n-l—a—l’ HSCn—In—ln} ’ Zf Tn 7& In-1y (325)
nzgil , otherwise.
Step 2: Compute
Uy, = Tp+ an<xn - In—l);
w, = Po(up, — pnA(uy)), (3.2.6)
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where p, = ad™, a >0, 6 € (0,1) and m,, is the smallest nonnegative integer such that

1 A(un) = Afwy)]| < M =enll 0 o1y, (3.27)

[in
Step 3: Construct the set Q),, defined by

Qn={u€ H : (u, — pnAun) — wy, v — wy,) < 0},
and compute

Yn = PQn (un - ,unA(wn))»
Zn = ﬁn,Oyn + Z:il ﬁn,ivn,iy (328)
Tp+1 = ngf(xn> + (1 - 5nD)Zn7

where vy; € Siyn and Y By, = 1. Set n:=n+1 and go to Step 1.
i=0

Remark 3.2.5. Observe that if w, = u,, = x, and x,, € S;z,, then we are at a common
solution of the variational inequality (1.1.1) and a common fixed point of S;, for all i =
1,2,...,m. In our convergence analysis, we will implicitly assume that this does not occur
after finitely many iterations so that our Algorithm 3.2.4 generates an infinite sequence.
We will see in the following result that the stepsize rule defined by (3.2.7) is well defined.

Lemma 3.2.6. [1()/] There exists a nonnegative integer m,, satisfying (3.2.7). In addition
4]
w < p, <o, where p*=min {5, %} .

In order to establish our main result, we make the following assumption:

o

(Cl) lim 6, =0and ) §, = oo,

n—o0 n=0

(C2)  liminf(B,0— Kk)Bn; >0 forall i =1,2,....,m,
n—oo

: . € B 1 1
(C3) €, =0(d,), ie., nlg{)lo— =0 (e.g. €n = CFE On = - 1).

Remark 3.2.7. Note that from (3.2.5) and Assumptions (C3), we have

lim ay||z, — -1/ =0 and lim %Hxn — ZTy1|| = 0. (3.2.9)
n—00 n—00 5n

Also, note that Step 1 in our Algorithm 3.2.4 is easily implemented in numerical compu-
tation since the value of ||x,, — x,_1|| is known a prori before choosing «,.

We proceed to prove the following lemmas before proving the convergence of our main
Algorithm 3.2.4.
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Lemma 3.2.8. The sequence {x,} generated by Algorithm 3.2./ is bounded.

Proof. Let p € T', then

Hun_pH = |‘xn+an(xn_xn—l)_p’|
< Al = pll + anl|2n — 20l (3.2.10)

Also from (2.2.2) and (3.2.6), we get

||PQn(un - NnAwn) - p||2
||un - NnAwn _p||2 - Hun - lu’nAw” - y"||2
ttr, — pn A |2 = 2t — 1 Arwn, ) + |p]]?

lyn — pl|?

IN

[l = A 2~ 2~ A )+ [

1PI* = 2{un, ) + [l = [funl* + 240 (Awy, p)
+2<un,yn) - 2:un<Awmyn> - ||yn||2

Since A is monotone, then
(Aw,, — Ap,w, —p) >0, forall n>1,
and hence
<Awna Wy, — p> Z <Ap7 Wp — p>

This implies that
(Awy,, w, — p) > (Ap,w, —p) > 0.

Therefore, we have
0 < (Aw,,w, —p)

<Awm Wyn — Yn + Yn — p>

Whence

Substituting (3.2.12) into (3.2.11), we get
||yn _pH2 < ||Un _p”2 - ||Un - ?Jn||2 + 2ﬂn<Awnawn - yn>
= Jun = plI> = [t — wn 4+ wn — Ynl|* + 240 (Awn, wn — )
= lun = plI* = |t — wall? + 2(un — wn, wy — yn) + |[wn — ynl [
+211n (Awy, Wy, — Yp)

= Nun = pII* = [Jun — w|* = [Jwn — ynl]?
+2(up — pn AWy, — Wy, Yp — Wy ). (3.2.13)
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Using (3.2.7), we get

<un - MnAwn — Wpy Yn — wn) - <un - ,unAun — WnyYn — wn>

< nllun = wall - [[Yn — wal]. (3.2.14)
Hence from (3.2.13) and (3.2.14), we get
lyn = PII* < lun =PI = llun — wal* = [[wn = yall* + 20l — wall - [y — wall
< lun = pl* = [lun = wall* = [lwn = yall* + n(l [t — wal* + [Jwn — yall*)
= lun =l = (1 = m)Jun = wa|* = (1 = 0)[Jwn — yal*. (3.2.15)
Thus
yn — plI* < lJun — p||*. (3.2.16)

Furthermore, using Lemma 2.6.3, we have

|z — pI)* = ‘ﬁn,oyn‘Fiﬁn,wn,i—pHQ
=1
< Bualli =2l + 3l =l = 3 Bl =
= Buollyn — pl!2+ZBm Unis Sip)” Zﬁnoﬂmllyn Vn,il|*
< Buollyn — p||2+25m (Siyn: Sip)” Zﬁnoﬁmllyn Unil |2
Thus
Vow =l < Bl — o1 + 3 Bus (1o — pIF + i, Sn)?)
=1
- Zm: Brn.0Bn.illyn = vnill®
=1
< Buollyn = pIP + D Buillyn = pIP + D Buitillyn — vnll”
i=1 i=1

m
- Z Bn,OBn,i| |yn - U’rz,i | |2
i=1

= yn = plI> =D _(Buo — £)Buillyn — vnsl> (3.2.17)

i=1

and by condition (C2), we get
lzo =2l < lyn —pl>. (3.2.18)

60



Therefore, from (3.2.10), (3.2.16) and (3.2.18), we have

|zner = pll = [l0n(&f(2n) — Dp) + (1 = 0.D) (20 — p)l|
< Ol (n) = Dpl[ + (1 = dnp)llzn — pl|
< On|l[E(f (zn) = f(p) + (£f () — Dp)l@ + (1 = dnp)llzn — pll
< On€A[zn = pl[ + 0l f (p) = Dpll + (1 = dup){llzn — Pl + anl[zn — 20|
= (1 =36u(p— EN)lzn — pll + 0nl|€f (p) — Dpl| + (1 = dup)ow|[zn — 2]
_ 1€f(p) = Dpll
= (1=3ulp = el = pll + (o = N5 >
1- 5n n
+<p_§f>%ﬂun—ﬁlm}. (3.2.19)
Note that sup,,>; (;:—iﬂ;) ?—:Hxn — Tp_1]|| exists by Remark 3.2.7 and let
- 1€ f(p) — Dpl| L—=0,p\ oy
= (g (G ) e el
Then we have
Lmen — o1l < (1= 8alp — E)n — pll + 6ul0— ENM. (3.2.20)

Using Lemma 2.6.31(i) and (3.2.20), we have {||z,, — p||} is bounded and thus {x,} is
bounded. Consequently, {u,},{Aun}, {w,},{y.} and {z,} are all bounded. O

Lemma 3.2.9. Let {x,} be a sequence generated by Algorithm 3.2.4. Put

20,(p — &N
s = Nl =il = 2= E by = o (2 0) — Dt = 1)+ 80,

[T — Tp1|
1 — 6,6\
[|@n—1—pl]) + 2(1 = 6,p)?||2n — xn,1\|> and p € I'. Then, the following estimates hold:

for some My > 0 and ¢, =

My, where My = sup,,>, ((1 —0n0) (|| — pl| +

(Z) Sn41 S (]— - dn)sn + &nbn + Cn,
(i) —1 < limsup,,_, ., b, < +o0,
Proof. From (3.2.6), we have

|[tn _pH2 = |ln + an(®n — T0-1) _p”2

= lzn =PI + 200 (20 — P 2 — Tt + 2|2 — | |® (3.2.21)
Using Lemma 2.6.1(ii), we have

2<xn — P Tn — xn—1> = _Hxn—l - pH2 + ||xn —p||2 + ||xn - xn—1||2= (3'2'22)
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thus, substituting (3.2.22) into (3.2.21), we get

un = plI* = [l = plI* + an(=llzas = plI* + |20 — pI* + |20 — 20| [)
+0431Hxn _xnle2
< = plP* + an(llzn = plI* = [lza-1 = p|*)
+200||Tn — Tn1|[*- (3.2.23)

Now, from Lemma 2.6.1(i), we have

|z = plI* = [10a(&f(20) — Dp) + (1 = 6,D)(zn — p)II”
< (1 =6.0)2l|20 — PII* + 260 (6f(20) — Dp,2py1 — p).  (3.2.24)

It follows from (3.2.16), (3.2.18) and (3.2.21) that

[oner =PI < (1= 80p)?l[ttn — P> + 20u(€F (20) — Dp, i1 — )
= (1= 820 (Ilz = Pl + an (hea =PI = 201 = pI) + 20020 — 201]2)
+26,(§ f(2n) — Dp, Tpy1 — p)
= (1= 60p)?[n — P> + (1 = 820)? (Il — I = N}y — lI?)

+2an<1 - 6np)2Hxn - xnleQ + 26n<£f(xn> - Dp7 Tpy1 — p)
(1- 5np)2||xn _pH2 + an(1 - 5np)2(||xn —pll+ ||$n—1 _p”)“xn - xn—lH
+20én<1 - 5np)2||xn - xn—1||2 + 25n<£f(xn> - Dp, LTp41 — p)’ (3225>

IN

Also

2(€f(wn) — Dp, Tpy1 — p) 2(6(f(xn) — f(p) +&f(p) — Dp, xps1 — p)
26N |zn = pl| - ||ng1 — pll +2(6f(p) — Dp, Tny1 — p)
EM[|zn = pII? + [|2nga — pII?)

+2(¢f(p) — Dp, Tps1 — p). (3.2.26)

Substituting (3.2.26) into (3.2.25), we have

ININA

|zni —p| < [(1 —0up)? + 57@] |20 = plI* + an(1 = 6,p)* (|0 — pl| + [|20-1 = p]) X
| — 2na || + 205, (1 = 5np)2||$n - xn—1||2 + 0néA|[Tnan — p||2
+20,(¢f(p) — Dp, Tp41 — p)

= (1= 0(2p = EN)l[wn = PP+ Gup)?l[n = pI> + | (1 = 3p)? x

(2 = pll + 21 = pII) +2(1 = 8,p)?[ | — xnle] |20 — @]

F0néXN 201 — Pl + 20,6 f(p) — Dp, i1 — p)

(1= 6,(2p = EX)|zn — pII* + 6néX||2ni1 — I + ai [(1 — 0np)”® X

(lzn = Il + [[2n-1 = plI) + 2(1 = 6np)?| |20 — fcn—lll] |20 — Zp-1]]

+5n(2<€f<p) - Dp7 Tpy1 — p> + 5nM1)

IN
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for some M; > 0. Hence

— 0 — X n
fon =gl < Py e 00 i,
+5n<2<€f(p) B Dpa Tpy1 — p> + (San)
1= 5,6
25n(p_ 5)\) 2 On
(1 - m) |7 = pl|” + mHl’n — Tn1|| My
200(p = EN)  (2(£f(p) — Dp, i1 — p) + 0 M)
1 — 8,8 2(p—&N) .

This establishes (i).
Next, we prove (ii). Since {z,} is bounded and ¢,, € (0, 1), then we have

sup b, < sup <2||£f(p) — Dz*|| - ||xnt1 — pl| + M1> < 00.

1
n>0 n>0 2(p — &N)

We next show that limsupb,, > —1. Assume the contrary, i.e., suppose limsupb, < —1,
n—o00 —00
which implies that there exists ng € N such that b, < —1 for all n > ng. Hence, it follows

from (i) that

Sni1 < (1= ay)sp + anb, + ¢,
< (1—=ay)sp —an+cy
= Sp—an(sp+1)+cy,
< sy —2(p—EN)S, + cpe

By induction, we get
Spt1 < Sy — 2(p — EN) Z 0; + ¢p for all n > ny.
i=ng
Taking lim sup of both sides in the last inequality (noting that ¢, — 0), we have
limsup s, < s,, — nh_}rglo 2(p—&N) Z §; = —00.

n—o0 :
i=ng

This contradicts the fact that {s,} is a nonnegative real sequence. Therefore, lim sup b,, >
n—oo

—1. U

Remark 3.2.10. Since 6,, — 0 as n — oo, it is easy to check that a,, — 0, and by Remark
3.2.7, ¢, — 0 as n — oo.

We next state and prove our main theorem.

Theorem 3.2.11. Let C' be a nonempty, closed and convex subset of a real Hilbert space
H, and let A : C — H be a monotone and L-Lipschitz continuous mapping. For each
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=1,2,...,m, let S; : H — CB(H) be multivalued demi-contractive mappings with
constant k; such that each I — S; are demiclosed at zero, S;(p) = {p} for all p € F(S;),
i=1,2,...,m and k = max{r;}. Suppose I' = Quip N, F(S;) #0. Let f : H - H
be a A-contraction with constant A € (0,1) and D be a bounded operator with coefficient
p >0 such that 0 < £ < §. Let {z,} be generated by Algorithm 3.2./ and Assumptions
(C1)-(C3) are satisfied. Then the sequence {x,} converges strongly to a point z, where
z=Pr(I — D+Ef)(2) is a unique solution of the variational inequality

(D—=¢&f)z,z—x) <0, zxzel. (3.2.27)

Proof. Let p € T and denote ||z, — p||* by ®,. We consider the following two possible
cases.

CASE A: Suppose there exists ng € N such that ®,, is monotonically non-increasing for
all n > ngy. Since ®,, is bounded, then it is convergent and so ¢, — ®,,.; — 0 as n — oo.
We first show that ||w, — u,|| = 0, ||vn; — yn|| = 0 and ||z,41 — 2,]| = 0, as n — oo.
From (3.2.15), (3.2.18) and (3.2.23), we have

|Znsr — pl]> < ( 5n0)°||2n — pH2+25 <€f(:vn) Dp, Zyi1 — p)
< p>2{uun Pl = (1= )l = wal = (1= )l — a1}
+25<f(w) Dp,xn+1—p>
< (1= 800 { [z = I+ anlllzn = P = llns = pI*) + 200l — 2 |
(1= )l = wal[2 = (1= ) = |
+20, (& f(zn) — Dp, xpi1 — ). (3.2.28)
Therefore

(1= 62p)°(1 = 1) |tn — wyl|”
< (1= 6up)*llzn — pII* + an(l = 60p)*(llzn — plI* = [l2n-1 — pI*)
+ 200, (1 = 6,0)?| |20 — T [ + 20,(Ef (20) — Dp, i1 = p) = ||20s1 — pI|?
<D, — Byt + 6, Ms + an(1 — 6,0)%(®,, — Ppy)
+ 200, (1 = 6,0)° || — Zpa || + 26, (Ef (2n) — Dp, i1 — p) = 0,

as n — oo for some Mj > 0. Since §,, — 0 as n — oo and 7 € (0, 1), then

lim ||u, —w,|| =0. (3.2.29)
n—oo

Similarly, from (3.2.28), we can also show that
lim ||w, — yn|| = 0. (3.2.30)
n—oo

Clearly from (3.2.6), we get

Hun_xnu = ||xn+an(xn_$n—l>_$n|’

= apllzn, — zpa|| =0, n— o0
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Therefore

and

) B <1 _ B _
nh_rf)lo |lwn — x| < nh_{go(Hwn Unl| + |[un — 2al[) =0, (3.2.31)
lim ||y, — z,|| < m (||yn — wy|| + ||w, — z,||) = 0. (3.2.32)
n—oo n—oo

Also from (3.2.16), (3.2.17), (3.2.23) and (3.2.24), we obtain

|Zns1 —plf?

Hence

IN

IN

IN

(1 - 5np>2||zn - p”2 + 25n<§f(xn) - Dpv Tpy1 — p>

m

(1= 020){ lm = P12 = D" (Buo = £)Brillyn — vnill*}

i=1

(1= 8up)*{ [0 =PI + €allln = I = [fzas = pI%) + 2anl|zn = 202

B Z(ﬁn,o - '%)Bn,zHyn o Un7i||2} + 25n<£f($n) - Dp> LTp4+1 — p>
=1

m
22 ﬁno_liﬁnzuyn Un,i”2

< (1 - np) |z — plI* + (1 = 6,0)*(||2n — pII* = |21 — pI[*)
+ 2an(1 — Onp ) ||2n — 'Tn—1||2 + +25n<£f(xn) — Dp, Tpq1 — p) — Hxn-i-l _pH2

<P, -

na1 + 0 Mz + i, (1 — 5np)2(CI>n -0, 1) +2a,(1 — 5np)2||xn — xn_1||2

+ 25n<ff(5’7n) — Dp, xpq1 — p> — 0, as n — oo.

Therefore, using condition (C2), it follows that

Also

therefore

nh—>I£1<> ||Yn — vnsl| = 0. (3.2.33)

Hzn - yn” = ‘ ﬁn,Oyn + Zﬁn,ivn,i — Un
=1
S 5n,0||yn - yn|| + Zﬁm,z‘an,i - yn” — 07
1=1
lim ||z, — || = lim ([[2n = Yal| + [|yn — 20]]) = 0
n—00 n—00

Now from (3.2.6) and condition (C1), we get

|#Zni1 = zall = [[0n8f (2n) + (1 = 0nD)2n — 20|
= 0n[|&f (2n) = Dznl| = 0,
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and therefore

|nir = @nll < l2nss = 20ll + [[20 = 20l = 0, 1 — 0.

Next, we show that Q,,(z,) C Qurp N~ F(S;), where Q,(z,) is the weak subsequential
limit of {x,,}. Let ¥ € Q,(z,), and observe that there exists a subsequence {z,,} of {z,}
such that z,, — 7 as j — oo. Let {wy;} and {u,,} be subsequences of {w,} and {u,}
respectively. Consequently from (3.2.31), w,, — T as j — oco. Let B be a mapping defined
by

0 if v¢C.

By Lemma 2.1.4, B is maximal monotone and B~(0) = Qy;p. If we let (v,w) € Gr(B),
then w € Bv = Av 4+ N¢(v) and thus w — Av € N¢(v). This implies that

By — {Av—l—NC(v), if ved,

(v—t,w—Av)y >0, forall teC,
and in particular
(V= Wy, w — Av) > 0. (3.2.34)

Since w,, = Pc(unj — [hn, Aunj), by the characterization of Ps, we obtain
(Wp, =V, Un; — pin; Ay, —wy,) >0, forall veC.

Hence
Wp,; — Un,
<v — Wy, —— + Aunj> >0, forall veC. (3.2.35)
i,

Therefore, we have from (3.2.34) and (3.2.35) that

(V=wp,,w) > (v—wy,, Av)

Wy, — Un,

¥+Aunj>
0

nj

Wy — Un,
= (Vv —wy,, Av — Awy,,) + (v — wy;, Aw,, — Auy,) — <U — Wy, T>
n;

> (v —wy,, Av) — <v — Wy,

Wy, — Un,
> (v —wy,, Awyn, — Aty,) — (U — Wy, ———
Mnj
Wy, — Un,

’ (3.2.36)
i,

> (v —wy,, Awp, — Aty;) — |[v — wy,||

Passing to the limit in the above inequality in (3.2.36) (using the continuity of A and
noting that liminf; . pt,,, > 0), it follows from (3.2.29) that

(v—2Z,w) > 0.

Since B is maximal monotone, it follows that z € B~1(0), hence & € Qy;p. On the other
hand, let {y,,} be a subsequence of {y,}. Note that y,, — T as j — oo (by (3.2.32)).
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For each i = 1,2,...,m, I — S; are demiclosed at zero, then it follows from (3.2.33) that
T € F(S;). This implies that z € (-, F(5;). Hence

z € Qup N[ F(S).
=1

Next, we show that {x,} converges strongly to z*, where 2* = Pr(I — D + £f)x* is a
unique solution of the variational inequality

(D—¢f)a*,a"—x)y <0, zel.

To do this, we prove that limsup,,_,..((D — &f)z*, 2* — x,) < 0. Choose a subsequence
{xn,} of {x,} such that

limsup((D — )2, " — 2,) = lim (D — Ef)a*, 2" — ).
j—o0 J—o0
Since r,, — Z, and using (2.2.2), we have
limsup((D — £)a*, 2" — 2) = lim (D — )", 2" — o))
j—oo J—00

<(D - ff)l’*, r* — j)
(0" — (I — (D —&f))a*,a" — ) < 0. (3.2.37)

Now using Lemma 2.6.30, Lemma 3.2.9(i) and (3.2.37), we obtain that ||z, — z*|| — 0,
which implies that {x,} converges strongly to z*. This conclude Case A.

CASE B: Suppose {||z, — p||} is not monotonically decreasing. Choose some ng large
enough and for all n > ng, we define ¢ : N — N by

o(n) =max{k e N: k <n:op < dpi1}.
Clearly, ¢ is non-decreasing, where ¢(n) — oo as n — oo and
0 < Nz — pll < llzsmer —pll. forall n> g,
A similar argument as in CASE A, we obtain
|[wo(ny = ol = 0, [vom)i = Yol = 0, [[Tsmyr1 = Zomll = 0,

as n — 00 and Qq, (Tem)) C Quvrip Niey F(S;), where Q,(24,) is the weak subsequential
limit of {zy(n)}. Also, we have

limsup((D — £f)p,p — Tm)) < 0. (3.2.38)

n—o0

Now, from Lemma 3.2.7(i) we have
2640(p — EN) 2400 (0 — EN)
n o 2 < 1— $(n) " — 2 L
H$¢( )+1 p” > ( 1 _5(;5(71)5)\ H$¢( ) pH + 1 _(5¢(n)€)\ X
(2(6f(p) = Dp, xo(my+1 = D) + dp(m) M)

+%(n)M2Hx¢(n> — To(n)-1]
1 — Gp(mEN

: (3.2.39)
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for some M > 0, where

M, = sup <(1 = d5m)P)*(I1Tsm) — Pl + l2gm)-1 = PI) + 2(1 = dp()p)? [T n) — 93¢(n)71||)-

n>1

Since ||z — p||* < ||Tpm)+1 — p||?, then from (3.2.39), we obtain

205(n) (P — EN) 205(n) (P — EN)
0 < <1—L g — pl[? + =L

1 = dg(m)€A 1 = d(m)€A
(2<§f(p) - Dp, Tp(n)+1 — p> + (Sqﬁ(n)M)
s(n) Ma|Zo(n) — Tom)-1]
e e — ol
1 = 0gm)€

Hence

204(n) (p — EN) 5 204(m) (p — EN)

——————F|zgm) — PlI7 < ————L2(Ef(p) — Dp,Tgmy+1 — ) + dpmyM

T dpmEn 1290 = 2l T dpmEr | {€f(p) o1 = D) + sm) M)
A(n) Ma||To(n) — Tom)-1]
1-— 6¢(n)§/\

Therefore,

[z — pII> < 20Ef(p) — Dp, g(my1 — D) + Sy Ma
(n) Ma||Tsn) — Ton)-1l|
25¢>(n)(p - 5)‘)

Since {@g(} is bounded and d4,) — 0, as n — oo, then it follows from (3.2.38) and
Remark 3.2.7 that

(3.2.40)

Tim [z = pl| = 0. (3.2.41)
As a consequence, we obtain that for all n > ng,

0 < ||z — plI* < max{||zom) — pII*, [[2om+1 — PII*} = [l@gm1 — plI*.

Hence, lim,,_, ||z, — p|| = 0. This implies that {z,} converges strongly to p. This com-
pletes the proof. [

Recall that the class of quasi-nonexpansive mappings is 0-demi-contractive. Thus, we can
also obtain the following result for approximating a common solution of the VIP and a
finite family of multivalued quasi-nonexpansive mappings.

Corollary 3.2.12. Let C' be a nonempty, closed and convex subset of a real Hilbert space
H, and let A: C — H be a monotone and L-Lipschitz mapping. For eachi=1,2,....m
let S;: H— CB(H) be multivalued quasi-nonexpansive mappings with constant such that
I —S; are demiclosed at zero, S;(p) = {p} for allp € F(S;) and i =1,2,...,m. Suppose
I'=Quip N2, F(S;) # 0 and let f : H— H be a A-contraction with constant X € (0, 1)
and let D be a bounded operator with coefficient p > 0 such that 0 < & < £. Let {x,} be
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generated by Algorithm 3.2./ in which Assumptions (C1) and (C3) are satisfied. Then the
sequence {x,} converges strongly to a point z, where z = Pr(I — D + £f)(2) is a unique
solution of the variational inequality

(D—=¢&f)z,z—x) <0, zxzel. (3.2.42)

Remark 3.2.13. For suitable starting points, Algorithm 3.2.4 generates appropriate solu-
tions which approximate the whole solution set I' as guaranteed by Theorem 3.2.11. This
is an interesting property which is different, for example, from the class of Tikhonov-type
regularization approaches where the corresponding sequences always converge to the same
solution.

3.2.2 Numerical example

In this subsection, we provide some numerical examples to compare our inertial viscosity
subgradient extragradient Algorithm 3.2.4 with Algorithms (3.2.2) and (3.2.3) of Thong
and Hieu [250] and, and with iEgA (3.2.4) of Dong et al. [97].

We start by giving the following example of multivalued A-demi-contractive mapping given

by Jailoka and Suntai in [139]. Let H = R, and for each i € N defined S; : R — 2% by
—(14+2¢
[%,—(1 +i)z|, x<0,
S; = (3.2.43)

—(1+42¢)x
{—(1 +i)x, %} , x>0.
41 + 8i
492 + 120+ 9
Example 3.2.14. Many problems arising in signal and image processing can be formulated
as inverting the equation system

Then S; is A\;-demi-contractive with \; = € (0,1).

b= Bz +e, (3.2.44)

where z € RY is the unknown original image or data to be recovered, b € RM is the vector
of noisy observations, e is an additive noise with bounded variance and B : RY — RM
is a bounded linear observation operator. In particular, we note that B is typically ill
behaved because it models an acquisition process that encounters loss of information.
When attempting to find sparse solutions to linear inverse problems of type (3.2.44), a
successful model is the convex unconstrained minimization problem

1
min §||b—Bx|]2—|—1/HxH1, (3.2.45)

zERN

where v is a postive number, || - || is the Euclidean norm and || - ||; is the [; norm. The
aim of the [y term, which is the convex sparsity-promoting penalty, is to make the small
component of x become zero. By means of convex analysis, one is able to show that a
minimizer to (3.2.45) is actually a solution to the LASSO problem

1
min =||b — Bz||* subject to ||z||; < t, (3.2.46)
zeRN 2
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for any nonnegative real number ¢ (see [108]). Tt is easy to see that the optimization
problem (3.2.46) is a special case of the variational inequality problem (1.1.1), where
A(z) = BY(Bx —b) and C = {z : ||z]|; < t}. Hence, we can use the proposed Algorithm
(3.2.4) to approximate a solution of (3.2.44). The projection onto the closed /; ball in RY
is computed through the soft thresholding operator defined by

Po(e) = S(x) = argmingegs {lle — ull? + Alle]l: }

for A > 0. We set f(z) = 5, D(v) =2,0=6,0=09,7=0.7,9, = n+1’ _— (n+1)4 and
a = 3 in Algorithm 3.2.4, and for each n € N and ¢ > 0, define
0 if n<i,
Bni=q1- 5 Zk L3 if m=1, (3.2.47)

We set the image to go through a random blur and random noise and choose different
values of starting point as follows: xy = —0.5 % randn(N, 1) and z; = 2 x randn(N, 1),
where

Case(i) N =100, Case(ii) N =200 and Case(iii) N = 500.

We then plot the graphs of the error term (||z,11 — x,||) against number of iterations for
Algorithm 3.2.4, THSEgM(i) and THSEgM(ii). The numerical result is shown in Table
|0 41 — 20l

<1074
|2 — 21|

3.2 and Figure 3.2. The stopping criterion used is

Example 3.2.15. Suppose H = L?([0, 1]) with ||z||z2 := (fo |(t |2dt> and inner prod-
uct
(x,y) = [, 2(t)y(t)dt, for all 2,y € H. Define A: H — H by

Az(t) = maX{O,x(t)}. (3.2.48)

It is easy to verify that A is 1-Lipschitz continuous and monotone on H. Let C' := {x €
H :||z|| <1} be the unit ball. It is known that
x
— if ||zl > 1,
Po(x) = ]l (3.2.49)

Fori=1,2,...,m,let S;: L*([0,1)]) — L*([0,1]) be defined by

(Six)(t):/olx(t)dt, t €1[0,1].

Clearly, S; is 0-demi-contractive and I' = Qy;pN()
starting points:
Case(i): zo(t) = t* exp(7t) and x(t) = g sin(—3t),
Case(ii): xo(t) = 0.5cos(t) and x1(t) = cos(—10t),
2.
3¢

F(S;) = {0}. We choose the following

ieN

Case(iii): xo(t) = bexp(t) and z1(t) = £ cos(t).
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1:U(t)dt, oc=4,n=0.5,096, = %H, €, = m, a = 3, and for
%041 — 20|

|22 — 24|
garphs of ||z, 1 — z,|| against the number of iterations for both Algorithm 3.2.4 and iEgA
(3.2.4). The numerical result is shown in Table 3.3 and Figures 3.3.

Let f(x) = %, D(x) = |,

2 0

cach i €e NU{0} B,; = % Using < 1079 as a stopping criterion, we plot the

Table 3.2: Comparison of Algorithm 3.2.4, THSEgM(I) 3.2.2 and THSEgM(II) 3.2.3 for
Example 3.2.14.

Time Taken (Sec)

Case(i) Case(ii) Case(iii)
Algorithm 3.2.4  0.0052 0.0069 0.0096
THSEgM(I) 0.0155 0.0363 0.0312
THSEgM(IT) 0.0367 0.0363 0.0383

Table 3.3: Comparison between Algorithm 3.2.4 and iEgA (3.2.4) for Example 3.2.15.
I Time taken (Secs) |

Algorithms Case(i) Case(ii) Case(iii)
Algorithm 3.2.4  0.3641 0.1257 0.2523
iEgA (3.2.4) 0.5260 0.3291 1.7566
4 T = T
=3 E 2: \~
=2 = 2 \
1: \\

Figure 3.2: Example 3.2.14, Left: Case(i); Middle: Case(ii); Right: Case(iii).

3.3 An Inertial-Mann Algorithm for Split General-
ized Mixed Equilibrium Problem and Fixed Point
of Nonspreading Mapping in Hilbert Spaces

In this section, we study a split generalized mixed equilibrium problem and fixed point
problem for nonspreading mapping in real Hilbert spaces.

Let Hy, Hy be real Hilbert spaces and C' and ) be nonempty closed convex subsets of H;
and Hy respectively. Let ©; : C' x C' = R and O, : () X ) — R be nonlinear bifunctions,
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(——Algorithm 3.1 ——Algorithm 3.1 ——Algorithm 3.1|
0.16 |—iEgA 03 —iEgA 16 —iEgA
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0.12 12
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0.06 0.6

0.04 0.4

0.02 0.2

Figure 3.3: Example 3.2.15, Left: Case(i); Middle: Case(ii); Right: Case(iii).

hy : C — H; and hy : Q — Hs be nonlinear mappings, ¢ : € — R U {400} and
¢ : @ = RU{+00} be proper lower semicontinuous and convex functions and A : H; — Hj
a bounded linear operator. The Split Generalized Mixed Equilibrium Problem (SGMEP)
is defined as follow: find a point ' € C such that

O1(xt,2) + (h(2h), 2 — 2) + ¢(z) — ¢(2") >0,  Va el
with (3.3.1)
yt = Azt solves O2(y',y) + (ha(y),y — y") + ©(y) —p(y') >0,  VyeqQ.

The set of solutions of the SGMEP is denoted by Qsgrep = {r7 € GMEP(©1,hy, ) :
Azt € GMEP(©y, ha, ©)}.

We present the following examples to show that Qgaapp is nonempty.

Example 3.3.1. Let H = H, =R, C = [2,00) and @ = (—o0, —4]. Let A(z) = —2x for
all z € R, then A is a bounded linear operator. Let ©; : C xC - R and O, : Q xQ — R
be define by ©4(z,y) = y—z, O2(u,v) = 3(u—wv); hy : C — Rand hy : Q — R be define by

2
hi(x) = x, ho(u) = 2u; ¢ : C = RU{+oo} and ¢ : Q — RU{+00} be defined by ¢(z) = %
and ¢(u) = 2u. Clearly, GMEP(©1,h,¢) = {2} and A(2) = —4 € GMEP (O, ha, p).
Thus, Qener = {p € GMEP(O1, h1, ) : Ap € GMEP(s, hy, )} # 0.

Example 3.3.2. Let H; = R? with the norm ||z|| = /22 + 23 for T = (7,73) € R?
and Hy = R. Let C := {T = (71,22) € R?* : 5 —2; > 1} and Q = [1,00). Define
01(Z,Y) = yo — 11 — x2 + 1, where T = (21, 22),9 = (y1,y2) € C, then ©; is a bifunction
from C' x C' — R. Let hy(z) = ¢(Z) = 3 — x1, then GMEP(©1,h1,¢) = {G = (q1, ) :
q2 — q1 = 1}. Also define Oy(u,v) = v — u for all u,v € @, then ©, is a bifunction from
Q x Q to R and let hy(u) = 2u, ¢(u) = u. For each T = (21, 22) € Hy, let A(Z) = 29 — 21,
then A is bounded linear operator from H; into H,. Clearly, when § € GM EP (01, hy, ¢),
we have A = 1 € GMEP(©s, hy,¢). Thus Qsguep = {§ € GMEP(©1,h1,9) : Ag €
GMEP(@Q, hQ,QD)} 7& (Z)

Remark 3.3.3. We note that SGMEP in Example 3.3.1 lies in two different subsets of the
same space, while SGMEP in Example 3.3.2 lies in two different subsets of different spaces.
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In 2016, Suantai et al. [240] studied the Split Equilibrium Problem which is defined as:
find a point 2* € C such that

O1(z*,z) >0, YVreC, and y" = Az" €@ solves Oy(y",y) >0, YyeC, (3.3.2)

where ©1 : C' x C' — R and O, : @) x () — R are nonlinear bifuncions. The set of solution
of (3.3.2) is denoted by Qgg,p. The authors in [239] proposed the following iterative
algorithm to solve the problem of finding a common element in 2gg,p and a fixed point
of a nonspreading multi-valued mapping in Hilbert spaces: Given {z,} by

x1 € C'  arbitrarily,
Uy = TOV(I — yA*(I — T9?) Ay, (3.3.3)
Tpt1 = Ay + (1 — ) Suy,, Yn €N,

where T/2" is the resolvent operator defined in Lemma 3.3.5, {a,,} C (0,1), r,, € (0, 00)
and v € (0, %) such that L is the spectral radius of A*A and A* is the adjoint of A,
S : C — K(C) is a nonspreading multi-valued mapping. Further, they proved that under
certain conditions, the sequence {z,} converges weakly to an element of F'(S) N Qggyp.

More recently, S.H. Rizvi [218] studied the following Split Mixed Equilibrium Problem
(SMEP) in real Hilbert spaces: find a point z* € C such that

O1(z*, x) + (ha*,x — z*) > 0, Vo € C,
with (3.3.4)
y* = Az* solves Os(y*,y) + (hoy*,y — y*) >0, Yy € Q,

where hy : C — C and hy : Q — @ are 6, Os-inverse strongly monotone mapping respec-
tively with # = min(6;,6s). The set of solution of (3.3.4) is denoted by Qgppp. Observe
that when ¢ = ¢ = 0 in (3.3.1), we obtain (3.3.4). Thus, Problem (3.3.1) is more general
than Problem (3.3.4). Rizvi [218] introduced the following algorithm for solving (3.3.4)
and fixed point problem for a nonexpansive mapping S in real Hilbert spaces:

(.CEO =z eC,
Yn = TT(?LI (xn - Tn(bxn)a
v, = TSLQ(I — 1) Ay, (3.3.5)

z2n = Po(yn + 0A* (v, — Ayn)),
Tpt1 = Bn'xn + (1 - ﬁn)S[OZnU, + (1 - an)zn]a n Z 07

where P is the metric projection from H onto C, {r,} C (0,20) and {«,},{8.} C (0,1).
The author also proved that under some mild conditions on «,,, 3, and r,, the sequence
{z,,} converges strongly to a solution in Qgpypp N F(S).

By combining the Picard algorithm [205] and the conjugate gradient methods [195], Dong
and Yaun [98] accelerated the Mann algorithm and obtained the following faster algorithm:

1
dn+1 = X(T<$n> - ajn) + Bndrm
Yn = T + i1, (3.3.6)
Tpg1 = PO Ty + (1 = pov, ) yn,
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for each n > 0, where p € (0,1] and A > 0. They proved that the iterative sequence {x,,}
converges weakly to a fixed point of T provided that the nonnegative sequences {«,} and
{Bn} satisfy the following conditions:

(BB1) > po (1 — pa,) = oo,
n=0

(BB2) > 5, < 0.

n=0

More so, the sequence {z,} is assumed to satisfied the following:
{T(x,) — x,} is bounded.
In this section, we introduce a modified-Mann algorithm for finding a common solution

of SGMEP and fixed point of nonspreading mapping in real Hilbert spaces. It is easy to
re-write (3.3.6) as the following inertial algorithm:

n — 4dn Qn n = 4n—-1),

Wy, = Ty, + O (T — Tp—1) (3.3.7)
Tnt1 = poawy, + (1 — pag)T(zy,).

Motivated by the works of Suantai et al. [240], Rizvi et al. [218], Dong and Yuan [98], it is

our aim in this section to propose a new iterative algorithm for approximating a common
solution of (3.3.1) and fixed point of a nonspreading mapping in real Hilbert spaces. Our
algorithm is developed by modifying the accelerated Mann algorithm (3.3.6) combined
with a modified viscosity approximation method to obtain a new faster iterative algorithm
for finding a common solution of (3.3.1) and a fixed point of nonspreading mapping in
real Hilbert spaces. Further, our algorithm does not require any prior knowledge of the
operator norm.

For solving the SGMEP we make the following assumption:

Assumption 3.3.4. Let C be a nonempty closed and convex subset of a real Hilbert space
H. We make the following assumptions on the bifunction © : C' x C' — R:

LL1. ©(x,z) =0, for all z € C,

LL2. © is monotone, i.e O(z,y) + O(y,x) <0, Vo,y € C,

LLS. for each x,y,z € C, im0 O(tz + (1 — t)z,y) < O(z,y),

LLJ. for each x € C, y > O(x,y) is conver and lower semicontinuous,

The following lemma will also be used in this section.

Lemma 3.3.5. [159] Let C' be a nonempty closed and convez subset of a real Hilbert space
H. Let © : C' x C — R be a bifunction which satisfies Assumption 3.3.4, h : C'— H; be
a nonlinear mapping and let ¢ : C' — R U {+o0} be a proper lower semicontinuous and
convex function. For r >0 and x € Hy, define a resolvent function

TO(e) = { € C: 0(z,) + ((2), y — 2) + 0(y) — 6(2) + ~{y = 2,2 1) 20, Vy € C},

for all x € H. Then the following conclusions hold:
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(i) for each x € H, T (z) # 0,
(ii) TP is single-valued,
(iii) TP is firmly nonexpansive, i.e for any x,y € H,

1772 = TPy|)? < (TPz — TPy, x — y),

(iv) F(T®) = GMEP(O,h,0).
(v) GMEP(O©,h,¢) is closed and conve.

3.3.1 Main results

Algorithm 3.3.6. Let C' and () be nonempty closed and convex subsets of real Hilbert
spaces Hy and Hsy, respectively, and let A : Hi — Hy be a bounded linear operator. Let
O;:CxC —=Rand Oy : Q x Q — R be bifunctions satisfying Assumption 3.5./. Let
hy:C — Hy and hy : QQ — Hy be 01, 05-inverse strongly monotone operators, respectively,
such that 0 = max{60,,65}. Let ¢ : C — RU{+o0} and ¢ : Q — RU {+o0} be proper,
lowersemicontinuous and convex functions, and let S : C' — C' be a nonspreading mapping
such that F(S) # 0. Let f : Hy — Hy be a contraction mapping with constant 5 € (0, 1)
and D be a bounded operator with coefficient ¥ € (0,1) such that 0 < £ < -Z— Choose an
initial point x1 € Hy arbitrarily and let o, € [0,1], B, € [0,1], w, € (0,1), r, € (0,20)

. 71A*(T,§92 —I)Axy
and \ > 0. Assume that the nth iterate has been constructed, and set m; = ———1—"——.

)
We then compute the (n + 1)th iterate via the formula
( ZAH(TO2 — ) Az,
. ( = ) L B,
Yn = Tp + )‘mn-l-la (338)

Zn = Tr(:)Ll ([ - Tnhl)yna
| Tn41 = anf(xn) + (1 — a,D)[(1 — wy)zp + w,Szy),

forn > 1, where A* is the adjoint operator of A. Further, we choose the stepsize 7, such
that, if n € O :={n: (I — T2?)Ax, # 0}, then

2/|(1 — T )2
1A = T52) A |2

Y € (0 ) Vi € O. (3.3.9)

Otherwise, v, =~ (v being any nonnegative value).

Remark 3.3.7. Note that in (3.3.9), the choice of stepsize 7, is independent of the norm
||Al|. The value of 7 does not influence the considered algorithm but was introduced just
for the sake of clarity. Furthermore, we will see from Lemma 3.3.8 that ~,, is well defined.

Lemma 3.3.8. Assume that Qsqguep := {q € GMEP(O1,hy,¢) : Ag € GMEP(O3,ha, )}
is nonempty. Then -, defined by (3.3.9) is well defined.
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Proof. We need to show that ||[A*(I — T.2*)Az,|| > 0. Take z € Q, then 72"z = z and
T,,(?f Ax = Ax, and observe the following:

(I — T32)A$n||2 = ((I - TT@f)Axn, (I — Tren2)f4$n>

(I — T2)Ax,, Az, — Az + T Az — T2 Aw,)

(I = T5) Ay, Ay — Az) + (I = T9) Ay, T Ax — T1 Axy)
(A*(I = T2?) Ay, — ) + (I — T2?) Az, T? Az — T, Axy,)
JA*(I = T9?) Aw,|| % ||z — || + ||(I — T2*) A,]|

1792 Ax — T92 Aw,,||.

{
{
{

IN

Consequently, for n € O, that is |[(I = T22 Az,) Az, || > 0, we get ||A*(1 —T,22 Az, ) A, || x
|zn — || > 0 and ||(I — T.2%) Az, || x || .22 Az — T,22 Az, || > 0. Since ||A*(I —T.2%) Az, || %
||z, — z|| > 0, we obtain that [|[A*(I — T.2?)Ax,|| # 0. This implies that v, is well
defined. O

We make the following assumptions on the control sequences:

Assumption 3.3.9. The sequences {a,} and {5,} in Algorithm 3.5.6 satisfy the follow-
mg:

(C1) lim o, =0 and > a, = o0,
n—oo

n=1

(€2) % B<oo,

(C3) B < ap

Furthermore, {x,} satisfies

(C4)  {(T® —I)Az,} is bounded.

Before giving the convergence analysis of Algorithm 3.3.6, we first prove the following
result.

Lemma 3.3.10. Suppose that T := QsgrepNF(S) # 0 and {x,} is generated by (3.3.8).
Also, let Assumption 3.3.9 be satisfied and suppose 1, satisfies the following condition:

(C5) 0 <liminf r, <limsup r, < 26.

n—00 n—00

Then, {m,} and {x,} are bounded, and consequently {y,} is bounded.

n—0o0

1
Proof. It follows from (C2) that lim £, = 0 and so there exists ny € N such that 3, < 5 for

2
all n > ng. Define a number N; := max{lniax [|mui||, = 3, SUPnz1 ||y A*(T,22 — ])Aa:n||} :
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Then (C4) implies that N; < co. Assume that ||m,|| < N; for some n > ng, then the
triangle inequality ensures that
1WA (T2> — I)Ax,
A
1
< X||%A*(T22 — DAz, || + Bul|man|| < Ny, (3.3.10)

+ Bamy,

Imaall = |

which means that ||m,1|| < N; for all n > 0, hence {m,,} is bounded.

Also, the definition of {y,} implies that

1
v = T+ A(X(%A*(Tff ~ D) Az,) + Bnmn)

Let p € T', then

lyn =PIl = o = 1A (] = T?) Az + Ay, — pl|
< wn — A (I = T2?) Az, — p|| + ABa| M- (3.3.11)

Observe that
Hxn - ’YnA*([ - TSﬁ)Awn - pHZ
— o = Pl = 29 (@0 — p, AN = T) Ay + 22| A (1 — TO) Az, ||
— |l — plI? — 290 (Azy — Ap, (I — T) Azy) + 22| A*(I - TO) A, |1
o — plI? — 290 (TE Ay — Ap, (I = T) Az, — 23, (I — TE) Az |

Tn

F | A1 = T,72) A 2. (3.3.12)
Since T, f?f is firmly nonexpansive, then
|22 Ax,, — Apl|* < (T2 Ax,, — Ap, Az, — Ap),

and so
(T2 Az, — Ap, T2* Az, — Axy) < 0. (3.3.13)
It follows from (3.3.12) and (3.3.13) that
[lan = 1 A*(I = T2%) Ay, — pl|?
< Nl = pI? = 29ul(I = T22) Al > + 2| A*(L — T2 Aa |
= llzn = pII* = % |21(] = T2 Azl * — vl A*(I = T77) Az |2

< ||z, — pl|% (3.3.14)
Therefore, from (3.3.11) and (3.3.14), we get

ym = plI < |z — pl| + ABn N1 (3.3.15)
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Again from (3.3.8), we use the fact that 72! is firmly nonexpansive to show that

1z — pII®

= ||T21(I — Tph)yn — TSLI(I - T‘nh1)P||2
< (I =rnhi)yn — (I — mhl)p!|2

(Y —p) = Tn(P1yn — hlp)H2

Y — P“2 =27 (Yn — D, Payn — Pup) + r121||h1yn - h1P||2
< Nyn = pII? = 278l |Payn — hapl|* + 72| Payn — hapl|?

|y = pII* = 7020 = 72)|[hayn — hap| > (3.3.16)

By condition (C5), we obtain

lzo =2l < lyn — ol (3.3.17)

Now define U,, = (1 — w,)I + w, S, and observe that

HUnZn_pH

(1 = wn)(2n — p) + wn(Szn — )|
(1 _wnmzn —p|| +wn||SZn _pH
(L —wp)l[zn =PIl + wallzn — pl|
|20 — pl|-

VARVAN

Therefore, from (3.3.8), (3.3.15) and (3.3.17), we have

Hxn+1 —p||

IAN A A

IN

<

lan(€f (@) = Dp) + (1 = 0D)(Unza = )|
l|&f () = Dl + (1 = )| [Unzn = pl

an IIECF () = F)) + (67 @) = Dp)II] + (1 = |20 — pl]
@Bl = pll + aal €/ (6) = Dpll + (1 = a)lllan = pll + ABuIVi]
(1= an(5 = €8Iz = pll + anl |€(p) = Dpll + A8, Ny

IEf(p) = Dpll | AN
e RS )

max{||xn -

(3.3.18)

-D AN-
max{||x1 _p||, Hff/g/p)_ = p|| + ,7_516}‘

This implies that {x,} is bounded. It follows from (3.3.15) that {y,} is also bounded.

]

We now present the main theorem for the convergence analysis of Algorithm 3.3.6.

