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ABSTRACT 

 

Three-dimensional (3D) point clouds derived using cost-effective and time-efficient 

photogrammetric technologies can provide information that can be utilized for decision-

making in engineering, built environment and other related fields. This study focuses on the 

use of machine learning to automate the classification of points in a heterogeneous 3D scene 

situated in the University of KwaZulu-Natal, Howard College Campus sports field.   

  

The state of the camera mounted on the unmanned aerial vehicle (UAV) was evaluated through 

the process of camera calibration. Nadir aerial images captured using a UAV were used to 

generate a 3D point cloud employing the structure-from-motion (SfM) photogrammetric 

technique. The generated point cloud was georeferenced using natural ground control points 

(GCPs). Supervised and unsupervised classification approaches were used to classify points 

into three classes: ground, high vegetation and building. The supervised classification 

algorithm used a multi-scale dimensionality analysis to classify points.  

A georeferenced orthomosaic was used to generate random points for cross-validation. The 

accuracy of classification was evaluated, employing both qualitative and quantitative 

analysis.   

  

The camera calibration results showed negligible discrepancies when a comparison was made 

between the results obtained and the manufacturer’s specifications in parameters of the 

camera lens; hence the camera was in the excellent state of being used as a measuring 

device. Site visits and ground truth surveys were conducted to validate the classified point 

cloud. An overall root-mean-square (RMS) error of 0.053m was achieved from georeferencing 

the 3D point cloud. A root-mean-square error of 0.032m was achieved from georeferencing 

the orthomosaic. The multi-scale dimensionality analysis classified a point cloud and achieved 

an accuracy of 81.3% and a Kappa coefficient of 0.70. Good results were also achieved from 

the qualitative analysis. The classification results obtained indicated that a 3D heterogeneous 

scene can be classified into different land cover categories. These results show that the 

classification of 3D UAV-SfM point clouds provides a helpful tool for mapping and 

monitoring complex 3D environments.   
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   CHAPTER 1 

1. INTRODUCTION 

 

 

1.1 Background 

 
Classifying different objects is not a complicated function for humans, but it has been 

determined to be an intricate issue for machines (Kamavisdar et al., 2013). There is a necessity 

to automate the detection of objects since it yields results that can be employed in the 

determination of information for various applications, such as the creation of 3D city replicas 

for representation and simulations (Niemeyer et al., 2012).  

 

Remote sensing technologies are advancing, leading to the escalated necessity of acquiring 

point cloud data. These technologies incorporate but are not limited to UAV-based 

photogrammetry,  consumer RGB-D sensor (low cost), and indoor mobile mapping (Liu and     

Boehm, 2015). 

  

1.1.1 Unmanned Aerial Vehicles (UAVs) 

 

UAVs are becoming popular in various fields due to their capacity to present in a flexible 

manner high-quality spatial information; also, they are cost-effective. Their ability to perform 

a simultaneous collection of high-resolution imagery and a photogrammetric point cloud is a 

unique advantage enabling a wide range of applications including but not limited to 

agriculture, geomorphology, cultural heritage, forestry and damage assessment (Gevaert et al., 

2016).   

 

The United States Department of Defense (DOD), together with the Civil Aviation Authority 

(CAA) of the United Kingdom, adopted the term UAS (Unmanned Aerial Systems), now 

commonly known as UAVs or drones (ICAO, 2011). The concept of Remotely-Piloted Aerial 

System (RPAS) was established by the International Civil Aviation Organization (ICAO) in 

order to incorporate the RPAS into the civil aviation system internationally (ICAO, 2011; 

Colomina et al., 2014). In South Africa, the term RPAS is also used by the South African Civil 

Aviation Authority (2017). Figure 1-1 (DJI, 2017) shows a quadcopter UAV Phantom 1 with 

a CCD camera as a payload. 
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Figure 1-1: Phantom 1, unmanned aerial vehicle 

 

The use of UAVs has some concerns, including privacy, safety and security, which should be 

guided by proper regulations and policies (Shakhatreh et al., 2019). To regulatory bodies, 

policymakers, and all other mapping authorities world-wide, Colomina et al. (2014) published 

a journal article sending a message, “Let them fly and they will create a new remote sensing 

market in your country.” 

 

1.1.2 3D Point Clouds 

 

The point clouds are created by a massive quantity of data with many redundant coordinates 

(Rodríguez et al., 2019). They are a collection of points, each associated with X, Y, Z 

coordinate in some three-dimensional coordinate system (Van Genechten, 2008). Point clouds 

may have additional information, for example, reflectivity values and color (Van Genechten, 

2008).   

 

The terrestrial laser scanner (TLS) is the first instrument that was used to collect a point cloud. 

Like other surveying instruments, a TLS is mounted and levelled over a tripod (Rodríguez et 

al., 2019). Based on the environment of which laser scanning is performed, the parameters are 

configured before commencing the collection of points. The collected points are referenced to 

the scanner's coordinate system with the laser optical center as the origin for each scan 

(Rodríguez et al., 2019). These scans need to be brought together by registration, whereby the 

transformation of points from the local to the ground coordinate system is performed. This is 

done using targets known as common or tie points (Akca, 2003). 
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Points in a point cloud are joined seamlessly to form a mesh, which is a 3D solid surface 

resulting from the triangulation process (Van Genechten, 2008). A mesh is usually the final 

product in the process of  3D modelling, and it can be textured by giving color information 

(Cignoni et al., 2008). There is a vast number of applications in which point clouds are utilized. 

Since point clouds are associated with high accuracies, they are employed in construction, 

agriculture, risk assessment, monitoring, and preservation of cultural objects (Abmayr et al., 

2005; Zogg et al., 2008). 

 

1.1.3 What is Point Cloud Classification 

 

Point cloud classification is the operation of labeling a segment of points with a class, 

assigning some semantic to a group of points (Guo et al., 2015; Weinmann et al., 2013). 

Supervised, unsupervised, and interactive classification approaches are the commonly utilized 

techniques in assigning class labels (Grilli et al., 2017). For example, a particular class, 

vegetation, can be assigned a value of 1 while a different label is issued to another class. The 

classification objective determines the type of information obtained and the style in which 

labels are assigned to classes (Kumar et al., 2019). Point cloud classification has numerous 

applications: environmental modeling, navigation, damage assessment, and cultural heritage 

(Grilli et al., 2017; Roynard et al., 2018).  

 

1.2 Research Problem 

 
Classification of lidar data into different land cover categories has been a centre of attention 

in numerous studies, mainly 2.5D airborne lidar data (Antonarakis et al., 2008; Sithole and 

Vosselman, 2004). In machine learning, the classification of 3D photogrammetric point clouds 

is still a problem (Liu and Boehm, 2015). Working with point cloud data is very convenient in 

a wide range of applications. Extensive information carried by point cloud data can be 

employed for various analyses, such as identifying an object in a scene comprising of different 

items of different sizes and shapes. 

 

Ground and non-ground points require to be identified for design purposes in engineering and 

construction. Therefore, it is essential to address the classification problem as it may provide 

solutions to multiple disciplines such as forestry, geomorphology, agriculture, damage 

assessment, and cultural heritage (Gevaert et al., 2016). 
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1.3 Research Motivation 

 
The study area of this research is situated at the University of KwaZulu-Natal (Howard College 

Campus) sports field. The budget towards travel costs will be minimal, and this area is easily 

accessible. The sports field comprises different features, both natural and man-made, which 

are suitable to be utilized in the classification of 3D point clouds. Undertaking surveys using 

UAV photogrammetry requires authorization to fly over a specific area. In addition, there is 

legislation about the use of drones, regulated by the South African Civil Aviation Authority 

(SAACA). Since the study area is within Erf 12494 Durban, which is the University of 

KwaZulu-Natal (Howard College Campus), no special consent is required to fly.  

 

The use of new technologies plays a vital role in spatial modeling and visualization of 3D 

objects. Alonso (2019) states, “In the drone industry, and the geospatial sector more broadly, 

there is a lot of talk about how AI will help extract actionable information from unstructured 

image data at a scale and speed never previously seen.” Classification of photogrammetric 

point clouds requires more research, unlike image classification that has been done 

satisfactorily in the research industry. The applications of UAV photogrammetry using 

Structure-from-Motion are increasing in different fields. This study will be mainly conducted 

using open-source software with the primacy of being cost-effective. The classification of 

point clouds may provide numerous solutions for decision-making in engineering, built 

environment and other related fields.   

 

1.4 Research Question 

 
The research question was formulated based on the research problem and motivation as: 

 

Employing the UAV-based and Structure-from-Motion (SfM) photogrammetry to create a 3D 

point, how can 3D point clouds in a heterogeneous environment be classified? 

 

1.5 Aim and Objectives 

 

1.5.1 Aim 

 

This research aims to perform the classification of 3D point clouds generated from UAV-based 

photogrammetry using an automated approach and using training samples to produce a 

classified point cloud. In addition, assessing the classification accuracy and determine the 

possible applications of 3D point cloud classification. 
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1.5.2 Objectives 

 

1. Find the most suitable area of study comprising of different features to be utilized for 

point cloud classification. 

2. Evaluate the state of the UAV payload, which is an RGB camera, through the process 

of camera calibration. 

3. Generate a 3D point cloud using the Structure-from-Motion photogrammetric 

technique and georeference the resulting cloud. 

4. Perform the unsupervised and supervised classification techniques on the point cloud 

and evaluate the competence of classification. 

 

1.6 Structure of the Thesis 

 
This thesis contains seven chapters: 

• Chapter 1 is a brief introduction to this research. The context of the problem (classification 

of 3D point clouds) is outlined, the aim and objectives are discussed, giving solutions to 

the main problem.  

 

• Chapter 2 is based on the review of literature from previous research. The processes 

involved from image acquisition to the final classified product are discussed. This chapter 

explores various techniques employed in addressing the classification problem of different 

data formats and, lastly, the applications. 

 

• Chapter 3 introduces the study area employed in this research. A geographical 

representation of this area is defined. 

 

• Chapter 4 discusses the methodology used in this research. The steps undertaken from 

planning, preparation, classification, and lastly, assessment of accuracy. 

 

• Chapter 5 presents the results obtained from camera calibration and classification accuracy 

of the 3D point cloud. Further analyses are discussed.  

 

• Chapter 6 is the overall discussion of this research; the key objectives of this study are 

discussed. 

 

• Chapter 7 is the conclusion of this thesis. The recommendations and future applications 

on the classification of 3D point clouds are outlined.  
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    CHAPTER 2 

2.   LITERATURE REVIEW 

 

 

2.1 Introduction 

 
This chapter reviews the theoretical and practical concepts based on previous research 

undertaken on classification. The sub-topics covered include Traditional and Structure-from-

Motion photogrammetry from computer vision using unmanned aerial vehicles, image 

classification, LIDAR classification, 3D point cloud classification, classification techniques, 

and assessment of accuracy. Classification is reviewed from different data formats since the 

same concept is used to achieve products such as thematic maps.  Point clouds are explained 

in detail and their applications in various fields.  

 

2.2  Point Cloud 

 

A point cloud is explained as a collection of points having XYZ coordinates arranged in some 

three-dimensional coordinate system representing an object. Point clouds may contain some 

extra information, for instance, colour and reflectivity values (Van Genechten, 2008). 

 

There is a vast range of methods to acquire 3D point clouds. Point clouds are extracted from 

raw data scanned from physical objects and structures such as building exteriors and interiors, 

process plants, topographies, and other manufactured items (Autodesk, 2018). These are from 

significant principles: Stereo vision, Active triangulation, and Laser time-of-flight 

measurement (Wulf and Wagner, 2003). Figure 2-1 (Eling and Klingbeil, 2015) shows a 3D 

point cloud generated using SfM. 

 

 

Figure 2-1: Point cloud from SfM 
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2.2.1 Structure-from-Motion 

 

2.2.1.1  Introduction 

 

Structure-from-Motion (SfM) is introduced, and the stages involved are discussed from the 

beginning (acquisition of image data) to the end (point cloud). The word SfM comes from the 

computer vision community; the structure is produced by the images taken from a sensor in 

motion (Spetsakis and Aloimonos, 1991). 

 

High-resolution data acquired at a low-cost, easy-to-use method of photogrammetry at 

different scale extents is achieved using SfM. The SfM technique automates the decoding of 

scene geometry and camera pose at the same time by using image matching. Unlike classical 

photogrammetry that requires the ground control points and camera pose(s) to perform 

triangulation and 3D reconstruction. (Liu and Boehm, 2015). 

 

Classical photogrammetry relies on ground control points that are located manually on images 

to find the position of the camera. There is a distinction between classical photogrammetry 

and SfM. No prior information is needed to perform scene reconstruction when using SfM. 

SfM plays a vital role in acquiring datasets from remote areas and regions that are not easily 

accessible (Westoby et al., 2012). 

 

During the image acquisition, short camera baselines should be maximized. A high percentage 

of overlap of images is required for offset images. The images are captured in different 

directions and positions (Micheletti et al., 2015). The survey should be adequately planned 

before image acquisition. It is advisable to initially take the image of the whole area or object, 

checking if the obstructions are included before taking overlapping images. The coverage 

should be such that it allows a point to be visible in three consecutive images taken from 

distinct locations, see figure 2-2 (Micheletti et al., 2015). The scene should be static and have 

consistent lighting, avoiding underexposure and overexposure of photographs. Blurred 

photographs, high reflective, and glassy surfaces should also be avoided (Micheletti et al., 

2015).  
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Figure 2-2: Image acquisition for SfM photogrammetry in different directions and 

positions. 

 

2.2.1.2  Method 

 

2.2.1.2 (a) The acquisition of images and keypoints  

 
SfM gives a solution to the 3D position of feature matching in several images captured from 

different angles (Snavely, 2008). The more suitable pictures for calibrating a grid of images 

are identified; they are then utilized to determine the relative camera orientations (Moulon and 

Bezzi, 2011). The first step involves the computation of local content; this is performed on 

each photograph. The second step mainly identifies the nearest descriptor between two images 

(presumed matches). Lastly, the Epipolar geometry of assumed matches is checked. This 

concept is called image matching (Moulon and Bezzi, 2011).  Figure 2-3 (Moulon and Bezzi, 

2011) shows the steps involved in image matching. 

 

 

Figure 2-3: Steps involved in image matching. 
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Before feature descriptors are created, the keypoints are identified automatically and this 

process covers all positions and scales in each photograph. The uniqueness of the descriptors 

created enables large datasets of features to be matched (Westoby et al., 2012). The resolution 

and texture of images determine the number of keypoints that can be computed. The high-

resolution images give good results (Westoby et al., 2012). The factors that affect the resulting 

point cloud quality include the sharpness, density and resolution of the input images. At close 

range, the spatial resolution of images is increased, resulting in an enhanced point cloud 

(Westoby et al., 2012).    

