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Abstract

Recently, researchers have shown an increased interest in the early diagnosis and
detection of lung cancer using the characteristics of computed tomography (CT) im-
ages. The accurate classification of lung cancer assists the physician to know the
targeted treatment, reducing mortality, and as a result, supporting human survival.
Several studies have been carried out on lung cancer detection using a convolutional
neural network (CNN) models. However, it still remains a challenge to improve
the model’s performance. Moreover, CNN models have some limitations that affect
their performance, including choosing the optimal architecture, selecting suitable
model parameters, and picking the best parameter values for weights and bias. To
address the problem of selecting the best combination of weights and bias needed
for the classification of lung cancer in CT images, this study proposes a hybrid of
Ebola optimization search algorithm (EOSA) and the CNN model. We proposed
a hybrid deep learning model with preprocessing features for lung cancer classifi-
cation using publicly accessible Iraq-Oncology Teaching Hospital/National Center
for Cancer Diseases (IQ-OTH/NCCD) dataset. The proposed EOSA-CNN hybrid
model was trained using 80% of the cases to obtain the optimal configuration, while
the remaining 20% was applied for validation. Also, we compared the proposed
model with similar five hybrid algorithms and the traditional CNN. The results in-
dicated that EOSA-CNN scored 0.9321 classification accuracy. Furthermore, the re-
sult showed that EOSA-CNN achieved a specificity of 0.7941, 0.97951, 0.9328, and
sensitivity of 0.9038, 0.13333, 0.9071 for normal, benign, and malignant cases, re-
spectively. This confirmed that the hybrid algorithm provides a good solution for
the classification of lung cancer.
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Chapter 1

Introduction

Non-communicable diseases (NCDs) are considered as the major causes of death
globally. The NCDs include several types of diseases such as cancers, cardiovascular
diseases, chronic respiratory diseases, and type-two diabetes Caprara (2021). More-
over, the World Health Organization (WHO) estimates that NCDs are responsible
for 80% of the world’s burden of disease in 2020 and represent 71% of the world-
wide deaths Wang & Wang (2020); Bigna & Noubiap (2019). In addition, the global
burden of NCDs is expected to increase by 17% in the coming decade Wang & Wang
(2020). Recently public health investigation revealed an epidemiological shift from
infectious to NCDs. Among the NCDs, cancer has the highest morbidity and mor-
tality rates worldwide. The incidence and spread of cancer are on the rise globally,
both in developed and developing countries Olsen (2015).

Cancer is a severe public health issue that is becoming more prevalent worldwide. It
is a disease that makes cells tissues in particular divide in uncontrolled way. There-
fore, this leads to a malignant or tumor growth Woodman et al. (2021). In 2020,
the GLOBOCAN estimated 19.3 million new cancer incidences that led to approx-
imately 10 million deaths globally Sung et al. (2021). Also, the American Cancer
Society estimated 1,898,160 new incidences of cancer that will lead to 608,570 deaths
in the United States (US) Siegel et al. (2021). Moreover, in 2020 there were 1,109,209
new cases and about 711,429 deaths in Africa, even though the cancer death rates ex-
ceed the combined death rate of AIDS, tuberculosis, and malaria Hamdi et al. (2021);
Globocan (2021).

Lung cancer is one of the most often diagnosed cancer, and it is the main cause of
death for men and women globally. There are 2.2 million new cases of lung cancer
that have been diagnosed, which will lead to approximately 1.8 million death glob-
ally Sung et al. (2021); Mapanga et al. (2021). There are several common signs and
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symptoms of lung cancer, which include: hemoptysis (coughing up blood), weight
loss, and weariness. Moreover, various risk factors are associated with lung cancer,
including smoking, alcohol consumption, air quality, and food Li et al. (2021). Lung
cancer can be divided into two categories based on the histology of the cancer cells:
non-small lung cancer (NSCLC) and small-cell lung cancer (SCLC) Woodman et al.
(2021). The NSCLC is considered as the most common type of lung cancer, which
accounts for 85% compared to the SCLC, which represents 15% of all patients Wood-
man et al. (2021).

Lung cancer has significantly increased in the third world countries, including Sub-
Saharan Africa, where human immunodeficiency virus (HIV) has also had a dev-
astating effect Shankar et al. (2019). The overall 5-year survival rate for all kinds of
lung cancer is lower (18%) when compared to other cancers such as colorectal cancer
(65%), breast cancer (90%), and prostate cancer (99%) Woodman et al. (2021). How-
ever, lung cancer demands greater attention from the medical, biological, and scien-
tific fields to find innovative solutions to promote early diagnosis, help in medical
decisions, and evaluate responses to improve health care. The molecular profile of
tumor tissues allows for identifying driver mutations, and tailored therapies that can
be applied for particular genotypes. Traditional chemotherapy kills all cells without
distinguishing between normal and malignant ones. on the other hand, targeted
therapy targets specific parts, interacting with cancer driver genes and preventing
or decreasing malignant transformation Pereira et al. (2021).

A significant proportion of the cancer incidences that are curable in developed coun-
tries are detected after they reach incurable stages in third world countries due to late
or inaccurate diagnoses Organization (2002). This has motivated scientist to evalu-
ate the existing approaches and propose new techniques to classify and detect lung
cancer and its subtypes for improved early detection and application of appropriate
treatment strategies.

There is an enormous amount of CT scan images data repository for lung cancer,
which could help detect the disease. More so, machine learning and deep leaning
algorithms can utilize these images to enhance cancer prediction and diagnosis as
early as possible and find the best treatment strategies. There are two types of ma-
chine learning methods: supervised and unsupervised. The supervised algorithms
use labeled input and output data (for example, labeled pictures of malignant and
benign scans). In contrast, the unsupervised algorithm aims to find the undiscovered
relationships and patterns within the data without explicitly labeling. The main aim
of using machine and deep learning is usually to learn how to categorize an input
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1.1. Motivation

sample (such as medical, MRI scans, or pathological images) into predetermined cat-
egories (such as normal or abnormal). These categories could be specific sub-type di-
agnoses (for example, tumors) or diagnostic groups (e.g., malignant versus benign)
Daneshjou et al. (2021). Deep Learning (DL) methods have enabled machines to an-
alyze high-dimensional data such as images, multidimensional anatomical images,
and videos. Also, the DL can be considered as a branch of machine learning that
explains learning algorithms inspired by the biological and function of the nervous
system. DL uses a combination of Artificial Neural Networks (ANNs) to improve
recognition skills Masud et al. (2021).

Optimization is a critical phenomena in deep learning Sun (2020). It can be de-
fined as a process of training the model iteratively, which results in a maximum and
minimum function evaluation. Deep learning algorithms have been applied in vari-
ous fields successfully. However, optimizing the parameters of these algorithms has
become a complex task due to the enormous amount of data required to success-
fully conduct the required training and validation of the models Soydaner (2020).
Thus, there is a need for improved methods of optimizing the deep learning hyper-
parameters using selected state-of-the-arts optimization algorithms with application
to enhanced image classification.

1.1 Motivation

Despite the higher mortality rate in Africa, cancer has received little attention from
researchers and health providers. Furthermore, low-income nations account for 57%
of all new cancer cases worldwide, which increased by a lack of awareness, low pro-
tective initiatives, and increased life expectancy Hamdi et al. (2021).

Lung cancer is the most common type of cancers, and it is connected with high mor-
bidity and mortality rates, especially if detected at a late stage Mapanga et al. (2021).
Also, there is a lack of methods that can effectively detect lung cancer in its early
stages, where it is more likely to be curable. Moreover, the symptoms of lung cancer
usually manifest late when it is non-curable. Although early detection is the best
promising way to reduce any health complications or death due to cancer, more so,
80% of the cases are detected correctly in the middle or advanced stage of cancer
Motohiro et al. (2002); Kuruvilla & Gunavathi (2014).

Furthermore, there are severe limitations in cancer detection based on morphologi-
cal features Berman (2004). The early diagnosis and detection of lung cancer via CT
images will help the radiologists make a fast decision, hence expediting and facil-
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1.2. Problem Statement

itating the consequent clinical response to determine the suitable treatment. Thus,
these challenges motivated the current study proposal to develop effective DL meth-
ods for early diagnosis and detection of lung cancer based on CT images to enhance
the survival chances of humans.

1.2 Problem Statement

Although several studies have reported various designs of CNN models developed
for medical images analyses, lung cancer prediction still remains a difficult task due
to the multifaceted designs in the CT scan. Moreover, DL models have some issues
that affect their performance, including choosing the feature representation, the opti-
mal architecture, selecting suitable model parameters, and picking the best combina-
tion of values for weights and bias Akay et al. (2021). Therefore, to solve these issues
and find a precise prediction model, we used metaheuristic optimization methods to
optimize the CNN model. Metaheuristic optimization approaches helps to optimize
the performance of CNN architecture network model. Thus, we propose utilizing
a metaheuristic algorithm namely Ebola optimization search algorithm (EOSA) to
address the problem at hand. The use of EOSA is motivated from the interesting
performance reported in applying the method to CNN auto-design for image classi-
fication problem in breast cancer Oyelade & Ezugwu (2021a). The CT images have
noises at the time of acquisition process which might lead to false detection of the
cancerous lung. Moreover, good image preprocessing, such as wavelet decomposi-
tion, will be used to enhance image resolution. In addition, detecting lung cancer is
still challenging for physicians as it is difficult to conduct such investigation using
eye-tracking and then recognize the lung nodule and their sub-types.

1.3 Objectives

The main objective of this work is to design an optimized deep learning model using
a metaheuristic algorithm for lung cancer detection. Hence, this will help the physi-
cians in the early detection of the disease, and thereby improving decision making
leading to proper therapy. The primary objectives of this thesis are summarized as
follows:

1. Apply combined transformation, Gaussian Blur filter, otsu’s thresholding, nor-
malization, erosion and dilation, CLAHE filter, and wavelet decomposition,
for preprocessing of the CT images related to cancer diagnosis.

4



1.4. The Structure of the Dissertation

2. Design and implement a robust hybrid deep learning model that combines
both the CNN and EOSA, to optimize the CNN architecture.

3. Evaluate and compare the new deep learning model with other state-of-the-
art hybrid algorithms such as the combination of CNN with genetic algorithm
(GA), whale optimization algorithm (WOA), multiverse optimizer (MVO), satin
bower optimization (SBO), and life choice-based optimization (LCBO).

1.4 The Structure of the Dissertation

This work proposes an optimized deep learning approach that will help in the early
diagnosis and detection of lung cancer via CT scan images. The dissertation consists
of five chapters. These chapters are structured as follows:
Chapter 1: This chapter gives a background about lung cancer and deep learning
models. Also it presents the motivation, aims, and objectives of the study.
Chapter 2: This chapter presents the literature review for the studies which are re-
cent and related to our research.
Chapter 3: This chapter describes the dataset for lung cancer and presents a detailed
preprocessing approach as applied in this study. Furthermore, we introduced the
proposed hybrid algorithm and similar CNN-metaheuristic methods such as: CNN
using GA, WOA, MVO, SBO, and LCBO for early detection and diagnosis of lung
cancer. The methodology that are applied to detect and diagnose lung cancer are
also explained.
Chapter 4: Here, we present results for seven methods applied to the dataset. The
results are compared for the different methods based on various performance mea-
sures, namely accuracy, sensitivity, specificity, kappa, recall, precision, and f1 score.
Chapter 5: In this chapter, we provided a discussion about the outcome of the pro-
posed methods and results obtained. We also concluded the study and presented
future research directions.
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Chapter 2

Literature Review

2.1 Introduction

Recently, research efforts have demonstrated the existence of an increased spread of
NCDs such as cancer. Lung cancer diagnosis and detection have become one of the
biggest obstacles in recent years. Early diagnosis and detection of lung cancer will
reliably promote survival of many lives Kalaivani et al. (2020). Improved classifica-
tion accuracy for lung cancer using medical images will help physicians select the
suitable therapy that will reduce the mortality due to the disease.

Similarly, there is a growing trend using CT images, which is far more effective than
X-ray, for classification of lung cancer. Moreover, several machine and deep learn-
ing classification algorithms have been implemented to address the problem of clas-
sification of lung cancer. These algorithms include CNN, recurrent neural network
(RNN), support vector machine (SVM), neural networks (NNs), among others. Here,
we categorized the literature review into three parts based on different approaches
that have been investigated and implemented.

2.2 Machine learning based lung cancer diagnosis

Several computer-aided methods have investigated pre-processing and machine learn-
ing methods to lung cancer diagnosis. Makaju et. al. Makaju et al. (2018) proposed
a new computer-aided system for cancerous nodule classification based on CT scan
images. The novel model uses watershed segmentation for detection and SVM to
classify a nodule as either malignant or benign. Their results showed that the new
proposed model accurately classifies cancer with 92%. Also, Nanglia et. al. Nanglia
et al. (2021) presented a hybrid algorithm called kernel attribute selected classifier
(KASC) based on combining SVM and feed-forward back propagation neural net-
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work (FFBPNN). They evaluated the hybrid method using CT images. The results
of the new hybrid technique achieved high performance with an average accuracy
of 98.17% for the classification of 500 CT images of lung cancer. In addition, Ka-
reem et al. (2021) proposed a new model for detecting lung cancer using the IQ-
OTH/NCCD CT images. They implemented preprocessing steps namely, image
enhancement, segmentation, and feature extraction. Thereafter, they used SVM to
classify the CT images. Their results showed an accuracy of 89.88%.

2.3 Classical CNN based lung cancer diagnosis

Many works have been done in lung cancer detection using CNN. Hatuwal & Thapa
(2020) applied CNN model to detect lung cancer using histopathology images ob-
tained from the LC25000 Lung and colon histopathological image dataset. The dataset
is divided into 90% and 10% for training and validation. The results obtained showed
that CNN achieved 96.11% and 97.2% for training and validation respectively. Also,
Neal Joshua et al. (2021) conducted binary classification of benign and malignant
categories of lung cancer using the Lung Nodule Analysis 2016 (LUNA16) database.
They proposed a lightweight 3D-CNN model that uses gradient-weighted class ac-
tivation mapping (Grad-CAM). The proposed model performance is higher than 2D
AlexNet and 3D AlexNet with an accuracy of 97.17%.

Kirienko et al. (2018) designed a model based on deep learning for lung cancer stages
detection. They used fluorodeoxyglucose positron emission tomography/computed
tomography (FDG-PET/CT) images collected from 472 patients. Their developed
model obtained an accuracy of 87% in training, 69% in validation, and 69% in test-
ing. Moreover, Sajja et al. (2019) developed a model based on GoogleNet, a pre-
trained CNN, for lung cancer classification using lung image database consortium
(LIDC) dataset. They divided the datasets into 80% as training set and 20% as test-
ing set. The results of the proposed model outperformed AlexNet, GoogleNet, and
ResNet50 resulting in the highest accuracy.