Theorem 3.3.11. Let C' and @QQ be nonempty closed and convexr subsets of real Hilbert
spaces Hy and Hy, respectively, and A : Hy — Hs a bounded linear operator. Let ©y :
CxC — Rand Oy : Q x Q@ — R be bifunctions satisfying Assumption 3.5./. Let
hy:C — Hy and hy : QQ — Hy be 61, 0s-inverse strongly monotone mappings, respectively,
such that 0 = max{6y,02}. Let ¢ : C — RU {400} and ¢ : Q — R U {400} be proper,
lowersemicontinuous and convex functions, and let S : C' — C' be a nonspreading mapping
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such that F(S) # (. Let f : Hi — Hy be a contraction mapping with constant B € (0, 1),
and let D a bounded operator with coefficient ¥ € (0,1) such that 0 < £ < % Choose an
initial value xy € Hy arbitrarily and let o, € (0,1}, 8, € [0,1], w, € (0,1), r, € (0,260)
and X > 0. Suppose T := Qgeyppp N F(S) # 0, Assumption 5.3.9, condition (C5) and the
following are satisfied:

(C6) liminf r, > 0;

n—oo

(C7) 0 < liminfw, <limsupw, < 1.
n—oo

n—oo

Then the sequences {x,}, {yn} and {z,} generated by Algorithm 3.3.6 converge strongly to
a point z, where z = Pr(I — D +£f)(2) is a unique solution of the variational inequality

(D=¢&f)z,z—a) <0, zel. (3.3.19)

Proof. Let p € ', then from Lemma 2.6.1(i) and (3.3.14), we have

o = DI° = |0 — 1A (I = T2) Az, — p + ABamn|
< o = mA (I — TSf)Aacn - p||2 + 228, (Yn — p, My)
< Nlan = pIl? + Bupn, (3.3.20)

where p,, := 2\(y, — p, m,). Using Lemma 3.3.10, it follows that {p, } is bounded. Thus,
there exists Ny > 0 such that p, < Nj for all n > 1. Hence, it follows from condition (C3)
that

|y = plI* < [l — pl|* + 20, No. (3.3.21)

Furthermore, from (3.3.17) and (3.3.21), we have

|21 =l = llan(&f(zn) — Dp) + (1 — anD)(Unzn — p)|I*
< ||(1 - O‘nD)(UnZn - p)||2 + 2an<€f(xn) — Dp, xpq1 — p>
< (1- an:Y)?HZn - pHQ + 20,6 (f (20n) — f(P), Tny1 — D)
+20,(§f(p) — Dp, Tpy1 — p)
< (1= an¥)?llyn = DI + 200E(f (2n) — f(P), Tny1 — D)
+20,(§f(p) — Dp, Tpy1 — p)
< (1—any)? [Ill’n —p|” 4+ 20 Na | + 200, B8], — pl| X || 2041 — Pl

+20,(E£(p) — Dp, Tas1 — p)- (3.3.22)

We now divide the remaining proof of the theorem into two cases.
Case I: Suppose there exists ng € N such that {||z,, — p||} is monotonically decreasing for
all n > ng. Then {||x,, — p||} converges as n — oo and so

||y, —PHQ — ||Tn41 —pH2 — 0, n— oo.
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Note that, from (3.3.14), (3.3.20) and (3.3.21), we obtain
g = pIP < lan = pIP = 30 |21 = TE) A = 7l |A*(1 = T22) A 2]
+2a Ny. (3.3.23)
Also from (3.3.22), we obtain

|z —plP < (1= n¥)?llyn — pII” + 208 (f (20) = f(D), Tni1 — p)
+20,(§f(p) — Dp, Tny1 — p)
< MNyn = pII? + 2008 (f (z0) — f(p), Tnsa — p)
+200({f (p) — Dp, Tnt1 — p). (3.3.24)

Substituting (3.3.23) into (3.3.24), we have

ltnss = pl? < lew = plI? = 3 21T = TO2) A |? = 7| A*(I = T) w1

+20,8(f(xn) — f(P); Tns1 — D) + 20§ f (p) — Dp, Tpi1 — p)
+2a Ns. (3.3.25)

Putting A, = 2||I — T.2*Ax,||* — 7,||A*(I — T,2?) Az,||?, then since a,, — 0, as n — oo,
it follows from (3.3.25) that

P)/nAn S Hxn - pH2 - Hxn—i-l - pHZ + 2an§<f(xn) _ f(p)a Tpy1 — p>
+200, (Ef (p) — Dp, ny1 — p) + 205, Ny — 0. (3.3.26)

From the condition on the stepsize given by (3.3.9), for a small € > 0, we know that

2||(1 — T,%2) Az, ||*

Y < A1 = T9) A, | €, (3.3.27)
which implies
Bl AT = T Ay P < 20|(1 — TE2) A [P — el A°(T — T92) Aa |
and thus we have
ellA(1 = T2 Awnl* < 2/[(1 = T?) Awn[* — 7l [A"(T = T77) Az |
This implies that
e||A*(I — T2*) Az, ||* < A, — 0, as n — oo.
Hence
lim ||[A*(I — T.2*) Az,||* = 0. (3.3.28)

n—oo
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Further, from (3.3.26) and (3.3.28), we get
0 < el|(I=T72) Azy||* < yll(I = T2) A
<z = pII* = [lens = plP* + 2I[A"( = T%) A, ||?
+ 2008 (f(2n) = F(P), #ni1 = p) + 200 {Ef(p) — Dp, Tnpr — p)

+ 20t Ny — 0, as n — oo, (3.3.29)
and hence
lim |[(I — T.2%)Az,|| = 0. (3.3.30)
n—o0

Also from (3.3.22), we obtain

|z = 2P < (1= 0n¥)?llza = pII* + 2008 (f (20) = f(P), Tns1 — P)

+200 (£ (p) = Dp, Tny1 — p)

120 = PII* + 208 Bllzn — pl| % [|zn11 — pl]

+200 (& f(p) — Dp, Tns1 — p)- (3.3.31)

Substituting (3.3.16) into (3.3.31), and from (3.3.21), we have

IN

|z =l < lyn = 2P = 70(20 = 1) [Py — Papl® + 2008 B] | — pl| X |J2011 — D]
+2an(f(p) — Dp, Tni1 — p)
< Hxn - sz + 2aiN2 - rn<29 - TTL)thyn - hlpH2 + ZanfﬁHmn _pH X

||xn+1 _pH + 2an<§f(p) - Dpa Tn41 _p>'

Thus, we have

(20 — o) [|hayn — hapl|? < ||#n = plI* = ||2nss — DII? + 20mEB12n — pl| - |2ni1 — D]
+20,,(Ef(p) — Dp, xpy1 —p) — 0, as n — oo.

Since {r,} C (0,260), we conclude that
lim ||h1y, — hipl|* = 0. (3.3.32)
n—oo

Further, observe that

2 =Bl = TS (g = rahign) = T2 (p = rahip)|
§ <zn - D (yn - Tnhlyn) - (p - Tnhlp))
1
< Sl = Bl 4 1w = rabagn) = 0= )| -
120 = 2) = (5o = alrg) = (0 = rahip)]| 12}
Hence
zn =PI < 11 = rahign) = (0 = rahip)| = [z = ) + ralhrgn — hap)|

<
< Algn =PI = [lz0 = yall* + 2rallzn = yull X |1y — hapll®. (3.3.33)
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From (3.3.31) and (3.3.33), we obtain

zner —pIIP < lyn = 2II> = 2o — wal* + 2rallz0 — wnll X |21y — Papl|?

+20,8 B[, — pl| X ||Tns1 — pl| + 200 (§f(P) — D, Tnia — p)
[|n =PI + 200, N2 — |20 — 1> + 2720 = Yl | - [hayn — Papl|®
+20n&Bl|zn — pl| X [|Tnt1 — pll + 200 (Ef (p) — Dp, Tni1 — p)-

IN

Therefore

zn = wall> < Nlzn = pII* = |0 — PP + 200 No + 20|20 — yal| - [Py — Bup]|?
20,6 Bl|2n — pl| X ||Tns1 — Pl + 200 ( f(p) — Dp, g1 — ).

Since a,, — 0 as n — 0o, and using (3.3.32), we obtain

lim ||z, — ya||* = 0. (3.3.34)
n—oo
Moreover
||Unzn —p||2 = ||(1 - wn)zn + wnSzy, —p||2

< (1 - wn)Hzn _pH2 + wnHSZn _pH2 - wn(l - wn)HSZn - ZnH2

< (1= wn)|zn = plI? + wallzn — P> — wa(1 — wy)||S 20 — 24|

= ||Zn —p||2 - wn(l - wn)“‘szn - Zn||2

< lan = pl)? + 208 Ny — w (1 — w,)||S20 — 2o |2 (3.3.35)

Note that from (3.3.22), we have

(1 - an’?)QHUnzn - p||2 + 2an<€f<xn) - Dpa Tpny1 — p>

|21 —pl* <
< |[Unzn = plI* + 200 (& f (20) — Dp, @0ia — p), (3.3.36)
then from (3.3.35) and (3.3.36), we get

wa(l = w)|Sz0 = zal[* <l = p|I® = [|20s1 — pI* + 200§ f(wn) — Dp, @nia — )
+2a2 Ny, — 0, as n — oo.

By condition (C7), we have

nlljgl@ 1Sz, — znl| = 0. (3.3.37)
Also
Unzn — 2znl|| = wn||S2zn — 2zu|| = 0, as n — oc. (3.3.38)
It is clear from (3.3.6) that
|| Tni1 — Unznl| = anl|&f () — DUpzn|| — 0, as n — oo, (3.3.39)
and
Yyn — zn]| =0, n— oo, (3.3.40)
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then, it follows from (3.3.34) and (3.3.40) that

l12n — zoll < 120 — Unll + ||y — znl| = 0, as n — oc. (3.3.41)

Furthermore, it follows from (3.3.38), (3.3.39) and (3.3.41) that

Zn1 — 2al| < J@ng1r — Unznl| + [[Unzn — 2ol| + ||2n — @al| = 0, as n — oco.

Since {z,} is bounded, there exists a subsequence {z,,} of {z,} such that z,, — .
It follows from (3.3.40) and (3.3.41) that y,, — 7 and z,, — Z, respectively. Since
limy, 00 [|S2n — 2n|| = 0, and by Lemma 2.6.5, we have z € F(S). Next, we show that
T € Qggmep. Since z, = TT@n1 (Yn — Tnh1yn), then
1
@1(Zn7y) + <h12n7y - Zn) + qb(y) - ¢(Zn) + 7"_<y — ZnyAn T yn) > 07 Vy eC.

n

It follows from the monotonicity of ©; that

iz — 2n) + 0() = B(20) + (¥ — 2020 — ) > O1(y, 20).

Replacing n by n;, we get
1
<h12nj,y - an> + r_<3/ - an) an - yn]> 2 @1<y7 Z’I’Lj) + ¢(an) - ¢(y) (3342)

Further, for any ¢ € (0,1] and y € C, let y; = ty + (1 — t)Z. Since T € C and y € C, then
v € C. So from (3.3.42), we have

zn]- - ynj
<yt — Znj, h’lyt> > <yt — Znys hlyt> - <yt — Zny; hlynj> - <yt — Znj, 7”—> + @1 (ytu an>

+¢(2n;) — ()
= <yt - ana hlyt - hlznj> + <yt - ana hlznj - hlynj>
an - yn]'
—<yt — T—> + 04 (Y, 2n,) + b(2n,) — D(W). (3.3.43)
From the Lipschitz continuity of ~; and lim,, . ||z, —¥n|| = 0, we obtain ||h12,, —hiyn, || —
0, as n — oco. Also since h; is monotone, we have (y, — Zngs hiys — hlznj) > 0. Therefore,

by LL4 and the weak lower semicontinuity of ¢, taking the limit of (3.3.43) as 7 — oo, we
have

(Yo — &, haye) > O1(ys, @) + H(T) — d(ye)- (3.3.44)
Hence, from LL1 and (3.3.44), we get
0 = Oy, ye) + O(ye) — d(ye)

A
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5
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which implies that
O1(y,y) + (1 —t)(y — 2, hays) + d(y) — o(y:) > 0.

Letting ¢ — 0, we have
01(7,y) + (y — 7, mT) + o(y) — d(2) 20, yeC,
which implies that £ € GM EP(Oq, h, ¢).
Since A is a bounded linear operator, Aw,; — AZ. It follows from (3.3.30) that

TTen?Amnj — Az, as j — oo.
By the definition of Tr(?f Ay, we have
O(T)? Ay, g) + (ho(T,, QAxn ), 9 — T2 Azy,) + 0(g) — (T®2Axn])

1
+ —(y — TSL?A:EW,T:Z?A:UW — Awy;) >0, Vge @ and y € H,. (3.3.45)
Since O, is upper semicontinuous in the first argument, taking limsup of the above in-
equality as 7 — 0o, we get
O2(Az,g) + (ha(AT), g — AT) + p(g) — p(AT) > 0, Vg€ Q.
which implies A7 € GMEP(Os, hy,¢) and thus Z € Qsgupep. Therefore 7 € T' =
Qsemrer N F(S).

We now show that {z,,} converges strongly to z = Pr(I — D + £f)(2) which is the unique
solution of the variational inequality (3.3.19). To do this, we first prove that
limsup((D — &f)z,z — x,) < 0. Choose a subsequence {x,,} of {z,} such that

n—o0

limsup((D — &f)z,z — x,) = 11m<(D §f)z, 2 — any).
i
Since z,,, — T, we get
limsup((D —&f)z, 2 —x,) = lm((D —¢&f)z, 2 —xy,)

J—00

Now from (3.3.22), we have

|z =22 < (1— a7y )Q[H% — 2|[* + 20" Ny | + 200,880 — 2| - |J2ng1 — 2]
+2an<€f(z) - DZ,ZL’n_H - Z>

(|20 — 2|1 4+ cn€B(l|xn — 2|* + [|2n41 — 2[%)

(

S (1 - O‘n'?
420, (Ef(2) — Dz, pp1 — 2) + 202 Ny
< (1= an)llzn = 2| + ngB(len — 2I1* + Jons — 2[?)
20, (Ef(2) — Dz, 2py1 — 2) + 202 Ny
< <1 a1 n(Y ng?) l|2n — 2|2 + _2 e <<gf( ) — Dz, Tppr — 2) +aiN2>
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where
2

VnZW n—ﬁ_gﬁ[(ff(z)—Dz,xn+1—z>+oz,?;N2].

It is easy to verify that ) v, = oo and limsup d,, < 0. Therefore, from Lemma 2.6.29, we
n=0 n—00

get ||z, — z|| = 0, as n — 00 and hence {x,} converges strongly to z. From (3.3.40) and
(3.3.41), it is easy to see that {y,} and {z,} converge strongly z.

Case II: Assume that {||z,, — p||} is not monotonically decreasing. For all n > nq (for
some ng large enough), let 7 : N — N be defined by

T(n) =max{k e N: k <n:7 <71}
Clearly, 7 is non-decreasing since 7(n) — oo as n — oo and
0 < |27y = pll < [[2rgy1 = pll, V= no.

Following a similar argument as in Case I, we have ||(I — T.°2 YAz (|| = 0, ||Szr() —

Tr(n)

ZT(n)H — 0, and ||$T(n)+1 — ZET(n)H — 0. AISO7 we obtain

limsup((D = §f)p,p — Tr(n)) < 0.

n—oo

Now since {2(n)} is bounded, there exists a subsequence of {2} denoted by {2}
which converges weakly to Z. Suppose {;(n;)} is such that

limsup({ f(p) — Dp, Trmy41 — P) = jlijgo (£f(p) = Dp, Tr(ny41 — D)-

n—o0

Since () — ¥, and from (3.3.19), we have

lirri sup(§f(p) — Dp, Tr(y41 —p) = Jim, (f(p) = Dp, Tr(n;)41 — P)
= ({f(p) — Dp,z—p) <0.

Therefore
limsup(¢ f(p) — Dp, Tr(ny+1 — p) < 0. (3.3.47)

n—oo

Similarly, as in (3.3.46) we obtain

2emysr =PI < (1= )2 |2y =PI+ 20* Mo | + 20708y — Il X
2 r(my11 — Pl + 2070)(Ef () — Dp, Tr(ny+1 — P)

Qr(n) (f_}/ - éﬁ) 2
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Since ||zr(m) — pl|* < ||@r@m)+1 — p||*, then from (3.3.48), we have

0 < lzrmyrr — plI? = |27y — ol
O‘T(n)(’_y - gﬁ)) 2 2ar(n) 3
< (=== ) ez = pll" + 72 [(&f(p) = Dp, r(ny1 = p) + N
_||x7(n) _p||2~

It follows that

- 2
1= arméf 1= arméf

Since a; () — 0, as n — oo and from (3.3.47), we have

|z — PP < [(Ef(p) — Dp, Tr(ny+1 — p) + i Na).

lim ||z-m) —p|| = 0.
n—o0
As a consequence, we obtain for all n > ng,

0 < ||z = plI* < max{||zrm) = pII*, 1221 =PI} = llrmyn = pII”

Hence, lim,,_, ||z, —p|| = 0. This implies that {x, } converges strongly to p. This complete
the proof.

]

Remark 3.3.12. The condition that {(I — 7.2?)Az,} is bounded is satisfied if the set of
solutions Qgsarrpp of SGMEP (3.3.1) is bounded. If Qggarpp is not bounded, then we need
to verify the condition that {(I — TSf)Amn} is bounded before applying our algorithm.

3.3.2 Numerical example

In this subsection, we provide a numerical result to show the accuracy and efficiency of
our proposed algorithm.

Example 3.3.13. Let H; = Hy = R and C = @ = [0,2]. Define ©; : C x C — R by
O1(z,y) = —32° +34% h1 : C = R by hy(z) =z and ¢ : C — R by ¢(z) = 222, It is easy
to see that p;
To(2) = ——— R.

H(z) T Vz €
Also, let ©5 : R xR — R be defined by Oy(u,v) = —3u®+2uv+v?, hy : Q — R be defined
by he(u) = 2u and ¢ : R — R be defined by p(u) = u?, then

w
T2 (w) = — R.

2 (w) o1 Yw €
Let A : R — R be defined by A(x) = 2z for all x € R. Then A is a bounded linear
operator and AT(z) = 2z for all z € R. Clearly, Qsqurp = {p € GMEP(0,,h,9) :
Ap € GMEP(O,hs, )} = {0}. This shows that Qgsgypep is bounded and thus, the
sequence {(I — T)22)Ax,} is also bounded.
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Define S : R — R by

Zf LS (—OO, 1)7

x’
51 = {1, if xell,+00). (3.349)

It is easy to see that S is nonspreading and I' = {0}. Take & = 1,D = I, where [

1
is an identity mapping and f : R — R be defined by f(z) = §. Choose a,, = L
n
1 9 1 —24r,
wn:—l,7‘n:—,ﬁnz—and)\:1.5,andsetml:l ! x1.
51+ 2) n+1 2(n+1)* 1.5 \6r, +1
Then Algorithm 3.2.4 gives the following:
( T —24r, my,
Mt = TGt s
Yn = Tp + 1-5mn+17
1 n-—1 (3.3.50)
“n = ( )Y
3rp+1 n+1 A .
n n+ n
[ n+1f<x)+n+1[5(n+1)z+5(n+1) opy M=

We now make a different choice of the initial value z; and use ¢ < 107% for the stopping
criterion.

Case 1: x7 =0.0025, Case 2: ;1 =0.01, Case3: 1 =0.1, Case4: z;=1.

We note that the choice of v,, as long as it is in the range, does not have any significant
effect on either the number of iterations, nor the cpu time. We compare the computational
result of Algorithm 3.3.6 with its unaccelerated form (i.e. taking £, = 0) and plot the
graphs of accuracy against number of iterations, and errors against number of iterations
(see Figure 3.4-3.7 and Table 3.4). This shows that Algorithm 3.3.6 converges faster and
is more efficient than its unaccelerated form (i.e. when 3, = 0).

—#— Algorithm 3.1 —#— Algorithm 3.1
—#— Unacclerated type —#— Unacclerated type

02

Figure 3.4: x; = 0.0025, Left: accuracy against number of iterations; Right: errors against
numbers of iterations.
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—#— Algorithm 3.1 —#— Algorithm 3.1
—#— Unacclerated type —#— Unacclerated type

0.1

0.02

0 2 4 6 8 10 1 15 2 25 3 35 4 45 5
Iteration number (n) Iteration number (n)

Figure 3.5: 1 = 0.01, Left: accuracy against number of iterations; Right: errors against
numbers of iterations.

—+—Algorithm 3.1 —#— Algorithm 3.1
—#— Unacclerated type —#— Unacclerated type

5 6 7 8 9 1 15 2 25 3 35 4 45 5
Iteration number (n) Iteration number (n)

Figure 3.6: z; = 0.1, Left: accuracy against number of iterations; Right: errors against
numbers of iterations.

3 3
, x10 7 210

—¥— Algorithm 3.1 —#— Algorithm 3.1
—#— Unacclerated type —#— Unacclerated type

4
2
e
i
3
2
1
0
5 6 7 1 15 2 25 3 35 4
Iteration number (n) Iteration number (n)

Figure 3.7: x; = 1, Left: accuracy against number of iterations; Right: errors against
numbers of iterations.
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Table 3.4: Computation result for Example 3.3.13

Time Taken (Sec)

Algorithm 3.3.8 Unaccelerated alg.
x1 = 0.0025 0.0011 0.0277
x1 = 0.01 0.0020 0.0262
1 =0.1 0.0026 0.0357
=1 0.0038 0.1119
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CHAPTER 4

Equilibrium Problems in Hilbert Spaces

4.1 A Parallel Combination Extragradient Method
with Armijo Line Searching for Finding Common

Solutions of Finite Families of Equilibrium and
Fixed Point Problems

In this section, we focus on the approximation of a common solution of a Finite Family of
Equilibrium Problems (FEP), i.e., finding z* € C := NY,C; such that

gi(z",y) >0, Vyedl, (4.1.1)

where C;, i = 1,2,..., N is a finite family of nonempty, closed and convex subsets of H,
gi » C; x C; — R is a finite family of bifunctions satisfying g;(z, ) = 0. We denote the set
of solution of (4.1.1) by Qrgp.
Clearly, the FEP (4.1.1) with N =1 is the EP (1.1.4). The motivation and inspiration for
studying the FEP originated from its importances and applications in Convex Feasibility
Problem (CFP), i.e.,

finding z*€ C:=nY,C; # 0. (4.1.2)

The CFP has received great attention due to its broad applicability in many areas of
applied mathematics such as image processing, computerized tomography and radiation
therapy treatment. It is also worth mentioning that the FEP (4.1.1) has find applications in
other areas of studies such as common fixed point problems, common solution of variational
inequality problems and common solution of minimization problems.

The bifunction g : C' x C' — R is said to satisfy Lipschitz-type condition, if there exists
two constants ¢; > 0 and ¢y > 0 such that

g(z,y) + gy, 2) > g(x,2) — cil|lz — y||* — e2lly — zH2 Va,y,zeC. (4.1.3)
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Hieu et al. [130] introduced a parallel hybrid Mann-type extragradient method for solving
FEP (4.1.1). This algorithm was defined as follows:

Algorithm 4.1.1.

Step 0: Pick xo € C, 0 < A < min ( L1 >, n =0 and the sequence {a,} C (0,1) such that

2¢17 2¢2

lim sup,, ., o, < 1.

Step 1: Solve N strong convexr programs in parallel
i , 1 2 :
Y., = argmin )\gi(acn,y)jtinn—yH yeCyp, i=1,2,...,N.
Step 2: Solve N strong convexr program in parallel

. , 1
2b = argmin {)\gi(yfﬂy) + §||xn —yl>:y € C’} , i=1,2,...,N. (4.1.4)

Step 3: Find among 2, 1 =1,2,..., N, the farthest element from x,, i.e.,
in = argmin{||zt —z,||:i=1,2,...,N}, 2, = 2.
Step 4: Find intermediate u? in parallel

uw =z, + (1 —0a,)Sz,, j=1,2,...,M.

Step 5: Find among ul,, j=1,2,... M, the farthest element z,, i.e.,

G = argmin{||ul —x,||:j=1,2,..., M}, 1, :=ul"

Step 6: Construct two closed convex subsets of C'

Co = {vel:llu, — vl <llzn —vlf},
Qn = {vel:{(xg—ap,v—a,) <0}

Step 7: The next iteration x, 1 is defined as

Tny1 = Po,no, (T0).

If x, 11 = x,, then Stop. Otherwise set n <—n + 1 and go to Step 1.

Hieu et al. [130] proved that the sequence {z,} generated by the Algorithm 4.1.1 converges
strongly to a solution z € Qpgp () ﬂjj‘ilF (T;) where T; are nonexpansive mappings. Other
similar parallel methods which are modifications of Algorithm 4.1.1 can be found in (for
instance) [11, 10, 127].

However, we note the following problems:
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(pl) The convergence of Algorithm 4.1.1 requires the Lipschitz constants ¢; and ¢y to be
known (or at least) estimated a priori. In practice, it is too difficult to approximate
the Lipschitz constants.

(p2) Algorithm 4.1.1 needs to solve two or more strongly convex program in parallel at
each iteration. This can be computationally costly and consumes large memory size
if the feasible set is complex.

(p3) Also, Algorithm 4.1.1 requires at each step of the process, the computation of two
subsets C), and @, their intersection, and the projection of zy onto C,, N Q,,. This
can be computationally expensive if the feasible set is complex.

Recently, Hieu [125] proposed the following parallel hybrid extragradient-cutting method
which does not require to solve many strongly convex problem at each iteration: Let Cj,
1=1,2,..., N be family of nonempty closed convex subsets of H.

Algorithm 4.1.2.

Step 0: Pickxg € Hyn =0, 0 < A < X < u < min{i,%}, Vi € le, 5] for some
ee (0,4, k=1,2,... andi=1,2,...,N.

Step 1: Solve N strongly convex program in parallel
i . i 1 2
yi, = argmin § Nigi(en, ) + 5llen — ol y € G
Step 2: Solve N strongly convex program in parallel
i - i i 1 2
24 = argmin { Ngilyho ) + gl —yllP 1y € G

Step 3: Determine the next approximation via
Tni1 = Po,ng. (20),
where Cy, = (i, C% and

Cl={z€H:{x,— 2,2 —x, —7.(}, — 1,)) <0},

n’

Qn:={z€ H: (xg—xy,x, — z) > 0}.
If x, 11 = x9, then Stop. Otherwise, set n <— n+1 and go to Step 1.

Note that, although Algorithm 4.1.2 improves Algorithm 4.1.1, but it still incurred some
of the problems in Algorithm 4.1.1.

In order to address the problems (pl)-(p3), in this section, we introduce a parallel combi-
nation extragradient method with Armijo line search rule for finding a common solution
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v € Qppp N (ny{l F(Sj)>, where g : C x C — Ri = 1,2,..., N are finite family of
pseudo-monotone equilibrium bifunctions and S; : H — CB j = 1,2,..., M are finite
family of multivalued demi-contractive mappings. The key of our new method is that for
the current iterate x,, the algorithm solves a single strongly convex program and deter-
mine an appropriate stepsize for the next step using an Armijo line searching rule. Then,
a new level set D, is constructed using the convex combination of finite convex functions
and a projection Pp is made. The algorithm determines if a common solution is reached
using a convex combination of the demi-contractive mappings, else, it updates the new
iterate x,1. The simplicity and ease of implementation are two of the advantages of
our method (in each iteration, a single strongly convex optimization program is solved
and only one projection is made). Also, our method does not involve the projection on
Pc,ng, in Algorithm 4.1.1 and 4.1.2 and other similar ones. We prove that the sequences
generated by our algorithm also converge in norm to the unique solution x. This method
improves many of the existing methods in the literature.

Throughout this section, we assume that the bifunction g : C' x C — R satisfies the
following assumptions:

Al. g is pseudo-monotone on C

A2. g isjointly weakly continuous on C'x C' in the sense that, if x,y € C and {zx}, {yx} C
C' converge weakly to x and y, respectively, then g(xy, yx) — g(x,y) as k — oo;

A3. g(z,-) is convex and subdifferentiable on C' for every z € C.

The following Lemmas would be useful for our result in this section.

Lemma 4.1.3. [92] Let C be a convex subset of a real Hilbert space H and ¢ : C — R be
a convex and subdifferentiable function on C. Then x* is a solution to the convex problem

minimize{p(x) : v € C'}

if and only if 0 € Op(z*) + Ne(x*), where Op(x*) denotes the subdifferential of ¢ and
Ne(x*) is the normal cone of C' at x*.

Lemma 4.1.4. [72] Let C C H be a closed convex subset and g : C' x C' — RU{+o0} be
an equilibrium bifunction satisfying Assumption A1 - A3. If the solution set Qgpg) # 0,
then it is weakly closed and convez.

Lemma 4.1.5. [12]] Let C' be a nonempty, closed and convez subset of a real Hilbert space
H. Let h be a real-valued function on H and define D := {x € C : h(z) < 0}. If D is
nonempty and h is Lipschitz continuous on C with modulus 8 > 0, then

d(x,D) > 6 'max{h(x),0}, VzecC,

where d(x, D) is the distance function from x to D.
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4.1.1 Main results

In this subsection, we give a precise statement of our algorithm and discuss its strong
convergence.

Fori=1,2,..., N, let C; be nonempty, closed and convex subsets of a real Hilbert space
H such that C' := ﬂfil C;. Let g; : C; x C; — R be bifunctions satisfying Assumptions Al
-A3. Let S;: H— CB(H) (j =1,2,..., M) be multivalued demi-contractive mappings
with constants x; such that I — S; are demiclosed at zero, S;p = {p} for all p € F(S))
and k = max{x,;}. Suppose

Sol = Qppp( ) ( > # 0.

M
Let {a,} and {d,;} be nonnegative sequences in (0, 1) such that ) d,; =1
7=0

Algorithm 4.1.6.

Step 0: Select the initial guess x1 € C and let A >0, o € (0,5) and v € (0,1). Set n = 1.
Step 1: Compute

wy, = (1 — o)y + anry, (4.1.5)

. A
2 = argmm{gi(wn,y) + §Hy —w,|* 1y € Ci} i=1,2,...,N. (4.1.6)

Set r'(wy,) = w, — 2. If r'(w,) =0, set w, = U, and go to Step 4. Else, do Step 2.

Step 2: Compute y', = w, — y™r'(w,), where m,, is the smallest nonnegative integer satis-
fying o | 2
9i(Yp 2n) < —o|r*(wn)|[. (4.1.7)

Step 3: Define hi(x) = (w!,z—1y.), where w’ € dg;(y:,-)(y) fori=1,2,...,N andz € C.
Construct the set

D, := {:c €H: Zﬁw wy) < o} (4.1.8)

where {B:3Y., C (0,1) such that ZZ L B: =1. Compute

U, = Pp, (wy,).

Step 4: Compute

M
Tp41 = Op,0Un + Z 5n,jvn,j, (419)
j=1
where vy, ; € Sji,. Set n < n+ 1 and go back to Step 1.
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Remark 4.1.7. Since Sol # ), then all the sets EP(g;) ¢ = 1,2,...,N and F(S;) j =
1,2,..., M are nonempty. It follows from Lemma 3.2 of [263] and Lemma 4.1.4 that
the sets Qgp(,) and F(S;) are closed and convex. Therefore, the solution set Sol is a
nonempty, closed and convex subset of C. Hence, given any initial guess x; € C', there
exists a unique element z = Pg,x1.

In order to establish our main theorem, we make the following assumptions:
oo
Cl. lim «a, =0 and Qa, = 00,

n—o0 n=0

C2. liminf(d,0 — k)d,,; > 0 for all j =1,2,..., M.

n—oo

Next, we prove some preliminary results which will be used to prove our main theorem.
In the next result, we prove that the line searching rule define in Step 2 of Algorithm 4.1.6
is well defined.

Lemma 4.1.8. Let w,, vy, and 2 be as defined in Algorithm 4.1.6. If w, # =z for each
1=1,2,..., N, then, there exists a smallest nonnegative integer m,, such that

9i(Yns 20) < —ol|r* (wn)|.
Proof. We suppose by contradiction that for every nonnegative integer m,,, we have

r(wy), 25) > —ol|r' (w,)||?, Vi=1,2,...,N.

gi(wp — ™"
Passing limit to the above inequality as n — oo, by continuity of ¢;(+,y), we obtain
gi(wy, 22) > —o||r'(wy)|]?, Vi=1,2,...,N,

and so

gi(wn, 28) + ol |w, — 28 |> >0, Vi=1,2,...,N. (4.1.10)

On the other hand, since z! is a solution to the strongly convex optimization problem
(4.1.6), then we have

B iy, B .
gl<wnay>+§||y_wn”2zgl(wTL’Zn)—i_EHZn_wan? vyecﬁ? 2217277]\7

Putting y = w,, in the last inequality, we have

gi(Wwn, 28) + §||sz —w,|* <0, Vi=1,2,...,N. (4.1.11)
Combining (4.1.10) and (4.1.11), we obtain

§||z; —w,|? < ol|lz —w,|’, Vi=1,2,...,N,
Hence, we deduce that either g <ocorz =uw,foralli=12...,N. The first case
contradicts o € (O, g) while the second case contradicts the fact that w, # 2% for all
i=1,2,...,N. O
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Lemma 4.1.9. Let z* € Sol and for alli =1,2,..., N, let h' (z*) = (w0, x* — y") where
w!, and y, are as defined in Algorithm J.1.6. Then

mn

o () |2 (4.1.12)

R (wy,) >
) 2

In addition, h!(z*) <0 and if w, # 2., then b (w,) > 0.

Proof. Since 4! = w,, — r'(w,), then

mn

Wy — Yy, = (Y — 2)- (4.1.13)

n

1 —Amn

Select w!, € dg;(y:, '), then it follows from (4.1.7) and (4.1.13) that

i (w,) = <w;;nwn — )
= (v~ 2
> $ (gi(yi” Yn) = 9i(Yn, Zf;))
> ol

If w, # 2, then h!(w,) > 0. Furthermore, since z* € Sol, we have g;(z*,y) > 0 for
all y € C;, 1 = 1,2,...,N. Since each g; is pseudo-monotone on Cj, then g¢;(y,z*) < 0.
Therefore

hi(z*) = (@),2" —y,)
< G, ") — 9i(Yp, Uy,
< 0.

]

Remark 4.1.10. Lemma 4.1.9 shows that 2* € D! := {z € H : h!(z) < 0}, for each
1=1,2...,N, hence z* € D,,. Thus from Lemma 2.6.4, D,, is a nonempty, closed convex
subset of H. In particular, D, is a half space.

Next, we show that the sequence {x,} generated by Algorithm 4.1.6 is bounded.

Lemma 4.1.11. Suppose Assumptions C1 and C2 are satisfied, then the sequence {z,}
generated by Algorithm /.1.0 is bounded. If in addition {w,} is uniformly bounded and
Algorithm 4.1.6 does not terminate, then

Mn

2
ro )Hwn—z;y]?), (4.1.14)

s =1 o =21~ (=

where x* € Sol, K >0 and for allt=1,2,...,N.

96



Proof. By the definition of D,,, it is easy to see from Lemma 4.1.9 that Sol C D, holds
for all n > 1. Hence, for any z € Sol, we have from (2.2.3) that
||, — Z||2 = |[|Pp,(wn) — z||2
< Jwn = 2[1* = | Pp, (wn) — wal|®
= ||lw, — 2|]* —d(wn, D,) i=1,2,...,N. (4.1.15)
Using Lemma 2.6.3, (4.1.9) and (4.1.15), we get

2
|20 —2l]* =

M
Oy, — 2) — Z O (Vns — 2)
j=1

IN

M M
On0ltin = 2>+ Snjllong = 2|1 = 600 > 6njllvng — tnll’
n.j

j=1

IN

M M
Onolltn = 2I[* + > 0n i H (S, S32) = 600 Y O jllvn; — [’
nJ

J=1

IN

M
5ol — | +Zan,j(r|an APyl —vn,j||2)

j=1

M
~0n0 Y Ongllon — |’
nJ

IN

M
[ = 21 =D 603 (Gno = #)l [ — vyl

n=1

M
< Jwn = 2017 =D 60 (Gno — £)[[tn — vn gl (4.1.16)

n=1

Hence from (4.1.5) and (4.1.16), we have

Zpir — 2|2 < lamzy + (1 — )z, — 2| (4.1.17)
< anller = 2l]* + (1= )|z — 2|
< max{|lzy — 2[]*, [Jzn — 2[]°}
. 2 2
< max{|ley — z2[[% |loy — 2]}

= |l — 2"

This implies that {z,} is bounded. Consequently, for i = 1,2,..., N, {2/} and {y} are
bounded. Also, suppose the sequence {w’} is uniformly bounded by K > 0 (cf. [219],
Theorem 24.5), i.e.,

<K VYneN, i=1,2,...,N.

[,
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Combining Lemma 4.1.5, Lemma 4.1.9 and (4.1.15), we get

. 1. 2
e (R O o)

m 2
Yo i
< Jfwn — 2| = (—K(1 =il <wn>||2)

m 2
2 o if2
= ||lw, —2||" = | =——=||wn — 2, .
=21 = ( ey llun = 411
Therefore from (4.1.16), we have

2

Yo P2
lone — 2| < ||wn—z||2—(—||wn—zn||) .
K (1 —~mn)

]

We are now in the position to prove the convergence of Algorithm 4.1.6. Note that if
Ty = Wy, r'(w,) = 0fori=1,2,...,N and w, € Sjw, for j = 1,2,..., M, we are at a
common solution z* € Sol. In our convergence analysis, we will implicitly assume that
this does not occur after finitely many iterations so that our Algorithm 4.1.6 generates an
infinite sequence.

Theorem 4.1.12. Fori=1,2,..., N, let C; be nonempty, closed and convex subsets of a
real Hilbert space H such that C' := ﬂfil C;. Let g; - C; x C; — R be bifunctions satisfying
Assumptions A1 - A3. Let S; : H — CB(H) (j = 1,2,...,M) be multivalued demi-
contractive mappings with constants k; such that I —S; are demiclosed at zero, S;p = {p}
for all p € F(S;) and k = max{r;}. Suppose

Sol = Qpgp| ) (ﬂ% F(Sj)> )

Let {an} and {6,,} be nonnegative sequences in (0,1) and {x,} be generated by Algo-
rithm 4.1.6 and Assumptions C1 and C2 are satisfied. Then, the sequence {x,} converges
strongly to a point p € Sol, where p = Psyx1.

Proof. Let z = Pgyz1, using Lemma 2.6.1(i) and from (4.1.16), we have

|znir — 2P < lwn — 2]
= Hanx1+(1—an):vn—z||2

< (1 —ap)||lzn — 2||* + 200z — 2, w0, — 2)

= (1 —ay)a, + ayby, (4.1.18)
where a,, := ||z, —z||* and b, = 2(z; — 2, w,, — 2). We show that {b,} satisfies the following:
—1 <limsupb, < +o0. (4.1.19)

n—oo
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Since {z,} and {w,} are bounded, we have

sup b, < 2sup [[z1 — z[| - [[w, — 2|| < cc.
n>1 n>1

This implies that limsup,,_,. b, < co. Next, we show that limsup,,_,. b, > —1. Assume
the contrary, i.e. limsup,, .. b, < —1. Then, there exists ny € N such that b, < —1 for
all n > ng. Thus we get from (4.1.18) that

Ap41 S (1 - an)an + anbn
<

(1 —apn)a, —ap

an — ap(a, +1) < a, — ay.

Taking lim sup of both sides of the inequality above, we have

n
limsupa, < a,, — lim g o; = —00.
n—oo

n—oo :
i=ng

This contradicts the fact that {a,} is a non-negative real sequence. Therefore limsup,,_,. b, >
—1.

Now from Lemma 4.1.11, we have

M, 2
_L? < a2 — T . — 12
low =412 <l =21 = (i sl = 21

Mn, 2

V"o i
< apllrr = 2P+ (1= an)||zn — 2|]* — (muwn — anE%LQO)

We next consider the following two possible cases.

CASE A: Suppose there exists ng € N such that {||z,,—z||*} is monotonically nonincreasing
for all n > ng. Since {x,} is bounded, then {||x, — z||?} is also bounded and so it follows
that ||z, — 2||* — ||zne1 — 2||> = 0 as n — oco. From (4.1.5) and using condition C1, we
get

llwy, — zp|| = anl|zr — 20l =0,  n— 0. (4.1.21)

Also using (2.2.3), we have

|y, = 2|* < JJwp = 2]* = ||y, —wa|| YVi=1,2,...,N. (4.1.22)
This yields that
up, — wall? < w = 2|* = [Jul, — 2|
< lan(zr = 2) + (1 = an) (@n — 2)|]> = [|2ng1 — 2|
< (1= a)||zn — 2| 4 20 (21 — 2, w, — 2) — ||T0s1 — 2|

— 0, n— oo. (4.1.23)
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Also from (4.1.20), we get

m 2
o Q2 2 2
—Hwn—zn!l) < apllrr = 2P+ (1 = an)l|zn — 2]
(K(l—vmn)

—||Tns1 — 2|[* = 0, n— oo. (4.1.24)

Hence
) Yo
lim

P2
n—00 K(l — fymn) Hwn ZnH

exists. This implies that the sequence {%Hwn — zfl||2} is bounded. It is easy to
see from (4.1.24) that
lim ™| |w, — z.|| =0, Vi=1,2,...,N. (4.1.25)

n—oo

Next, we show that €, (z,) C Sol, where Q,(z,) is the set of weak subsequential limit
of {x,}. Let z € Q,(z,), there exists a subsequence {z,,} of {x,} such that z,, —
as k — oco. Let {w,,} and {u} } be subsequences of {w,} and {u}} respectively for all
i =1,2,...,N. Consequently from (4.1.21) and (4.1.23), w,, — Z and v}, — Z for all
i=1,2,...,N.

From (4.1.25), we get

lim ™ ||w,, — 2. || =0, Vi=1,2,...,N. (4.1.26)
k—o0 k
We claim that .
lim ||w,, — 2, || =0, Vi=1,2,...,N.
k—o0 k

Indeed, let us consider two distinct cases depending on the behaviour of (the bounded)
sequence {y™"}.

(1) : If iminfy o y™ > 0, then there exists ¥ > 0 and a subsequence of {7"} still
denoted by {7} such that for some ky > 0, v™ > 7 for all k£ > kq. Using this fact
and (4.1.26), we have

lim ||w,, — 2. ||=0, Vi=1,2,...,N. (4.1.27)
k—o0 k

Recall that w,, — Z, this together with (4.1.27) implies that 2}, — & as k — oo for all
1=1,2,...,N. By the definition of zflk, ie.

)

: A :
z, = argmm{gi(wnk,y) + §Hy —w,, |*:y € C’}, i=1,2,...,N,

we have . A .
0 € 9gi(Wn,,, 2, ) + Mz, — Wn,) + Ne(z,, ), Vi=1,2,...,N.

So there exists é,flk € 0gi(wn, , Z;k), 1=1,2,..., N such that
<éf1k,y — z;k> + A(z;k — Wy, Y — z;k> >0, Vyed. (4.1.28)
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Combining this with
9i(Wny y) = gi(wn,, 2,) = {6y — 2,), Yy el
yields
9i(Wny, y) = gi(wnys 25, ) + Mzl — Wa,y — 25, ) >0, VyeC. (4.1.29)
Since

from (4.1.29), we get that
9i(Wnye y) = gi(wng, 2, ) + Mlzp, —wn]l - lly — 2,1 >0, Vyel  (41.30)
Letting k& — oo, by the weak continuity of g; and (4.1.27), from (4.1.30) we obtain
gi(z,y) — gi(z,2) >0, Vyeli=1,2,...,N.
Hence
g:;(Z,y) >0, VyeC,i=1,2,...,N.

This implies that = € Qrgp.
(ii): Suppose limy_o 7™ = 0. From the boundedness of {2}, }, without loss of gen-
erality, we may assume that z}zk — Z as k — oo. Replacing y by w,, in (4.1.29), we
get

9i(Wny 2, ) < =Allzh, —wy,||?, Vi=1,2,... N (4.1.31)

nk
On the otherhand, by the stepsize rule (3.1.9), for m,,, — 1 we have

" ), 2,) > ol Vi=120 N (4132)

gi(wnk -7
Combining (4.1.31) and (4.1.32), we get

1

) ) 1 _
Xgi(wnmzzk) < _||Z;Lk - wnk||2 < ;gi<wnk - ank !

(W, ), 2L ). (4.1.33)

n
Taking limit of the above inequality (4.1.33) as k — oo, and using the weak continuity of
g, we get

[(5.7) < — Jim |13, —wn | S a(@2), Vi=12.. N

3 9i(T,2) < — lim |z, —wn, [[7 < —4i(7, 2), 1=1,2,...,N.
Therefore g;(7, Z) = 0 and limg_,o ||wn, — 2}, || = 0. Following similar process as (i), we
have = € QFEP.

Next, we show that z € N)L, F(S;). From the definition of @,, we have from (4.1.23) that

lim ||, — wy|| = 0. (4.1.34)

n—oo
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Using (4.1.16) and Lemma 2.6.1(i), we have
M

[@ner =27 < lwn = 2P =D 00i(0n0 = #)l[En — vayll®
n=1

M
= om(zr = 2) + (1 = ) (20 — 2)|* = dej((sm() — &)|[t, — Un,j||2
n=1

M
< (1= an)llen — 2| + 200 (@1 — 2,wn — 2) = Y 80i(0n0 — £)| [T — va gl

n=1

This implies that

M
D 003 (G0 = &) — vagll” < (1= an)llen — 2[* + 200 (21 — 2, w5 — 2) = |[zng1 — 2]
n=1

Hence
M

. . . _— 112 _
Jim 3 (5o = ) vl =0
Using condition C2, we have
nh_}lgo ||y, — vn || = 0. (4.1.35)

Let {@,, } be a subsequence of {u,}. It follows from (4.1.34) that @,, — Z, hence by the
demiclosedness of S, j =1,2,..., M, we have that £ € F(5;), for each j =1,2,..., M.
This implies that z € ﬂjj\il F(S;). Therefore z € Sol, which implies that ,{z,} C Sol.

Now we show that {x,} converges strongly to an element x* = Pg,x1. To do this, we first
prove that limsup,,_,. (z; — 2,w, — z) < 0. Choose a subsequence {w,, } of {w,} such
that

limsup(z; — 2™, w, — 2*) = lim (z; — 2", w,, — 7).

n—00 k—o0

Since ||z, —wy, || = 0, and z,, — T as n — oo, then from (2.2.2), we get

limsup(z; — 2", w, —2*) = lim (x; — 2", w,, —z")
n—00 k—oo
= (ry—z",z—12") <0. (4.1.36)

Combining (4.1.18), (4.1.36) and Lemma 2.6.29, we get that {x,} converges strongly
to ¥ = Psyxy. Consequently from (4.1.21), (4.1.27) and (4.1.34), we obtain that the
sequences {w, }, {2} and {u,} converge strongly to z*.

CASE B: Suppose {||z,, — p||*} is not monotonically decreasing. The technique of proof
used here is adapted from [172, 171]. Put T, := ||z, —2||* and let 7 : N — N be a mapping
defined for all n > ny (for some ny large enough) by

7(n) :=max{k e N: k <n,T) <Tp}.
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Clearly 7 is a non-decreasing sequence such that 7(n) — oo as n — oo and
0< I‘7'(71) < PT(TL)—‘,—I; Vn> No.
From (4.1.20), we have
l2ryer = 27 < argllen = 21 + (1 = arg))l|2) — 2]

m 2
_ &H pSINIE
K (1 — ey 1070 ™ Zr(n)

2 Yo i 2 ? %
< ||$T(n)—ZH - m“wﬂn)_zr(n)H + () M7,

for some M* > 0. Therefore

m 2
&H NI
K(1— ™) Wr(n) = 21(n)

IN

||5U-r(n) - Z||2 - ||$T(n)+1 - Z||2 + aT(n)M*

< OzT(n)M* — 0, n — o0.

Hence
im A" () — 2 2=
Tim A" [lwy ) = 27, || = 0.
Just as in CASE A, we can show that lim,, o ||wWr(n) = Zr(n)|| = lim, 00 Hui(n) —Wr(m)|| = 0.

Since {x(n)} is bounded, there exists a subsequence of {4} still denoted by {x(n)}
which converges weakly to z € C'. Similarly as in CASE A above, we can show that

=0.

nhjgo ||w‘r(n) - Zi(n)“ = nlgrolo ||w7'(n) - Z;—(n)H = nlggo ||a7(n) — Ur(n),j

So & € Sol. Since ||w;m) — T-m)|| = 0, we get that limsup,,_, (r1 — 2, wr(m) — 2) < 0.
Following (4.1.18), we have

||x7(n)+1 - Z||2 = (1 - aT(n))||xT(n) - Z||2 + 2017'(71) <ZL‘1 — %, Wr(n) — Z) (4137)

By Lemma 2.6.29 and using conditions C1 and C2, we have from (4.1.37) that lim, . [|2(n)—
z|| = 0. Furthermore, for n > ny, it is easy to see that I',, < Ff(n)ﬂ. As a consequence, we
obtain for all sufficiently large n that 0 < I',, < T';(;)41. Hence lim,,_,o I';, = 0. Therefore
{x,} converge strongly to z. Consequently {w,}, {2’} and {u,} converges strongly to z.
This completes the proof. n

4.1.2 Numerical examples

In this subsection, we present some numerical examples for Algorithm 4.1.6. All the tests
were run using MATLAB 2014b programming on a HP personal computer with RAM 8gb.

Example 4.1.13. Let H = R™ and C; = C, ¢ = 1,2,...N, where the feasible set C' is
defined by
C={(x1,z2,...,xpm) ER™ :|xy| <1, k=1,2,...,m}
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and consider the problem:

.

Il
—_

Find z c SOl = QFE'P N ( F(Sj>>7

J

where g; : C' x C'— R is defined by

k=1

with p; € (0,1) randomly generated for all i = 1,2,...,N, k = 1,2,...,m. Also, S; :
R™ — CB(R™) is defined as

—(14+2y
{%,—(1 +i)z|, =<0,
Sz = . (4.1.38)
—(14+2
[—(1 + j)z, %] , x>0,
forall j = 1,2,...,M and = € R™. It can be easily shown that S} is demi-contractive
with constant x; = % € (0,1). It is also easy to verify that conditions Al - A3

are satisfied, I — S is demiclosed at zero and S; satisfies the end point condition. Also,

Sol = {z*}, where z* = (0,0,...,0)”. For each n € N, let a,, = i) +1 and let
g = {1~ e (Zﬁzl =) if n=j
0, otherwise.