 

A wide range of sensors can be employed for SfM, digital cameras, and video stills. If data is 

acquired in remote areas, considerations should be made about the batteries and weather 

conditions (extreme temperatures) (Westoby et al., 2012).  DSLR cameras with a resolution 

above 12 megapixels are used to improve the resolution and quality of images. High-resolution 

images are resized, leading to the loss of some image details (Westoby et al., 2012). The 

images are acquired after establishing the GNSS target network; they are then enhanced and 

resized. Executing SIFT (Scale Invariant Feature Transform), SIFT is a feature detector 

broadly used for multiple tasks, used in the 3D reconstruction. It provides robust features 

resulting in good camera pose estimations ( Berjón et al., 2016). The bundle adjustment 

follows, producing a sparse point cloud. Clustering Multi-View Stereo (CMVS) and Patch-

based Multi-View Stereo (PMVS) are executed, resulting in a dense point cloud (Westoby et 

al., 2012). The steps involved in SfM are illustrated in the flow chart below (see figure 2-4): 
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Figure 2-4: The SfM workflow from images to point cloud (Westoby et al., 2012) 
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2.2.1.2 (b) Bundle adjustment 

 

Bundle adjustment is generally considered the last stage of the SfM pipeline. Camera poses 

(exterior orientations) and coordinates of points in 3D are improved in nonlinear optimization 

(Verykokou and Ioannidis, 2018). The results from SfM are georeferenced by 3D similarity 

transformation estimates between the object space arbitrary coordinate system and the 

reference system of the real world through the use of ground control points (Verykokou and 

Ioannidis, 2018).  

 

In computer vision applications, bundle adjustment is now pre-eminent enabling efficient 3D 

reconstruction and SfM (Engels et al., 2006). A bundle adjustment study that investigated the 

repute on a real-time camera tracking system showed that it improves accuracy and eliminates 

camera tracking failures. The accuracy of bundle adjustment gives the approximations very 

close to actual values (Engels et al., 2006). 

 

Features identifiable on multiple images may be off-target; these tie points are not triangulated 

but rejected. Iterative fixed bundle adjustment eliminates all the possible outliers and 

erroneous tie points using least-squares adjustment. For other images, both exterior and 

interior orientation parameters are fixed (Verykokou and Ioannidis, 2018). Bundle adjustment 

is denoted by a mathematical replica in terms of collinearity equations (Verykokou and 

Ioannidis, 2018). Equations 2.1 and 2.2  (Juea, 2008) represent the collinearity equations. 

Equation 2.3 (Juea, 2008) is a 3×3 matrix representing the orientation parameters in an implicit 

form. 

 

𝑥 − 𝑥0 =  −𝑓
𝑎1(𝑋−𝑋𝑠)+ 𝑏1(𝑌−𝑌𝑠)+𝑐1(𝑍−𝑍𝑠)

𝑎3(𝑋−𝑋𝑠)+ 𝑏3(𝑌−𝑌𝑠)+𝑐3(𝑍−𝑍𝑠)
    Equation 2.1  

𝑦 − 𝑦0 =  −𝑓
𝑎2(𝑋−𝑋𝑠)+ 𝑏2(𝑌−𝑌𝑠)+𝑐2(𝑍−𝑍𝑠)

𝑎3(𝑋−𝑋𝑠)+ 𝑏3(𝑌−𝑌𝑠)+𝑐3(𝑍−𝑍𝑠)
                          Equation 2.2      

                             𝑅 = [

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

]                                             Equation 2.3 

Where:  

 

(x and y)          -  Image coordinates 

(x0, y0 ,f)      -  Interior orientations 

f                                 -  Focal length of the camera  
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(x0 and y0)      -  Principal point coordinates 

(X, Y, Z)      -  Object space coordinates of the ground points 

(Ds, Ys, Zs)                         -  Object space coordinates of the perspective centres 

(a1, a2, a3, b1, b2, b3, c1, c2, c3)     -  Elements of the rotation matrix 

R        -  Rotation matrix 

 

After determining the interior parameters, the six exterior orientation parameters can be 

calculated from the collinearity equations. Collinearity equations are linearized, and the Least 

Square technique is initiated using at least three control points. Good preliminary values are 

needed for the Least Square approximation in order to converge to accurate values (Juea, 

2008).  

 

2.2.1.2 (c) 3D scene reconstruction 

 

A sparse point cloud is generated during bundle adjustment after the recognition of keypoints 

and assigning descriptors. The approximate nearest neighbor matches keypoints in image pairs 

(Arya et al., 1998). Objects in motion and momentary features, for example, helicopters and 

moving people in the scene, are discarded automatically before 3D reconstruction (Snavely et 

al., 2006).  

 

An approximation of 3D point positions is achieved through triangulation where 3D 

reconstruction of the scene is anchored in a comparative coordinate system; this process is 

fully automated (Westoby et al., 2012). The density of the point cloud is enhanced by 

executing the CMVS (Clustering Multi-View Stereo) and PMVS2 (Patch-based Multi-View 

Stereo). The camera positions determined during bundle adjustment serve as input (Westoby 

et al., 2012).  

 

CMVS removes images of low quality and performs clustering of images into tiny elements 

through the Normalized Cuts technique. Images are added to infirm clusters resulting in a 

dense cluster (Westoby et al., 2012). Numerous metric constraints examined in 

photogrammetric network designs are disregarded because CMVS was developed for an 

extensive collection of images. Using the Blunder output, PMVS is responsible for creating a 

dense point cloud model (Mahami et al., 2019). The orientation parameters of undistorted 

images and projection matrices are used to enhance a sparse point cloud, resulting in a 

collection of rectangular patches that are accurate and dense (Mahami et al., 2019).   
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2.2.1.2 (d) DTM generation and post-processing 

 

Ground control points (GCPs) are not necessarily needed for the SfM technique. The 3D 

visualization is the part of interest employed in many different applications. Bringing together 

point clouds produced by a scanner and SfM results in a robust geomorphological analysis tool 

(Westoby et al., 2012). The use of GCPs is essential if the model requires to be transformed 

into the absolute coordinate system from a relative system. GCPs are identified manually from 

images; these points need to be visible on the actual ground and images (Westoby et al., 2012). 

 

2.3 Image Classification 
 

Image classification is explained as an operation of allocating pixels to groups, creating 

thematic maps from imagery. Grouping pixels of similar identity is achieved by comparing 

pixels to one another and known values based on classes relevant to the operator (Turner et 

al., 2001). Different classes may occur, for example, vegetation, soil and water bodies. The 

description can be more detailed and have different soil types, water depth and vegetation 

(Schowengerdt, 2007). 

 

The classification of remotely sensed data has been a challenge to date. Many contributing 

factors include the convolution of the topography in a study area, selection of data, methods 

utilized for image-processing and classification (Lu and Weng, 2007). The significance of 

image classification applies to various fields, including video surveillance, visual inspection 

in industries, vehicle navigation, remote sensing and robot navigation (Gevaert et al., 2016).  

 

Scientists have invented numerous classification techniques throughout the years. A 

classification strategy must be selected by the analyst, depending on the objectives of a specific 

task (Campbell, 2002). Figure 2-5 (Singh, 2013) shows the steps of image classification. 
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Figure 2-5: Steps involved in image classification. 

 

2.3.1 Image Classification Procedures 

 

2.3.1.1 Remotely Sensed Imagery 

 
Remotely sensed data can be acquired using spaceborne and airborne sensors. These data differ 

in terms of resolution, spectral, spatial, temporal, and radiometric resolutions. It is requisite to 

apprehend the capabilities of different kinds of sensor data, the strengths and incapacities 

towards the classification of images (Lu and Weng, 2007). 

 

Various factors should be considered when selecting remotely sensed data. These factors 

include the scale, properties of the area of study and the images, the user’s need, cost and time 

limitations. However, the analyst's experience of working with selected remotely sensed data 

is the most critical factor towards successful classification (Lu and Weng, 2007; Quattrochi 

and Goodchild, 1997). 
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2.3.1.2 Image Pre-processing 

 

The preliminary step performed before the actual processing of remotely sensed data. 

Preprocessing images may comprise topographic and atmospheric corrections, repairing bad 

lines, image registration, or geometric correction (Lu and Weng, 2007).  Geometric 

preprocessing establishes the relationship between the image and a map or another 

georeferenced image (Campbell, 2002).  

 

Since images are acquired by remote sensing, there is a need to perform atmospheric correction 

if the training data is to be applied to a different image. Atmospheric correction is not crucial 

when a single-date image is classified. The other method is to normalize the second image to 

the first one (Schowengerdt, 2007). 

 

Image preprocessing's primary purpose is to improve images' quality; valuable information is 

extracted from images for evaluation (Campbell, 2002).  

 

2.3.1.3 Feature Extraction 

 
The statistical image characteristics are obtained in feature extraction, the band values 

containing statistics about the site. Thus, feature extraction minimizes the number of bands 

used for analysis, which is less computational. This may have a positive effect on improving 

accuracy (Campbell, 2002).  

  

A crucial step when performing image classification is determining appropriate variables. 

Employing various variables in the classification process may have a negative effect reducing 

accuracy (Lu and Weng, 2007; Price et al., 2002). 

 

2.3.1.4 Training of Classifier 

 
For an image to be classified into different categories, training the classification algorithm 

must be performed to identify those categories. The classifiers following the rules established 

during training identify the samples from the training process. All the image pixels are labeled 

into different categories (Campbell, 2002).  

Remote sensing imagery can be clustered using supervised and unsupervised classification 

algorithms, which is part of machine learning. Machine learning gives results from given input 

data. The computer learns from a set of indicative samples (Canty, 2014).  
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2.3.2 Image Classification Techniques 

 
A wide range of classifier categories exists. Some approaches are briefly explained especially 

the supervised classification techniques. The categories include object-oriented, hard and soft 

classification, spectral and contextual classifiers, per-pixel and subpixel classifiers, parametric 

and non-parametric classifiers (Campbell, 2002).  

 

2.3.2.1 Supervised Classification 

 

The analyst determines sample pixels for each category. Homogeneous training are samples 

of great significance, but simultaneously a variation in range for the class has to be included; 

this results in multiple training areas (Schowengerdt, 2007). The location, form, and magnitude 

should be such that favorable recognition is achieved on the ground and the image. The 

advantages of supervised classification include the analyst being in full control of 

classification categories. There is preliminary information, and no spectral classes are to be 

matched towards producing a map. The errors in classification may be detected (Campbell, 

2002). 

 

The disadvantages of supervised classification include the data used for training may not be 

good enough to accommodate all the conditions in every part of the image. This method fails 

to identify categories not present on training data, and it consumes much time (Campbell, 

2002).  

 

2.3.2.1 (a) Artificial Neural Network 

 

Artificial Neural Network (ANN) is defined as artificial intelligence that emulates some 

human-mind tasks. ANN tends to save experimental knowledge. This technique comprises a 

succession of layers, of which each has a series of neurons. Weighted connections link all the 

neurons in layers in such a manner that the succeeding and preceding layers are connected 

(Campbell, 2002; Kamavisdar et al., 2013).  

The ANN utilizes a Non-parametric approach. The number of inputs and the structure of the 

networks determines the accuracy and performance of this technique (Kamavisdar et al., 

2013). The advantages of ANN include a high computation rate, handles noisy inputs 

efficiently, supports Boolean functions (OR, AND, NOT). It is also a global functional 

estimator with arbitrary accuracy.  The disadvantages of ANN include more time required 

during training, semantically inadequate, and complicated in deciding the type of network 

architecture (Kamavisdar et al., 2013).      
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2.3.2.1 (b) Maximum Likelihood 

 

The decision rule for maximum likelihood is a chance that a pixel is part of a particular class 

(Pouncey et al., 1999). Training data is used to approximate variances and averages per class; 

this is used in determining the likelihood of belonging (Campbell, 2002). Equation 2.3 (Erdas 

field guide, 2010) is used for maximum likelihood calculation. 

D = ln(ac) − [0.5 ln(|Covc|)] − [0.5(X − Mc)T(Covc
−1)(X − Mc)]                Equation 2.3     

Where: 

 

D   - Weighted distance  

c   - Certain class 

X   - Measurement vector of the candidate pixel 

Mc   - Mean vector of the sample of class c 

Ac   - Probability that any candidate pixel is a member of class c 

Covc   - Covariance matrix of the pixels in the sample of class c 

|Covc|   - Determinant of Covc  

Covc
-1  - Inverse of Covc  

ln   - Natural logarithm function 

T   - Transposition function  

 

2.3.2.1 (c) Minimum Distance 

 

The decision rule for minimum distance calculates the spectral separation joining the 

measurement vector for the pixel and the mean vector per signature (Campbell and Wynne, 

2011; Pouncey et al., 1999).  

The minimum distance decision rule is quick and all pixels are classified. The downside of 

minimum distance is that variability of a class is not contemplated. It results in the 

inappropriate classification of outlying pixels (Pouncey et al., 1999). 

 

2.3.2.1 (d)  Parallelepiped Classification 

 

The decision rule is based on the training data range. The lower and upper pixel is used to 

establish whether the candidate pixel falls within the range then allocated to appropriate 

categories (Pouncey et al., 1999).  
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The standard deviations of training data can be used to determine the decision boundaries 

instead of using ranges. Thus, fewer pixels are not classified; also, the chances of class overlap 

increase (Campbell and Wynne, 2011). Parallelepiped classification is fast, accurate and 

straightforward, but features near the boundary remain ambiguous in class belonging 

(Campbell and Wynne, 2011).   

 

2.3.2.1 (e) Decision Trees 

 

For the Decision tree to determine class belonging, a dataset is repeatedly partitioned into 

homogeneous subsets. Class labels are accepted and rejected by the hierarchical classifier at 

each mediator stage (Kamavisdar et al., 2013). A decision tree comprises three sections: 

Partitioning the nodes, detecting end nodes, and assigning group labels to the end node. Like 

ANN, the Decision tree uses a Non-parametric approach (Kamavisdar et al., 2013). 

 

The advantages of a Decision tree include simplicity and superb computational efficiency, 

non-parametric training data can be handled, no large training and design data are required. 

On the other hand, decision trees' disadvantages include compound calculation when dealing 

with many undecided values and correlated outcomes (Kamavisdar et al., 2013).  

 

2.3.2.1 (f) Support Vector Machine  

 

Support Vector Machine (SVM) is applied in diverse types of data such as Landsat 

multispectral data. SVM is a non-parametric classifier that recognizes and separates classes; 

this is achieved by the establishment of boundaries in the feature extent and enlarging the lines 

between the classes (Keuchel et al., 2003). SVM creates a hyperplane or a group of 

hyperplanes in a high-dimensional space for categorizing classes. If the margin is large, the 

generalization error is reduced for the classifier (Al-Doski et al., 2013).  

 

SVM is a Non-parametric classifier that uses a binary approach. As a result, high-volume input 

data can be handled more efficiently. The kernel parameter and the hyperplane selection 

determine the accuracy and performance (Kamavisdar et al., 2013). The advantages of SVM 

include easy control of error frequency and decision rule, the lowered computational 

complexity. SVM completely removes the issue of overfitting. It also accommodates a non-

linear transformation (Kamavisdar et al., 2013). The downside of SVM is that it takes much 

more time for classifier training. It is not easy to apprehend the algorithm's structure, and the 

clarity of results is low (Kamavisdar et al., 2013).  
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2.3.2.2 Unsupervised Classification 

 

Unsupervised classification identifies natural categories or shapes within multispectral data 

(Campbell, 2002). A massive number of pixels, all whose values are unknown, are analyzed 

and grouped into different classes following the values found on images. No prior information 

is needed for unsupervised classification. The computer deduces the information of spectrally 

distinguishable classes, thus reducing the chance of human error (Campbell, 2002; 

Kamavisdar et al., 2013).  

