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Abstract

Many engineering and physics problems are modelled using differential equations, which

may be highly nonlinear and difficult to solve analytically. Numerical techniques are often

used to obtain approximate solutions. In this study, we consider the solution of three non-

linear ordinary differential equations; namely, the initial value Lane-Emden equation, the

boundary value Bratu equation, and the boundary value Troesch problem. For the Lane-

Emden equation, a comparison is made between the accuracy of solutions using the finite

difference method and the multi-domain spectral quasilinearization method along with

the exact solution. We found that the multi-domain spectral quasilinearization method

gave a better solution. For the Bratu problem, a comparison is made between the spectral

quasilinearization method and the higher-order spectral quasilinearization method. The

higher-order spectral quasilinearization method gave more accurate results. The Troesch

problem is solved using the higher-order spectral quasilinearization method and the finite

difference method. The solutions obtained are compared in terms of accuracy. Overall,

the higher-order spectral quasilinearization method and multi-domain spectral quasilin-

earization method gave the accurate solutions, making these two methods to be the most

reliable for these three problems.
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Chapter 1

Introduction

Differential equations are used to model problems that arise in physics and engineer-

ing. In many cases, the equations are nonlinear, and approximate solutions are obtained

using different numerical techniques. These techniques have improved our ability to an-

alyze complicated mathematical models. These methods include, but are not limited to,

the finite difference method, finite volume method, spectral methods, quasilinearization

method, variational iteration method, Adomian decomposition method, and homotopy

perturbation method.

In this chapter, we give a brief review of some common numerical techniques and some

relevant instances of their use in the literature.

We begin by reviewing two of the most commonly used techniques, the finite difference

method and the finite element method. Then we discuss in detail the main quasilineariza-

tion methods that are used in this study.

1.1 The finite difference method

The finite difference method is one of the popular methods used to solve differential equa-

tions. The method dates back to 1930 when it was used to obtain solutions of the Dirichlet

biharmonic equations [1]. It is derived from a Taylor series expansion that approximate

the derivatives of the unknown functions using forward, backward, and central difference
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schemes [2]. In the finite difference method, independent variables are discretized in space

or in time, with step size ∆x or ∆t. The finite difference method has three common

versions; namely, the implicit finite difference method which uses the backward difference

approximation, the explicit finite difference method which uses the forward difference ap-

proximation, and the Crank-Nicholson scheme which uses the central difference scheme.

Several authors have used the finite difference method to solve mathematical problems.

Hickson et al. [3] presented a finite difference scheme for multi-layered materials and found

the method to be reliable, accurate, and easy to use in practice. Wong and Li [4]solved the

Helmholtz equation using the finite difference method, and showed that the method can

be used for high-frequency problems with no requirement of fine step size. They obtained

accurate numerical solutions that showed the method to be efficient. Moczo et al. [5] how-

ever, showed that the finite difference method has limitations, such as when the boundary

conditions are complex. Wang and Lin [6]noted that the implicit scheme is more stable

than the explicit scheme, it also produces more accurate solutions although it requires

more computational time than the explicit scheme. Cui [7] solved the one-dimensional

diffusion equation using the compact finite difference method by means of the Grunwald-

Letnikov discretization scheme. They found the compact finite difference method to be

highly accurate. Tayakout et al. [8] established a catalytic membrane reactor model and

used the finite difference method to obtain the solution of the dynamic system. Yuste

and Acedo [9] used an explicit finite difference method to solve the fractional diffusion

equation. They used the forward Euler difference scheme with a Fourier- Von Neumann

technique for the conditions of stability. Chen et al. [10] used the finite difference method

to solve the fractional reaction-subdiffusion equation. They presented both implicit and

explicit difference schemes. They also investigated the stability and the convergence of

the schemes using Fourier analysis. They found that the method is accurate. Zhuang et

al. [11] solved the anomalous sub-diffusion equation using the finite difference scheme for

an implicit numerical method. They noted that the method was convergent and uncon-

ditionally stable. Martino et al. [12] applied the finite difference method to the Fisher

equation using the Crank-Nicholson approximation to obtain the solution.
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1.2 The finite element method

The finite element method has its origin in the work of Euler in the sixteenth century,

although Courant [13] was the first to give the modern formulation of the method in

1943. The finite element method was further developed independently to solve problems

in civil engineering and aerospace [14]. The finite element method consists of two numerical

techniques; namely, the Galerkin and Ritz methods. In the Galerkin method, the variables

are approximated inside the element using continuous piecewise functions. In the Ritz

method, calculus of variation is used to transform the problem into integral form [17].

The finite element method splits the domain of the problem into n finite elements, which

are connected at the nodes. It is among the most commonly used methods for solving

engineering and mathematical problems, as it can be used for problems with domains

that are geometrically complicated, for those with complex boundary conditions, and

for coupled nonlinear problems [15]. The finite element method increases the number of

unknown terms inside a cell to give a higher-order solution [18]. Alrabeei and Musthafa

[19] used the finite element method to solve the two and three-dimensional linear elasto-

static model in order to estimate the elastic mechanical response. Hiltunen [20] presented

a solution for particulate two-phase flow and showed that the method is reliable and

accurate. Goldstein [21] solved the Helmholtz equation using the finite element method

and found the method to be versatile and reliable. Marchardise and Remacle [22] used

an implicit stabilized finite element method to obtain a solution for an incompressible

two-phase flow problem. They found that the method was flexible, simple, and accurate.

Nagrath et al. [23] solved the equation for incompressible bubble dynamics using the

Galerkin finite element method for the discretization of the governing equations. They

noted that the method was robust. Tezduyar [24] used the finite element method to solve

some flow problems with boundaries and an interface that moves and found that the

method was accurate and efficient. Boncut [25] solved the fluid flow equations using the

Ritz finite difference method. Chowdhury and Narasimhan [26] also used the Ritz finite

difference method and presented a solution for the processes of fracture and delamination

in solids. They found that the method was effective and showed a degree of robustness.
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1.3 The quasilinearization method

The quasilinearization technique, introduced in 1965 by Bellman and Kalaba [27], is useful

for finding approximate solutions of a nonlinear differential equation[28]. It was intro-

duced as a general statement of the Newton-Raphson method [29]. The quasilinearization

method (QLM) has been used extensively. For example, Koleva and Vulkov [30] proposed

a quasilinearization scheme that was coupled with Rothe’s method for solving nonlinear

parabolic equations. The rate of convergence and numerical errors were tested on prob-

lems with closed-form solutions. Their scheme is simple to apply and the results showed

that, with a good initial guess, it was possible to obtain quadratic convergence [30]. Wang

et al. [31] applied the quasilinearization method to second-order impulsive differential

equations, while Yakar and Koksal [32] employed it to solve nonlinear problems. Vijesh

et al. [33] used a modified quasilinearization method to solve fractional differential equa-

tions. They found that the method was simple to apply and was reliable and accurate.

To demonstrate the use of the quasilinearization method (QLM), consider the nonlinear

differential equation

G[f(η), f ′(η), f ′′(η), · · · , f (n)(η)] = 0, η ∈ (a, b) (1.1)

with boundary conditions

Hk[f(a), f ′(a), f ′′(a), · · · , f (n−1)(a)] = 0, k = 1, 2, 3, · · · ,m,

Hk[f(b), f ′(b), f ′′(b), · · · , f (n−1)(b)] = 0, k = m+ 1,m+ 2, · · · , n,

where G is a nonlinear ordinary differential operator of f(η) and the nth derivatives,

Ha,k, Hb,k are nonlinear functions of f(η) and its n − 1 derivatives at η = a and η = b

for l = 1, 2, · · · , n − 1. The QLM approach assumes that the difference between the

approximation of the solution at the current iteration (denoted by fr(η)) and the previous

iterations (denoted by fr+1(η)) is small. The difference between the derivatives at the

subsequent iterations levels, f (p)
r+1 − f (p)

r , is also assumed to be small. Expanding equation
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(1.1) using the Taylor series gives

G[fr, f ′r, · · · , f (n)
r ] ≈ G[fr, f ′r, · · · , f (n)

r ]

+(fr+1 − fr, f ′r+1 − f ′r, · · · , f
(n)
r+1 − f (n)

r )∇G[fr, f ′r, · · · , f (n)
r ]

where ∇ is a vector of partial derivatives defined by

∇ =
{
∂

∂f
,
∂

∂f ′
,
∂

∂f ′′
, ...,

∂

∂f (n)

}
.