It is easy to see that conditions (C1) and (C2) are also satisfied. We choose A = 0.6,
o =0.25 v =048 and 8, = . Using % < 107* as our stopping criterion, we
choose x; € C generated randomly and take different values of N, M and m as follows:

Case I: N =5, M =5 and m = 5;
Case II: N =10, N = 15 and m = 10;
Case III: N = 20, N = 20 and m = 20.

We compare the output of our Algorithm 4.1.6 with Algorithm 4.1.2 of Hieu [130]. We
also plot the graphs ||z,+1 — x,|| against the number of iteration. The numerical results
can be seen in Table 4.1 and Figure 4.1.

Example 4.1.14. Next, we consider a Nash-Cournot oligopolistic market equilibrium
problem model taken from [110, |. Assume that there are n companies producing a
common homogeneous commodity and that the price p; of company ¢ depends on the
total quantity o, = > | x; of the commodity. Let ¢;(x;) denotes the cost (tax and fee)
of company ¢ for generating x;. Suppose that the profit of company i is given by

gi(x1, w2, .. 1) = xipi0) — Gi(xi), i=1,2,...,n.
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Let C; = [z™1 2] be the strategy set of company i. Then, the strategy set of the
model is C' := C x Cy X - -+ x C},. Actually, each company seeks to maximize its profit by
choosing the corresponding production level under the presumption that the production
of the other companies is a parametric input. In this context, a Nash equilibrium is a
production pattern in which no firm can increase its profit by changing its controlled
variables. Thus under this equilibrium concept, each firm determines its best response
given other firms’ actions. One common approach use to solve this model is the Nash

equilibrium concept.

Mathematically, a point z* = (27, 5,...,2%) € C is said to be a Nash equilibrium point
if

where the vector z*[z;] stands for the vector obtained from z* by replacing x; with x;. By
taking g(z,y) 1= ®(x,y) — ®(x, z) with ®(x,y) :== — > g:(x[y;]), the problem of finding
a Nash equilibrium point of the model can be formulated as follows:

Find z* e C: g(z*,2) >0, VazeC. (4.1.39)

Now, assume that the task-fee function ¢;(x;) is increasing and affine for each ¢« > 1. This
means that both the tax and fee for producing a unit commodity are increasing as the
quantity of the production is getting larger. In this situation, the bifunction g can be
formulated in the form:

g(z,y) = (Pr+ Qy+q,y — ),

where ¢ € R™ and P, () are two matrices of order n such that @) is symmetric positive
semidefinite and ) — P is symmetric negative semidefinite. This shows that ¢ is pseudo-
monotone. Using this model, our aim is to show the numerical behaviour of our proposed
Algorithm 4.1.6. We take the feasible set C' as a box defined by

C={zeR":-2<x, <5 [=1,2,...,n}

Let S : R" — CB(R"™) be defined by

sz{{()}, if @<0
[%, x} , if x>0.
It can easily be verified that S is 0-demi-contractive mapping and I — S is demiclosed
at zero. Let the matrices P and () be generated randomly such that their conditions are
satisfied and also the vector ¢ be generated randomly. All the optimization subproblems
are efficiently solved by the function quadprog in Matlab. We take a,, = #5, On = 5ni3s
o = 0.01, v = 0.8 and choose z; € R" randomly (with n = 30,50 and 70), we compare
the output of Algorithm 4.1.6 using the following values of the stepsize:

Case I. A=0.1, Casell: X=0.25, Caselll: A =0.5.

[Zn+1—2n]]

Tl < 107%. The numerical results are reported in

The stopping criterrion used is
Table 4.2 and Figure 4.2.
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Remark 4.1.15. The numerical results from Example 4.1.14 shows that Algorithm 4.1.6 is
very efficient and easy to implement for solving the Nash Oligopolistic market equilibrium
problem. Irrespective of the choice of A, there is no significant difference in the number of
iteration and CPU time taken.

Finally, we present an example in an infinite dimensional space setting. For simplicity, we
take N = M = 5.

Example 4.1.16. Let H = L*([0,1]) with the inner product {x,y) fo s)ds and
the induced norm ||z||, = fol |z(s)|*ds. For i =1,2,...,5, we define the fea81ble set as

Ci:={reH:|lz|]|p <1}

Let g;(z, y) be of the form (A;x,y — x) with the operator A; : H — H define as (A;z)(t) =
max{0, = } for i = 1,2...5. Then it can easily be verified that each g; is monotone (and so,
pseudo monotone) onC Forj=1,2,...,5,1etS; : H— CB(H) be defined by S;(z)(t) =
0, 9], then Sol = EP(g,C) N F(S ) = {0}. We take o, = 2, 0, = 347, BL =

N
A=09, 0 =04, ~v=05 and LZe==2ll 55 106 a5 the stopping criterion. We choose

|lz2—1]|

the following starting points: Case I: 21 = 4sin(%), Case II: 2 = §(cos(2t) — sin(3t)),
Case III: x; = 2cos(bt) exp(4t), Case IV: x; = t2 sin(57t), and then plot the graphs of
errors against the number of iterations in each case. The numerical results can be found
in Figure 4.3. From this results, we conclude that the change in the initial values does not
have any significant effect on the number of iterations and cpu time taken for execution
by the algorithm.

Table 4.1: Computation results of Algorithm 4.1.6 and Algorithm 4.1.2 for Example 4.1.13.
H Algorithm 4.1.6 Algorithm 4.1.2 H

Case 1 CPU time (sec) 0.4365 1.0796
No. of Iter. 31 35

Case II CPU time (sec) 0.6885 3.0243
No. of Iter. 51 79

Case III CPU time (sec) 1.2867 7.7517
No. of Iter. 73 167

4.2 Inertial Mann-Krasnoselskii Algorithm with Self
Adaptive Stepsize for Split Variational Inclusion
Problem and Paramonotone Equilibria

In this section, we consider a Mann-Krasnoselskii algorithm with inertial extrapolation for
approximating a common solution of split variational inclusion problem and equilibrium
problem with paramonotone bifunction.
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Table 4.2: Computational result of Algorithm 4.1.6 for Example 4.1.14.

H Case 1 Case 11 Case II1
m =20 CPU time (sec) 0.2232 0.2206 0.2135
No. of Iter. 9 9 10
m = 50 CPU time (sec)  0.1739 0.1955 0.1250
No. of Iter. 11 10 9
m =70 CPU time (sec)  0.1368 0.1544 0.1153
No. of Iter. 11 11 9

Figure 4.1: Example 4.1.13, Left: Case(i); Middle:

Case(ii); Right: Case(iii).

Figure 4.2: Example 4.1.14, Left: m = 20; Bottom: m = 50; Right m = 70.
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3 5 10 15 20 25 o 5 10 15 20 25 0 ° eraton number () 25 0 5 10 0 2
Iteration number (n) Iteration number (n)

Figure 4.3: Example 4.1.16, Case I, Time: 10.5890sec; Case II, Time: 9.0166sec; Case III,
Time: 9.2805sec; Case IV, Time:9.0381sec.

Let B : H — 2% be a multi-valued maximal monotone mapping. The resolvent mapping
JP . H — H associated with B is defined by

JE(2) = I+ AB)*(2), VzedH,
for some A\ > 0, where I is the identity operator on H. We note that for all A > 0, the
resolvent operator J7 is single-valued, nonexpansive and firmly nonexpansive, see e.g [30].
In 2011, Moudafi [185] introduced the following Split Variational Inclusion Problem (shortly,
SVIP): Find ' € H, such that
0€ Bi(z") and 0 € By(Ax"), (4.2.1)

where H; and H, are real Hilbert spaces, By : H; — 21 and B, : Hy — 2" are multi-
valued maximal monotone operators, A : H; — Hs is a linear bounded operator. As noted
in [66], the SVIP can be seen as generalization of split variational inequality problems, split
feasibility problems, split common fixed point problems and split equilibrium problems.
We denote the set of solutions of (4.2.1) by Qgyp.

For solving the SVIP, Bryne et al. [57] introduced the following iterative algorithm with
weak convergence property: For given xy € H;, compute iterative sequene {x,} by the
following scheme

Tyl = Jfl(xn —|—7A*(sz — I)Azx,),

where A > 0 and the stepsize v is chosen such that v € <0, W) It is noted that
computation of the norm of the operator A may be difficult in practice.

In 2016, Chuang [34] studied the SVIP using the following descent projection method:

Algorithm 4.2.1. Descent Projection Algorithm (DPA)

Step 0: Set n =1 and choose x1 € H;.
Step 1: Given x,, € Hy, compute {y,} using

Yn = Jﬁl [zn — 7 A (] — inf)A:cn],
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where {\,} C (0,00) and v, > 0 satisfying
VA1 — J32) Ay, — AY(I — J2) Ayl < 6l|wn — yall, 6 € (0,1).

Step 2: If x, = y,, STOP. Otherwise continue with Step 3.
Step 3: Compute x, 11 € Hy using

Tnt1 = J)\Bnl (xn - O‘nD(xnvyn))7

where
D(Zn, Yyn) = Tp — Yn + Y[A (L — anz)Ayn — A" (I — Jff)Axn],

<:Un — Yn, D<xﬂ? yn)>
D (20, yn)|[?
Then update n :=n + 1 and go to Step 1.

an =

For more details and recent results on SVIP, we refer the reader to [7/, 85, , ] and
references therein.

Recently, Yen et al. [270] proposed a projection based algorithm for solving the split feasi-
bility problem (SFP) (1.1.9) involving paramonotone equilibria and convex optimization.
They considered the following problem:

Find z*eC: f(z",y) >0 VyeC and g(Az") <g(u) VY ue€ Hs, (4.2.2)

where ¢ is a proper lower semicontinuous convex function on H,. They proposed the
following algorithm and proved its strong convergence to a solution of problem (4.2.2).

Algorithm 4.2.2. Mann-Krasnolselskii Proximal Algorithm (MKPA)

Initialization: Take positive parameters 0,& and real sequences {an}, {0, }, {5n}, {€n}, {pn}
satisfying

O<a<a,<b<l, 0<é<p,<4-& 0,>06>0, 5,>0, ¢ >0, VneN,

y 1
i 4 T o

- ﬁn - 2 - 6n€n
— = +00, n < 00, < 400.
oo, T e 2y
Step 0: Choose 1 € C and let n = 1.
Step n: Having x,, € C, take g, € 05" f(x,, x,) and define
Bn

a, = — where v, = max{d,,||g.||}-
Tn

Compute y, = Po(x, — angn), i.e.,

(Yn — T + WnGn, T —Yn) >0 YV €C.
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Take
M = h(yn) Vh 0
piwneore W Vi) # 0,

and compute
Zn = PC’(yn - ,unA*(] - prox,\g)Ayn),

where

1
proxyg(u) == argmin {g(u) + XHU —ul||*:ve HQ} :

and Vh(z) := A*(I — prox,,)Ax.
Let

Tpt1 = app + (1 — ap)z,.

Motivated by the works of Moudafi [185], Chuang [$6] and Yen [276], in this section, we
study the following problem:

Find 2 € C: f(al,y) >0 VyeC, 0¢cBi(z') and 0€ By(Ax'), (4.2.3)

where By : Hy — 291 and B,y : Hy, — 22 are multi-valued maximal monotone operators,
A : Hy — H, is a bounded operator and f : C' x C — R is a bifunction satisfying
f(x,z) = 0. We denote the set of solutions of (4.2.3) with I, i.e., I := Qgp(s) N Qgyrp. It
is easy to see that Problem (4.2.3) contain Problems (4.2.1), EP (1.1.4) and (4.2.2).

We propose an inertial Mann-Krasnoelskii algorithm which converges strongly to a solution
of (4.2.3). The algorithm is designed in such a way that it stepsize is chosen self-adaptively,
and its strong convergence analysis does not require a prior estimate of the norm of the
bounded operator.

We make use of the following assumptions throughout this section.
Assumption 4.2.3.

(A1) Hy and Hy are real Hilbert spaces, and A : Hy — Hs is a bounded linear operator
with adjoint A* : Hy — Hj.

(A2) By : Hy — 200 and By : Hy — 2M2 are multi-valued mazximal monotone operators.
(A3) The bifunction f: H x H — R satisfies the following:

(B1) For each x € C, f(x,z) =0 and f(x,-) is lower semicontinuous and convex on
C;
(B2) 02 f(x,z) is nonempty for any A > 0 and x € C and is bounded on any bounded

subset of C, where Oy f(x,x) denotes \-subdifferential of the convex function
f(z,-) at x, that is

Oy(z,x):={ne€H :(ny—z)+ flz,r) < flz,y) + X VyecCl
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(B3) f is pseudo-monotone on C with respect to every solution of the EP, that is
f(x,2*) <0 for any x € C, x* € Qgp(y) and [ satisfies the following condition,
which 1s called the para-monotonicity properly:

" € Qpp), y€ C, fla",y) = fly,z") =0=y € Qppp.
(B4) For all x € C, f(-,x) is weakly upper semicontinuous on C.

(A4) The problem (4.2.3) is consistent, i.e., its solution set I" is nonempty.

4.2.1 Main results

Here, we present an inertial Mann-Krasnolselskii algorithm with self adaptive stepsize for
split variational inequality problem with para-monotone equilibria.

Algorithm 4.2.4. Inertial Mann-Krasnolselskii algorithm

Initialization: Pick zg,21 € Hy, 6 € [0,1), {€,} C [0,00), {7}, {an}, {pn}, {Bn}, {Mu}
satisfying the following condition for each n € N :

pm>p>0 0<a<a,<b<l, (,>0, r,>0, X,>0;

[e o]

1
Zen < oo, lima,==, Iliminfr, >0;
— n—oo 2 n—o00
oo - (0.) oo nAn
Z Pn _ +o0 262 = 400, Z P < +o0. (4.2.4)
n=1 Pn n=1 n=1 Pn
/Step 1:/ Given x, 1 and z,, choose o, such that 0 < «,, < &,,, where
a, = min {9’ m} if o # Tney, (4.2.5)
6 otherwise.
Set
Wy = Ty + Qp(Ty — Tp_1) (4.2.6)
/Step 2:] Compute
Yn = T fwn — E A1 — J172) Awy), (4.2.7)
where &, is chosen such that
2= Awn 2 if JP Aw, # Aw
En = & N1AT(I=Jr2) Awnl2 e " (4.2.8)
&, otherwise,
where £ is any nonnegative value.
[Step 3:] Take 1, € 05" f(yn, yn) and define
_ Bn _
T, = — where 7, = max{py, |||}
Tn
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Compute
2n = Po(Yn — Tniin)- (4.2.9)
[Step 4:] Let
Tpi1 = Ty + (1 — ap)zy. (4.2.10)

The following lemma can be obtained from Lemma 3.2 of [224].

Lemma 4.2.5. For every n > 1, the following inequalities hold:

(1) Tal ||| < Bu;

Lemma 4.2.6. The choice of the stepsize defined in (4.2.8) is well defined.

Proof. Take w € SVIP(By, By), then JP'w = w and JP2Aw = Aw. Observe that

I = ) AwF = (T = J22) Aw, (I = JP) A,

= ((I = JP)Aw,, Aw, — Aw + J2* Aw — JP? Aw,,)
(I = JP)Aw,, Aw, — Aw) + (I — J2?) Aw,, J7?* Aw — JP? Aw,,)

(A*(I = JP) Awg, w, — w) + (I — JP?) Aw,, JP? Aw — JP? Aw,,)

AT = J22) Awn|| - [Jwn — wl| +[|(1 = J2?) Awy]] X

752 Aw — TP Aw,||.

IA

Consequently, for n € N, we get ||A*(I — J22)Aw,|| - |[[w, — w|| > 0 and ||(I — J2?) Aw,|| -
|52 Aw — JP2 Aw,|| > 0. Since JP> Aw,, # Aw,, then we obtain ||A*(I — J2?) Aw,||- ||w, —
wl|| > 0 and hence ||A*(I — JP?)Aw,|| > 0. This implies that &, defined in (4.2.8) is well
defined. O

Lemma 4.2.7. Let x* € ', then

Iy — 2*11* < |lzn — 2"[1° + anea| |2 — @na],
where ¢y = sup, > {||zn — || + ||2p_1 — || + 2||20 — 2p1]|}.
Proof. Let x* € I, then

|[yn — x*“Q = ||Jr]il [wn — § A (I — JrE,?)Awn} - ‘]rilx*HQ

it — " — & A*(1 — J2) A

Jwn — 2*|]* = 26,((I — JP?) Aw,, Aw, — Az*) + || A* (I — JP?) Aw,||?
<l — 212 = Eu2II(T — B A, P — &,[|A*(T — JE2) Aw, |} (42.11)

IN

By the choice of &,, we have

o — 2" < [Jw, — 2| (4.2.12)
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Also from (4.2.7), we have

lwn — 27|

||xn + O‘n(xn - xn—l) - :1:*||2

|2, — x*H2 + 200 (Tn — 25, Ty — Tp) + O‘inn - xnleQ

< lza =27 + an(llzn — 27| = llzno1 — 27[1%) + 200|270 — 20| |*
|20 — 2*(|* + an([|2n — 2] + [|20-1 — 2|20 — Taoall + 200|120 — 21|
[lan = 27I1° + an(llzn = 27| + 01 = 2" + 2|20 = 2o |Dl|20 — 2o

< ||$n - x*”Q + anclen - xn—1||7

(4.2.13)

where ¢; = sup,, > {||zn — 2*|| + [|2n-1 — 2*[| + 2||2n — —1]|}. From (4.2.12) and (4.2.13),

we have

1y — 2"|* < [l — 2"|1* + anes||zn — @nall.

0
Lemma 4.2.8. Let z* € I'. Then for each n > 1, we have
120 = 2"11* < llwn = 27[1* + 270 f (yn, @) + 270 + 26,
Proof. From Lemma 2.6.1(i), we get
Iz —2"|I* = llzn = Yo+ yo — 27|
< N — 2|+ 2{yn — Zny T — 2). (4.2.14)
From (2.2.2) and (4.2.9), we have
(Zn = Yn + Talh, T — 2,) >0 Vel
Taking x = x*, we have
(Zn — Yn + Talin, " — 2,) >0
S T, T — 20) 2> (Yn — 2n, &5 — 2.
Hence from (4.2.14), we have
2 = 2|7 < lyn — 27| + 2(7t, 27 = 20)
= |lyn — 2| + 2(7tn, 2 = Yn) + 2Tl Yo — 2n)- (4.2.15)
Since 1, € 95" f (Y, yn), We have
FWns @) = (Yo yn) 2 (o 2 = ) — A
S W %) + A0 = (s 2" — ). (4.2.16)
On the other hand, from Lemma 4.2.5 it holds that
(Tathns Yn = 2n) < Tl 10l |lyn — 2] < By (4.2.17)
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Combining (4.2.15), (4.2.16) and (4.2.17), we get

12w = @"(1* < |y — 2™I1° + 270 f (yn, &%) + 270 + 257,
which together with (4.2.12) yields

120 — 2||* < ||wy — %2 + 270 f (Y, 7)) + 270\ + 282,

]

We now give the convergence analysis of Algorithm 4.2.4 to solution of Problem (4.2.3).

Theorem 4.2.9. Suppose Assumption 4.2.3 holds and the sequence {x,} is generated by
Algorithm 4.2.4. Then, the sequence {z,} strongly converges to a solution of Problem
(4.2.3).

Proof. Claim 1: The sequence {||z,, — z*||*} is convergent for all x* € T

Since z* € Sol(EP), and f is pseudomonotone on C' with respect to every solution of EP,
we have f(y,,2z*) < 0. By the definition of x,1, we have

|Zni1 — 2| = |lanzn + (1 — ap)z, — 27|
< apl|r, — 2P 4 (1 —an)||z, — 27 (4.2.18)

From Lemma 4.2.8 and (4.2.13), we have

|znsr — 2] < anllzn — 2| + (1 = an)[[lwn — 2| * 4 270 f (4, %) + 270 M + 267
< o — 2] + (1 = ap)aner||2n — 2p_1|| + An, (4.2.19)

where A, = 2(1 — a,,)(Ta A0 + 52).

Since 1,, = B" with v, = maX{Pm HﬁnH}

irn)\n = i &)\n < 3 &/\n < +o00.

n

n=1 n=1 n=1

Note that > >°, 52 < +00 and 0 < a < a,, < b < 1 and thus, we have
ZA <2(1—a) ZTn)\ + %) < +o0.
n=1

Also, we have from (4.2.6) that
an||xn - mn—1||2 S a‘n“mn - xn—1||2 S €n,

and therefore

o0
> ag||zy — 2o |? < oo
n=1
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Now using Lemma 2.6.32 and (4.2.19), we see that {||z,, — 2*||*} is convergent for all

x* € T. Hence, the sequence {x,} is bounded. Consequently, the sequences {w,}, {y.}
and {z,} are bounded.

Claim 2: limsup,,_, . f(yn,x*) =0 for all z* € T.
From (4.2.19), we see that

—2(1 = @) f (Yn, ") < |2 — 27| = |20 — 2"|* + An
+(1 = ap)ancr||xn, — xn_1]]. (4.2.20)

Summing up (4.2.20), we get

WE

_2(1 - an)Tnf<ym fk) < 4-00.

n=1

On the otherhand, using Assumption (A2) and the fact that {z,} is bounded, we get that
||7n]] is bounded. Thus, there is a constant L > § such that ||n,|| < L for every n > 1,

and hence I
T _ maX{L ||nn||} <L
Pn Pn P
Therefore
P pPn
Yo~ Lopn

Since z* € T, it follows from the pseudo-monotonicity of f that —f(y,,z*) > 0 which
together with 0 < a < a, < b < 1 implies

o0

S - b)%( — [y 2)) < +o0.

n=1

Since Y7, % = 00, it implies that limsup,,_, ., f(yn,z*) = 0.

Claim 3: For any z* € T', let {y,,} be a subsequence of {y,} such that

limsup f(yn 2*) = lim f(yn,,2%) (4.2.21)
Jj—00

n—oo

and y* be a weak cluster point of {y,,}. Then y* belongs to Qgp(y).

Without loss of generality, we can assume that y,,, — y* as j — oo. Since f(-, ") is upper
semi-continuous and by Claim 2, we have

f(y*,2%) > limsup f(yn,,z") = 0.

j—00

Since z* € " and f is pseudo-monotone, we have f(y*, 2*) < 0 and so f(y*,z*) = 0. Again,
by the pseudo-monotonicity of f, f(x*,y*) < 0 and hence f(y*,z*) = f(z*,y*) = 0. Then,
by the para-monotonicity of f (i.e., Assumption (A3)), we can conclude that y* is also a
solution of EP.

Claim 4: Every weak cluster point  belongs to the solution set Qgy7p.
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Let {x,,} be a subsequence of {x,} such that z,, — Z. Observe that

[e.9] o0
D wn = zall =D anllz, — 20| < oo
n=1 n=1

Hence
lim ||w, — z,|| = 0. (4.2.22)
n—oo

This implies that w,, — 7, where {w,} is the subsequence of {w,}. From (4.2.11) and
(4.2.18), we have

2w =2 |* < o = 2|2 = (1= an)&al2/1(1 = J72)Awa||* + &l |A™(1 = J772) Aw,||]
+(1 — ap)ancr||zn — Tna|] + An, (4.2.23)

where ¢; and A, are as defined in Lemma 4.2.7 and (4.2.19), respectively.

Put ©,, = 2||(I — J22)Aw,||? + &,||A*(I — J2?) Aw,||?. Tt follows that
(1= 0n)&0n < |[zn — x*‘|2 —||7pg1 — x*HQ + (1 = an)anci|rn — 2p || + A

This implies that

(1=0)> €O < |lzo — 2*|P+ (L= a)er D anllzn — 2|+ ) Ay < +o00.
n=1 n=1

n=1

Hence
lim &,0, =0. (4.2.24)

n—o0

Moreover, from the choice of &,, for a small € > 0, we have

211(I — JB2) Aw,,||?
P [ Y
[A*(I = J2) Aw, |2

This implies that
EallA*(I = JE2) Aw, |2 < 2/[(I — JE2) Aw,|[2 — el | A*(I — J2) Aw, |1
and thus

e||A*(I — J22) Aw,||* < 2||(I — JP2) Aw,||? — &AL — JP?) Aw, ||

Hence
e||A*(I — JP?)Aw,|]* < ©, = 0, as n — oo.
Therefore
lim [|A*( — JP?)Aw,|]* = 0. (4.2.25)
n—o0

Similarly from (4.2.23), we have

lim |[(1 — JP?)Aw,||* = 0. (4.2.26)

n—o0
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Furthermore from (4.2.7) and (4.2.11), we have

lyn — 2*[]* = ||ij~z1 [wy, — £ A™(I — J£L2)Awn] - Jﬁlx*Hz
< yn — 2" w, — AT — Jﬁg)Awn — ")

1 . . .

= Sl = @I+ lhwn = 12 = g = wn + A = TE2) Aw,| 2}
1 * *
S = 2112 + [l = 27112 = [y — wal

+EIATT = J22) Awn[* = 26a[yn — wall x [|A*(T - J52)Awnll]}-

IN

Hence

Iy = 2*(1* < wn = 27|* = [lyn — @l |* + 260l lyn — wal| x
|A*(I — J52) Aw,||. (4.2.27)

From (4.2.12), (4.2.22) and (4.2.27), we have

|znis = 21?2 < anllzn — 2|17 + (1 = an)||z0 — 2|
< apllr, — I*||2 + (1 = an)||yn — $*||2 + An
< | — 2P+ (1= an)[|lwn — 2| = |lyn — wal]® + Ay
+260[yn — wal| - [JA*(T = J722) Aw,|[] + A,
< ||‘73n - :E*||2 — (1 - an)Hyn - wn“2 +(1— an)anclen - xn—lH
+2(1 = an)&nllyn — wall - ||A*(I — J22) Awy|| + Ay
This implies that
(1= an)llyn —wal* < |z — 2% = |2 — 2P 4+ (1 = an)aner||2n — 2]

+2(1 — ay)&nllyn — wa|| - [|A*(I — JP?) Aw, || + A, (4.2.28)
It follows from (4.2.28) that

0 o)
L=0)) My —wall® < lwo —2"|P + (1 = a)er D || — 21|
n=1 n=1

+2(1 —a) ZgnHyn — wp||| - |[[A*(I = JELQ)AwnH + ZAH < 0.
n=1

n=1

Hence
lim ||y, — wy|| = 0. (4.2.29)
n—oo

From (4.2.22) and (4.2.29), we have
lim ||y, — z,|| < lm [||yn — wa]| + |Jwn — z4]|] = 0. (4.2.30)
n—oo n—oo
Let {y,,} be a subsequence of {y,}, then y,, — T as j — oco. Since y,, = J' (w,, —
&n, A* (I — JP?) Aw,,), we can write
(Wn; — Yn;) + A (I — J%_)Awnj

Tnj

€ Bi(yn,). (4.2.31)
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By passing to limit j — oo in (4.2.31) and by taking into account (4.2.25) and (4.2.29),
using the fact that the graph of a maximal monotone operator is weakly-strongly closed,
we obtain 0 € Bi(Z). Furthermore since A is linear, we know that Aw,; — AZ. Again by
(4.2.26) and the fact that the resolvet JP is nonexpansive and Lemma 2.6.5, we obtain
AZ € By(Az). Hence & € Qgyyp. This complete the proof of Claim 4.

Note that since ||y, — z,|| = 0, as n — oo, it follows from Claim 3 and Claim 4 that
zel.

Claim 5: Finally, we show that {x,} converges strongly to z € T.
By claim 1, we can assume that

lim ||z, — Z|| = ¢ < 400.

n—oo
From Lemma 4.2.5(ii) and (4.2.12), we have

< lyn = 2|+ |20 — ynll
<

||xn —Z|| + |an|||Tn — Tpa| + Bn.

|2 — 2|

This implies that

limsup ||z, — Z|| < limsup(||x, — Z|| + |an|||Tn — Zai|| + Bn) = c.

By applying Lemma 2.6.33, with v, = =, — ¥, u,, = 2z, — T, we obtain

lim ||z, — x,|| = 0.
n—oo
Following similar argument as in the proof of Theorem 1 in [276], we see that
lim z, = Z. (4.2.32)
n—o0
Hence, the sequence {x,} converges strongly to z. This completes the proof. [

4.2.2 Application

In this subsection, we give an application of the main result in Section 3 to approximating
solutions of certain nonlinear optimization problem.

Split Minimization Problem:
Let Hi and H, be real Hilbert spaces, A : H; — H, be a bounded linear operator.
Given some proper, lower semicontinuous and convex functions ¢; : H; — RU {400} and

go : Hy = R U {+0o0}, the Split Minimization Problem (SMP) is define as

find x € H; suhthat = €argmin g, and Ax € argmin g. (4.2.33)
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We denote the set of solution of the SMP (4.2.33) with Qgpp. The SMP was first intro-
duced by Moudafi and Thakur [188] and has attracted lots of attention in recent years,
see for instance [1, 2, | and references therein. Further, the SMP have being applied in
the study of many applied science such as multi-resolution sparse regularization, Fourier
regularization, hard-constrained inconsistent feasibility and alternating projection signal
synthesis problems.

Recall that the subdifferential of g; : H; — R U {+o00} is defined by
I9gi(z) =={z € Hy : g1(2) + (y —2,%) < g1(y) foreach y € Hi}

for each x € H;. The proximity operator with respect to g; is defined by

. 1
proo ) i= argmin.cn { () + rlle = AP}
for all x € Hy and A > 0. It is well known that dg; is maximal monotone and

0 € 0g1(Z) & T = proxyg, (T).

By setting By = 0g; and By = 0go in Algorithm 4.2.4, we see that Algorithm 4.2.4 reduces
to the following algorithm for solving the SMP.

Algorithm 4.2.10.
Initialization: Pick xg,x1 € Hy, 6 € [0,1), {e,} C [0,00), {an},{rn},{pn}, {Bn}, {Iu}
satisfying the following condition for each n € N :

pn>p>0 0O<a<a,<b<l, (,>0 1r,>0 \,>0;

[e.9]

. 1 .
g €, <00, lima, ==, liminfr, > 0;
1 n— o0 2 n—oo
n—=

Z&:vLoo 2522—1-007 Zﬁn/\n<+oo-
n=1 Pn n=1 n=1 Pn

/Step 1:/ Given x, 1 and x,, choose ,, such that 0 < «,, < @&,,, where

. o .
o {mln {9, —”IFM_IHQ} if Xy F# T,
=

6 otherwise.

Set
Wy = T, + Oén(xn - xnfl)

Step 2: Compute

Yn = Prox,, g [wn, — EA™ (I — prox,,, 4, ) Aw,),
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where &, is chosen such that

|4 (I=prowr,, g5) Awn 2

2||(I—prox Awy||? .

6 — (I =prory g, ) Awn]| if prox,, g, Aw, # Aw,,

n — .
£, otherwise,

where £ is any nonnegative value.
Step 3: Take 0, € 05" f(yn, yn) and define

r= 2 uhere 5, = max{pn, I}
Tn

Compute
Zn = PC(yn - Tnnn)~

Step 4: Let
Tpa1 = ATy + (1 — ay)z,.

4.2.3 Numerical examples

In this subsection, we carry out some numerical experiments to test the accuracy and
efficiency of our algorithm. All computational tests are carried out using MATLAB 2019a
programming on a 8gb RAM personal computer.

Example 4.2.11. Let H = R™ and C be a box defined by C = {xr e R™: -1 < z; < 1,
i=1,2,...,m}. Define the bifunction f on C' x C' by

flz,y)=(Pr+Qy+q) (y—2) Vaz,yeC,

where ¢ € R™ and P, are two matrices of order m such that ) is symmetric posi-
tive semidefinite and ) — P is negative semidefinite. It is easy to check that f satisfies
conditions (B1)-(B4). Precisely, in our example, we work with the Euclidean norm R™
(with m = 50,200,500 and 1000). The vector ¢ is the zero vector in R™ and the two
matrices P, () are generated randomly such that their properties are satisfied using the
‘gallery(’gcdmat’ ,m)’ function in MATLAB. The entries of matrix A € R™ x R™ are
randomly generated in the interval [0,1], By : R™ — 28" B, : R™ — 28" are define by
By (x) = 2z and By(x) = —5x. The sequences {5, }, {anH{pn}, {rn}. {€.}, {\n} are chosen
such that

_ _5 _ n—=1 _ 1 _ 1 _ —
Bn — 2n41° Ap = 2n+57 Tn = 29 €n = (n+1)%» )\n - 07 Pn = 4a

Tn = max{4, H77n|‘}>

for each n > 1. We compare the numerical results of Algorithm 4.2.4 and Algorithm
4.2.4 with a,, = 0 choosing m = 50,200,500 and 1000. In each case, the initial vectors
xo and z; are also generated using rand(m,1) and the stopping criteria used in each
% < 1075, The computational results are shown in Figure 4.4 and 4.5.

The horizontal and vertical axes show iteration n, as well as error(n) = ||z, — T 11|
respectively.

case is
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Next, we give an example in an infinite dimensional Hilbert space.

Example 4.2.12. Let H, = Hy = Ly([a,b]) with norm ||z||,, = ([, |2(t) \dt)%. Define
C C Hyand Q C Hy by C :={z € Ly([a,b]) : (u,z) < z}, where 0 # u € Ly([a,b]) and
z € R, Q =A{y € Ly([a,b]) : ||y — d||r, < r}, where d € Ls([a,b]) and radius r» > 0. The
projection on C' and () are define by

z—(u,z)
U+, u,r) >z,
Poa) = | T, w,)
x, (u,z) < z,

and

d+ril=g,  y¢aQ,
P — Hy dH
Q(y) {y yeo.

In this example, we consider By = 0Jic and By = 0ig, where i¢ and ig are the indicator
functions on the sets C' and @) respectively. Then, the resolvent operators with respect to
B, and B, are the metric projections Pr and Py respectively.

In particular, we choose

C = {z € Ly([0,1]) : [lz()[|, <1},

and )
Q = {z € Ly(]0,1]) : / |z(t) — cos(t)[*dt < 25}.
Define an operator F : C' — L*([0,1]) by F(x fo B(t, s)p(z(s)))ds + q(t), for
all z € C and t € [0, 1], where
2tselts 2tet
B(t,s) = —F/——, x) = cos(x )= ——
(ts) = —=— pl@) (@), () = —=—
As shown in [233], F is monotone and L-Lipschitz continuous with L = 2. Let f (m(t), y(t)) =

(Fx(t),y(t) — x(t)), and Az(t) = 3x(t). We consider the problem
Find z* € C suchthat f(z",y) >0 VyeC, and y" =Azr"e€@. (4.2.34)

Clearly, Problem (4.2.34) is a subclass of (4.2.3), hence, we can apply Algorithm 4.2.4 to
solving Problem (4.2.34). We choose the sequences {a,}, {e.}, {8}, {\n}, {pn} such that
2n 1

1
n— 5> )\TL:O‘57 n — y En = s n:3.
=3 = S e ?

Using % < 107 as stopping criterion with different choices of z, and z; given

below, we compare the numerical results of Algorithm 4.2.4 with MKPA (4.2.2) and DPA
(4.2.1):

(i) 1 =t* — 2t + 1 and o = 3sin(2¢);
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(i) z; = 2 — exp(—2t) and z = 2> — 3¢;

(ili) 21 =3 + % + 1 and xy = cos(5t);

(iv) x1 = 125—tQ — 2 and x¢ = exp(—2t)/7.

Remark 4.2.13. In conclusion, Example 4.2.11 shows that Algorithm 4.2.4 converges faster
than its non-inertial version (that is, with a,, = 0). Also from Example 4.2.12, we see that
Algorithm 4.2.4 performs better than Algorithm 4.2.1 and Algorithm 4.2.2 in terms of
number of iteration and cpu-time taken.

Table 4.3: Computation result for Example 4.2.11.

Algorithm 4.2.4 Algorithm 4.2.4
with a,, =0
m = 50 CPU time (sec) 1.1185 1.15799
No. of Iter. 22 32
m = 200 CPU time (sec) 1.7821 2.1582
No. of Iter. 23 33
m = 500 CPU time (sec) 3.4738 10.7083
No. of Iter. 24 35
m = 1000 CPU time (sec) 8.2317 12.5352
No. of Iter. 24 35
Table 4.4: Computation result for Example 4.2.12.
Algorithm KKPA 4.2.2 DPA 4.2.1
4.2.4
Case I CPU time (sec) 1.3210 2.9709 6.1351
No. of Iter. 17 23 40
Case II CPU time (sec) 10. 4288 20.2761 34.9238
No. of Iter. 21 28 48
Case III CPU time (sec) 1.5861 2.9477 6.1550
No. of Iter. 22 30 48
Case IV CPU time (sec) 2.3602 9.7439 17.3865
No. of Iter. 19 26 45

4.3 A New Efficient Method for Finding Common
Fixed Points and Solutions of Split Generalized
Equilibrium Problems in Hilbert Spaces

In this section, we introduce a new iterative algorithm for approximating solutions of split
generalized equilibrium problem and common fixed points of multivalued demi-contractive
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15 20 2
teration number (n)

Figure 4.5: Example 4.2.12: Case I; Case II; Case III; Case IV.

mappings in real Hilbert spaces. We also study the rate of convergence of our proposed
algorithm which is shown to be O(1/t) convergence rate.

Let C' be a nonempty, closed and convex subset of a real Hilbert space H. Let ® : C'xC —
R and ¢ : C' x C'— R be two bifunctions. The Generalized Equilibrium Problem (GEP)
is defined as finding a point z* € C' such that

O(x* z)+ p(a*,2) >0, Vzel. (4.3.1)

We denote the set of solutions of the GEP by Qgpp. The GEP is very general in the sense
that it includes as particular cases, minimization problems, variational inequality prob-
lems, fixed point problems, mixed equilibrium problems and Nash equilibrium problems
in noncooperative games among others, see for instance [35, 62, 90, ]. When ¢ =0,
the GEP reduces to the classical Equilibrium Problem EP (1.1.4) introduced by Blum and
Oettli [35].

Recently, Kazmi and Rizvi [1158] introduced the Split Generalized Equilibrium Problem
(SGEP) in Hilbert space. Let C' C H; and Q C H, be nonempty, closed and convex sets
and A : Hy — Hj be bounded linear operator. Let @, : CxC — Rand ¥, py : Q@ XQ —
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R be bifunctions. The SGEP is defined as finding x* € ' such that
Oz, z) + @i(z",2) >0, Vael,
and
y*=Ax* €@ solves VU(y*, y)+ ¢2(y*,y) >0, Vyeq.
We denote the set of solutions of the SGEP by Qgsggp. The authors in [118] proposed

the following algorithm for approximating the solutions of the SGEP and fixed points of
nonexpansive semigroup in real Hilbert spaces:

up = T (2, + 6A* (T — 1) Az, (432)
Tn+1 = Oén/Yf(xn) + ﬁnxn + (( /871) A )ln fosn T(s)und87 o
where Tr(f’w) is defined in Lemma 4.3.2) r, € (0,00), f : C' — C is a contraction with

constant o € (0,1) and B is a strongly positive linear bounded self-adjoint operator on
H, with constant 4 > 0 such that 0 < v < I <~ + 1 {s,} is a positive real sequence
diverging to +oo, § € (0, %), L being the spectral radlus of the operator A*A and {«,},
{B.} are sequences in (0, 1). The authors obtained a strong convergence theorem for the
sequence generated by algorithm (4.3.2) under some suitable conditions on ay,, 5, and s,,.

Also, Deepho et al. [93] studied the common solution of SGEP, variational inequality prob-
lem and fixed point of countable family of nonexpansive mapping in Hilbert space. They
proposed the following algorithm and proved its strong convergence for approximating the
underlying problem under some mild conditions on the control sequences:

(1, = T3 (w, + 6 AT (T — 1) Ax,),

zn = Po(un — & Bauy),

Yn = Ty + (1 — ) SnPo(zn — &1B12n), (4.3.3)
Cri1 ={2 € Gt [Jyn — 2[| < [|zn — 2][},

(Tny1 = P, x9, VYneN

where Bi, B, are (31, fo-inverse strongly monotone operators from C' into H; respectively
and L is the spectral radius of the operator A*A. Also a,, € (0,1), & € [a1,b1] C (0,25:),
& € [az, by] C (0,26,), {ra} C (0,00), 6 € (0, 1), satisfying

(AAL) 0 <a; <& < by <25,
(AA2) 0 < ay <& < by < 2p,
(AA3) liminfr, > 0.

n—oo

Very recently, Phuengrattana et al. [204] proposed the following hybrid algorithm and
proved its strong convergence to a solution of SGEP and common fixed point of countable
family of nonexpansive multivalued mapping .5;:

(l’l S C,

u, = TSP — SA(I — TS"92) A,

2y =Wz, + oz,(ql)y}l + ot a&”)yﬁl’”, yg) € Siuy, (4.3.4)
Crix ={p € Cn:[lzn — pll < [l2n — plI}

n €N,

Tpy1 = PCHH 15
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where {a} C (0, 1) satisfying St oah =1, {yw} C (0,00) and § € (0, 1), where L is the
spectral radius of A*A.

However, we observe that the convergence of the iterative schemes (4.3.2), (4.3.3) and
(4.3.4) depends on the spectral radius of A*A which require a prior knowledge of the norm
of the bounded operator A. This is very difficult to get in practice. Also, one can see that
algorithms (4.3.3) and (4.3.4) slightly improved algorithm (4.3.2), but the projection onto

C,+1 can be computationally expensive when the feasible set C' is not simple. This may
affect the usage and efficiency of algorithms (4.3.3) and (4.3.4).

In order to get an efficient method for approximating solution of SGEP, we introduce a new
iterative scheme for approximating solution of SGEP and common fixed point of countable
family of multivalued demi-contractive mappings in real Hilbert spaces. Our algorithm
neither requires a prior knowledge of the operator norm nor the projection onto C), 1.
We prove a strong convergence theorem and show that our proposed method converges
at a rate of O(1/t). We also provide some numerical examples to show that our proposed
iterative scheme performs better than some existing algorithms in the literature.

For solving the SGEP, we need the following lemmas.

Lemma 4.3.1. [93] Let ®: C x C = R and ¢ : C' x C' — R be two bifunctions satisfying
the following assumptions:

(D1) ®(z,z) >0 for all x € C;
(D2) ® is monotone, i.e. ®(x,y)+ P(y,x) <0 for all z,y € C;

(D3) ® is upper hemicontinuous, i.e. for each x,y,z € C,
limsup ®(tz + (1 — t)x,y) < P(z,y);

t—o0
(D4) For each x € C fized, the function y — ®(z,y) is conver and lower semicontinuous;
(D5) ¢(z,2) >0 for all x € C,
(D6) For each y € C fized, the function v — p(x,y) is upper semicontinuous;

(D7) For each x € C fized, the function y — p(x,y) is convexr and lower semicontinuous,

and assume that for fixed r > 0 and z € C, there exists a nonempty compact convexr subset
K of H and x € C N K such that

1

Lemma 4.3.2. (see Lemma 3 in [97]) Let C' be a nonempty, closed and convex subset
of a real Hilbert space H. Assume that ®,p : C x C' — R are bifunctions satisfying the

assumptions D1 - D7 in Lemma 4.5.1 and o is monotone. For r > 0 and for all x € H,

define a mapping 7" . H — C as follows:

1
T\ (x) = {ze(J:<1>(z7y)+90(27y)+;<y—z,z—x> >0, V?/GC}-

Then, the following hold:
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(i) T %) s single-valued;
(i1) T s firmly nonexpansive, i.e.

[T ®P g — T @Oy |2 < (T PP — Ty 2 —y) Y 2,y € H; (4.3.5)

(ZZZ) F(Trgq)’(p)) = QGEP;

(iv) Qaep is compact and conver.

In addition, the following lemma is a consequence of Lemma 4.3.2. It will be used in
establishing our main results.

Lemma 4.3.3. Let &, : C' x C — R be bifunctions satisfying the assumptions D1 -

D7 in Lemma 4.3.1 and ¢ be monotone. Suppose Qggp is non-empty. For all v € H,
z € F(T™Y and r > 0, we have
(TP g — 2, T\ — z) <0, (4.3.6)

s T

and
o = T x|? + [T x — 2| < ||z — 2| (4.3.7)

Proof. 1t follows from Lemma 4.3.2 (ii) that
|7 @Oz — 2| < (T®Pz — 2,2 — 2).

This implies that
(TP g — 2, T\ g — 2 — (x— 2)) <0,

hence
(TP — 2, TPz — ) <O0.

Also from Lemma 4.3.2 (ii), we have
T @ — 2|2 < (T®9g — 2z 2 — 2)
= (T*x —z+z—2,7—2)
{
(T — 0 — TPy + Ty — 2) + ||z — 2||?
||z = T ®Pz| > 4 (T ®P gz — 2, TPz — 2) + ||z — 2||*.
Therefore, from (4.3.6), we have

|52 — 2]]” + [lo = TPz < Jlo — 2|
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4.3.1 Main results

In this subsection, we give a precise statement of our proposed algorithm and discuss its
convergence analysis for approximating the solutions of SGEP and common fixed point of
countable family of multivalued demi-contractive mappings in real Hilbert spaces.

Let C and () be nonempty, closed and convex subsets of real Hilbert spaces H; and Hy
respectively and A : H; — H, be a bounded linear operator. Let ®, ¢, : C' x C' — R and
U,y @ @ X Q — R be bifunctions satisfying assumption D1 - D7 in Lemma 4.3.1 and
for each i € N, let S; : H; — CB(H;) be multivalued demi-contractive mappings with
constants k; such that I —S; are demiclosed at zero and for each p € F(S;), Si(p) = {p}.
Suppose

Sol := Qsapp N F(S;) # 0.
i=1
Let f : Hy — Hj be a p-contraction with constant p € (0,1) and D be a bounded operator
on H; with coefficient 7 > 0 such that 0 < £ < %. Let {r,} be a sequence in (0,00), {a,}

and {f,,:} be sequences in (0,1), {\,} be a sequence in (0,00) and {z,} be a sequence
defined by the following algorithm.

Algorithm 4.3.4.
Step 0: Choose v > 0, a,0 € (0,1) and v € (0,2). Choose x1 € Hy and set n = 1.

Step 1: Compute
Yo = T2 (2, — N, A*(I — T"#2)) Az,), (4.3.8)

where A\, = on™, 0 >0, n € (0,1) and m,, is the smallest nonnegative integer such

that (see [151])
AlA*(T = T#) Az, — A(I = D) Ay, || < Oz — gl (439)

Step 2: If x, = y,, then go to Step 3. Else, compute

A0, Ya) = 0 = Yo = M| A1 = T) Ay — A°(1 = T Ay, |, (4.310)

and
Wy, = Ty — Y0 d(Tp, Yn) (4.3.11)
where < u )y
Tn —Yn,A\(Tn,Yn :
5, = Nd(znyn)I? if  d(n, yn) # 0, (4.3.12)
0 if  d(xn,yn) = 0.
Step 3: Compute
Tnt1 = O‘n&f(‘%@) + (1 - anD) <6n,0wn + Z Bn,ivn,z’> ) (4313)
i=1

where v, ; € Sjw,. Set n =n+1 and go to Step 1.
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Remark 4.3.5. Note that if x,, = y, and x,, € S;x, foreachi =1,2,..., we are at a common
solution of SGEP and fixed points of S;. We will implicitly assume in our convergence
analysis that this does not occur after finitely many iterations so that Algorithm 4.3.4
generates an infinite sequence.

In order to establish the convergence of Algorithm 4.3.4, we make the following assump-
tions:

(C1) lim o, =0 and ) a, = o0,

n—00 n—0

(C2) liminf(B,0 —k)Bn; >0foralli=1,2,..,
n—oo

(C3) liminfr, > 0.

n—oo

First, we show that the Algorithm 4.3.4 is well defined. To this end, it suffices to show
that the inner loop in the calculation of the stepsize in Step 2 is well defined.