 

The limitation of unsupervised classification is that the analyst is not in full control of the 

classes used. In addition, classification is distributed across the entire image, including the 

parts not relevant to the analyst (Campbell, 2002). Examples are the K-means clustering 

algorithm and ISODATA (Kamavisdar et al., 2013).  

 

2.3.2.2 (a) Fuzzy Measure  

 

The properties of the image are detailed using stochastic associations. The fuzzy integral and 

threshold designation determines the accuracy and performance (Kamavisdar et al., 2013). 

Fuzzy classification can be applied to both classification techniques, unsupervised and 

supervised (Venkateswaran et al., 2013). 

 

The advantages of fuzzy classification include the ability to handle uncertainties more 

efficiently. The image characteristics are detailed by distinguishing different stochastic 

relationships. The downside of fuzzy classification is that the results are not satisfactory if no 

prior information was available (Kamavisdar et al., 2013).   

 

2.3.3 Accuracy Assessment 

 

The accuracy assessment problem is explained as a comparison between two maps from 

different sources. The first map is to be examined and the second map acts as a reference map 

based on the assumption that it is error-free (Campbell, 2002). The analyst should know the 

sources of error prior to performing the assessment of classification accuracy. Examples of 

errors affecting accuracy include interpretation errors, position errors and inferior test samples 

(Campbell and Wynne, 2011; Lu and Weng, 2007).  
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2.3.3.1 Error Matrix 

 

The error matrix is one of the methods employed in classification accuracy assessment (Lu 

and Weng, 2007). In order to assess accuracy, a comparison between classified images and 

ground truth (reference data) is performed. The error matrix is sometimes referred to as a 

confusion matrix, comprising reference and classified data in columns and rows, respectively 

(Campbell and Wynne, 2011; Story and Congalton, 1986).  

 

The overall accuracy, producer’s accuracy, and user’s accuracy are computed from the 

confusion matrix (Story and Congalton, 1986). Some elements of accuracy assessment are 

obtained from the error matrix, such as omission and commission errors and kappa coefficient 

(Lu & Weng, 2007; Congalton et al., 2002). The overall accuracy refers to the correctness of 

the entire product determined by the ratio of correct classifications to the sum of samples 

(Lillesand et al., 2015; Story and Congalton, 1986). The producer’s accuracy is the ratio of 

correct classifications to the sum of reference data from the same sample. It relates to the error 

of omission (EO) (Story and Congalton, 1986). The user’s accuracy is the correct classification 

ratio to the sum of classified data of the same kind. The user’s accuracy relates to the error of 

commission (EC) (Campbell and Wynne, 2011; Story and Congalton, 1986). Modified Table 

2-1 and Table 2-2 from Story and Congalton (1986) show how the error matrix is determined. 

 

Table 2-1: Confusion matrix 

 

 A B C Sum 

A 28 14 15 57 

B 1 15 5 21 

C 1 1 20 22 

Sum 30 30 40 100 
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Table 2-2: Accuracy Calculations 

 

Errors of commission take place when a pixel is allocated to a land cover category that is not 

true on the ground. Inversely, the errors of omission occur when a pixel is not allocated to a 

particular land cover category on the ground (Campbell and Wynne, 2011; Lillesand et al., 

2015). 

 

2.3.3.2 Kappa Coefficient  

 

The Kappa statistic is defined as a technique used to examine interrater reliability (Viera and 

Garrett, 2005). The Kappa is derived from the proportion agreement that is observed and the 

chance agreement (Uebersax, 1982). The Kappa coefficient shows the proportional error 

reduction from classification in contrast with random classification error (Pouncey et al., 

1999). 

  

Contrast is made between the true agreement between computerized classifier and reference 

information and the possible arrangement between random classifier and reference 

information (Lillesand et al., 2015). Equation 2.4 (Lillesand et al., 2015) is used to determine 

the Kappa statistic. 

𝑘̂ =
observed accuracy−chance agreement

1−chance agreement
               Equation 2.4 

Table 2-3, extracted from table 2 of Viera and Garrett (2005) shows the Kappa value ratings 

and their interpretation. 

Table 2-3: Interpretation of Kappa 

 

 Poor Slight Fair Moderate Substantial Almost perfect 

Kappa < 0 0.01 – 0.20 0.21 – 0.40  0.41 – 0.60 0.61 – 0.80 0.81 – 0.99 

 

The Kappa takes the possibility of guessing into consideration, but it may result in 

underestimation when it comes to classification accuracy (McHugh, 2012). 

 

Sum of the major diagonal = 63 

    

Overall Accuracy (OA) = 
63

100
 = 63% 

 

Producer’s Accuracy (PA) 

 

A = 
28

30
 = 93% 

B = 
15

30
 = 50% 

C = 
20

40
 = 50% 

User’s Accuracy (UA) 

 

A = 
28

57
 = 49% 

B = 
15

21
 = 71% 

C = 
20

22
 = 91% 
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2.4 LiDAR Classification 

 

2.4.1 Introduction 

 
In our lives, LiDAR technology is present more than we notice (GIM, 2019).  The use of Light 

Detection and Ranging (LiDAR) is growing in multiple applications and disciplines, 

producing spatial point cloud data with high resolution (Antonarakis et al., 2008). Precise 

information, both horizontal and vertical, can be obtained with ±30cm nominal accuracy. 

Digital terrain models and digital surface models are examples of replicas that can be generated 

from LiDAR (Brennan and Webster, 2006). In addition, LiDAR technology is cost-effective; 

it can simultaneously compute intensity data and position for the same area (Song et al., 2002).  

  

The feature vector containing 21 elements represents airborne LiDAR features: 4 full-

waveform and 17 multi-echo LiDAR features. Multi-echo features are categorized based on 

height, echo, local 3D-plane, and eigenvalue (Chehata et al., 2009). Multiple classifiers have 

been used in LiDAR data, modifying datasets and applying them in the training process 

(Chehata et al., 2009). While having the unstable base classifier, the minor changes result in 

massive changes in the classifier results. The most commonly used unstable classifiers include 

Decision Trees and Neural Networks (Briem et al., 2002).   

 

2.4.2 Random Forests  

 
Random Forests (RF) is a group-based classifier that uses a decision tree approach and 

produces excellent classification results compared to Support Vector machines (SVMs) 

(Breiman, 2001). Random Forests are non-parametric, and there are no presumptions required 

on the data distribution enabling the use of various input attribute scales (Breiman, 2001; 

Chehata et al., 2009).  

 

Random Forests supports large datasets and can manage input variables without deletion. 

Every single tree for the most favored class gives a unit vote. They run effectively, providing 

correct classification  (Chehata et al., 2009).  

Chehata et al. (2009) studied various LiDAR features, Full-waveform (FW) and multi-echo, 

to perform urban scene classification into four groups: Vegetation, buildings, artificial and 

natural ground. Random Forests were used as a classifier, producing good classification 

results; an overall accuracy of 94.35% was achieved using selected variables.  
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2.4.3 Previous Research on LiDAR Classification 

 

2.4.3.1 Assessing the Possibility of Land-Cover Classification 

 

Song et al. (2002) conducted a study on a land-cover classification that evaluated LiDAR data 

intensity's compatibility. Four classes were used to evaluate intensity data separability: asphalt 

road, house roof, tree, and grass. It was deduced that LiDAR is cost-effective, accurate, and 

LiDAR intensity can be applied in land-cover classification (Song et al., 2002).  

 

2.4.3.2 Object-based Land Cover Classification 

 
Antonarakis et al. (2008) used airborne LiDAR, the intensity and elevation data to classify 

ground types and forests (planted and natural) employing a supervised approach. The software 

packages used include ArcGIS, C++ programming and MATLAB. The digital aerial 

photographs used to assess the classification accuracy were taken on the same day as the 

airborne LiDAR data (Antonarakis et al., 2008).   

 

Equation 2.5 (Antonarakis et al., 2008) gives the overall classification accuracy: 

             AI(%) = [
(n−(O+C)

n
] × 100                                         Equation 2.5 

Where:  

AI  - Accuracy index 

O  - Omission errors 

C  - Commission errors 

n   - Sum of trees to be detected in the image 

  

Land types were classified successfully with 95% and 94% accuracy from three sites using 

bimodal and unimodal distribution skewness and kurtosis models, respectively (Antonarakis 

et al., 2008). The limitations of this study included missing values in lidar return which could 

give unrealistic height information.  

                                                                   

Brennan and Webster (2006) classified land cover types into ten classes using segmentation 

and rule-based approach. Then, the GIS was used for digitizing polygons of ground reference 

data obtained from LiDAR intensity images and orthophotographs. The average accuracy of 

94% was achieved; it was increased to 98% after clustering the classification results into seven 

classes (Brennan and Webster, 2006). 
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2.5  Aerial Photography Classification 

 
The segmentation and classification of aerial photography features have been widely used, 

producing more detailed models on a human scale (Nguyen et al., 2010). In aerial photography, 

an airborne sensor is used to acquire the collection of photographs (Wolf et al., 2014). These 

photographs may be oblique or vertical, depending on their application (Morgan et al., 2010). 

Utilizing products generated from aerial photography is cost-effective. Numerous 

management decisions that encompass planning and mapping rely on aerial photography 

(Morgan et al., 2010).    

 

5.2.1 Methods for Aerial Photography Analysis 

 

The new image enhancement and classification automated approaches are applicable to aerial 

photographs and hold the potential of addressing some issues associated with traditional photo 

interpretation (Morgan et al., 2010). The automated digital techniques enable a separate and 

explicit analysis of photograph characteristics ((Morgan et al., 2010). A summary of the 

advantages and disadvantages of classification techniques employed in aerial photography is 

presented in Table 2-4.  
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Table 2-4: Comparative advantages and disadvantages of aerial photography 

classification techniques (modified from Table 5 of Morgan et al. (2010)). 

 

Type Advantage Disadvantage 

 

• Manual 

interpretation 

 

• Fairly accurate 

• Less image preparation 

needed  

• Comprehensive, human 

knowledge is utilized in 

making logical decisions 

• Used in resource 

management map creation 

• Consumes more time 

• Subjective and expensive 

• Scarcity of well-trained 

interpreters 

• Inconsistent among 

interpreters 

• The standards of accuracy 

vary widely 

 

• Pixel-based 

classifiers 

 

• Systematic, consistent 

• Repeatable 

• Well-developed accuracy 

assessment methods, 

sufficient software available 

 

• Mainly use spectral 

information 

• Arbitrary analysis units 

(pixels) 

• Not suitable for high spatial 

resolution imagery analysis 

 

• Object-based 

classifiers 

 

• Systematic, consistent 

• Repeatable 

• Accommodates multiple 

scales and integrate 

attributes (shape, tone, 

texture, size, context) 

• Software expensive  

• Difficult object creation 

• Less developed accuracy 

assessment procedures 

• Suitable for high spatial 

resolution imagery 

 

2.5.2 Pixel-based Classification 

 

Over the years, the automated classification of buildings has been a challenge (Nguyen et al., 

2010).  A stacked graphical model (SGM) ensemble is employed as an approach proposed by 

Nguyen et al. (2010), which integrates different features such as texture, color, and 3D 

information in an attempt to improve the extraction of buildings from aerial images.  A 

randomized forest that comprises decision trees was utilized as a base classifier since it 

provides accurate image classification activities that are challenging (Shotton et al., 2008). 
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The comparison was made between SVM, RF, Staked RF model and SGM model. The SGM 

was applied with success in the classification of building and non-building classes. 

Classification accuracies above 91% were obtained from 3 datasets that were used. Among all 

classification models, the SGM produced the best results. Nguyen et al. (2010) concluded that 

this model is applicable in learning 3D objects such as buildings and other object classes.  

 
The availability of reference data and its quality should be considered prior to commence the 

accuracy assessment task, classification and positional accuracy are evaluated (Paine and  

Kiser, 2003). Classification accuracy is based on assigning labels to classes, while positional 

accuracy has to do with feature location and boundaries (Morgan et al., 2010; Thompson et 

al., 2007). Comparison is made between the classified photograph and reference information 

from thematic data sets or field data (Foody, 2002; Morgan et al., 2010).  

 

2.6 3D Point Cloud Classification  

 
The automatic categorization of point cloud information is essential and challenging at the 

same time (Roynard et al., 2018). State of the art includes shallow and deep-learning 

techniques for classifying 3D point clouds (Roynard et al., 2018). 

 

A great diversity of work has been undertaken on classifying scenes of 3D point clouds without 

learning or by shallow learning (Roynard et al., 2018). It is achieved by implementing two 

approaches: the first approach is based on classifying each point and grouping points into 

objects, whereas the second approach segments the point cloud into objects and then classifies 

each object. Following the first approach, Weinmann et al. (2015) classified points by 

determining simple descriptors, being the neighborhood dimensionality attributes. In the 

second approach, the global descriptors are computed after segmentation. These can be 

geometrical descriptors, histograms of normal distribution curves, and shape functions. 

(Roynard et al., 2018).   

  

2.6.1 Deep-Learning for Classification of 3D Point Clouds 

 

Classifying 3D point clouds using deep learning methods has been growing over the past years 

(Roynard et al., 2018). The new network architectures on point cloud and voxel grids, resulting 

from the research teams of  ShapeNet Core55 challenge, have beaten state-of-the-art 3D 

reconstruction from single view image and part-level segmentation of 3D shapes (Yi et al., 

2017).   
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Deep-learning on 2D views of the cloud includes projections including but not limited to 

elevation maps, depth-map, panorama image, RGB image, and range image (Roynard et al., 

2018).  Capturing multiple views of the particular scene or object and integrating the results 

can enhance these methods (Boulch et al., 2017). On the voxel grid, 3D point clouds are 

classified. An object instance is transformed by occupying a density grid; a Convolutional 

Neural Network (CNN) is then applied (Huang and You, 2016).  Huang and You (2016) 

classified clouds of urban scenes. The class belonging was predicted by the network from its 

neighborhood's density grid (Huang and You, 2016). A few methods import point clouds as 

input; this has the advantage of operating clouds very close to the level of raw data (Roynard 

et al., 2018).  

 

Roynard et al. (2018) proposed a method of training in each class, balancing the number of 

points during each period and a multi-scale CNN that has the ability to learn classifying point 

cloud scenes. Equations 2.6 - 2.10 (Nevalainen et al., 2017; Roynard et al., 2018) present the 

metrics utilized in performance evaluation. This was achieved by comparing two architectures 

(balancing the number of points and CNN) on three selected datasets, namely Paris-Lille-3D, 

Semantic3D, and S3DIS (Roynard et al., 2018). 

 

              𝑃𝑐 =  
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐
                                                                                          Equation 2.6 

              𝑅𝑐 =  
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐
                                                                                         Equation 2.7 

              𝐹1𝑐 =  
2𝑇𝑃𝑐

2𝑇𝑃𝑐+𝐹𝑃𝑐+𝐹𝑁𝑐
= 2

𝑃𝑐𝑅𝑐

𝑃𝑐+𝑅𝑐
                                                              Equation 2.8 

              𝐴𝑐𝑐𝑐 =  
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐
                                                                                      Equation 2.9 

              𝐼𝑜𝑈𝑐 =  
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐+𝐹𝑁𝑐
                                                                               Equation 2.10 

Where:  

Pc  - Precision of class c   

Rc  - Recall of class c 

F1c  - F1-score of class c 

Accc  - Accuracy of class c 

IoUc  - Intersection-over-Union score of class c 

TPc  - True-Positives in class c 

TNc  - True-Negatives in class c 
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FPc  - False-Positives in class c 

FNc  - False-Negatives in class c 

 

2.6.2 Gradient Boosted Trees 

 

Gradient Boosted Trees (GBT) is a supervised classification method that operates by training 

an ensemble of trees by reducing in an acquisitive way its loss over training data (Friedman et 

al., 2001). The GBT and RF methods are similar in a manner that they are both capable of 

generating conditional probabilities and can be applied in multi-class problems (Becker et al., 

2017). 