The equation can be written in the compact form

G[fr(η), f ′r(η), · · · , f (n)
r (η)] +

n∑
p=0

∂G

∂f (p) [fr(η), f ′r(η), · · · , f (n)
r (η)](f (p)

r+1(η)− f (p)
r ) = 0.

The QLM determines the approximate solutions at the (r+1) iteration level as the solution

of the linear equation

G[fr(η), f ′r(η), · · · , f (n)(η)] +
n∑
p=0

∂G

∂f (p) [fr(η), f ′r(η), · · · , f (n)
r (η)](f (p)

r+1(η)− f (p)
r (η)) = 0.

(1.2)

We linearize the boundary conditions

Ha,k[fr(a), f ′r(a), · · · , f (n)
r (a)] +

n−1∑
p=0

∂Ha,k

∂f (p) [fr(a), f ′r(a), · · · , f (n)
r (a)](f (p)

r+1(a)− f (p)
r (a)) = 0,

for k = 1, 2, · · · ,m and

Hb,k[fr(b), f ′r(b), · · · , f (n)
r (b)] +

n−1∑
p=0

∂Hb,k

∂f (p) [fr(b), f ′r(b), · · · , f (n)
r (b)](f (p)

r+1(b)− f (p)
r (b)) = 0,

(1.3)

for k = 1, 2, · · · ,m.

It is convenient to write equations (1.2) and (1.3) in the form

an,r(η)f (n)
r+1(η) + an−1,r(η)f (n−1)

r+1 (η) + · · ·+ a1,r(η)f ′r+1(η) + a0,r(η)fr+1(η) = Rr(η),

αn−1,kf
(n−1)
r+1 (a) + αn−2,kf

(n−2)
r+1 (a) + · · ·+ α1,kf

′
r+1(a) + α0,kfr+1(a) = Ra,k,
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βn−1,kf
(n−1)
r+1 (b) + βn−2,kf

(n−2)
r+1 (b) + · · ·+ β1,kf

′
r+1(b) + β0,kfr+1(b) = Rb,k,

where

ap,r(η) = ∂G

∂f (p) [fr(η), f ′r(η), f ′′r (η), · · · , f (n)
r (η)],

p = 0, 1, 2, · · · , n,

Rr(η) =
n∑
p=0

∂G

∂f (p) [fr(η), f ′r(η), f ′′r (η), · · · , f (n)
r (η)]−G[fr(η), f ′r(η), f ′′r (η), · · · , f (n)

r (η)],

αp,k = ∂Ha,k

∂f (p) [fr(a), f ′r(a), f ′′r (a), · · · , f (n)
r (a)],

p = 0, 1, 2, · · · , n− 1, k = 1, 2, ...,m,

βp,k = ∂Hb,k

∂f (p) [fr(b), f ′r(b), f ′′r (b), · · · , f (n)
r (b)],

p = 0, 1, 2, · · · , n− 1, k = m+ 1,m+ 2, · · · , n

Ra,k =
n−1∑
p=0

∂Ha,k

∂f (p) [fr(a), f ′r(a), f ′′r (a), · · · , f (n−1)
r (a)]−Ha,k[fr(a), f ′r(a), f ′′r (a), · · · , f (n−1)

r (a)],

Rb,k =
n−1∑
p=0

∂Hb,k

∂f (p) [fr(b), f ′r(b), f ′′r (b), · · · , f (n−1)
r (b)]−Hb,k[fr(b), f ′r(b), f ′′r (b), · · · , f (n−1)

r (b)]

for k = m+ 1,m+ 2, · · · , n.

1.4 Spectral methods

Spectral methods involve approximating unknown functions by truncated orthogonal func-

tions [34]. They differ from the finite difference and finite element methods, which both

use local basis functions, in that spectral methods use global basis functions to repre-

sent the outputs of differential equations. Spectral methods are an improvement in the

class of discretization schemes called the method of weighted residuals. The methods give

solutions with a high-resolution [35]. The trial functions used in spectral methods may
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be trigonometric, monomials, or Chebyshev or Legendre polynomials. Spectral methods

include the tau, Galerkin, and collocation approaches, which are distinguished by the way

the test functions are chosen. In the Galerkin approach, the trial and the test functions are

the same, while in the collocation approach the test functions are Dirac delta functions,

and although the tau approach is similar to the Garlekin approach, it treats the boundary

conditions differently. The collocation approach requires the differential equations to be

satisfied at collocation points, while the Galerkin approach is similar to a least-squares

approximation. The tau method was developed as a modification of the Galerkin method

for problems with boundary conditions that are non-periodic. Although the tau method

is said to be the most complicated, it is useful for solving constant coefficient problems

[36]. Gottlieb and Gottlieb [37] applied the spectral method to solve equations for com-

pressible reactive flows. They found that the it gives stable solutions. Pohl, Wenzel and

Karrenbach [38] presented a solution for two-dimensional generalized coordinates, wherein

they applied the Chebyshev pseudospectral method to the wave equations. They noted

that the stability of this method relies on minimum node spacing. Doha et al. [39] solved

multi-term fractional orders differential equations using the Chebyshev spectral method,

and presented results that indicated the method’s good accuracy. Gardner et al. [40] used

a modified tau spectral method to solve eigenvalue problems. They found that the method

converges rapidly. Ghoreishi and Yazdani [41] provided a numerical solution for fractional

differential equations, which utilized the interpolating expansion to approximate the inte-

gral term of the equations. They found that the method is efficient and reliable. Bhrawy

and Alghamdi [42] used the tau spectral method to solve the time-fractional heat equation

with nonlocal conditions. They found the method to be accurate and effective. Shen

[43] presented a solution for second and fourth-order elliptic equations using the spectral

Galerkin method with Legendre polynomials and found that the method is accurate and

reliable.

In the spectral technique, an approximating series is obtained with the original dif-

ferential equation being satisfied precisely at different collocation nodes. There is a link

between the choice of the basis functions and the positions of the points in the domain.

7



The function F (x) can be represented as a series expansion

Fn(x) =
n∑

m=0
F̂mGm(x), (1.4)

where Gm(x) are the basis functions, n is the total number of collocation points, and F̂m
are the spectral coefficients. The most commonly used collocation points are Chebyshev

Gauss-Lobatto collocation points, given by

xi = cos
(
πi

N

)
, i = 0, 1, · · · , N. (1.5)

The last decade has seen concerted efforts to construct new techniques incorporating quasi-

linearization and solving the resulting equations using spectral methods. The new tech-

niques that are of interest in this study include the spectral quasilinearization method, and

the higher-order and multi-domain spectral quasilinearization methods. A brief discussion

of each technique is given below.

1.4.1 The spectral quasilinearization method

The spectral quasilinearization method (SQLM) is a combination of the quasilinearization

method and Chebyshev spectral collocation method [44]. This technique was introduced

by Motsa and Sibanda in 2013 to solve nonlinear boundary value problems [45]. In the

method, the nonlinear terms are linearized using the Taylor series expansion to obtain a

system of linear equations. The Chebyshev pseudospectral method is then used to solve the

linearized equations. Several researchers have used the spectral quasilinearization method

in their studies. RamReddy et al. [46] solved the equations that describe the mixed con-

vection flow of a micropolar fluid over a permeable vertical plate using the spectral quasi-

linearization method. Alharbey et al. [47] solved the flow equations in a non-Darcy porous

medium with convective boundary conditions. They monitored the convergence of the so-

lution by calculating the residual errors of the partial differential equations. They found

that the spectral quasilinearization method is accurate and efficient. Mondal and Sibanda

[48] used the spectral quasilinearization method to solve nonlinear transport equations.
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These equations arise in the study of entropy generation where the Cattaneo-Christov heat

flux model is used. They also presented an analysis of the convergence of the method,

whereby they could show that the method converges rapidly and is accurate. Motsa et al.