Ahmed et al. (2020) applied the Vanilla 3D CNN model to classify cancerous or non-
cancerous lung cancer. They used the LUNA 16 dataset and pre-processed the data
using thresholding methods. The results of their proposed model showed an ac-
curacy that is close to 80%. Furthermore, Khumancha et al. (2019) utilized a model
based on 3D-CNN for lung cancer identification. The authors used LUNA16 and the
data science bowl 2017 kaggle competition datasets. The model prediction accuracy
using the data science bowl 2017 Kaggle competition dataset was impressive. The
results showed that the model achieves 89.24% and 82.17% of precision and recall re-
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spectively. Yamunadevi & Ranjani (2021) proposed an adaptive fuzzy-GLCM based
segmentation method for lung cancer recognition. They used the GoogLeNet CNN
architecture. The result of the proposed model yielded 98% accuracy, specificity,
sensitivity, and precision compared to existing methods. In addition, Toğaçar et al.
(2020) presented a hybrid model using six machine learning models and three CNN
models. Also, they used the minimum redundancy maximum relevance (mRMR)
feature selection approach to detect lung cancer via CT images. They used 10-fold
cross-validation and carried out five separate experiments. Their results showed
that the combination of AlexNet and KNN with mRMR method scored an accuracy,
sensitivity, and specificity of 99.51%, 99.32%, 99.71%, respectively.

Cengil & Cinar (2018) applied 3D-CNN architecture on CT images to classify lung
cancer nodules. They obtained their test images from SPIE-AAPM-LungX dataset.
Their results showed that the proposed method scored 70% accuracy. Also, Chen
et al. (2021) developed a new synthetic sample generation method based on the
characteristics of multiple instance learning (MIL) to solve the problem of imbal-
ance data. Their results achieved an average accuracy of 0.807, recall of 0.870, and
AUC of 0.842. Singh & Gupta (2019) developed a method for detecting and classify-
ing lung cancer into benign and malignant stages using CT scan images. They used
image processing techniques to prepare the images for further analysis. In addi-
tion, the study used seven classification methods: decision tree classifier, multi-layer
perceptron (MLP), k-nearest neighbors classifier, multinomial naive Bayes classifier,
support vector machine classifier, stochastic gradient descent classifier, and random
forest classifier. Their results indicated that MLP outperformed other methods with
an accuracy of 88.55%.

Also, Sujitha & Seenivasagam (2021) proposed a new approach for lung cancer clas-
sification by streamlining Apache Spark designs and architecture with machine learn-
ing algorithms together. Their approach outperformed other methods and obtained
an accuracy of 86% and AUC of 0.88. Alrahhal & Alqhtani (2021) presented adoptive
lung cancer detection (ALCD) system using CNN model. The authors implemented
preprocessing methods for preparing the images for further analysis. Moreover, the
used feature extraction method is called scale-invariant feature transform (SIFT).
Their results indicated that the proposed system scored 96%, 98%, 92%, and 96% for
accuracy, sensitivity, recall, and precision, respectively.

Kriegsmann et al. (2020) trained and refined a CNN model to consistently classify
the three most common lung cancer subtypes. They also built quality control pro-
cedures to objectively identify situations that require additional immunohistochem-
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istry (IHC) validation for accurate entity subtyping. Their results achieved 88% of
accuracy. Moreover, Al-Yasriy et al. (2020) introduced a computer-aided system for
lung cancer detection using the IQ-OTH/NCCD dataset. They combined CNN with
AlexNet architecture to classify the patients into normal, benign, or malignant. Their
proposed method achived an accuracy of 93.548%.

2.4 Previous Empirical Research Studies

Revathi et al. (2020) proposed a new hybrid deep learning classifier based on adap-
tive swarm intelligence for classifying the lung cancer nodules. They used LIDC
and real-time lung cancer data samples from PSG Institute of medical sciences and
research (PSGIMSR). Their proposed algorithm aimed to improve the exploration
and exploitation mechanisms of the optimal search process to find near-optimal so-
lutions. Their proposed model showed an enhancement in lung cancer detection
with mean square error rate 0.0018 and 0.0027 for LIDC and PSGIMSR respectively.
Also, Das et al. (2020) proposed a velocity-enhanced whale optimization technique.
Their proposed method uses a hybrid approach with an artificial neural network for
detection and diagnosis of various cancer types including, lungs, cervical and breast
cancer. They compared their proposed technique with four benchmark algorithms.
These algorithms are: linear discriminate analysis (LDA), C4.5, factorized distribu-
tion algorithm, and learning vector quantization. Their proposed approach scored a
classification accuracy of 97.65%, 94.6%, and 84% in breast, cervical, and lung cancer,
respectively.

In addition, Shakeel et al. (2019) used an enhanced profuse clustering method and
deep learning with instantaneously trained neural networks (DITNN) strategy for
lung cancer prediction using CT images obtained from an archive for cancer images.
They implemented various preprocessing techniques, and the results showed that
their method has an accuracy of 98.42% and a classification error of 0.038. Wang et al.
(2020) developed a new residual neural network used to identify the pathological
type of lung cancer using CT images data. The proposed model is trained on a public
dataset using the transfer learning approach. The experiment yielded results of ac-
curacy of 85.71%. Khamparia et al. (2020) designed an integrated Bhattacharya–GA-
based model for feature selection and target gene identification. Their integrated
Bhattacharya coefficient and genetic algorithm (GA) were applied to pick features
and computed fitness using ensemble outputs from several classifiers, using deep
learning approaches. Their proposed method outperformed other techniques in the
prediction and diagnosis of neuromuscular disorders.
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Besides, Zheng et al. (2021) proposed a combination of radiology analysis and ma-
lignancy evaluation network (R2MNet) to evaluate pulmonary nodule malignancy
by radiology features analysis using the LIDC-IDRI dataset. Their results presented
that the proposed method scored an AUC of 96.27% and 97.52% on nodule radiology
analysis and nodule malignancy evaluation, respectively. Additionally, Bhandary
et al. (2020) provided a deep Learning approach for investigating lung pneumonia
and cancer. Two models proposed a modified AlexNet (MAN) and a fusion of hand-
crafted and learned features in the MAN to improve classification accuracy during
lung cancer assessment. Their results showed that the proposed model attained
97.27% accuracy.

Alagarsamy et al. (2021) used the crow search algorithm, an automated meta-heuristic-
based optimization technique for lung cancer prediction. The results achieved a
sensitivity of 99.12% compared to other methods. Furthermore, Sun et al. (2017)
evaluated the effectiveness of standard computer-aided diagnosis (CADx) systems
utilizing hand-crafted features to the use of deep learning structure for extracting
features automatically for diagnosis of lung nodule CT image. They assessed the
performance using a 10-fold cross-validation method. The results showed that CNN
outperformed other models with an AUC of 0.899.

Oyelade & Ezugwu (2021c) proposed a new metaheuristic algorithm based on the
propagation model of the deadly Ebola virus and its associated disease. They named
their new algorithm Ebola optimization algorithm (EOSA). They evaluated the pro-
posed model using two kind of benchmark functions: 47 classical and more than 44
constrained IEEE CEC-benchmark functions. Their results showed that EOSA can
compete with the state-of-the-art methods such as artificial bee colony (ABC), GA,
particle swarm algorithms (PSO) based on scalability, convergence, and sensitivity
analyses.

Moreover, Miah & Yousuf (2015) proposed a method for lung cancer detection in two
stages, including passing the image into preprocessing steps and segmenting and ex-
tracting the feature from the image samples. Their suggested method identified lung
cancer in its early stages. Their proposed system consists of image acquisition, pre-
processing, binarization, thresholding, segmentation, feature extraction, and neural
network detection. Their results showed that the proposed system achieved an ac-
curacy of 96.67%. Maleki et al. (2021) presented an approach based on a k-Nearest-
Neighbors and GA algorithm for identifying the stage of lung cancer. The feature
extraction is achieved using the GA algorithm. The proposed method scored an ac-
curacy of 100% on the lung cancer database.
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Bhatia et al. (2019) presented a technique for detecting lung cancer from CT data us-
ing deep residual learning. Preprocessing and feature extraction were carried out in
order to make the data ready for further analysis. They used XGBoost and Random
forest methods, and then the ensemble approach is implemented based on the indi-
vidual classifiers. Their results outperformed previous studies and achieved 84% on
LIDC-IRDI dataset. Song et al. (2017) developed CNN, DNN, and SAE deep neu-
ral networks for lung cancer classification using CT scan images. They assessed the
methods using the LIDC-IDRI database. Their results showed that the CNN ob-
tained the best performance with an accuracy, sensitivity, and specificity of 84.15%,
83.96%, and 84.32%, respectively compared to the other three networks.

Coudray et al. (2018) designed a CNN architecture based on inception V3 on whole-
slide images from the cancer genome atlas to classify lung cancer into its subtypes.
Their results showed that the model achieved an AUC of 0.97. Moreover, Chon et al.
(2017) used a dataset from the Kaggle data science bowl 2017 to establish a CAD
system for classifying lung cancer CT scans with unmarked nodules. They used a
vanilla 3D CNN, and a Googlenet-based 3D CNN. The baseline classifier of their
methods is a linear classifier. Their results showed that 3D Googlenet outperformed
other methods with an AUC of 75.7%. Lu et al. (2021) proposed a new CNN archi-
tecture for the optimal detection of lung cancer. They used a metaheuristic method
called marine predators for improved network accuracy and optimal design. Fur-
thermore, the approach has been applied to the RIDER dataset. Their results have
been compared with pre-trained deep networks, such as AlexNet, CNN ResNet-18,
VGG-19, and GoogLeNet. Their proposed MPA-based approach scored an accuracy
of 93.4%, sensitivity of 98.4%, and specificity of 97.1%.

Senthil Kumar et al. (2019) investigated and implemented five optimization algo-
rithms, namely, inertia-weighted particle swarm optimization, k-median clustering,
guaranteed convergence particle swarm optimization (GCPSO), k-means clustering,
and particle swarm optimization, to extract the tumor from the lung cancer image.
Also, they prepare the data for further analysis. The results showed that the GCPSO
has the highest accuracy of 95.89%. Besides, Shan & Rezaei (2021) proposed an auto-
matic and optimized computer-aided recognition for lung cancer. Feature selection
was carried out based on improved thermal exchange optimization (ITEO). Their
results revealed that the proposed method achieved 92.27% accuracy.

Abugabah et al. (2020) applied a meta-heuristic optimization algorithm for lung can-
cer images. The system efficiency was assessed using the F1 score value, which indi-

11



2.4. Previous Empirical Research Studies

cates that the system ensures high accuracy of 98.9% in ELT-COPD and 98.9% in NIH
clinical datasets. Priyadharshini et al. (2021) introduced a bat-inspired metaheuris-
tic based on CNN algorithms for CAD-based Lung Cancer detection. The discrete
wavelet transform (DWT) was used to decompose the image. The suggested method
has been validated using publicly available LIDC-IDRI data. The result showed that
the proposed method achieved an accuracy of 97.43% with a small classification er-
ror rate of 2.57% in lung cancer prediction. Li et al. (2019) used metaheuristic tech-
niques to optimize the rebalancing of the imbalanced class distributed in order to ap-
ply it in the feature selection method for dimension reduction in clinical X-ray image
datasets. Their result showed that the Bat algorithm’s proposed technique achieved
94.6% classification accuracy with 88.3% Kappa using the lung X-ray dataset. More-
over, Al-Huseiny & Sajit (2021) proposed DNN model to classify lung cancer images
with malignant nodules. They implement transfer learning to readjust GoogleNet
DNN to learn from the images. Their results showed that an accuracy of 94.38%
was achieved by the proposed model. A summary of the previous related studies is
presented in Table 2.1 below.

Table 2.1: A comparative summary of related existing studies.

Author Preprocessing Methods Findings

Revathi
et al. (2020)

Noise removal
Gabor filter

Multi-swarm particle
swarm optimizer

Accuracy: 98%

Das et al.
(2020)

- Velocity-Enhanced Whale
Optimization Algorithm

Accuracy: 84%

Shakeel
et al. (2019)

Noise removal
histogram of images

quality enhance images

deep learning with
instantaneously trained

neural networks (DITNN)

Accuracy:
98.42%

Wang et al.
(2020)

Removes unreadable scans
labelling tumor areas

a novel residual
neural network

Accuracy:
85.71%

Zheng et al.
(2021)

Normalization
Extraction
Resample

Crop

combination of radiology
analysis and malignancy

evaluation network (R2MNet)

Accuracy: 89.90%
AUC: 96.27%

Khamparia
et al. (2020)

- deep network
ensemble method

Accuracy:
87.35%

Continued on next page
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Table 2.1 – continued from previous page
Author Preprocessing Methods Findings
Bhandary
et al. (2020)

Image separation
Nodule segmentation

Deep Learning approach
Accuracy:
97.27%

Alagarsamy
et al. (2021)

- metaheuristic based
optimization

Sensitivity:
99.12%

Sun et al.
(2017)

Segmentation
CNN

deep belief network (DBN)
stacked denoising

autoencoder (SDAE)

AUC: 89.9%

Oyelade &
Ezugwu
(2021c)

- New metaheuristic
algorithm (EOSA)

Friedman test
for EOSA is 1.60
which is ranked

as the first
compared to others

Miah &
Yousuf
(2015)

Gray Scale Conversion
Normalization

Noise Reduction
Binary Image

Remove Unwanted
Portion of the Image

Neural
network

Accuracy:
96.67%

Maleki et al.
(2021)

Remove missing
values fill the

missing values
clean the dataset

Approach based on
k Nearest Neighbors

and GA algorithm

Accuracy: 100%

Bhatia et al.
(2019)

Applications of
region growing and

morphological
operations

ResNet
XGBoost

Accuracy: 84%

Song et al.
(2017)

Data Augmentation
CNN
DNN
SAE

deep neural
networks

Accuracy: 84.15%
Sensitivity: 83.96%
Specificity: 84.32%

Continued on next page
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Table 2.1 – continued from previous page
Author Preprocessing Methods Findings
Coudray
et al. (2018)

-
CNN architecture

based on
inception V3

AUC: 97%

Chon et al.
(2017)

convert the pixel
values thresholding

clustering
(K-means and Meanshift)

Watershed
normalize

spline interpolation
zero-center the data

vanilla 3D CNN
Googlenet

based 3D CNN

AUC: 75.7%

Lu et al.
(2021)

Noise Removal
Image Level Balancing

metaheuristic method
called marine predators

AlexNet
CNN ResNet-18

VGG-19
GoogLeNet

Accuracy: 93.4%
Sensitivity: 98.4%
Specificity: 97.1%

Senthil Ku-
mar et al.
(2019)