 

Becker et al. (2017) presented a robust method that integrates color and geometric features to 

estimate each point's class belonging in the cloud. The colour features were computed based 

on the neighboring points. It was deduced that the incorporation of color information increases 

the accuracy of classification at different dataset ranges. Additionally, this method has high 

computational efficiency (Becker et al., 2017). 

 

2.6.2 Conditional Random Fields 

 
Conditional Random Fields (CRF) uses a non-linear decision surface to accurately isolate the 

object groups in feature space (Niemeyer et al., 2012). CRF can learn and model the interface 

of all object classes without initial segmentation and offer a great probabilistic framework for 

contextual classification (Niemeyer et al., 2012). CRFs are categorized under undirected 

graphical models, represented by the 𝐺(𝒏, 𝒆) graph comprising of nodes n and edges e 

(Niemeyer et al., 2012).  

 

Niemeyer et al. (2012) introduced and evaluated a context-based CRF classifier. 3D urban 

scenes were classified and evaluated in accordance with the ‘ISPRS Test Project on Urban 

Classification and 3D Reconstruction’. Lidar data was used to train five classes: natural and 

asphalt ground, building, trees, and low vegetation. The classification results were promising 

but improved OA after enhancement by  5.38%. It was concluded that the CRFs show a high 

potential in classifying urban scenes (Niemeyer et al., 2012). 

 

2.6.3 Tree Crown Classification 

 
A study based on big point cloud data classification using the Cloud Computing method 

presented by Liu and Boehm (2015) uses Apache Spark as a cluster computing framework, 

yielding optimistic outcomes that may give solutions to the processing of large datasets of 
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point clouds.  This study is based on specifying whether a point cloud exists in a tree crown. 

The classification algorithm followed a supervised learning problem and was approached by 

feature computation, training of a model, and prediction. (Liu and Boehm, 2015) 

The experiments conducted had point clouds with 3 million points each. Figure 2-6 (Liu and 

Boehm, 2015) shows the classification outcomes with tree crown points identified, among 

other features at the scene.  

 

Figure 2-6: Visualized point cloud results. 

 

2.6.4 Multi-scale Dimensionality Classification  

 

Brodu and Lague (2012) proposed a classification method that utilizes the dimensionality of 

points at multiple scales to accomplish a high classification level for complex natural 

environments. This classification algorithm was implemented in the CloudCompare software 

as CANUPO. Signatures that recognize classes present in the scene are constructed using 

knowledge from different scales. These signatures through the training point are automatically 

generated, enabling optimization of class separability. The algorithm presented by Brodu and 

Lague (2012) aimed to recognize features, including scenes that were not part of the training 

samples. In simple terms, the classifiers should work in unknown scenes. The classification 

result gives probabilistic confidence at each point enabling the operator to remove suspicious 

points with uncertainty. The multi-scale dimensionality criterion was used in classifying 

vegetation and ground, yielding an accuracy above 98% (Brodu and Lague, 2012).  

 

The balanced accuracy measure quantifies the classifier performance, considering the number 

of points present in each class. Equation 2.11 (Brodu and Lague, 2012) is used to determine 

the balanced accuracy. Equations 2.12 and 2.13 (Brodu and Lague, 2012) define the two 

classes' accuracy.  
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       𝑏𝑎 =
1

2
(𝑎𝑣 + 𝑎𝑔)                                                             Equation 2.11 

      𝑎𝑣 =
𝑡𝑣

𝑡𝑣+𝑓𝑔
                                                                      Equation 2.12 

        𝑎𝑔 =
𝑡𝑔

𝑡𝑔+𝑓𝑣
                                                                    Equation 2.13 

Where: 

 

ba                      -  Balanced accuracy 

𝑎𝑣              - Accuracy of vegetation 

𝑎𝑔  - Accuracy of ground 

tv  -  Number of points truly classified as vegetation    

tg   -  Number of points truly classified as ground 

fv  -  Number of points falsely classified as vegetation    

fg   -  Number of points falsely classified as ground    

 

𝑓𝑑𝑟 =
(𝜇2−𝜇1)2

(𝑣1−𝑣2)
                                                                                     Equation 2.14 

 
The Fisher Discriminant Ratio (fdr) was used to evaluate the separability of classes. In 

equation 2.14 above, 𝜇𝑐 and 𝑣𝑐 represent the average and variance of 𝑑 of the signed distance 

to the separation line (Theodoridis and Koutroumbas, 2009). The ba measure and the fdr play 

a vital role in assessing the classifier and the final classification (Brodu and Lague, 2012). A 

large value of ba denotes a good recognition measure. Likewise, well-separated classes are 

denoted by a high value of fdr (Brodu and Lague, 2012). 

 

Grilli et al. (2017) analysed popular algorithms and techniques for 3D point cloud 

classification; the CANUPO classification was used to filter stones and vegetation in the 

archaeological site successfully. The CANUPO classification was also used by Farella (2016) 

to automatically separate artificial and natural structures for mapping 3D underground 

environments. Another study conducted by Bonneau and Hutchnison (2019) aimed to identify 

and interpret the geomorphological processes taking place at a cliff. The separation of 

vegetation and granular material above the cliff was successful.  
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2.7 Applications 

 

2.7.1 Cultural Heritage Field 

 

Segmentation and classification can apply to architectural documentation and preservation of 

historical buildings (Grilli et al., 2017); this can be implemented at various scales ranging from 

small-scale artifacts to large archaeological sites (Grilli et al., 2017). It plays an essential role 

in the restoration of historical buildings (Reinoso et al., 2014).  

 

2.7.2 Monitoring 

 

The applications are potentially endless; classifying objects has a powerful role in diverse 

disciplines (De Morsier et al., 2019).  Table 2-5 displays applications of AI-powered object 

detection and automated platform offered by Picterra (Picterra, 2019). 

 

Table 2-5: Application of Object Detection 
 
Field   Description 

Farming • Farmers are interested in knowing if 

their plants are underproductive. 

• In case floods occurred, ranchers need 

to know about the survival of their 

cattle. 

Insurance companies • In an event whereby a storm occurs, 

insurance companies can determine 

the number of roofs that were 

damaged. 

Electricity companies • Electricity companies can determine 

the number of solar panels present in 

the city. 

Oil companies • Oil companies can detect oil spills 

Water companies  • Water companies can find out the 

number of manhole covers missing. 

• This information can be utilized for 

maintenance and planning for the 

expansion of the network. 
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2.8 Summary 
 

Point clouds were introduced, including the Structure-from-Motion photogrammetry, which is 

a proposed method for this research. Classification from different sources of data is discussed 

in this chapter: Image classification, Lidar, and three-dimensional point cloud classification. 

The techniques and approaches used in the classification of different formats are more or less 

similar, supervised and unsupervised, being the two major categories. Lastly, the applications 

and methods used for accuracy assessment were discussed in this chapter.  
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     CHAPTER 3 

3.  STUDY AREA 

 

 

3.1 Introduction 

 
The University of KwaZulu-Natal (Howard College Campus) sports field was selected as the 

study area for this research. It is situated in Glenwood with a GPS waypoint of 29°52'16" S, 

30°59'03" E on Google Earth. This study area was selected based on its location within the 

university Erf 12494 Durban (CSG, 2001). This area was accessible with no extra costs 

required for travel. It also comprises different features, both natural and man-made objects. 

These are land cover categories to be classified in a point cloud format.  

It comprises a water body, sparse and dense vegetation, buildings and road surface. The 

environment poses no hazardous effects to instruments used for data acquisition and the 

operator of the instruments.  

 

3.2 The University of KwaZulu-Natal 

 
The proposed area of study is shown in figure 3-1. This satellite image was taken from Google 

Earth Pro. Figure 3-1 is also referred to as the testing site.  

 

 

Figure 3-1: Study area 
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Another study area was identified to be utilized as the training site. This area is also situated 

at the University of KwaZulu-Natal (Howard College Campus) with a GPS waypoint of 

29°51'58" S, 30°58'22" E on Google Earth. Using the criterion employed to identify the area 

in figure 3-1, another sports field, Erf 471 Cato Manor, was selected. Figure 3-2 shows the 

training site captured from Google Earth Pro.  

 

 

Figure 3-2: Training site 

 

A layout plan showing the boundaries of the training and the testing site was produced using 

the ESRI GIS software, ArcMap. Figure 3-3 shows the geographical location of the sites within 

the University of KwaZulu-Natal.  
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Figure 3-3: The location of the study sites, WGS84/Hart94 - Lo31
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   CHAPTER 4 

4.  RESEARCH METHODOLOGY 

 

 

4.1 Introduction  

 
This chapter covers the materials, instruments required and methods employed in this research. 

A chronological sequence of tasks is explained comprehensively, starting with camera 

calibration, planning, acquisition of images, data preparation, and ending with the actual 

classification of 3D UAV point clouds.  

 

4.2 Outline of Research Methodology 

 

The methodology of this research was subdivided into seven phases. The first phase involved 

project planning, which included site visits and determining the type of equipment to be 

utilized for the collection of data. The second phase involved the acquisition of chessboard 

images and camera calibration to determine the parameters of the camera lens. The data was 

further collected; the third phase dealt with site measurements of GCPs and the acquisition of 

images of the study area, including the test area. The fourth phase involved the generation of 

3D point clouds, georeferencing, and data preparation for classification into various categories. 

Phase 5 is the main focus of this research, the classification of point clouds. Two different 

filtering algorithms were used, CANUPO and Pix4DMapper classification. Phase 6 involved 

the interpretation and analysis of results obtained from different filtering algorithms. In 

addition, the assessment of accuracy was performed. The comparison of classification results 

was conducted in phase 7, which was the final step. Figure 4-1 shows a summarized overview 

of this research methodology. 
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Figure 4-1: Research methodology overview 
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4.3 Materials Required 

 

4.3.1 UAV and GPS equipment 

 
A UAV (drone) with a CCD camera as a payload; The UAV is required as a primary instrument 

for acquiring images. The UAV was used to capture images required for camera calibration, 

the images of the test data, and the images of the proposed study area. A DJI Phantom 3 

Professional quadcopter UAV was utilized in this research, remotely controlled and connected 

to a Samsung Galaxy tablet using the PrecisionFlight application.  Figure 4-2 (DJI, 2017) 

shows a Phantom 3 professional quadcopter drone that was employed to acquire images for 

this research. 

 

 

Figure 4-2: Phantom 3 Professional UAV. 

 
The global positioning system (GPS) equipment is required for site calibration and 

measurements of GCPs. A Trimble R4-3 GPS was used for the collection of data.  

 

4.3.2 Software 

 

Various software programs were used for this research. The choice was made based on the 

availability of the software, mostly open-source. Google Earth Pro was used in conjunction 

with Precision Flight to create a flight plan. Google Earth Pro was also utilized in the search 

for a suitable study area. MATLAB R2018b was used to calibrate the camera lens. WebODM 

was used for generating the point cloud and other 3D surfaces. Finally, ArcMap version 10.7.1 

from ArcGIS was used to create a map of the study area. 

 

Different applications were required to run WedODM. Docker for Windows v19.03, Python 

2.7, Git, Pip, and Powershell were used. Pix4Dmapper was used to perform the unsupervised 

classification of a point cloud. The segmentation and the supervised point cloud classification 

were performed using the CANUPO module from CloudCompare 2.11. alpha, the leading 

software for this research. 
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4.4 UAV Camera Calibration 

 
Camera calibration is a fundamental constituent in computer vision applications (Fetić et al., 

2012). The camera calibration process aims to achieve 2D image coordinates from the 3D 

coordinates of an object; in other words, the intrinsic and extrinsic camera parameters are 

determined (Fetić et al., 2012; Zhang, 2000).    

 

The intrinsic camera parameters include the focal length, principal point, skew coefficient, and 

distortions. The rotations and translations are the extrinsic camera parameters (Bouguet, 2015). 

The camera calibration steps are outlined in figure 4-3. 
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Figure 4-3: Camera calibration steps. 
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The calibration was performed using MATLAB programming software. Using a camera 

calibration toolbox for MATLAB by Bouguet (2015) and following the procedure documented 

on the web page, the following steps were performed: 

 

• The calibration images (chessboard) were captured at different camera attitudes using a 

phantom 3 professional UAV and saved to a separate folder. 

• The scripts used for calibration were downloaded and saved to a separate folder. This 

folder was added to the path in MATLAB. 

• The main calibration function was run and the standard mode was selected since the 

computer had sufficient memory. 

• The camera calibration toolbox displayed in figure 4-4 appeared on the screen: 

 

 

Figure 4-4: Camera calibration toolbox. 

 

• The ‘Read images’ function was selected, a total of 8 images were read; MATLAB 

requires the prefix of the image names to be specified. Figure 4-5 shows the images used 

for camera calibration. 

• Starting at the same reference corner, grid corners were extracted from all images, and the 

sizes of the chessboard squares were specified as 35mm by 35mm (along the x and y-

direction). 

7 and 9 squares were detected in the x and y directions, respectively and the default 

window size of 63 by 63 was used. 

• The calibration was performed by clicking the ‘Calibration button’ from the toolbox. The 

results were shown on the command window.  

• If the calibration results are unsatisfactory, the pixel error is huge and not acceptable. Then 

the calibration procedure must be repeated. Inaccuracies may cause this during the 

extraction of grid corners. 
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It is necessary to calibrate a CCD (charge-coupled device) camera due to their increasing 

utilization in professional and scientific applications requiring high-quality image data       

(Fetić et al., 2012). In machine vision applications, the camera calibration enables the camera 

to be utilized as a measuring device (Nedevschi et al., 2002). In other words, camera 

calibration determines whether a particular camera is fit to be used as a device from which 

measurements can be taken.



   

42 
 

 

Figure 4-5: Chessboard images used for UAV camera calibration
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4.5 Project Planning 

 

4.5.1 UAV Flight Planning 

 
Before every photogrammetric project, a flight plan is necessary. First, a reconnaissance 

survey was conducted whereby the study area of interest was inspected. The objective of 

planning is to determine the most suitable camera exposure stations and flight lines. This 

reduces the cost of aerial surveys and speeds up the arrangements to start the flight mission 

and considers the safety of the flight (Demirel et al., 2004). In contrast with the past, present 

UAV technologies are much faster than classical photogrammetry. 

 

The PrecisionFlight application was utilized to create a flight plan shown in figure 4-6. This 

was achieved by panning on the map and drawing a polygon surrounding the study area. The 

flying height was fixed to 60m above the ground. The image overlap was 80% and the sidelap 

of 70%. The duration of the mission from taking off to landing was 11 minutes and 21 seconds.   