[49] used both the spectral quasilinearization and spectral relaxation methods separately

to investigate the unsteady heat transfer in a nanofluid over a permeable stretching or

shrinking surface. They observed that the spectral quasilinearization method performed

better than did the spectral relaxation method.

1.4.2 The multi-domain spectral quasilinearization method

The multi-domain spectral quasilinearization method is a linearization-based technique.

The resulting linear equations are integrated into numerous sub-intervals using the Cheby-

shev spectral collocation method. The basis functions are the Lagrange interpolation

polynomials [50]. Magagula et al. [51] used the multi-domain bivariate pseudospectral

method to solve nonlinear differential equations using Legendre-Gauss-Lobatto grid points

in space and time. They found the multi-domain spectral quasilinearization method to be

an accurate method, by comparing it with the solutions obtained by the bivariate spec-

tral quasilinearization method. They also noted that the method is efficient. Goqo et

al. [52] applied the multi-domain spectral quasilinearization method to the equations of

laminar natural convective flow from a vertical flat plate. They found the method to be

efficient and accurate. Ayano et al. [53] studied the problem of an electrically conducting

and steady incompressible micropolar fluid. They showed that the multi-domain spec-

tral quasilinearization method can be used to solve such fluid flow problems; the method

being accurate and efficient. Oyelakin et al. [54] were the first to use the multi-domain

bivariate spectral quasilinearization method to investigate non-Darcian mixed convection

flow, heat, and mass transfer in a non-Newtonian fluid. Their interest was in determining

skin friction, fluid properties, and heat and mass coefficients. The solution they obtained

showed that the method converges rapidly, produces accurate results, and is simple to use.

Oyelakin et al. [55] also used the same multi-domain spectral quasilinearization method

to solve a system of partial differential equations when they investigated mixed convection

in a Casson nanofluid with heat generation.
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1.4.3 The higher-order spectral quasilinearization method

The higher-order spectral quasilinearization method is a modification of the spectral quasi-

linearization method. In this case, a higher-order Newton-like iteration approach is used to

solve the nonlinear problems [56]. In the higher-order spectral quasilinearization method,

the equation is separated into its linear and nonlinear parts. The Taylor method is then

applied to the nonlinear part. The spectral collocation is imposed on the iterative scheme

with Chebyshev-Gauss-Lobato nodes. Motsa et al. [57] used the higher-order spectral

quasilinearization method to solve the nonlinear model of catalytic reactions. They found

that the method converges rapidly and gave accurate results. The higher-order approach

has been used by other researchers. Chun [58] applied the approach with the Adomian

decomposition method to solve nonlinear equations. Motsa and Sibanda [56] used the

higher-order scheme with the homotopy analysis method to obtain the solutions for a

highly nonlinear problem.

We present the higher-order quasilinearization method for a k-th order ordinary differential

equation. A nonlinear differential equation is obtained with a solution of y(η)

L
[
y(k)

]
+N

[
y(k)

]
= 0, k = 0, 1, · · · , n, η ∈ [a, b], (1.6)

where L is a linear component and N is non-linear component of the ordinary differential

equations. The Taylor’s series expansion is applied to the non-linear component N
[
y(k)

]
about the point yi, where yi is an initial guess of the solution for the ordinary differential

equation. This gives,

N
[
y(k)

]
≈ N

[
y

(k)
i

]
+

n∑
k=0

αk,i
(
y(k) − y(k)

i

)
+H

[
y(k), y

(k)
i

]
,

where

αk,i = ∂N(yi)
∂y(k) and

H
[
y(k), y

(k)
i

]
= N

[
y(k)

]
−N

[
y

(k)
i

]
−

n∑
k=0

αk,i
(
y(k) − y(k)

i

)
.
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Equation (1.6) becomes

L
[
y(k)

]
+N

[
y

(k)
i

]
+

n∑
k=0

αk,i
(
y(k) − y(k)

i

)
+H

[
y(k), y

(k)
i

]
= 0.

The above equation can be written as

L
[
y(k)

]
+

n∑
k=0

αk,iy
(k) +H

[
y(k), y

(k)
i

]
= φ

[
y

(k)
i

]
, (1.7)

where

φ
[
y

(k)
i

]
= −N

[
y

(k)
i

]
+

n∑
k=0

αk,iy
(k)
i .

We use the quasi-linearization method of Bellman and Kalaba[27] to approximate equation

(1.7), so we obtain

L
[
y

(k)
r+1

]
+

n∑
k=0

αk,iy
(k)
r+1 +H

[
y(k)
r , y

(k)
i

]
+

n∑
k=0

(
y

(k)
r+1 − y(k)

r

) ∂H

∂y
(k)
i

[
y(k)
r , y

(k)
i

]
= φ

[
y

(k)
i

]
.

When the terms of the known solution are transposed to the right, we get

L
[
y

(k)
r+1

]
+

n∑
k=0

αk,iy
(k)
r+1 +

n∑
k=0

y
(k)
r+1

∂H

∂y
(k)
i

[
y(k)
r , y

(k)
i

]
= φ

[
y

(k)
i

]
−H

[
y(k)
r , y

(k)
i

]
+

n∑
k=0

y(k)
r

∂H

∂y
(k)
i

[
y(k)
r , y

(k)
i

]
.

(1.8)

The Chebyshev spectral collocation method is used to solve equation (1.8). The method

uses the spectral differentiation matrix, which is defined at the Chebyshev-Gauss-Lobatto

nodes as

tj = cos πj
Nt

∣∣∣∣Nt

j=0
,

with Nt being the number of collocation points. The linear transformation below is used
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to convert the region η ∈ [a, b] to t ∈ [−1, 1]

η = 1
2(b− a)t+ 1

2(b+ a).

The spectral collocation is applied to equation (1.8), with the derivatives evaluated at the

Chebyshev-Gauss-Lobatto nodes as

d(k)y

dη(k) =
N∑
p=0

D
(k)
jp yj(tp), k = 0, 1, · · · , n,

where D(k)
jp is the k-th order Chebyshev differential matrix in t of size (N + 1)× (N + 1).

This collocation results in

L
[
D(k)yr+1

]
+

n∑
k=0

αk,iD
(k)yr+1 +

n∑
k=0

D(k)yr+1
∂H

∂y
(k)
i

[
y(k)
r , y

(k)
i

]
= φ

[
y

(k)
i

]
−H

[
y(k)
r , y

(k)
i

]
+

n∑
k=0

y(k)
r

∂H

∂y
(k)
i

[
y(k)
r , y

(k)
i

]
.

In matrix form the equation can be written as

MrYr+1 = Φr,

where

Mr = L
[
D(k)

]
+

n∑
k=0

αk,iD
(k) +

n∑
k=0

D(k) ∂H

∂y
(k)
i

[
y(k)
r , y

(k)
i

]
Yr+1 = [y0, y1, · · · , yN ]T

Φr = φ
[
y

(k)
i

]
−H

[
y(k)
r , y

(k)
i

]
+

n∑
k=0

y(k)
r

∂H

∂y
(k)
i

[
y(k)
r , y

(k)
i

]
.