Median,
Average,

Adaptive median,
Adaptive histogram

equalization

inertia-weighted particle
swarm optimization
k-median clustering

guaranteed convergence
particle swarm

optimization (GCPSO)
k-means clustering
and particle swarm

optimization

Accuracy: 95.89%

Shan &
Rezaei
(2021)

normalizing and
denoising the
input images

Improved Thermal
Exchange Optimization

Accuracy:
92.27%

Abugabah
et al. (2020)

min–max normalization harmony optimized
modular neural network

Accuracy: 98.9%

Priyadharshini
et al. (2021)

Segmentation bat-inspired metaheuristic
based on CNN algorithms

Accuracy:
97.43%

Continued on next page
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Table 2.1 – continued from previous page
Author Preprocessing Methods Findings
Li et al.
(2019)

Segmentation Bat algorithm Accuracy: 94.6%
Kappa: 88.3%

Al-Huseiny
& Sajit
(2021)

Gabor filter
Morphological operation

normalised

DNN model with
transfer learning

Accuracy:
94.38%

2.5 Research Gap

In the cause of reviewing several related literature for this thesis, many gaps were
identified concerning using Deep Learning models for the task at hand. The training
process of DNN models has particular inefficiency due to the very long training time
demanded, and there are potentially many parameters in the DNN model structure
and the high dimensionality of the feature in the dataset used for training the DNN
model. To address these, there is need to optimize the CNN model using approxi-
mate optimization method. Several metaheuristic algorithms have been proposed,
implemented and applied to address these problems. However, the aforementioned
critical challenges of the efficient and effective classification of lung cancer using
deep learning models remains unresolved. This study therefore aims to improved
the performance of DL models by using a novel optimization algorithm based on
the biological process of Ebola disease.
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Chapter 3

Methodology

3.1 Dataset

The Iraq-Oncology Teaching Hospital/ National Center for Cancer Diseases (IQ-
OTH/NCCD) lung cancer dataset Kerneler was used for experimenting the method
proposed in this study. This dataset of CT images was collected from two specialist
hospitals for three months in 2019. The data is composed of CT scans taken from
lung cancer patients diagnosed in various stages and those reporting with normal
cases. The data consist of 1097 samples (images) taken from one hundred and ten
(110) cases categorized into three different classes: normal, benign, and malignant.
One hundred and twenty (120) samples are benign, five hundred and sixty-one (561)
samples are malignant, and four hundred and sixteen (416) are normal samples. Fig-
ure 3.1 shows random samples of the original dataset.

(a) Normal. (b) Benign. (c) Malignant.

Figure 3.1: Samples of images with (a) normal, (b) benign, and (c) malignant labels from
original dataset.
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3.2 Data Preparation

The preparation of the data, also known as preprocessing, describes any processing
that makes and prepares the raw data to be ready for another task such as classifica-
tion, prediction, and clustering. To enhance performance of deep learning models,
different preprocessing techniques have been proposed. In this study, the prepro-
cessing phase includes many functions for manipulating the images into a suitable
form for further analysis. Firstly, we downloaded the data from Kaggle and then
read it using python. Then we applied the following image preprocessing methods:
image resizing, conversion of image to grayscale mode, gaussian blur filter, segmen-
tation, normalization, erosion, noise removal, and wavelet transform into the lung
cancer images. There are many studies that have used preprocessing techniques
similar to the approach implemented in this thesis such as Rajakumari & Kalaivani
(2021); Miah & Yousuf (2015). Figure 3.2 shows the procedure for the preprocessing
methods implemented in our study.

Figure 3.2: The data preprocessing procedure.

Thereafter, we partitioned the preprocessed data into 80% as training set and 20%
as testing set. Then, we designed the proposed CNN architecture to compute the
solution vector which is further optimized by the metaheuristic algorithms as shown
in Figure 3.3 below.
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Figure 3.3: The proposed methodology.

3.2.1 Transforming the Lung Cancer Images into Grayscale Mode

Grayscale image contains only a single channel, and pixels represent the intensity
information of the light, e.g., the images only include the black (0), white (255), and
gray colors, where gray has multiple levels. Usually, the grayscale intensity uses 8
bits. These bits are a combination of eight binary digits denotes 256 various shades
of gray from black to white. The image processing helps convert the image into
grayscale using a threshold value. The thresholding is a method for adjusting the
number of gray degree values in images. The pixels of the colored image has a
matrix value, which is consists of red, green, and blue (r, g, b) Irawanto et al. (2022).
The colored image can be converted into grayscale using the following steps.

• To calculate the grayscale value, we use S = r∗g∗b
3 , where S is the grayscale

value.

• To calculate the thresholding value, we use  = 
b , where  indicates the

gray degree value after thresholding,  indicates the gray degree value be-
fore thresholding, and b represents the intended quantization values.

We used cvtColor() function in the OpenCV library to convert the lung cancer images
into grayscale. The grayscale images are shown in Figure 3.4 below.
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(a) Normal. (b) Benign. (c) Malignant.

Figure 3.4: Illustrate the transformed images of normal, benign, and malignant samples into
grayscale.

3.2.2 Gaussian Blur Filter

The Gaussian blur is a linear filter type technique that helps image processing by
implementing smoothing and blurring effects to remove the noise. It calculates the
weighted average of pixel intensities at adjoining positions. These weights reduce
concerning spatial distance to the center. This filter produces a blurred image with
a minimal presence of noise Ibrahim et al. (2021); Rajasenbagam & Jeyanthi (2020);
Chaturvedi et al. (2021). We have utilized the GaussianBlur() function of the OpenCV
library in python. Figure 3.5 below describes the results of the Gaussian blur filter
on normal, benign, and malignant lung images.

(a) Normal. (b) Benign. (c) Malignant.

Figure 3.5: Effect of applying Gaussian blur filter on the lung cancer samples with normal,
benign, and malignant labels.

3.2.3 Otsu’s Thresholding

Segmentation is considered as a fundamental process in preparing medical images
computer-aided application Shoaib et al. (2013). Otsu’s thresholding technique uses
a threshold value that divides the image into foreground and background. The
threshold value increases gradually to reach the maximum variance between the
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pixels of two classes. Thresholding is an easy segmentation method that extracts
the area of interest. This technique helps split a digital image into several separate
parts so that pixels in each location have comparable visual qualities is known as
segmentation. The idea is to simplify or modify an image’s representation to ana-
lyze it further Kornilov & Safonov (2018). A threshold is a technique of separating
foreground pixels from background pixels. The processed image is subjected to a
gray threshold using Ostu method, and the image’s intensity is altered halfway be-
tween the lowest and highest of the native intensity Rajakumari & Kalaivani (2021);
Abdullah et al. (2019). Therefore, otsu’s threshold technique segments the entity
from the image. Otsu’s method’s main objective is to give the optimum threshold
value. The computation of the threshold value is done by clustering the pixels into
two categories, C1 and C2, with bimodal histograms. Also, it reduces the intraclass
variance by picking an appropriate threshold value. We have used threshold function
in python for the implementation. Figure 3.6 demonstrates the effects of the Otsu’s
method on the lung cancer images.

(a) Normal. (b) Benign. (c) Malignant.

Figure 3.6: An Illustration on the outcome of the Otsu’s method on samples with normal,
benign, and malignant labels.

3.2.4 Image Normalization

Image normalization modifies the range of pixel intensity values. In other words,
normalization ensures that the pixel intensity values range is within range. This
process provides optimal comparison across the lung cancer images. The data is
normalized by subtracting the mean from each pixel and dividing the result by the
standard deviation Depeursinge et al. (2017). We used normalize function in python
for normalizing the lung cancer images as can be seen in Figure 3.7).
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(a) Normal. (b) Benign. (c) Malignant.

Figure 3.7: An illustration of applying normalization to the lung cancer samples with nor-
mal, benign, and malignant labels.

3.2.5 Image Erosion and Dilation

Erosion and dilation are the essential morphological procedures in image process-
ing. This process aims to extract the most relevant structure of the image viewed as
a set through its subgraph representation Siddiqi et al. (2009); Tambe et al. (2013).
Erosion is the procedure of eradicating edge points and shrinking the edge to the
inside. It eliminates small and senseless entities. Erosion utilizes the structural com-
ponents and the ”and” operation to examine every pixel of the image Zhang et al.
(2021a); Soille (2013). The mathematical equation of the erosion process is defined as
follows:

Y = A ⊖ B = {, y|(B)y ⊆ A} (3.1)

where, Y is a binary image, B is a template operator, and A is the original image to
be processed. While dilation is the process of combining all the background points
in contact with the object into the object to expand the boundary outward, it fills
gaps in entities Zhang et al. (2021a); Siddiqi et al. (2009). The dilation can be defined
mathematically by:

Y = A ⊕ B = {y : B(y) ∩ E ̸= } (3.2)

where, Y is a binary image, B is a template operator, and E is the original image to
be processed. The processed lung cancer images after the erosion and dilation can
be viewed in Figure 3.8 below
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(a) Normal. (b) Benign. (c) Malignant.

(d) Normal. (e) Benign. (f) Malignant.

Figure 3.8: An illustration on the outcome of erosion method in (a), (b), and (c) images. Im-
ages in (d), (e), and (f) are the outcome of dilation method on images for normal,
benign, and malignant labels.

3.2.6 Noise Removal using CLAHE Filter

The presence of noise in an image is represented by random variation of color infor-
mation or brightness in images. This noise may come from various sources, which
erode image quality Kaur (2015). In this study, contrast-limited adaptive histogram
equalization (CLAHE) filter to remove the unwanted noise. CLAHE is a variant of
Adaptive histogram equalization (AHE), which takes care of over-amplification of
the contrast. Moreover, CLAHE is an image processing technique that increases the
contrast in local images by setting a maximum threshold value. It splits the local
image contrast in a symmetrical grid known as the area size consisting of corner
region (CR), border region (BR), and inner region (IR). There are several character-
istic values for each value of the neighborhood. This is computed by obtaining a
new gray level on each local grid using the cumulative function distribution of his-
tograms used in each local region (, j) Irawanto et al. (2022). The distribution can be
calculated using

K =
N − 1

M
.

n
∑

k=0

h(K);n = 1,2, . . . , N − 1. (3.3)
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where M is the number of pixels, N is greyscale value, and h(k) is histogram on grey
value. Furthermore, we applied CLAHE method to find the maximal threshold limit
on the image using the equation below:

β =
M

N
(1 +

α

100
(Sm − 1)) (3.4)

whereM is width of region size, N is greyscale value, and α represents the minimum
and maximum limit values of histograms in [0, 100]. We used CLAHE function in
python to remove the noise. The result of CLAHE filter can be seen in Figure 3.9
below.

(a) Normal. (b) Benign. (c) Malignant.

Figure 3.9: A demonstration on the outcome of applying CLAHE filter on image samples
with normal, benign, and malignant labels.

3.2.7 Wavelet Transform

The wavelet analysis is a multivariate analysis that is used in preprocessing of med-
ical images Hassen & Zakour (2019); Boix & Cantó (2010). This transform analysis
provides a different representation by decomposing and compressing the images.
The wavelet has two decomposition levels; the first level produces two coefficient
vectors, namely approximation and detail coefficient. The latter represents low and
high-frequency contents in the image. In the second level when wavelet is applied to
the image, the approximation coefficient produces another approximation and detail
coefficient but with lengths equal to half of the initial approximation in the first level.

The advantage of using a wavelet is that it uses multi-resolution approach instead of
scanning whole signals via the same window. Various parts of the wave are viewed
via a different sized window, where high-frequency components of the signal use
a small window to give reasonable time resolution. In contrast, the low-frequency
parts use a large window to extract good frequency information Prasad et al. (2016);
Sridhar et al. (2014); Khatami et al. (2017); Rajakumari & Kalaivani (2021).
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In this study, we used the bi-orthogonal family variant of wavelet which is the
pywt.dwt2 function in python. The wavelet output is depicted in Figure 3.10 be-
low and is decomposed into four quadrants with different interpretations namely:
LL (low-low), HL (high-low), LH (low-high) and HH (high-high). LL is defined as
the approximated version of the original at half the resolution, while HH is iden-
tified as the area where the edges of the original image are represented diagonally.
Furthermore, HL is the image’s upper right, representing the horizontal edges. LH
is the lower-left that consists of most of the vertical edges.

(a) Normal.

(b) Benign.

(c) Malignant.

Figure 3.10: A representation of decomposition effect of wavelet filter function on image
samples with normal, benign, and malignant labels.

Here we selected the LL part for further analysis as shown in Figure 3.11. The LL
indicates the upper-left quadrant that has all coefficients, which were filtered by the
analysis low pass filter h∼ along the rows and the corresponding columns.
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(a) Normal. (b) Benign. (c) Malignant.

Figure 3.11: The output for the LL compartment from the effect of applying the wavelet filter
function to the image samples with normal, benign, and malignant labels.

Several techniques have been developed to diagnose and detect lung cancer using
CT images data. These techniques have many advantages and disadvantages. This
study proposed an optimized CNN using a metaheuristic algorithm called EOSA,
which is based on the propagation model of the deadly Ebola virus and its related
disease. We compare its performance with five metaheuristic algorithms and the
traditional CNN using IQ-OTH/NCCD dataset. In the next section, we present the
background and details of each algorithm.

3.3 Convolutional Neural Network (CNN)

The CNN is a deep learning algorithm that contains several layers in between the
input and output layers. It has been applied to image analysis and classification
Mohammed et al. (2021); Elbashir et al. (2019); Bengio (2009). Moreover, CNN is
a mathematical model designed from three layers: convolution, pooling, and fully
connected layers. The CNN conduct feature extraction using the convolution and
pooling layers, while the the fully connected layers map the extracted features into
the final output Yamashita et al. (2018).

CNN needs much lower pre-processing by learning the filters that capture temporal
and special dependencies in an image instead of hand-crafting features extraction
procedure. It has been implemented successfully in various domains such as bioin-
formatics, computer vision, drug design, and medical image analysis. CNN usually
outperformed expert personals’ performance Oyelade & Ezugwu (2021b); Ciregan
et al. (2012). In this study we proposed a CNN architecture in Figure 3.12 for the
classification task on lung cancer images, while the algorithmic design is presented
in Algorithm listing 1.
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3.3. Convolutional Neural Network (CNN)

Figure 3.12: The architecture of the proposed CNN model for lung cancer detection, where
the notations F, K, and S, indicates the filters, kernels, and strides respectively
in the architecture.
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Algorithm 1: CNN Architecture Desing
Result: model of CNN graph
numclasses, numblocks, kSize cnnmodel Data: Dataset ms

cnnmodel = ∅ ; // initialize the model

blk=0;
n=5;
while blk ≤ numblocks do

kcount=2n;
cnnmodel← layer2D(kSize, kcount, relu);
cnnmodel← zeropad(1);
if blk %= 2 then

cnnModel←maxpool(2);
end
else

cnnmodel←maxpool(3);
end
n+=1;

end
cnnmodel← avgpool(2);
cnnmodel← flatten();
cnnmodel← dropout(0.5);
cnnmodel← dense(softmax, numclasses);

3.4 The Metaheuristic Optimized CNN Algorithms

A metaheuristic is a well-known search strategy that is designed to find an optimal
solution for a complex and challenging optimization problem, particularly with in-
complete or inadequate data with limited computation capacity Balan; Rere et al.
(2016); Bandaru & Deb (2016). Recently, metaheuristic has emerged for use in solv-
ing various optimization problems Yang (2011). Many optimization problems are
difficult to formulate, as a result, presenting a challenge to applying them to find
optimal solutions in artificial intelligence and machine learning. However, it still
continue to play a substantial role in discovering optimal and near-optimal solu-
tions that are difficult to solve using conventional optimization methods.