Lemma 4.3.6. [/0/] The Armijo-line search rule (4.3.9) is well defined. More so

A<\, <o, (4.3.14)

where X = min {0, HZ’(‘Q} )

We proceed to prove the following lemmas before proving our main theorem.
Lemma 4.3.7. Let {x,}, {yn} and {w,} be sequences generated by Algorithm j.3.4, then

(1+ 9>2||xn - wn||2
(1—0)2?

||2n — yal® < (4.3.15)

Proof. From Algorithm 4.3.4, we have

<:Un — Yn, d(xm yn)> = <xn “Yn, Tpn — Yn — )‘n[A* ([ - TT(;I’#P2))A$” - A*<I - Tr(,tpﬁoz))AynD
= ||zn — yn||2 — ATy — Y, A(I — Tr(,lll’m))Axn —A*(I — T(E’SOQ))A?JW

r

> o, — yn||2 = Aallzn — ynl| X [JA*(I — Tr(f’cpz))Axn
AT Ay
> (1= 0)||lwn — yall*. (4.3.16)

Also from the definitions of d,, and w,,, we obtain

5n<‘rn - yn7d<$nayn)> = H(Snd<xnayn)H2
1
— ¥’|wn — $nHQ- (4.3.17)
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Note that

(@, ya)ll? = lan =y = Ma[A*(] = T #2) Ay — A*(1 = T92)) Ay )|
= len = yall? + NA(L = TE#2) Ay — A*(1 = T92)) Ay
+ 2\ (T — Y, A(I = TV92) Az, — A*(I — TLV92)) Ay,)
1 = gl 2 + 62110 — gl >+ 2rgl 20 — gl - [1A*( — T¥) Ags, —
AY(I = T9) Ay, |
||zn — ynH2 + 92Hxn - ynHZ + 20|z, — ynHZ
= (140)?|7, — yal|* (4.3.18)

IN

Therefore from (4.3.12), (4.3.16) and (4.3.18), we get

<.Z'n — Yn, d(xna yn>> > 1—-6

5, = > . 4.3.19
)P~ (107 (4:319)
Consequently, we have from (4.3.16), (4.3.17) and (4.3.19)
_ 2 - (Tn = Yn, ) _ 2
(1+6)?
e
]
Lemma 4.3.8. Let z € Sol. Then from Algorithm /J.3./, we get
9 _
=2l <l = 2l = B2 o, — (4.3.20)

Proof. Since T2 g firmly nonexpansive, it is %— averaged, and thus [ — Tg #2) ig 1-ism

n

(see [55, 179]), i.e.

(T = T Ay, — (I = T9) Az, Ay, — A2) = ||(T = T#)) Ay, — (1 = TH) Az .

(4.3.21)
From (4.3.21), we have
(A1 = T2 Ay, — A*(1 = T Az g, — 2)
=((I - T,ff’wQ))Ayn — (I - ng’W))Az, Ay, — Az)
> [[(1 = TL#) Ay, — (I = T) Az (13.22)

Since z € Sol, then T\Y*? A» = Az, and thus (I — Tg’m))Az = 0. Therefore we have
from (4.3.22)

M(A (L = T Ay g = 2) > Ml (L= TN A2 (4.3.29)
However, observe from (4.3.6) that

(Yo — 2, Tn — Mg A (I = TV Az, — 7)) > 0. (4.3.24)

Tn
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On adding (4.3.23) and (4.3.24), we get

(Yo = 2,d(@n,ya)) 2 Mal|( = T92)) Ay (4.3.25)

Also by Lemma 2.6.1 (ii), we have
lw, = 2" = [l2n —10ud (2, yn) — 2|
< o, - ZH2 — 290,y — 2, d(Tn, Yn)) + 725721"d<xm yn)Hz' (4.3.26)

But
(Tn — 2,d(T0n, Yn)) = (Tn = Yns ATy Yn)) + (Yo — 2, d(Tn, Yn))- (4.3.27)
Then from (4.3.12) and (4.3.25), we have

<xn — % d<xn= yﬂ)) = 6n’|d($myn>||2 + <yn -z d(xm yn)>
Onl|d(zn, yn)HQ + Aull( = TS!’W))A%LHZ'

V

Hence, we get from (4.3.26) that

[l = 2|? = 7052 = Dld(za, y)[I” = 70Xl (L = T1#2)) Ay |2

[lwn = 2[]* <
<l = 2117 = 7052 = )@, ya) |1 (4.3.28)

From (4.3.11), we have that 62||d(z,, y,)||* = W%Hwn — 2,|[%. Then it follows from (4.3.28)
that

9 _
=2l <l = 2l = E2 D o, — (4.3.20)
Consequently since v € (0,2), we get
lfwn — 2||* < ||zn — 2|2 (4.3.30)
]

Now, we show that the sequences generated by Algorithm 4.3.4 are bounded.

Lemma 4.3.9. The sequence {x,} generated by Algorithm /.3.4 is bounded. Consequently,
{f(@xn)}s {yn}, {wn}, {d(xn,yn)} and {v,;} are bounded, for eachi=1,2,....

Proof. Let us put z, = B, 0w, + Z?:l Br,iVn,i, and z € Sol. Then using Lemma 2.6.3, we
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have

2

n
||Zn - Z||2 - ‘ ﬁn,()wn + Zﬁn,ivn,i -z
i=1

n n

S Bn,OHwn - ZH2 + Zﬁn,i”vmi - 2H2 - Zﬁn,Oﬁn,i”wn - Un,i||2
i=1 i=1
n n

2

S ﬂn,OHwn - ZHZ + Z ﬂn,id(vn,ia S’LZ) - Z ﬁn,Oﬂn,inn - Un,iH2
i=1 =1
n n

2 2 2

S 6n,0||wn - ZH + Z /Bn,zH(Szwna Szz> - Z Bn,Oﬁn,inn - Un,i”
i=1 =1
n

< Buollwn = 21 + 3 Bui ([lwn — 212 + rid(w,, Siwn)?)
i=1

. 7
= BuoBnillwn = val
i=1
n n
S ﬁn,(]“wn - Z||2 + Zﬁn,z”wn - ZH2 + Zﬁn,z’iuwn - Un,i||2
i=1 i=1

n
- Z Bn,[)ﬁn,i ’ ’wn - Un,i ’ ‘2

i=1
= JJwn = 2> =) " (Buo — £)Buillwn — val|*. (4.3.31)
i=1
It follows from (4.3.20) that
10— 21 < [ — 202 = 5" (B — #)Bllion — vl (43.32)

i=1
and using condition (C2), we get
llzn — 2|> < |z — 2|2 (4.3.33)
Therefore from (4.3.33), we get

=2l = llan(€f(za) = D2) + (1= anD)(z0 = 2|
< aullgf () = D2l + (1= anr)lz — |
< an[ll60 @) = £ + €F() = D] + (1= an)llza — |
< an €0 @a) = £(2)) + (€£(2) = D] + (1 = @)l — 2|
< angpllan = 2+ anllgf(2) = Dl + (1= )|, — 2]
(1= (7 = &p)l e = 2l| + ul|EF (=) = Dz
— (= au(r = )lea — 2l + (7 — gp)a, DDA
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Hence

- D
lzn4a — 2l < max{Hxn_ZH’Hng_Z)_gp z||}
< max{||q;1_z||7||§f(_2)—Dz||}.

T—&p

Hence ||z, — z|| is bounded. This implies that {z,} is bounded.
Consequently, {f(x,)}, {yn}, {d(zn,yn)}, {w,} and {v,;} are bounded. O

Lemma 4.3.10. The sequence {x,} generated by Algorithm 4.3.J satisfies the following
estimates:

(Z) Sn41 S (]- - a/n)sn + dnbna

(ii) —1 <limsup,_,. b, < +o0,
_ 12 5 20m(T=€p) _ (€f(»)—Dzani1—2)
where s, = ||z, — z||?, a4, = ot b, = 5 + ( fp)’ for z € Sol and
some M > 0.

Proof. From (4.3.13) and (4.3.33), we have

|ns1 = 2|7 = [len(€f(2n) — D2) + (1 = @uD) (20 — 2)||?
< (1= an®)?||zn — 2||* + 200 (Ef () — D(2), Tpy1 — 2)
= (1= an?)’||zn — 2| + 200 (§(f (2n) = f(2)) +&f(2) = D2, 2np1 — 2)
< (1= an?)?[|zn — 2|* + 200pl2 — 2|21 — 2]

+20,,(§f(2) — D2z, w41 — 2)
(1 = 207 + (an®))wn — 2[|* + anlp(||zn — 211> + |[2ns1 — 2]*)
+ 200 (f(2) — D2, Tny1 — 2).

IN

This implies that

1 —a,(27 — nT)?
lowe = ol < 2, g (BT,
2c0
1_04n£p<£f( ) DZ,(L'n_H _Z>

() 20— 2., 2007~ &) ({E1(2) = D21 2)
B (1_ 1— aép )Hx”_z" g < 7—£p

+ﬂ)

2(7 —¢p)/’

for some M > 0. This establishes (i).

Next, we prove (ii). Since {xn} is bounded and «,, € (0, 1), then we have

(e = D=l s = 211+ M) < o0

sup b,, < sup —
n>0 n>0 T
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We show that lim sup,,_, ., b, > —1. Assume the contrary, i.e suppose limsup,,_, . b, < —1,
which implies that there exists ng € N such that b, < —1 for all n > ng. Hence, it follows
from (i) that

Snr1 < (1= an)sn + anby
< (1= an)sn — dn
= Sp—an(sn+1)
< sy 200(T — &p).

By induction, we get

Snt1 < Spy — 2(T —Ep) Z o, for all n > ny.

i=ng

Taking lim sup of both sides in the last inequality, we have

‘ _ L - ;= — .

This contradicts the fact that {s, } is a non-negative real sequence. Therefore, lim sup,, .. b, >
—1. O

Lemma 4.3.11. Let {x,, } be a subsequence of {x,} defined by Algorithm 4.3./ such that
T, — q € C. Suppose ||z, — y,|| = 0 and ||({ — Tr(f’m))Aa:nH — 0 asn — oo. Then
q € Qsgrp-

Proof. Since yn, = T2 (20, — A A" (I — T2 Az, ), we have

Tny, Tny,
]' *

P (Yo ¥) + 21 (Unio ¥) + U = Yy Yy, = Ty = A AL = T Az ) 20, Wy €C.
Nk

This implies that
1 1 .

®(ynk7 y) + Sol(ynk’ y) + _<y - yny ynk - xnk> - r_<y - ynk7 /\nkA (] - T£i7(p2))Axnk> Z 07
ng Nk

for all y € C. It follows from the monotonicity of ® and ¢; that

1 1 «
(Y = Yo Y = T) = Y = Y e AL = T2 Ay ) > (Y, ) + 1Y, Yy )-

Tnk Nk
Since ||xn, — Yn, || — 0, then y,, — q as k — oo. Taking limit of the inequality above, we
get

D(y,q) +1(y,q) <0, Vyel. (4.3.34)

q for any t € (0,1] and y € C. Consequently, we have y, € C' and
t,q) < 0. Using assumptions D1 and D4, we get

Let v, =ty + (1 — ¢
hence @ (y;, q) + 1 (

0

~—

<

D(ye, ye) — o1 (Y ye)
P (ye, y) + o1y, y)) + (1 = (@Y1, 9) + ¢1(ve, 9))
t Py y) + e1(ve, ) + (1 = O)(P(q, ye) + p1(q, )
(i, y) + p1(Ys, y)-

VAN VAN VAN VAN
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Letting ¢ — 0 and using assumption D3, we have the upper semicontinuity of ¢;, we get

®(q,y) +¢i1(q,y) >0, VyeC.

This implies that ¢ € Qaggp.

Furthermore, since A is a bounded operator, then Ay, — Agq. Then, it follows from the

assumption that ||(/ Tﬁf; #2) JAz,, || — 0 that Tﬁf; ’m))Axnk — Agq. By the definition of
T( 802)

oy ) ATy, we have

1
\IJ(T(‘P goz)Ax ) + 0 ( Ax”k’ y) + _<y . Ax”k’ \If<p2)A:1?nk — A$nk> >0,

Tny,
Nk

for all ¥y € (). Since both ¥ and y are upper semicontinuous in the first argument, it
follows from the above inequality that

U(Aq,y) + p2(Ag,y) >0, Vyeq.

This shows that Ag € Qgep. Therefore ¢ € Qgarp. O

We now present the main convergence theorem in this section.

Theorem 4.3.12. Let C' and @QQ be nonempty closed and convexr subsets of real Hilbert
spaces H, and H, respectively and A : Hy — Hy be a bounded linear operator. Let

D :CxC—=Rand ¥, py:Q x Q — R be bifunctions satisfying assumption D1 - D7
in Lemma 4.3.1 and for each i € N, let S; : Hy — CB(H;) be multivalued demi-contractive
mappings with constants k; such that I —S; are demiclosed at zero and for each p € F(S;),
Si(p) = {p}. Suppose Sol := QsgrpN(iey F(S;) # 0. Let f : H — Hy be a p-contraction
with constant p € (0,1) and D be a bounded operator on Hy with coefficient T > 0 such
that 0 < & < %. Let {r,} be a sequence in (0,00), {a,} and {B,:} be sequences in (0,1)
and {\,} be a sequence in [a,b] C (0, W) such that conditions (C1) - (C3) are satisfied.
Then the sequence {x,} generated by Algorithm 4.3./ converges strongly to a point x*,
where x* = Py (I — D +£f)(x*) is a unique solution of the variational inequality

(D—¢&f)x* 2" —2) <0, ze Sol. (4.3.35)

Proof. Let x* € Sol and put ', = ||z, — z*||?>. We divide the proof into two cases.

Case 1: Suppose there exists ng € N such that {I',} is decreasing. Then {I',} converges
and
I,—T,1—0, as n— oo. (4.3.36)

From (4.3.32), we have

||xn+1 - (L’*H2 = ||an§f<xn) + (1 - anD)Zn - JZ*||2
< (1 - Oén7_')2||2n - Z'*H2 + 2an<€f<xn) - D.Z'*, Tpny1 — ZL'*>

(1 — an7_')2 ||In - I*H2 - Z(Bn,o - k)ﬁn,szn - Un,i|’2

i=1
+ 20, (Ef(x,) — D™, kg — 7).

IN
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This implies that

(1= a?)? Y (Buo = K)Buillwn = vadl P < (1= @m0 — 2| = [0 — 7|
i=1
+ 2an<€f(xn) - D:B*, S $*>
S Fn - Fn—i—l + 20‘n<§f(xn) - DZE*, Ln+1 — 17*>
+aZ M,

for some M > 0. Since a,, — 0, we have from (4.3.36) that
lim Z B0 = k) Buillwn — val > = 0.

Using condition (C2), we have
. o ) 2 _
nhm ||w, — vn4||” = 0. (4.3.37)

Also from (4.3.31), we get

||an§f(xn) + (1 - anD)Zn - l'*||2

|Zns1 — 2"

< (1= Pl — 2| + 200{€ (20) — D, s — )
< (1= @)l — =l + 200{€ (20) — D, 20 — )
< (1= [llen — 2P = B, —
+20, (£ f(2n) — D2™, 20011 — 27).
This implies that
(1= 0P E D iy — P < (1= 0Pl — 2 — ([ — 27|

+ 20, (Ef(x,) — D™, xp0q — ¥).

Since o, — 0 as n — oo and v € (0,2), we have

7}1—{20 [|w, — z,|| = 0. (4.3.38)
Clearly from (4.3.15), we have
1+6
lew =gl < O e w50 as no oo
(1—-6)%y2
Therefore
Tim [z, =yl = 0. (4.3.39)
More so from (4.3.28), we have
[lwn =2 < o — 2|2 = 8l [( = T 92)) Ay .
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This means that

Vonal|(I = TV N Ay < |lan — ¥ = [Jw, — 2]
= ||lwn — zo||(||z0 — 2*|| + ||wn, — 2¥]|) = 0, as n — co.
Hence
lim ||(I — T."%*)) Ay,|| = 0. (4.3.40)
n—oo

Again, using Lemma 4.3.2(ii), we have

Az, — T30 Ax,|| < (| Az, — T Axy — Ay + T Ay, + 1] Ay — T892 Ay, |
< QAN - [l — gl + (1~ TL9) Ay

From (4.3.39) and (4.3.40), we get

lim ||Az, — "% Az, || = 0. (4.3.41)

n—oo
Furthermore

041 = 2nll = [lom€f(zn) + (1 = anD)zn — 2]
an|[f(2n) = Dzo|| =0 as n — oo,

and from (4.3.37), we have

|[2n — whl|

n
Bn,Own + Z ﬁn,ivn,i — Wy
i=1

n

< Zﬁn,z‘||vn,i—wn||—>0 as m — oo.
i—1

Therefore

|Zni1 — Tol] < ||Tns1 — zal| + |20 — wnl| + [|lwn — 20| = 0 as n— o0,  (4.3.42)

Since {z,} is bounded, there exists a subsequence {xz,, } of {z,} such that z,, — ¢. From
(4.3.38), we have that w,, — ¢. Now, using the fact that for each i = 1,2,..., [ — S,

is demiclosed at zero and since limy_, ||wWn, — Un, 4| = 0 (from (4.3.37)), we obtain that
q € F(S;) for each i = 1,2,.... Hence ¢ € (=, F(S;). Also from (4.3.39), we have
Yn, — ¢. Using Lemma 4.3.11 and (4.3.41), we have g € Qsgpp.

Therefore

q € Sol .= QSGEP N m F(SZ)

=1

Next, we show that {z,} converges strongly to z*, where z* = Ps, (I — D + £f)x*. To
do this, it suffices to show that limsup, .. (¢f(2*) — Dz*,x,41 — z*) < 0. Choose a
subsequence {x,, } of {x,} such that

limsup(¢f(2*) — Da*, xpqq — 2%) = lim ({f(2") — Da™, x40 — 7).

n— 00 k—o0
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Since ||xp4+1 — xn|| = 0 as n — oo, we have from (2.2.2) that

limsup({f(z") — Dz*, zpyq —2*) = ,}Lm (€f(z") = D, wpy 1 — 27)
= ({f(@") = Da¥,q — %)
< 0. (4.3.43)

Using Lemma 2.6.30, Lemma 4.3.10 (i) and (4.3.43), we obtain

lim ||z, —z*|| = 0. (4.3.44)

n—o0

This implies that {x,} converges strongly to z*.

Case II: Assume that {I',} is not monotonically decreasing. For some ng large enough,
define a mapping 7 : N — N for all n > ng defined by

7(n) :=max{j e N:j <n,I'; <T'j}
By Lemma 2.6.34, 7(n) is a non-decreasing sequence such that 7(n) — oo as n — oo and
0< F7'(n) < FT(n)—i—l; vVn > Ng.

Following same argument as in Case I, we have

. . . v,
lim,, o0 HwT(TL) - xT(TL)H = lim,, o Hx’r(n) - y’r(n)H = lim,, o HA:CT(TL) - T7§T<nf2)AxT(n)H =
hmn—>00 ||:BT(’T7,)+1 - xT(n)H - 07
and
limsup((D — & f)x", 2" — 2r(ny41) < 0. (4.3.45)
n—00

Since {x(n)} is bounded, there exists a subsequence of {z,q} still denoted by {x(n)}
which converges weakly to z € C. By similar argument as in Case I, we obtain z € Sol :=

Qsaer NNiey F(S:).

Now from Lemma 4.3.10(i), we have

F7'(n)+1 < (1 - a‘r(n))rf(n) + a'T(n)bT(n)a (4346)
where a,(,) = %7 r(n) = <£f(w*)7Dfi’§;(")+lﬁ*> - ;Y(;‘ﬁ)g\;), for some M > 0. Note

that a@,) — 0 as n — oo and limsup,, ., br@n) < 0.

Since I'7(n) < I'ziny41 and ar(,) > 0, we have
|27y — 2P < briny.

This implies that

lim sup |2, — 2*[|* = 0,
n—0o0

and thus
lim HxT(n) — Qj*H =0.
n—oo
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Also from (4.3.46) we obtain

lim sup |21 — 22 < lim sup ) — @12,
n—00 n—0o0

and thus

T [fargrysa = 27 =0,

Furthermore, for n > ny, it is easy to see that I', < I';(,)11. As a consequence, we obtain
that for all n > nyg
0TI, < maX{FT(n)J FT(TL)+1} - FT(TZ)+1‘

Hence T',, — 0 as n — oo. That is, {x,} converges strongly to x*. This completes the
proof. ]

The following is a direct consequence of Theorem 4.3.12 by taking ¢ = s = 0.

Corollary 4.3.13. Let C' and @) be nonempty closed and convex subsets of real Hilbert
spaces Hy and Ho respectively and A : Hy — Hy be a bounded linear operator. Let
P:CxC = Rand ¥ : QQ x Q — R be bifunctions satisfying assumption D1 - Dj in
Lemma 4.5.1 and for each i € N, let S; : Hi — CB(Hy) be multivalued demi-contractive
mappings with constants k; such that I —S; are demiclosed at zero and for each p € F(5S;),
Si(p) = {p}. Suppose Sol := Qspep N2y F(S;) # 0. Let f : HA — Hy be a p-contraction
with constant p € (0,1) and D be a bounded operator on Hy with coefficient T > 0 such
that 0 < & < %. Let {r,} be a sequence in (0,00), {a,} and {B,;} be sequences in (0,1)
and {\,} be a sequence in |a,b] C (0, W) such that conditions (C1) - (C3) are satisfied.
Then the sequence {x,} generated by the following Algorithm J.5.1] converges strongly
to a point x*, where x* = Psy, (I — D + £f)(x*) is a unique solution of the variational
inequality

(D—=¢f)x*a"—2) <0, ze Sal. (4.3.47)

Algorithm 4.3.14.
Step 0: Choose v >0, a € (0,1), 6 € (0,1) and v € (0,2). Let x; € Hy and set n = 1.

Step 1: Compute
Yp = T:z (T — MA™ (I — TT‘I:L)Axn),

where A\, = on™, 0 >0, n € (0,1) and m,, is the smallest nonnegative integer such
that
Ml AT = T07) Ay — AT = T7) Ayal| < 0]l — al|-

Step 2: If x, = y,, then go to Step 3. Else, compute
A@ns Yn) = T = = M| A°(1 = T) A, — A*(I = T) Ay, .

and
Wy = Tn — 75nd($n7 yn)
where

Tn—Yn,d(Tn,Yn .
5 — {< el ) #0,

0 if d(xn,ys) =0.
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Step 3: Compute
Tn+1 = O‘néf(xn) + (1 - anD> <6n,0wn + Z ﬁn,ivn,i) )
i=1

where v, ; € Sjw,. Set n =n+1 and go to Step 1.

4.3.2 Convergence rate

In this subsection, we study the rate of convergence of Algorithm 4.3.4.

Motivated by Nemirovski [191] and Tseng [261], Dong et al. [95] studied the convergence
rate for an extragradient method for solving variational inequality problems. they proved
that such sequence achieves O(1/t) convergence rate. In this section, we shall also show
that the proposed Algorithm 4.3.4 converges at the rate O(1/t). To the best of our
knowledge, no author have proved the convergence rate of an algorithm for solving the
split equilibrium problem.

For the sake of simplicity, we take the sequence {r,} to be r > 0.

Theorem 4.3.15. Let {x,}, {yn} and {w,} be the sequences generated by Algorithm /.3./.
For any t > 0 and v € (0, 2], we have a y; € C which satisfies

a2
(AL = T8 A, gy —uy < L= 4E v e o (4.3.48)
2’7Tt
where
1 t
Ve = Zy)ményn and Y; = Z MO (4.3.49)
t =1 n=1

Proof. From (4.3.8) and (4.3.10), we have

Y = T2 (g, — Mo A* (I — TY92) Ay, — d(, ). (4.3.50)

We deduce from (4.3.6) and (4.3.50) that
(U = Y, M A (I = T779%) Ay, — d(, yn)) > 0.
This implies that
(U = o, M A (I = TY9?) Ayp) > (u = Y, d(@0, Yn))- (4.3.51)

Also from (4.3.11), we get
Vond(Tn, Yn) = Ty — Wh. (4.3.52)

It follows from (4.3.51) and (4.3.52) that

(VoA A (I — T'92) Ayt — ) > (T — W, U — Y. (4.3.53)
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However, by Lemma 2.6.2, we have

1
(Tn — Wn,u —Yn) = B (Hxn - ynH2 —||@n — UHQ)
1
+ 5 (e = wnll” = llyn — wal[*) (4.3.54)
Since w,, = x, — Y0, d(xy, y,), then
||xn - yn||2 - ||yn - wn||2 = ||mn - yn||2 - ||yn — Tp — 75nd(xnayn>||2

= 290u(Yn — T, A(@, Yn)) — 770l ld(@n, Y )l

= 290, [ld(@n, ya) I = 7* 05w, )|

= (2= 7)aulld(zn, ya)lI*. (4.3.55)
Putting (4.3.55) into (4.3.54), we obtain
1 V(2 =)o
<xn — Wn, U — yn> + 5 (||xn - U||2 - ||u - wn||2) = T||d(xnayn)||2'
That is
(0, A AL = T2%) Ay = ,) + 1 (= l? = [ — w?) 2 TEZ 0 a2
Using the fact that 7, (e2) g firmly nonexpansive and (4.3.22), we get
(0 A AL = T2%2) Aty = )+ 1 (= l? = [ — ) = P20, )2
This means that
1
(YO A A (I — T'?2) Au, y,, — 1) < §||xn — ul|?. (4.3.56)
Summing the inequality (4.3.56) over n = 1,...,t, we have
' 1
D B A A" (1 = T¥%) Au o — ) < 5o —
n=1
Then by using the notation of Y, and y;, we have
(AT = T2 A, =) < ol =l
0

Remark 4.3.16. From Lemma 4.3.6, it follows that
T, > (t+1)A,

thus Algorithm 3.2.4 has O(1/t) convergence rate (see [95]). In fact, for any bounded
subset D C C and given accuracy € > 0, Algorithm 4.3.4 will achieve

(A*(I = TY*)Au,y; —u) <€, YuéeD
2

in at most t = [2 aj\ } iterations, where y; is defined by (4.3.49), a = sup{||u — z1|| : u €
YAce

1—-46
(140)*

D} and ¢ =
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4.3.3 Numerical examples

In this subsection, we provide some numerical examples to demonstrate the performance
of our algorithm. All codes were written in MATLAB 2014 (b) on a HP-Elitebook 6930 PC
with 8gb RAM.

Example 4.3.17. Let H; = Hy, = R? and C = Q = [0,10] x [0,10] x [0,10]. Let
A Hy — Hj be defined by Ar = § for each v € H,. For x € C, i = 1,2,..., we define
S;:C — CB(C) as

Siz = [0, 1%] for all i€ N.

Then S; is 0-demi-contractive mapping for all ¢ € N and (2, F'(S;) = {0}. Define the
bifunctions @, ¢; : € x C — R by ¥(x,y) = 22° + 2y — 3> and gol(x y)=x—y for each
x,y € C. Also define ¥, ¢y : QX Q — R by ¥(u,2) = u?+3uz—42? and py(u, 2) = 22 —u?
for each u, z € Q. It is easy to check that

T(@01) o — &z
" r+1
and
T, — 24T
" 5r+1
For each n € N, and i > 0, let {,;} be defined by
Bri = 1—n—+12% n =i,
0 n <1,

where b > 1. In this example, we set b = 5, then obtain

1 9
) 15 0 0 0 ... 0
= = g 0 0 0
Poonn .
20 100 500 500

Bri=1 : : : : : (4.3.57)

5(7::-1) 52(TTZ+1) 53(:+1) 54(7?+1) 54(g+1) T m

ForAlgorithm434 we set f(z) = § and Dz = x, § = 0.7, r, = 15, an:ﬁ,

0 =0.3\, IA\I2’7 0.3. It can easily be checked that ®, W, 1, ps and {r,} satisfy all

conditions in Theorem 4.3.12 with Sol = {0}. Let € > 0, the algorithm stops if ||z, —2*|| <

e. For algorithm (4 3. 2) we take T(s)x = 1f2 , f(x) = £, Bx = x for all z € H; and set

Sp =N, Q, = ﬁﬁ = 7n +9, E=1,0 =z In Table 4.5, for a given tolerance level
chose

and randomly n 1n1t1a1 points, we collect data of the number of iterations and time
required to execute both Algorithm 4.3.4 and (4.3.2).

From the given table, we deduce that for a given tolerance, Algorithm 4.3.4 takes significant
less number of iteration and CPU time compare to Algorithm (4.3.2).
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Example 4.3.18. In this example, we take H; = Hy = R and C' = Q = [-5,5]. Define
D p:CxC —Rby ®(z,y) = —3x+xy +2y* and ¢, (z,y) = 2> — zy for each z,y € C.
Also, let W, s : Q@ = R by ¥(u,w) = —4u? + uw + 3w? and ¢s(u, w) = 2u(u —w) for each
u,w € Q. It is easy to see that

T, — LT
" 5r+1"7
and 1—9
T2, - - <"
" T + 1°
For i € N, we define S; : C' — CB([-5,5]) by
0, ﬂ] Cif z<i+2
Siz = [ 2] R (4.3.58)
[1,i+1] if z>i+2

It can easily be seen that S; is 0-demi-contractive for all i € N and F(S;) = {0}. We also
define a bounded linear operator A : Hy — Hy by Az = 3z. Thus, A*z = 3z and ||A]| = 3.
It is clear that 0 € Sol. For Algorithm 4.3.4, define f, D : R — R by f(z) = % and Dx = 4
and take £ =1, v = 0.5, and )\, = W, oy, = 1;+1) and {3,;} is as defined in Example

0(n
4.3.17. In Algorithm (4.3.2), we take By(z) =, By(z) = 2z, & = 3, & =1, Sy(a) = £,
a, = m, and § = 1.2. Also in Algorithm (4.3.4), we choose o = By defined in

(4.3.57) and take S;(z) to be as defined in (4.3.58). Using four various initial points and
% < 107 as stopping criterion, we plot the graphs of error (||z,,1 — z,||) against
number of iterations in each case for the three algorithms. The numerical results can be

seen in Table 4.6, Figure 4.6.

Table 4.5: Comparison between Algorithm (4.3.2) and Algorithm 4.3.4

Tolerance Level Initial Points Algorithm (4.3.2) Algorithm (4.3.4)
1 Iter. CPU time (secs) Iter. CPU time (secs) ‘
e=10"1 (4,0,5) 24 0.0272 8 0.0091
e=107° (4,0,5) 29 0.0294 9 0.0051
e=10"° (4,0,5) 34 0.0510 11 0.0082
e=10"" (3,2,1) 23 0.0210 8 0.0016
e=10" (3,2,1) 28 0.0275 9 0.0067
e=10"° (3,2,1) 33 0.0324 10 0.0067
e=10"* (5,8,10) 25 0.0203 8 0.0061
e=107° (5,8,10) 30 0.0305 9 0.0067
e=10"6 (5,8,10) 35 0.0512 11 0.0134
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Table 4.6: Numerical result for for Example 4.3.18.

| Alg. 134 Alg. (433) Alg. (434) |
ry=—1 CPU time (sec)  0.0032 0.0465 0.0109
No. of Iter. 7 33 13
r1 =25 CPU time (sec)  0.0040 0.0408 0.0126
No. of Iter. 7 32 16
x=-3 CPU time (sec)  0.0096 0.0384 0.0103
No. of Iter. 8 33 15
=5 CPU time (sec)  0.0071 0.0532 0.0112
No. of Iter. 8 35 17

15 20 25 30 20 25 30 35 0 15 20 25
iteration number (n) Iteration number (n) teration number (n) Iteration number (n)

Figure 4.6: Example 4.3.18, Top Left: Case I, Top Right: Case II; Bottom Left: Case III;
Bottom Right: Case IV.
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CHAPTER b

Variational Inequality Problems in Hilbert and Banach Spaces

5.1 Strong Convergence Theorem for Solving Pseudo-
Monotone Variational Inequality Problem using
Projection Method in a Reflexive Banach Space

Very recently, Gibali [112] proposed a new Bregman projection method for solving the
VIP in a Hilbert space. Gibali’s algorithm is an extension of the subgradient extragradient
method of [69, , | with Bregman projection which makes only one projection per
iteration.

In this section, we introduce a projection-type algorithm for finding a common solution
of the variational inequality problem and fixed point problem in reflexive Banach space,
where A is pseudo-monotone and not necessarily Lipschitz continuous. Also, we present
an application of our result to approximating solution of pseudo-monotone equilibrium
problem in reflexive Banach space.

5.1.1 Main results

In this subsection, we give a precise statement of our projection-type method and discuss
some of its convergence analysis.

Let E be a real reflexive Banach space and let C' be a nonempty, closed and convex subset
of E. Let f : E — R be a coercive, Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of E such that C' C int(domf). Let
A : E — E* be a continuous pseudo-monotone operator and 7' : C' — C' be a Bregman
quasi-nonexpansive mapping such that I' := Qy;p N F(T) # 0. Let {a,} and {8,} be
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nonnegative sequences in (0, 1).

Algorithm 5.1.1.

Step 0: Select the initial points x1,u € E, let v,0 € (0,1) and s > 0. Choose A\, € |a, b
such that 0 < a <b and set n = 1.

Step 1: Compute

2n = VI (Vf(x,) — \Az,). (5.1.1)
Step 2: If , = Projl(z,) and z,, = Tx,: STOP. Else, let y,(t) := (1—t)x, +tProjl(z,)
fort € R. Compute t, as the mazimum of the numbers s, sy, sy?, ... such that

oD (Projlz,, x,)
An ’

(Ayn(tn), zn — Projl(z)) > (5.1.2)

and define y, = yn(ty,).
Step 3: Construct the set Q,, define by Q, ={y € E : (Ayn,y — yn) = 0} and compute

Uy = Projg2n (Vf(zn) — MAyy),
v, = Projl(uy), (5.1.3)
Tt = VI (0nV () + (1 = 0) (B VS (v) + (1= BV (Tw,) ).

Setn <—n+ 1 and go to Step 1.

Remark 5.1.2. Note that if z, — Projé(zn) = 0 and z,, — Tx, = 0, then we are at a
common solution of the VIP (1.1.1) and fixed point of the Bregman quasi-nonexpansive
mapping. In our convergence analysis, we will implicitly assume that this does not occur
after finitely many iterations so that Algorithm 5.1.1 generates an infinite sequences.

We first show that Algorithm 5.1.1 is well defined. To do this, it is sufficient to show that
the inner loop in the stepsize rule in Step 2 is well defined.

Lemma 5.1.3. (i) The stepsize process in Step 2 of Algorithm 5.1.1 is well defined.

(11) Let {x,} and {y,} be sequences generated by Algorithm 5.1.1, then
<Ayn> Tp — yn> > 0.
Proof. (i) Assume that (5.1.2) does not hold for n € N. This implies that

oD (Projlzy,, x,)
An

(Ayn(tn), T, — Projlz,) < for neN.

Then, we have

oD (Projlzn, x,)
An

(A((1 — sy™)p + S’ymP'rojézn), Ty — Projéz,) < Ym > 0.

Since A is continuous and y,(t,) — =, as m — oo, it follows that

(AATy, T — Projézr) < an(Projézn, Tn),
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equivalently, by (5.1.1), we have
(Vf(@n) = Vf(20), 20 — Projlz.) < oD(Projlz,, o).

Applying the three point identity (Proposition 2.5.1 (ii)) to the left hand side of the above
inequality, we obtain

Dy(Projlzn, ©) + Dy, 22) — Di(Projlz,, z,) < oDs(Projlz,, x,).
Since f is strictly convex and o € (0,1), then
Diy(xn, z,) < Df(Projgzn,zn).

This contradicts the definition of Bregman projection (see Definition 2.5.5). Hence, the
stepsize rule in Step 2 of Algorithm 5.1.1 is well defined.

(ii) Furthermore, from (5.1.2), we have

Ayn, o — yn) = (Ayp,xp — (1 —t,)z, — tnProjfzn
C
= to(Ayn, T, — Projézn>
Utan(Projézn, Tp)

> . > 0.

In order to establish our main result, we make the following assumptions:

(C1) lim, oo vy =0 and > 7 vy, = 00.

(C2) 0 < liminf, . B, <limsup,,_,. 5, < 1.

We proceed to prove the following lemmas before proving the convergence of our main
Algorithm 5.1.1.

Lemma 5.1.4. The sequence {x,} generated by Algorithm 5.1.1 is bounded.

Proof. For each n € N, define the sets:
Q, ={uve E: (Azx,,u—z,) <0},

Qn:={ueFE: (Ax,,u—x,) =0},

and
Qf ={ue E: (Az,,u—z,) >0}

Let p € T, then since A is pseudo-monotone, we have
(Ap,x —p) > 0= (Az,x —p) >0 V€ E.

This implies that p € @, for all n € N. Furthermore, since we implicitly assumed that
Algorithm 5.1.1 does not terminate after finitely many steps with an exact solution, we
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have from Lemma 5.1.3(ii) that (Ay,,z, — y,) > 0. This implies that z,, € @, and
x, ¢ Q, for all n € N. Therefore, using Lemma 2.6.10, we obtain

D¢(p,x,) > Dy(p,uy) + Dy(up, z,). (5.1.4)

Now, since v, = Projl(u,), then from (2.5.8), we have

D¢(p,un) > Dy(p,vn) + Dy(vn, uy). (5.1.5)

Combining (5.1.4) and (5.1.5), we have

This implies that

Df<p7 J;n) > Df(p7 UTL) + Df(vnvun> + Df(unvxn>'

D¢(p,vn) < Dy(p,xn) — Dp(vn, un) — Dy (ty, ). (5.1.6)

From (5.1.3) and (5.1.6), we have

IN

Df(pa xn-i—l)

IN

N VAN VAN VAN

<

Dy (p. V5 (0aV £() + (1= ) B,V (1) + (1 = )V (T0,))) ).
Vi(p an V1 () + (1= ) (B VS (0a) + (1= B) VS (T0)))

Vi (P an V1 () + (1= ) BuVf () + (1 = @) (1 = B) VS (T0n) )

I0) = (pran V() + (1= )8V (0n) + (1= ) (1 = BV f(Tvn))

(VA () + (1= )8V £(v) + (1 = an)(1 = 5) VF(Tvn))

anf(p) — an(p, V() + anf*(Vf(u) + (1 — an)Bnf(p)

—(1 = an)Bn(p, Vf(0n)) + (1 = ) Bn f*(V f(vn)) + (1 = an)(1 — Ba) f(p)
—(1 = an)(1 = Bu)(p, Vf(Tvn)) + (1 = o) (1 = B) [ (Vf(Tvn))

anVi(p, Vf(u) + (1 = an) Vi (p, V f(vn))

+(1 = a)(1 = Ba)Vi(p, Vf(Tvy))

anDy(p,u) + (1 — ) B Dy (p,vn) + (1 = o) (1 = B8,) Dy(p, Twy)
anDy(p,u) + (1 — an)Dy(p, vn)

anDy(p,u) + (1 — an)Ds(p, xn)

max{D¢(p,u), D¢(p, x,)}

maX{Df(pa u)7 Df(]?,l‘l)}.

Hence {D¢(p, z,)} is bounded. Then by Lemma 2.6.28, we obtain that {z,} is bounded.

[]

Remark 5.1.5. Since {x,} is bounded and A is continuous, it follows that {Az,} and {z,}
are bounded. Consequently, by the nonexpansivity of the projection operator and T', we

have that {y,}, {Ay.}, {u.}, {v.} and {T'v,} are bounded.
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Lemma 5.1.6. Let {z,}, {yn}, {2z} and {u,} be sequences generated by Algorithm 5.1.1.
Suppose there exist subsequences {x,, } and {u,, } of {x,} and {u,} respectively such that
limy oo ||Zn, —tn, || = 0. Let {yn,} and {z,,} be subsequences of {y,} and{z,} respectively,
then

(CL) hmk—)oo <Aynka xnk - ynk> = 07

(b) limg 0 HPTO]é(an) - Ink“ =0,

(c) 0 <liminfy . (Ax,, ,x — xy,), for allz € C.
Proof. (a) Since u, € Q,, then we have
which implies that

<Aynka T, — ynk) = <Aynk7‘rnk - unk>
AYn||sl[@n, = wn,l-

IN

Taking the limit of the above inequality as k — oo yields

kh_{(r)lo<Aynk7 Ty — ynk> = 0.
(b) Let {t,,} be a subsequence of {t,,}. We consider the following two cases based on the
behaviour of t,, .
Case I: Suppose limy_,o t,, 7 0; i.e., there exists some ¢ > 0 such that ¢,,, > ¢ > 0 for all
k € N. It follows from Step 2 of Algorithm 5.1.1 that

UDf(Projéznk, Tn,)
A '

Y]

<Aynk y Uny, — ynk)

Hence, from Lemma 5.1.6(a), we have

lim Dy(Projlzn,, @n,) = 0.

k—o0

Therefore using Lemma 2.6.24 (a), we obtain that
i [|Projhz, — ]| = 0.

Case II: On the other hand, suppose ¢,, — 0 as k — 0o. Let ¢, < s so that the stepsize
get reduced at least once for all iterations belonging to this subsequence. This implies
that the trial stepsize does not satisfy the test from Step 2 of Algorithm 5.1.1. Assume
that lims_, o Df(Projéznk,:Bnk) = 0, i.e., there exists a positive constant 6 < +oo such
that lim sup,_,.(Projszn,, n,) = 0.

Define g = (1 — tp, )T, + t, Projl(zn,). Then

U — Tp,, = tnk(Projéznk — Ty, )-
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Since {Projéznk — Ty, } is bounded and ¢,, — 0 as k — oo, it follows that limy_ ||Ux —
Zn, || = 0. From the stepsize rule in Step 2 and the definition of g, we have

an(Projéznk, T, )

ke N.
Mo, Vk €

(Ayr, T, — Projéznk> <

Since A is uniformly continuous on bounded subsets of C' and o € (0,1), we obtain that
there exists N € N such that

(A Ay, , 2, — Projlz, ) < Di(Projlz, ,z,) VkeN, k> N.
Therefore
(Vf(xn,) = V(2n)s Tny — Projlzn) < Di(Projlz, ), VkeN, k> N.
Using the three points identity (Proposition 2.5.1 (ii)) in the last inequality, we get
Df(Projéznk,mnk) + Dp(Xn,, Zn,,) — Df(Projgznk, Zn,,) < Df(Projéznk, Zn,) VK> N.

Hence
Di(2n,, 2n,) < Dp(Projlzm,, zn,) Yk > N.

This contradicts the definition of the Bregman projection. Hence limy_,, D f(Projéznk, Tp,) =
0. Therefore, by using Lemma 2.6.24 (a), we obtain thaat limy_,s || Projlize, — @, || = 0.

(c) From (2.5.7), we have that
(Vf(2n,) = VI(Projlz,),y — Projlz,) <0 WyeC.
This implies from (5.1.1) that
(Vf(xn,) — Vf(Projlzm, ),y — Projlzn,) < (A Az, ,y — Projlz,) YyeC.
Therefore

(Vf(xn,)— Vf(Projéznk),y — Projéznk> + (A, Azy,, P’r’ojéznk — T, )
< (M Ay, y —xp,) YyeC. (5.1.7)

Since f is uniformly Fréchet differentiable on bounded subsets of E, by Lemma 2.6.26, V f
is norm-to-norm uniformly continuous on bounded subsets of E* and therefore, from (b),
we get

i [[Vf(Projl(zn,)) = V f(2a,)]]. = 0. (5.1.8)
Taking the limit of the inequality in (5.1.7) and noting that {\,, } C [a,b], we have

0 < liminf(Ax,, ,y —z,,) YyeC.

k—o0

This completes the proof. n

Lemma 5.1.7. The sequence {x,} generated by Algorithm 5.1.1 satisfies the following
estimates:
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(Z) Sn+1 S (1 - an)sn + anbn;
(i) —1 <limsup,,_,., b, < +o0,
where p € T, 50 = Dy(p,2a), b = (VF(u) = VF(p), 2ns1 — ).

Proof. (i) Let w, = Vf*(8,V f(va) + (1 — 8,)Vf(Tv,)) and p € T, then from (5.1.3), we
have

Dy(p,wns1) = Dp(p, VI (anVf(u) + (1 = an)V f(wn)))

< V(P () + (1= ) Vf(w,) = an(V () = V()

Han(V (1) = V (D), 2s1 — )
= Vi(pan VI () + (1 = @)V (W) + an(VF () = Vf(p), 21 = )
< (1= a)Ds(p,wn) + (S (w) = Vf(p), 2ns1 = )

(1= @) (D(p, VI (BuV f (o) + (1 = B) VS (T0,))) )

T (Vf(u) = Vf(p), Tnt1 — p)
< (1= a)BuDy(p,vn) + (1 — an)(1 = Ba) Dy(p, Tvn)
+on(Vf(u) = V(p), xns1 — p)
< (1= an)Ds(p. v0) + u(VF () — VF(p). 2ir — ). (5.1.9)

Therefore from (5.1.6), we have

Dy(p,ns1) < (1= an)(Dy(p, ) = Dy(vn, ) = Dylun, ) )
(Y f(u) = VF(p), i1 — p). (5.1.10)
Since {a,,} C (0,1), then
Dy(p. 1) < (1= ) Dy (p,2) + 0 (Vf(w) = VF(p), 71 — ). (5.1.11)

This established (i).
(ii) Since {z,} is bounded, then we have

sup by, < sup ||V.f (u) = VS (p)[[slznsr — pl| < oo

This implies that limsup,,_, . b, < co. Next, we show that limsup,,_,. b, > —1. Assume
the contrary, i.e. limsup,,_,. b, < —1. Then there exists ny € N such that b, < —1, for
all n > ng. Then for all n > ng, we get from (i) that

Sn+1 S (1 - an>3n + anbn
< (1 - an)sn — Qp
= Sp—ap(sp+1) < s, — .
Taking lim sup of both sides of the last inequality, we have

n
limsup s, < s,, — lim E ; = —00.
n—oo

n—o00 :
i=ng
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This contradicts the fact that {s,} is a nonnegative real sequence. Therefore limsup,,_, . b, >
—1. O

We are now in position to state and prove our main theorem.

Theorem 5.1.8. Let E be a real reflexive Banach space and let C' be a nonempty, closed
and convex subset of E. Let f: E — R be a coercive, Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that C' C
int(domf). Let A: E — E* be a continuous pseudo-monotone operator and T : C' — C' be
a Bregman quasi-nonezpansive mapping such that F(T) = F(T) and T := Qyp N F(T) #
0. Let {a,} and {B.} be nonnegative sequences in (0,1) and such that conditions (C1)
and (C2) are satisfied. Let {x,} be generated by Algorithm 5.1.1. Then, the sequence {x,}
converges strongly to a point * = Proj%c(u), where Projf: s the Bregman projection from
C onto I

Proof. Let p € T', and denote D¢(p,x,) by ®,. We consider the following two possible
cases.

CASE A: Suppose there exists ny € N such that ®,, is monotonically non-increasing for
all n > ng. Since ®,, is bounded, then it is convergent and so ¢, — ®,,.1 — 0 as n — oo.

We first show that ||z, — u,|| = 0, ||v, — Tv,|| — 0 and ||x,41 — 2] — 0 as n — oo.
Since {a,} C (0, 1), we obtain from (5.1.10) that

(1= an)Dy(un, tn) < (1= an) Dy(p; 2n) = Dy (p, @nga) + an(V f(u) = Vf(p), n1 = p).

Using condition(C1), we obtain that Dg(u,,z,) — 0 as n — oo, hence from Lemma
2.6.24(a), we have

lim ||u, — x,|| = 0. (5.1.12)
n—oo
Similarly from (5.1.10), we can obtain
lim ||v, — uy|| = 0. (5.1.13)
n—oo
Hence
lim ||v, — z,|| = 0. (5.1.14)
n—oo

Recall that w,, = V f*(8,V f(v,) + (1 — 8,)V f(Tv,)), from Lemma 2.6.21, we have

Dy(p,wn) = Dy(p, VI (BuVf(vn) + (1= Ba)VF(Tvn)))
= Vi, BV f(0n) + (1 = Bo)V f(Tvy))
= f(0) = (0. BaV f(vn) + (1L = B)Vf(Tvn)) + [ (BuV f (vn)
+(1 =BV f(Tvn))

< Buf(p) = Bulp, Vi (0n)) + Buf"(Vf(T0n)) + (1 = 5n) f ()

— (1= 8a)(p, Vf(Tvn)) + (1= Bn) [*(V f(T0n))

—Pn(1 = Bn)pr([[V S (vn) = Vf(Twn)l]+)
< BuDy(pyvn) + (1= Bn) Dy(p, Ton) = Bu(l = Bu)pr([[V f (0n) = VF(Twn)|+)
< Dy(p,vn) = Bu(1 = Bu)pr(IIV f(0n) = Vf(Tun)][+). (5.1.15)
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Thus from (5.1.6), (5.1.10) and (5.1.15), we have

Di(p,ni1) < (1= an)Dg(p,vn) = (1= n)Ba(l = Bu)pr([[V f (vn) = V. (Twa)l])
+an(Vf(u) = VI(p), 2ni1 —p)

(1 =) Dy(p, n) = (1 = o) Bu(1 = Bu) pr([[V f (0n) = VI (T0n) )
+an(Vf(u) = VI (p), Znt1 —p).

IN

Hence

(1= ) Bn(1 = Bu)pr([[Vf(vn) = VI (Tva)ll) < (1= an)Ds(p,n) = Dy(p, Tns1)
+an(Vf(u) = VI(p), 2ni1 —p).