1.5 The Adomian decomposition method

In 1980 Adomian introduced a decomposition method to solve linear and nonlinear ordi-

nary differential equations. This method is known as the Adomian decomposition method
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[59]. The Adomian decomposition method can be used to compute analytic solutions for

an extensive class of nonlinear differential equations with no need for perturbation, lin-

earization or discretization [60]. The Adomian decomposition method gives solutions in

terms of a rapidly converging power series [61]. In the Adomian decomposition method

(ADM), the equation is first split into linear and nonlinear parts. The highest-order deriva-

tive operator that is contained in the linear operator is inverted. The nonlinear functions

are decomposed in terms of Adomian polynomials and the successive terms of the series

solution are determined. Jafari and Daftardar-Gejji [62] used the Adomian decomposi-

tion method to solve linear and nonlinear fractional diffusional equations. They found

the ADM to be a very powerful tool that can handle both linear and nonlinear fractional

partial differential equations well. They identified a limitation of this method being in the

computation of the Adomian polynomials, which they overcame by using Mathematica to

obtain the polynomials. Ismail et al. [63] solved the Burgers-Huxley and Burgers-Fisher

equations using the Adomian decomposition method. They noted that the advantage that

method could be used without the need for complex calculations, as operations were largely

simple and elementary operations. Dhaigude et al. [64] used the Adomian decomposition

method to solve the Benjamin-Bona-Mahony-Burgers equation. They found the method

to be accurate, efficient, and reliable. Sánchez Cano [65] used the Adomian decomposition

method to solve a coupled system problem and nonlinear problems. It was noted that

the method is a reliable technique for solving nonlinear initial value problems and coupled

systems. They also noted that there is no solution in closed form. Evans and Raslan [66]

used the Adomian decomposition method to solve the delay differential equations. They

showed the method to be reliable and give accurate results. Kaya [67] solved the partial

differential using the Adomian decomposition method, and pointed out that the decom-

position method does not require perturbation theory, linearization, or weak nonlinear

assumptions. The method was also found to converge rapidly and be highly accurate.
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1.6 The variational iteration method

The variational iteration method was first introduced in 1999 by He, when it was used to

obtain the series solution of a nonlinear differential equation [68]. The variational iteration

method is related to the well known Lagrange multiplier method [69] and has been applied

successfully to ordinary differential equations [70]. According to He [70], the underlying

principle is the application of a correction function to the problem. The correction func-

tion is formulated by using a Lagrange multiplier, λ, where λ is selected to give a solution

that is better than the initial approximation. Stationary conditions are applied to the

correction formula to obtain the optimal Lagrange multiplier for the problem. The vari-

ational iteration method has since been used by other authors to solve various physics

and engineering problems. For example, Wazwaz [71] was interested in the utility of the

method in solving physics and engineering problems, and used the method to solve the

linear and nonlinear wave equations. Wazwaz stated that the variational iteration method

greatly reduces the number of calculations, while maintaining high solution accuracy. He

also found that the variational iteration method converges quickly. Shang [72] obtained

approximate solutions for n-th order differential equations using the variational iteration

method. The advantage of the variational iteration method is, according to Shang, the

initial approximation being a free choice, He used this principle to formulate the initial ap-

proximation, excluding the parameters that were not known. He showed that the method

is efficient and easy to work with. Abassy et al. [73], however, saw disadvantages in the

variational iteration method in the computations being repeated and unnecessary terms

being computed.

1.7 Consistency, stability and convergence

The characteristics of a good numerical method are that it should be convergent, consis-

tent, and stable. The finite difference method has been shown in the literature to have

these properties. A numerical scheme is consistent if the difference between the approx-

imate solution and the exact solution approaches zero as the step size becomes smaller.
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Consider the differential equation

f(u) = 0, (1.9)

where u(x) is continuous and its differential is consistent with an approximate solution

f̂(u) = 0. (1.10)

Then

f̂(u)− f(u) = 0, (1.11)

as the stepsize ∆x→ 0 [75]. The finite difference method is consistent if the local trunca-

tion error, τ , satisfies the condition

‖τ∆x,∆t‖ → 0 as ∆x,∆t→ 0. (1.12)

If a scheme can be discretized such that ‖τ∆x,∆t‖ = O(∆xm) +O(∆tn) for some m,n > 0,

then the scheme is consistent.

A numerical technique is stable if the difference between the approximate solution and the

exact solution of the equation is very small and does not increase as the number of nodes

increases [75]. A finite difference scheme in the form f∆x,∆t(uni ) is stable in the region Λ,

for all positive time T , with a fixed constant p. The condition for stability is

||un||∆t ≤ p||ui||∆x, (1.13)

where p is a constant and is independent of the step sizes, 0 ≤ n∆t ≤ T for ∆x,∆t ∈ Λ.

According to Lax’s equivalence theorem, when a numerical scheme is consistent and stable,

it is guaranteed that scheme is convergent [76]. In the finite difference method, convergence

is achieved if the approximations uni converge to the analytical solution u(x, t) as ∆x,∆t

approach 0.
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1.8 Aims and objectives

The aim of this study is to use numerical methods to solve three highly nonlinear ordinary

differential equations; namely, the Bratu, the Lane-Emden, and the Troesch equations.

The specific objective is to compare the performance of different numerical schemes when

used to solve these nonlinear differential equations. The Lane-Emden equation is solved us-

ing the finite difference method and the multi-domain spectral quasilinearization method.

The Bratu equation is solved using the spectral quasilinearization method and higher-

order quasilinearization method. The Troesch problem is solved using the finite difference

method and the higher-order spectral quasilinearization method. The choice of methods

used for each problem is informed by the need to determine how the methods perform for

the specific problems and relative to each other. The accuracy of each method is further

examined by evaluating the residual errors.

The dissertation is organized as follows; In Chapter 2, a brief literature review of the

Lane-Emden equation is presented. We use the finite difference method and the multi-

domain spectral quasilinearization method to solve Lane-Emden type equations. The

solutions obtained using Matlab software are presented graphically and in tables. In

Chapter 3, a review of the literature on the Bratu problem is given. We then use the

spectral quasilinearization method and multi-domain spectral quasilinearization method

to solve the Bratu problem. A comparison of the performance of the methods is shown.

We use the bvp4c Matlab routine to validate the accuracy of the approximate solution.

We further compare our solution with the existing literature and the ODE 45 routine,

which uses the fourth-order Runge-Kutta method. In Chapter 4, we present the solution

to the Troesch problem using the finite difference method and the higher-order spectral

quasilinearization method. In Chapter 5, we present conclusions.
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Chapter 2

The Lane-Emden Equation

In this chapter, we consider the solution of Lane-Emden type equations, ranging from sim-

ple to complex. The equations are solved separately using the finite difference method and

the multi-domain spectral quasilinearization method. We present approximate solutions

and compare the two methods based on the error given by each method.

2.1 The Lane-Emden equation

The Lane-Emden equation has the form

y′′(x) + 2
x
y′(x) + g(x, y) = f(x), (2.1)

where g(x, y) is nonlinear. The equation is subject to the conditions

y(a) = α, y′(a) = β. (2.2)

The Lane-Emden equation is a second-order nonlinear ordinary differential equation used

to describe the structure of a polytropic gas sphere at equilibrium. Lane introduced the

equation in 1870 with the objective of calculating the temperature and the density of the

mass on the sun’s surface [77]. The problem was later studied by Emden [78]. The Lane-
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Emden equation describes the density near the surface of a gaseous star in astrophysics

[79]. The Lane-Emden equation is an ordinary differential equation with a polytropic index

n [79]. In astrophysics, the Lane-Emden equation is vital when the polytropic index n lies

between 0 and 5. Exact solutions for the Lane-Emden equation can be obtained only for

the polytropic index n = 0, 1, or 5. This is a major disadvantage for the practical use of

the Lane-Emden equation in studies of the stellar structure, stability and oscillations [80].

Consequently many researchers have solved the Lane- Emden equation numerically. Adibi

and Rismani [81] obtained the approximate solution using the Legendre-spectral method

with Legendre-Gauss points as collocation points. Mirza [82] investigated the isothermal

Lane-Emden equation by using the fractional approximation technique. Murkherjee et

al. [79] investigated the Lane-Emden equation for different cases of polytropic index

n = 0, 1, 2, 3, 4, 5, and confirmed that a closed-form is obtained only for n = 0, 1, and 5,

while an infinite series was obtained for the cases of n = 2, 3, 4.

Taghavi and Pearce [83] solved the problem using the tau, Garlekin, and colloca-

tion methods. Van Gorder [84] solved the Lane-Emden equation using the δ-expansion

method. Motsa and Shateyi [85] proposed a successive linearization method to solve the

Lane-Emden problem. They found that the successive linearization method was easy to

implement, and gave reliable and accurate solutions. Bhrawry and Alofi [86] proposed

a shifted Jacobi-Gauss collocation method to solve the nonlinear Lane-Emden equation.