In this study, we used metaheuristic to explore and improve the performance of
the CNN model in a reasonable computational time. To conduct this task, we ob-
tain the solution vector of the CNN model and update it in every iteration when
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training the metaheuristic algorithm. The updated solution vector is calculated for
several epochs, leading to updated weights and biases for the CNN layers. More-
over, the CNN model calculates the weights and biases that can compute the loss
function used in this work. In this work, we used different categories of meta-
heuristic algorithms, namely, GA (evolutionary-based), WOA (swarm-based), MVO
(physics-based), SBO (biology-based), LCBO (human-based), and EOSA (biology-
based). These algorithms are described in the following sections below.

3.4.1 Design of the Genetic Algorithm CNN (GA-CNN)

The GA was first presented by John Holland in the early 1970s Park & Monahan
(2019); Li & Weinberg (2003). It uses natural selection, which is the process that
drives biological evolution for solving optimization problems Oyelade & Ezugwu
(2021b). In addition, the GA is known as an evolutionary algorithm that uses the
concept of survival of the fittest. GA is a randomized heuristic search and optimiza-
tion algorithm implemented in various applications. This algorithm begins with a
group of solutions known as population. These solutions (offspring) are used to
construct a new population that is expected to be better compared to the old one
Chadha & Singh (2012). The best solution is selected based on its fitness and suit-
ability. This process is iterated until some condition is satisfied. We used the GA
because it produces and generates a population of solutions, which contains the best
solution close to the optimal one in each epoch. The steps below describe the mech-
anism of the GA, while the algorithmic design is presented in Algorithm listing 2.

1. We initialized the parameters namely population size, population percentage
mutated, mutation rate, penalty rate, the maximum generation, and the num-
ber of generations.

2. We generated an initial population of the chromosomes using a random model.

3. The reliability of the population is calculated.

4. The fitness of all chromosomes in the population is calculated.

5. We initialized an empty successor population.

6. Repeat the following steps (a-d) below until chromosomes have been created.

(a) We used proportional fitness selection to choose two chromosomes from
the source population.

(b) Create a child chromosome using the one-point crossover to the two chro-
mosomes with a crossover rate.
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(c) Use consistent mutation for the child with a given mutation rate.

(d) Add the child to the previously initialized successor population.

7. creating the successor population takes over from the source population.

8. Terminate if the number of iteration is achieved or return to Step 2.
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Algorithm 2: Algorithm of the GA-CNN
Result: optimized CNN model
objfunc, lb, ub, batch, epoch, pc, pm solution, bestfit, losstrain initialize IdFit,
IdMinProb ;
model=buildcnn();
weights=model.weights();
popsize=len(reshape(weights));
pop=createsolution(popsize);
gbest = gbestsolution(pop, IdFit, IdMinProb);
while epoch not exhausted do

nextpop = [];
while e in epoch do

fitlist = [];
for item in pop do

fitlist← item[IdFit];
end
c1 = roulettewheelselection(fitlist);
c2 = roulettewheelselection(fitlist);
w1 = pop[c1][IdPos];
w2 = pop[c2][IdPos];
if uniform() < pc then

w1, w2 = crossoverarthmeticrecombination(w1, w2)
end
if uniform(0, 1, propsize) < pm then

w1 = uniform(lb, ub, popsize)
end
if uniform() < pc then

w2 = uniform(lb, ub, popsize)
end
nextpop← w1;
nextpop← w2;

end
gbest = updategbest(nextpop,IdMinProb, gbest);
losstrain← gbest[IdFit];

end
solution = gbest;
return gbest[IdPos], gbest[IdFit], losstrain;

In algorithm 2, the weights size is used to initialize the population size and generate
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the possible solutions. The iteration continues until the best solutions is obtained.
Finally, the algorithm returns the global fitting best and the values of the loss func-
tions.

3.4.2 Design of the Whale Optimization Algorithm CNN (WOA-CNN)

The WOA was presented by Mirjalili and Lewis in 2016 Mirjalili & Lewis (2016).
It is a new approach for solving optimization problems that simulate the hunting
behavior with random or best search agents to track the target and uses a spiral to
mimic the bubble-net attacking mechanism of humpback whales Mirjalili & Lewis
(2016). The concept of the whale is that when it finds its victim, it creates a bubble
net along the spiral way and moves upstream to the victim. This behavior concept is
summarized in three steps: surrounding prey, bubble-net attack, and hunting prey
Ning & Cao (2021); Jianhao et al. (2021). WOA has been confirmed to solve NP-Hard
optimization problems such as CNN training. This study examines the performance
of WOA in optimizing the training of the proposed CNN architecture. The following
steps explains the WOA procedures, while the algorithmic design is presented in
Algorithm listing 3.

1. Initialize the WOA population randomly.

2. Calculate the fitness function to evaluate each search agent.

3. Choose the optimal search agent and make it the current one.

4. While t < number of iteration

(a) for each solution

i. Update a, A, C, and L.

ii. update the position of the search agent according to A and p.































ƒ p ≥ 0.5 update the position of the current agent.

ƒ p < 0.5



















ƒ A ≥ 1 update the position of the current
agent by choosing the best search
agent.

ƒ A < 1 update the current search agent.

(b) Adjust any search agent that goes beyond the search space.

(c) Calculate the fitness of each search agent.

(d) In case of finding a better agent, update the current search agent.

5. Return best search agent.
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Algorithm 3: Algorithm of the WOA-CNN
Result: optimized CNN model
objfunc, lb, ub, batch, epoch solution, bestfit, losstrain initialize IdFit,
IdMinProb ;
model=buildcnn();
weights=model.weights();
popsize=len(reshape(weights));
pop=createsolution(popsize);
gbest = gbestsolution(pop, IdFit, IdMinProb);
while e in epoch do

a = (2 - 2 * e) / (epoch - 1);
for i in popsize do

A = 2 * a * rand - a;
C = 2 * rand;
l = uniform(-1, 1);
p = 0.5;
b = 1;
if uniform() < p then

if abs(A) < 1 then
D = abs(C * gbest[IdPos] - pop[i][IdPos]);
npos = gbest[IdPos] - A × D;

else

end
xrand = newsolution();
D = abs(C * rand[IdPos] - pop[i][IdPos]);
npos = xrand[IdPos] - A × D;

else
D = abs(gbest[IdPos] - pop[i][IdPos]);
npos = D × exp(b × l) × cos(2 × pi × l) + gbest[IdPos];

end
fit = fitnesspos(npos) pop[i] = npos[fit] if i % batch then

gbest = updategbest(nextpop,IdMinProb, gbest);
end

end
losstrain← gbest[IdFit];

end
solution = gbest;
return gbest[IdPos], gbest[IdFit], losstrain;
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The algorithm 3 is used to optimize the CNN model presented 1. The weight of
the CNN model was used to initialize the population. The algorithm assumes that
the initialized population is the global best solution. This algorithm searches the
global optimum solution using encircling prey, searching for prey, and attacking the
prey. In addition, the best solution is returned as a group of optimized weights
for the CNN model. The best set of the loss values can be obtained through the
parameter α which is linearly decreased from 2 to 0. Moreover, when p < 0.5

and |A| < 1 satisfied the exploitation stage is done, while the exploration stage is
completed when p ≥ 0.5.

3.4.3 Design of the Multiverse Optimizer CNN (MVO-CNN)

The big bang theory considered that the universe that we live in started with a
tremendous explosion Khoury et al. (2002). This theory believed that there was noth-
ing before the big bang. Moreover, recently, a well-known approach called multi-
verse states that assume there is more than one big bang, each of which yields a uni-
verse’s birth Tegmark (2003). The MVO is inspired by this theory and it uses three
main approaches namely, white hole, black hole, and wormhole Rosales-Muñoz
et al. (2021); Mirjalili et al. (2016). Although the white hole has never been noticed in
the universe that we live in, physicists believe that the Big Bang can be considered a
primary element for the universe. In contrast, black holes have been seen frequently
in the universe. The black hole attracts everything that comes through, including
light beams, because of its extremely high gravitational force Davies (1978). Worm-
holes are defined as the tunnels that connect the various parts of the universe. These
tunnels allow objects to travel immediately between any corners inside the universe
or from one universe to another Benmessahel et al. (2020).

The MVO is a population-based algorithm that uses exploration and exploitation
search strategies. In addition, MVO utilizes the white and black holes to explore
the search spaces, and it uses the wormholes to exploit the search spaces Oyelade
& Ezugwu (2021b). This algorithm deems all solutions as analogous to a universe,
while each solution is an object in that universe Almomani (2021).
The following steps represent the MVO process, while the algorithmic design is pre-
sented in Algorithm listing 4.

1. Initialize the universes randomly.

2. Initialize the number of parameters.

3. While iteration not exhausted.
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(a) Two parameters should be calculated (wormhole existence probability
(WEP) and traveling distance rate (TDR)) as follows:

WEP =mn +  ×
�

m −mn

L

�

where mn is the minimum, m is the maximum,  denotes the current
iteration, and L indicates the maximum iteration.

TDR = 1 −
1/p

L1/p

where p denotes the exploitation accuracy over iteration. The higher p,
the sooner and more accurate exploitation search.

(b) for each object starting from index 1.

i. Assume r is a random variable followed the uniform distribution
[0,1].

A. Update the position of solutions using the following equation:


j
 =



















ƒ r < WEP







ƒ r < 0.5 Xj + TDR × ((bj − bj) × r + bj)

Ese Xj − TDR × ((bj − bj) × r + bj)

Ese 
j


where, Xj denotes jth parameter of the best universe, bj is the
lower bound of jth variable, bj is the upper bound of the jth

variable, j indicates the jth parameter of the th universe.

ii. Obtain the fittest position using the black hole position.

iii. Calculate the position updates in the optimal universe.

(c) Store the global best.

4. Return all global best.
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Algorithm 4: Algorithm of the MVO-CNN
Result: optimized CNN model
objfunc, lb, ub, batch, epoch, wminmax solution, bestfit, losstrain initialize IdFit,
IdMinProb ;
model=buildcnn();
weights=model.weights();
popsize=len(reshape(weights));
pop=createsolution(popsize);
gbest = gbestsolution(pop, IdFit, IdMinProb);
while e in epoch do

wep = wminmax[1] - (e + 1) × ((wminmax[1] - wminmax[0]) / epoch);
tdr = 1 - (e + 1) ** (1.0 / 6) / epoch ** (1.0 / 6);
for i in popsize do

if uniform() < wep then
if uniform() < 0.5 then

fitlist=[] for item in pop do
fitlist← item[IdFit];

end
whiteholeid =roulettewheelselection(fitlist);
bholepos1 = pop[i][IdPos] + tdr × normal(0, 1) ×
(pop[whiteholeid][IDPos] - pop[i][IdPos]);

bholepos2 = gbest[IdPos] + tdr × normal(0, 1) × (gbest[IdPos] -
pop[i][IdPos]);

if uniform(0, 1, propsize) < 0.5 then
bholepos = bholepos1;

end
else

bholepos = bholepos2;
end

else
bholepos = levyflight(e + 1, pop[i][IdPos], gbest[IdPos]);

end

else
bholepos = uniform(lb, ub);

end
fit = fitnesspos(bholepos);
if fit ¡ pop[i][IdFit] then

pop[i] = [bholepos, fit];
end
if i % batch then

gbest = updategbest(nextpop,IdMinProb, gbest);
end

end
losstrain← gbest[IdFit];

end
solution = gbest;
return gbest[IdPos], gbest[IdFit], losstrain;
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The algorithm 4 considers a search space using the vector solution from the CNN
model. Before the white- and black-holes positions are searched for within the
weights of the CNN, the value of the wormhole existence probability and traveling
distance rate are calculated. The global best solution and loss values are generated
before the loop terminates.

3.4.4 Design of the Satin Bowerbird Optimization CNN (SBO-CNN)

The SBO is a new metaheuristic algorithm that works based on the concept and the
mechanism of the stain birds. This pick the female birds for mating in specialized
stick structures, called bowers Zhang et al. (2021b); Hemeida et al. (2021); Moosavi &
Bardsiri (2017). The bowers are adorned with flowers, feathers, and berries which is
essential for female birds to determine on the male bird for mating Ali et al. (2019).
The males compete by imitating the females using the gorgeous decorated bower
and dancing with loud vocalization and presentation surrounding the bowers. The
females visit many bowers before determining their partner for breeding, and they
desire the males that exhibit high passion. In addition, not all males succeed in
building and maintaining the bowers. Therefore, this leads to substantial variation
in successful mating. The SBO has been applied in various fields due to its flexibil-
ity and efficiency in features selection; thus, it is capable of relatively competitive
accuracy Oyelade & Ezugwu (2021b). The SBO algorithm was constructed based on
the following steps on the principle of the stain birds’ lifestyle, while the algorithmic
design is presented in Algorithm listing 5.

1. Randomly generate a population of bowers.

2. Compute the cost of each bowers.

3. Locate the best bowers.

4. While the ending criterion is not satisfied.

(a) Compute the probability of each bower using the following equation:

Prob =
ƒ t
∑N

n=1 ƒ tn

ƒ t =







ƒ ƒ () ≥ 0 1
1+ƒ ()

Ese 1 + |ƒ ()|

where N indicates the population size of the bowers, ƒ t denotes the fit-
ness value of the th solution, and ƒ () indicates the fitness value of the
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th bower.

(b) For each bower

i. For each element of bower

• Select a bower using the roulette wheel.

• Calcuate λk using

λk =
α

1 + pj

where α is a constant that denotes the greatest step size, pj indi-
cates the probability that calculated in step (a) above, Pj ∈ (0,1).

• Compute and update the bower position using

bne
k

= bod
k
+ λk

��

bk + bete,k
2

�

− bod
k

�

where b is the th bower (solution vector), bj indicates the tar-
get solution among all solutions in the current iteration, j is com-
puted by the roulette wheel, bk denotes the kth member of di-
mensions, bete is the best fitness value in the current iteration.