 

 

Figure 4-6: Flight Plan created using PrecisionFlight. 
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4.6 Data Collection 
 

4.6.1  Acquisition of Aerial Imagery  

 

The collection of data was divided into two sections. The first part was capturing images for 

UAV camera calibration and the second part had to do with the actual images of the study 

area. Chessboard images were taken at different orientations with a UAV resting on top of a 

table. Numerous images were captured, and blurry images were discarded.  

  

The presence of wind consumes more battery from the drone as it tends to counteract the 

movement caused by the wind; the drone must be stable in the air. Therefore, the data was 

collected during a sunny day with static atmospheric conditions. This was the second part of 

data capture, whereby the images of the study area were taken.  

 

The flight mission was uploaded to the UAV using the PrecisionFlight application running on 

a Samsung Galaxy tablet. The entire mission was automated and there was no disturbance. 90 

images were captured using a Phantom 3 Professional UAV with seven flight lines covering 

4.9 hectares (0.049km2). Truly vertical images were taken at the height of 60m above the 

ground. The images were copied to the external hard drive, all having a Jpeg format, each 

associated with Exif data containing helpful information about the images.  

 

4.6.2 GPS Survey 

 

The GPS survey was conducted using a Trimble R4-3 GPS connected to the virtual reference 

station (VRS).  A connection to a single base in Durban was established for corrections to the 

rover. A local Trignet connection was established and the calibration was performed on the 

trigonometrical beacon Biesheuvel (TR621) and checked on another trigonometrical beacon 

Rekaju (TR99). The site calibration was necessary to reference the project to a defined 

coordinate system. The calibration results were excellent, with an accuracy of +/- 1cm and +/- 

2cm for the horizontal and vertical measurements, respectively. The GPS calibration sheet is 

arranged in Appendix B.  

 

The World Geodetic System 1984 (WGS84) coordinate system based on the 

Hartebeesthoek94 datum, was used. The longitude of origin for all measurements was Lo31. 

GCPs were measured on-site, each point observed for 30 seconds to increase the accuracy of 

measurements. The GCPs are necessary when aerial surveys are conducted since they bring 

the project to the spatial coordinate system and improve the absolute accuracy of data obtained 
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(Garcia and Oliveira, 2020; Geavis, 2020). In addition, real-world measurements can be 

obtained.  

The GCPs were distributed across the entire study site to maximize the number of best possible 

configurations for the process of georeferencing. Figure 4-11 shows the distribution of GCPs 

over the study area. The coordinates of the GCPs are listed in Appendix B.    

 

4.7 3D Point Cloud Generation  
 

4.7.1 WebODM 

 
A 3D point cloud was generated using WebODM, which is a free and open-source application 

that runs on the web. WebODM is an API (Application Program Interface) for processing 

drone images and produces georeferenced point clouds, maps and 3D textured models 

(WebODM, 2019). This API runs on all major platforms Windows, Linux, macOS, and can 

be integrated with software such as QGIS and AutoCAD already in existence (GitHub, 2019). 

 

Getting WebODM running was a challenge since it requires command-line skills. However, 

community support was available from the Github website. Five applications needed to be 

installed to run WebODM, which were: Python, Pip, Git, Docker and Docker Compose. 

Python is a high-level, easy-to-use programming language that uses pip to install and manage 

Python software packages (Lutz, 2001). Git or Windows Powershell application was used to 

run the command lines used to start Docker. Following several steps briefed on the Github 

site, WebODM was successfully initiated.  

 

Sufficient memory was required to run Docker for windows. Since Docker is a virtual drive, 

the computer settings should have virtualization enabled. In addition, a RAM of 4GB or above 

and storage of at least 16GB is required (WebODM, 2019). Once Docker begins to run, the 

settings should be switched from Windows to Linux containers. For WebODM to start 

successfully, all the five applications should be linked using the command line on Windows 

Powershell or Git (WebODM, 2019). WebODM started on the website: http://localhost:8000, 

where the username and password for logging in were created.  

 

Once the project is created, a minimum of 5 images with an overlap of above 65% is required 

to be processed in WebODM (WebODM, 2019). The collected images for this project were 

90 in total, with an overlap of 80% and a sidelap of 70%. Ground control points are optional 

when processing with WebODM. A GCP file was not uploaded since WebODM reads the 

positional data from images to georeference a model; however, GCPs can improve 

http://localhost:8000/
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georeferencing accuracy (WebODM, 2019). The project started using the autoprocessing node 

and the default settings. The time taken for processing was approximately 6 hours. 

 

WebODM has the capability of exporting all the products and files generated. These include 

a 3D point cloud, an orthophoto, 3D textured model, a digital elevation model (DEM), 

georeferencing log, and other attribute data. The product of interest was a 3D point cloud with 

color information. The point cloud was visualized on WebODM, and it appeared to be 

registered such that there was no missing data except the water body, which appeared to have 

lost its color. The steps involved in the generation of a 3D point cloud are shown in              

figure 4-7.  

 

 

 

 

 

 

 

 

 

 

Figure 4-7: Generating photogrammetric products using WebODM 

 

4.7.2 Pix4DMapper 

 
The point cloud was generated in WebODM. However, Pix4DMapper was also used to 

produce a point cloud. Pix4dMapper is a commercial photogrammetry software for processing 

images taken by a drone (Pix4DSA, 2019). Unlike WebODM, no programming skills are 

required to start a project on Pix4DMapper; the entire process was automated. The reason 

behind using Pix4dMapper was to compare the point clouds from WebODM and 

Pix4dMapper. The two software uses the same SfM technique, transforming 2D images into 

3D models.   

 

The same number of images, nadir and 90 in total, were added to a new project on 

Pix4DMapper.  A 3D maps option that produces othormosaic, DSM, and a point cloud was 

selected to process the images. This option is associated with slow processing speed; however, 

it supports both oblique and nadir flights. In addition, aerial images acquired utilizing grid 

Images 

GCPs (Optional) 

Processing 

(SfM) 

( 

Products: 

• Point cloud 

• Orthophoto 

• Textured model 

• Digital elevation model 

• Georeferencing log 
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flight plans with high overlap are recommended for this software (Pix4DSA, 2019). Thus, the 

flight plan was in a grid format.  

The stages involved in Pix4DMapper are as follows: 

• Initial processing 

• Point cloud and Mesh 

• DSM, Orthomosaic and Index 

 

Once the project begins to run, the image keypoints are computed; this takes much time, and 

it depends on the number of images imported. First, the keypoints are written, followed by 

computing and writing matches. The automatic tie points are initialized. These are points that 

are visible in multiple images and can be utilized as GCPs since they are visible (Remondino 

et al., 2017). The tie points are built and initialized. Lastly, the camera calibration report is 

produced by Pix4DMapper, giving the parameters of the camera lens and distortions.  

 

4.8 Georeferencing 
 

The georeferencing process was performed during the generation of the point cloud. The GCPs 

were not uploaded, but instead, the software used the geotag information from Exif data. The 

drone recorded this metadata during the flight mission. Each image is associated with the 

geographic coordinates measured with the GPS onboard. The SfM process used the Universal 

Transverse Mercator (UTM) coordinate system. The resulting point cloud was situated on the 

UTM zone 36S coordinate system. The actual georeferencing on Pix4DMapper was performed 

at a later stage after generating the point cloud. The surveyed GPS points in the 

Hartebeesthoek94 coordinate system were converted to the UTM zone 36S system using a 

coordinate conversion utility obtained from the Chief Directorate of National Geo-Spatial 

Information. Coordinates were converted to be recognized by the Pix4Dmapper software. The 

converted GCPs are listed in appendix C.  

 

The UTM coordinate system was transformed into the South African National Grid, the 

Hartebeesthoek94 Lo31. This was performed using the transformation tool in ArcMap. The 

orthomosaic was further georeferenced using the natural GCPs measured with a GPS 

instrument. The point cloud was also transformed into Hartebeesthoek94 Lo31. At this point, 

both the point cloud and the orthomosaic of the study area were in the same coordinate system.  
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4.9 3D Point Cloud Classification 
 

4.9.1 Unsupervised Classification using Pix4DMapper 

 
The classification algorithm in Pix4DMapper uses the pixel values and the geometry to 

identify object classes. It is also crucial to state that Pix4DMapper acknowledges that more 

work needs to be done regarding their machine learning algorithm (Pix4D, 2017).  Becker et 

al. (2017) introduced the incorporation of colour information in addition to the geometric 

features. This machine learning technique allows the users to define their object classes of 

interest and it will be comprehended in Pix4DMapper in the future. The current Pix4DMapper 

software does not support any supervised classification option. However, the tools for 

managing and refining the classification are provided (Pix4D, 2017).   

 
The classification approach utilized by the Pix4DMapper software is fully unsupervised. There 

was no option to train the classifier and the entire process was automated. Before densification, 

the initial point cloud was displayed as a sparse point cloud under the ‘tie points’ layer. This 

point cloud was not vivid; the features could not be easily identified. Next, another layer titled 

‘Point Clouds’ was loaded, and this layer displayed a densified point cloud, vivid and 

comprised of clearly identifiable features.  

The point clouds layer contained the following groups:  

• Unclassified 

• Disabled 

• Ground 

• Road Surface 

• High Vegetation  

• Building 

• Human Made Object 

 
The unclassified group comprises of points not belonging to any other group and all points are 

unclassified by default. The disabled group contained points not to be utilized to generate 

DSM, orthomosaic and index (Pix4DSA, 2019). The remaining groups pre-established for 

point cloud classification are ground, road surface, high vegetation, building, and human-made 

object. Unchecking the boxes next to these groups hides the classified points for each group if 

the classification was successful (Pix4DSA, 2019). 
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After the classification process, point cloud groups were modified. Points incorrectly classified 

were manually digitized and allocated to the appropriate classes. This was performed for all 

classes and the classification process was therefore repeated. The results after re-running the 

classification tool were visually impressive such that the buildings were classified as buildings. 

This was true for the rest of the classes. Figure 4-8 shows the procedure that was followed on 

Pix4DMapper. First, the densified point cloud was cleaned by removing the outliers. This was 

achieved using the edit tool, which allows the user to manually select the points by drawing 

polygons and assigning them to a new group, Group 1.  Unchecking the new Group 1 class 

removes the selected points from the entire cloud.   

 

  

Figure 4-8: Classification procedure in Pix4DMapper. 
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4.9.2 Classification in CloudCompare 

 
A free and open-source 3D point cloud software CloudCompare, for editing and processing, 

was utilized for automatic classification. The classification process was performed using a 

supervised approach that utilized training samples for the classification of different objects. 

This supervised approach used the multiple-scale CANUPO (CAractérisation de NUages de 

POints) suite as a plugin developed by Brodu and Lague (2012) to classify a 3D point cloud 

automatically. 

 

4.9.2.1 Supervised Classification using CANUPO 

 
The CANUPO plugin was employed to perform the automatic classification of points in a 3D 

point cloud.  It is based on the local dimensionality characteristics of points in a point cloud. 

Points can be classified as 1D, 2D, or 3D depending on a specified scale and location. For 

example, consider a site (such as figure 3-3) consisting of the power line, the ground surface, 

trees, and buildings. At a scale of a few centimeters, the ground surface and the building walls 

will appear as 2D; the trees will appear as a mixture of 1D (branches) and 2D (leaves). At a 

sizeable scale (~50cm), the ground surface will still look 2D, and the trees will be 3D, while 

the power lines will remain 1D (Brodu and Lague, 2012).  

 

A combination of information from various scales contributes towards the creation of 

descriptors that can recognize other object classes present in the scene. This was achieved by 

employing support vector machines (SVM) and linear discriminant analysis (LDA) (Brodu 

and Lague, 2012). During the training stage, the descriptors are determined automatically. The 

creation of a classifier involves two steps: firstly, the data is projected on a plane of maximal 

separability; secondly, the classes in that plane are divided employing a boundary (Brodu and 

Lague, 2012). The point cloud is divided into two subsets when the classifier is applied and 

only one classifier at a time. The advantage of CANUPO is its ability to give a classification 

confidence value, which enables the user to troubleshoot troublesome cases. Since it employs 

a probabilistic approach, incorrectly classified points can be filtered from a specific class 

(Brodu and Lague, 2012). 

  

The training data was obtained from a different area of study shown in figure 3-2. The point 

cloud generated using the SfM technique was utilized for the extraction of training samples. 

Additional imagery from another different area was used to generate a 3D point cloud. The 

final training samples were obtained from different point clouds. The samples were merged to 
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increase the chances of training robust classifiers. Figure 4-9 shows a different 3D point cloud 

from which additional training data was extracted. 

 

 

Figure 4-9: Additional 3D point cloud for training data. 

 
Three classes were defined for classification: Ground, High Vegetation, and Building. This 

was performed using the segment tool in Cloud compare. The class representatives for training 

the classifiers were obtained from a different point cloud to distinguish between the training 

and the testing data. Using the CANUPO plugin, two samples at a time were selected. The 

first classifier, classifier A was trained to filter ground from non-ground points. The second 

classifier, classifier B, separated high vegetation from a building. To speed up the training 

process, the points were subsampled to reduce the number of core points used during the 

computation of descriptors. 

 

Trials were conducted to find the best combination of scales to be utilized for the computation 

of descriptors. Both classifiers were trained at 12 almost similar scales. The scales ranged from 

as small as 0.04m up to 50m. The classifiers' competence was examined using the balanced 

accuracy, ba (equation 2.11), and the fisher discriminant ratio, fdr (equation 2.14) incorporated 

by Brodu and Lague (2012). Figure 4-10 illustrates the classification approach used to achieve 

multiple classes.  
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Figure 4-10: CANUPO classification approach 

 

The entire point cloud was first classified using classifier A. Since classifier A aims to filter 

ground from non-ground, all the points labelled ground were filtered according to the scalar 

field value assigned to them. The remainder was non-ground and unclassified points. The non-

ground class was also separated from the unclassified points following the scalar field value 

assigned to them. Classifier B was applied to the non-ground class. This classifier separated 

high vegetation from the building class. The same procedure was followed to filter the two 

classes. The remaining unclassified points were added to the class of points that were 

unclassified using classifier A.  

 

4.10  Accuracy Assessment 

 

The accuracy of classification was evaluated using a georeferenced orthophoto generated from 

aerial imagery of the site. The same imagery used to create the orthophoto was also used to 

generate the 3D point cloud. The confusion matrices and the Kappa coefficient were used for 

quantifying the accuracy. The classification results were also assessed qualitatively.    
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Site visits were conducted for ground truth verification since all parts of the area of study were 

accessible. Georeferencing simplified the process of assessing accuracy. A classified 3D point 

cloud was verified using a georeferenced orthomosaic. Also, the site was surveyed using a 

Trimble R4 GPS to measure the positions of checkpoints precisely.  

 

4.10.1 Qualitative Assessment of Accuracy 

 
The performance of the Pix4DMapper classification tool was evaluated qualitatively, 

employing the approach utilized by Sithole and Vosselman  (2004) for classifying bare earth 

and object classes. On the Pix4DMapper user interface, the Type I and Type II error were 

easily identified. Furthermore, the points belonging to a particular class were visualized; 

unchecking the class layers made the points invisible and the opposite was true. The same 

approach employed in the evaluation of the Pix4DMapper classification was adopted for the 

CANUPO classification.  