They found the method to be simple and accurate and noted that even for few collocation

points, the numerical results are excellent. Boubaker and Van Gorder [87] applied the

Boubaker polynomials expansion scheme to two types of Lane-Emden problems; the first

being for a polytropic gas sphere and the second for an isothermal gas sphere. Dehghan

and Shakeri [88] investigated the solutions of the Lane-Emden equation using the vari-

ational iteration method (VIM). The VIM was applied successfully to the initial value

problem (IVP) giving accurate numerical solutions. Doha et al. [89] presented a new sec-

ond kind Chebyshev algorithm to solve the Lane-Emden equation, where the differential

equation and its initial conditions were reduced to a system of algebraic equations. They

found the algorithm to be simple and showed that it gave accurate solutions. Kumar et

al. [90] demonstrated the efficiency of a numerical method they had applied to both the
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linear and nonlinear Lane-Emden equation using the Bernstein polynomial operational

matrix of integration. Iqbal and Javed [91] applied and checked the performance of the

optimal asymptotic method for solving Lane-Emden equation. Smarda and Khan [92]

presented a new approach with an improved differential transformation method, which

was applied successfully to obtain the solutions for different classes of the Lane-Emden

equations. Rismani and Monfared [93] proposed an improved Legendre-spectral method

to solve the initial value Lane-Emden equation. They used Legendre-Gauss points for

collocation nodes and Legendre interpolation. They aimed to overcome the complexity of

the singularity of the Lane-Emden equation at x = 0. In their work, they found solutions

when n = 2, 3, 4 where there are no exact solutions.

We give below a brief discussion of the multi-domain spectral quasilinearization method

in relation to its application to the Lane-Emden equation. Consider the initial value

differential equation

y′′ + 2
x
y′ + g(x, y) = 0, y(0) = α0, y′(0) = β0,

where the nonlinear function is represented by the function g(x, y). The ordinary differ-

ential equation is reduced to a first order IVP system by setting y′ = f . This gives,

y′ = f, y(0) = α0,

f ′ + 2
x
f + g(x, y) = 0, f(0) = β0.

The multi-domain spectral quasilinearization method is applied in the first interval of

the solution, and we get

dy(1)

dx
= f (1), y(1)(0) = α0,

df (1)

dx
+ 2
x
f (1) + g(x, y(1)) = 0, f (1)(0) = β0.

An iterative scheme is developed and is used to decouple the system of equations to give
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dy
(1)
r+1
dx

= f (1)
r , y

(1)
r+1(0) = α0,

df
(1)
r+1
dx

+ 2
x
f

(1)
r+1 = −g(x, y(1)

r+1), f
(1)
r+1(0) = β0.

In general, for i = 1, 2, 3, · · · , the system of equations to be solved is given by

dy
(i)
r+1
dx

= f (i)
r , y

(i)
r+1(xi−1) = αi−1,

df
(i)
r+1
dx

+ 2
x
f

(i)
r+1 = −g(x, y(i)

r+1), f
(i)
r+1(xi−1) = βi−1.

The collocation method is applied, giving

N∑
k=0

D(1)
j,ky

(1)
r+1(xk) = f (1)

r (xj), y
(1)
r+1(xN) = α0,

N∑
k=0

D(1)
j,kf

(1)
r+1(xk) + 2

xj
f

(1)
r+1(xj) = −g(xj, y(1)

r+1(xj)), f
(1)
r+1(xN) = β0.

The above sums at k = N including the boundary condition y
(1)
r+1(xN) = α0 and

f
(1)
r+1(xN) = β0, gives

N−1∑
k=0

D(1)
j,ky

(1)
r+1(xk) = f (1)

r (xj)−D(1)
j,Nα0,

N−1∑
k=0

D(1)
j,kf

(1)
r+1(xk) + 2

xj
f

(1)
r+1(xj) = −g(xj, y(1)

r+1(xj)) = −D(1)
j,Nβ0.

In the matrix form, these equations are written as

A
(1)
1 Y(1)

r+1 = R(1)
1 ,

A
(1)
2 F(1)

r+1 = R(1)
2 ,

where

A
(1)
1 = D(1), A

(1)
2 = D(1) + diag

( 2
x

)
,

R
(1)
1 (j) = −D(1)

j,Nα0 + f (1)
r (xj), R

(1)
2 (j) = −D(1)

j,Nβ0 − g(xj, y(1)
r+1(xj)).
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The approximate values of y(k)(x) and f (k)(x) are obtained by iterations for i = 0, 1, 2, · · · ,

beginning with an initial approximation.

A brief illustration of the finite difference scheme is as follows. Consider the second-order

boundary value problem

y′′ + p(x)y′ + q(x)y = r(x), a < x < b, (2.3)

y(a) = α y(b) = β.

where x ∈ [a, b], with xi = a+ ih and h = (b− a)/N being the grid points.

In this work the explicit finite difference scheme and the Crank-Nicholson scheme are used

to obtain the numerical solutions.

In equation (2.3), we replace the derivatives of y with forward and central differences to

get
yi+1 − 2yi + yi−1

h2 + p(xi)
yi+1 − yi

h
+ q(xi)yi = r(xi), i = 1, 2, 3, · · · .

Multiplying throughout by h2 and rearranging terms yields

(1 + hp(xi))yi+1 − (2 + hp(xi)− h2q(xi))yi + yi−1 = h2r(xi), i = 1, 2, 3, · · · .

Transposing yi and yi−1 to the right, we get

(xi + 2h)yi+1 = (2 + hp(xi)− h2q(xi))yi − yi−1 + h2r(xi), i = 1, 2, 3, · · · .

The solution is found by solving iteratively starting from the initial approximation.

2.2 Numerical Experiments

In this section, we solve examples of the Lane-Emden equation using the finite difference

method and the multi-domain spectral quasilinearization method.

21



2.2.1 A simple nonlinear Lane-Emden equation

We begin by solving a simple nonlinear Lane-Emden equation using the finite difference

method. The problem has previously been solved by other methods. Iacono and De Feline

[94] used a perturbation method to provide an accurate solution for the problem. Kanth

and Aruna [95] used the variational iteration method for the problem and found that the

method gives good results. Consider the initial value problem [95]

y′′ + 2
x
y′ + y5 = 0, y(0) = 1, y′(0) = 0. (2.4)

This equation has the exact solution

y(x) =
(

1 + x2

3

)− 1
2

.

A numerical solution is found to equation (2.4) using the explicit finite difference

method and the multi-domain spectral quasilinearization method. The solution will be

compared to the exact solution. Firstly, we find a numerical solution for equation (2.4)

using the finite difference method. The central difference scheme is used for the second

derivative y′′ and forward difference scheme is used for the first derivative y′, to obtain

yi+1 − 2yi + yi−1

h2 + 2
xi

yi+1 − yi
h

+ y5
i = 0, i = 1, 2, 3, · · ·

Hence,

yi+1 = (2xi + 2h)yi − xiyi−1 − h2xiy
5
i

(xi + 2h) , y0 = 1, y1 = y0.

We also sue the multi-domain spectral quasilinearization method (MD-SQLM) to re-

duce equation (2.4) to a system of first order IVP by substituting y′ = f , which gives

y′ = f, y(0) = 1, (2.5)
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so that the equation reduces to

f ′ = −2
x
f − y5, f(0) = 0. (2.6)

To obtain the solutions we follow the procedure outlined in section 2.1. The results are

presented in Table 2.1 and 2.2 and in Figure 2.1 - 2.3 .