5. Calculate the cost of all bowers.

6. Update the elite of bower.

7. Return the best bower.
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Algorithm 5: Algorithm of the SBO-CNN
Result: optimized CNN model
objfunc, lb, ub, batch, epoch, alpha, pm, sigma, lamda solution, bestfit, losstrain
initialize IdFit, IdMinProb ;
model=buildcnn();
weights=model.weights();
popsize=len(reshape(weights));
pop=createsolution(popsize);
gbest = gbestsolution(pop, IdFit, IdMinProb);
initialization;
while e in epoch do

fitlist=[];
for item in pop do

fitlist← item[IdFit];
end
for i in popsize do

idx = roulettewheelselection(fitlist);
lamda = alpha * uniform();
newpos = pop[i][IdPos] + lamda × ((pop[idx][IdPos] + gbest[IdPos]) / 2

- pop[i][IdPos]);
temp = pop[i][IdPos] + normal(0, 1, popsize) × sigma;
if uniform(0, 1, popsize) < pm then

newpos = temp;
end
newpos = clip(newpos, lb, ub);
fit = fitnesspos(newpos);
pop[i] = [newpos, fit];
if i % batch then

gbest = updategbest(nextpop, IdMinProb, gbest);
end

end
losstrain← gbest[IdFit];

end
solution = gbest;
return gbest[IdPos], gbest[IdFit], losstrain;

Algorithm 5 uses the solution vector obtianed from the CNN model as a population.
Then, the algorithm iterates over the number of epoch in order to train the CNN
model. This algorithm, calculate the bowers’ probability, which indicates the item
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in the population or the solution set. Thereafter, it selects the bower and carries the
mutation operation in different number of iteration using the roulette wheel. The
global best solution is obtained from continually updated global best pool during
the iteration on the population size.

3.4.5 Design of the Life Choice-Based Optimization CNN (LCBO-CNN)

The LCBO algorithm is motivated by observing the human being’s life cycle and
their ability for decision making to achieve their objectives while learning from fel-
low members Oyelade & Ezugwu (2021b); Khatri et al. (2020). LCBO is examined
widely using 29 popular functions known as a benchmark functions which con-
firmed that it outperformed other optimization techniques. We used the LCBO to
optimize the CNN training for lung cancer diagnosis and detection. The following
steps explain the procedures of the LCBO, while the algorithmic design is presented
in Algorithm listing 6.

1. Randomly initialize the human population.

2. Initialize the current chance (CC).

3. Compute and rank the fitness values.

4. while CC < No. of chances

(a) For each search agent

i. Generate a random number (r)

ii. If r > 0.875

• Update current search agent using

X
′

j
=

n
∑

k=1

[
rnd(k)∗ Xk

n
]

where n is the parameter that equal to the ceil of the square root
of the human population considered to solve the problem, Xj in-
dicates the jth or the current search agent, and X

′

j
denotes the Xj

will be updated when the X
′

j
has better fitness than Xj.

iii. Else if r < 0.70

• Update f1, f2 using

ƒ1 =
1 − (CC − 1)

No.oƒchnces − 1

ƒ2 = 1 − ƒ1
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where ƒ1 and ƒ2 are vary linearly from 0 to 1 and 1 to 0, respec-
tively.

• Update current search agent using

BestDƒ ƒ = ƒ1 × c × (X1 − Xj)

BetterDƒ ƒ = ƒ2 × c × (Xj−1 − Xj)

X
′

j
= Xj + rnd() × BetterDƒ ƒ + rnd() × BestDƒ ƒ

where c is a constant, and Xj−1 indicates the position of the search
agent whose fitness was just better than the current agent till the
previous iteration. X1 is the best position of the agent that has
been achieved till the previous iteration.

iv. Else

• Update the current search agnet using

X
′

j
= Xm − (Xj − Xmn) × rnd()

where Xm and Xmn are the upper and lower bound values.

v. Evaluate fitness value of search agent If new fitness values better than
previous

vi. Update agent position and fitness value

(b) Sort the population

(c) Increment CC by 1

5. Return population
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Algorithm 6: Algorithm of the LCBO-CNN
Result: optimized CNN model
objfunc, lb, ub, batch, epoch, n1 solution, bestfit, losstrain initialize IdFit,
IdMinProb ;
model=buildcnn();
weights=model.weights();
popsize=len(reshape(weights));
pop=createsolution(popsize);
gbest = gbestsolution(pop, IdFit, IdMinProb);
initialization;
while e in epoch do

wf = 2 × (1 - (e + 1) / epoch);
for i in popsize do

if i < n1 then
for j in n1 do

posnew=← wf × uniform() × pop[j][IdPos];
posnew = findmean(posnew);

end

else
if n1 ≤ i < n2 then

posnew = gbest[IdPos] + computestepsizebylevyflight(0.01, 1.5) ×
(gbest[IdPos] - pop[i][IdPos]);

else
betterdiff = wf × uniform() × (pop[i - 1][IdPos] - pop[i][IdPos]);
bestdiff = (2 - wf) × uniform() × (pop[0][IdPos] - pop[i][IdPos]);
posnew = pop[i][IdPos] + wf × uniform() × (normal() × betterdiff
+ bestdiff);

end

end
fit = fitnesspos(posnew);
if fit < pop[i][IdFit] then

pop[i] = [posnew, fit];
else

posnew = ub - (pop[i][IdPos] - lb) × uniform(lb, ub);
fit = fitnesspos(posnew);
pop[i] = [posnew, fit];

end
if i%batch then

gbest = updategbest(nextpop,IdMinProb, gbest);
end

end
losstrain← gbest[IdFit];

end
solution = gbest;
return gbest[IdPos], gbest[IdFit], losstrain
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In algorithm 6 above, the population is initialized from the solution vector calculated
by the CNN model. Then, it uses the loop to obtain the loss function values at the
end of the iterations.

3.4.6 Design of the Ebola Optimization Algorithm CNN (EOSA-CNN)

This algorithm is based on the propagation of Ebola virus disease (EVD) Oyelade &
Ezugwu (2021c). The EOSA model updates the population using a dynamic mech-
anism for propagating through susceptible, infection, quarantine, recovered, and
hospitalized operations for a better fit. Moreover, EOSA helps discover the best or
worst candidate solution and gives intuitive results. It has been applied widely and
investigated using about 50 benchmark functions Oyelade & Ezugwu (2021a); Jamil
& Yang (2013). The following steps explain the procedures of the EOSA, while the
algorithmic design is presented in Algorithm listing 7.

1. Initialize the vector and scalar quantities for the individuals and parameters,
respectively. Individuals in the sets: Susceptible (S), Infected (I), Recovered
(R), Dead (D), Vaccinated (V), Hospitalized (H), and Quarantine (Q) with their
initial values.

2. Generate the index case (1) randomly from the susceptible individuals.

3. Specify the index case as the global best and current best, and calculate the
fitness value of the index case.

4. While the number of iterations is not finished and there exists at least an in-
fected individual, then

(a) For each susceptible individual generates and updates their position based
on their displacement. Note that the further an infected case is displaced,
the more the infection number, so short displacement describes exploita-
tion, otherwise exploration.

i. Generate newly infected individuals (nI) based on (a).

ii. Add the newly generated cases to I.

(b) Calculate the number of individuals to be added to H, D, R, B, V, and Q
utilizing their respective rates based on the size of I.

(c) Update S and I base on nI.

(d) Pick the current best from I and compare it with the global best.

(e) If the requirement for the ending is not met, go back to step 6.

5. Return global best solution and all solutions.
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The mathematical model representing the above steps can be shown based on the
definition of the susceptible (S), Infected (I), Recovered (R), Dead (D), Vaccinated
(V), Hospitalized (H), and Quarantine (Q). Meanwhile, the positions of each exposed
individual can be calculated using

mt+1

=mt


+ ρM() (3.5)

where ρ indicates the scale factor of displacement such individuals, mt+1 and mt


denote the updated and orignial position at time t, respectively. t + 1 is the current
time. M() represent the movement rate made by individuals which can be com-
puted using

M() = srte × rnd(0,1) + M(ndbest) (3.6)

M(S) = rte × rnd(0,1) + M(ndbest) (3.7)

The exploration stage of EOSA described when the current position of the infected
individual has moved beyond the normal neighborhood range lrate. While the ex-
ploitation phase of the EOSA algorithm supposes that the infected individual either
remains within a distance of zero (0) or is displaced within a limit not exceeding srate
when compared to its previous position.

To initialize the susceptible population, we generate a population using the random
number distribution. The individual  can be generated using the following equa-
tion:

ndd = L + rnd(0,1) × (U + L) (3.8)

where U, L indicate the the upper and lower bounds for the th individual,  =
1,2, . . . , N.
The selection of the current best is carried out on the set of infected individuals in
time t. The global best (gBest) can be computed using the following:

bestS =







gBest, ƒ tness(cBest) < ƒ tness(gBest)

cBest, ƒ tness(cBest) ≥ ƒ tness(gBest)
(3.9)

where bestS, gBest, and cBest indicates the best solution, global best solution,
and current best solution at time t. The ƒ tness denote the objective function used
for the problem.
A set of differential calculus used to update the susceptible (S), Infected (I), Recov-
ered (R), Dead (D), Vaccinated (V), Hospitalized (H), Funeral (F), Exposed (E), and
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Quarantine (Q) as follows

∂S(t)

∂t
= −(β1 + β3D + β4R + β2(PE))S − (τS + ) (3.10)

∂(t)

∂t
= (β1 + β3D + β4R + β2(PE)λ)S − ( + γ) − (τ)S (3.11)

∂H(t)

∂t
= α − (γ +ϖ)H (3.12)

∂R(t)

∂t
= γ − R (3.13)

∂V(t)

∂t
= γ − (μ + ϑ)V (3.14)

∂D(t)

∂t
= (τS + ) − δD (3.15)

∂Q(t)

∂t
= ( − (γR + D)) − ξQ (3.16)

The equations (3.10 - 3.16) are scalar functions. Each function has one number which
is represented as a float. We specify the rate of change of the population of suscep-
tible individuals. Then, we implement it to the current size of the susceptible vector
to get the number susceptible individuals at time t. This procedure is implemented
to calculate the set of individuals in vectors I, H, R, V, D, and Q. Our study assumes
the initial conditions S(0) = S0, I(0) = I0, R(0) = R0, D(0) = D0, P(0) = P0, and Q(0) =
Q0 where our t follows after the epoch, and δ in equation 3.15 is for the burial rate.
Equation 3.16 denotes the rate of quarantine of infected cases of Ebola.
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Algorithm 7: Algorithm of the EOSA-CNN
Result: optimized CNN model
objfunc, lb, ub, batch, epoch, psize, evdincub;
solution, bestfit, losstrain;
S, E, I, H, R, V, Q, solution← ∅ ;
initialize S finite set S = {nd1, nd2, . . . , ndn} ;
S← createSusceptibleIndvd(psize, S), Eq. 3.8;
time← 0;
icase← generatedIndexCase();
gbest, cbest← icase;
while e ≤ epoch ∧ len(I) > 0 do

Q← rand(0, Eq. 3.16 × I);
fracI = I - Q;
for i← 1 to len(fracI) do

pos←moverate() using Eq. 3.5;
d← rand();
if d > evdincub then

neighborhood← prob(pos)
if neighborhood < 0.5 then

tmp← rand(0, Eq. 3.11 × I × srate);
else

tmp← rand(0, Eq. 3.11 × I × lrate);
end
newI+← tmp ;

end
I+← newI ;

end
h← rand(0, Eq. 3.12 × I), H+← h;
r← rand(0, Eq. 3.13 × I), R+← r;
v← rand(0, Eq. 3.14 × h), V+← v;
d← rand(0, Eq. 3.15 × I), D+← d;
I+← I - add(r, d);
S+← r;
S-← d;
cbest = fitness(obj func, I);
if cbest > gbest then

gbest = cbest;
solution← gbest;

end

end
return gbest, sols;
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In the algorithm 7, lines 1-7 indicate the initialization stage. In this case, not all the
infected individuals can recruit newly infected individuals. Line 8 shows that some
I are admitted into quarantine status so that the rest fraction of I infect S population.
Moreover, in lines 10-24, new infections cases are generated from S and then added
to I. The R, V, H, and V are derivable from I. However, lines 25-29 create individuals
using corresponding equations of subgroups. In addition, the recovered and dead
cases should be removed from I before the next iteration. The recovered instances
will be added to S with the new cases to promote the idea of new births as presented
on lines 29-31. Ultimately, the best solution is calculated. Also, the termination crite-
ria are checked. In the case of satisfied criteria, the algorithm terminates afterwards;
otherwise, return to line 7.

3.5 Experimentation Settings

In this study, due to the device specification limits and the time needed to carry
the experiments was very large, five experiments were conducted to examine and
explore the performance of the traditional CNN model independently and the pro-
posed CNN using the metaheuristic optimization algorithms including GA, SBO,
MVO, WOA, LCBO, and EOSA. All the experiment are carried out on a dell machine
(Optiplex 5050) with the following specifications: Intel core i5, 7th generation, 16GB
memory, and 500GB hard drive (additional hardware device specification is shown
in Figure 3.13). Table 3.1 shows the proposed CNN hyperparameter configuration.
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Figure 3.13: The specification of the device used to carry the experiments.

Table 3.1: Proposed CNN hyperparameter configuration

Parameter Notatio CNN architecture

Learning rate α 0.001
Loss function () categorical cross entropy
Epoch e 5
Batch size bs 32
Optimizer θt Adam
Kernel size/count ƒ /k [3, 3]
Convolution layers con [2conv-2conv]
Activation function

∑

b Relu
Pooling layers P [(2,2), (3,3)]
Padding/Stride d/s same / (1,1)

The input to the proposed CNN architectures is 258 × 258, which represents the pre-
processed images of size 512 × 512. Moreover, Table 3.2 present the configuration
of the metaheuristic algorithms for optimizing the proposed CNN model. All the
methods share the same values of parameters such as the batch size and the number
of epoch.
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Table 3.2: Metaheuristic algorithms parameter configuration

Parameters Value

GA-CNN Algorithm

epoch 100
batch size 128
mutation percentage on the population 0.025
crossover percentage on the population 0,95
domain ranges (lower and upper) [(1, 1)]

WOA-CNN Algorithm

epoch 100
batch size 128
a linearly decreased from 2 to 0
domain ranges (lower and upper) [(1, 1)]

MVO-CNN Algorithm

epoch 100
batch size 128
wep min-max (1.0, 0.2)
domain ranges (lower and upper) [(1, 1)]

SBO-CNN Algorithm

epoch 100
batch size 128
alpha [0.94]
z [0.02]
mutation probability [0.05]
domain ranges (lower and upper) [(1, 1)]

LCBO-CNN Algorithm

epoch 100
batch size 128
r1 2.35
domain ranges (lower and upper) [(1, 1)]

EOSA-CNN Algorithm

epoch 100
batch size 128
epxilon 0.001
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3.6 Performance Metrics

In this work, we evsluation of the proposed method as compared to the five CNN
metaheuristic algorithms and the traditional CNN models is based on seven per-
formance metrics. These metrics are computed from the generic confusion matrix
below.