 

4.10.2 Quantitative Assessment of Accuracy 
 

The CANUPO classification, which is the main focus of this research, was further assessed 

quantitatively. The ground truth information was obtained through site visits and precise GPS 

surveys since the study area was accessible. Some ground truth information was gathered using 

GIS techniques. An orthorectified mosaic was used for digitizing points to extract additional 

information of the sites where the GPS could not operate.  

 

Random checkpoints were generated using ArcMap. In addition, the ground truth points were 

surveyed using a GPS to add more points for accuracy assessment. The checkpoints generated 

from ArcMap were associated with the positional data, Y and X coordinates. These points 

were also located on the georeferenced 3D point cloud. The classified point cloud was checked 

against the georeferenced orthomosaic for validation of ground truth. This information was 

used for developing a confusion matrix from which the classification accuracy was 

quantitatively assessed. Figure 4-12 and figure 4-13 show the ground truth sites. The 

coordinates of checkpoints used for ground truth verification are listed in Appendix B.          

Figure 4-14 showing the classified point cloud layer over the orthomosaic was captured from 

ArcMap. 
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Figure 4-11: Ground Control Points 
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Figure 4-12: Ground truth sites 
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Figure 4-13: Ground truth site categories 
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Figure 4-14: Classified point cloud layer over the orthomosaic 
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4.11 Summary 
 

This chapter outlined a chronological sequence of processes followed for this study. The 

primary data was collected using a drone, and the SfM technique was adopted to generate a 

3D point cloud. Ground truth information was verified through site visits and the use of a GPS 

survey. To perform the classification of points, both supervised and unsupervised approaches 

were employed. The accuracy of the classification was assessed using both qualitative and 

quantitative assessment measures. Finally, the error matrix and the Kappa statistic were 

computed to quantify the overall accuracy of classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

59 
 

   CHAPTER 5 

5. RESULTS AND ANALYSIS 

 

 

5.1 Introduction 

 

This chapter presents the outcomes of this research. The results from the calibration of the 

UAV camera, generation and the classification of a 3D point cloud are detailed. The 

classification accuracy assessment results are also included in this chapter. Matrices, tables, 

graphs, maps and pictures from software are utilized to present the results. 

 

5.2  UAV Camera Calibration Results 

 
The calibration results were calculated in two steps. The first step produced parameters after 

initialization, while in the second step, the parameters were computed after optimization. In 

the initialization step, the distortions were not included. On the other hand, the non-linear 

optimization was comprised of lens distortions.  

Calibration parameters after initialization: 

• Focal Length:          fc = [ 2326.92147   2326.92147 ] 

• Principal point:       cc = [ 1999.50000   1499.50000 ] 

• Skew:             alpha_c = [ 0.00000 ]   => angle of pixel = 90.00000 degrees 

• Distortion:            kc = [ 0.00000   0.00000   0.00000   0.00000   0.00000 ] 

Calibration results after optimization (with uncertainties): 

• Focal Length:          fc = [ 2346.62700   2349.88146 ] +/- [ 61.58243   61.28156 ] 

• Principal point:       cc = [ 2014.79146   1510.17880 ] +/- [ 5.93212   9.38874 ] 

• Skew:             alpha_c = [ 0.00000 ] +/- [ 0.00000  ]    

    => angle of pixel axes = 90.00000 +/- 0.00000 degrees 

• Distortion:            kc = [ -0.00318   -0.00460   0.00293   -0.00042  0.00000 ] 

   +/- [ 0.00348   0.00613   0.00057   0.00048  0.00000 ] 

• Pixel error:          err = [ 0.28358   0.20695 ] 

From these results being satisfactory, the pixel error was very small and negligible.             

Figure 5-1 shows the reprojection error. With the aid of this plot, the reprojection error was 

analyzed. This error resulted from image grid corners extracted imperfectly.  
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Figure 5-1: Reprojection error 

 
The extrinsic parameters are displayed in a 3D plot. In figure 5-2, the camera reference frame 

is shown with the red pyramid corresponding to the camera's Field of View (FoV). The green 

pyramids in figure 5-3 represent the camera's positions and orientations at the time images 

were captured. 

 

 

Figure 5-2: Extrinsic parameters (camera-centered) 

 



   

61 
 

 

 

 

 

 

 

 

 

 

 

 

 

The distortions on the pixel image were visualized after running the command line 

‘visualize_distortions’ on the MATLAB command window. Figures 5-4 and 5-5 show the 

tangential and radial components of the distortion models, respectively. These lens distortions 

were minimal and negligible. However, lens distortions introduce errors; the arrows illustrate 

the significant pixel displacement due to these lens distortions (Fetić et al., 2012). A complete 

distortion model, which includes both the tangential and radial distortion, is shown                       

in figure 5-6. 

 

 

 

 

Figure 5-3: Extrinsic parameters (world-centered) 

Figure 5-4: Tangential Component of the Distortion Model 
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Figure 5-5: Radial Component of the Distortion Model 

 

 

 

Figure 5-6: Complete Distortion Model (radial and tangential) 
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5.3  Point Cloud and Georeferencing 

 

Pix4DMapper generated the point cloud in two steps. The first step produced a sparse 3D point 

cloud shown in figure 5-7 using the automatic tie points. This point cloud was not vivid, and 

its density was very low. A densified, vivid point cloud in las format was created in the second 

step. Figure 5-8 shows a densified point cloud created and visualized in Pix4DMapper. 

 

Figure 5-7: Automatic tie points: Sparse point cloud 

 
The densified 3D point cloud contained 5 706 957 points. Pix4DMapper created classes once 

a densified point cloud had been created, but the classes were empty with no points allocated 

to them. The point cloud was georeferenced using Pix4DMapper. The best configuration of 

3D GCPs achieved a mean root-mean-square error of 0.032m. 

 

 

Figure 5-8: Densified point cloud 



   

64 
 

Figure 5-9 shows a 3D georeferenced laz point cloud visualized in CloudCompare. This was 

produced using the open-source software WebODM. This cloud of points contained 9 803 414 

points, requiring fast processing machines with sufficient memory. An overall root-mean-

square error of 0.053m was achieved from georeferencing using the CloudCompare software. 

 

Figure 5-9: Georeferenced point cloud from WebODM 

 

5.4 Point Cloud Classification 
 

The classification was performed using different software employing different algorithms. The 

first part involved the Pix4DMapper software, which performed the unsupervised 

classification. The point cloud was classified using the predefined classes in Pix4DMapper. 

The second part utilized the CloudCompare software. The CANUPO plugin incorporated in 

CloudCompare was utilized to perform a supervised classification whereby the classifiers were 

trained using class samples and later applied to the point cloud.  

 

5.4.1 Pix4DMapper Classification 

 

The overall classification results were satisfactory; points were classified into appropriate 

groups. However, some categories appeared to have problematic results. The results were 

visualized in Pix4DMapper.  Figure 5-10 and figure 5-11 show the classification results with 

the class of interest hidden since this approach was the most effective way to visualize the 

results. This means that the results displayed show the remainder after filtering a specific 

category. For example, the image corresponding to the ground category displayed what is not 
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ground, the remainder of points. Figure 5-10 shows the results of classification. The images at 

the top (in figure 5-10 (a), (b), and (c)) show the results of the unsupervised classification, 

while the images at the bottom (in figure 5-10 (d), (e) and (f)) show results after the manual 

classification whereby points were assigned into the appropriate classes.  

The initial classification results were obtained from performing classification without any user 

interference with the classes. The classification process was fully unsupervised. The results of 

the final classification were obtained after the elimination of the Type I error. This was 

performed by manually digitizing the points belonging to a specific group and assigning them 

to appropriate classes.  Figure 5-11 (e) shows the entire point cloud before classification. The 

Type II error was dominant across all classes except for the ground category.  

 

The class labelled ground achieved the best results since the classification into this category 

seemed to be exhaustive. No points were manually assigned to this class. However, a Type II 

error was detected; some points belonging to the road surface category were classified as 

ground. This was a particular case of ambiguity since the road surface is also the actual ground. 

However, the expectations were that the road surface category would not be classified as 

ground. Hence the Road Surface category was dominated by the Type I error rectified by 

manually assigning the outstanding points.      

 

5.4.1.1 Qualitative Assessment of Accuracy  

 

Table 5-1 shows the qualitative performance of the Pix4DMapper classification tool. The 

ratings used in Table 5-1 are explained in Table 5-2. 

 
Table 5-1: Qualitative performance of Pix4Dmapper classification tool 

Feature Associated Error Pix4DMapper rating 

Ground Type II *** 

Road Surface Type I * 

High Vegetation Type I *** 

Building Type I ** 

Human Made object Type I * 

  

  *: poor  

 **: fair 

***: good 
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Table 5-2: Explanation of ratings 

 

Rating Item filter rating Influence rating 

Poor Item not filtered most of the time 

(<50%) 

Huge influence on 

neighbouring points 

Fair Item not filtered a few times Small influence on 

neighbouring points 

Good Item filtered most of the time  

(<90%) 

None 
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Figure 5-10:  Initial classification results: (a) Ground, (b) Road Surface, (c) High Vegetation. Final classification results: (d) Ground,  (e) Road 

Surface, (f) High Vegetation 

(a) (b) (c) 

(d) (e) (f) 
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Figure 5-11: Initial classification results: (a) Building, (b) Human-Made Object. Final classification results: (c) Building, (d) Human Made Object, 

(e) Unclassified point cloud  

 

(a) (b) 

(e) 

(c) (d) 
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5.4.2 CANUPO Classification 

 

The CANUPO classification was conducted using the CloudCompare software. The results of 

classification were satisfactory, and the entire 3D scene was classified into appropriate 

categories. The classification using CANUPO is supervised since the user trains the classifiers. 

However, the classification may also be referred to as unsupervised since the classifiers were 

applied to a different area of study that was not seen before.  

 

The training phase yielded excellent results. Classifier A achieved a ba of nearly 100% 

(0.994295) and the fdr of 6.82624. Classifier B provided a ba of 0.95715 and the fdr of 

6.03814. The results were influenced by the number of scales utilized during the training 

process. Figure 5-12 shows the statistics of each classifier and the maximal separability of the 

classes involved. 

 

         

          

Figure 5-12: Results of the training phase:(a) Separation of Ground from Non-Ground 

points, (b) Statistics of Classifier A, (c) Separation of High-vegetation from Building 

points and (d) Statistics of Classifier B. 

(a) (b) 

(d) (c) 
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Table 5-3: Results of the training phase - Classifier A 

                              Reference Data  
 

C
la

ss
if

ie
d

 

D
a

ta
 

 Ground Non-ground Sum 

Ground 7796 4 7780 

Non-ground 85 7715 7780 

Sum 7881 7719 15600 

 

Balanced accuracy for Classifier A: 

Accuracy of Ground (ag ) = tg /(tg + fn) 

                = 7796/(7796 + 86) 

                   = 0.989 

Accuracy of Non-ground (an ) = tn/(tn + fg) 

                         = 7715/(7715+4) 

               = 0.999 

balanced accuracy (ba) = ½(0.989+0.999) 

                = 0.994 

 

Table 5-4: Results of the training phase - Classifier B 

                              Reference Data  

 

C
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D
a
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 High vegetation Building Sum 

High 

vegetation 

9578 422 10000 

Building 435 9565 10000 

Sum 10013 9987 20000 

 

Balanced accuracy for Classifier B: 

Accuracy of High vegetation (av) = tv /(tv + fb) 

                        = 9578/(9578 + 435) 

           = 0.957 
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Accuracy of Building (ab) = tb/(tb + fv) 

           = 9565/(9565+422) 

           = 0.957 

balanced accuracy (ba) = ½(0.957+0.958) 

                = 0.957 

5.4.2.1 Qualitative Assessment of Accuracy 

 

Table 5-5 shows the qualitative performance of the classification using the CANUPO plugin. 

The ratings used in Table 5-5 are explained in Table 5-6. 

 

Table 5-5: Qualitative performance of the CANUPO classification 

Feature Associated Error CANUPO rating 

Ground Type II *** 

High Vegetation Type II *** 

Building Type I ** 

  

  *: poor  

 **: fair 

***: good 

 

Table 5-6: Explanation of ratings 

Rating Item filter rating Influence rating 

Poor Item not filtered most of the 

time (<50%) 

Huge influence on neighbouring 

points 

Fair Item not filtered a few times Small influence on neighbouring 

points 

Good Item filtered most of the time  

(<90%) 

None 

 

 



   

72 
 

5.4.2.2 Quantitative Assessment of Accuracy 

 
The confusion matrix shown in table 5-7 was generated to perform the quantitative assessment 

of CANUPO classification.  

 

Table 5-7: Results of CANUPO Classification 

Reference Data 

 

C
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if
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 D
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 Ground High 

Vegetation 

Building Sum UA 

(%) 

Ground 36 2 1 39 92.3 

High 

Vegetation 

2 18 2 22 81.8 

Building 2 1 11 14 78.6 

Unclassified 2 1 2 5  

Sum 42 22 16 80  

PA (%) 86.7 81.8 68.8   

 

Overall Accuracy (OA) = 
(36+18+11)

80
∗ 100 

                = 81.3% 

 

Computation of the Kappa statistic: 

  𝑘̂ =
0.8125 − 0.3666

1 − 0.3666
 

     = 0.70 

A Kappa statistic of 0.70 was achieved, which is a substantial agreement according to the 

Kappa ratings.  

 

Figure 5-13 shows the results of the CANUPO classification. The entire scene's classification 

is displayed in figure 5-13: (a), the light green, blue, and red colors represent the ground, high 

vegetation, and building classes, respectively. In figure 5-13: (b), the results displayed 

comprises of high vegetation and building classes. The ground class was filtered from the 

classification results leaving high vegetation and building as a remainder.           
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Figure 5-13: (c) shows the remaining points that were not classified into any defined classes. 

The grey color represented the unclassified points in all figures. 

 

Figure 5-14: (a) shows the classification results whose training samples were obtained from 

the same test area. This is also known as a semi-supervised classification approach. In this 

case, the classifiers were very close to perfection since the dimensionality of points in the 

training samples was very similar to the dimensionality of the tested points. Figure 5-14: (b) 

and (c) show the unclassified point cloud, the raw and textured point clouds, respectively. 
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Figure 5-13: CANUPO classification results: (a) Classification of the entire study area,  (b) Classification of High vegetation and Building,   

(c) Unclassified points 

 

 

 

 

(a) (b) (c) 
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Figure 5-14: (a) Classified point cloud,  (b) Unclassified raw point cloud, (c) Unclassified RGB point cloud 

(a) (b) (c) 
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The classification procedure showing the number of points (in percentage) filtered is shown 

in Figure 5-15. Classifier A successfully filtered 78.1% of points, and 10.8% were not 

classified. The remainder of points belonging to ‘not ground’ was further passed to the second 

classifier, classifier B. 2.8% and 6.1% of points were classified as high vegetation and 

building, respectively. The remaining unclassified points amounted to 2.2%.  
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                              (10.8%)                                                                         (78.1%) 
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                                                                       (6.1%) 

Figure 5-15: CANUPO Classification results in percentage 

 
The point clouds produced using the SfM technique, both from the Pix4DMapper and 

WebODM software, appeared to have discontinuities. Some points were isolated, resulting in 

uncertainties concerning the geometry of objects. A total of 13.0% of points were not allocated 

to any class. In most cases, the unclassified points were situated in sites where a possible 

intermediate land cover category was observed. For example, the high vegetation and ground 

categories are separable. However, the high grass on the site appeared unclassified, and in 

some cases, it was categorized as either ground or high vegetation. Another similar occurrence 

appeared whereby steps were unclassified or either classified as ground or building category.  
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5.5 Summary 
 

The camera calibration results showed that the UAV camera could be used as a measuring 

device. Thus, the UAV imagery was used to generate a 3D point cloud using the SfM 

technique. Pix4DMapper resulted in good unsupervised classification results. However, 

misclassifications were dominant in some land cover categories. The results of CANUPO 

classification were satisfactory, with some misclassifications around the edges where different 

categories appeared to overlap. Possible intermediate classes were observed whereby the 

CANUPO classifiers could not allocate the land cover type to any defined classes.  
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    CHAPTER 6 

6. DISCUSSION 

 
 

6.1  Introduction  
 

In this chapter, the results and analysis are explained in detail. The results from the calibration 

of the camera lens are discussed. Comparison and analysis are made between Pix4DMapper 

and WebODM software in performing the SfM technique towards generating a 3D point cloud. 