Table 2.1: Numerical results y(x) for equation (2.4) by using the finite difference method
and multi-domain spectral method, compared with the exact solution, with N = 100.

x Exact FDM MD-SQLM
0.00 1.00000000000 1.00000000000 1.00000000000
0.20 0.99339926780 0.99404914976 0.99339926780
0.40 0.97435470369 0.97555759546 0.97435470369
0.60 0.94491118252 0.94650193716 0.94491118252
0.80 0.90784129900 0.90963053970 0.90784129900
1.00 0.86602540378 0.86783813095 0.86602540378
1.20 0.82199493653 0.82369294068 0.82199493653
1.40 0.77771377105 0.77920189588 0.77771377105
1.60 0.73455316031 0.73577509802 0.73455316031
1.80 0.69337524528 0.69430489260 0.69337524528

Table 2.1 shows the exact solutions and the approximate solution obtained using the

finite difference and multi-domain methods. A comparison between the finite difference

approximate solution and the exact solution shows they differ significantly whereas in

the case of the multi-domain method shows results that are in agreement with the exact

solution. This indicates of the accuracy of the multi-domain quasilinearization method in

finding the solutions to the Lane-Emden equation. The finite difference method gives less

accuracy in this instance.
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Table 2.2: Absolute errors in the solution of equation (2.4) at different values of x with
N = 100.

x Error (FDM) Error (MD-SQLM)
0.00 0.0000e+00 0.0000e+00
0.20 6.4988e-04 1.7097e-14
0.40 1.2029e-03 4.0190e-14
0.60 1.5908e-03 5.7176e-14
0.80 1.7892e-03 7.1942e-14
1.00 1.8127e-03 9.0705e-14
1.20 1.6980e-03 9.0705e-14
1.40 1.4881e-03 9.1815e-14
1.60 1.2219e-03 8.7041e-14
1.80 9.2965e-04 8.6819e-14

Table 2.2 shows the absolute error in the approximate solutions. The multi-domain spec-

tral quasilinearization method has the smallest error of 1.7097e − 14 which indicates the

accuracy of the method, while the error in the finite difference is much greater, of the or-

der 6.4988e−04. The comparison shows that the multi-domain spectral quasilinearization

method is the better of the two methods for this form of the Lane-Emden equation.
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Figure 2.1: Comparison of exact and numerical results for equation (2.4) when N =10 for
(a) the finite difference method, and (b) the multi-domain spectral method.

Figure 2.1 allows comparison between the approximate solution and analytical solution

when N = 10. The solution from the finite difference method converges more slowly than

that for the multi-domain spectral quasilinearization method, which converges rapidly to

the exact solution.
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Figure 2.2: Comparison of exact and numerical results for equation (2.4) when N =30 for
(a) the finite difference method, and (b) the multi-domain spectral method.

Comparing results in Figure 2.2 for N = 30, with those from N = 10, there is a slight im-

provement in convergence of the finite difference method, which indicates consistency. For
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the multi-domain spectral quasilinearization method, the solution has already converged

and therefore the solution does not change. The method is stable.
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Figure 2.3: Comparison of exact and numerical results when N =60 for (a) the finite
difference method, and (b) the multi-domain spectral methods.

Figure 2.3 shows the solution as the number of grid points is increased to N = 60. The fi-

nite difference solution converges to the exact solution. The multi-domain spectral remains

stable and unchanged.

2.2.2 A more complex nonlinear Lane-Emden equation

We now consider a slightly more complex type of the Lane-Emden equation, which we

will solve using the finite difference and multi-domain spectral quasilinearization method.

This problem is more complex because we dealing with exponential terms. It has already

been solved by other methods. For example, Shiralashetti and Kumbinarasaiah [96] solved

this problem using the Hermite wavelets operational matrix method. Bhrawry and Alofi

[86] solved it using the Jacobi-Gauss collocation method, noting that their method was

effective. Consider the initial value problem [86]

y′′ + 2
x
y′ + 4

(
2ey + e

y
2
)

= 0, y(0) = 0, y′(0) = 0. (2.7)
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The equation has the exact solution

y(x) = −2 ln
(
1 + x2

)
.

In our numerical solutions, we first introduce a finite difference scheme using the central

difference for y′′ and forward difference for y′. The equation becomes

yi+1 − 2yi + yi−1

h2 + 2
xi

yi+1 − yi
h

+ 4
(

2eyi + e
yi

2
)

= 0, i = 1, 2, 3, · · ·

hence,

(xi + 2h)yi+1 = (2xi + 2h)yi − xiyi−1 − 4h2xi

(
2eyi + e

yi

2
)
, y0 = 0, y1 = y0.

When the multi-domain spectral quasilinearization method is applied to equation (2.7),

we get a system of first order IVPs by substituting y′ = f , which gives

y′ = f, y(0) = 0, (2.8)

f ′ = −2
x
f − 4

(
2ey − e

y
2
)
, f(0) = 0. (2.9)

Then we follow the procedure described in section 1.4.3. to obtain the solutions. The

results are presented in Tables 2.3 and 2.4 and in Figure 2.4 - 2.5.
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Table 2.3: Numerical results of equation (2.7) with N = 100 for the exact solution, the
finite difference method and multi-domain spectral quasilinearization method.

x Exact FDM MD-SQLM
0.00 0.00000000000 0.00000000000 0.00000000000
0.20 -0.07844142631 -0.07083538808 -0.07844142631
0.40 -0.29684001024 -0.28371786342 -0.29684001024
0.60 -0.61496939950 -0.59926445744 -0.61496939950
0.80 -0.98939248367 -0.97363195241 -0.98939248367
1.00 -1.38629436112 -1.37212891666 -1.38629436112
1.20 -1.78399607861 -1.77228956096 -1.78399607861
1.40 -2.17037853667 -2.16146157902 -2.17037853667
1.60 -2.53952108973 -2.53341323961 -2.53952108973
1.80 -2.88912653849 -2.88568499675 -2.88912653849

Table 2.3 shows the solution of equation 2.7 using the exact solution, the finite dif-

ference method, and the multi-domain spectral quasilinearization method and the exact

solution. In the finite difference method at x = 0.40, the solution has converged to only two

decimal places while for the multi-domain spectral quasilinearization method the solution

has converged to the exact solution.
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Table 2.4: Absolute errors in the solution of Equation (2.7) for different values of x when
N = 100

x Error (FDM) Error (MD-SQLM)
0.00 0.0000e+00 0.0000e+00
0.20 7.6060e-03 4.9960e-16
0.40 1.3122e-02 1.1657e-15
0.60 1.5705e-02 7.4385e-15
0.80 1.5761e-02 1.1324e-14
1.00 1.4165e-02 1.5099e-14
1.20 1.1707e-02 3.3751e-14
1.40 8.9170e-03 6.2617e-14
1.60 6.1079e-03 8.0380e-14
1.80 3.4415e-03 9.5035e-14

Table 2.4 shows the absolute error for the finite difference method and the multi-domain

spectral quasilinearization method. For x = 1.60, the finite difference method has an error

of 6.1079e − 03, while for the multi-domain spectral quasilinearization method the error

is much smaller, at 8.0380e− 14. The multi-domain spectral quasilinearization method is,

thus, the more accurate of the two methods.
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Figure 2.4: Comparison of exact and numerical results for equation (2.7) when N =10 for
(a) the finite difference, and (b) the multi-domain spectral quasilinearization methods.
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Figure 2.4 shows the solutions when N = 10 found by the finite difference method and

the multi-domain spectral quasilinearization method and compares them with the exact

solution. The solution by the finite difference converges slowly whereas for the multi-

domain spectral quasilinearization method, it converges faster when N = 10.
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Figure 2.5: Comparison of exact and numerical results for equation (2.7) when N =30 from
(a) the finite difference, and (b) the multi-domain spectral quasilinearization methods.

Figure 2.5 shows the solutions found by the two numerical methods when N = 30. There

is a slight improvement in the solution by the finite difference method from N = 10.

There is no change in the multi-domain spectral quasilinearization method, which means

the method is consistent and stable.
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Figure 2.6: Comparison of exact and numerical results for equation (2.7) when N =60 for
(a) the finite difference, and (b) the multi-domain spectral quasilinearization methods.

Figure 2.6 shows the solution when the number of grid points is increased to N = 60. As

with lower number of grid points, the finite difference method now converges to the exact

solution and is consistent. The multi-domain spectral quasilinearization method converges

and is stable. The multi-domain spectral quasilinearization method may, however, be a

more preferable method to use to find the solution.

2.2.3 An even more complex Lane-Emden equation

We now extend the complexity of the Lane-Emden equation that we will solve. This

problem which include logarithmic function terms, was solved by Bhrawry and Alofi [86]

using the Jacobi-Gauss collocation method. Consider an initial value problem [86]

y′′ + 2
x
y′ − 6y − 4y ln y = 0, y(0) = 1, y′(0) = 0, (2.10)

with a closed form solution

y(x) = ex
2
.

When the solution is obtained by finite difference schemes, equation (2.10) becomes

yi+1 − 2yi + yi−1

h2 + 2
xi

yi+1 − yi
h

− 6yi − 4yi ln yi = 0, i = 1, 2, 3, . . .
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hence,

(xi + 2h)yi+1 = (2xi + 2h)yi − xiyi−1 − h2xi(6yi + 4yi ln yi), y0 = 0, y1 = y0.