Table 3.3: The confusion matrix

True Class

Predicted Class Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

1. Accuracy is the proportion of correctly classified cases to the total number of
cases:

Accrcy =
TP + TN

TP + TN + FP + FN
.

2. Cohen’s Kappa is a measure of agreement between the predictions and the
true classes, controlling for the accuracy of a random classifier as measured by
the expected accuracy:

Kpp =
Accuracy− Random Accuracy

1 − Random Accuracy
.

Random Accuracy =
ActNegitave× PredNegitave+ ActPositive× PredPositive

Total× Total

=
(TN + FP) × (TN + FN) + (FN + TP) × (FP + TP)

(TP + TN + FP + FN) × (TP + TN + FP + FN)
.

3. Specificity is the proportion of true negatives which are predicted negative:

Specƒ cty =
TN

(TN + FP)
.

4. Sensitivity (Recall) is the proportion of true positives which are predicted pos-
itive:

Senstty = Rec =
TP

(TP + FN)
.

5. Precision is the proportion of correctly predicted positive cases to the total

49



3.6. Performance Metrics

predicted positive cases:

Precson =
TP

TP + FP

6. F1 score is the weighted mean of precision and recall:

F1 Score =
2∗ (Rec∗ Precson)

(Rec + Precson)

7. Balanced Accuracy is a metric used to evaluate the goodness of the perfor-
mance of an algorithm. It is specifically helpful in the issue of imbalanced
data. In other words, balanced accuracy is simply defined as the average of
the sensitivity and specificity:

Balanced Accuracy =
Senstty + Specƒ cty

2
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Chapter 4

Experimentation and Discussion of
Results

The performance of the proposed hybrid algorithm EOSA-CNN was implemented
using python. In addition, we compared the EOSA-CNN to other CNN solutions
implemented on the same classification problem. Also, the proposed model perfor-
mance was evaluated with five different hybrid algorithms, namely genetic algo-
rithm (GA), Life choice-based optimization (LCBO), multi-Verse optimizer (MVO),
satin bowerbird optimization (SBO), and whale optimization algorithm (WOA). The
optimized CNN was trained using the dataset for classifying and detecting lung
cancer. The trained model was then evaluated using a separate dataset for predic-
tion. The experiment was carried out five times (see Tables 4.1 - 4.5). Thereafter,
we computed the best, mean, standard deviation (SD), median, and worst of over-
all and class-based performance based on the GA-CNN, LCBO-CNN, MVO-CNN,
SBO-CNN, WOA-CNN, and EOSA-CNN hybrid algorithms and as compared with
the basic CNN architecture as shown in Tables 4.6 and 4.7.

Overall, the optimization process benefited the entire procedure and the results
showed that EOSA-CNN outperformed other hybrid models by achieving supe-
rior performance accuracy of 0.82, compared to GA-CNN, LCBO-CNN, MVO-CNN,
SBO-CNN, WOA-CNN which yielded 0.81, 0.81, 0.79, 0.81, 0.81, and 0.81, respec-
tively. Although, the hybrid algorithms have close performances, however, all the
hybrid outperformed the traditional CNN with no optimization applied which ob-
tained an accuracy of 0.76.

Similarly, EOSA-CNN algorithm achieved superiority over other hybrid algorithms
for Kappa, recall, F1 score, and specificity by obtaining 0.70, 0.83, 0.82, 0.82 and 0.98,
respectively. These results indicated that applying the proposed EOSA-CNN hybrid
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algorithm has improved the classification process, leading to better and accurate ma-
lignancy detection. Furthermore, we noted that the good performance of the hybrid
algorithm for specificity metric showed that it could effectively detect true negative
cases, reducing false negative reports.

We examined the performance of the EOSA-CNN algorithm on the three classes of
labels seen on the samples drawn from the datasets. These results are also listed
in Table 5, where the specificity, sensitivity, precision, recall, F1-score and balanced
accuracy are computed and reported. In most cases, all the hybrid algorithms com-
pete very closely with the proposed EOSA-CNN algorithm, while it is seen that it
outperformed the traditional CNN in most of the metrics. Again, this confirms that
EOSA-CNN successfully indented the features of each class and correctly classified
them for a good performance. This further reinforces the need for the algorithm’s
usefulness in addressing the classification problem in the domain.

4.1 Overall and per class performance of the hybrid algo-
rithms

Here, we presented the overall and per-class performance of the EOSA-CNN algo-
rithm in the five experiments. These results illustrated that EOSA-CNN demon-
strated superiority over all hybrid algorithms in the five experiments, with accura-
cies of 0.81, 0.81, 0.82, 0.82, 0.79. Moreover, EOSA-CNN scored the highest kappa
values in the five runs, which indicates that EOSA-CNN has a good agreement be-
tween the prediction and the actual classes compared to other hybrid algorithms.
Also, we noticed that the excellent performance of EOSA-CNN in terms of speci-
ficity metric showed that it could effectively detect the actual negative cases (see
Tables 4.1 - 4.5).
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Table 4.1: The overall and per class performance of the GA-CNN, LCBO-CNN, MVO-CNN,
SBO-CNN, WOA-CNN, and EOSA-CNN hybrid algorithms and as compared
with the basic CNN architecture (first run)

Measure/ Methods GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Overall Performance

Accuracy 0.74 0.76 0.75 0.75 0.73 0.81 0.72
Cohens kappa 0.59 0.59 0.59 0.59 0.56 0.67 0.54
Percision 0.81 0.79 0.81 0.79 0.79 0.81 0.78
Recall 0.74 0.76 0.75 0.75 0.73 0.81 0.72
F1 score 0.77 0.76 0.77 0.76 0.75 0.81 0.74
Specificity 0.7 0.94 0.72 0.88 0.64 0.92 0.68
Sensitivity 0.66 0.2 0.43 0.33 0.37 0.13 0.4

Per Class Performance

Sensitivity

Normal 0.6635 0.9327 0.7212 0.8654 0.6058 0.9231 0.6538
Benign 0.63333 0.2 0.43333 0.3333 0.3333 0.13333 0.4
Malignant 0.8286 0.7429 0.8357 0.7571 0.9071 0.8643 0.8286

Specificity

Normal 0.8765 0.7059 0.8176 0.7412 0.8824 0.7941 0.8176
Benign 0.82377 0.93443 0.84426 0.9098 0.8115 0.92623 0.8238
Malignant 0.9552 0.9925 1 0.9851 0.9403 1 0.9701

Precision

Normal 0.7667 0.6599 0.7075 0.6716 0.759 0.7328 0.6869
Benign 0.30645 0.27273 0.2549 0.3125 0.1786 0.18182 0.2182
Malignant 0.9508 0.9905 1 0.9815 0.9407 1 0.9667

Recall

Normal 0.6635 0.9327 0.7212 0.8654 0.6058 0.9231 0.6538
Benign 0.63333 0.2 0.43333 0.3333 0.3333 0.13333 0.4
Malignant 0.8286 0.7429 0.8357 0.7571 0.9071 0.8643 0.8286

F1 score

Normal 0.7113 0.7729 0.7143 0.7563 0.6738 0.817 0.67
Benign 0.41304 0.23077 0.32099 0.3226 0.2326 0.15385 0.2824
Malignant 0.8855 0.849 0.9105 0.8548 0.9236 0.9272 0.8923

Balanced Accuracy

Normal 0.77 0.8193 0.7694 0.8033 0.7441 0.8586 0.7357
Benign 0.72855 0.56721 0.6388 0.6216 0.5724 0.52978 0.6119
Malignant 0.8919 0.8677 0.9179 0.8711 0.9237 0.9321 0.8994

Table 4.1 above, describe the overall and the per-class result of the first experiment,
we can see clearly that our proposed model achieved the highest performance (in
bold) compared to the other models in terms of all the metrics.
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Table 4.2: The overall and per class performance of the algorithms (second run)

Measure/ Methods GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Overall Performance

Accuracy 0.77 0.78 0.78 0.8 0.8 0.81 0.76
Cohens kappa 0.62 0.64 0.63 0.67 0.66 0.68 0.6
Percision 0.78 0.81 0.8 0.86 0.83 0.82 0.81
Recall 0.77 0.78 0.78 0.8 0.8 0.81 0.76
F1 score 0.77 0.8 0.78 0.82 0.81 0.82 0.78
Specificity 0.9 0.78 0.9 0.73 0.78 0.85 0.73
Sensitivity 0.3 0.32 0.37 0.53 0.41 0.35 0.53

Per Class Performance

Sensitivity

Normal 0.8654 0.7692 0.8654 0.7308 0.75 0.8269 0.7115
Benign 0.26667 0.3 0.3333 0.53333 0.4 0.3 0.53333
Malignant 0.8143 0.8929 0.8143 0.9071 0.9214 0.9071 0.8357

Specificity

Normal 0.7824 0.8588 0.8059 0.9059 0.8824 0.8882 0.8412
Benign 0.92623 0.86475 0.918 0.84016 0.877 0.89344 0.84836
Malignant 0.9478 0.9776 0.9478 1 0.9627 0.9478 0.9776

Precision

Normal 0.7087 0.7692 0.7317 0.8261 0.7959 0.819 0.7327
Benign 0.30769 0.21429 0.3333 0.29091 0.2857 0.25714 0.30189
Malignant 0.9421 0.9766 0.9421 1 0.9627 0.9478 0.975

Recall

Normal 0.8654 0.7692 0.8654 0.7308 0.75 0.8269 0.7115
Benign 0.26667 0.3 0.3333 0.53333 0.4 0.3 0.53333
Malignant 0.8143 0.8929 0.8143 0.9071 0.9214 0.9071 0.8357

F1 score

Normal 0.7792 0.7692 0.793 0.7755 0.7723 0.823 0.722
Benign 0.28571 0.25 0.3333 0.37647 0.3333 0.27692 0.38554
Malignant 0.8736 0.9328 0.8736 0.9513 0.9416 0.927 0.9

Balanced Accuracy

Normal 0.8239 0.814 0.8356 0.8183 0.8162 0.8576 0.7764
Benign 0.59645 0.58238 0.6257 0.68675 0.6385 0.59672 0.69085
Malignant 0.881 0.9352 0.881 0.9536 0.9421 0.9275 0.9067

Table 4.2 describe the overall and the per-class result of the second experiment, we
notice clearly that our proposed model scored the highest performance (in bold)
compared to the other models in terms of all the metrics.
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Table 4.3: The overall and per class performance of the algorithms (third run)

Measure/ Methods GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Overall Performance

Accuracy 0.81 0.81 0.79 0.81 0.81 0.82 0.73
Cohens kappa 0.67 0.68 0.66 0.67 0.67 0.68 0.57
Percision 0.83 0.84 0.85 0.81 0.81 0.82 0.8
Recall 0.81 0.81 0.79 0.81 0.81 0.82 0.73
F1 score 0.81 0.81 0.81 0.81 0.81 0.82 0.76
Specificity 0.82 0.94 0.82 0.98 0.93 0.96 0.68
Sensitivity 0.37 0.37 0.67 0.18 0.23 0.15 0.53

Per Class Performance

Sensitivity

Normal 0.8077 0.9368 0.8077 0.9712 0.9135 0.9038 0.6635
Benign 0.36667 0.36667 0.66667 0.16667 0.23333 0.13333 0.53333
Malignant 0.9 0.8143 0.8 0.8286 0.8571 0.9071 0.8286

Specificity

Normal 0.8471 0.7941 0.8882 0.7529 0.7882 0.7941 0.8353
Benign 0.89754 0.93191 0.84836 0.97131 0.94262 0.97951 0.82787
Malignant 0.9851 1 0.9851 0.9776 0.9851 0.9328 0.9776

Precision

Normal 0.7636 0.7177 0.8155 0.7063 0.7252 0.7287 0.7113
Benign 0.30556 0.40741 0.35088 0.41667 0.33333 0.44444 0.27586
Malignant 0.9844 1 0.9825 0.9748 0.9836 0.9338 0.9748

Recall

Normal 0.8077 0.9368 0.8077 0.9712 0.9135 0.9038 0.6635
Benign 0.36667 0.36667 0.66667 0.16667 0.23333 0.13333 0.53333
Malignant 0.9 0.8143 0.8 0.8286 0.8571 0.9071 0.8286

F1 score

Normal 0.785 0.8128 0.8116 0.8178 0.8085 0.8069 0.6866
Benign 0.33333 0.38596 0.45977 0.2381 0.27451 0.20513 0.36364
Malignant 0.9403 0.8976 0.8819 0.8958 0.916 0.9203 0.8958

Balanced Accuracy

Normal 0.8274 0.8655 0.848 0.862 0.8508 0.849 0.7494
Benign 0.6321 0.64929 0.75751 0.56899 0.58798 0.55642 0.6806
Malignant 0.9425 0.9071 0.8925 0.9031 0.9211 0.92 0.9031

Table 4.3 describe the overall and the per-class result of the third experiment, our
proposed model outperformed the other models (in bold) in terms of all the metrics.
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Table 4.4: The overall and per class performance of the algorithms (fourth run)

Measure/ Methods GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Overall Performance

Accuracy 0.77 0.77 0.76 0.77 0.77 0.82 0.75
Cohens kappa 0.63 0.61 0.59 0.62 0.63 0.7 0.6
Percision 0.84 0.81 0.79 0.81 0.82 0.83 0.81
Recall 0.77 0.77 0.76 0.77 0.77 0.82 0.75
F1 score 0.8 0.78 0.77 0.79 0.79 0.82 0.78
Specificity 0.73 0.86 0.82 0.76 0.75 0.98 0.7
Sensitivity 0.57 0.45 0.33 0.43 0.41 0.38 0.53

Performance per class

Sensitivity

Normal 0.7212 0.8558 0.7885 0.75 0.7404 0.9231 0.6827
Benign 0.53333 0.43333 0.3333 0.43333 0.4 0.36667 0.53333
Malignant 0.8643 0.7714 0.8214 0.8571 0.8786 0.85 0.85

Specificity

Normal 0.8941 0.7765 0.7882 0.8235 0.8588 0.8294 0.8529
Benign 0.83197 0.90164 0.8893 0.86885 0.8525 0.95082 0.83197
Malignant 0.9776 0.9851 0.9701 0.9925 0.9851 0.9478 0.9851

Precision

Normal 0.8065 0.7008 0.6949 0.7222 0.7624 0.768 0.7396
Benign 0.2807 0.35135 0.2703 0.28889 0.25 0.47826 0.2807
Malignant 0.9758 0.9818 0.9664 0.9917 0.984 0.9444 0.9835