Finally, the possible rationales for outcomes achieved from the classification of points are 

explained.   

 

6.2  UAV Camera Calibration 
 

The MATLAB calibration toolbox is equipped with numerous functions, including a function 

that automatically detects the grid corners between the chessboard squares. The manual 

identification of grid corners improved the calibration results. Figure 6-1 shows a graphical 

presentation of a complete distortion model. This distortion model combines both the radial 

and tangential components of distortion. The numerical values of radial and tangential 

distortion coefficients were negligible after the initial optimization of camera parameters. 

 

 

Figure 6-1: Complete distortion model                                                                                          
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The intrinsic parameters of the camera lens resulted in the focal length of 3.6397mm                  

+/- 0.0952mm, which is almost 3.61mm, as described in the specifications of the camera. The 

value of the pixel error before optimization was found to be [0.28358 0.20695] pixels, which 

is very small. During the SfM process, images are calibrated through self-calibration in order 

to eliminate associated systematic blunders (Kocaman et al., 2006). The overall calibration 

process indicated an excellent state of the camera for use as a measuring device. 

 

6.3  Point Cloud Generation and Georeferencing 
 
SfM is time-efficient; 90 of 90 images were processed in less than an hour in Pix4DMapper. 

On the other side, WebODM consumed much more time, approximately five hours, to 

complete this process. Both software produced a 3D point cloud and other photogrammetric 

products, including a textured 3D mesh and an orthomosaic. The georeferencing process was 

performed at a later stage after the point clouds were generated. The natural GCPs were used 

for georeferencing. However, this choice of GCPs introduces difficulties since some points 

could not be easily identified on the actual point cloud.  

 

Pix4DMapper has two georeferencing options: The first option allows the user to identify the 

GCPs and checkpoints on the point cloud. The other option involves direct georeferencing on 

images and re-optimization to produce a georeferenced cloud. The GCPs were transformed 

from the Hartebeesthoek94 Lo31 to the UTM Zone 36S coordinate system since Pix4DMapper 

recognizes the UTM system. Figure 6-2 (a) and figure 6-2 (b) show the positions of GCPs on 

the point cloud in Pix4DMapper. Some of these points were reserved for use as checkpoints.             

Figure 6-2 (a) shows a sparse point cloud, while figure 6-2 (b) shows a densified 3D point 

cloud. The configuration of GCPs was set to allow points to be distributed over the 3D scene. 

Good results were achieved with a mean Root-Mean-Square error of 0.032m at an average 

ground sampling distance of 2.46cm.  

 

The CloudCompare software permits direct georeferencing on the point cloud. A Root-Mean-

Square error of 0.053m was achieved using the natural 3D GCPs. The Hartebeesthoek94 Lo31 

coordinate system was used for georeferencing. Figure 6-2 (c) shows the positions of GCPs 

and checkpoints on the 3D scene. The orientation of the point cloud appeared to have been 

rotated by 180º after georeferencing using the Hartebeesthoek94 Lo31 system.  
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Figure 6-2: GCPs for Georeferencing: (a) Pix4DMapper (b) Pix4DMapper (c) CloudCompare  

(a) (b) (c) 
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6.3.1 Point Cloud Classification 

 

6.4.1 Discussion of Pix4DMapper Classification Results 

 
The classification algorithm incorporated in Pix4DMapper was designed such that the user 

does not train the classifiers. This unsupervised classification technique was time-efficient, 

and the Pix4DMapper software is user-friendly. The qualitative assessment of accuracy 

indicated satisfactory overall classification results. It is also crucial to mention that errors of 

commission and omission were present in some land cover categories. The misclassifications 

were rectified by assigning the points manually into appropriate classes.   

 

Most classes were dominated by a type I error. These classes included the road surface, high 

vegetation, building, and human-made object. The ground category was mainly affected by 

the type II error. The majority of points belonging to the road surface category were 

misclassified as ground. Classifiers can be site-specific; during classifiers' training, it is most 

likely that the samples for the road surface category were more or less similar to ground 

samples in terms of geometry or colour. This condition could also apply to other classes and 

introduce classification ambiguities. The classification algorithm proposed by Becker et al. 

(2017) may be utilized to mitigate classification ambiguities since it allows the user to define 

the classes. However, it will be incorporated in Pix4DMapper in the future.   

 

6.4.2 Discussion of CANUPO Classification Results 

 
The scales that were used to create classifiers were more or less similar. Numerous 

experiments were conducted to evaluate the behavior and find the best combination of scales. 

The objective was to provide a good value of the balanced accuracy for the two classes 

involved. While striving for a high balanced accuracy, which shows a good identification rate, 

the value of fdr was also aimed to be improved as this indicated how separable the classes 

were (Brodu and Lague, 2012).  

 

Table 6-1 lists the range of scales that contributed to the development of classifiers. The 

properties of multiple scales of different land cover categories indicate that a particular class's 

dimensionality cannot be discriminated by a single scale (Brodu and Lague, 2012). Larger 

scales such as 30 and 50 contributed towards obtaining an improved value of fdr; however, 

these scales do not affect improving the actual classification (Brodu and Lague, 2012).  
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Table 6-1: Scales used for classifier development 
 
 

Classifier A (m) Classifier B (m) 

0.04 0.1 

0.1 0.5 

0.5 1 

1 1.5 

1.5 2.5 

5 5 

8 8 

10 10 

15 15 

20 20 

30 30 

50 50 

 

The CANUPO plugin in CloudCompare allows the operator to specify the classification 

threshold before applying the classifier to a point cloud. It was noted that a classification 

threshold of 100% provided results with fewer points correctly classified for one particular 

class. The other class would then be associated with a Type I error. For example, classifier A 

separated ground from non-ground points; a classification threshold of 100% resulted in some 

of the ground points classified as non-ground. Lowering the classification threshold improved 

the results. The final threshold of 90% for classifier A was used to improve the classification 

results.  

The second classifier, classifier B, was initially applied to the remainder of the point cloud 

with a classification threshold of 90%. Lowering the classification threshold to 85% resulted 

in more points being correctly classified. A general trend was observed when both classifiers 

were applied. Lowering the classification threshold improved the overall classification of the 

3D scene. Caution must be taken when adjustments were performed to lower the classification 

threshold as this could introduce the errors of commission for particular land cover categories 

in question.  

 

CloudCompare displays the CANUPO confidence level, which shows the performance of a 

classifier. Areas where a classifier produced good results, were indicated, including areas of 

misclassification. In figure 6-3, the classification confidences of classifiers used are presented. 
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Figure 6-3 (a) shows the results produced by classifier A. A graphical presentation of a color 

scale indicates the level of confidence ranging from 0.90 to 1.00. The amber color represents 

classification confidence of 100%, while violet indicates misclassifications. In this case, all 

points were identified as ground, but some are associated with some level of uncertainty. 

Figure 6-3 (b) shows the confidence level of points categorized as high vegetation obtained 

using classifier B. The color scale ranges from 0.80 to 1.00, with a high confidence level 

indicated by the red and low in blue. Lastly, figure 6-3 (c) shows the confidence level for the 

building category also obtained using classifier B. The color scale that ranges from 0.800 to 

1.00 corresponds with red to amber. According to this figure, a few points were associated 

with low uncertainty for the building category.  

 

The original article from which the CANUPO classification tool was documented employed a 

3D point cloud acquired by means of a terrestrial laser scanner. The samples used in this article 

were available online and experiments were conducted in an attempt to learn and master the 

procedure of classifying a 3D scene.  Two classes were defined: floor and vegetation. The 3D 

scene subject to classification comprised of the classes defined. The CANUPO classification 

outcomes by Brodu and Lague (2012) were excellent from a visual point of view, such that 

misclassifications were minimal.  Zooming in to the classified scene indicated that few points 

were not classified in areas where an overlap of classes occurred. This research indicated that 

a similar phenomenon dominated around the edges of objects where a class overlap was 

noticed.  

 

In contrast with the lidar 3D point cloud used by Brodu and Lague (2012), the 3D 

photogrammetric point cloud used in this research showed some discontinuities. This appeared 

to be a significant factor that contributed to misclassification in some classes. The 

dimensionality of objects is the main component of the CANUPO classification. Lidar points 

sampled from the 3D scene created robust classifiers. Besides, the best possible outcomes were 

achieved by extracting the training samples from the very same point cloud subject to 

classification.  
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Figure 6-3: CANUPO Classification Confidence: (a) Ground, (b) High Vegetation, (c) Building

 

       

       

(a) (b) (c) 
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6.4 Accuracy Assessment 
 

Both software, Pix4DMapper and CloudCompare (CANUPO) produced similar results when 

the correctness of classification was assessed qualitatively. However, the quantitative 

assessment was also conducted for CANUPO classification in CloudCompare. The associated 

errors of commission and omission are listed in table 6-2. The EC and EO for the ground 

category were 7.69% and 14.29%, respectively, which enabled this class to achieve excellent 

results. The high vegetation category obtained 18.18% in both EC and EO. The building 

category was associated with the highest EC and EO, 21.43% and 31.25%, respectively. 

 

Table 6-2: Errors of Commission and Omission 

Reference Data 

 

C
la

ss
if

ie
d

 D
a
ta

 

 Ground High 

Vegetation 

Building Sum EC 

(%) 

Ground 36 2 1 39 7.69 

High 

Vegetation 

2 18 2 22 18.18 

Building 2 1 11 14 21.43 

Unclassified 2 1 2 5  

Sum 42 22 16 80  

EO (%) 14.29 18.18 31.25   

 

6.6 Summary 
 

The photogrammetric products derived using the WebODM command line, which employed 

the SfM technique, were comparable to the commercial software's results, Pix4DMapper. The 

CloudCompare software was used to handle 3D data and address the classification problem 

using unsupervised and semi-supervised classification techniques. The positive outcomes 

obtained show that open-source software is sufficient to achieve robust photogrammetric 

products and solutions to the classification problem. The study area situated in the University 

of KwaZulu-Natal provided feature classes of diverse nature. The 3D photogrammetric point 

cloud classification using machine learning demonstrated the suitability of the CANUPO 

classification tool to filter various land cover categories in a complex 3D scene. 
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   CHAPTER 7 

7.  CONCLUSION AND RECOMMENDATIONS 

 

 

7.1 Introduction  

 

In this chapter, a synopsis of solutions to the research problem is discussed briefly, providing 

a review of the aim and objectives of this research, including limiting factors and 

recommendations for future research and developments. Finally, the state of the art and other 

possible future applications of this research are examined.   

 

7.2 Review of Objectives 

 

7.2.1 Objective 1: Find the most suitable area of study, which comprises of 

different features to be utilized for point cloud classification. 

 
Acquiring UAV images of the site situated at the University of KwaZulu-Natal was more 

efficient in traveling to and from the site. The most important factor was to identify objects to 

be classified in a 3D point cloud. This study area comprises different land cover categories, 

including but not limited to the ground, high vegetation, and building. The study area was 

accessible at any time, without any predicaments. This enabled a GPS survey and the 

verification of ground truth sites to be conducted with success.  

 

7.2.2 Objective 2: Evaluate the state of the UAV payload, which is an RGB 

camera, through the process of camera calibration. 

 
Radial and tangential components of distortion models provided negligible coefficients. In 

addition, the value of the pixel error was minimal. Negligible discrepancies were noticed in 

the camera lens parameters. The intrinsic parameters showed that the state of the UAV camera 

is almost perfect when the comparison was made between the results obtained and the 

manufacturer’s specifications.  The focal length of 3.6397mm +/- 0.0952mm was obtained 

from the calibration results, in contrast with 3.61mm as per specifications.   

 

A pixel error of [0.28358, 0.20695] pixels indicated that the state of the camera was excellent. 

The conclusion drawn from the calibration results enables the imaging sensor to be utilized in 

photogrammetric applications. Since this technique is fundamental to applications in computer 

vision and robotics for navigation, this objective was achieved with success.   
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7.2.3 Objective 3: Generate a 3D point cloud using the Structure-from-Motion 

photogrammetric technique and georeference the resulting cloud. 

 

Open-source WebODM software produced SfM products, which included a 3D point cloud. 

Positional information associated with each image acquired using a UAV played a vital role 

in the generation of a point cloud without GCPs. The resulting point cloud was based on the 

UTM Zone 36S coordinate system. The UTM coordinate system was transformed to the South 

African National Grid, which uses the WGS84 ellipsoid and a Hartebeesthoek94 datum. GCPs 

were surveyed in this South African coordinate system. The actual georeferencing of the point 

cloud and the orthomsaic was performed using the surveyed GCPs. CloudCompare software 

was used to georeference the 3D point cloud. The Orthomosaic was georeferenced in ArcMap. 

Root-mean-square errors of 0.053 and 0.032m were achieved, respectively, for the point cloud 

and orthomosaic. Thus, this objective was also achieved with success. 

 

7.2.4 Objective 4: Perform the unsupervised and supervised classification 

techniques on the point cloud and evaluate the competence of 

classification. 

 
The performance of two filtering algorithms was evaluated, the Pix4DMapper and CANUPO 

classification. Pix4DMapper is robust, and the software classified points within a short period 

of time. Misclassifications were rectified by the manual allocation of points to appropriate 

categories. Classifier training using the CANUPO tool was computationally fast. However, 

when the classifiers were applied to the entire 3D scene, the software utilized more time 

depending on the sub-sampling of points. Qualitative assessment analysis was conducted; both 

algorithms indicated similar results when common land cover categories were compared. The 

ground, high-vegetation and building classes were common in both cases. Ground and high 

vegetation were rated as good, while the building category was rated as fair. It was noticed 

that both algorithms achieved similar results, although they use different properties of points. 

Pix4DMapper uses the geometry and the reflectance of points, while the CANUPO tool uses 

only the dimensionality of points. 

During the classifier training in CloudCompare, a balanced accuracy above 95% was achieved 

for all classifiers. The value of fdr obtained indicated a good separability of points. Further 

assessment was performed for the CANUPO classification in CloudCompare by employing 

quantitative analysis using the Kappa coefficient and error matrix. The overall accuracy of 
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classification was 81.3% and a Kappa value of 7.1, which indicates a substantial agreement. 

The success of classification performance evaluation enabled this objective to be achieved.  