We then use the multi-domain spectral quasilinearization method to find the solution.

We begin by reducing equation (2.10) to a system of first order initial value problem by

substituting y′ = f , which gives

y′ = f, y(0) = 1, (2.11)

f ′ = −2
x
f + 6y + 4y ln y, f(0) = 0. (2.12)

We follow the procedure described in Section 1.4.3. to obtain the solution.

Results are presented in Table 2.5 and Figure 2.7, 2.8, and 2.9.

Table 2.5: Numerical results y(x) of equation (2.10) using the exact solution, the finite
difference method and multi-domain spectral quasilinearization method with N = 100.

x Exact FDM MD-SQLM
0.00 1.00000000000 1.00000000000 1.00000000000
0.20 1.04081077419 1.03660154636 1.04081077419
0.40 1.17351087099 1.16368196422 1.17351087099
0.60 1.43332941456 1.41435368519 1.43332941456
0.80 1.89648087930 1.86085484710 1.89648087930
1.00 2.71828182846 2.65012977529 2.71828182846
1.20 4.22069581700 4.08528016832 4.22069581700
1.40 7.09932706516 6.81700947288 7.09932706516
1.60 12.93581731554 12.31422128415 12.93581731554
1.80 25.53372174735 24.08153759156 25.53372174735

Table 2.5 shows the exact solutions and the approximate solutions obtained using the

finite difference and the multi-domain spectral quasilinearization methods. A comparison

of these results indicates that the finite difference solution differs slightly from the exact

solution but for the multi-domain spectral quasilinearization method the solution converges
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to the exact solution. The comparison, therefore, shows that the multi-domain method is

the better numerical method to solve this example of the Lane Emden equation.

Table 2.6: Absolute errors in the solution of Equation (2.10) at different values of x with
N = 100

x Error (FDM) Error (MD-SQLM)
0.00 0.0000e+00 0.0000e+00
0.20 4.2092e-03 5.5511e-15
0.40 9.8289e-03 1.4655e-14
0.60 1.8976e-02 3.7748e-15
0.80 3.5626e-02 1.5987e-14
1.00 6.8152e-02 2.4425e-14
1.20 1.3542e-01 8.4377e-14
1.40 2.8232e-01 2.1316e-13
1.60 6.2160e-01 4.5652e-13
1.80 1.4522e+00 1.2470e-12

Table 2.6 compares the absolute errors obtained using the finite difference and multi-

domain spectral quasilinearization methods. It can be seen that the multi-domain spec-

tral quasilinearization method has the smallest error of 5.5511e− 15, which indicates the

accuracy of the method. The error in the finite difference is significantly larger and of

the order 4.2092e − 03. The comparison shows that the multi-domain spectral quasilin-

earization method is, in this case, the better method to use to solve the Lane-Emden

equation.
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Figure 2.7: Comparison of exact and numerical results for equation (2.10) when N =10
for (a) the finite difference, and (b) the multi-domain spectral quasilinearization methods.

Figure 2.7 shows the results obtained using the finite difference method and multi-domain

spectral quasilinearization method, compared with those for the exact solution. To start,

we picked a small value of grid points, N = 10 to observe the performance of the methods.

The finite difference method converges more slowly than does the multi-domain spectral

quasilinearization method, which converges to the exact solution.
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Figure 2.8: Comparison of exact and numerical results for equation (2.10) when N =30
for (a) the finite difference, and (b) the multi-domain spectral quasilinearization methods.

Figure 2.8 shows the comparison of the two methods when the number of grid points
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is increased so N = 30. For the finite difference method, the larger number of grid

points means there is improved convergence to the exact solution. The finite difference is

consistent. The multi-domain method retains its accuracy even when the grid points are

increased, and it is stable.
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Figure 2.9: Comparison of exact and numerical results for equation (2.10) when N =60
for (a) the finite difference, and (b) the multi-domain spectral quasilinearization methods.

Figure 2.9 shows the solutions as the grid points are increased with N = 60. In the

finite difference method the solution converges to the exact solution. In the multi-domain

spectral quasilinearization method still shows accurate results even when the grid points

are increased to N = 60. Bacause of the fast convergence, the multi-domain spectral

quasilinearization method is a much better method to use for this equation.

2.3 Summary

In this chapter we presented the solution of three Lane-Emden type equations, ranging

from simple to highly nonlinear. The finite difference method and multi-domain spectral

quasilinearization method were used to obtain the approximate solutions. We have showed

that, for all three equations, the multi-domain spectral quasilinearization method gives
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faster convergence and better accuracy than does the finite difference . In the next chapter,

we present the solution for the Bratu problem using the spectral quasilinearization method,

and we will compare it with the performance of the higher-order spectral quasilinearization

method.

36



Chapter 3

The Bratu Problem

In this chapter, we present the numerical solution of the Bratu problem which is a nonlinear

boundary value problem. The solution methods are the spectral quasilinearization method

and a higher-order spectral quasilinearization method. The results obtained are compared

with the known exact solution and the convergence of the methods is determined.

3.1 The Bratu equation

Consider the nonlinear Bratu problem

y′′(x) + f(x, y) = 0, (3.1)

where f(x, y) is nonlinear. The equation is subject to boundary conditions

y(a) = α, y(b) = β. (3.2)

The Bratu equation has been studied in engineering and physics as a fuel ignition model

for chemical and thermal reactions, thermal combustion theory and radiative heat transfer

[97]. The equation was first introduced by Bratu in 1914 [98]. The Bratu problem is an

eigenvalue problem which is nonlinear and it is usually treated as a benchmark problem

to test their accuracy of numerical methods [99]. The Bratu problem has a parameter
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λ which describes the number of possible solutions; the problem has two solutions for

λ < λc, one solution for λ = λc and no solution for λ > λc, where λc is a critical turning

point [100]. Ragb et al. [101] introduced a numerical scheme based on the differential

quadrature method for solving the Bratu problem. In this method, the unknowns were

approximated using the differential quadrature approximation, which led to a nonlinear

algebraic system that was solved iteratively. These schemes were successful in solving

the nonlinear Bratu problem with few grid points and the results agreed with the 1-D

and 2-D closed forms. The moving least square differential quadrature method provided

rapid convergence compared to the differential quadrature method. Caglar et al. [102]

used the B-Spline method to obtain the approximate solution for the Bratu problem,

for different values of λ at λ = 1, 2, and 3.51. A comparison was made between their

numerical results and those from other methods in the literature. They found their results

were accurate at λ = 1, but as λ increased the error increased. They concluded that

the B-Spline method was effective and more accurate than the Laplace method and the

decomposition method. Hassan and Semary [103] presented analytic approximate solutions

for different λ for the Bratu problem using the homotopy analysis method. They used the

averaged residual error to find the optimal value of the convergence-controller parameter

h. In their method, the nonlinear terms were replaced by the Taylor series, and they

achieved high accuracy in their results. Temimi and Ben-Romdhane [104] proposed a new

iterative scheme based on the Newton-Raphson-Kantorovich approximate method to solve

the Bratu problem. A comparison was performed between B-Spline and Laplace transform

methods already in the literature. The scheme produced accurate and efficient results and

was far more reliable and accurate than the B-Spline and Laplace transform methods.

Odejide and Aregbesola [105] examined the nonlinear Bratu problem in two dimensions.

The equation was solved using three methods, the finite difference method, the weighted

residual method, and an analytical method. They obtained accurate results for all three

methods. Ghomanjani and Shateyi [106] proposed a new approach for the Bratu problem,

which was based on the Bernstein polynomial approximations. When compared with

methods in the existing literature their method was found to be accurate and efficient.

Tomar and Pandey [107] introduced a numerical technique to solve the Bratu problem,

which employed the quasilinearization method to linearize the problem. The linearized

38



Bratu problem was then solved using an optimal Picard iterative method. They found

that their method was efficient and accurate. Venkatesh et al. [108] solved the initial

value Bratu problem, using the Legendre wavelet method to obtain the solution. They

compared the approximate solution and the exact solution and showed that their method

was highly accurate and reliable. Saravi et al. [109] solved the Bratu problem using the

variational iteration method. They found that the method was effective and reliable.