Recall

Normal 0.7212 0.8558 0.7885 0.75 0.7404 0.9231 0.6827
Benign 0.53333 0.43333 0.3333 0.43333 0.4 0.36667 0.53333
Malignant 0.8643 0.7714 0.8214 0.8571 0.8786 0.85 0.85

F1 score

Normal 0.7614 0.7706 0.7387 0.7358 0.7512 0.8384 0.71
Benign 0.36782 0.38806 0.2985 0.34667 0.3077 0.41509 0.36782
Malignant 0.9167 0.864 0.888 0.9195 0.9283 0.8947 0.9119

Balanced Accuracy

Normal 0.8076 0.8161 0.7883 0.7868 0.7996 0.8762 0.7678
Benign 0.68265 0.66749 0.6113 0.65109 0.6262 0.65874 0.68265
Malignant 0.9209 0.8783 0.8958 0.9248 0.9318 0.8989 0.9175

Table 4.4 describe the overall and the per-class result of the fourth experiment, we
notice clearly that our proposed model achieved the highest performance (in bold)
compared to the other models in terms of all the metrics.
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Table 4.5: The overall and per class performance of the algorithms (fifth run)

Measure/ Methods GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Overall Performance

Accuracy 0.76 0.78 0.78 0.75 0.78 0.79 0.73
Cohens kappa 0.6 0.65 0.63 0.58 0.64 0.65 0.56
Precision 0.79 0.87 0.79 0.78 0.81 0.81 0.79
Recall 0.76 0.78 0.78 0.75 0.78 0.79 0.73
F1 score 0.78 0.8 0.78 0.76 0.79 0.79 0.75
Specificity 0.76 0.62 0.89 0.77 0.94 0.92 0.67
Sensitivity 0.35 0.79 0.18 0.28 0.37 0.27 0.43

Per Class Performance

Sensitivity

Normal 0.7308 0.5962 0.875 0.7596 0.9135 0.9231 0.6538
Benign 0.3 0.76667 0.16667 0.2667 0.36667 0.26667 0.43333
Malignant 0.8857 0.9214 0.8429 0.8429 0.7786 0.8071 0.85

Specificity

Normal 0.8647 0.9588 0.7882 0.7882 0.7588 0.7588 0.8176
Benign 0.86066 0.80328 0.91803 0.877 0.93852 0.93443 0.83607
Malignant 0.9403 0.9627 0.9701 0.9776 0.9776 1 0.9776

Precision

Normal 0.7677 0.8986 0.7165 0.687 0.6985 0.7007 0.6869
Benign 0.2093 0.32394 0.2 0.2105 0.42308 0.33333 0.24528
Malignant 0.9394 0.9627 0.9672 0.9752 0.9732 1 0.9754

Recall

Normal 0.7308 0.5962 0.875 0.7596 0.9135 0.9231 0.6538
Benign 0.3 0.76667 0.16667 0.2667 0.36667 0.26667 0.43333
Malignant 0.8857 0.9214 0.8429 0.8429 0.7786 0.8071 0.85

F1 score

Normal 0.7488 0.7168 0.7879 0.7215 0.7917 0.7967 0.67
Benign 0.24658 0.45545 0.18182 0.2353 0.39286 0.2963 0.31325
Malignant 0.9118 0.9416 0.9008 0.9042 0.8651 0.8933 0.9084

Balanced Accuracy

Normal 0.7977 0.7775 0.8316 0.7739 0.8361 0.841 0.7357
Benign 0.58033 0.78497 0.54235 0.5719 0.6526 0.60055 0.6347
Malignant 0.913 0.9421 0.9065 0.9102 0.8781 0.9036 0.9138

Table 4.5 describe the overall and the per-class result of the fifth experiment, we
notice clearly that our proposed model achieved the highest performance (in bold)
compared to the other models in terms of all the metrics.
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4.2 Performance metrics of the overall and per class perfor-
mance of the algorithms

To provide a more detailed report on the performance of the hybrid algorithms when
compared with the EOSA-CNN algorithm, and then with the traditional CNN, we
computed the best, mean, standard deviation, median, and worst values obtained
in all cases in Tables 4.6 and 4.7. We observed from Table 4.6 the best accuracy ob-
tained for GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and EOSA-
CNN are 0.81, 0.81, 0.79, 0.81, 0.81, and 0.82, respectively. This indicates that EOSA-
CNN achieved a better performance when compared with other hybrid algorithms.
Also, EOSA-CNN increases the classification performance with 0.06 compared to
the traditional CNN. Due to data imbalance, it seems that overall accuracy is not
a suitable fitness measure. However, we can use recall as a different performance
measures. In this case EOSA-CNN exhibited good performance in terms of recall
compared to other hybrid algorithms and surpassed the traditional CNN as can be
seen in the following GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN,
EOSA-CNN, and CNN yielded 0.81, 0.81, 0.79, 0.81, 0.81, 0.82, and 0.76, respec-
tively. Furthermore, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN,
EOSA-CNN and CNN reported for specificity are 0.90, 0.94, 0.90, 0.98, 0.94, 0.98,
and 0.73 respectively. For f1score, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN,
WOA-CNN, EOSA-CNN and CNN scored 0.81, 0.81, 0.81, 0.82, 0.81, 0.82, and 0.78,
respectively.
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Table 4.6: Best, mean, standard deviation, median, and worst of overall performance based
on the five runs

Measure/ Methods GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Accuracy

Best 0,81 0.81 0.79 0.81 0.81 0.82 0.76
Mean 0.77 0.78 0.772 0.776 0.778 0.81 0.738

SD 0.025495 0.018708 0.016432 0.027928 0.031145 0.012247 0.016432
Median 0.77 0.78 0.78 0.77 0.78 0.81 0.73
Worst 0.74 0.76 0.75 0.75 0.73 0.79 0.72

Kappa

Best 0.67 0.68 0.66 0.67 0.67 0.7 0.6
Mean 0.622 0.634 0.62 0.626 0.632 0.676 0.574

SD 0.031145 0.035071 0.03 0.042778 0.043243 0.018166 0.026077
Median 0.62 0.64 0.63 0.62 0.64 0.68 0.57
Worst 0.59 0.59 0.59 0.58 0.56 0.65 0.54

Precision

Best 0.84 0.87 0.85 0.86 0.83 0.83 0.81
Mean 0.81 0.824 0.808 0.81 0.812 0.818 0.798

SD 0.025495 0.031305 0.0249 0.030822 0.014832 0.008367 0.013038
Median 0.81 0.81 0.8 0.81 0.81 0.82 0.8
Worst 0.78 0.79 0.79 0.78 0.79 0.81 0.78

Recall

Best 0.81 0.81 0.79 0.81 0.81 0.82 0.76
Mean 0.77 0.78 0.772 0.776 0.778 0.81 0.738

SD 0.025495 0.018708 0.016432 0.027928 0.031145 0.012247 0.016432
Median 0.77 0.78 0.78 0.77 0.78 0.81 0.73
Worst 0.74 0.76 0.75 0.75 0.73 0.79 0.72

F1 score

Best 0.81 0.81 0.81 0.82 0.81 0.82 0.78
Mean 0.786 0.79 0.782 0.788 0.79 0.812 0.762

SD 0.018166 0.02 0.016432 0.027749 0.024495 0.013038 0.017889
Median 0.78 0.8 0.78 0.79 0.79 0.82 0.76
Worst 0.77 0.76 0.77 0.76 0.75 0.79 0.74

Specificity

Best 0.9 0.94 0.9 0.98 0.94 0.98 0.73
Mean 0.782 0.828 0.83 0.824 0.808 0.926 0.692

SD 0.079498 0.133866 0.072111 0.104067 0.127161 0.0498 0.023875
Median 0.76 0.86 0.82 0.77 0.78 0.92 0.68
Worst 0.7 0.62 0.72 0.73 0.64 0.85 0.67

Sensitivity

Best 0.66 0.79 0.67 0.53 0.41 0.38 0.53
Mean 0.45 0.426 0.396 0.35 0.358 0.256 0.484

SD 0.156045 0.222778 0.17883 0.135093 0.074297 0.11349 0.063875
Median 0.37 0.37 0.37 0.33 0.37 0.27 0.53
Worst 0.3 0.2 0.18 0.18 0.23 0.13 0.4

In Table 4.6 above, the best, mean, standard deviation, median, and worst result of
the overall performance were calculated. EOSA-CNN outperformed the other mod-
els in terms of average of the five experiments. Also, we noticed that EOSA-CNN
was able to detect the malignancy cases with high accuracy. The result of the EOSA-
CNN are highlighted in bold.

In Table 4.7, we calculated the best, mean, standard deviation, median, and worst
performance for class labels seen in the samples from the dataset. We noticed that
all hybrid algorithms and the traditional CNN were highly accurate in classifying
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the malignancy class in terms of all the metrics. Furthermore, the hybrid algo-
rithms achieved high performance compared to the traditional CNN, while EOSA-
CNN outperform all the hybrid algorithms. In terms of sensitivity GA-CNN, LCBO-
CNN, MVO-CNN, SBO-CNN, and WOA-CNN scored 0.90, 0.9214, 0.8429, 0.9071,
and 0.9214 respectively. Where as EOSA-CNN achieved 0.9071 which is better com-
pared to the CNN with sensitivity of 0.85. In contrast, for specificity GA-CNN,
LCBO-CNN, MVO-CNN, SBO-CNN, and WOA-CNN attained 0.9851, 1, 1, 1, 0.9851,
respectively. While EOSA-CNN, obtained 1 which is better compared to the tradi-
tional CNN that is achieved 0.9851. Overall, this results explain that EOSA-CNN has
better performance compared to the other hybrids and traditional CNN algorithms.
Moreover, since the dataset is imbalanced we have investigated other metrics for
more confirmation, this metrics are precision, recall, f1score, and balanced accuracy.
Overall, we observed that EOSA-CNN outperformed the other hybrid algorithms
and the traditional CNN. Consequently, a good competitive performance is seen for
the classification accuracy of all hybrid algorithms, with the basic CNN architecture
lagging behind.

Table 4.7: Best, mean, standard deviation, median, and worst of per class performance
based on the five runs.

Measure/ Methods GA LCBO MVO SBO WOA EOSA CNN

Sensitivity

Normal

Best 0.8654 0.9368 0.875 0.9712 0.9135 0.9231 0.7115
Mean 0.75772 0.81814 0.81156 0.8154 0.78464 0.9 0.67306

SD 0.0791 0.14166 0.06252 0.10164 0.13072 0.04171 0.02451
Median 0.7308 0.8558 0.8077 0.7596 0.75 0.9231 0.6635
Worst 0.6635 0.5962 0.7212 0.7308 0.6058 0.8269 0.6538

Benign

Best 0.63333 0.76667 0.66667 0.53333 0.4 0.36667 0.53333
Mean 0.42 0.41333 0.38665 0.34667 0.34666 0.24 0.48666

SD 0.15741 0.21551 0.18349 0.14259 0.06912 0.10382 0.06498
Median 0.36667 0.36667 0.3333 0.3333 0.36667 0.26667 0.53333
Worst 0.26667 0.2 0.16667 0.16667 0.23333 0.13333 0.4

Malignant

Best 0.9 0.9214 0.8429 0.9071 0.9214 0.9071 0.85
Mean 0.85858 0.82858 0.82286 0.83856 0.86856 0.86712 0.83858

SD 0.03655 0.07676 0.01706 0.0543 0.05613 0.04213 0.01082
Median 0.8643 0.8143 0.8214 0.8429 0.8786 0.8643 0.8357

Continued on next page
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Table 4.7 – continued from previous page
Measure/ Methods GA LCBO MVO SBO WOA EOSA CNN

Worst 0.8143 0.7429 0.8 0.7571 0.7786 0.8071 0.8286

Specificity

Normal

Best 0.8941 0.9588 0.8882 0.9059 0.8824 0.8882 0.8529
Mean 0.85296 0.81882 0.81762 0.80234 0.83412 0.81292 0.83292

SD 0.043 0.09532 0.04138 0.06625 0.05712 0.04893 0.01535
Median 0.8647 0.7941 0.8059 0.7882 0.8588 0.7941 0.8353
Worst 0.7824 0.7059 0.7882 0.7412 0.7588 0.7588 0.8176

Benign

Best 0.92623 0.93443 0.91803 0.97131 0.94262 0.97951 0.84836
Mean 0.86803 0.8872 0.88359 0.89342 0.88443 0.93689 0.83361

SD 0.04351 0.05474 0.03602 0.05011 0.05636 0.03169 0.00943
Median 0.86066 0.90164 0.8893 0.877 0.877 0.93443 0.83197
Worst 0.82377 0.80328 0.84426 0.84016 0.8115 0.89344 0.8238

Malignant

Best 0.9851 1 1 1 0.9851 1 0.9851
Mean 0.9612 0.98358 0.97462 0.98656 0.97016 0.96568 0.9776

SD 0.01932 0.01435 0.01946 0.00973 0.01903 0.03192 0.0053
Median 0.9552 0.9851 0.9701 0.9851 0.9776 0.9478 0.9776
Worst 0.9403 0.9627 0.9478 0.9776 0.9403 0.9328 0.9701

Precision

Normal

Best 0.8065 0.8986 0.8155 0.8261 0.7959 0.819 0.7396
Mean 0.76264 0.74924 0.73322 0.72264 0.7482 0.74984 0.71148

SD 0.03492 0.09224 0.04791 0.06092 0.03739 0.04546 0.02475
Median 0.7667 0.7177 0.7165 0.7063 0.759 0.7328 0.7113
Worst 0.7087 0.6599 0.6949 0.6716 0.6985 0.7007 0.6869

Benign

Best 0.30769 0.40741 0.35088 0.41667 0.42308 0.47826 0.30189
Mean 0.28194 0.31394 0.28188 0.30389 0.29414 0.339 0.26439

SD 0.04213 0.07393 0.06118 0.07401 0.09156 0.12445 0.0328
Median 0.30556 0.32394 0.2703 0.29091 0.2857 0.33333 0.27586
Worst 0.2093 0.21429 0.2 0.2105 0.1786 0.18182 0.2182

Malignant

Best 0.9844 1 1 1 0.984 1 0.9835
Mean 0.9585 0.98232 0.97164 0.98464 0.96884 0.9652 0.97508

SD 0.02039 0.01412 0.02146 0.01097 0.018 0.03218 0.00594
Median 0.9508 0.9818 0.9672 0.9815 0.9732 0.9478 0.975

Continued on next page
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Table 4.7 – continued from previous page
Measure/ Methods GA LCBO MVO SBO WOA EOSA CNN