It follows from conditions (C1), (C2) and the properties of p, that

Tim [V f(va) — VF(Tu,)]|. = 0. (5.1.16)

Since f is uniformly Fréchet differentiable on bounded subsets of E, by Lemma 2.6.26, it
is also uniformly continuous and V f is norm-to-norm uniformly continuous on bounded
subsets of E, hence from (5.1.16), we have

Tim |£(0,) = F(Te)]] =0 (5.1.17)
and
lim ||v, — Tv,|| = 0. (5.1.18)
n—oo

In addition, it is easy to see from definition of Bregman distance that D(v,,Tv,) — 0 as
n — oo. Thus

D (vn, Tpy1) < anDy(vn, w) + (1 — ) Bn Dy (vn, vp) + (1 — ) (1 — Bn)Ds(vy, Tvy).
This implies that
lim ||v, — Zp41|| = 0. (5.1.19)
n—yo0
Therefore from (5.1.14) and (5.1.19), we obtain

l|Zne1 — Zol| < ||Tna1 — vl + [|vn — 20| = 0, as n — oco. (5.1.20)

Next, we show that Q,(z,) C Qurp N F(T), where Q,(x,) is the weak subsequential
limit of {z,}. Let z € Q,(z,), there exists a subsequence {z,,} of {x,} such that
Tp, — T as k — oo. Consequently from (5.1.17), v,, — Z. Since ||v,, — Tv,,|| = 0, then
Z € F(T) = F(T). Furthermore, let z € C' be an arbitrary point and {e;} be a sequence
of decreasing non-negative numbers such that e, — 0 as k — oco. Using Lemma 5.1.6(c),
we can find a large enough Ny such that

(Azy,, 2 — Tp,) + €, >0, Vk > Nj.
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This implies that
(An,, 2 + ety — Tp,) 20, VE > N, (5.1.21)

for some t, € E satisfying 1 = (Axz,, , tx) (since Az,, # 0). Since A is pseudo-monotone,
then we have from (5.1.21) that

<A(Z+€ktk),2+€ktk —Ink> >0, Vk>N,. (5.1.22)
This implies that
(Az, 2z — ) > (Az — A(z + extr), 2 + el — Tn,) — €k(Az, tn,) Vk > N, (5.1.23)

Since €, — 0 and A is continuous, then the right-hand side of (5.1.23) tends to zero. Thus,

we obtain that
liminf(Az,z —z,,) >0, VzeC.

k—oo

In view of Lemma 5.1.6(c), we have that

(Az,z —Z) = lim (Az,z —x,,) >0, VzeC.

k—o00

Hence, from Lemma 2.6.9 we obtain that z € Qyp. Therefore z € I' := Qyp N F(T).

We now show that {z,,} converges strongly to z* = Projf:u. To do this, we first show that
limsup,,_, . (Vf(u) — Vf(z*),xn41 — 2*) < 0. Choose a subsequence {z,, } of {z,} such
that

lim sup(Vf(U) - Vf(l’*), Tntl — SL’*> = klgl;lo<vf(u) - vf(x*>7xnk+1 - I*>

n—oo

Since ||z, 41 — Zn, || = 0 and z,,, — T as k — oo, then we have from Lemma 2.5.2(b) that

limsup(V f(u) — Vf(z"),zp1 —2") = lIm(Vf(u)—Vf(z"), 2z, 11 —2%)

n—00 k—o0

= (Vf(u) = Vf(z*),7 —2*) <0. (5.1.24)

Now using Lemma 2.6.29, Lemma 5.1.7(i) and (5.1.24), we obtain that D(z*, z,) — 0 as

n — oo. It follows from Lemma 2.6.24(a) that lim, . ||z, — 2*|| = 0. Therefore, {z,}

converges strongly to z* = Proj{u.

CASE B: Suppose {D;(p,z,)} is not monotonically decreasing. Let ¢ : N — N for all
n > ng (for some ng large enough) be defined by

¢n = max{k € N: ¢p < i1}
Clearly, ¢ is non-decreasing, ¢(n) — oo as n — oo and
0 < Dy(p, xy(n)) < Dy(p, Tomy+1),  Vn = no.
Following similar argument as in CASE A, we obtain
o) = tamll = 0, [|vom) = Tvsmll =0, [[zgm)+1 = Lol = 0
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as n — 00 and Q,(Tg(m)) C Qvip N F(T), where Q,(z4(n)) is the weak subsequential limit
of {x(m)}. Also,

limsup(V f(u) = V[ (p), Zsmy+1 — p) < 0. (5.1.25)

n—oo

From Lemma 5.1.7(i), we have that

Dy (p, zom)+1) < (1= o)) Ds(p, o)) + o) (V[ (1) = V[ (D), Tgm)+1 — p)-

Since D¢(p, Tgm)) < Df(p, Tpny+1), then

0 S Df<p7x¢(n)+l)_Df(p7$¢( ))
< (1= ag) Dp(p, 2gmy) + pm) (Vf(u) = VD), Zomy+1 — P) — DD, Zo(n))-

Hence from (5.1.25), we obtain
Dy(p, zom) < (Vf(u) = Vf(p), Tomy+1 —p) = 0, as n — oo.
As a consequence, we obtain that for all n > ng,

0 < Dy(p,zn) <max{Ds(p, Tom)), Ds(p, Topm)y+1)} = DD, Tomy41)-

Hence
D¢(p,xn) =0 as n — oo.

Therefore, from Lemma 2.6.24(a),

lim ||z, —p|| =0.
n—oo
This implies that {x,} converges strongly to p. This completes the proof. O]

Remark 5.1.9. For a suitable starting point x;, Algorithm 5.1.1 generates appropriate
solution which approximates the whole solution set I' as guaranteed by Theorem 5.1.8.
This is an interesting property which is different (for example) from the class of Tikhonov-
type regularization approaches where the corresponding sequences always converge to the
same solution. With this fact, one can get an idea of the geometric shape of the whole
solution set by using various starting point x;. In fact, if one has some a priori knowledge
regarding the location of a solution and is, therefore, interested in computing a particular
solution which is as close as possible to this prior knowledge, Algorithm 5.1.1 allows one
to take this knowledge into account by a suitable choice of z;.

The following is a direct consequence of our result.

Corollary 5.1.10. Let H be a real Hilbert space and C' be a nonempty, closed and convex
subset of H. Let A: C — H be a continuous pseudo-monotone operator and T : C — C
be a quasi-nonexpansive mapping such that T := Qup N F(T) # 0. Let {a,} and {B,} be
nonnegative sequences in (0,1) and such that conditions (C1) and (C2) are satisfied. Let
{z,} be generated by the following Algorithm.:

154



Algorithm 5.1.11.

Step 0: Select the initial points x1,u € H, let v,0 € (0,1) and s > 0. Choose A\, € |a, b
such that 0 < a <b and set n = 1.

Step 1: Compute

Zn = Ty — MAT,. (5.1.26)
Step 2: If x, = Po(z,) and x,, = Tx,: STOP. Else, let y,(t) :== (1 — t)x, + tPc(2y) for
t € R. Compute t,, as the mazimum of the numbers s, svy,sy?,... such that

o||Pez, — xp||?

(Ayn(tn), Tn — Pol(2n)) > 2N, )

(5.1.27)

and define y, = yn(ty,).
Step 3: Construct the set Q,, define by Q, ={y € E : (Ayn,y — yn) = 0} and compute

Up = PQn (-Tn - )‘nAyn)a
Tpi1 =t + (1 — ) (Brvn + (1 = BuT0,).

Set n <—n+1 and go to Step 1.

Then, the sequence {x,} generated by Algorithm 5.1.11 converges strongly to a point
T = Pr(u), where Pr is the metric projection from C onto T

Remark 5.1.12. Corollary 5.1.10 extends the work of Kanzow and Shehu [1414] from mono-
tone VIP to common solution of pseudo-monotone VIP and fixed point of quasi-nonexpansive
mapping in a real Hilbert space.

5.1.2 Application to Equilibrium Problem

For solving the EP, we assume that the bifunction g satisfies the following:
Assumption 5.1.13.
(A1) g is weakly continuous on C x C,

(A2) g(z,-) is convex lower semicontinuous and subdifferentiable on C' for every fized
xe’,

(A3) for each x,y,z € C, limsup, o g(tr + (1 —t)y,2z) < g(y, 2).

Lemma 5.1.14. [16] Let E be a nonempty convexr subset of a Banach space E and f :
E — R be a conver and subdifferentiable function, then f is minimal at x € E if and only
if

0e 8f(x) + Nc($),
where No(z) is the normal cone of C' at x, that is, No(z) := {z* € E* : (", — z) >
0, VzeC}.
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Lemma 5.1.15. [87] Let E be a real reflexive Banach space. If f and g are two conver
functions such that there is a point xqg € dom f N dom g where f is continuous, then

I(f+g)(x) =0f(z)+ dg(x) Vz e E.

Proposition 5.1.16. Let E be a real reflexive Banach space and C' be a nonempty, closed
and convez subset of E. Let g : C' x C — R be a bifunction such that g(x,z) = 0 and
f:+ E — R be a Legendre and totally coercive function. Then a point z* € EP(C,g) if
and only if x* solves the following minimization problem:

min {Ag(rc,y) + Dy(y,z) 1y € C},

where x € C' and \ > 0.

Proof. Let z* = argminyec{)\g(x,y) + Df(y,:c)}, then from Lemma 5.1.14 and 5.1.15,

we have
0 € ONg(x,x") + VDs(x", x) + Ne(2¥).

Hence, there exist w € dg(z,z*) and w € N¢(x*) such that
A+ Vf(x*)—Vf(z)+w=0. (5.1.29)

Since w € N¢(z*), then (w, z — x*) < 0 for all z € C. This together with (5.1.29) implies
that

A+ Vf(z")—Vf(x),z—2")>0 V ze€(C,

and hence
Mw,z—2") > (Vf(z") =V f(x),a2*—2) V zeC. (5.1.30)
Also, since w € dg(x,z*), then
g(x,2) —g(x,z2*) > (w,z—z") V zeC. (5.1.31)
Therefore from (5.1.30) and (5.1.31), we obtain
A(g(x,z) . g(a:,x*)) > (V") — Vf(a),a"—z) V¥ zeC. (5.1.32)
Replacing = with * in (5.1.32) yields
g(x*,2) >0, VzeCl. (5.1.33)
Hence, z* € EP(C, g). The converse follows clearly. ]

Proposition 5.1.17. Let C' be a nonempty closed convex subset of a real reflexive Banach
space E and f: E — R be a Legendre and totally coercive function. Let A: C — E* be a
nonlinear mapping such that x € Qyrp. Then x is the unique solution of the minimization
problem

min {MAu,y —u)+ Ds(y,u):y € C},

where uw € C' and \ > 0.
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Proof. Since z € Qy;p, then z = ProjL(V f*(V f(z)—\Az)). By the definition of Bregman
projection, we have
Projl(Vf*(Vf(z) — Az)) = min{D;(y, Vf*(Vf(zx) — N\z)): yeC}
= min{f(y) = F(V/'(Vf(z) - AAz))
—(y =V (Vf(z) = A=), Vf(z) = Az) . y e C}.

Using the four point identity (Proposition 2.5.1(iii)), we get

Projb(Vf*(Vf(x) — \z))

=min{f(y) — [(Vf(Vf(z) = Mz)) — Ds(y, V[*(AAz)) — Ds(V f*(V f(2) — ANAz), z)

+ Dyy,x) + Dy(V [ (Vf(z) = Mz), V" (AAz)) :y € C}

=min{f(y) — (VS (Vf(z) = Azx)) — f(y) + [(VT(Az)) + (y = V[ (AAz), AAz)

— Dy(Vf*(Vf(x) = AMz),2) + Ds(y,x) + Di(V [ (V f(x) = Mz), V[*(AAz)) 1y € C}

= min{\(Az,y — z) + MAz, 2 — Vf*(Nx)) — f(Vf(Vf(x) — Nx)) + f(V " (A\Ax))

— DV (V[f(z) = Az, x)) + Ds(y,x) + Dp(V [ (Vf(2) — Mz), Vf*(AAz)) :y € C}

= min{\(Az,y —x) + Ds(y,z) : y € C}. (5.1.34)
Therefore

" = argmingec{\(Az,y — z) + D¢(y,z)}.
]

Recall that a mapping A : C' — FE* is pseudo-monotone if and only if the bifunction
g(x,y) = (Az,y — x) is pseudo-monotone on C. Then, setting (Az,y — x) = g(z,y) in
Theorem 5.1.8, by Proposition 5.1.16 and 5.1.17, we have the following result for approx-
imating solution of pseudo-monotone equilibrium problem.

Theorem 5.1.18. Let E be a real reflexive Banach space and let C' be a nonempty, closed
and convex subset of E. Let f : E — R be a coercive, Legendre function which is bounded,
uniformly Fréchet differentiable and totally convexr on bounded subsets of E such that
C Cint(domf). Let g : CxC — R be a pseudo-monotone bifunction such that g(x,x) =0
for all x € C and satisfying Assumption 5.1.13. Let T : C — C' be a Bregman quasi-
nonexpansive mapping with F(T) = F(T) such that T = Qep) VF(T) #0. Let {a,}
and {B,} be nonnegative sequences in (0,1) and such that conditions (C1) and (C2) are
satisfied. Let {x,} be generated by the following algorithm:

Algorithm 5.1.19.

Step 0: Select the initial points x1,u € E, let v,0 € (0,1) and s > 0. Choose A\, € |a, b
such that 0 < a <b and set n=1.

Step 1: Compute

Zn = Cl?“gmm{)\w(!ﬂmy) + Df(yaxn> : RS C}

Step 2: If x, = 2, and x,, = Tx,: STOP. Otherwise, let yn( ) = (1 =)z, + tz, for
t € R. Compute t,, as the mazimum of the numbers s, svy,sy?,... such that

oD (2, xn)

ntn;n_nz )
9y (t), 00— 22) 2 70
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and define y, = yn(t,).
Step 3: Set w, = Vf(z,) — A\yn. Compute u, = ijén(wn) where Q, == {x € E :
(W, x — wy,) = 0}, w, € 0g(wy, x —w,). Then compute

{vn = Projé(un),

Tni1 = Vf* (aan(u) (1= an)(BuaV fvp) + (1 — Bn)Vf(Tvn))>. (5.1.35)

Setn <—n+1 and go to Step 1.

Then, the sequence {x,} converges strongly to a point T = Proj{(u), where Projf: is
the Bregman projection from C' onto .

5.1.3 Numerical examples

In this subsection, we present two numerical examples which demonstrate the performance
of our Algorithm 5.1.1.

Example 5.1.20. Let £ = R" with standard topology and 7" : R® — R" be defined
by Tx = —iz. Consider an operator A : R™ — R™ (m = 20,50, 100,200) define by
Axr = Mx + g where

M =NN"+S+D,

N is a m X m matrix, S is a m x m skew-symmetric matrix, D is a m x m diagonal
matrix, whose diagonal entries are nonnegative so that M is positive definite and ¢ is
a vector in R™. The feasible set C' C R™ is closed and convex (polyhedron) which is
defined as C' = {z = (21, 22,...,2y) € R™ : Qz < b}, where @ is a [ X m matrix and b
is a nonnegative vector. It is clear that A is monotone (hence, pseudo-monotone) and L-
Lipschitz continuous with L = ||M||. For experimental purpose, all the entries of N, S, D
and b are generated randomly as well as the starting point z; € [0,1]™ and ¢ is equal to
the zero vector. In this case, the solution to the corresponding variational inequality is {0}
and thus, I' := Qy;p N F(T) = {0}. We fix the stopping criterion as Zz2=2sl — ¢ <1075,

|z2—21]

c=07~v=0.9, s=10, A\, = 0.15 and let «,, = n+r1 and 3, = %. The projection onto
the feasible set C' is carry-out by using the MATLAB solver >fmincon’ and the projection

onto an hyperplane @ = {x € R™ : (a,z) = 0} is defined by

{a,2)

Py(z) =z —
© ]2

Since A is monotone, we compare the output of our Algorithm 5.1.1 with Algorithm 1.2.1.
The numerical result is reported in Figure 5.1 and Table 5.1. We see that our Algorithm
5.1.1 converges faster than Algorithm 1.2.1. This is expected because the stepsize rule in
STEP 2 of our algorithm tends to determine a larger stepsize closer to the solution of the
problem.

Next, we give an example of a pseudo-monotone VIP which is not a monotone VIP.
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Example 5.1.21. Let E = LQ([O 1)) and C ={u € E : |Ju|]|] <2}. Let B: C — R be an
operator defined by B(u ) = 1+|| ||2 and F : L*([0,1]) — L*([0, 1]) be the Volterra integral

operator defined by F'(u) fo s)ds for all u € L*([0,1]) and t € [0, 1]. F is bounded,
linear and monotone (cf Exermse 20 12 in [23]). Now define A : C' — L*([0,1]) by
A(u)(t) = (B(u)F(u))(t). Suppose (Au,v —u) > 0 for all u,v € C, then (Fu,v —u) > 0.
Hence

(Av,v —u) = (BvFv,v—u)

= Buv(Fv,v— u)
> Bv((Fv,v—u) — (Fu,v — u))
= Bv(Fv— Fu,v—u) > 0. (5.1.36)

Thus, A is pseudo-monotone. To see that that A is not monotone, choose v = 1 and u = 2,
then

1
(Av — Au,v —u) = —— < 0.

10
Now consider the VIP in which the underlymg operator A is as defined above. Let T :
L3([0,1]) — L?([0,1]) be define by T'(x fo t)dt, it is easy to verify that T is quasi-

nonexpansive and I' := Qy;p N F(T ) = {0} Choosmg 0=05v=07s=5 X=034
and ¢ < 107*. We plot the graph of ||z,,+1 —z,|| against number of iteration for Algorithm
5.1.1 using the following initial points:

Case I &y =t + 0.5 % cos(t), u = cos(5t),

Case II: z; = 215 exp(—t), u = 1/exp(t* — 1),

Case IIT: 2y = ¢ sin(—3¢) + cos(t), u = cos(—2t),

Case IV: z; = exp( 4t) + cos(12t), u = sin(5t).

The numerical result is reported in Figure 5.2. This shows that the change in the ini-

tial points does not have significant effect on the number of iteration nor CPU time for
Algorithm 5.1.1.

Finally, we give a concrete example in ¢, space (1 < p < oo with p # 2) which is not a
Hilbert space. It is well known that the dual space (€,)* is isomorphic to ¢, provided that
% + }D = 1 (see for instance [13], Lemma 2.2, Page 11). Also, the ¢, space is a reflexive

Banach space and in this case, we take f(z) = %Hx||p.

Example 5.1.22. Let E = /3(R) define by
U5(R) = {Z = (21,22, 23,... ), 1 ER: > _[a]* < 00},
with norm || - ||¢, : €3 — [0, 00) defined by

0 3
2l = (z |xz-|3) |
=1

for arbitrary = = (z1, x9, x3,...) in £3.
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Figure 5.1: Example 5.1.20, m = 20; m = 50; m = 100; m = 200.

Let C:={z € E : ||z||le, <1} and define the mapping A : C' — (¢3)* by
Az =2z +(1,1,1,0,0,0,...),

with (x1, e, x3,...) € (3(R). It is easy to show that A is monotone (hence, pseudo mono-
tone). Take Tz = %, a,, = W}wvﬁn = ?Zig,a = 0.14,7v = 0.4,s = 3,\ = 0.78. The
projections onto the feasibility set is carried out using optimization tool box in MATLAB.
We carried out two numerical tests for approximating the common solution of the VIP

and FPP using Algorithm 5.1.1. The initial value of z; and fixed u used are

Case I: z; = (0.3241,0.5387, —0.1256,0,0,0, ... ) and u = (—0.0988,0.2679, 0.2890, 0,0, 0, . . . )
Case II: 27 = (—4.5280, —1.2345,5.2238,0,0,0...) and u = (1.3268, —5.3420, 3.2890, 0, 0,0, . .. ),

with stopping criterion % < 1077 in each case. The computational results obtain
3

for these tests can be seen in Table 5.2 and Table 5.3.

Remark 5.1.23. The numerical experiments showed that the performance of the algorithm
is essentially independent of the value of x; used in the computation.

Table 5.1: Comparison between Algorithm 5.1.1 and Algorithm 1.2.1 for Example 5.1.20.

H Algorithm 5.1.1 Algorithm 1.2.1 H
m = 20 CPU time (sec) 0.0065 0.0105
No. of Iter. 23 38
m = 50 CPU time (sec) 0.0118 0.0178
No. of Iter. 24 39
m = 100 CPU time (sec) 0.0189 0.0263
No. of Iter. 25 40
m = 200 CPU time (sec) 0.0160 0.0306
No. of Iter. 25 42
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Table 5.2: Computation result for Example 5.1.22, Case I; Time: 0.1336sec.

H Iter. ‘ Tn+1 ‘ [|Zni1 — Tnllis H

1 (0.3241,0.5387,—0.1256,0,0,0, .. .)

2 (0.4549,1.0860, —0.4436,0,0,0, . ..) 0.5831

3| (0.6304,2.1364, —1.6952,0,0,0, . ..) 1.4617

4 | (0.3343,1.3639, —2.1382,0,0,0,. .. ) 0.1507

5 (0.4774,1.2958, —2.1483,0,0,0, .. .) 0.1481

10 | (0.8247,1.2461, —2.1254,0,0,0,...) 0.0335

20 | (0.9056,1.2781,—2.1054,0,0,0,...) 0.0015

30 | (0.9101,1.2793,—-2.1043,0,0,0,...) 0.0001

40 | (0.9104,1.2794, —2.1042,0,0,0,...) | 9.6527 ¢~®

50 | (0.9105,1.2794, —2.1042,0,0,0,...) | 8.1868 ¢~7

59 | (0.9105,1.2794, —2.1042,0,0,0, .. .) 8.8898 ¢~ 8

” o °° ”

Iteration number (n) Iteration number (n) Iteration number (n) Iteration number (n)

Figure 5.2: Example 5.1.21, Case I (CPU time: 1.4539sec); Case II (CPU time: 2.9472sec);
Case III (CPU time: 2.7043sec); Case IV (CPU time: 2.9142sec).
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Table 5.3: Computation result for Example 5.1.22, Case 2; Time: 0.2182sec.

H Iter. ‘ Tyt ‘ [ Zn1 — @l H
1 | (—4.5289, —1.2345,5.2238,0,0,0...)

2 | (2.1415,—5.7883,3.9968,0,0,0, ... ) 5.3096
3 | (2.8089,—5.6600,3.4229,0,0,0,...) 2.0383
4 | (2.9175,—5.6352,3.0466,0,0,0,...) 0.7875
5 | (2.9970,—5.5380,3.0342,0,0,0,...) 0.3794
10 | (2.9923, —5.5568,2.9463,0,0,0,...) 0.0333
20 | (2.9978,—5.5481,2.9573,0,0,0,...) 0.0045
30 | (2.9985, —5.5470,2.9588,0,0,0,...) 0.0006
40 | (2.9986, —5.5468,2.9590,0,0,0,. .. ) 0.0001
50 | (2.9986, —5.5470,2.9573,0,0,0,...) | 1.1574 ¢®
60 | (2.9986,—5.5470,2.9573,0,0,0,...) | 1.5821 =3
70 | (2.9986,—5.5470,2.9573,0,0,0,...) | 2.1626 ¢~ 7
74 | (2.9986,—5.5470,2.9573,0,0,0,...) | 9.7559 ¢~%

5.2 A Totally Relaxed, Self-Adaptive Subgradient Ex-
tragradient Method for Variational Inequality and
Fixed Point Problems in a Banach Space

Recently, Chidume and Nnakwe [30] extends the subgradient extragradient method (3.2.1)
to a 2-uniformly convex and uniformly smooth Banach space E. This extension was
presented as follow:

9 € E, >0,

yp = Mo (Jxy, — BAzy,),

Qr=A{x € E:(x—y Jo,— BAx; — Jy) < 0},
T = Ho, J ' (Ja, — BAy), YV k>0,

(5.2.1)

where Il is the generalized projection from E onto C' and J is the normalized duality
mapping from E to 2E”. They proved the weak convergence of algorithm (5.2.1) to a solu-
tion of VIP (1.1.8). In order to obtain strong convergence of the subgradient extragradient
method in Banach space, Ying Liu [164] combined the Halpern method [117] with (5.2.1)
and introduced the following scheme:

yr = MoJ ' (Jay, — BrAzy),

Qr={w € E: (w—yg, Jay — BpAxy, — Jyx) < 0},
wy, = Mg, J ' (Jop — BrAyk),

Tr1 = J HapJxg + (1 — ag) Jwy), k>0,

(5.2.2)

where {a;} C [0, 1] satisfying klirn ar =0and ) ag = oo, and {B} C (0,00).
—00 k=1
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However, we note the following problems:

P1. Although, the subgradient extragradient algorithms (5.2.1), (5.2.2) improved the
extragradient method (1.1.2), but they still preserved some of the weakness of the
extragradient method since there is need to calculate one projection onto C, that is
Yk, per each iteration;

P2. The stepsize 3, fi of the subgradient extragradient algorithms (5.2.1) and (5.2.2)
respectively require the condition

B, B € (O, %) , (5.2.3)

to be satisfied, which require at least a prior estimate of the Lipschitz constant L,
where c; is the 2-uniformly convexity constant of E. In practice, it is too difficult to
approximate the Lipschitz constant L.

As an attempt to solve Problem P1, He and Wu [123] introduced the Relazed Subgradient
FEztragradient Method (RSEM) in a Hilbert space. This RSEM is presented as follows:
Suppose C' has the form C := {z € H : ¢(x) < 0} where ¢ : H — R is an approximate
convex and lower semicontinuous function. Choose an arbitrary starting point xq € H,
given the current iterate xj, calculate the next iteration xp,; via

yr = Pe,(x — BrAxy),
Thi1 = Po,(xr — BrAyr), (5.2.4)
where C and @)y are given by

Cr = {weH:c(xy)+ (Ve(og),w — xx) <0},

ar = T — BRArk — Y,
€ H: (ap,w— <0}, ) 0,
Q=" (e w = i) < 0f it (5.2.5)
H, ifa, = 0.
Motivated by the work of He and Wu [123] and the fact that in real-world application in

which the feasible set of the VIP (1.1.8) might has a compex structure, He et al. [121]
modified the RSEM (5.2.4) and introduced a Totally Relaxed and Self adaptive Subgradient
Eztragradient Method (TRSSEM) for solving the VIP (1.1.8) in a Hilbert space. Let
C':={xz € H: hi(z) <0}, where h; : H - R for alli € [ = {1,2,...,m} are convex
functions. In the TRSSEM, the feasible set is defined as

C .= ﬁCZ

Motivated by the TRSSEM of He et al. [124], Chidume and Nnakwe [30] and Ying Liu
[164], in this section, we propose a new TRSSEM with Halpern iteration for approximating
a common solution of VIP (1.1.8) and fixed point of quasi-nonexpansive mapping in a
2-uniformly convex and uniformly smooth Banach space. Comparing with the existing
subgradient extragradient algorithms for solving VIP (1.1.1) in Banach space, the following
are the advantages of the algorithm presented in this section:

163



(a) the simplicity of calculating the projection onto C' and @) make our algorithm at-
tractive for computation;

(b) the introduction of an Armijo line search rule which makes the stepsize not to depend
on the Lipschitz constant makes our algorithm simple and easy for computation;

(c) the strong convergence guaranteed by our algorithm makes it a good candidate
scheme for finding common solution of VIP (1.1.1) and fixed point of quasi-nonexpansive

mapping.

5.2.1 Main results

In this subsection, we give a precise statement of our algorithm and discuss its strong
convergence.

Let E be a 2-uniformly convex and uniformly smooth Banach space and C' be a nonempty,
closed convex subset of E. Fori=1,2,... m, let h; : E — R be family of convex, weakly
lower semicontinuous and Gateaux differentiable functions. Let A : C' — E* be a monotone
operator which is uniformly continuous on bounded subsets of C' and S : C' — C be a
quasi-nonexpansive mapping such that Sol := Qyp N F(S) is nonempty. Let {ax} and
{vi} be nonnegative real sequences in (0,1) and I = {1,2,...,m}.

Algorithm 5.2.1.
Step 1: (Initialization) Pick x1 € E, n,p € (0,1) and set k = 1.

Step 2: Given the current iterate xy, construct the family of half-spaces

Ci={w € E: hi(zy) + (hi(zp),w —xp) <0},  i=1,2,...m, (5.2.6)
and set .
Cr == Ci. (5.2.7)
i=1
then compute
yr = e J 7 (Jag — BrA(as)), (5.2.8)
where
Be = p'™, (5.2.9)
and l, is the smallest nonnegative integer such that
BellA(zr) = Ayl < nllxr — yrl|- (5.2.10)

Step 3: If xp =y (i-e., xx € Qyrp), then set x, = wy, and go to Stop 4. Otherwise, compute
the next iterate by
wy = o J ™ (Jay — BrA(yr)), (5.2.11)

where
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Step 4: Compute
Tpa1 = J HapJzr + (1 — ap) (1 — v) Jwg + v JSwy)). (5.2.13)

Set k:=k+1 and go to Step 2.

Assumption 5.2.2. For the convergence of Algorithm 5.2.1, we make the following as-
sumption.

(C1) The feasible set C' is defined by
C:=()C", (5.2.14)
i=1

where C* := {x € E : hy(z) < 0};

o; = 00;

(C2) lim ap =0 and
k—o0 k=1

(C3) 0 < ligninf v < limsupy, < 1.
—00

k—o0

Remark 5.2.3. From (5.2.7) and (5.2.14), it is easy to see that C' C Cj. Indeed, for each
i € I and z € C%, we have by the subdifferential inequality that

hi(zg) + (hi(zg), x — xx) < hi(x) <O.

By the definition of C} in (5.2.6), we have that x € Ci. Hence C* C C} for all i € I and
therefore C' C C}, for all £ > 1.

Lemma 5.2.4. If x, =y for some k > 0 in Algorithm 5.2.1 happened, then x; € Qyrp.

Proof. 1If zj, = yg, then z = g, J ! (Jxy — BrAxy,). We first show that x;, € Cy, that is,
zy € C} for each i € I. By the definitions of C}, we have h;(z) + (hl(zy), zx — zx) < 0.
So hi(zg) <0 for each i € I. This means that z; € C.

By the variational characterization of the generalized projection Il onto C', we have
<$k—w,JIk—ﬂkA$k—Jl’k>20, VweC.

This implies that
Br{Axg,w—12) >0, VYweC.

Since B > 0, we have x;, € Qyp. O
Remark 5.2.5. Note that if x;,, = y, and x, = Sz, we are at a common solution of the VIP
(1.1.1) and fixed point of S. In our convergence analysis, we will implicitly assume that

this does not occur after finitely many iterations so that our Algorithm 5.2.1 generates an
infinite sequence satisfying, in particular, xy — yx # 0 and z, — Sz # 0 for all k£ € N.

We will see in the following result that the Armijo line search rule define in (5.2.10) is well
defined.
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Lemma 5.2.6. There exists a nonnegative integer ly, satisfying (5.2.10).

Proof. Let rg, (x1,) := zp — g, J ' (Jp — BrAxy) and suppose 7y, (z) = 0 for some kg > 1.
Take [, = ko which satisfies (5.2.10). Suppose 7, (z1) # 0 for some k1 > 1 and assume
the contrary, that is,

A Azy, — AT, J 7 (Jay, — p Az)|| > nl|lzr — O JH(Jop — prAxy)||.
Then by Lemma 2.6.11 and the fact that p € (0, 1), we obtain
M = Ao, (i = Al > It
> -pmin{1, g} )|
= nl|ri(zi)|]. (5.2.15)
Using the fact that J and Il¢, are continuous, we have

HCkJ_I(Jl'k — plAQTk) — Hckl'k, [ — oo.
We now consider two cases; namely, when z;, € C' and when x} ¢ C.

(i) If 2, € C, then x € Cy and so x = Ilg, 2k Now, since 71, # 0 and P < 1, it
follows from Lemma 2.6.11 that

0 < lrpm ()| < max{1, p }|ry (wx)]]

= |zl
Letting [ — oo in (5.2.15), we have that

0 = [[Azy — Azy|| = nl[ri(zx)]] > 0.
This is a contradiction and so, (5.2.10) is valid.

(ii) zx ¢ C, then
Pl Azy —yill = 0, 1= oo,

while
Jim nlrg(ze)ll = Jim |z, — Lo d N (Jzy, — p'Azy)|| = n||zx — e, ()] > 0.

This is a contradiction. Therefore, the stepsize rule in (5.2.10) is well defined.

]

Remark 5.2.7. We note that if A is L-Lipschitz continuous on E, then sup,.,l; < oo.
Indeed, for all 2,y € E, we have that p!||Az — Ay|| < p'L||z — y|| and it suffices to take
[ such that p! < #. This does not depend on x and y. Also, note that sup,.;l; < oo
implies that infy>; B, > 0. This is important for our convergence analysis. -
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We proceed to prove the following lemmas before proving the convergence of our main
Algorithm 5.2.1.

Lemma 5.2.8. The sequence {xy} generated by Algorithm 5.2.1 is bounded.

Proof. Let z* € Sol, then we have from Lemma 2.5.25(a) that

o(a*wy) = o(a* Mg, J " (Jog — BrAyr))

o(x*, T (Jxy, — BrAyr)) — d(wk, J 7 (Jox — BrAyr))

||9[3*||2 —2(x", Jay, — BrAyr) — Hwk||2 + 2(wy, Jx) — BrAyr)
o(x", 1) — p(wi, T1) + 281 (™ — wy, Ayr,)

IN

= ¢(a", mp) — d(wp, 7)) + 26k [(x" — yr, Ay — Az™) +
(2" — yr, AT™) + (Y — Wi, Ayr)]
< @(a", xp) — d(wg, ox) + 2B (2" — yi, Ax™) + (yx — wi, Ayg)]

= o(z", xr) — d(wy, vx) — Yk, T) + 2w — Yi, Jop, — Jyx)  (5.2.16)
+26k[(z" — Yk, Az™) + (Y — wi, Ay)]

= ¢(a", mx) — ¢(wi, yx) — O(Yk, Tr)
+2(wy — Yg, Jxp — BrAyr — Jyk), (5.2.17)

where the inequality in (5.2.16) follows from property D2 of Proposition 2.5.3. By the
definition of )y and Cauchy-Schwartz inequality, we have

2wy — yr, Jrk — BrAye — Jyp) = 2(wg — yi, Jor — BpAzy, — Jyk) +
20 (wy, — yr, Az, — Ayy)
< 2Bk |wi — il ||| Az — Ayl |- (5.2.18)

Using (5.2.10) and Lemma 2.5.24 in (5.2.18), we have

2(wy, — yr, Jrk — BeAyr — Jyr) < 2nllwe — yell||lye — zkl|

< 9 d(wr, yr) | P(Y, Tx)
- 7] C1 C1

< Cﬁlw(wk,yk)w(yk?m» (5.2.19)

Therefore from (5.2.17) and (5.2.19), we have

ota ) < o) = (1= 2 (@un ) + 6o, 20) (5.220)

1

From (5.2.13) and using property D3 of Proposition 2.5.3, we have

d(x* xny1) = o, T (apdrr + (1 — ap) (1 — vp) Jwy + v JSwy)))

= o(z*, J gz + (1 — ap)(1 — vp) Jwy + (1 — o) v J Swy))
ard(x*, x1) + (1 — ap) (1 — ) p(x™, w) + (1 — ag)vpd(x™, Swy)
apd(x™, 1) + (1 — o) p(x™, wy,). (5.2.21)

IA A
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It follows from (5.2.20) and (5.2.21) that

(;5(1’*, xn-ﬂ) < ak¢(x*7x1) + (1 - O‘k)qb(x*v xk‘)
< max{¢(z", 1), p(2", 21) }

max{¢(z", x1), p(x*, x1)} = P(a™, 7). (5.2.22)

This implies that {¢(z*, x)} is bounded. Therefore {2} is bounded. Consequently, since
A is uniformly continuous on bounded subsets of C, then {Awy} is bounded and by the
nonexpansiveness of the projection operator and mapping S, the sequence {y}, {wy} and
{Swy} are bounded. O

Note that within the proofs of our subsequent results, we define some auxiliary sequences
whose boundedness is stated without explicit proof, but that the corresponding proofs are
more or less the same as the proof given in Lemma 5.2.8

Lemma 5.2.9. Let {z;} and {yx} be two sequences generated by Algorithm 5.2.1 and
suppose that ||zr, — yk|| — 0, k — oco. Let p € C' denotes the weak limit of the subsequence
{zx,} of the sequence {x}} for j € N. Then p € Qyrp.

Proof. For all z € C, using Lemma 2.5.5(b) and by the monotonicity of A, we have

0

IN

(T —yr;, Jyr; — Jan; + B Axyy)
= (= —yn;, Jur, — Jan,) + B, (T — xp;, Azpy) + Bry (T, — Yr,» ATk,)
< (v —xpy, Jye, — Jon,) + B, (0 — xny, Axy,) + B, (Tr, — Yk, Axy,). (5.2.23)

Passing limit to the inequality in (5.2.23), we have
(Ap,x —p) >0, VazeC. (5.2.24)
Therefore p € Qyp. O

Lemma 5.2.10. The sequence {xy} generated by Algorithm 5.2.1 satisfies the following
estimates:

(i) thyr < (1 — o)ty + by,

(1)) —1 < limsup,,_, . by < +00,

where ty = ¢(x*, xy), b = (Jo1 — Jx*, 2401 — %) and x* = Hgyry.
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Proof. Let zx = J 7Y ((1 — vg) Jwg + vgJSwy,), then from Lemma 2.5.6, we have

O, 1) = oz, apdrr + (1 — ag)Jz)

< V(" apJry + (1 — ag)Jz, — ap(Jxg — Jz™))
—2—ap(Jry — Jz*), T HawJry + (1 — ap) T z,) — )
= V(z", apJa™ + (1 — ag)Jz) + 20, (Jxy — J2*, 2841 — 27)
< agpo(at,x") + (1 — ag)o(x™, z) + 200 (Jxy — Jo*, 21 — 27)
= (1 —ag)o(z", zi) + 200 (Jx1 — Jo*, 21 — 27)
< (1 —ag)(1 —wvp)o(z", wi) + (1 — ag)vrp(z™, Swy,)
+2ap(Jxy — Jx*, xp — F)
< (1 —ag)o(a™,wg) + 2ap(Joy — Ja*, x) 41 — TF)
< (1 —ag)o(x™, xp) + 200 (Jxy — Jo*, mp iy — 7).

This established (i). Next we prove (ii). Since {z} is bounded, then we have

sup by < sup 2||Jzy — Jz*||||zpi1 — 27| < o0.
k>0

This implies that lim sup,,_,., bx < co. Next, we show that limsup,_,. by > —1. Assume
the contrary, i.e., limsup,_, . by < —1. Then there exists ky € N such that b, < —1, for
all k > ko. Then for all & > kg, we get from (i) that

tk+1 S (1 — ak)tk + Oékbk
< (1 — Oék)tk — Q
tk — Oék(tk + 1) S tk — Q.

Taking lim sup of both sides of the last inequality, we have

k
limsupt < tg, — lim E o = —00.
k—00 k—o0 =

This contradicts the fact that {¢;} is a nonnegative real sequence. Therefore lim sup,,_, . by >
—1. [

We now presents our main theorem.

Theorem 5.2.11. Let C' be a nonempty, closed convex subset of a 2-uniformly convex and
uniformly smooth real Banach space E and h; : E— R be family of convex, weakly lower
semicontinuous and Gateaux differentiable functions, i = 1,2,...,m. Let A: C — E* be
a monotone operator which is uniformly continuous on bounded subsets of C', S : C' — C
be a quasi-nonexpansive mapping and let {cy} and {vy} be nonnegative real sequences in
(0,1). Suppose Sol = Qurp N F(S) is nonempty and Assumption 5.2.2 is satisfied, then
the sequence {x} generated by Algorithm 5.2.1 converges strongly to a unique solution
b= Hgomy.
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Proof. Let x* € Sol, we divide the proof into two cases.

Case I: Suppose that there exists kg € N such that {¢(z*, xx)} is non-increasing. Since
{¢(x*, zx)} is bounded, then it is convergent and so

o(z*, x) — o(2*, xpy1) = 0, n — oc. (5.2.25)
Since z = J (1 — vg) Jwy, + v, JSwy), then we have from Lemma 2.6.8 that

o(z*,z) = oa”, J’l((l — ) Jwy + v JSwy,))
Viz*, (1 — vg)Jwg + v JSwy)
[|2*]|? — 2(x*, (1 — vp) Jwy, + v J Swy) + ||(1 — vi) Jwy, + v J Swy |2

< 2| )P = 201 — v ), Jwy) — 2 (a*, JSwi) + (1 — vy || Jwy| [P
|| JSwi| [P — g(|]Jwy, — T Swyl|)
= (1 —wp)o(a™, wg) + vrp(z™, Swy) — ve(1 — vg)g(||Jwr — JSwy||)
< o(a*,wi) — ve(1 — vg)g(|| Jwr — JSwy||). (5.2.26)

Therefore from (5.2.13), (5.2.20) and (5.2.26), we have

O, we1) = o, T N apJey + (1 — ag)J )
S akgb(l‘*axl) + (1 - ak)¢(‘r*7 Zk)
< (@t ) + (1 — ag)p(x™, wi) — (1 — ag) (1 — vg) (|| Jwy, — JSwy]|)
< apg(at ) + (1 —ag)p(a™, o) — (1 — ap)v(1 — vi)g (|| Jwy — JSwil]).
Hence

(1 — ag)v(1 —v)g(||Jwk, — JSwl]) < app(a™,z1) + (1 — ag)p(z™, ) — d(2", Tpy1).
Using the fact that o — 0 and (5.2.25), we have
V(1 — vp)g(||Jwg — JSwi|]) — 0, n — oo.
Therefore by condition (C3) and the property of g, we get
/}an}o || Jwy — JSwy|| = 0. (5.2.27)
Since J~! is norm-to-norm continuous on bounded subsets of E, then

lim |Jwy — Swy|| = 0. (5.2.28)
k—o0
Furthermore from (5.2.20), we have

ota" ) < 0(a",0) — (1 ) (6w ) + 0l 0),

1

therefore, it follows from (5.2.26) that
¢($*7'Tk+1> < ak¢(x*> xl) + (1 - ak)(b(x*a Zk)

< anola’ ) + (1= aola’sn) — (1= ) (1 2 ) ol ) + 60 1)

1
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This implies that

(1) (1= 1) (@) + 0o ) < 6”0 + (1= @00l 1) = 0" ).
1
Similarly, since ay — 0 and from (5.2.25), we have
(Wi, Y) + ¢(Yx, o) — 0, n — 00,
which means that
lim ¢(wy, yx) = lim ¢(yx, vx) = 0. (5.2.29)
k—o00 k—o00
Since {1}, {yx} and {wy} are bounded, then it follows from Lemma 2.6.7 that
lim [Jwg — y|| = lim ||yx — xx|| = 0. (5.2.30)
k—o0 k—o0
Also, it is easy to see from (5.2.28) that
d(w, z1) = d(wi, J (1 — vp) Jwy, + v JSwy)) — 0, n — oo.
Hence, by Lemma 2.6.7 we have

lim ||wy — 2x|| = 0. (5.2.31)
k—o00

Furthermore
|| Jxpr1 — Jzi|| = || Jxr — Jzk|| = 0, n — oco.
Since J~! is norm-to-norm uniformly continuous on bounded subsets of £, we have
l|zks1 — 2kl = 0, n — oc.
Therefore

Nzer1 — xkl] < ||zkg1 — 2kl + |26 — wil| + [|wg — zx]| = 0, n — oo. (5.2.32)

Now let ,,(zx) denotes the set of all weak cluster point of {z}, since ||z — yg|| — 0 as
k — oo, it follows from Lemma 5.2.13 that €, (z)) C Qvrp. Also, since ||wy — Swy|| — 0
and ||wgy — xk|| — 0 as k — oo, then we have that Q,(zx) C F(S) = F(S). Therefore
Qw(l’k) C Sol := QV[PﬂF<S)

We now show that the sequence {x;} converges strongly to a point p = gyx1. Let {xy,}

be a subsequence of {x;} such that x;, — 7 and

limsup(Jz, — Jp, Tp11 — p) = ]h_{?O(JJ?l — Jp, i1 — p)-

k—o0

Since ||xg41 — zx|| — 0 as k — oo, we have from Lemma 2.5.5 (b) that

limsup(Ja, — Jp, 21 —p) = lim (Jo; — Jp, Lhi+1 — p)
k—o00 J—©
= (Jxy — Jp,z —p) <0. (5.2.33)



It follows from Lemma 2.6.30, Lemma 5.2.10(i) and (5.2.33) that ¢(p, zx) — 0 as k — oo.
Therefore by Lemma 2.6.7,

lim |[p — 2] = 0.
k—o0
This implies that {x;} converges strongly to p = Ilg, 2.
Case II: Suppose there exists a subsequence {zy;} of {z;} such that
P(x*, g, 41) > G2, 21;) YV EEN.

From Lemma 2.6.34, there exists a non-decreasing sequence {my} C N such that m; — oo
and the following inequality hold for all k € N :

O, Tm,) < P2, 2, 1) and  o(z", xy) < (2™, Ty v1)- (5.2.34)
Note that from (5.2.20) and (5.2.21), we have

§Z5(TE*, xmk) ¢($*a xmk-i-l) S amkgb(I*’ xl) + (1 - O‘mk)gb(x*?wmk)

Oémkgb(l’*,l’l) + (1 - amk>¢($*7xmk>
_(1 - amk) (1 - %) (¢(wmkv ymk) + ¢(ymk7 xmk))

IA A

Since oy, — 0, as k — oo, it follows that

(1 - ﬂ) (Ot ) + S Ty)) = 0, 11— 00,

C1
hence
khm qb(wmk?ymk) = lim ¢(ymk7xmk) = 0.
—00 k—o0
Since {zm, }, {Ym, } and {w,,, } are bounded, we have from Lemma 2.6.7 that
klim NZm, — Ym, || = Um ||wr — Yy, || = 0. (5.2.35)
—00 k—o0
Following similar method as in Case I, we have
lim ||w,, — Swy, || = lim ||Zm,,+1 — Zm, || = 0. (5.2.36)
k—o0 k—o0

By Lemma 5.2.9 and (5.2.36), we have that Q,(z,,, ) C Sol := Qup()F(S), where
Qy (2, ) is the set of all weak subsequential limit of {z,,, }.

Since {z,, } is bounded, we can choose a subsequence of {z,, } still denoted by {z,, }
such that z,, — ¢ as k — oo and

limsup(Jzy — J&*, X1 — &%) = lUm (Jog — J2™, 2y i1 — 7).
k—o0 k—oo

Hence, from Lemma 2.5.5(b), we have

limsup(Jzy — Ja*, X1 — 27) = (Ja; — Ja*, ¢ — 2") <0. (5.2.37)

k—o0
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From (5.2.34), we have

0 < ¢(x*’xmk+1)_¢(x*7xmk)
< (1= )o(x™, Ty ) + 200, (a1 — JT*, Ty 1 — ) — O(2F, Ty ).

Since a,,, > 0, we have that
O™, Ty ) < 2(Jxy — JX*, T4y 41 — TT).
Hence by (5.2.37), we have
o(x", T, ) — 0, n — 00,
and by Lemma 2.6.7, we have that limy_, ||Zm, — 2*|| = 0. Consequently, we obtain
||z — || = 0, n— occ. (5.2.38)

Therefore, the sequence {x} converges strongly to * = Ilg, 2. This completes the proof.
O

The following result can be obtained as a direct consequence of Theorem 5.2.11.

Theorem 5.2.12. Let H be a real Hilbert space and C' be a nonempty, closed convex subset
H. Let h; : H— R be families of conver, weakly lower semicontinuous and Gateauz dif-
ferentiable functions, i =1,2,...,m let A: C — H be a monotone operator which is uni-
formly continuous on bounded subsets of C, S : C'— C' be a quasi-nonexpansive mapping
and let {ax} and {vi} be nonnegative real sequences in (0,1). Suppose Sol = Qyp N F(S)
is nonempty and Assumption 5.2.2 is satisfied, then the sequence {xy} generated by the fol-
lowing Algorithm 5.2.13 converges strongly to a unique solution p = Psyx1, where Psyxy
s the metric projection onto Sol.

Algorithm 5.2.13.
Step 1: (Initialization) Pick x1 € H, n,p € (0,1) and set k = 1.
Step 2: Given the current iterate xy, construct the family of half-spaces
Ch={w € E: hi(xy) + (Ki(x1),w —x1,) <0}, i€l

and set
Cy = ﬂ Ci,
iel
then compute
yr = Po, (zr — BrA(zr)),
where
Be = p'*,

and l, is the smallest nonnegative integer such that
BellAlze) — Alye)ll < nllze — yil]-
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Step 3: If xp =y (i-e., x € Qyrp), then set x, = wy, and go to Stop 4. Otherwise, compute
the next iterate by

wy = Po, (z1. — BrA(yr)),
where
Qr={w e E: (w—ygzr — BrA(zr) — yp) < 0}.
Step 4: Compute
Ty = oy + (1 — ag) (1 — vp)wy, + vpSwy,).