 

7.3 Review of the Aim 

 

This study aimed to classify a 3D point cloud produced using UAV imagery and assess the 

accuracy of classification. Achieving all four objectives of this research contributed to 

accomplishing the aim and providing solutions to the research question. This study 

demonstrated how state-of-the-art and cost-effective SfM techniques play a vital role in 

achieving the abilities of a traditional laser scanner. The use of open-source CloudCompare 

software to train the classifiers using smaller samples and applying them to an unseen point 

cloud resulted in successful automatic classification of a 3D point cloud. The accuracy 

assessment was performed with success by employing a widely used method of developing a 

confusion matrix. The classified points were checked against the ground truth sites. 

 

7.4 Limitations of the Research 

 

The nadir images were captured during the flight mission. As a result, the point cloud 

generated from the SfM technique contained discontinuities around the edges of objects and 

some points were isolated. The 3D geometry of building facades and the side views could not 

be reconstructed in detail. The availability of the Pix4DMapper software was limited. 

Therefore, all the processing was performed in a finite period of time. The classification 

performed using Pix4DMapper produced acceptable results. However, the unsupervised 

technique does not allow the user to have an input in training the classifiers.  

 

The main classification, which was performed using the CANUPO plugin in CloudCompare 

software, used the dimensionality of objects. Misclassifications occurred in cases where the 

geometry of objects could not be distinguished. For example, sharp edges with slopes on the 

ground were classified as buildings. The buildings where side views were not reconstructed 

were either ground or not allocated to any class. However, this was mitigated by using the best 

training samples at varying scales and maneuvering the classification threshold. The CANUPO 

is a binary classifier; filtering different classes is complicated, allowing only two classes at a 

time. The CloudCompare software crashed several times during the classification of points.  

 

The use of the GPS instrument to verify the ground truth information was slightly interrupted 

by the loss of signal in cases where the points to be staked out were located between buildings 
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or under the trees. However, using a georeferenced and orthorectified mosaic of the entire 

study site assisted in the validation process.  

 

7.5 Recommendations 

 

Since the 3D point cloud generated using the SfM technique showed some discontinuities and 

isolated points, it is recommended that both nadir and oblique imagery are used to generate a 

point cloud. Part of the rationale behind misclassifications was the source of training samples. 

Experiments were conducted whereby the training samples were obtained from the same point 

cloud for testing. Excellent results were achieved with misclassifications at a minimum. 

Therefore, it is recommended that training samples be robust and associated with the same 

dimensionality as the objects to be classified. Further research on classifiers that accommodate 

multiple classes, including the integration of dimensionality and reflectance, is recommended 

for the CANUPO classification module in CloudCompare.  

 

7.6 State of the Art and Future Applications 

 

Point cloud classification has been used in a wide range of applications. Numerous examples 

have been discussed in the second chapter, the literature review. Possible applications may 

differ based on the accuracy.  The common uses of point cloud classification include 

engineering and construction, where non-ground points are filtered from ground points for the 

generation of contours. New site developments often require the audit of land; classified points 

may be utilized in the decision-making for urban and regional planning. The outcomes of this 

research indicated that point cloud classification could be performed for monitoring purposes, 

including but not limited to farming, engineering, and visualization towards planning and 

decision-making. 

 

7.7 Concluding Remarks 

 

The outcomes of this research indicated that 3D point clouds generated from UAV imagery 

could be classified using open-source software. This promotes the recognition of the cost-

effective SfM technique and free software in engineering, robotics, and other environmental 

management applications where thematic mapping is used towards decision-making. The 

CANUPO classification plugin incorporated in CloudCompare software achieved satisfactory 

results. The heterogeneity of the University of KwaZulu-Natal sports field (Howard College) 

showed that complex 3D environments could be classified into different land cover categories.  
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APPENDICES  

 

Appendix A 

 
Projection parameters, transformation matrix and image coordinates generated by the GPS 

on-board during the UAV flight mission. Information from WebODM results. 

Projection   

+ proj = utm + zone = 36 + south + datum = WGS84 + units = m + no_defs + type = crs 

 

Transformation Matrix 

[ 0.9999140, -0.0175281, 0.0000000, 305313.4097332 ] 

[ 0.0175281, 0.9999140, 0.0000000, 6693779.8812277 ] 

[ 0.0000001, 0.0000001, 1.0000000, 0.0000000 ] 

[ 0.0000000, 0.0000000, 0.0000000, 1.0000000 ] 

 

Coordinates 

WGS84 UTM 36S 

 

 305313      6693779 

1.  40.2559044856   -120.964646861            66.374 

2.  -69.9355937717  -86.9853610359            66.374 

3.  70.9911349228    -73.0917099789  66.674 

4.  73.9378081069    10.577974719  66.674 

5.  -15.5470801521              113.983378986              66.574 

6.  -10.5100202796  47.4482430406  66.574 

7.  33.0273894995   70.6234858446  66.774 

8.  -74.6802684331  -88.2666317541 66.474 

9.  113.497774656    23.9139100416  66.274 

10.  -40.1492237757  -99.6787179299  66.574 

11.  38.2153974032   4.6484448798   66.474 

12.  21.3601916679   -32.9686634615 66.574 

13.  62.5804196406   61.3043458937  66.374 

14.  -65.4155267352  -0.799447099678 66.574 
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15.  69.8597660286   75.4144417327   66.474 

16.  -19.0548731763  28.2094985647  66.474 

17.  55.4050741951   -31.4942196766  66.474 

18.  101.172593991               72.2826644247   66.574 

19.  11.3397098475   95.6829645447   66.574 

20.  41.7420031778   89.9852698902   66.374 

21.  71.9749397165   83.0741441334   66.574 

22.  99.2316036088   75.5163824335   66.474 

23.  -73.2335609437  58.8342424231   66.374 

24.  -11.7700790224            -108.202056067   66.174 

25.  -28.3481709746  83.0497212745   66.574 

26.  63.0645937466   -90.3946468644  66.374 

27.  36.7547179472  -73.2790126111  66.574 

28.  -2.13480772945  66.412977336   66.374 

29.  -52.8467187811  -48.0211687777  66.574 

30.  -46.9713171498  40.9418785255   66.474 

31.  83.233863408   31.8378652558   66.774 

32.  -44.397261115   -28.7070641341  66.374 

33.  -93.9721520097  -63.1376241259 66.774 

34.  -56.2502780743  20.0979428422   66.574 

35.  130.932882913   63.5398305235   66.574 

36.  54.8815570826   43.8698886484  66.374 

37.  -51.9787684269  106.541256659   66.474 

38.  96.2698523873   -15.1201666277  66.374 

39.  87.6762439914   -35.4129856527  66.574 

40.  -93.7613416546  -81.5853556283  66.574 

41.  -58.1095237365  92.3002991192   66.274 

42.  -84.5331495026  -42.2446399042  66.574 

43.  -121.707790098  -50.759532623   66.574 

44.  20.2057213687   -115.800059056  66.674 

45.  -45.6329312439  118.007950237   66.574 

46.  -96.2880479476  5.85369031038   66.474 

47.  -36.0752632704  -9.62311266363  66.474 

48.  -113.686690268  -33.1991599947  66.774 

49.  -65.3916715849  76.0618791236   66.374 
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50.  -80.687047955   41.8074403275   66.374 

51.  -61.4523423372  -67.6121282279 66.374 

52.  -32.2416818878  -76.0962006655  66.574 

53.  -27.7015168761  9.1137135271   66.574 

54.  -20.0138642942  -104.798589572  66.174 

55.  105.178032101   5.29826857615   66.374 

56.  64.6629744542   -10.5121628791  66.574 

57.  23.7814798956   49.7216921933   66.674 

58.  14.6864332951   28.6377407871   66.574 

59.  79.0556429049   -54.7761710826  66.374 

60.  12.9517503437   102.335988555   66.774 

61.  -22.6838479957  -55.3921435755  66.474 

62.  3.66266406345   -73.0582982842  66.474 

63.  54.8967027435   -108.474864986  66.274 

64.  46.1433952849   -52.4116765652  66.474 

65.  82.5122156848   79.9171389602   66.574 

66.  -101.283184091  -78.178524036   66.574 

67.  40.7440324677   95.160414814   66.574 

68.  -19.0996009636  104.102521747   66.574 

69.  -13.3141676822  -34.3649316281  66.574 

70.  92.4124544971   52.7569028465   66.574 

71.  -128.874495263  -67.1407391643  66.174 

72.  -37.5880049577  61.9601048743   66.574 

73.  -105.068844847  -14.0021639634  66.474 

74.  -40.8532528997  -95.3484639768  66.574 

75.  -74.7437179211  -21.2808445226  66.574 

76.  29.9240163486   -13.8928497098  66.274 

77.  -5.10252386413  -92.7382423375  66.674 

78.  5.68617405102   83.4615574842   66.374 

79.  27.4643863842   -93.4763072524  66.774 

80.  12.6412999772   -53.1497929245  66.674 

81.  46.632208126   23.9988509668   66.374 

82.  -27.7875340617  117.061158689   66.474 

83.  23.8029808087   99.6465177713   66.674 

84.  5.36594954645   7.7068997696   66.574 
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85.  47.9628605641   -124.217412001  66.274 

86.  -44.5479773728  121.80595612   66.474 

87.  -4.00553464232  -13.2217663694  66.674 

88.  127.300199528   55.9305546191   66.674 

89.  -87.862640397   25.0072544832   66.374 

90.  19.0970347361  -112.271498829  66.374 
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Appendix B 
 

GPS calibration sheet 

System:  WG31 

Base: VRS 

 

 Control Point Biesheuvel (TR621) Rekaju  (TR99) 

 Description Trigonometrical Beacon Trigonometrical Beacon 

 

Current Survey 

Y 2370.60 4980.63 

X 3305783.88 3305655.67 

Z 129.83 140.35 

 

Published 

Values 

Y 2370.59 4980.62 

X 3305783.89 3305655.67 

Z 130.10 140.40 

 

Residuals 

ΔY                - 0.01 -0.01 

ΔX 0.01 0.00 

ΔZ 0.03 0.05 

   Horizontal 

Precision 

0.01 0.01 

Vertical 

Precision 

0.02 0.02 

 

 

GPS coordinates of GCPs and checkpoints  

Nos.         Y    X        Z 

1  1587.643       3305741.593    87.842 

2  1584.209                 3305747.817    87.537 

3  1568.617       3305801.218      81.644 

4  1525.341       3305796.253    79.746 

5  1497.273       3305825.987    79.748 

6  1457.838       3305825.020    79.706 

7  1497.564       3305917.780    79.719 

8  1522.453       3305890.448    79.694 
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10  1537.848       3305917.141    79.654 

11  1564.838       3305888.984    79.666 

12  1581.381       3305899.853    79.881 

13  1583.967       3305843.246    80.515 

14  1572.406       3305815.795    80.566 

 

 

GPS coordinates used for ground truth verification 

Nos.        Y         X                Class 

1  1437.458 3305852.230  Ground    

2  1454.306 3305889.962  Ground 

3  1546.979 3305740.329  High Vegetation 

4  1573.527 3305921.122  High Vegetation 

5  1420.006 3305794.792  Ground 

6  1511.571 3305770.962  High Vegetation 

7  1511.784 3305839.314  Ground 

8  1454.124 3305939.882  High Vegetation 

9  1584.151 3305882.215  Ground 

10  1437.558 3305899.605  Ground  

11  1549.562 3305740.372  High Vegetation 

12  1472.423 3305812.522  Ground 

13  1553.254 3305811.054  Ground 

14  1570.829 3305801.876  Ground  

15  1491.424 3305945.241  High Vegetation 

16  1520.967 3305815.202  Ground 

17  1549.631 3305879.594  Ground 

18  1445.126 3305812.431  Ground 

19  1522.066 3305760.170  High Vegetation 

20  1533.303 3305849.285  Ground 

21  1574.588 3305939.286  Ground 

22  1462.671 3305786.576  High Vegetation 
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23  1488.740 3305764.027  Ground 

24  1612.280 3305928.312  Ground 

25  1556.227 3305844.190  Ground 

26  1441.016 3305907.813  Ground  

27  1529.318 3305784.147  Ground 

28  1458.257 3305860.692  Ground 

29  1486.364 3305940.554  Ground 

30  1583.210 3305760.045  Building 

31  1536.853 3305975.525  Ground 

32  1581.232 3305728.826  Ground 

33  1533.428 3305861.913  Ground 

34  1581.389 3305822.120  Building 

35  1620.036 3305886.894  High Vegetation 

36  1582.585 3305787.790  Ground 

37  1458.623 3305781.756  High Vegetation 

38  1460.187 3305866.743  Ground 

39  1572.174 3305927.540  High Vegetation 

40  1566.530 3305974.814  Building 

41  1590.440 3305884.858  Ground 

42  1601.625 3305805.571  Ground  

43  1500.148 3305922.897  Ground 

44  1460.193 3305944.951  High Vegetation 

45  1503.527 3305977.114  Ground 

46  1558.719 3305788.089   Ground 

47  1519.309 3305974.193  Ground 

48  1588.620 3305915.788  High Vegetation 

49  1607.781 3305845.695  Building 

50  1571.607 3305941.527  Ground 

51  1547.257 3305964.719  Ground 

52  1620.313 3305825.355  Building 

53  1424.376 3305797.235  Ground 
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54  1561.840 3305750.718  High Vegetation 

55  1616.031 3305863.792  Building 

56  1587.980 3305768.646  Building 

57  1578.899 3305801.878  Building 

58  1589.218 3305821.881  Building 

59  1588.107 3305831.723  Building   

60  1599.878 3305829.818  Building 

61  1616.206 3305818.864  Building 

62  1614.459 3305854.319  Building 

63  1623.058 3305873.369  Building 

64  1636.552 3305868.209  Building 

65  1547.863 3305980.922  Building 

66  1484.569 3305777.616  High Vegetation 

67  1477.425 3305771.983  High Vegetation 

68  1564.010 3305741.425  High Vegetation 

69  1548.346 3305753.490  High Vegetation 

70  1595.744 3305840.879  High Vegetation 

71  1600.374 3305863.369  High Vegetation 

72  1558.372 3305913.640  High Vegetation 

73  1515.377 3305930.838  High Vegetation 

74  1414.173 3305839.226  High Vegetation 

75  1500.163 3305881.471  Ground 

76  1576.363 3305718.487  Ground 

77  1480.055 3305838.079  Ground 

78  1534.559 3305960.317  Ground 

79  1641.451 3305888.879  Ground 

80  1428.196 3305839.667  Ground 
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Appendix C 
 
GPS coordinates of GCPs and checkpoints in UTM zone 36S 

Nos.         X    Y        Z 

1 305246.967 6693873.586 87.842  

2 305250.509 6693867.422 87.537  

3 305267.028 6693814.297 81.644  

4 305310.214 6693820.014 79.746  

5 305338.797 6693790.770 79.748  

6 305378.212 6693792.423 79.706  

7 305340.102 6693698.980 79.719  

8 305314.740 6693725.877 79.694  

10 305299.810 6693698.918 79.654  

11 305272.333 6693726.604 79.666  

12 305255.980 6693715.448 79.881  

13 305252.410 6693772.005 80.515  

14 305263.493 6693799.655 80.566  

 

 

 

 

 

 

  

 

 

 

 

 