Worst 0.9394 0.9627 0.9421 0.9748 0.9407 0.9338 0.9667

Recall

Normal

Best 0.8654 0.9368 0.875 0.9712 0.9135 0.9231 0.7115
Mean 0.75772 0.81814 0.81156 0.8154 0.78464 0.9 0.67306

SD 0.0791 0.14166 0.06252 0.10164 0.13072 0.04171 0.02451
Median 0.7308 0.8558 0.8077 0.7596 0.75 0.9231 0.6635
Worst 0.6635 0.5962 0.7212 0.7308 0.6058 0.8269 0.6538

Benign

Best 0.63333 0.76667 0.66667 0.53333 0.4 0.36667 0.53333
Mean 0.42 0.41333 0.38665 0.34667 0.34666 0.24 0.48666

SD 0.15741 0.21551 0.18349 0.14259 0.06912 0.10382 0.06498
Median 0.36667 0.36667 0.3333 0.3333 0.36667 0.26667 0.53333
Worst 0.26667 0.2 0.16667 0.16667 0.23333 0.13333 0.4

Malignant

Best 0.9 0.9214 0.8429 0.9071 0.9214 0.9071 0.85
Mean 0.85858 0.82858 0.82286 0.83856 0.86856 0.86712 0.83858

SD 0.03655 0.07676 0.01706 0.0543 0.05613 0.04213 0.01082
Median 0.8643 0.8143 0.8214 0.8429 0.8786 0.8643 0.8357
Worst 0.8143 0.7429 0.8 0.7571 0.7786 0.8071 0.8286

F1 score

Normal

Best 0.785 0.8128 0.8116 0.8178 0.8085 0.8384 0.722
Mean 0.75714 0.76846 0.7691 0.76138 0.7595 0.8164 0.69172

SD 0.02938 0.03413 0.0408 0.03759 0.05248 0.01586 0.02356
Median 0.7614 0.7706 0.7879 0.7563 0.7723 0.817 0.6866
Worst 0.7113 0.7168 0.7143 0.7215 0.6738 0.7967 0.67

Benign

Best 0.41304 0.45545 0.45977 0.37647 0.39286 0.41509 0.38554
Mean 0.3293 0.34205 0.31888 0.30383 0.30819 0.26946 0.34253

SD 0.06568 0.09716 0.09907 0.06419 0.06051 0.09936 0.04303
Median 0.33333 0.38596 0.32099 0.3226 0.3077 0.27692 0.36364
Worst 0.24658 0.23077 0.18182 0.2353 0.2326 0.15385 0.2824

Malignant

Best 0.9403 0.9416 0.9105 0.9513 0.9416 0.9272 0.9119
Mean 0.90558 0.897 0.89096 0.90512 0.91492 0.9125 0.90168

SD 0.02643 0.04082 0.01476 0.03521 0.02937 0.01712 0.00829
Median 0.9118 0.8976 0.888 0.9042 0.9236 0.9203 0.9

Continued on next page
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Table 4.7 – continued from previous page
Measure/ Methods GA LCBO MVO SBO WOA EOSA CNN

Worst 0.8736 0.849 0.8736 0.8548 0.8651 0.8933 0.8923

Balanced Accuracy

Normal

Best 0.8274 0.8655 0.848 0.862 0.8508 0.8762 0.7764
Mean 0.80532 0.81848 0.81458 0.80886 0.80936 0.85648 0.753

SD 0.02315 0.03129 0.03384 0.03411 0.04133 0.01314 0.01856
Median 0.8076 0.8161 0.8316 0.8033 0.8162 0.8576 0.7494
Worst 0.77 0.7775 0.7694 0.7739 0.7441 0.841 0.7357

Benign

Best 0.72855 0.78497 0.75751 0.68675 0.6526 0.65874 0.69085
Mean 0.64402 0.65027 0.63513 0.62007 0.61554 0.58844 0.66014

SD 0.06144 0.08653 0.07787 0.05084 0.03404 0.04905 0.03479
Median 0.6321 0.64929 0.6257 0.6216 0.6262 0.59672 0.6806
Worst 0.58033 0.56721 0.54235 0.56899 0.5724 0.52978 0.6119

Malignant

Best 0.9425 0.9421 0.9179 0.9536 0.9421 0.9321 0.9175
Mean 0.90986 0.90608 0.89874 0.91256 0.91936 0.91642 0.9081

SD 0.02425 0.03313 0.01405 0.0302 0.02448 0.0146 0.00747
Median 0.913 0.9071 0.8958 0.9102 0.9237 0.92 0.9067
Worst 0.881 0.8677 0.881 0.8711 0.8781 0.8989 0.8994

Figure 4.1 shows the confusion matrix plot for all hybrid algorithms with respect to
all the class labels observed in the dataset. The classification accuracy of all classes
is indicated for each plot of the confusion matrix to give an accurate report on their
performances. Taking the case of EOSA-CNN as an example, we see that 90% of all
cases with normal labels were correctly identified and over 86% of cases labelled as
malignant were correctly identified by the hybrid algorithm proposed in this study.
This is contrary to what is reported for the traditional CNN, where only 67.31% of
samples with normal labels were correctly identified while about 83% of those with
malignancy were correctly identified. This, therefore, reinforces the impact of the
hybrid algorithm proposed in this study since it was able to improve classification
accuracy.

63



4.2. Performance metrics of the overall and per class performance of the algorithms

(a) GA-CNN (b) LCBO-CNN

(c) MVO-CNN (d) SBO-CNN

(e) WOA-CNN (f) EOSA-CNN

(g) CNN

Figure 4.1: Overlapped confusion matrix for all hybrid algorithms with CNN.

For more confirmation, we plotted the validation epoch, as can be seen in Figure
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4.2. These results indicate that EOSA-CNN achieved high validation accuracy. The
single most striking observation to emerge from the comparison of the algorithms
was that all the hybrid algorithms highly outperformed the traditional CNN and
had a relative performance to EOSA-CNN.

Figure 4.2: Explain the mean validation performance of EOSA-CNN compared to other
metaheuristic algorithms and the traditional CNN.

4.3 Discussion and Comparison of Results

Lung cancer is an emerging cause of death worldwide due to the lack of adequate
and effective diagnostic tools and proper treatment. In recent times, several state-of-
the-art deep learning method-based optimization techniques have been employed
to identify lung cancer in its early stage accurately. Deep learning techniques are
extensively used in various domains of machine vision, including object detection,
segmentation, and image classification. Although several studies have been ob-
tained, none of these studies have been very effective in addressing some of the
main challenges of lung cancer diagnosis at its early stages. In this study, we pro-
posed a hybrid algorithm EOSA-CNN with selected preprocessing methods for lung
cancer detection as an initial objective of the study was to identify. Thereafter, the
proposed method’s performance was compared to five hybrid models, namely GA-
CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and the traditional CNN,
based on five experiments. We conducted all the experiments under the same ma-
chines and parameters configurations for a fair comparison. Furthermore, we used
eight performance metrics in order to see the difference between the performance of
the methods.
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Also, for a fair comparison, we used 80% of the data selected randomly to train the
models, while the 20% was left aside of the entire dataset, which served as a testing
set for the final evaluation. In addition, the models were trained using 100 epochs
and a batch size of 128 to ensure that the models were trained under similar condi-
tions.

The first question in this study sought to determine a new CNN architecture that is
hybridized with EOSA to improve lung cancer classification accuracy. The most in-
teresting finding is that the proposed algorithm classifies the malignant labels with
high accuracy (see the per-class performance in Table 4.7). The most prominent find-
ing from the analysis is that the proposed algorithm outperforms the other state-of-
the-art hybrid algorithms and the traditional CNN. Moreover, EOSA-CNN identi-
fied the negative cases with high accuracy equal to 90 %. This confirms that our
proposed model successfully classifies positive and negative patients, contrary to
what is reported for the traditional CNN.

In Table 4.8 below, the proposed EOSA-CNN hybrid algorithm performance is com-
pared with those reported in similar studies. The classification accuracy obtained in
the approach proposed in this study outperformed those seen in the works of Song
et al. (2017), Zheng et al. (2021), Lu et al. (2021), Priyadharshini et al. (2021), and
Wang et al. (2020). We see that the classification accuracy reported in the work of
Priyadharshini et al. (2021), who also used a metaheuristic-based optimization ap-
proach, surpasses that reported in this study. However, the result of specificity and
precision, which are 1.0 for both cases as obtained in the approach proposed in this
study, confirms that classification accuracy alone is not sufficient to demonstrate the
superiority of the methods. We noticed that the proposed method in this study gave
an outstanding performance in its ability to eliminate the presence of false positives
and ensure that our model correctly classifies negative cases as negative and posi-
tive cases as positive. Also, the value of 1.0 for specificity as reported for the method
proposed in this study showed that the total number of actual negative cases (nor-
mal and benign) in our datasets discovered to be truly negative was very accurate.
That means all negative cases were truly confirmed negative by our method. This
is very important to rule out the possibility of false negative and false positive re-
sults. Yielding a zero-level for false positive and false negative rates, as seen by our
proposed method, showed that the EOSA-CNN hybrid algorithm is not just good
for classification accuracy but can be relied on for reliable results. This will boost
confidence in the resulting output by the proposed algorithm when deployed for
use. Therefore, this study has demonstrated the importance of using metaheuristic
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algorithm to optimize CNN models hyperparameters to solve the difficult problem
of selecting the best combination of weights and bias required for training a CNN
model. Moreover, the approach also demonstrates that the combined methods can
improve classification accuracy and general performance of classifying lung cancer
in CT images.

Table 4.8: Performance comparison of the proposed method and some similar methods of
CNN for classification of lung cancer

Author Method Dataset Performance

Song et al. (2017) CNN, DNN, and SAE LIDC-IDRI
Accuracy of 84.15%,
sensitivity of 83.96%,

and specificity of 84.32%

Zheng et al. (2021)
Combination radiology

analysis and malignancy
evaluation network (R2MNet)

LIDC-IDRI
Area under curve
(AUC) of 96.27%

Lu et al. (2021)
Marine predators

metaheuristic algorithm
and CNN

RIDER
93.4% accuracy,

98.4% sensitivity,
and 97.1% specificity

Priyadharshini et al. (2021)
Bat-inspired Metaheuristic

Convolutional Neural Network
LIDC-IDRI dataset Accuracy of 97.43%

Wang et al. (2020)
RNN and medical-
tomedical, transfer
learning technique

Lung cancer
CT scans

Accuracy of 85.71%

Our study
EOSA-CNN and selected
preprocessing methods

IQ-OTH/NCCD
lung cancer

Accuracy of 93.21%,
sensitivity of 0.9071,

specificity of 1.0,
precision of 1.0,

F1-score of 0.9272,
and Recall of 0.9071

4.4 Study limitations

The major limitation of this study is the small sample size. Also, we did not consider
solving the issue of imbalanced data approaches such as random under and over
sampling, and cluster based over sampling, among others. It also proposed that
future work should consider using more samples size as well as handling the class
imbalance problem which might increase the models performances. Overall, the
present results are significant compared to previous studies above. Hence, EOSA-
CNN model outperforms the other hybrid algorithms and the traditional CNN in
terms of seven metrics used. Furthermore, we need to see the EOSA performance in
different medical problem.
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Chapter 5

Conclusion and Future Research
Direction

5.1 Conclusion

Lung cancer is one of the significant causes of death in the world. Also, lung cancer
is characterized by the uncontrollable development of tumor cells that influence hu-
man survival. Several techniques have been introduced and presented using differ-
ent data analysis approaches. Due to the increase of the CT images produced, visual
interpretation may lead to a complex and error-prone process, which can cause de-
lay in lung cancer diagnosis and detection. Therefore, early and precise detection of
lung cancer is becoming a challenging task for physicians. Therefore, the necessity
of lung cancer diagnosis and detection techniques is on the rise, and hence, hybrid
optimization approaches based on robust CNN models for early detection of lung
cancer are considered as best alternatives. Thus, reducing the mortality due to lung
cancer and increasing human life quality.

In this study, We used CT scan images for lung cancer classification. We initially pre-
pared the CT images using modern image processing techniques, including grayscale,
Gaussian blur, segmentation, normalization, erosion and dilation, CLAHE, and wavelet
transforms, to get the correct and instant results. These techniques help to enhance
the image quality by removing unwanted noise and focusing on the tumor portion.
Thereafter, we used the extracted features that might give a high and accurate diag-
nosis and detection of lung cancer. In addition, we designed a new CNN architecture
by hybridizing classical CNN model with the EOSA metaheuristic algorithm. The
performance of new hybrid EOSA-CNN model was compared with various CNN
optimized metaheuristic algorithms, namely, GA, LCBO, MVO, SBO, and WOA. The
prepared data is divided into 80% training set and 20% testing set. The significant
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extracted features serve as input to the hybrid algorithms for the classification pro-
cess.

The study also focused on resolving lung cancer classification problem by combining
thr proposed CNN architecture with the nature-inspired EOSA metaheuristic. The
EOSA optimization algorithm was specifically employed to optimize the solution
vector of the traditional CNN architecture. So, the metaheuristic algorithm based on
the propagation strategy of the Ebola virus was trained to investigate its ability to
optimize the solutions in the search space. First, the CNN architecture was designed
and then the solution vector was computed and extracted. The solution vector was
passed on to the EOSA metaheuristic algorithm for optimization purposes. The out-
come of the process was then supplied as the optimized set of weights and biases for
fully training the CNN model. Considering the good performance seen during the
training phase, we then used the trained model to test new samples for classification
accuracy. A comparative analysis of the EOSA-CNN with other five hybrid algo-
rithms and the traditional CNN was carried out and reported. The results revealed
that EOSA-CNN achieved higher performance compared to the other metaheuristic
algorithms and the traditional CNN in terms of accuracy, kappa, precision, recall, F1
score, specificity, and sensitivity metrics. Hence, the contribution of this study is the
use of a good hybrid algorithm, a virus-based optimization technique to improve
the solution vector of the proposed CNN architecture. Furthermore, the proposed
model revealed well performance in classifying the malignant and benign lung can-
cer cases using CT scan images.

5.2 Future Research Direction

Further research could assess the effects of handling imbalanced data with hybrid
algorithms. Moreover, more sample size would help establish greater accuracy on
lung cancer classification. In addition, the robustness of the current model can fur-
ther be tested and validated using other types of benchmarked datasets such as X-
ray, MRI, and gene expression data. Moreover, the proposed technique and prepro-
cessing methods can also be useful in the diagnoses different cancer types and sub-
types. We suggest comparing the proposed EOSA-CNN metaheuristic algorithm
with different CNN architectures such as GoogleNet, ZFNet, VGGNet, ResNet, and
AlexNet. In future, the applied EOSA method may be considered for use in auto-
designing deep learning models (e.g CNN) for classification of lung cancer problem.
In addition, a hybrid of EOSA with other state-of-the-art metaheuristics algorithm
needs to be considered for addressing the optimization task.
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