Set k:=k+1 and go to Step 2.

5.2.2 Application to nonlinear Hammerstein integral equations

We now present a strong convergence theorem for approximating solution of a nonlinear
Hammerstein type integral equation.

A nonlinear integral equation of Hammerstein type (see for instance [119]) is one of the
form

ulz) + / K (2, 9) (4, u(y))dy = h(z), (5.2.39)

where dy is a o-finite measure on the measure space €2; the real kernel K is defined on
Q) x €, f is a real-valued function defined on €2 x 2 and is in general nonlinear and A is a
given function on 2. The nonlinear equations of Hammerstein type have proved to be one
of the areas in which the ideas and techniques of nonlinear functional analysis found vast
applications. This has drawn the attention of many authors who have studied its existence
and approximation of its solutions. In fact, several differential equation problems can be
recast into (5.2.39). This equation also plays crucial role in the study of theory of optimal
control systems and in automation and in network theory. See [10, 47, 48, , (7,78,
, 273] and references therein.

If we now define an operator T by

Tu(x) = /QK(JJ,y)U(y)dy, x €,

and denote by F' the so-called superposition or Nemytskii operator corresponding to f,
ie, Fu(y) := f(y;u(y)) then, the integral equation (5.2.39) can be put in the operator
theoretic form as follows:

u+TFu=0, (5.2.40)

where, without loss of generality, we have taken h = 0.

Several problems that arises in differential equations, for instance, elliptic boundary value
problems whose linear parts admits Green’s functions can be transformed into the form
of (5.2.40). Example is the problem of forced oscillations of finite amplitude of pendulum
given below.
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Example 5.2.14. (see [200]) The amplitude of oscillation z(¢) is a solution of the problem
2$ .
T2 + a’sin(z)(t) = y(t), t€0,1]
z(0) = z(1) =0,

where the driving force y(t) is periodical and odd. The constant a # 0 depends on the
length of the pendulum and on gravity. Since the Green’s function for the problem

Z'(t) =0, x(0)==2(1)=0
is a triangular function

B, ) = t(l—w), 0<t<u,
O lu(l—1), u<t<l,

the problem (5.2.41) is equivalent to the nonlinear integral equation

x(t) — /0 h(u,t)[x(u) — a*sin(x)(u)]du. (5.2.41)

If
/0 h(u,t)z(u)du = g(t) and  x(t) + g(t) = v(t),

then (5.2.41) can be written as the Hammerstein equation

v(t) + /0 h(u,t)f(u,v(u))du = 0,
where f(u,v(u)) = a?sin(v(u) — g(u)).

Several existence and uniqueness results for equations of the Hammerstein type emphasize
the monotonicity of the operators T and F. A monotone operator describes any system
that grows with time-evolution equations. Typical examples where such evolution equa-
tions occur can be found in the heat, wave, or Schrodinger equations. It follows from the
existence results for equations of the Hammerstein type that for iterative approximation
of solutions of equations of the Hammerstein type, the monotonicity of operators 1" and
F'is crucial.

The following lemmas will be needed in the sequel.

Lemma 5.2.15. [270] Let X be a real reflexive Banach space with dual X*. Let E :=
X x X* and with norm

1
2
lells = (||x1||§+||x2|§<*) . for = (v € E.

Let E* := (X x X*)* = X*x X denotes the dual space of E. For arbitrary x = [x1,xs] € E,
define the map j¥ : E — E* by

*

M (x2)],

X(

77 () = jPlar, mo] = [ (21),
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so that for arbitrary x = [x1, x2], y = [y1,ye] in E, the duality pairing (.,.) is given by

(z, 5% (y)) = (@1, 57 (1)) + (22,5 (42))-

Then

(i) j% is a duality mapping on E;
(i1) E is a real reflexive Banach space.

Lemma 5.2.16. [270] Let X be a real reflexive Banach space with dual X*. Let F :
X = X*and T : X* — X be continuous monotone mappings. Let £ .= X x X* and
A: E — E* be a mapping defined by

Aw = (Fu—v,Tv + u), Vw=(u,v) € E.
Then A is a monotone and continuous mapping.

Lemma 5.2.17. Let X be a real reflexive Banach space with dual X* and E := X x X*.
Let S1: X — X and Sy : X* — X* be quasi-nonexpansive mappings. Define the mapping
S:E — FE by Sw= (S1(u),5(w)), Vw= (u,v) € E. Then, S is quasi-nonexpansive
mapping.

Proof. Let x = (r1,72) € E and p = (p1,p2) € F(S), where p; € F(S1) and py € F(S3),
then

[[Sz —plle = |[(Si(z1), S2(22)) — (P1, p2)||E
= ||(S1(z1) — p1, Sa2(z2) — P2)||E

=

2
2
X*

1

2
: )
X *

Hence, S is quasi-nonexpansive mapping on F. O

- QWﬂrﬁM@+H&m—mﬂ

< OMrﬁM&+HM—pﬂ

= |z =plle.

The following remark is very important for establishing our result.

Remark 5.2.18. Suppose u + TFu = 0 in X and A : E — E* is defined by Aw =
(Fu—v,Tv +u), for all w = (u,v) € E. Note that for w* = (uv*,v*) € E,

0=Aw" < (0,0) = (Fu" —v",Tv"+u")
— v'=Fu" and 0=u"+Tv"
— O0=u"+TFu" (5.2.42)

This implies that u* is a solution of u+ T Fu = 0 if and only if w* is a solution of Aw =0

*

for v* = Fu*.
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Moreover, w* is a solution of Aw = 0 if and only if it is a solution of the variational
inequality [70]:

find we E  such that (Aw,y —w) >0, VyeckE.

Hence, we can apply Theorem 5.2.11 to solve (5.2.40). Hence using Theorem 5.2.11, we
have the following result for approximating solutions of the nonlinear Hammerstein integral
equation (5.2.40).

Theorem 5.2.19. Let X be a 2-uniformly conver and uniformly smooth Banach space
with dual X*. Let F': X — X* and T : X* — X be continuous monotone mapping. Let
E =X x X" and h; : E — R be families of convex, weakly lower semicontinuous and
Gateaux differentiable functions, i = 1,2,...,m. Let A : E — E* be a mapping defined by
Aw = (Fu—v,Tv+u), Yw=(u,v)€E. Lt S : X — X and Sy : X* — X* be quasi-
nonezpansive mappings and define S : E — E by Sw = (S1(u), S2(v)), V w = (u,v) € E.
Assume Q) is the set of solutions of (5.2.40) and Sol := Q\F(S) # 0. Let {ay} and
{Br} be nonnegative real sequences in (0,1) and Assumption 5.2.2 be satisfied. Then, the
sequence {xp} = {(ug,vr)} generated by the following algorithm converges strongly to a

point p € Sol :== Q" F(95).
Algorithm 5.2.20.

Step 1: (Initialization) Pick x1 = (uy,v1) € E, n,p € (0,1) and set k = 1.

Step 2: Given the current iterate xy, construct the family of half-spaces

Ci={w = (u,v) € E: hj(wy) + (h(xp),w — x) <0}, €1, (5.2.43)
and set ‘
Cr =) Ci. (5.2.44)
el
then compute
where
Be = p'™, (5.2.46)
and ly 1s the smallest nonnegative integer such that
BellAlze) — Alye)ll < nllze — yil]- (5.2.47)
Step 3: If x), = yi, then set x = wy and go to Stop 4. Otherwise, compute the next iterate
by
wy = o, J ™' (Jar — BrA(yr)), (5.2.48)
where
Qr ={w = (u,v) € E: (w — yg, Jop — BrA(xr) — Jy) < 0}. (5.2.49)
Step 4: Compute
Trpa1 = J HapJrr + (1 — ap) (1 — vp) Jwg + v JSwy)). (5.2.50)

Set k:=k+1 and go to Step 2.
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5.2.3 Numerical Examples

In this subsection, we consider two examples related to equations of Hammerstein type to
illustrate the performance of our Algorithm. All codes are written using MATLAB 2014b
on a HP Elitebook personal computer. We choose different choices of the initial values
in each example and test Algorithm 3.1 for solving the Hammerstein equation (5.2.40).
The stopping criterion used in both test is ”"ﬁ’ggfﬁ!z = H(“ﬁ;; ig’;ﬁg;g’;)r’;)ﬂz < €, where
e is chosen appropriately. The projections onto the half—spaoes’C';c and ék can be easily

calculated since they have the specific form which can be found in Chapter 2.

Example 5.2.21. Let E =R xR and C = C'NC? C R x R, where

Ol = {(:L'l,x2> cERxR: hl(l’l,ajg) = 33% —|—3§'§ —14 < 0}7

and
02 = {(xl,xQ) eERxR: hg(&?l,.TQ) = .’L‘% — Ty < O}

Consider the Hammerstein equation
u+TFu=0

where T'u = max{0,u} for all v € R and

{u, Jul] < 1,
Fu= "

||ul| > 1.

[lwll?

Define the mapping A: R xR — R x R by
Aw = (Fu—v,Tv+u), Yw=(uv)eRxR,
and S:R xR — R xR by

Sw = <—7u’—7v>7 Vw = (u,v) € R x R.

Clearly, F' and T are continuous monotone, thus A is continuous and monotone (by Lemma

5.2.16). Also Sol := QN F(S) = {0}. We choose oy, = ﬁ, v = 5k+1, n = 0.5 and
p = 0.07 as our parameters which satisfy the desired requirements. Let € = 107° and the

initial values as follows:
Case I: (10,10), Case II: (=20,5), Case III: (5,—10), Case IV: (=5, —=5).

We plot the graphs of Error against number of iterations in each case. The numerical
results are reported in Figure 5.3.

Example 5.2.22. In this second example, we consider the infinite-dimensional space.
Let £ = L2([0,1]) x L?([0,1]) with norm ||z|* = fo |z(t)|dt and inner product (z,y) =

fol z(t)y(t)dt, x,y € E. We define C" := {x € E : ||z||—1 < 0}. Consider the Hammerstein

equation v+ TFu = 0 in L*([0,1]) with F being the Volteral integral which is defined by
1
(Fu)(t) = / u(s)ds,¥ u € L*([0,1]),
0
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and

(w)(®), |l <1,
(Tu)(t) = §
WOy > 1.
It is known that F' is continuous and monotone (cf. Exercise 20.12 in [23], Page 308).

Define the mapping A : L?([0, 1]) x L?([0,1]) — L*([0,1]) x L*([0,1]) by
Aw = (Fu—v,Tv+u), Yw=(u,v)€ L*([0,1]) x L*([0,1]),

and S : L2([0,1]) x L2([0,1]) — L2([0,1]) x L2([0,1]) by

Sw = S(u,v)(t) = /01 (# ?) dt.

Hence A is monotone and Sol := QN F(S) = {0} in L*([0,1]) x L*([0,1]). Choose

ap = ﬁ, Vp = ﬁ, n = ().4& and p = 0.05. We also take e = 2 x 1073 and chose the

following input values:

Case I: (exp(—3t), t* + 5t —9),
Case II: (t* — 1, cos(2t)),
Case IIT: (—(3t —5)%, 4t* + 3t +1).

We then plot the graphs of errors against the number of iterations in each case. The
numerical results are reported in Figure 5.4.

5.3 A Unified Algorithm for Solving Variational In-
equality and Fixed Point Problems with Applica-
tion to the Split Equality Problem

In this section, we propose a new extragradient method consisting of the Hybrid steepest
descent method, a single projection method and an Armijo line searching technique for
approximating a solution of variational inequality problem and finding the fixed point
of demi-contractive mapping in a real Hilbert space. The essence of this algorithm is
that a single projection is required in each iteration and the stepsize for the next iterate
is determined in such a way that there is no need for a prior estimate of the Lipschitz
constant of the underlying operator.

It is well known that z' solves the VIP (1.1.1) if and only if 2! solves the fixed point
equation

ot = Po(at — MAz'), A>0, (5.3.1)
or equivalently, x' solves the residual equation
ra(z’) =0, where ry\(z'):= 2" — Po(z! — NAah), (5.3.2)
for an arbitrary positive constant A, see [ 11] for details.
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Figure 5.3: Example 5.2.21; Top Left z; = (10,10), Time = 0.0416sec; Top Right:
x1 = (—20,5), Time = 0.0436sec; Bottom Left x; = (5, —10), Time = 0.0422sec; Bottom
Right: z; = (=5, —5), Time = 0.0533sec..

In order to obtain strong convergence of the Subgradrient Extragradient Algorithm (3.2.1),
Censor et al. [68] combined the subgradient extragradient method and the hybrid method
to obtain the following effective scheme for solving the VIP (1.1.1) and finding fixed point
of a nonexpansive mapping 7.

(yk = Po(x, — Mxy),

Dy ={w € H : {x), — Nz — yr, w — yx) < 0},

2k = Pp, (xr — Muyy),

tr = aprr + (1 — ap)[Brzr + (1 — Br)T2x), (5.3.3)
Co ={z € H ||ty — 2| < [z — 2|[},

Qr={z€ H: (xx — 2,2 — x9) < 0},

Trpy1 = Poyno, (o).

\

As an improvement on (5.3.3), Maingé [171] further introduced the following hybrid ex-
tragradient viscosity method which does not involve computing the projection onto the
intersection Cy N Qy:

yr = Po(xr — \Axy),

2y = Po(or — MeAyr), (5.3.4)

Tl = [(1 — ’LU)[ -+ wT]tk, tk = 2k — OékBZk,
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15 20
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Figure 5.4: Example 5.2.22; Top Left Case I, Time = 62.1391sec; Top Right: Case II,
Time = 45.6325sec; Bottom: Case III, Time = 40.5352.

where Ay > 0, ap > 0 and w € [0, 1] are suitable parameters, T : H — H is S-demi-
contractive mapping, A : C' — H is a monotone and L-Lipschitz continuous mapping
and B : H — H is n-strongly monotone and x-Lipschitz continuous mapping. Maingé
[171] proved that the sequence {z}} generated by (5.3.4) converges strongly to the unique
solution z* € Qyrp N F(T).

Recently, Hieu et. al. [131] modified algorithm (5.3.4) and proposed a two-step extragra-
dient viscosity method for solving similar problem in a Hilbert space. This method was
presented as follows:

Uk = Po(rp — MeAzy),
2k = Po(ye — prAyr),
ty = Po(zy — prdar),
Tpy1 = (L= Be)vr + BTvp, v =ty — By,

(5.3.5)

where pr, >0, 0 < A\ < pg, Bk € [0,1], A, T and B are as defined for (5.3.4). We observe
that, although algorithm (5.3.5) does not contain (3.2.1), but the algorithm (5.3.5) requires
computation of more projections onto the feasible set. This can be costly if the feasible
set has a complex structure which may affects the usage of the algorithm.

Motivated by the above results, in this section, we present a unified algorithm which consist
of the combination of hybrid steepest descent method (also called general viscosity method

181



[257]) and a projection method with an Armijo line searching rule for finding a common
solution of VIP (1.1.1) and fixed point of S-demi-contractive mapping in a Hilbert space.
Our contributions in this section is highlighted as follow:

(i) Our proposed algorithm requires only one projection onto the feasible set and no
other projection along each iteration process. This is in contrast to the above-
mentioned methods as well as many other recent results (such as [97, , , ,

]) which require more than one projection onto the feasible set in each iteration
process.

(ii) The underlying operator A of the VIP considered in our result is pseudo-monotone.
This extends the above results where the operator is assumed to be monotone.

(iii) In our result, the stepsize A\j is determined via an Armijo line search rule. This is
very important because it helps us to avoid a prior estimate of the Lipschitz constant
L of the operator A used in the above mentioned results. In practice, it is too difficult
to approximate this Lipschitz constant.

(iv) The strong convergence guaranteed by our algorithm makes it a good candidate
method for approximating a common solution of VIP (1.1.1) and fixed point problem.

5.3.1 Main results

In this subsection, we give a precise statement of our algorithm and discuss its strong
convergence.

Let C' be a nonempty closed and convex subset of a real Hilbert space H. Let A: C — H
be a pseudo-monotone and L-Lipschitz continuous operator and 7" : C' — C be a (-
demi-contractive mapping with constant 8 € [0,1) and demiclosed at zero. Suppose
Sol :== Quip(F(T) # 0, let B: H — H be a k-Lipschitzian and n-strongly monotone
mapping with £ > 0 and n > 0 and f : H — H be a p-Lipschitz mapping with p > 0. Let
0<p<22and 0<Ep <7, where 7 = 2u(2n — pk?). Let {ay} and {v;} be sequences in
(0,1) and {zx} be generated by the following algorithm:

Algorithm 5.3.1.

Step 0: Choose the initial guess x1 € H and parameters 0,y € (0,1), o € (0,2). Set k = 1.

Step 1: Compute
yr = Po(z, — A Azy), (5.3.6)

where A\, = 7, and l; is the smallest nonnegative integer satisfying

Ael[Alzr) — Ayl < 0l — yill (5.3.7)

Step 2: Compute
d(Tr, yk) = T — yr — Me(Azp — Ayp), (5.3.8)
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Wg = T — U&kd(l‘k, yk), (539)

where

(Tr =Yg, d(Tr, Yi)) ,
, of  d(xy, 0,
fo={ " T polP Sy # (53.10)
0 if d(es ) = 0.
Step 3: Compute
Trpp1 = gl f(an) + (1 — agppB) (0 Twi + (1 — vg)wy,). (5.3.11)

Set k:=k+1 and go to Step 1.

In order to establish the convergence of Algorithm 5.3.1, we make the following assumption:

(C1) limyyoo ap =0 and D72, ay = 00;
(C2) liminfy_ oo Ax > 0;
(C3) liminfy o (v — B)vg, > 0.

Remark 5.3.2. Observe that if xp, = y, and x, —Tz, = 0, then we are at a common solution
of the variational inequality (1.1.1) and fixed point of the demi-contractive mapping 7". In
our convergence analysis, we will implicitly assume that this does not occur after finitely
many iterations so that our Algorithm 5.3.1 generates an infinite sequences. We will see in
the following result that the Algorithm 5.3.1 is well defined. In order to do this, it suffice
to show that the Armijo line searching rule define by (5.3.7) is well defined and §; # 0.

Lemma 5.3.3. There exists a nonnegative integer ly, satisfying (5.3.7). In addition

(1-0)

> .
%2 T a)

(5.3.12)

Proof. Let ry,(zx) = 2 — Po(wr — A\pAzy) and suppose 7.5 (21) = 0 for some kg > 1.
Take [, = ko which satisfy (5.3.7). Suppose . (23) # 0 for some k; > 1 and assume the
contrary, that is

V| Az, — A(Pe(zr — 5 Azy))l| > 0l]ry (2]

Then it follow from Lemma 2.6.11 and the fact that v € (0,1) that

0
| Az — A(Pe(zx — o' Azy))|| > Sl (el

> Smin{Lo!}in (o)l
= O||r1(zg)]]- (5.3.13)
Since Pg is continuous, we have that
Pe(zy, — v Azy) — Po(xy), 1 — oo,

We now consider two cases, namely when z;, € C' and xy ¢ C.
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(i) If 2, € C, then 2, = Poxy. Now since 7.k (23) # 0 and vk <1, it follows from
Lemma 2.6.11 that

0 < [lryu (wn)l] < max{1, 4" }lr(zo)ll

= |lra(zp)ll-
Letting | — oo in (5.3.13), we have that
0= ||Azy — Axyi|| > 0||r1(xk)]| > 0.
This is a contradiction and so (5.3.7) is valid.
(ii) =y ¢ C, then
YAz, — yl] = 0, 1 — oo, (5.3.14)
while

fim Ofry (zy )| = lim 0|y, — Po(zx — v Azy)|| = 0||z), — Peag|| > 0.

This is a contradiction. Therefore, the Armijo line searching rule in (5.3.7) is well

defined.

On the other hand, since A is Lipschitz continuous, then, we have from (5.3.7) and (5.3.8)

(Tr = Yk, T — Yo — Me(Azp — Ayp))

= HSCk—ka2_Ak@k—yk,Az’l?k—Ayw
> ok — yill® = Ml — vl ll| Az — Ays|]
> ok — yl]* = Ollew — yil®

(Tr — Y, d(@r, Yi))

= (1—=0)||lzr — ull*. (5.3.15)
Also,
d(zr )l = [lzr — ye — Me(Azi — Ayy)||
< lwe = yill + Al [Aze — Aygl]
< (14 0)||ze — yrll- (5.3.16)

Therefore from (3.1.15) and (5.3.16), we get

5 (T =Yg, d(r, Yr))
* (@, yi)||?
(1-6)
ST

]

Now, we prove that the sequences {zx}, {yx} and {wy} generated by Algorithm 5.3.1 are
bounded.
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Lemma 5.3.4. The sequence {xy} generated by Algorithm 5.5.1 is bounded. In addition,
the following inequality is satisfied

2-o0)

||’Ujk —(L’k”z, (5317)

lwi — 2*||* < o — 2*|” —
where x* € Sol.

Proof. Let x* € Sol, then by Lemma 2.6.1(ii), we obtain
lwe —a*|* = lox — 2" — odpd(@r, ye)|I*
= |lzp — 2||* — 206k (s, — 2%, d(2h, yr)) + 62| |d(2n, yi)||* (5.3.18)
Observe that
(o — 27, d(ew, i) = (r — Yo, d(@r, ye)) + (Yp — 27, d(2k, yi))- (5.3.19)

Since yx = Po(xr — A\Azy) and z* € Sol, then by the variational characterization of Pc,
we have

(zp — AeAzp — yp, yp — ) 20, (5.3.20)
and from the pseudo-monotonicity of A, we have
(Ayg, yr. — ™) > 0. (5.3.21)
Hence, combining (5.3.20) and (5.3.21), with the fact that A\, > 0, we get
(d(zr,yr) yp —27) > 0. (5.3.22)
Thus from (5.3.22) and (5.3.19) , we get
(xp — 2", d(Tg, yr)) > (Tp — Yr, d(xg, Yr))- (5.3.23)
Therefore (5.3.18) yields

we — 2*||* < |l — 2| = 208k (xk — Y, d(zr, yi)) + 0267 ]| d(k, yr) ||
||17k - 5C*||2 - 205k<95k - Yk, d(%,yk» + 025k<$k - Yk, d(ﬂfk,yk»
= ||og — 2*||* — 0(2 — )6 (@ — yi, ATk, Yr)). (5.3.24)

From the definition of 9, and w;, we have

Onlme — Yo d(zp, yr)) = ||0kd(@r, yi)||?
1
g

Substituting (5.3.25) into (5.3.24), we have

2_
lwp — 2| < |fey — 2| = E=2
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Hence
wy — 2*|* < ||z, — =¥ (5.3.26)
Furthermore, observe that for any z,y € H,

(I = uB)a — (I —uB)yl? = |lv =yl - 2u{z —y, Bx — By) + 1i*|| Bx — By|[?
< (1= 2un + 2K | — y||?
= (1=7)|z =yl

where 7 =1 — /1 — pu(2n — pk?). Also

| Psoi(I — pB + & f)x — Pso(I — pB + &)yl
< =pB+E&flx— I —pB+Ef)yll
< (I = uB)x — (I — uB)yl| +&|[f(z) = fF()l]
< (I =7)l|z =yl +&pllz — yl]

(1= (r=&p)llz —yll.

This implies that Psy (I — puB + £f) is a contraction mapping which means that there
exists a unique element xx € H such that * = Psy(I — uB + &f)z*.

Now let T, = vT'+ (1 —v)I, then by Lemma 2.1.6, T,, is quasi-nonexpansive and therefore
|z — ™[] = Nlewd f(zr) + (1 — arpB) Ty wi — 7]

o (€ f (zk) — pBz™) + (I — awpB) Ty wy, — (I — cppB) ™|

(I = crpB)(Ty,wr, — x7) + (& f (wr) — pBa™ + & f (%) = £ (27))]]

< I — 0w B) (T — )| + el F(as) — 1) + aullef %) — B
< (1= )Ty — 2| + sl — | + ol ") — uBa|
< (L aur)llu - a*[] + gl — 2*|| + ollEF @) — pBa]|
< (L)l — 2| + aupllo — a*| + o€ (a") — pBa]|
* _ B *
— (-t = gl — o'l + (s — )L L=

T—=&p

(5.3.27)

< max{”xl — "

| ||€f($*)—#3($*)l|}
’ T—&p '

This implies that {z;} is bounded in H. Consequently, from (5.3.26), {w} is bounded
and since A is continuous, then {Axz;} is bounded and therefore {y;} is bounded too. [

Lemma 5.3.5. The sequence {x,} generated by Algorithm 5.3.1 satisfies the following
estimates:

(Z) Sk+1 S (1 — ak)sk + akbk,
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(1) —1 < limsup,,_, ., bx < +00,

where sy = ||z — *||%,
for some My > 0, x* € Sol.

20 (1—€p)

ap —

_ apTiM
1—apép by = 2(167 §p1) T £p<€f< ") -

(33'*), T+1 — 'T*>7

Proof. Let x* € Sol, then from Lemma 2.6.1(i) and (5.3.11), we have

[y

IAINA I

IA

This implies that

241 — 27|

IA

llwé f(xx) + (1 = awpuB)Tywy, — 2|2
|l (&£ (x1) — pBa*) + (I — cpuB) T wy, — (I — aguB)a*||?
(1 = aguB) Ty wy — (1 = appB)a”||* + 200§ f () — pB(a"), wpr — 27)
(1 — ayr)?[fwy, — *|[* + 20,&(f () — f(a"), g1 — 27)
20 (€ f (") — uB(27), 21 — %)
(1 — awr)?||z — 2*|[* + 200 pl| — 2*|[[|n 0 — 27|
20§ f(2") — pB(2"), s — 2)
(1 = apr)?lfax — 2*|* + arép(llex — *|° + [Jage — 27|])
(

+2au(Ef(x") —

pB(x

)7$k+1 -z >

(1 fzk_T)Oj z akngxk I %(5]‘(%*) — uB(z), 2y — )
e gp<5f< ) = uB(@), wp — )

Q 250 ) - |

A (o T g ) k)

(1 — ax)sk + aiby,

where the exists of M; follows from the boundedness of {x;}. This established (i).
Next, we proof (ii). Since {z} is bounded and «y, € (0,1), then we have that

sup by, < sup

k>0

k>0 2

I
(T —&p)

(73 + 20[ef (@) = B[l = a*]]) < o

We next show that limsup,_,. by > —1. Assume the contrary that limsup,_,. b < —1,
which implies that there exists ky € N such that b, < —1 for all £ > kj. Hence, it follows

from (i) that

Sk+1

A A

IN

(1 — ag)sg + arby
(1 — ag)sp — ax
sk — ag(sp + 1)

sk — 2(1 — &p)ay.
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By induction, we get that

k
Skt < Spg — 2(7 — &p) Z o for all %k > k.

i=ko

Taking lim sup of both sides in the last inequality, we have that

k
limsup sy, < s, — lim 2(7 — &p) E a; = —00.
k—o0 k—o0 —
1=R0

This contradicts the fact that {s;} is a nonnegative real sequence. Therefore, lim sup,._, . by >
—1. L

Lemma 5.3.6. Let {xy,} be subsequence of the sequence {wy} generated by Algorithm
5.3.1 such that x,; — p € C. Suppose ||z — yi|| = 0 as k — oo and liminf; . Ag, > 0.
Then

(i) 0 < liminf(Axy,, x — xy,), for all v € C;
j—o0
(ZZ) P < QVIP-

Proof. (i) Since y, = Po(wr, — Ay, Axy;), from the variational characterization of Py
(2.2.2), we have

<ZL’k]. - )\k].AZL'k]. — Yk T — yk:j> <0, Vaxel.
Hence

<‘rkj — Yk, L — ykj) < )\kj <A‘/Ekj7'r - ykk>
= )\kj <A$kj,$kj - yk]> + )\kj <Axkj7$ - :Uk’k>

This implies that
<£L‘kj = Yk, s T — ykj> + )\kj <A93kj,ykj — ZL‘kj> < )\kj <A9$kj,$ — xkk) (5328)

Fix z € C and let j — oo in (5.3.28), since ||z; — yx,;|| — 0 and by condition (C2),
liminf; ;. Ax; > 0, we have

0 < liminf(Azy,, v —xy,), Vazel. (5.3.29)

J—00

(ii) Let {¢;} be a sequence of decreasing non-negative numbers such that ¢; — 0 as
J — oo. For each ¢;, we denote by IV the smallest positive integer such that

(Azp,,x —xp;) +¢,>0, Vji>N
where the existence of N follows from (i). This implies that

(A, + €jty, — 1) >0, Vj >N,
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for some ¢, € H satisfying 1 = (Axy,,tx,) (since Az, # 0). Since A is pseudo-
monotone, then we have from (i) that

(Az + €ty;), x + €jty, —ap;) >0, Vj >N
which implies that
(Az, 2 —21;) > (Av — Az + €jty;), T + €ty — ap;)
—ej{Ax,ty;) Vij>N. (5.3.30)

Since ¢, — 0 and A is continuous, then the right hand side of (5.3.30) tends to zero.
Thus, we obtain that

liminf(Az,z —25,) >0, VaeC.

Jj—00
Hence

(Az,x —p) = lim (Av,z —23;) >0, Vzel.

Jj—00

Therefore from Lemma 2.6.9, we obtain that p € VI(C, A).

We are now in position to prove the convergence of our Algorithm.

Theorem 5.3.7. Let C' be a nonempty closed and convex subset of a real Hilbert space H.
Let A : H — H be a pseudo-monotone and L-Lipschitz continuous operator andT : C — C
be a (-demi-contractive mapping with constant 5 € [0,1) and demiclosed at zero. Suppose
Sol .= Qyp(F(T), let B: H— H be a k-Lipschitzian and n-strongly monotone mapping
with k>0 andn >0 and f : H— H be a p-Lipschitz mapping with p > 0. Let 0 < p < i—Z
and 0 < &p < 7, where T = Su(2n — pk?). Let {ay} and {v;} be sequences in (0,1),
{zx} such that Assumptions (C1)-(C3) are satisfied. Then sequence {xy} generated by
Algorithm 5.5.1 converges strongly to a point z', where 17 = Py (I — uB + £f)(27) is a
unique solution of the variational inequality

(uB = &f)at,at —2) <0, V z € Sol. (5.3.31)

Proof. Let x* € Sol and put Ty, := ||z — z*||*. We divide the proof into two cases.
Case I: Suppose that there exists kg € N such that {I'y} is monotonically non-increasing
for k > ko. Then {I'y} converges and therefore

Dy — Test = 0, 1 — 00 (5.3.32)
Let 2z = (1 — vg)wy, + v Twg, then using Lemma 2.6.1(iii), we have
lze —2*|F = [[(1 = o) (wi — 2*) + op(Twy, — 2*)||?
= (1 —wp)lfwy, — 2*[|* + vl [ Twy — ™[] = vp(1 — v) [[wy, — Twy|?
(1= o) [Jwg — 2 + op([Jwg — 2*[* + Bl [wy, — Twy )

—vg(1 — ) |Jwg — Twy[?
[wi — 2*|]* — vr(1 — v — B)||wr — Twy| > (5.3.33)

IN
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Then, from Lemma (2.6.1)(i) and (5.3.17), we have

o —2*|* = [lowéf (@) + (1 — awpB)z, — 2|
o (&f () — pB(™)) + (1 — awpB) (21, — 27)||*

< (1= 0Bl — o + 200 (2a) — B, i — )
< (1= apm)(JJwp — 2> = v(1 = v = B)||wi, — Twy| [*)
+200(§ f (1) — pBa™, Tpp1 — 27)
. 2—o0
< (- awr) (Jlow = = 2l - )

—(1 = ag7)op(1 — vy — B)[wy, — Twy|?
+20 (& f(xg) — pBx™, x5 — 7). (5.3.34)

Hence
2—0 9 (|2 *] |2
(L =) { —— | Mo —@ll” < (1= )z = 27| = | — 27

204, (§ f(wr) — pBx™, Tpyy — %)
< Ty —Tipr — oM 4 200 (E f (2) — pBr™, 2pq1 — 27),

for some M > 0. Since a; — 0 and from (5.3.32), we have

9 _
( UU)||wk—mk||2—>O, n — 0o0.

Therefore
lim |Jwy — x| = 0. (5.3.35)
k—oo
From (5.3.25), we have
1+0)
(Tr — Yr, d(zp, i) < ((1_—0))0_2||wk — x| (5.3.36)
Using (5.3.15), we have
(1+6)?
|z — yil]* < ﬁ”wk — x]|%. (5.3.37)

=

From (5.3.35) and (5.3.37), we have
|lzr —yll =0,  n— o0 (5.3.38)

Therefore
Jwr — yrl| < [lwg =zl + [|2x — yel[ = 0, 1 — oo, (5.3.39)

Also from (5.3.34), we have
(1 = apm)ve(l — v = B)|Jwe — Tw] | < (1 = awr)|ag — 27[|* = ||wpsr — 27|
20 (E f (w) — uBa™, Tpp1 — 27)
Ly — T —apM
+200(E f (w) — Bz, 2p41 — 27),

IN
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for some M > 0. Since ay — 0 and from (5.3.32), we have
ve(1 — vp — B)||wy, — Twi|]* = 0, n — oo.

Therefore from condition (C3), we have

lim ||wg — Twy|| = 0. (5.3.40)

k—o0
Furthermore, from (5.3.40)

lze —will = [[(1 = vp)wi + viTwi — w]

= vgllwg — Twg|| = 0, n— oo, (5.3.41)

and
|zrar — 2l = [lowdf(wr) + (1 — owpB)ze — 2|
= oll&f(xx) — uB(zp)|| = 0, n — oc. (5.3.42)

Therefore from (5.3.35), (5.3.41) and (5.3.42), we have

Nzks1 — xkll < |legsr — 2zil| + |2k — wi|| + ||wk — 2k|| = 0,  n — oo. (5.3.43)

Since {x)} is bounded, there exists {xzy,} of {zx} such that xy, — p € H. From (5.3.40)
and the demiclosedness of I —7T" at zero, we have that p € F(T'). Also, since ||zx—yx|| — 0,
we have from Lemma 5.3.6 that p € Qyp. Therefore p € Sol := Qyp N F(T).

Next we show that limsup,_, . ((uB =& f)z*, 2" —xx) < 0, where 2* = Py (I —uB+&f)x*
is the unique solution of the variational inequality

(uB = &f)x",x —a*) >0, Vuxe Sol
We obtain from (2.2.2) and (5.3.43) that
fmsup((aB — &)2°, o —iss) = Tmsup((uB — €72 " — i)
—00

k—o0
— I ((uB — €2 — p)
< o (5.3.44)

Finally, we show that {x)} converges strongly to z*. By Lemma 5.3.5(i), we obtain

Cipr < (1 —ap)ly + apby, (5.3.45)

where a; = 201”1(;:5)”), b = St My — Ep(ff( *) — puB(z*), vgr1 — x*), for some M; > 0. It

is easy to see that a;, — 0 and Z a = 00. Also by (5.3.44), lim sup,,_, . bx < 0. Therefore,
k=1
using Lemma 2.6.30 in (5.3.45), we obtain

lim ||z —2*|| =0,
k—o0
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and hence {z}} converges strongly to z* as k — oo.

Case II: Assume that {I'x} is not monotonically decreasing. Let 7 : N — N be a mapping
for all k > ko (for some kg large enough) defined by

7(k) :=max{j e N: j <k, [, <T;}
Clearly, 7 is a non decreasing sequence, 7(k) — 0 as k — oo and
0<TI7w <Tryr1, VA= ko
Following similar process as in Case I, we have

|wry — Twey]| = 0, &k — oo,

|zr )41 — Tz [| = 0,k — o0,

and
limsup((uB — £f)x", 2% — Tr(k)41)- (5.3.46)

k—o0

Since {4} is bounded, there exists a subsequence of {x. ()} still denoted by {x()}
which converges weakly to z € C. By similar argument as in Case I, we conclude that
z € Sol := Qyrp N F(T). From Lemma 5.3.5(i), we have

Frey41 < (1— a’T(kJ))F’T(k‘) + aT(k)bT(k)- (5.3.47)
Also a,p) — 0 as k — oo and limsupy,_,, b-x) < 0.
Since I'zr) < T'rpy41 and arx) > 0, we have
[|2rk) — 2] < brry.

This implies that

lim sup |-y — *|[? = 0,
k—o00

and thus
li —z*|| =0.
Jim [jz7 — 27| =0

Also from (5.3.47) we obtain

lim sup ||z, +1 — 2| < limsup ||z, ¢) — 2*[*.
k—ro0 k—o0

Therefore
Jim [z 40 — 27| = 0.

Furthermore, for k > ko, it is easy to see that I'; 4y < Iy if & > 7(k) (that is 7(k) < k),
because I'; > I';4; for 7(k) + 1 < j < k. As a consequence, we obtain that for all £ > ko

0 <T% < max{T ), Frgy+1} = Treysa-

Hence I'y, — 0 as & — oo. That is, {x;} converges strongly to x*. This completes the
proof. O]
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5.3.2 Application to Split Equality Problem

Let Hy, Hy and Hj be real Hilbert spaces, let C C H; and Q C Hs be nonempty closed
convex sets, let A : Hi — Hs and B : Hy — H3 be bounded linear operators. The Split
Equality Problem (shortly, SEP) is to find (see [183])

r e C,ye @ suchthat Ax = By. (5.3.48)

The SEP allows asymmetric and partial relations between the variables z and y. If Hy =
H3 and B = I (the identity mapping), then the SEP reduces to the Split Feasibility
Problem (SFP) (1.1.9). The SEP (5.3.48) covers many situations, such as for instance in
domain decomposition for PDE’s, game theory and intensity-modulated radiation therapy
(IMRT) [15, 63].

In this subsection, we adapt our Algorithm 5.3.1 to solve the SEP (5.3.48). Before that,
let us first prove some lemmas which will be of help.

Lemma 5.3.8. [00] Let S =C x Q C H := Hy X Hy. Define K := |
Hy x Hy and let K* be the adjoint operator of K, then the SEP (5.3
as

A, B]IH1XH2—>

48) can be modified

Find z=(z,y) €S such that Kw =0, (5.3.49)

where w = { v } 1s the vector associated with z.

Lemma 5.3.9. Let H = Hyx Hy, define M : H — H by M (w) = M(u,v) := (¢1(u), p2(v)),
w = (u,v) € H, where ¢; : H — H are k;-Lipschitz and n;-strongly monotone mapping
with k; > 0 and n; > 0, 1 = 1,2. Then M s k-Lipschitz and n-strongly monotone where
k = max{ky, ko} and n = min{n;, n.}.

Proof. Let x = (x1,y1), y = (z2,92) € H, then we have

(Mz — My,z—y) = ((d1(z1), P2(y1)) — (¢1(x2), P2(y2)) (21 — T2, Y1 — ¥2))
= <(¢1($1) - ¢1($2), ¢2(y1) - ¢2(y2)), (-TC1 — T2, Y1 — y2)>
= ($1(z1) — ¢1(22), 21 — T2) + (D2(y1) — P2(y2), y1 — ¥2)

M|y — x| [* + 7ol ly1 — wl]?

min{n, 2} (|21 = 22| 4[|y — val*)

nllz — yl?.

(AVARVS

Hence M is n-strongly monotone , where n = min{n;,n,}. Also

Mz — My|]> = |[(¢1(z1), d2(m1)) — (¢1(x2), d2(y2))]|?
= |[(¢1(z1) — d1(w2), d2(y1) — da2(12))?
p1 (1) — d1(22) |1 + o2 (1) — da(va)|]?

< Kllen — x| P+ K3llyn — ol
< max{k7, K3} (|21 — 22|* + [ly1 — g0l )
= Kz -yl
Hence M is k-Lipschitz with k& = max{k, ka}. O
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In a similar fashion as in Lemma 5.3.9, we can prove the following results.

Lemma 5.3.10. Let H := Hy X Ho, let f: H — H be defined by f(u,v) = (fi(u), fa(v)),
w = (u,v) € H, f; + Hi — H; is p;-Lipschitz mapping with p; > 0, 1 = 1,2. Then f is

p-Lipschitz mapping with p = \/max{p1, p2}.

Lemma 5.3.11. Let H := Hy X Hy, let T : H — H be defined by T'(u,v) = (T1(u), Ty (v)),
w = (u,v) € H, T; : H; — H; is p;-demi-contractive mapping with 3; € [0,1), i =
Then T is [3-demi-contractive mapping with f = max{f, B2}.

We now adapts our algorithm to solving the SEP.

Let H, S, and K be as defined in Lemma 5.3.8. Let T be as defined in Lemma 5.3.11 such
that

Qspp = {(x,y) € F(T}) x F(Ty) : Az = By} # 0.
Let M and f as defined in Lemma 5.3.9 and Lemma 5.3.10 respectively such that 0 < pu <
21 and 0 < €p < 7, where T = 1u(2n — pk?). Let {ax} and {vx} be sequences in (0,1) and
{zx} = {(zg, yx)} be generated by the following Algorithm.

Algorithm 5.3.12.

Step 0: Choose initial guess zy = (x1,y1) € H and parameters 0,y € (0,1), o € (0,2). Set
k=1.

Step 1: Compute
tk = Ps(Zk — )\kK*K(Zk)), (5350)

where A\, = 7, and l;, is the smallest non-negative integer satisfying

M [K K (21,) — KK (t)[| < 0]]20 — ti]-

Step 2: Compute
d(Zk,tk) = Zk — tk — )\k<K*K(Zk) — K*K(tk»,

W = 2 — U&kd(zk, tk),
where ( b d(zn. 1)
2k — Uk, Zks Uk .
iof  d(zp,t 0,
So=1 " Tl fodat) #

O, Zf d(Zk,tk) =0.

Step 3: Compute
zr1 = f(2r) + (1 — appM) (v Twy + (1 — v )wy,).

Set k < k+1 and go to Step 1.
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Remark 5.3.13. Let z = (x,y), we know that

PS(Z> = (PC<$)’ PQ(Z/))'

Also, since
K =[A—-B], and K*= {ilB* ] :
then
. | A*A —-A'B x
K Kw = [—B*A B*B }[y}
| A*(Az — By)
_ [aeon ] s

Define the function F': Hy x Hy — H; by

andG:H1XH2—>H2by

G(z,y) = B*(By — Ax).
Now, by setting zx = (g, Yx), tx = (ug,vg) and wy = (sk, ex) in Algorithm 5.3.12, then
Algorithm 5.3.12 can be rewritten in the following simultaneous form:

Algorithm 5.3.14.

Step 0: Choose initial guess (x1,y1) € Hy x Hy and parameters 6, € (0,1), o € (0,2). Set
k=1.

Step 1: Compute

up = Po(r — MeF (wr, yr)), (5.3.52)
vp = Po(ye — MG (1, Yk)),
where N\, = 7, and l;, is the smallest non-negative number satisfying
NI (o ye) = F (s o)1 411G (ar, yi) — G ug, vi)|[7)
< (J|lzx — wrl)® + [Jyk — vil %) (5.3.53)
Step 2: Compute
cx = (z — u) — Me(F(wp, yr) — F(ug, vg))
di = (yr — vr) — Me(G(@k, y) — Gluk, vr)),
and
=xr — 00
SRR OO (5.3.54)
ex = Yr — 00xdg,
where y
5, = (T, — up, k) + (Yr — Vi, di) (5.3.55)

[ewll? + [l [?
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Step 3: Compute

Tpp1 = € fi(ze) + (1 — agppdpr) (viTrsy + (1 — vg)sk), (5.3.56)
Yrr1 = arl folyr) + (1 — appgo) (viTaty + (1 — vg)e).
Set k < k+1 and go to Step 1.
We now prove the convergence of Algorithm 5.3.14 using Algorithm 5.3.1.
Let (z*,y*) € Qggp. Observe that
sk — 2P +[lte = y* 17 = lox — 2" — odpcr|® + [lyr — y* — o0pd|
< g = 2| + [lyr — v 11> = 2006 ((x1, — 2%, c) + (yp — ¥, di))
+0? 0 ([lex]” + [ del?)- (5.3.57)
But
(T — 2" ) + (e — ¥ di) = (Tp — up, ) + (up — 27, cp)
(Yk — Ok, die) + (vk — ", di),
and
(ue — 2%, ) + (o — y*, di) > 0.
Hence
(e — 2% cx) + (Ye — ¥*, di) > (Tp — Up, ck) + (Yr — Uk, di). (5.3.58)

Therefore from (5.3.57) and (5.3.58), we have

sk = 2P+ llye =y 117 < Maw — 2P+ Hye = y7|* = 200 (2 — ur, c) + (g — vr, dic))
+0 05 ([lex| [ + [ldl ). (5.3.59)

From the definition of §; and (5.3.54), (5.3.54), we have

O({zr — wps ) + (o — vk, di)) = G(llexll* + [|dil )
1
= 5 (llsk = 2ell” + lltx — wl"). (5:3.60)
Hence from (5.3.59) and (5.3.60), we get

2—0

) (st = 2l + 1t — vl

< loe = 2P+ lye — 7% (5.3.61)

s — 12 + Nl — ' < ||xk—x*||2+||yk—y*||2—(

Following similar approach as in (5.3.27), we get

|kpa = 2] + [[ypss — 27| < maX{Hxl — 2|+ gy = y7ll,

[16/1(2%) = ma (@] [1€2/2(4") — padaly)l }
71 —&p1 Ty — a2 '

Hence {||xgr1 —2*|| +||yre1 — y*||} is bounded and consequently, {||zx —x*||}, {||yx —v*||}
are bounded. Thus, {z;} and {y} are bounded.
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Lemma 5.3.15. Suppose Qspp = {(z,y) € C x Q : Ax = By} # (. Let A\, be a se-
quence in (0, W), such that (5.3.53) holds and suppose lim inf,, o A\ (2— N\, (|| A|*+
1BlI?)) > 0, ||zx — ukl] = 0,||lyx — vx|]| = 0 as k — oo. Then, there exist (Z,y) € Qspp
such that x; — T and yp; — y, where {xy;} and {yx;} are subsequences of {xy} and {y}
generated by Algorithm 5.5.1/.

Proof. Let (z*,y*) € Qsgp, then from (5.3.52), we have

Jur, — 2*|]> = ||Pe(zp — MeF (@, yr)) — 2*| |
< ok — Me(A*(Azy — Byg)) — 2|
S Hl’k — SL’*H2 — 2)\k<Axk — A(E*, A.Q?k — Byk>

AARIAIP[| Az — Bygl|*. (5.3.62)

Similarly, we have

IN

Iy = y*[1* + 2\ By — By”, Az — Byy)
+ X B|1|| Az — Buyxl|*. (5.3.63)
Adding (5.3.62) and (5.3.63) while noting that Az* = By*, we have

g = 2" |2+ {lo =y |P < e = 2717+ llye — 9711 = A2 = (AP + [ B])) x

ok — y7|I*

||Azy, — Byl (5.3.64)
Also, note that
= 2|+ Mo = 7| = lue — 2pl|* + 2(up, — 2p, 25 — 24 — 27)
ek — 2+ ok — ysl* + 200k — yi, e — ¥7)
ke — 1% (5.3.65)
Then from (5.3.64) and (5.3.65), we have
kh—>r20 ||Azy — Byi|| = 0. (5.3.66)

Without loss of generality, we may assume that x;, — T and y,, — ¥y for some T € H;
and y € Hy. Since {z} is a sequence in C, we know that £ € C. Similarly, ¥ € Q. Since
Ty, — T and yg;, — ¥, it follows that Az, — AT and By, — By. Hence Awxy; — By, —
Az — By. By the lower semicontinuity of the squared norm, we have

|Az — By||* < liminf [|Azy, — By, ||> = lim |[Azy — By||* = 0.
k—o0 k—o0
Hence AZ = By. Therefore (z,7) € Q. O

Now using Lemma 5.3.15 and following the line of argument in Theorem 5.3.7, we can
prove the following result.

Theorem 5.3.16. Let H, S, and K be as defined in Lemma 5.5.8. Let T be as defined
in Lemma 5.3.11 such that T := {(z,y) € F(T}) x F(Ty) : Ax = By} # 0. Let M and f
be as defined in Lemma 5.5.9 and Lemma 5.5.10 respectively such that 0 < p < i—;? and
0 < &p <, where T = (20 — pk?). Let {ay,} and {vy} be sequences in (0,1) satisfying
condition (C1) and (C3) and let \,, be a sequence in (0, W), such that (5.3.53) holds
and liminf, . A\, (2 — M\, (||A||? + || B||?)) > 0. Then the sequence {(zx,yx)} generated by
Algorithm 5.3.14 converges strongly to a solution (u,v) € I.
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5.3.3 Numerical examples

In this subsection, we present three numerical examples which demonstrate the perfor-
mance of our Algorithm 5.3.1. Let T': H — H be defined by

T —ar if w0, (5.3.67)
xr = L0,
—2x, if  x>0.

It easy to see that T' is demi-contractive mapping with § = %, and F(T) = {0}. We let

f:],B:%],thenpzlandnzlzk. HenceO<u<i—2:2. Let us choose p1 =1 so
that 7 =1 — /1 — p(2n — pk?) = 1. As 0 < &p < 7, we have £ € (0,2). Without loss of

generality, we choose £ = 1.

In each example, we fix the stopping criterion as ||zxy1 — 2| = € < 107°, o = 0.7,

v = 0.54, \; = 0.15 and let o = - and v, = 2243 The projection onto the feasible
k1 1h+12

set C' is carry-out by using the MATLAB solver ’fmincon’ and the projection onto an
hyperplane @ = {x € H : (a,z) = 0} is defined by

Po(x)=o— %a.

Example 5.3.17. First, we consider the Hp-Hard problem. Let A : R™ — R™ define by
Ax = Mz + q where
M =NN"+5+D,

N is a m X m matrix, S is a m x m skew-symmetric matrix, D is a m x m diagonal
matrix, whose diagonal entries are nonnegative so that M is positive definite and ¢ is a
vector in R™. The feasible set C' C R™ is the closed and convex polyhedron which is
defined as C' = {z = (x1,22,...,2,) € R™ : Qz < b}, where @ is a [ X m matrix and b
is a nonnegative vector. It is clear that A is monotone (hence, pseudo-monotone) and L-
Lipschitz continuous with L = ||M||. For experimental purpose, all the entries of N, S, D
and b are generated randomly as well as the starting point z; € [0, 1]™ and ¢ is equal to
the zero vector. In this case, the solution to the corresponding variational inequality is
{0} and also, Sol := Qyp N F(T) = {0}. We take m = 50,100,200 and compare the
output of Algorithm 5.3.1 with Algorithm (5.3.5) and Algorithm (5.3.3). The numerical
results are reported in Table 5.4 and Figure 5.5.

2

Example 5.3.18. Let H = L2([0,27]) with norm ||z|| = (77 |z(t)[?dt)? and inner
product (z,y) = fo%r x(t)y(t)dt, xz,y € H. The operator A : H — H is defined by

Az(t) = 1 max{0,z(t)}, t € [0,2n] for all € H. It can easily be verified that A is Lip-
schitz continuous and monotone. The feasible set C' = {z € H : f027r(t2 + Dz(t)dt < 1}.
Observe that Sol = {0}. We choose the following starting points and compare the result

of Algorithm 5.3.1 with Algorithm (5.3.5) and Algorithm (5.3.3).
(i) 21 =~ exp(=3t), (i) o1 = —— sin(3mt)cos(2mt), (iii) 21 = — cos(3t) exp(21)
i) @1 = gt exp o (i) 21 = 5o sin(3mt)eos(2mt), - (itd) 21 = xp(2t).

The numerical results are shown in Table 5.5 and Figure 5.6.
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Example 5.3.19. Finally, we consider the Kojima-Shindo nonlinear complementarity
problem (NCP) which was considered in [171], where n = 4 and the mapping A is defined
by
322 + 2x1219 + 203 + 23 + 314 — 6
223 + w1 + a3 + 10x3 + 224 — 2
323 + x1w9 + 223 + 213+ 914 — 9
x? + 3735 + 2w3 + 314 — 3

A(xh Lo, X3, l‘4> —

(5.3.68)

The feasible set C' = {x € Ri X1 + x9 + x3 + x4 = 4}. We choose the following starting
points and test our Algorithm 5.3.1 with Algorithm (5.3.5).
(1) z1 = (2,0,0,2), (i) 21 = (1,1,1,1), (i) 3 = (1,2,0,1).

The results are summarized in Table 5.6 and Figure 5.7.

Table 5.4: Numerical results for Example 5.3.17.

[ Alg. 5.3.1 Alg. 5.3.5 Alg. 5.3.3 |
m = 50 CPU time (sec)  3.7937 12.5925 9.5794
No. of Iter. 8 8 30
m = 100 CPU time (sec) 4.7710 15.6752 12.5470
No. of Iter. 9 9 31
m = 200 CPU time (sec)  5.2795 16.6502 13.5667
No. of Iter. 10 10 33

Table 5.5: Numerical results for Example 5.3.18.

|21 = Alg. 5.3.1 Alg. 5.3.5 Alg. 5.3.3 |
5t exp(—3t) CPU time (sec)  0.4405 0.9491 1.5811
No. of Iter. 6 12 28
55 sin(3mt)cos(2mtCPU time (sec)  0.4423 0.5964 6.4044
No. of Iter. 7 9 29
= cos(3t) exp(2t) CPU time (sec)  3.6693 5.2286 7.0858
No. of Iter. 7 14 34

Table 5.6: Numerical result for for Example 5.3.19.

[z = Alg. 5.3.1 Alg. 535 |
(2,0,0,2) CPU time (sec) 2.4540 6.0885
No. of Iter. 9 6
(1,1,1,1) CPU time (sec) 4.2861 16.6686
No. of Iter. 10 18
(1,2,0,1) CPU time (sec) 6.8174 15.6381
No. of Iter. 24 19
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CHAPTER 6

Split Feasibility Problems in Banach Spaces

Let Ey and F» be Banach spaces and let C' and () be nonempty closed convex subsets of F;
and Ey respectively. Let A : Fy — E5 ba a bounded linear operator and A* : E5 — Ef be
the adjoint of A. Recently, the study of SFP (1.1.9) in real Banach spaces has experienced
an explosive attention after Schopfer extend the SFP (1.1.9) from real Hilbert space to
p-uniformly convex real Banach spaces which are also uniformly smooth. He introduced
the following algorithm and proved its weak convergence to solution of SFP (1.1.9) in
Banach space: for x; € E, set

Tpi1 = Mo JP [T (2,) — t, A" TP (Az, — Po(Az,))], n>1, (6.0.1)

where I denotes the Bregman projection from E; onto C' and J¥ is the duality mapping
with the condition that Jf is weak-to-weak continuous. Based on an idea in Nakajo and
Takahashi [192], Wang [265] introduced the following algorithm with strong convergence
property: for any initial guess zo € Fy, define {z,} recursively by

Yn = TJJn,
D, ={u € E: D,(yn,u) < Dp(x,,u)},
E,={ueE: (v, —u,Jlxog— Jx,) > 0},

Tnt1 = HDnmEn (350),

(6.0.2)

where T'x,, is defined for each n € N by

Hci(n)(l') 1<i(n)<r,
Thr = Ef 1 1E « TE
Jo [T e =, AT (T — PQi(n))Aa:},

i : N — I is the cyclic control mapping i(n) —n mod(r + s) + 1, and t,, satisfies

q -t
0<t<t, < ( ) .
CollA[IP
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Motivated by the ongoing effort on SFP (1.1.9) in Banach spaces, in this chapter, we
introduce some new iterative methods for solving SFP (1.1.9) and its generalizations in
real Banach spaces.

6.1 Split Equality Variation Inclusion Problems in
Banach Spaces without Operator Norms

Let Ey, E5, E5 be Banach spaces, M; : By — 2F1 and M, : E; — 272 be maximal monotone
operators. The Split Equality Variational Inclusion Problem SEVIP is defined as: Find
r* € E; and y* € Ey such that

{ 0 € My(z*) and 0 € Ma(y"), (6.1.1)

Ax* = By*,
where A : E1 — E3 and B : E5 — FE3 are bounded linear operators.

In this section, we introduce an iterative algorithm with a self adaptive stepsize and prove
a strong convergence theorem for approximating solution of SEVIP (6.1.1) in p-uniformly
convex Banach spaces which are also uniformly smooth such that the ardours task of
computing operator norms is avoided.

6.1.1 Main result

Theorem 6.1.1. Let Ey, Ey and E3 be p-uniformly convex real Banach spaces which are
also uniformly smooth. Let C' and () be nonempty closed and convex subsets of Ey and Es
respectively, A : B — E3 and B : Ey — E3 be bounded linear operators. Let Ty : E; —
281 and Ty — 2F% be mazimal monotone operators such that ' := {(z,y) € T, *(0) x
T, '(0); Az = By} is nonempty. For fived w € E; and v € Es, choose an initial guess
r1 € Ey and y, € Ey arbitrarily and let {a,} C [0,1]. Assume that the nth iterate
(Tn, Yn) € E1 X By has been constructed; then we calculate the (n+1)th iterate (x,11, Yni1)
via the formula

R)\Tqu (JEl(ﬁn) — 1, A* T3 (Axy — Byn)),

Tn+1 = (anJEl (u) +(1— Oén)JEl (un)),
R)\ngq (JE2 (yn) +1 B*JEs(Axn - Byn))

Yni1 = Jp* (B2 (0) + (1= o) S (v)),

(6.1.2)

where A > 0, A* and B* are the adjoints of A and B respectively and the stepsize t, is
choosen in such a way that

A n - B n P q%
tn € (e( = al|Azn = Byn|| = —e> 1), neq, (6.1.3)
Cq”A*JP (A$n_Byn)||q+Qq||B*Jp (Axn _Byn)Hq

for small enough €, otherwise t,, = t(t being any nonegative value ), where the set of indices
Q= {n: Az, — By, # 0}. Suppose the following conditions are satisfied:
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(1) lim a,, =0,
n—oo

(i) D7 o = 00.

Then, the sequence {(xn,yn)} strongly converges to (z,y) = (Ir,u, Ip,v), where I'; = {z €
E; :0€Ti(2)} fori=1,2, and Iy, and Iy, are the Bregman projections onto I'y and I'y
respectively.

Proof. We divide the proof into three steps:
STEP 1: We show that the step size (6.1.3) is well define. Observe that for any (z,y) € T',
we have

(A*Jf3 (Az, — By,), T, — ) = <Jf3(Axn — By,), Az, — Az), (6.1.4)
and
<B*Jf3(Axn — BYn),y — yn) = (JpE3(Amn — By,), By — By,,). (6.1.5)
By adding (6.1.4) and (6.1.5) and taking into account the fact Az = By, we have
Az, = Byall? = (A" JE(Av, — By, 2, —a) + (BJE (Az, — Bya).y = ya)
< 1A (Awy = Bya)lll|Azn — 2| + ||B* 1y (Azn — Bya)lllly — yal |-

Therefore, for n € Q, that is, ||[Az, — By,|| > 0, we have ||A*J(Az, — By,)|| # 0 and
||B*(Ax, — By,)|| # 0. Thus t,, is well defined.

STEP 2: We show that the sequences {x,} and {y,} are bounded. Now let (z*,y*) € T,
then from (6.1.2), we have that

Dy(tn, z*) = Dy(Raqy JIT(JF () — ta A" (Azy, — Byy)), z¥)
< Dp(Jqu (JpEl(xn) — znA*JpES (Az, — By,)), x*)

1 * *
= 5\|Jfl(f€n) — ty AT Ay — By = (T (), 27)

1
+tn (A" (A, — Byn), 2") + ];Ill’*llp

IN

1 C
5I|Jf1 (@) = tu (S, (Azy, — Byy), Awn) + ft?LHA*J?(A% — By,)||*
_<Jfl (xn>vx*>
1
E: * *
+tn (S, (Azn — Byn), Az™) + I—jllﬂf I8

1 * 1 * *
= ngan — (JpEl(xn),x )+ 5\\33 [|? —tn(Jf3(Aacn — Byy), Az, — Ax*)

¢ ‘
+7th||14 Ty (Azn — By)||*

= Dy(y, %) — to(J*(Az, — Byy), Az, — Az*)
t4
+—Cf] 2| A* TP Az, — Byn)||%. (6.1.6)
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Following similar process as above, we obtain

DP(”m?f) < Dp(Jf;(JfQ@n) + tnB*JfS(AIn — Byn)), y") (6.1.7)
Qath || s
9 g A — B (6.18)

Adding (6.1.6) and (6.1.8), noting that Axz* = By*, we have

Dy(ta, %)+ Dyfvie ) < Dyl a°) + Dyl ") — 1l A2, — Byl

!

. (G 1A% 7, (Azy — Bya)||°

+Qq| | BT, (A, — Byn)llq)} . (6.1.9)

Thus
Dy (tn, ) + Dp(vn, y*) < Dp(x0, ") + Dp(yn, y"). (6.1.10)

Also from (6.1.2), we have

Dp(anrlu ZII*> = l)P(JqEf (an’]pEl (U) + (1 - Oén)JpEl (un)),x*)
anDy(u, ™) + (1 — ay) Dy (up, 7).

AN

Similarly, we have
Dp(yn+1>y*) S anDp(U7y*) + (1 - an)Dp(Umy*)- (6'1'11)
Hence

Dp($n+1,$*) + Dp(yn+17y*) S an<Dp(u7 ZL’*) + Dp(vvy*)) + (1 - an) X
(Dp(un, %) + Dp(vn, y*))

< an(Dy(u,2") + Dy(v,y7)) + (1 — an) X
(Dp(@n, %) + Dp(Yn, y*))
< max{Dy(u,x") + (Dp(v,y"), Dp(zn, ") + Dp(yn, y™)}

< max{Dy,(u,x") + (Dp(v,y"), Dp(x1,2") + Dp(y1,y")}-

Thus {D,(n+1, 2*)+Dp(Yn+1, y*) } is bounded. Consequently, {D,(z,,z*)} and {D,(y,, y*)}
are bounded. It therefore, follows that {z,}, {y.}, {u,} and {v,} are bounded.

STEP 3: Next, we prove that {z,} converges strongly to z = IIp,u and {y,} converges
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strongly to § = IIp,v. From (6.1.2), we have that

Dyfnna?) = Dyl (@ IE () + (1= an)(un)). =)

= Voland," () + (1 = an)(un), 27)

= Vy(and P (w) + (1= ) () — an(JP (u) — B (27)), )

(T (1) = JP ), JE (P 0) + (1 = ) () — )

= Vy(andB (@) + (1= an) (1), %) + A JE (1) — TP (&), 2oy — 27)
Dy(TE (00 (@) 4+ (1= ) (1), 2°) + 0l () = JP (0, 2001 — )
Dy(a",2") 4+ (1 = an) Dp(un, %) + an<Jfl(u) - Jfl ("), Tp41 — 27)
= (1= ) Dp(un, 2*) + an (S (u) — TP (@*), 21 — 2¥). (6.1.12)

IA
Q
3

Similarly, we have
Dp(Yn41,9*) < (1= n) Dp(vn, y*) + a2 (w) = J2(y"), Ynir — y).- (6.1.13)
Therefore, from (6.1.10) we have

Dy(nin a) + Dyl y) < (1= an)(Dplun, ) + Dyl 7))

o (S (u) = TP (27), i1 — %)

HE W) = T W) s = 0)

(1= ) (Dyan, 2°) + Dyl y"))

o (S (u) — P (2%), Tgr — 2¥)

HIP2 () = TP () Y —y7))- (6.1.14)

IN

Now, we set ©,,(x*,y*) := Dy(xn, 2*) + Dp(yn, y*), and divide the remaining part of the
proof into two cases.

Case A: Suppose there exists ng € N such that {©,(z*,y*)} is monotonically non-
increasing for all n > ng. Then {O,,(z*, y*)} converges as n — oo and so

O, (2", y") — Op1(x*,y*) = 0, n— oc.
Let M, := Cy||A*J[3(Ax, — Byn)||? + Qq||B*J[* (Ax,, — By,)||?, then from (6.1.9), we
have
t[llAz, — Byl = %=, < Dyfana®) + Dyluny)
—(Dp(un, %) + (Dy(vn, y")), (6.1.15)
and therefore,

q—1

b4z, = BonlP = 2M,] < Dyl )+ Dyl ) = (Dyltnsa”) + (Dyfonet)

n( ’ ) @n+1(x*7y*) + ®n+1(1‘*7y*)
(Dp(um *) + (Dy(vn, y)). (6.1.16)
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Moreover, it follows from (6.1.14) and (6.1.16) and the fact that «,, — 0 as n — oo that

t%_l * * * * * *
tn |:‘|A$n - B?Jan - q Mn:| S @n(x » Y ) - @n—&-l('x Y ) + (1 - an)<Dp(un7x ) + Dp(vnvy ))

+an((Jfl(u) — Jfl (%), Tpyq — )

+(J2(0) = I (W), Ynsr — ¥7))
—(Dp(t, ") + (Dp(vp,y*)) = 0, n — oo. (6.1.17)

Again, by the condition on the stepsize t,, we have that

tz—l < q”Aan\; Byn“p —e

which implies that
t M, < q||Ax, — By,||P — €M,
and thus

eM, ta—1
— By,|? —

Therefore,
C’q||A*Jf3(Axn — By,)||* + Qq||B*Jf3(A:Bn — By,)||* = 0, n— .
It follows that
lim ||A*JE (Az, — By,)||* =0 and Jim || B JE(Az, — By,)||"=0.  (6.1.18)

n—oo

Also, we have from (6.1.17) that
tallAzn = Bynl[” < an(Dy(u, &%) + Dy(v,57)) = (1 = n)On (2", y") — Onpa (27, y7)

q

t
+—=M, — 0, n— oo. (6.1.19)
q

Hence,

li_}In || Az, — By,|[P = 0. (6.1.20)

Let a, = Jg' (JP (2,) — t,A*JF3(Ax, — By,)) and b, = JE2(JF2(y,) + t,B* I (Az,, —
By,)), then u, = Rypa, and v, = Ryp,b,. Following similar argument as in (6.1.6),
(6.1.7),(6.1.8) and (6.1.9) we obtain

Dp(amx*) + Dp(bmy*) < Dp($n> ) + D (ym )
It follows from (2.5.28) that
Dp<an7 un) + Dp(bm Un) - Dp(an, RATlan) + D (bm RAszn

o~ —

< (Dplan, 27) + Dy(bn, y")) = (Dp(tn, 2*) + Dy(vn, y7))

< (Dp(@n: ") + Dyp(Yn: y*)) — (Dp(tn, ) + Dp(vn, y7))

= (Dp(@n, %) + Dp(yn, y")) = (Dp(@nt1, 77) + Dp(yns1,57))
+(Dp(xn+1a ) +D (yn+1:y*)) o (Dp<um x*) + Dp<vn>y*))

< (Dp(@n, 27) + Dp(yn, y")) = (Dp(@nt1, %) + Dp(Yns1,y7))

+an(Dy(u, ) + Dy(v,y7)) + (1 = an) (Dp(un, %) + Dp(vn, y))
—(Dp(tn, ") + Dy(vpn,y*)) — 0, n — oo.
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Hence,
lim D,(a,,u,) =0, and lim D,(b,,v,) = 0.

n—oo n—oo

Therefore,

lim ||a, —u,|| =0, and lim ||b, —v,|| = 0. (6.1.21)
n—oo n—oo

Since E; and FE, are uniformly smooth, then J and J2 are uniformly continuous on
bounded subsets of Fy and Ejy, respectively. Thus

lim ||J% a, — JPu,|| =0, and  lim [|J2b, — J20,|| = 0. (6.1.22)
n—oo n—oo

It follows from the definition of a,, that

0 1757 (@n) = T, ()|
tal| A*[|||7, (Az, — By,)|

= t,||AY|||| Az, — Byn||p_1 — 0, n — oo.

<
<

Since Jg ' is norm-to-norm uniformly continuous on bounded subsets of E}, we have

lim ||a, — z,|| =0, n — oc. (6.1.23)
n—oQ

Similarly, we can show that
lim ||b, — yn|| =0, n — oc. (6.1.24)
n—oo

It follows therefore from (6.1.21) that
un — zol| < ||tn — anl| + ||an — 20|] = 0, n — o0, (6.1.25)

and
on = ynll < v = bl + [[bn — yal| = 0, n — oco.

Furthermore, from (6.1.2), we have

Dy(zps1,un) < anDy(u,uy) + (1 — ay) Dy, uy)

= a,Dy(u,u,) -0, n — oo,

and
Dyt tn) < Dyl 0) + (1 — ) Dyt v2)
< a,Dy(v,v,) = 0, n — oo.
Hence
lim ||2p41 — up|| = Um ||yns1 — va]| = 0.
n—oo n—oo

This together with (6.1.25) implies that

|#n i1 = @nll < [2n41 = unll + [fun — zal| =0, (6.1.26)
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and
||yn+1 _yn” S ||yn+1 _Un” + ||Un _ynH — 07 n — 0.

Since {z, } and {y, } are bounded, there exist subsequences {x,, } of {z,} and {y,, } of {y,}

such that x,, = = € w(z,) and y,, — w(y,) respectively. Now, since lim ||u, — z,|| =0
n—oo
and lim ||v, — y,|| = 0, we obtain w,, — Z and v,, — 3. Let (z,u) € G(T}), that is
n—oo

z € Thu. Since u,, = Ryp,a,, for all A > 0, we have
S ay,, € (J7 + AT )uy,,

which implies that
1
A

By the maximal monotonicity of T}, we have

(S an, — T uy,) € Tity,.

1
(z — X(Jflam — Jflum),u — Up,) >0,

which implies that
> 1 Jo Jo
<Z7u - u'ﬂz> = X<u T Ny Jp Ay — Iy u'ﬂz>
It follows from (6.1.22) and the fact that u,, — Z that
(z,u—2x)>0.
Since T} is maximal monotone, we have 0 € T 7.
Following similar analysis as above, we obtain 0 € T5y.

Now, since A : F; — FE3 and B : E3 — FE3 are bounded linear operators, we have
Azx,, — AZ and By,, — By. By the weak lower semicontinuity of the norm and (6.1.20),
we have

1A% — Byl| < liminf[| Az, — By, || = 0.

Hence, Az = By.
We now show the sequence {(z,,y,)} strongly converges to (z*,y*) = (IIr, u, IIr,v). From
(6.1.14), we have

Dy(ns1,2%) + Dlgs1,y%) < (1= an) (Dyln, #°) + Dyl )
+an () (1) = I (27), Togs — 27)
H2 ) = L) ynr —y%). (6.1.27)
Choose subsequences {w,, } of {z,} and {y,,} of {y,} such that

lim SUPUfl (u) — Jfl (%), Ty — 2") = lim <Jfl (u) — J;;El($*)a Tnj41 —T"),
n—00 J—ro0

and

lim SUPU;%(U) - JpE2(y*)’ Ynt1 — y*) = lim <J52 (v) — JfQ (y*)aynjﬂ -y

n—o0 Jj—o0
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Since z,,, — Z and y,,, — ¥, it follows from (2.5.17) that
: F1 F1 * * o : F1 F1 * *
hgis;}p<']p (U) - Jp (iL' )7xn+1 - > - ]ILI?O<JP (U) - ‘]p (.CIZ' )7$nj+1 -z >
= (JP(u) — P (*),z — 2") <0, (6.1.28)

and

lim SUPU;?Q(U) - J;:EQ(?J*): Ynt1 —Y) = }Lm <JpEQ<U) - JpE2<y*)7 Ynj41 = Y")
n—oo o
= () - JE(), 5 - y) < 0. (6.1.20)
Using Lemma 2.6.29 in (6.1.27), we conclude that
Dy,(xp,2") + Dp(yYn,y*) — 0, n — oo. (6.1.30)

Thus, Dy(z,,2*) = 0 and Dy(y,,y*) — 0, n = oco. Therefore z,, — =* and y,, = y*.

Case 2: Assume that {0, (z*,y*)} is not monotonically decreasing. Let 7 : N — N be a
mapping for all n > ny (for some ng large enough) defined by

7(n) =max{k € N: k <n, 7 < 741}
Clearly, 7 is a non-decreasing sequence such that 7(n) — oo, as n — oo and

0 < Orm)(z",y") < Ormys1(z”,y"), Vn > ny.

Following similar analysis as in Case 1, we conclude that lim |[Az;u) — Byrm)|| = 0;
n—o0

im ||27()41 — Trmy|| = 0 and lim |[yr()11 — Yr@m)|| = 0. Also we have that

n—oo n—oo

lim sup(JpEl(u)—J;,El (%), Tr(nyp1—2") <0 and lim SUp(Jf2 (v)—J}],52 W), Yry+1—y") < 0.
(6.1.31)

Now, since {Z;(,,) } and {y-(»)} are bounded, there exist subsequences of {x(,)} and {y,)}
still denoted as {2} and {y-(»)} which converge weakly to z € F; and § € Ej respec-
tively. From (6.1.14), we have

Orm+1(2"y") < (1= Qr()Or(ny (47, 57) + r(uy (S () — 7 (27), 241 — )
H(2(0) = T2 (W), Yrw1 — ¥7)- (6.1.32)
Since O,y (2%, y*) < Ormy41(2*,y*), it follows from (6.1.32) that
Or(ny (2™, y") < (7 (u) = T (&), ruyer — @) + (T2 (0) = T2 (Y Yruy1 — Y-
Then from (6.1.31), we have that
lim O (2", y") = lim (Dp(27(n), 27) + Dp(yr(m), y*)) = 0.

n—oo n—oo
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Hence, lim Dy, (2;¢,),2*) = 0 and lim D, (y-(n),y*) = 0.
n—oo n—oo
Thus we have lim ||z, —2*|] = 0 and lim ||y;n) — ¥*|| = 0. As a consequence, we
n—00 n—oo

obtain for all n > ng,

0 < Oue”,5") < max{Oruy (a°,7), Ortmys1 (7)) = Oriaysa(a”, ).
Hence, lim ©,(z*, y*) = lim (D,(x,, 2*) + D,(yn,y*)) = 0.
n—oo n—oo
Thus,
lim D, (x,, %) = hmD o (Yn, y*) = 0.
n—oo
Therefore, we have
lim ||z, —2*|| =0 and lim ||y, —y*|| =0.
n—oo n—o0

This implies that the sequences {(x,,y,)} strongly converges to (z*,y*) = (Ilr,u, [Ir,v).
[

6.1.2 Applications
Split Equality Feasibility Problem:

Let E be a p-uniformly real Banach space which is also uniformly smooth. Given a proper,
convex and lower semicontinuous function f : £ — RU {+oo}, the subdifferential of such
function is the mapping 9f : E — 2F" defined by

Of(x) ={x* € E*: f(x) — f(u) < {(x —u,x"), Vue E}.
We define the resolvent Ry, of 0, for A > 0 as
Ryp, v = (L2 + X0i,) I,

for all x € E. By definitions, we obtain

Oipx = {z" € E" ticx + (", u—2x) <icu, Vue E}
= {z"€FE: (", u—2x) <0, VueC}
= Ncﬂf,

for all x € C. Hence, for A > 0, we have that

UZR,\@-CQU & meGJpEu—i—/\ﬁicu@Jf(x—u) € ANcu
& (JP(x—u),z—u)<0,VzeCl
& u=Ilgx.

Now, let E,, Ey and E3 be Banach spaces, C' and ) be nonempty, closed and convex
subsets of F; and Ej respectively and A : By — E3 and B : E; — FE3 be bounded linear
operators. The Split Equality Feasibility Problem (SEFP) is defined as

find z* € C' and y* € @ such that Az™ = By™". (6.1.33)
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With Ey = E5 and B = I the identity mapping in (6.1.33), the SEFP reduces to the SFP.

Setting 11 = 0., and T, = 0, in Theorem 6.1.1, then the algorithm (6.1.2) becomes

o = e Jg (JF (2,) — £, A* T3 (A, — Byn)),
Tng1 = Jqu (anJ;?l (u) + (1= an)Jfl(un))a
U = HQ{gfz (J22(yn) + toB* JZ3(Ax, — Byy)),
Unt1 = Jp (a2 (v) + (1 — ) I3 (vn)),
and so we obtain a strong convergence result for approximation of solution of SEFP in
Banach spaces.

(6.1.34)

Split Equality Convex Minimization Problem:

Let E be a p-uniformly convex real Banach space which is also uniformly smooth and
C be nonempty closed convex subset of . Let ¢ : C'" — R be a proper convex lower
semicontinuous function. We know that the subdifferential 0¢ is maximal monotone and
the resolvent operator Ryg4 = proxys where

1
prozy,r = argmin{¢(u) + —Dy(u, )},
uekl 2\

for each x € E (see [216] for more details).
Let Ey, E; and E3 be p-uniformly convex real Banach spaces which are also uniformly
smooth and C' and @) be nonempty closed convex subsets of F; and Es respectively. Let
A: FE; — E3 and B : F5 — FE5 be bounded linear operators. The Split Equality Convex
Minimization Problem (SECMP) is define as: find z* € E; and y* € E, such that
{ r* = argmin ¢(x) and y* = argmin ¥ (y)
TEF IS (6135)
Ax* = By*,

where ¢ : C' — R and ¢ : Q — R are proper convex lower semicontinuous functions. Now,
by setting 77 = prozs, and Th = proxsy in Theorem 6.1.1, then the Algorithm (6.1.2)
becomes

Uy = prowaqE (J, Er(g,) — tnA*Jf3(Axn — By,)),
Tpy1 = (OénJE1 (u) + (1 = o) I3 (un)),

prowa ( JE2 (y,) + tnB*Jf?’(Axn — By,)),
Yn+1 = Jp (Oén‘]fz( ) + (1 - an)‘]z])EQ(Un))v

and so we obtain a strong convergence result for approximating solutions of SECMP in

(6.1.36)

Banach spaces.

Split Equality Equilibrium Problem:
Let F: C x C — R be a bifunction, we define a multi-valued mapping Ap : £ — 25 by

€ E*: Flx,y) > X(JPy—JEPzx 2), Vye O}, z€C,
Ap(x)::{ éfﬂzc‘ (v.9) = 5Ly = Jyw,2), Vy €Ol @ (6.1.37)
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Then, we know that Qzp = AL'0 and A is a maximal monotone operator with dom(Az)C
C (see [218]). Further, for any z € E and r > 0, the resolvent T of F' coincides with the
resolvent of Ap, that is

Tre=(J) +rAp) Il

Let Ey, E; and E3 be p-uniformly convex real Banach spaces which are also uniformly
smooth and C' and ) be nonempty closed convex subsets of E; and E5 respectively. Let
A: E; — Esz and B : E; — E3 be bounded linear operators. Let F': C' x C' — R and
G : Q@ xQ — R be bifunctions. The Split Equality Equilibrium Problem (SEEP) is defined
as: Find x* € C' and y* € () such that

{ F(a*,2)20 Vo el, Gly',y) 20 VyeQ (6.1.38)

and Az* = By*.
Setting Ryp, = TF and Ryr, = T in Theorem 6.1.1, then the algorithm (6.1.2) becomes

U = TE I (TP (2,) — ,A TP (Ax, — By,).
Tar = g (0 () + (1= 00) 7 (un),

Yn+1 = JpEék (OéanEQ (U) + (]- - Oén)l]pEQ (Un))7

(6.1.39)

for r, > 0, and so we obtain a strong convergence result for approximation of solution of
the SEEP in Banach spaces.

Application to Saddle Points Problem

Let X and Y be two Hilbert spaces and E = X X Y. Let L : E — RU {—00,+00} be
a function such that L(z,y) is convex in x € X and concave in y € Y, (convex-concave
function). To such a function, Rockafellar [222] associated the operator Ty, defined by

TL = (91L X 82(—[/),

where 0 (resp. 0s) stands for the subdifferential of L with respect to the first (resp. the
second) variable. 77 is a maximal monotone operator if and only if L is closed and convex
in Rockafellar sense (see [222]).

Moreover, it is well known that (z*,y*) is a saddle point of L, namely:

L(z",y) < L(z%,y") < L(z,y"), V¥ (z,y) € E,
if and only if the following inclusion holds
(0,0) € Tr(z*,y").

The proximal operator associated with 77, is define by

) 1 1
proxxy(z,y) = arg minmaz{L(u,v) + ﬁHx — u||2 — ﬁHy — v||2},
(u,v)
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for all (z,y) € E. Now, if in Problem (6.1.1), we set E; = X; x Y], Ey = X5 X Y5,
Es = X3 xYsand Ty =Ty, To = Ty, where L; (i = 1,2) are convex-concave functions
on F; for i = 1,2, respectively. Then, we have the following split equality saddle point
problem: find (z7,y;) € E; and (23, y5) € Es such that

(x1,y7) = arg minmax Ly (z1,y1)
(331:1/1)

(25, y5) = arg minmaz Ly(zs, yo) (6.1.40)
(w2,y2)

and A(x},yy) = Bz, v3),

where A : £y — E3 and B : E5 — E3 are bounded linear operators. Then we can obtain
the following strong convergence result from Theorem 6.1.1.

Theorem 6.1.2. Let X; and Y; be real Hilbert spaces for i = 1,2,3. Let By = X1 X Y1,
Ey =Xy xYs, B3 = X3 xY;. Let C and @Q be nonempty closed convex subset of Ey and
E5 respectively, A : E1 — E3 and B : E5 — Es3 be bounded linear operators. Let L; : E; —
R U {—00,400} be conver-concave functions, for i = 1,2,3. and T := {T = (x1,22) €
T;10,0), § = (y1,52) € T;(0,0) ; Az = By} is nonempty. For fired @ = (u1,uz) € Ey
and v = (v1,v9) € Es, choose an initial guess T, € Ey and y; € FEy arbitrarily. Let
{an} C[0,1]. Assume that the nth iterate T, = (Tp1,Tn2) € E1 and G = (Yn1, Yns2) € Eo
have been constructed; then we calculate the (n + 1)th iterate (11, Yni1) via the formula

Uy = prozg, (z,) — t, A*(AZ, — Byn),
Tpt1 = an(ﬂ) + (]- - an)ﬂna
Up = proxrir, (gn) =+ Zan* (A:i‘n - Bgn)a
Ynt1 = an(@) + (1 - O‘n>@n7

(6.1.41)

where A > 0, A* and B* are the adjoints of A and B respectively and the stepsize t, is
choosen in such a way that

2||Az, — By,||?

tn € | €, — — — -
( |A*(AZ, — By,)||* + [|B*(AZ, — Byn)|[?

—e), n € €,

for small enough €, otherwise t, = t (t being any nonegative value ), where the set of
indices 2 = {n : Az, — By, # 0}. Suppose the following conditions are satisfied:

(1) lim v, =0,
n—oo
(i) g O = 0.

Then, the sequences {(Z,,yn)} strongly converges to (z,y) = (Pr,u, Pr,0), where I'; =
{z€ E;:0e€T,(2)} for (1 =1,2), Pr, and Pr, are the metric projections onto 'y and
[’y respectively.
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6.1.3 Numerical Example

For simplicity, we take £y = Fy = E3 = R, with p = 2. Let A(x) =z, B(x) = 2z, Ti(z) =
2z and Ty(z) = 3z. Choose A = 2 and «,, = \/iﬁ, then algorithm (6.1.2) becomes

S

1 vn—1
il = —=u + n = tn(Tn — 2yn
{ Tnt1 = U ( 5/n )(z ( Yn)) (6.1.42)

Yn+1 = \/Lﬁv + (\éﬁ\/_ﬁl)(yn + 2tn (T — 2yn)),

where the step size t,, is chosen in such a way that

2|| Az, — Bynl|®
|[AT(Azn — Bya)|* + || BT (A, — Bya)||?

tn€<e —e),neQ,

for small enough €, otherwise ¢, = ¢ (¢ being any nonegative value ), where the set of
indices Q = {n : Az, — By, # 0}.

We make different choice of u, v, x;, and 1, and use € < 1072, for the stopping criterion.
Case 1:

(i) Take 2y = 1,5y = —1,u = 0.5 and v = 1.

(ii) Take z1 = 0.25,y; = 0.005,u = —0.0675 and v = 0.001.

Case 2:

(i) Take z; = —0.02,y; = —0.005,u = 0.1 and v = 1.

(ii) Take 1 = —0.0005,y; = —0.12,u = 1 and v = 0.001.

We note that the choice of ¢,,, as long as it is in the range, does not have any significant
effect on both the number of iterations and cpu time. Mathlab version R2014a is used to
obtain the graphs of errors against number of iterations, execution time against accuracy
and number of iterations against accuracy.

T [ ] 5 | |
2¢ —— Zny1 — T [ 1 10° e
100 E E [ ]
=15 . i | Wi E
£ n L i F &
8 2 107" ¢ ] b ]
L PO F (G =
o F 02| i i ]
= = E g 102 & E
0.5 r B
? 1073 E = H
L | | = 10" £ : | : =
0 0 107 10° 107* 1072 0% 107 107 1072
n [Tn41 — 0] [Tpp1 — T

Figure 6.1: Case 1(i): errors vs number of iterations (top); execution time vs accuracy

(bottom left); number of iterations vs accuracy (bottom right).
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CHAPTER [/

Common Fixed Point Problems

7.1 An Intermixed Algorithm for Two A\-Strict Pseu-
docontraction Mappings in ¢-Uniformly Smooth
Banach Space

In 2010, Chidume and Shahzad [31] established a weak convergence result for fixed point
of pseudocontractive mapping in some uniformly smooth real Banach space which is also
uniformly convex. In particular, they proved the following theorem.

Theorem 7.1.1. Let E be a uniformly smooth real Banach space which is also uniformly
conver and C' be a nonempty closed convex subset of E. Let T : C' — C' be a \-strict
pseudocontraction for some 0 < X\ < 1 with F(T) # (. For a fized xo € C, defined a
sequence {x,} by

Tpr1 = (1 — ap)x, + Ty, (7.1.1)

where {a, } is a real sequence in [0, 1] satisfying the following conditions: (i)Y ", o, = 00,
(i) >0 a2 < oo. Then {x,} converges weakly to a fized point of T.

However, Cholamjiak and Suntai [32] improved and extended the result of [31] from a
real-uniformly smooth Banach space which is also uniformly convex to a real uniformly
convex Banach space which has a Fréchet differentiable norm.

Recently, Cholamjiak and Suntai [33] established a strong convergence result for a count-
able family of strictly pseudocontractive mappings in a g-uniformly smooth and uniformly
convex real Banach space E with nonempty closed and convex subset C' which admits
a weakly sequentially continuous duality mapping j, using the following algorithm: for
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x1€C,

{ Yn = Qcl(1 — o)y,

where ()¢ is a sunny nonexpansive retraction of £ onto C, T,, : C — (' is a countable
family of strictly pseudocontractions, {a,}, {#.}, and {v,} are real sequences in (0,1)
which satisfy the following conditions:

(C1) >>0°  ay, = o0 and lim, o v, = 0,

(C2) 0 < limsup,, ., B < limsup,,_,.. On < 1,

(C8) 0 < a <7 < . p=min{L, (£)77}.

Furthermore, Yao et. al. [271] first introduced the intermixed algorithm for approximating
fixed points of two strict pseudocontractive mappings independently in a real Hilbert space.
They proved the following strong convergence theorem:

Theorem 7.1.2. (Theorem 3.3 of [27]]): Let C be a nonempty closed convez subset of a
real Hilbert space H. Let T,S : C' — C be a \-strictly pseudocontraction with F(T') # ()
and F(S) # 0. Let f : C — H be a py-contraction and g : C — H be a py-contraction. Let
k€ (0,1 —X\) be a constant. For arbitrarily given xo € C, yo € C, let the sequence {x,}
and {y,} be generated iteratively by

{ Tpt1 = (1 - ﬁn)xn + ﬂnPC[O‘nf(yn> + (1 —k — @n)wn + kan]a n > 07

Yns1 = (1= Bo)yn + BuPolang(z,) + (1 — k — )y, + kSy,], n >0, (7.1.3)

where {a,} and {B,} are two real number sequences in (0,1). Suppose the following con-
ditions are satisfied

(C1). lim, o0, =0 and Y~ = o0,
(C2). B, € [&1,&] € (0,1) for all n > 0.

Then the sequences {x,} and {y,} converges strongly to the fixed points Pprf(y*) and
Pps)g(x*) of T and S respectively, where x* € F(T) and y* € F(S).

We note that in (7.1.3), the definition of {z,} involves {y,} and as well the definition of
{y,} involves {z,}. Also, the intermixed algorithm can be use to find the common fixed
point of the two strict pseudocontraction mappings 7" and S in a real Hilbert space.

Motivated by the result of [274], we introduce a new intermix algorithm for approximating
fixed points of two strict pseudocontractions and further obtained a strong convergence
result in ¢g-uniformly smooth Banach space which admits weakly sequentially continuous
duality mapping j,.

7.1.1 Main result

Theorem 7.1.3. Let C' be a nonempty closed and convex subset of a real gq-uniformly
smooth Banach space E which admits a weakly sequentially continuous generalized duality
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mapping j,. Let f : C — C be a pi-contraction and g : C — C' be a pa-contraction. Let
T :C — C be a \i-strict pseudocontaction and U : C' — C' be a \y-strict pseudocontraction
such that F(T) # 0, F(U) # 0 and A = min{\;, \o}. For arbitrarily given x; € C' and
y1 € C, let the sequence {x,} and {y,} be generated iteratively by

{ Tpy1 = anf(yn) + (1 - an)[snT*rn + (1 - STL)xn] n Z 17 (7 1 4)
Yn+1 = Oéng(xn> + (1 - an)[SnUyn + (1 - Sn)%l] n Z 17 o

where {a,} and {s,} are two real sequences in (0,1) satisfying the following conditions:

C1. limy, ooy, =0 and 7 | = 00,

_1_
C2. 0 <a <liminf s, <limsup s, < min{1, (;\—Z)'Fl 1

n—00 n—o00

Then, {z,} and {yn} converge strongly to fived points Qper)f(y) and Qpwng(T) respec-
tively, where & € F(T) and y € F(U), Qp(r) is the sunny nonexpansive retraction from C
onto F(T) and Qrw) is the sunny nonerpansive retraction from C onto F'(U).

Proof. Let 2* € F(T) and y* € F(U), we define Ty := (1—s)[+sT and U := (1—s)[+sU
where I : C — (' is the identity mapping. Note that 7y and U are nonexpansive,
F(Ts) = F(T) and F(Us) = F(U). Let p = max{p1, p2}, then

[Ty = 2| = Nowf(yn) + (1 — an)Ts, 2, — 27|

lan(f(yn) — %) + (1 = an)(Ts, 20 — 27)]|

an||f(yn) — 2| + (1 = an)||Ts, 20 — 27|

an([|f () = SO+ (7)) = 27]]) + (1 = an)||zn — 27|
anprllyn = Y7l + ol f(y*) — 27 + (1 — a)[|zn — 27|

anpllyn =yl + anllf(y*) — 27| + (1 — an)[|zn —27|[. (7.1.5)

VAN VAN VANRVAN

Similarly, we obtain that

191 = 7| < anpllzn — 2| + anllg(®) =yl + (1 = an)llyn —y7|l- (7.1.6)
Therefore from (7.1.5) and (7.1.6), we have
|Zner =2+ [y =7l < (1= (1= plan)([[zn — 27| + |lyn — y7[])
+an (|l (") = 2|l + llg (") = y7l])
ey @) =2+ [lg (") — vl
y*ll, -
p

< max {|fan — 2*|| + |y

ey W) =l + g (™) — o]
y'll, - :
p
Hence, {x,} and {y,} are bounded. Consequently, {T'z,} and {Uy,} are bounded.
Furthermore, by (2.6.10) we have

|ne =2 [" = lan(f(yn) — 27) + (1 = o) (T, 20 — 27)||
< (= an) (T = @) + qan(f(yn) — 27, jg(wna — 27))(7.1.7)

< max{[ls = &"|| + |l
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Moreover, by (2.6.11) we have

(1 = ) (Ts, 20 — 27| (1 = )| Ts, 20 — 2|
= (1= an)llsn(Tzn — zn) + (2n — 27)||
(1= on)lllzn — 2| = gsn(@n — T, j(2n — 27))
+85Cqllzn — T %)
(1= an){llzn = 2" = gsadallen — Tan||
+shcqllzn — Tanl|?)
(1= an)[l[zn — 2™[|" = gsnAllzn — T
+85Cl|Tn — T %)
= (I—ap)l|lzn — 2| = sn(1 — o) x
(gA = st eq)|Jwn — Tan|". (7.1.8)

IN

IN

Also by Lemma 2.6.16, we have

qan(f(yn) = F(y") + [(y") — 2", g(Tnia — 27))
qonpllyn =y M@nsr — 27"

+aan(f(y") — 2%, Jo(@ns1 — 27))

qan(f(Yn) — 2%, jo(Tns1 — 7))

IN

q(g—1)

1 . qg—1 il
a0p (g =y 11% + Tl =2l )
q q
a0 () = 7,y = o)

= anp(lyn =y + (¢ = Dlfenia — 27[]%)
+qan(f(y") = 2%, Jg(Tn g1 — 27)). (7.1.9)

Substituting (7.1.8) and (7.1.9) into (7.1.7), we have that

IN

|zner — 2|7 < (1= an)|Jan — 2*[|7 — 50(1 — ) (gA — 537 ¢o) ||z — T
+anp([[yn — ¥ || + (¢ — D]z — 27[]9)
+qan (f(y") — 2%, Jo(zpi1 — ). (7.1.10)

Following similar process as above, we obtain

Iy =97 I1" < (1= an)llyn = ¥l = su(l = an) (@A = s57 )|y — Uynll®
Fonp(|lzn — 2"|" + (¢ = D|ynsr — y7[%)
+qon{9(x") = ¥, Jo(Yn1 — ¥7))- (7.1.11)

Therefore from (7.1.10) and (7.1.11), we have
(1 = anp(q = D)([|zner — 2|1 + [lyntr — y"[17)
< (1= (1= p)an)([fzn = 2| + llyn — y"[|%)

+ o ((f(y") — 2%, Jo(Tn1 — 7)) + (9(27) — ¥, Jg(Yns1 — ¥7)))
— 8n(1 — an)(gA — nglcq)(Hxn — Tz ||?+ [|yn — Uyal|?).
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Hence,

1—(1-pa,
nt1 — x¥||? i1 — Y17 < n— x| ik 7.1.12
lonss =l lomes = 9711 < g e = T g =yl (T112)
ot () = 2 ol =)

+9(@") =¥ a1 —¥7)))
_Sn(l — an)(gA — 88 'cy)
1 —aup(qg—1)

(n = Tan||* + [lyn — Uynl]?).

The rest of the proof will be divided into two cases.
CASE 1: Suppose {||z, — z*[|? + ||y, — y*||?} is monotonically nonincreasing, then

(lzn =21+ llyn = " lI)) = (Jznss — 2" + [lgnsr = y7[|*) = 0, n — oo
This implies from (7.1.12) and condition (C2) that

||zn = Tall* + llyn — Uynll” = 0, n — oo

Hence,
||z — Tzy|| = 0 and |y, — Uynl| = 0, n — oo.

Moreover,

||T8nxn_$n|| :ﬁonn_TI‘nH _>07 n — 00, (7113)
and

NUs,Yn — Unll = Bullyn — Uynl] = 0, n — oc. (7.1.14)
Also,

Hxnﬂ - an < O‘an(yn) - JJHH + (1 - O‘n)HTsnxn - an — 0, n— oo,

and

st = Ynll < anllg(@n) — yall + (1 = an)|Us, Yo — yn|| = 0, n — 0.

Since {z,,} and {y,} are bounded, there exist subsequences {x,, } of {z,} and {y,, } of {y.}
such that z,, -z € C and y,, — y € C. By (7.1.13), (7.1.14) and the demiclosedness
principle of I — T, and I — Uy at 0, we have that z € F(Ts) and y € F(U;). Consequently,
by Lemma 2.6.19, we have that Z € F(T) and § € F(U).

Next we show that z, — 2 and y,, — § where & = Qp) f(9) and § = Qpw)g(Z). Observe
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that from (7.1.12), we have

(1 —play —anp(g —1)

2 = 21+ Il — gl < [1- | Ul = 117+ 1y — 311

- @np(q - 1)
$n(1— ) (gh — st7¢,)
- ~ xn_TInq+ yn_Uynq
el 1+ o — U1
q0n

ey () = (s — )

+(9(2) = 9, Jq(Yn+1 — 9)))
1— (1 —play —anp(g —1)

IN

| Ul = 117+ 1y — 311

1 —anp(qg—1)
qaiy . . .
+1 _ anp(q _ 1) ((f(y) - $7]q($n+1 — x)>

+(9(2) =, Jg(Yns1 — 9)))- (7.1.15)
In view of Lemma 2.6.29, put
(1= p)an — anp(qg — 1)
1- anp(q - 1)

o = (1-— P)Oénq—w;np(q - 1) ((fly") = x*ajq(xn-&-l — ")) + (g(2") — y*ajq(yn+1 —y)).

Then, it follows from (7.1.15) that

Cn = Hxn_x*Hq—i_Hyn_y*an @n:

1 < (1 —0,)c, + ©,6,.

Since {a,} C (0,1) and Y 7 |, = 00, we have that ©,, € (0,1), >>°, 0,, = co. In order
to show that ¢, — 0, it is sufficient to prove that limsup,_,. 6, < 0.

Choose subsequences {z,,} and {y,,} of {z,} and {y,} respectively, such that

~

lin SUp((9) = &, Gy (@nsr = 2)) = 1 (F(3) = &, jg(nr — 2)

n—oo

and
lim sup(9(2) = G Ja(tsr — ) = 1 (g(5) G, jo(yne 1 — 9)).

n—oo

Since z,,, — Z and y,, — ¥, it follows from Proposition 2.4.3 that

lim sup(f(§) = &, Jg(#ns1 = 2)) = Hm (f(§) = &, Gy (Tn 1 = )
= (f(9) — 2,4y(z — 2)) <0, (7.1.16)
and
lin sup(g(z) = 9 jo(ynsr = 9)) = lim {9(&) = G, 3o Yny1 = 9))
= (9(2) = 9,4,y — 9)) <0. (7.1.17)

Thus, it follows from Lemma 2.6.29 and (7.1.15) that ||z, — Z||7+ ||y, — 9]|? — 0,7 — o0,
which implies that =, — % and y,, — 9.
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Case 2: Assume that {||z, — 2*|| + |lyn — ¥*||} is not monotonically decreasing. Let
7: N — N be a mapping for all n > n; (for some n; large enough) defined by

7(n) =max{k € N: k <n, 7 < 741}
Clearly, 7 is a non-decreasing sequence such that 7(n) — oo, as n — oo and
0 < lzrm) = 2 + lyrm) — VIl < llzrmysr — 27|+ lyr@ye1r — ¥7ll, V= na

Now, since {2,y } and {y-(»)} are bounded, there exist subsequences of {z(»)} and {y,)}
still denoted as {2;(,)} and {y,u)} which converge weakly to # and g respectively.

After a similar argument as in Case 1, we have ||z-¢) —T@-m)|| = 0, [|[Yr(n) = Uyrm)|] = 0,
241 — Tzl | = 0 and ||Yr(m)y+1 — Yr@my|| = 0 as n — oo.
Also following the same line of argument as in (7.1.16) and (7.1.17), we have

i sup(@ = f(9), Jo(& = Zry+1)) <0, (7.1.18)
—00
and
lim sup(9 — 9(2), jo(§ — Yr(ny+1)) < 0. (7.1.19)
—00

From (7.1.12), we have

0 < (Hereer = 31+ e = 9117) = (112em = #117 + 17 — 9117)

(1- p)aT(n) - aT(n)p(q —1) X .«
- [y — 17+ Il — 3119

—(rmy = 2 + [[yzm) = 9lI)

Tl =) )~ #u@rrs = D) +{9(8) = 3o = )
-1

B Sr(n) (1 — o)) (gA — SZ(n)CQ)
11— aT(n)p(q - 1)

<

(1z7my = Tz |” + [|Yrn) — Uyrmyl|?)-

Thus, we have

+(9(2) = 9, Jq(Yrmy+1 — 9)))-

Since avr(ny — 0, from (7.1.18) and (7.1.19), we have

|2y = 21+ |yry = 91T = 0, n — oo (7.1.20)
Thus we have lim ||, — 2| = 0 and lim ||y, () — §]| = 0.
n—00 n—00

As a consequence, we obtain for all n > n,

0< ||m7(n) — ||+ ||y7'(n) gt < maX{Hx‘r(n) — ||+ ||yr(n) —9]|%,
Zr )1 = 2T+ [|Yrmy+1 — ]|}
= llzrm+1 = 2+ |yr@ — 9ll7. (7.1.21)
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Hence, lim ||z, — 2|7 + ||Yr(n) — 9]|? = 0. Therefore, we have
n—oo

lim ||z, — || =0 and lim ||y, —y|| = 0.
n—0o0 n—oo
This implies that the sequences x,, — z and ¥, — 3. This completes the proof. [

As consequence of Theorem 7.1.3, we consider the approximation of common fixed point of
two A-strict pseudocontractive mappings in ¢-uniformly smooth real Banach space which
admits weakly sequentially continuous duality mapping j,,.

Suppose F(T) # 0, F(U) # 0 and let I' = F(T) N F(U) # . Now, putting y, = =, and
g(x) = f(x) in Theorem 7.1.3, by adding z, 1 and y,.1, we have

Tpt1 = nf(zn) + (1 — ) sn%(T + Uz, + (1 — sp)zn|. (7.1.22)

Let G := %(T + U), then by Lemma 2.6.20, G is A-strictly pseudocontraction where
A =min{\, Az} and F(G) =T.
Thus, the following result is obtained from Theorem 7.1.3.

Corollary 7.1.4. Let C' be a nonempty closed and convexr subset of a real q-uniformly
smooth Banach space E which admits a weakly sequentially continuous generalized duality
mapping j, and with the best g-uniformly smoothness constant c; > 0. Let f : C' = C be
a p-contraction. Let G := (T 4+ U) where T : C — C is a A;-strict pseudocontaction
and U : C — C is a Ag-strict pseudocontraction such that F(T) # 0, F(U) # 0 and
A = min{ A, \o}. Suppose T := F(T) N F(U) # 0. For arbitrarily given x; € C, let the
sequence {x,} be generated iteratively by

{ Tpi1 = Qnf(2) + (1 — ) [snGzn + (1= sp)xn| n>1, (7.1.23)
where {a, } and {s,} are two real sequences in (0, 1) satisfying the following conditions:

C1. lim, oo, =0 and Y | o, = 00,

1

C2. 0 < a<liminf s, <limsup s, < min{1, (%)q 1

n—00 n—00

Then, {x,} converges strongly to the common fixed point Qrf(Z) of T and U, where & € T
and Qr is the sunny nonexpansive retraction from C' onto T

Corollary 7.1.5. Let C be a nonempty closed and conver subset of a real Hilbert space
H. Let f:C — C be a py-contraction and g : C — C be a py-contraction. Let T : C' — C
be a ki-strict pseudocontaction and U : C' — C' be a ko-strict pseudocontraction such that
F(T) # 0, F(U) # 0 and k = min{ky, ka}. For arbitrarily given x; € C and y, € C, let
the sequence {x,} and {y,} be generated iteratively by

{ 1 = Qnf(yn) + (1= )30 700 + (1 = 80)2a] 0 > 1, (7.1.24)

Yn+1 = ang(xn) + (1 - an)[SnUyn + (1 - Sn>yn] n Z 17

where {ay,} and {s,} are two real sequences in (0,1) satisfying the following conditions:
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C1. lim, oo, =0 and Y 2 | o, = 00,

C2. 0 <a<liminf s, <limsup s, < 1.

n—00 n—0o

Then, {x,} and {y,} converge strongly to fixed points Pr(r)f(y) and Ppang(Z) respectively,
where & € F'(T) andy € F(U), Ppry is the metric projection from C' onto F(T) and P
is the metric projection from C onto F(U).

7.2 Convergence Theorem for the Class of of N-Generalized
Bregman Nonspreading Mapping in Banach Spaces

In this section, we introduce the class of N-generalized Bregman nonspreading mapping
in reflexive Banach spaces. We propose an hybrid iterative scheme for finding a common
solution of a countable family of equilibrium problems and a fixed point of a mapping in
reflexive Banach spaces.

Definition 7.2.1. Let C' be a nonempty, closed and convex subset of a reflexive Banach
space E. A mapping T : C' — (' is said to be

(a) Bregman nonexpansive [213] if

Dy(Tz,Ty) < Dy(x,y) Vr,y € C;

(b) Bregman nonspreading [153] if

D¢(Tx,Ty)+ Dy(Ty,Tx) < D§(Tx,y) + Ds(Ty, x), Ve, y € C,

(¢) («, 3,7, 0d)-generalized Bregman nonspreading [7] if there exist a, 3,7,0 € R such
that

O[Df<Tvay) + (1 - O,/)Df($,Ty) +’7{Df(Tvax) - Df(Ty,ZB)}
< BDs(Tz,y) + (1 = B)Dys(z,y) + 0{Ds(y, Tx) — Ds(y, x)}, Va,yeC.

(d) n-generalized Bregman nonspreading mapping if there exist oy, 5;,7:,0; € R, i =
1,2,...,n such that

ZakDf(T”“_km, Ty)+ (1— Z ag)D¢(z, Ty) + Z%{Df(Ty, Tk 2) — Ds(Ty, )}

k=1 k=1 k=1
<Y B DT y) + (1= Bi)Dy(x,y) + > 6{ Dyy, T"Fa) = Dy(y, )},
k=1 k=1 k=1
(7.2.1)

for all x,y € C.

224



Remark 7.2.1. From Definition 7.2.1, it is obvious that

(i) every 1-generalized Bregman nonspreading mapping is («, 3,7, d)-generalized Breg-
man nonspreading,.

(ii) The class of (1, 1,1, 0)-generalized Bregman nonspreading mappings is Bregman non-
spreading.

(iii) Also, the class of (1,0, 0, 0)-generalized Bregman nonspreading mappings is Bregman
nonexpansive.

(iv) If E is smooth and strictly convex and f(z) = 1||z]|?, then the class of n-generalized

Bregman nonspreading mapping reduces to the class of n-generalized nonspreading
mapping introduced by Takahashi et al. [250].

We next present an example of a n-generalized Bregman nonspreading mapping with
n = 2.

4
Example 7.2.2. Let £ = R and f(x) = %, then the associated Bregman distance is

given by Dy(z,y) = 5a* + 3y* — 223, Va,y € R. Define T : [0,4] — [0, 4] by

T:c:{o’ if wel0.4), (7.2.2)
1, of z=4.

It is easy to show that T is 2-generalized Bregman nonspreading with constants a; = %,
a2:Z%?ﬁl:%7&2:%771:i772:§751:%a62:%andF(T):{O}'

7.2.1 Main results

In this subsection, we present the existence and some properties of fixed points of n-
generalized Bregman nonspreading mapping in a reflexive Banach space. This result ex-
tends the corresponding results of [250] and [161] to reflexive Banach space.

Proposition 7.2.3. Let FE be a real reflexive Banach space and let C be a nonempty, closed
and convex subset of E. Let f : E — R be a strictly conver and Gateauz differentiable
function and T : C' — C be a n-generalized Bregman nonspreading mapping. Then, the
following are equivalent

(i) F(T) is nonempty;

(ii) {T™z} is bounded for some z € C and m € N.

Proof. First we show that (i) = (ii). Suppose F(T) # 0, then {T™z} = {z} for z € F(T).
So {T™z} is bounded. Next, we show that (ii) implies (i). Let {7z} be bounded for some
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z € C. Since T is n-Bregman generalized nonspreading, then there exist «;, 5;,7,6; € R
fori=1,2,...,n, such that

> DT Fa, Ty) + (1= ) aw) Dy(x, Ty)

k=1 k=1
+ 3 DTy, T Fa) — Dy (Ty, 2)}
k=1

< ZﬂkDf(TnH_k%y) +(1- Zﬁk)Df(x»y)
k=1 k=1
+ Z §{Ds(y, T" ' *2) — Dy (y, x)}, (7.2.3)
k=1
for all z,y € C. Replacing by T™ 'z in (7.2.3), we have that for any y, z € C,
> apDp(T T Ty) + (1= ag) Dp(T7 2, Ty)
k=1 k=1

+ 3 W Dp(Ty, T T2 2) — Dp(Ty, T 2)}

k=1

< ZﬁkDf(TnH_kTm_lZy y)+ (1 - Z Br) Dy (T 2, y)
k=1 k=1

3 5Dy, T ) — Dy, T2}, (12
k=1

Since {T™z} is bounded, we can apply Banach limit p to both sides of (7.2.4), then we
have

um(z ap D (T %2 Ty) + (1 — Z ag) Dy (T2, Ty)

k=1 k=1
+ 3 WDy Ty, T52) = Dy(Ty, T 2)})
k=1

< pon (32 DT 2 )+ (1= 37 B DHT™ 2, )
k=1

k=1

+ 3 Dy (y, T R2) = Dyly, T 2)}).

k=1

226



Thus, we obtain

n

D ot Dp(T" " 2, Ty) + (1= ) an)pn Dp(T™ 2, Ty)

k=1 k=1

+ 3 W Dp(Ty, T 2) — 1, Dy (Ty, T '2)}
k=1

<Y Bt D (T F2,9) + (1= Bi)pm Dy (T2, y)

k=1 k=1
+ 3 0k pm Dy (y, T 2) — 1 Dy (y, T 2) ). (7.2.5)
k=1

Then

n

Z D (T2, Ty) + (1 - Z ) i Dy (T2, Ty)
k=1 k=1

+ > i Dp(Ty, T™2) = i Dy (Ty, T™2)}
k=1

k=1 k=1

+ > 0{tm Dy (y, T™2) — pm Dy (y, T™2)}.

k=1

Hence
pm D (T2, Ty) < pumDe(T"2,y).

Therefore by Lemma 2.6.35, T has a fixed point in C. This completes the proof. m

The following results follow as direct consequences of Theorem 7.2.3.

Corollary 7.2.4. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex Banach space E, let p be a real number such that 1 < p < +o00 and let  be a
function defined by f(z) = inHp andT : C' — C be an-generalized Bregman nonspreading
mapping. Then, the following assertions are equivalent:

(i) F(T) is nonempty;
(i) {T™z} is bounded for some z € C.

Corollary 7.2.5. Let C' be a nonempty bounded closed convexr subset of a real reflexive
Banach space E and f: E — R be a strictly convexr and Gateaux differentiable function.
Let T : C' — C be a n-generalized Bregman nonspreading mapping. Then, T has a fixed
point.

Remark 7.2.6. Corollary 7.2.4 is a generalization of the corresponding result in Theorem
3.2 of [250], where the equivalence between the two assertions was shown for p = 2.

227



We now show another important property of the fixed points of n-generalized Bregman
nonspreading mapping.

Proposition 7.2.7. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and f : E — R be a strictly conver and Gateaux differentiable function.
Let T : C — C be a n-generalized Bregman nonspreading mapping such that F(T) # (.
Then F(T) is closed and conver.

Proof. Let u € F(T), then putting u =z € F(T) in (7.2.1), we have

> aDy(u, Ty) + (1= > ax)Ds(u, Ty) + Y w{ D(Ty,u) = Dy(Ty,u)}

<D BDsuy) + (1= B)Ds(uy) + Y 6 Dyly,u) = Dyly, u)},

which implies that
D¢(u, Ty) < Dy(u,y), Vue F(T),y e C. (7.2.6)

This means that 7" is quasi-Bregman nonexpansive. Now let {z,} C F(T) such that
Tn — p. Then

Dy(p,Tp) = lim Dy(wn, Tp) < Dy(wn,p) = Dy (p,p) = 0.

Hence, p € F(T). Therefore F/(T) is closed.

Next, we show that F'(T) is convex. For any z,y € F(T) and A € (0,1), let z = Az + (1 —
A)y. Then

Di(z,Tz) = [f(z) = [(T2) = (V[(Tz),z =Tz
= [(2) = [(T2) = (V[(Tz2), A + (1 = Ny = Tz)
= J(2) + ADs(2,T2) + (1 = A Dys(y, Tz) = Af(x) = (1 = A) f(y)
< f(2) +ADg(,2) + (1= M) Ds(y, 2) = Af(z) = (1 = A f(y)
= f(2) = f(2) = (VI(z) A+ (1 =Ny —2)
= f(z) = f(2) =(V[(2),2 = 2)
= 0. (7.2.7)
Hence, z = T'z. Therefore, F(T') is convex. O

Using Corollary 7.2.5 and Proposition 7.2.7, we prove the following common fixed point
theorem for a commutative family of n-generalized Bregman nonspreading mapping in a
reflexive Banach space.

Theorem 7.2.8. Let f: E — R be a strictly conver and Gateauz differentiable function,
C be a nonempty bounded closed convex subset of a real reflexive Banach space E and let
{To}aer be a commutative family of n-generalized Bregman nonspreading mappings from
C' into itself. Then {T,}acr has a common fized point.
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Proof. By Theorem 7.2.7, we know that F(T,) is a closed convex subset of C'. Since E
is reflexive and C' is a bounded closed and convex subset, C' is weakly compact. To show
that Naer F(T,) is nonempty, it is sufficient to show that { F/(T,,) }aes has a nonempty finite
intersection property.

Now, let {T},T5,...,Tx} be a commutative finite family of n-generalized Bregman non-
spreading mapping from C' into itself. We prove by induction that {77,T5,..., Ty} has a
common fixed point. To do this, we start by showing the case for N = 2. By Corollary
7.2.5 and Theorem 7.2.7, F(T) is nonempty, bounded, closed and convex. Let u € F(T}),
since 11Ty = 15T}, then we have T1Tou = ToTiu = Tou. This implies that Tou € F(T}).
Hence, F'(T}) is Ty-invariant. Thus, the restriction of T, to F/(7}) is a n-generalized Breg-
man nonspreading self mapping. By Corollary 3.1.1, T3 has a fixed point in F(T}), that
is, we have z € F(T}) such that Toz = z. Hence, z € F(T1) N F(T3).

Suppose that for some N > 2, T' = NI F(T}) is nonempty. Then I' is a nonempty,
bounded, closed and convex subset of C' and the restriction of Ty to I' is a n-generalized
Bregman nonspreading self mapping. By Corollary 3.1.1, T4 has a fixed point in I'. This
implies that I'N F(T41) is nonempty. Hence, Ny ' F(T}) is nonempty. This completes
the proof. n

The following result will be used in the sequel.

Proposition 7.2.9. Let F be a real reflexive Banach space and let C be a nonempty, closed
and convex subset of E. Let f : E — R be a strongly coercive Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let
T :C — C be a n-generalized Bregman nonspreading mapping. Then, for any x,y € C,
a;, Bi, Vi, 0 €ER, fori=1,2,... ,n, we have

n

0 < > (Be—aw) (Df(T”H_kl’aTy) — Dy(z, Ty)> +D¢(Ty,y)
k=1

HVF(Ty) = VI, Y BT Fw — ) + 2 — Ty)

k=1
+> o Dy(y, T *2) — Dy(y, )}
k=1
= w{Dy(Ty, T "*2) — Dy(Ty, 2)}. (7.2.8)
k=1

Proof. From the definition of n-generalized Bregman nonspreading mapping, we have

> DT F2, Ty) + (1= ) Dy, Ty) + > w{ Dp(Ty, T *a) — Dp(Ty, z)}

k=1 k=1 k=1
<Y BD(T R y) + (1= B) Dy, y) + > o{ Dy, T ) — Dy(y, )},
k=1 k=1 k=1

(7.2.9)
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for all z,y € C'. This implies that

0 < Y BD(T" " Fuy) + (L= B)Ds(w,y) + ) o Ds(y, T a) — Dy(y, )}

k=1 k=1 k=1
- Z ap Dy (T2, Ty) — (1 — Z ai)Ds(x, Ty)
k=1 k=1
= w{Dy(Ty, T *2) — Dy(Ty, x)}.
k=1

Hence, from the three points identity (Proposition 2.5.1(ii)), we have
0 < 3 B(Ds(T"Fa, Ty) + Dy(Ty, ) + (V(Ty) = Vf(y), T a — Ty))
k=1

+(1= 32 8 (Dsle, Ty) + Dy(Ty,y) + (VH(Ty) = V(y),o = Ty))

k=1

- ZakDf(T”H_kx,Ty) - (1- Zak)Df(x, Ty)
k=1 k=1

= w{Dy(Ty, T *2) — Dp(Ty, 2)} + Y 6{ Dy, T"*a) — Dy(y, )}
k=1 k=1

Therefore

0 < D (B — o) (Dy(T"H 2, Ty) = Dy(w, Ty)) + Ds(Ty, )
k=1

HVF(Ty) = Vi)Y BT Fe — ) + 2 — Ty)

+3 0 Dy(y, T *2) — Dp(y, 2)} = > w{Dy(Ty, T "F2) — Dp(Ty, x)}.
k=1 k=1

]

The following result is another important property which characterized the n-generalized
Bregman nonspreading mapping.

Proposition 7.2.10. Let T : C' — C' be a n-generalized Bregman nonspreading mapping.
Suppose F(T) # 0, then T is Bregman relatively nonexpansive.

Proof. 1t is clear that
Dy(p,Tx) < Dy(p,x) Vpe F(T),xz€C.

We show that F/(T) = F(T). It is easy to see that F(T) C F(T). Now let p € F(T), that
is, there exist a sequence {z,} C C such that =, — p and ||z, — Tx,|| — 0. Since f is
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uniformly Fréhet differentiable on bounded subsets of E, then V f is uniformly continuous
and thus

n—oo

Putting © = x,, and y = ¢ in Proposition 7.2.9, we have

Z e — @) (DT 42, Tq) = Dy(2,, Tq) ) + Dy(Ta,q)
k=

+H(Vf(Tq) — ZB (T g, — 2,) + 2, — T4q)

£S5 5Dy 0, T 0 — Dyl e} — S el Dy(Ta, T4, — Dy (Tig2,08)

k=1 k=1

Observe that

DT 2, Tq) = Dp(x, Tq) = (T x,) = f(Tq) = (Vf(Tq), Tz, — Tq)
—f(xn) + [(Tq) +(Vf(Tq), xn — Tq)
= f(I™re,) - ( n) +(Vf(Tq), x, — Tq)
—(Vf(Tq), """ x, — Tq) (7.2.12)
= f(T"" ) — f(x ) +(Vf(Tq),z, — T Fz,).

8

Similarly

Dp(q, T *ay) = Dy(q,2n) = flag) — F(T Fay) + (V (@), Tz, — 2)
H(Vf(@n) = VAT ), q — a), (7.2.13)

and

Dy(Tq, Tn+1_ka7n) —Di(Tq,zn) = [f(zn) — f(Tm_l_kan) +{(Vf(zn), Tn+1_kxn — Tn)
HVf(zn) = V(T F2,), Tqg—2,).  (7.2.14)

Substituting (7.2.12), (7.2.13) and (7.2.14) into (7.2.11), we have

n

0 < Z(ﬁk — ag) <f(Tn+1_kxn) = fzn) +(VF(Tq), z — Tn+1_k$n>> + D¢(Tq,q)

k=1

+H(Vf(Tq) =V f(a), Y BTy — ) + 20 — Tg)
k=1

PSS () — FTH) 1 (V) T — )

(1) = VT ), g = )

S ) — FT ) (Y (), T — )

+<k;}(wn) — VAT 2,), Tg — 20)}. (7.2.15)
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Taking limit as n — oo in (7.2.15) and using (7.2.10), we have
0 < Dy(Tq,q)+(Vf(Tq) = Vf(g),q—Tq).
Using the four points identity (Proposition 2.5.1(iii)), we have

0 < Dy(Tq,q)+ Ds(Tq,Tq) — Dy(Tq,q) — Ds(q,Tq) + Dys(q,q)

= —Dy(q,Tq).
Thus Ds(q,Tq) < 0 and then Ds(q,Tq) = 0. Since f is strictly convex, we have ¢ = T'q.
Hence, g € F(T). Therefore F'(T') C F(T). This thus implies that F(T') = F(T). O

Convergence analysis

Let {a,; = n,i € N, 1 <i < N} be sequences of real numbers such that {«a,;} C (0,1). We
define the following W, : C' — C mapping generated by 7%, i = 1,2,..., N and {a,;},
where T% : C' — C'is a finite family of n-generalized Bregman nonspreading mappings.

Spot = x,

Spaz = V[ an VH(T'2) + (1 = 0n1) V(@)

Spox = V[~ [O‘n,Qvf<TZSn,lx> + (1 = an2)Vf(Sn17)]
Sn,?)x = Vf* [an,Svf(T?’Sn,?x) + (1 - O‘n,S)Vf(Snﬁx)]

: (7.2.16)
Suna1z = YV ann VATV S, v oz) + (1 — apn_1)V(Spn_oz)]
Wn = In,N — Vf* [an,Nvf(TNSn,N—lx) + (]- - an,N>vf(Sn,N—1I)]-

Using the above definition, we have the following lemma.

Proposition 7.2.11. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and let f : E — R be a coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let {T*}N |
be a finite famiy of n-generalized Bregman mnonspreading mapping of C into itself such
that ﬂfil F(T") # 0. Let {a,;} be real sequence in (0,1) such that liminf, . a,; > 0,
Vi € {1,2,...,N}. Let W, be a Bregman W-mapping generated by T, T? ..., TN in
(7.2.16). Then

(i) ML F(T) = F(Wa),
(i) W, is Bregman quasi-nonexpansive,

(1) If in addition, T* is Bregman relatively nonexpansive mapping, for each i, then W,
1s Bregman relatively nonexpansive.

Proof. Let x € NYF(T%). Then Tz = z,i = 1,2,..., N. From (7.2.16), we have that
Spax = x, Sper = z,..., Syt = z. Thus NY,F(T%) C F(W,). Conversely, let y €

232



F(W,) and z € N}, F(T*). Then

Dy(x,y) = Dz, Way)
= Dy(x, VI (annV (TN Syn-1y) + (1 = ann)Vf(Sun-19)))
= f(&) = (@, an V(TN Spn-19)) + (1 — ann)Vf(Sun-11))
+f*(an,Nvf(TNSn,N—ly) + (1 - an,N)vf(Sn,N—1y>>
< ann(f(@) = (2, V(TN Spn-1y) + [ (VTN Snn-1y)))
+(1 = ann)(f (@) = (2, Vf(Snv-1y)) + [ (VT Snn-1y)))
—ay N (1= N)pr(|IVF(TYSp n-1y) = V(Sunay)l])
= apnDs(x, TV Spn_1y) + (1 — ) Dy (0, Spn—1Y)
—an N (1= ann)pr(|IVF(TV Spn-1y) = VI (Snv-19))
Dy, Spn-1y) = ann (1= cn N)pr IV F(TV S n—1y) = VI (Snn-19)]])

IN

Dy(z,y) — ana (1 — ) pr(IVF(Ty) = Vf(»))
_O‘n,Z(l - O‘n,2)p:(va(T2Sn,1y) - Vf(sn,ly)H> .
—an, N (1 = anN)pr(|[V (TN Spn—1y) = V[ (Snn—19)]])- (7.2.17)

This implies that

a1 (1= 1) pE(|IV (T y) = VW) = anp(1 = o) oIV (T2 Snay) — VF(Snam)l])
= = a1 = )L (VA (TV Spn-1y) = VI (Sun-19)]]) = 0.

Then by the property of p; from Lemma 2.6.21 and the norm-to-norm continuity of V f*,
we have

Ty = vy,
T2Sn,1y - Sn,lyu
TNSn,N—l = Sn,N—ly-
It follows that

Df(y7 Sn,ly) = Df(ya vf*(an,lvf(le) + (1 - a/n,1>vf(y)))
< 1 Ds(y, T'y) + (1 — 1) Ds(y,y) = 0.

Therefore y € F(S,,1) and consequently, y € F(T"). Following similar argument, we have
that y € F(T%) for i = 1,2,..., N and hence y € (', F(T").
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(i) Let y € F(W,,). Then

Di(y, VI (an nV (T Sy n-12) + (1 = ann)V f(Spn-17)))
annDi(y, TN Spn_12) + (1 —  n) Dy (y, Spn—17)

anND¢(y, Snv—17) + (1 — ay n) D¢ (y, Spn—17)

Dy (y, Snn-12)

Dy(y, V. (nnaV(TV Sy nvow) + (1 = ann-1) V(S n—27)))
N1 Dy(y, TN S, now) + (1 — ann—1)Ds (Y, Snn—2)

Dy (y, Sn,n—2)

Dy(y, Wyx)

IAN N

VARVAN

Dy (y, x).

(iii) Let {z,} C C such that z,, = z and ||W,z,, — x,|| = 0 as n — oo. From (7.2.17), we
have

Dy(Z, Wytn) < Dp(Z,20) = ani(1 = an)pp([IVf(T'2,) = VI (za)ll)  (7.2.18)
—ay (1 — an,2)p:(||vf(T25n,lxn) - Vf(Smlxn)H) e
—ap,n(1 - an,N)ﬂ:(HVf(TNSn,Nflxn) — Vf(Sun-170)]])-

Using three points identity (Proposition 2.5.1(ii)), we obtain
D¢(Z,x,) — Dy(2, Wyy,) = (T — 2, V(W) — V f(x,)) — Dp(xn, Woxy). (7.2.19)
Since x,, — Z and lim,, . ||z, — W,z,|| = 0, we obtain
1D4(@20) — DylzWaza)l < 117 = alllIV F(Waz) — ¥ £@)| = Dy, Wool7-5.20)
as n — 0o. Therefore from (7.2.18), we have

a1 (1= ) ([[VF(Th2n) = V f )]+
(1 — O‘n,2)p:(||vf(TQSn,lxn) = V(Snazn)l]) + -
+ ann(1 — O‘n,N)P:(HVf(TNSn,N—ﬂn) — Vf(Suna1zn)ll) < Dy(Z,20) — Dp(Z, x).

Taking limit as n — oo, using (7.2.20) and property of p¥, yields
lim [[VA(T'e,) = V()] = lim [VAT?S,12,) — VF(Sur)| =
= nhar{olo ||vf(TNSn,N—1xn) - vf(Sn,N—ll:n)H = 0.

By the norm-to-norm uniform continuity of V f on bounded subset of E*, it follows that

lim ||T1:L‘n — || = lim ||T25n71$n — Szl = ...
n—oo n—oo
= lim [TV S, n-17n — Spn_12n|| = 0. (7.2.21)
n—oo

We next prove that S, ;z, —x, — 0 foreach i =1,2,..., N — 1. From (7.2.16), we get

Dp<xn7 Sn,lxn) = Df(In, Vf*[OénJVf(Tll’n) + (1 - an,l)vf(x”)])
< an1Dy(an, T '2,) + (1 —an1)Dyi(zn, ).
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Taking limit as n — oo and using (7.2.21), we have

lim Df(xn, Sn,lxn) = OJ

n—oo

hence
lim ||S, 12, — .|| = 0.
n—oo

Thus

HTQSanH — x| < ||TQSn71xn — SpaZnll + ||Sn1%n — 20l = 0 1 — 0.
Similarly, we have

Di(, Sno®yn) = Dp(2n, VI naVF(T?Sn12n) + (1 — o)V F(Spizn)])
< an,QDf(:En; TQSn,lajn) + (1 - Oén,2)Df(xna Sn,lxn)'

Taking limit as n — oo, we have

lim D¢(x,,, Spaoty,) =0,
n—oo
and hence

lim ||S, 22, — z,|| = 0.
n—oo

Following similar approach as above, we have

lim ||S, 32, — z,|| = lm [|Spaz, — || = -+ = lim ||Spunv-12, — 2]| = 0.
n—00 n—00 n—r00
Therefore
lim ||S,;x, —z,|| =0 foreach i=1,2,...,N —1.
n—o0
This together with the Bregman relative nonexpansiveness of each T¢ for i = 1,2,..., N,

implies that z € F(S,,;) for i =1,2,..., N. Hence € F'(W,,). This therefore implies that

W, is Bregman relatively nonexpansive.

We now present our iterative algorithm. In solving the EP(g) (1.1.4), we assume that the

bifunction g satisfies the following assumptions:

(A1) g(xz,x) =0 for all x € C;
(A2) g is monotone, that is g(x,y) + g(y,x) <0 for all z,y € C;
(A3) For all z,y,z € C

limsup g(tz + (1 = t)z,y) < g(z, y);

tjo+

(A4) For all z € C, g(x,-) is convex and lower semicontinuous.
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Theorem 7.2.12. Let C be a nonempty, closed and convex subset of a real reflexive Banach
space E and f : E — R be a coercive Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of E. Fori=1,2,... N, let {a,;} C
(0,1), T* : C — C be a finite family of n-generalized Bregman nonspreading mappings
and W,, : C = C be a Bregman W-mapping generated by {a,;} and T',T? ..., TN in
(7.2.16). Let g; : C'x C' — R be bifunctions satisfying assumptions (Al)-(A4) and suppose
.= ﬂf\il F(TY) N ﬂ;‘;l EP(g;) # 0. Define the sequence {x,} by the following process

(10 =2€C,Co=Qy=C,

2n = VI B0V f (20) + 52, BV (Resy wn)],
Un = VL 0uV f () + (1= 8,)V f (Wnza)],

C, = {z € C: Ds(z,y,) < Df(z,xn)},

Qn={z € C:(Vf@) = Vf(z,). 20 —2) = 0},

(Zns1 = ProjénﬂQn:c,

(7.2.22)

for all n > 0, where {\,} C (0,00), {Bn;} and {0,,} are sequences in [0,1) satisfying the
following control conditions:
(i) 32720 Bnj=1,¥ ne NU{0};
(it) There exists k € N such that liminf 3, ; 5, > 0, Vj € NU{0};
n—o0

(i1i) 0 <0, <1, V¥n € N and liminf, 6, < 1;

(iv) liminf A\, > 0.
n—oo
Then, the sequence {x,} converges strongly to Projf:x as n — oo.

Proof. We divide the proof into several steps.

Step 1: We show that I' C C,, N @Q,, and x,,,1 is well defined.
It is clear that ), and @),, are closed and convex. Then C),, N @), is closed and convex for
n > 0. Obviously, I' C Cy N Qq. Suppose I' C C,,, N Q,,, for some m € N. Let p € I, then

Di(p,ym) = Dy, VI 0nVf(xm)+ (1= 0n)VF(Winzm)])

Vi 0mV f(@m) + (1 = 0m)Vf (Winzm))

= f0) = @0V f(zm) + (1 = 60) VI (Winzm)) + [*(0mV f(2m)
+(1 = 00)Vf(Winzm))

< Onlf(p) = 0, VI(zm)) + [ (@n)] + (1= 60)[f(p) — (. V. (Winzm))
F [ Winzm)] = 0m(L = 6m) oy (|2 — Winzml|)
< 5me(pa xm) + (1 - (5m)Df(pv Zm) - 5m(1 - 5m)pi(||xm - anm“)

= 5an(p7 Tr) + (1= 5m)Df(pv A [ﬁm,ovf(xm) + Z ﬁm,jvf(Resgp(g)xm)])

j=1

=0 (1 = 0m) oy ([T — Winzml])-
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Hence

Df(p, ym) S 5me(p, xm) + (1 - 6m)[ﬂm,0Df(p> xm) + Z ﬂm,ij(pa Resép(g)$m)

j=1
—Bm.o Z Bini 7| |Tm — Resgp(g)xmm] = 0m(1 = 6 )pr([|Tm — Winzml|)
j=1
S 5me<p7 xm) + (1 - (Sm)[ﬂm,ODf(pa xm) + Z ﬂm,ij<pa xm)]
=1
~(1 = 8u)Bimo Y PPt (Il — Resppyvmll) = 0a(1 = 8m)pk (l|2m = Winzul|)

j=1
= Di(p,xm) = (1= 00)Bmo D Bruji(||xm — Reshpml])
j=1

—0n(1 = 8n)pr([|2m — Winzml|) (7.2.23)
< Df(]?, $M>

Hence p € C,,, which implies that T" € C,,. Since z,,11 = Projc o, Ts then (Vf(x
Vi(@ms1), 2—2mi1) <0V 2z € CpNQy,. In particular, (V f(x)— Vf(me) P—Tmi1)
Vp € T'. Thus p € Q1. This proves that I' C C,01 N Qpa1. Therefore I' C C), N
vV n > 0. Consequently, since C, N @, is closed and convex, then z,,; = Pro fcannx is
well-defined.

Step 2: We prove that {z,}, {yn}, {20}, {Resf\c 4, Tnt and {Wy2,} are bounded.
Since I' C C,, N Q,, for every n > 0 and x,,11 = Proyo no,T; then

D¢(p,xps1) < Dy(p,x) YV n>0. (7.2.24)
So {D¢(p, x,)} is bounded and hence there exists a constant A/ > 0 such that
D¢(p,xn) <M VneNU{0}.

In view of Lemma 2.6.28, we conclude that the sequence {z,} is bounded. Similarly, the
sequences {yn}, {zn}, {Resf\fm g;0n} and {Wyz,} are bounded.

Step 3: Next, we show that lim,, o ||Tne1 — Zn|| = 0, lim, o0 ||Resf\[mgjxn — || = 0 and

limy, o0 [|[Whzn — 2a|] = 0.

Since x,11 € C, N Q, C Q, and z, = Projén (x), we have

D¢(xnt1, Projé;n (x)) + Df(PTOjé;n (1), 2) < Dy(Tps1, ).

Thus
D¢(Tpt1,Tn) + Dy(zn, ) < Dp(2pt1, ). (7.2.25)

Therefore the sequence {Df(x,, )} is non-decreasing and thus lim,,_,., Df(x,, z) exists.
Hence, it follows that lim,_,o Df(2y+1,2,) = 0, and by Lemma 2.6.24, we have

nh_}r{)lo ||Zns1 — zn|| = 0. (7.2.26)
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Also, since x,, 1 € C,, we have
Df<37n+1a yn) < Df(xn-i-la xn)
This yields that lim, oo Df(@p41,yn) = 0 and thus
lim ||z+1 — yal| = 0.
n—oo
Therefore from (7.2.26) and (7.2.27), we get
nh_glo ||yn - xn|| =0. (7'2'27)

By the uniform continuity of f and V f on bounded subsets of F and E* respectively, we
have

Tim [[f(yn) = f(z)]] =0 (7.2.28)
and
lim [V f(yn) = V()] = 0. (7.2.29)
Furthermore,

Dy(p,xn) — Dp(p,yn) = f(p) = f(@n) = (p— 20, Vf(20)) — f(0) + [(Yn) + @ — Yn, V. (Un))
= f(yn) = f(zn) + (0 = yn, VI (Un)) — (0 — 20, Vf(20))
= flyn) = f(xn) + (@0 = Yn. VI(n)) = (0 — Tn, Vi (Yn) — Vf(20))-

Therefore from (7.2.27) - (7.2.29), we get

lim [Dy(p, ) — Ds(p, yn)] = 0. (7.2.30)

n—o0

Note that from (7.2.23), we have

o0

Di(p.yn) < Ds(pewn) = (1= 6a)Bn0 ) Bugpilllzn — Res) , xall)

J=1

=0, (1 = 6,) pr (|20 — Waznl])-

Using the property of pi and conditions (ii) and (iii) together with (7.2.30), we have

; f _
nh—g}o |lzn — Resy, g nll =0 (7.2.31)
and
lim ||z, — Wyhz,|| = 0. (7.2.32)
n—oo

By the uniform continuity of V f on bounded subsets of E*, we have

lim ||V f(xn) = Vf(Res], , 2.)|| = 0.
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Hence from (7.2.22), we get
Tim [[V5(20) = V@)l = lm S 8,195 (Res], , 2) = VI (@)l = 0.
j=1

Furthermore, since f is Fréchet differentiable on bounded subset of F, then V f* is uni-
formly continuous on bounded subsets of £*. Thus

lim ||z, — x,|| = 0. (7.2.33)
n— o0
Therefore
lim |[Wyz, — z|| = Um [||Whzn — || + ||zn — 2a]]] = 0. (7.2.34)
n—oo n—oo

Since {z,} is bounded, there exists a subsequence {z,, } of {x,} which converges weakly
to g € E. Since ||[W,z, — z,|| — 0 and ||z, — x,|| — 0 as n — oo, then from Lemma 2.6.14
we have that ¢ € F(W,,). Hence q € (v, F(T").

Also from Lemma 2.6.14, we have for each j =1,2,...

1
gj(Resf\cmgjxn,y) -+ )\—(y — Resf\cmgﬁn, Vf(Res{mgjxn) —Vf(x,) >0 VyeC.

n

Hence

1
(y — Resﬁnk,gﬁnkaVf(Resink,gjan —Vf(z,)) >0 VyeC.

gj (Res{nk 95T y) + y
ng

From the assumption (A2), we have

1
s lly=Res),_ wul IVF(Res{, , x0,) = V()
Nk
1
2 5y = Resf,, o ons VI(Res],y om) = Vo)

> —gj(Resf\cnkgja:nk,y) > gi(y, Res{nk’gjxnk) Yy e C.

Taking the limit as & — oo in the above inequality, from (A4) and condition (iv), we have
T, — 4, ||Vf(Resf\vnkjgjxnk) — Vf(z,,)|| = 0, we have that g;(y,q) < 0 for all y € C.
For 0 <t < 1and y € C, define y, = ty + (1 — t)q. Noting that y, € C, which yields
9i(yt, q) < 0. It therefore follows from (A1) that

0= g, ye) <tgi(ye,y) + (1 —1)g;(ye, @) <tg;(ys,y)-
That is g;(y, y) > 0.

Let t | 0, from (A3), we obtain g;(¢,y) > 0 for any y € C, j = 1,2,.... This implies that
¢ € N2, EP(g;). Therefore g € T ==L, F(T%) N2, EP(g;).

Now since x,11 = Projéanx, we have

<Vf(.’ll') - Vf(xn+1)7$n+1 - Z) Z 07 Vz € Cn N Qn-
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Since I' C C), N Q,,, we have
(V (@) = Vf(@p41), Tpp1 —2) 20 VzeT.
Taking the limit of the above inequality, we have
(Vf(x)=Vf(@),g—2 >0 Vzel.

Therefore ¢ = Projgx. This completes the proof. [

7.2.2 Application to zeros of Maximal monotone operators

Sabach [223] showed that under some properties of the function f, the solution set of the
equilibrium problem is equivalent to the set of zeros of a maximal monotone operator,
that is the points z* € dom A such that

0" € Az*, (7.2.35)

where A : E — 2F" is a maximal monotone operator. We denotes the set of zeros of A
by A71(0*). An operator A : E — 2 is said to be monotone if for any x,y € dom A, we
have

E€Ar and peAy= ({—p,x—y) >0.

Let g : C' x C' — R be a bifunction and define the following operator A, : E — 25" in the
following manner

A(z) — {{5 €E g(ry) 2 &y —2) Wyel}, zel, (7.2.36)

0 r¢C.
The following result was proved for the mapping A, in [223].

Proposition 7.2.13. (Sabach [223]) Let C be a nonempty, closed and convex subset of
a reflexive Banach space E and let f : E — R be a coercive Legendre function which
s bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E.
Assume that the bifunction g : C' x C' — R satisfies conditions (A1)-(A4), then:

(i) EP(g) = A;'(07);
(it) A, is mazimal monotone operator;

(iii) Res) = Res’;lg.

Based on the above result, we propose the following corollary which can be obtain from
Theorem 7.2.12 for finding common fixed point of finite family of n-generalized Bregman
nonspreading mapping and zeros of maximal monotone operators in reflexive Banach space.
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Theorem 7.2.14. Let C be a nonempty, closed and convex subset of a real reflexive Banach
space E and f : E — R be a coercive Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of E. Fori=1,2,... N, let {a,;} C
(0,1), T" : C — C be finite family of n-generalized Bregman nonspreading mappings and
W, : C — C be a Bregman W-mapping generated by {cv,;} and T*,T?, ..., T in (7.2.16).
Let g; : C x C'— R be bifunctions satisfying assumptions (A1)-(A4), Ay, : E — 2F" be
as defined in (7.2.37) for j = 1,2,... and suppose T := N, F(T)) N Nj21 A, (0%) # 0.
Define the sequence {x,} by the following process

(20 =2€C,Co=0Qp=C,

0 = VL BV () + 550 BV (Resl )]
Yn = V[ [0nV f(2n) + (1 = 60)V [ (Wazn)],

C, = {z € C: Dy(z,y,) < Df(z,xn)},

Qn = {z eC:(Vf(x)=Vf(x,),x,—2z) > 0},

_ -f
( Tnt+1 = PT’O]Cann:L’,

(7.2.37)

for alln >0, where {B,;} and {3,} are sequences in [0,1) satisfying the following control
conditions:

(i) 3520 Bng =1,V n e NU{0};
(it) There exists k € N such that liminf, . B, ;8nr > 0, V5 € NU {0};

(i17) 0 <0, <1, Vn € N and liminf, - d, < 1.

Then, the sequence {x,} converges strongly to Projf:x as n — 0o.
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CHAPTER 8

Conclusion, Contribution to Knowledge and Future research

8.1 Conclusion

In this thesis, we presented some inertial-type iterative schemes with strong convergence
properties for approximating solutions of certain optimization problems and finding fixed
point of nonlinear mappings in real Hilbert spaces. We compared the performance of our
algorithms against existing algorithms in the literature using MATLAB programming.
In each case, we found that each of our proposed algorithms performs better than some
related algorithms in the literature.

Also, we studied the approximation of common solution of non-monotone equilibrium
problem and fixed point problem in real Hilbert spaces. We proved strong convergence
theorems and provided numerical examples to show the accuracy and efficiency of our
algorithms. We then introduced a new projection contraction type algorithm for solving
split generalized equilibrium problem and finding common fixed point of finite family
of nonlinear mappings in real Hilbert spaces. We also showed that our new projection
algorithm converges at the rate of O(1/t).

Furthermore, we extended the study of projection method for solving VIP from a real
Hilbert space to a reflexive Banach space. We introduced a new projection method with
Armijo-line search technique for solving pseudo-monotone VIPs in real reflexive Banach
spaces. We also introduced a totally relaxed self-adaptive subgradient extragradient al-
gorithm for finding common solution of VIP and fixed point problem in a 2-uniformly
convex and uniformly smooth real Banach spaces. Then, we proposed another new pro-
jection contraction algorithm and proved strong convergence theorems for VIP and fixed
point problems in real Hilbert spaces. We gave an application of our results to approx-
imating solutions of split equality problem in Hilbert spaces. In each case, we provided
some numerical examples to illustrate the performance of our algorithms.
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Also, we extended the study of split equality monotone inclusion problem from real Hilbert
spaces to p-uniformly convex and uniformly smooth real Banach spaces. We introduced a
new iterative scheme and proved a strong convergence result for approximating solution
of split equality monotone inclusion problem in p-uniformly convex and uniformly smooth
real Banach spaces. We then presented some applications of our result to solving some
other optimization problems in real Banach spaces.

More so, we introduced an intermixed iterative algorithm for approximating individual
fixed point of two k-strictly pseudo-contractive mappings in a p-uniformly smooth Banach
space. Using our result, we were proposed an algorithm for approximating a common
fixed point for the two k-strictly pseudo-contractive mappings. Finally, we introduced a
class of N-generalized Bregman nonspreading mapping in a reflexive Banach space. We
also studied some fixed point properties for this new class of mapping. Then, we proposed
an hybrid iterative scheme for approximating the common fixed points of finite family of
N-generalized Bregman nonspreading mappings which is also a solution to an equilibrium
problem in a reflexive Banach space. We gave an application of our result to approximating
zeros of maximal monotone operators in a reflexive Banach space.

8.2 Contribution to Knowledge

We highlight some contributions in this thesis as follows:

(i) Our main theorem in Section 3.1 improved the corresponding results of Chembolle

and Dossel [72], Cai and Shehu [60], Tian and Huang [258], Xu [266] and Shehu
[234].

(ii) In Section 3.2, we improved the results of Kraikew and Saejung [158], Thong and
Hieu [254, | and Dong et al. [97] by using a self-adaptive stepsize selection

technique which does not require a prior estimate of the Lipschitz constant of the
monotone operator.

(iii) Also in Section 3.3, our results generalized the results of Suantai et al. [210], [197]
and Rizvi [218].

(iv) Our results in Section 4.1 generalized the results of Dinh and Muu [94], Hieu [127]
and many other related results in the literature. It also improved the corresponding
results of Hieu et al. [129] and [130] by constructing a sublevel set using convex
combination of finite family of convex functions and does not involve the projection
onto the intersection of C,, and @,,.

(v) In Section 4.2, we improved and generalized the results of Chuang [35] and Yen [270]
by introducing a simpler inertial Mann-Krasnoselskii algorithm in a real Hilbert
space.

(vi) Our results in Section 4.3 extended and generalized the results of Kazmi and Rizvi
[148], Deepho et al [93] and Phuengrattana et al. [204] in unified ways.
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(vii)

(viii)

(ix)

Section 5.1 extended the results of Kanzow and Shehu [111] from Hilbert space to a
reflexive Banach space and from monotone variational inequality problem to pseudo-
monotone variational inequality problem. It also improved many existing results such
as [30, , , , ] where the operator is required to satisfy Lipschitz and
monotone conditions.

Our result in Section 5.2 improved the results of He et al. [124, 123], Chidume and
Nnakwe [30].

Our results in Section 5.3 improved the results of [97, , , , | which
requires more than one projection onto the the feasible set.

In Section 6.1, we extended the results of [220, , , , | to a split equality
monotone inclusion problem in p-uniformly convex and uniformly smooth Banach
spaces.

Our results in Section 7.1 improved and generalized the results of Chidume and
Shahzad [80], Cholamjiak and Suantai [239] in Banach spaces. We also extend the
intermixed algorithm in [271] to a p-uniformly smooth Banach space.

In Section 7.2, we generalized the results of [110, , , | to N-generalized
Bregman nonspreading mapping in reflexive Banach spaces. We also extend the
results of [250, 251] to a reflexive Banach space.

8.3 Future Research

In our future research, we will like to study the approximation of solutions of optimization
and fixed point problems in Hadamard spaces such as the CAT(0) spaces, CAT (k) spaces,
p-uniformly convex metric spaces and R-tree spaces.
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