3.2 Numerical Experiments

In this section, we solve the Bratu equation using the spectral quasilinearization method

(SQLM) and higher-order spectral quasilinearization method (HO-SQLM).

3.2.1 Example 1

Consider the simple problem [104]

y′′(x) + λey(x) = 0, y(0) = 0, y(1) = 0, 0 ≤ x ≤ 1, (3.3)

we begin by using the spectral quasilinearization method. Linearizing the equations using

the SQLM scheme gives

a2,ry
′′
r+1 + a1,ry

′
r+1 + a0,ryr+1 = Rr, (3.4)

with boundary conditions

yr+1 = 0, at x = 0,

yr+1 = 0, at x = 1, (3.5)

where

a2,r = 1, a1,r = 0, a0,r = λeyr , (3.6)
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Rr = λeyryr − λeyr . (3.7)

Before applying the spectral collocation method, the domain x ∈ [0, 1] is transformed to

z ∈ [−1, 1] using the linear transformation x = (z + 1)
2

To transform the system (3.37) so as to be defined in [−1, 1], it is enough to transform

the derivatives using the chain rule. The scaled differentiation matrix in the interval [0, 1] is

given by D = 2D where D is the standard differentiation matrix. Thus, at the collocation

points zi = cos
(
πi
N

)
for i = 0, 1, 2, . . . , N , the derivatives u′′ become

y′′(xi)→ D2y, i = 0, 1, 2, . . . , N.

Applying spectral collocation on (3.37) gives

D2yr+1 + a1,rDyr+1 + a0,ryr+1 = Rr, (3.8)

which can be written as [
D3 + a1,rD + a0,r

]
yr+1 = Rr. (3.9)

In matrix form, equation (3.9) can be written as

AF = RrRrRr (3.10)

where

A = D2 + a1,rD + a0,rI. (3.11)

The boundary conditions (3.38) are

yr+1(zN) = 0, (3.12)

yr+1(z0) = 0. (3.13)

The boundary conditions corresponding to y are imposed as equations on the first and

last two rows of the matrix A and vector Rr.
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1 0 0 · · · 0

A1,0 A1,1 A1,2 · · · A1,N

A2,0 A2,1 A2,2 · · · A2,N

A3,0 A3,1 A3,2 · · · A3,N

... ... ... ... ...

AN−2,0 AN−2,1 AN−2,2 · · · AN−2,N

AN−1,0 AN−1,1 AN−1,2 · · · AN−1,N

0 0 0 · · · 1





yr+1,0

yr+1,1

yr+1,2

yr+1,3

...

yr+1,N−2

yr+1,N−1

yr+1,N



=



0

Rr,1

Rr,2

Rr,3

...

Rr,N−2

Rr,N−1

0



The approximate solutions y(x) are obtained by solving the matrix system A iteratively

for r = 0, 1, 2, . . ., beginning with a suitable initial guess. The chosen initial guess is a

simple function such as a polynomial which satisfies the boundary conditions. We use the

following initial guess

y0(x) = 0.

We next show the solution for the higher-order spectral quasilinearization method

(HO-SQLM). Consider equation (3.3), for which the nonlinear component is given as

N = λey,

and approximated as

N ≈ λeyi + α0,i(y − yi) +H[y, yi],

where

α0,i = λeyi .
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Then we follow the procedure given in section (1.4.3.).

The solution of the problem is presented in Tables 3.1-3.5 and Figures 3.1, 3.2.

Table 3.1: Numerical results y(x) of Equation (3.3) for the SQLM and HO-SQLM for
N = 30

x Exact SQLM ho-SQLM
0.00 0.00000000000 0.00000000000 0.00000000000
0.17 0.60168967660 0.60124335136 0.60167522395
0.25 0.84674416250 0.84609447188 0.84672312460
0.35 1.05244530281 1.05161294186 1.05241834979
0.45 1.17115790873 1.17021454905 1.17112736142
0.55 1.17115790873 1.17021454905 1.17112736142
0.65 1.05244530281 1.05161294186 1.05241834979
0.79 0.72605577486 0.72550804956 0.72603803874
0.87 0.47927323695 0.47892335005 0.47926190712
0.99 0.04349197304 0.04346183446 0.04349099711
1.00 0.00000000000 0.00000000000 0.00000000000

Table 3.1 shows the numerical solutions obtained using the spectral quasilinearization

method and the higher-order spectral quasilinearization method. The results show that

although neither set of solutions match the exact solution, those obtained by the HO-

SQLM are closer than those obtained using SQLM. For example, when x = 0.17 the

results agree for the SQLM to four decimal places, while for the HO-SQLM they agree to

five decimal places.
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Table 3.2: Absolute error in solving equation (3.3) using the SQLM and HO-SQLM when
N = 30

x SQLM HO-SQLM
0.00 0.0000e+00 0.0000e+00
0.17 4.4633e-04 1.4453e-05
0.25 6.4969e-04 2.1038e-05
0.35 8.3236e-04 2.6953e-05
0.45 9.4336e-04 3.0547e-05
0.55 9.4336e-04 3.0547e-05
0.65 8.3236e-04 2.6953e-05
0.79 5.4773e-04 1.7736e-05
0.87 3.4989e-04 1.1330e-05
0.99 3.0139e-05 9.7593e-07
1.00 0.0000e+00 0.0000e+00

Table 3.2 shows the absolute error for the SQLM and HO-SQLM. For x = 0.87 the error

for the SQLM is 3.4989e− 04 while the HO-SQLM performs only marginally better, with

an error of 1.1330e−05. Together with results from Table 3.3, this indicates that the HO-

SQLM is the slightly more accurate of the two methods for solving the Bratu problem.
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Figure 3.1: Numerical results of the SQLM and the HO-SQLM for equation (3.3) when
N = 10.

Figure 3.1 shows a graphical comparison of the solution for the SQLM, HO-SQLM and

the exact solution. Both methods appear to be accurate and give reliable results.
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Figure 3.2: Numerical results of the Bratu equation using the SQLM and the HO-SQLM
of equation (3.3) when N = 80.

Figure 3.2 shows a comparison of the solution of the Bratu equation using the SQLM,

HO-SQLM and the exact solution, when N has been increased from 10 to 80. In this case

the solution curves are a good match. The results indicate that, when the number of grid

points is increased to 80, further improvements in accuracy is achieved for both methods.
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Table 3.3: Numerical results of equation (3.3) using HO-SQLM in comparison with MAT-
LAB inbuilt routine bvp4c for λ = 0.1.

x y(x) bvp4c

0.0 0.00000000 0.00000000
0.1 0.00454150 0.00454022
0.2 0.00807854 0.00807610
0.3 0.01060755 0.01060420
0.4 0.01212597 0.01212204
0.5 0.01263229 0.01262815
0.6 0.01212597 0.01212204
0.7 0.01060755 0.01060420
0.8 0.00807854 0.00807610
0.9 0.00454150 0.00454022
1.0 0.00000000 0.00000000

Table 3.3 shows the results of equation (3.3) where λ = 0.1. The results were obtained

using the HO-SQLM and MATLAB bvp4c inbuild routine. The results are in agreement

up to five decimal places.
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Table 3.4: Numerical results of equation (3.3) in comparison with MATLAB bvp4c solver
for λ = 1

x HO-SQLM bvp4c

0.0 0.00000000 0.00000000
0.1 0.04984679 0.04984672
0.2 0.08918993 0.08918980
0.3 0.11760910 0.11760891
0.4 0.13479025 0.13479003
0.5 0.14053921 0.14053898
0.6 0.13479025 0.13479003
0.7 0.11760910 0.11760891
0.8 0.08918993 0.08918980
0.9 0.04984679 0.04984672
1.0 0.00000000 0.00000000

Table 3.4 show the results for λ = 1 obtained by the HO-SQLM and MATLAB bvp4c

inbuild routine. The results are in agreement for up to seven decimal places.

Table 3.5: Comparison of the residual error in the HO-SQLM and SQLM for λ = 0.1.

iter. HO-SQLM SQLM

1 1.13178911e-12 2.93089749e-03
2 1.13178911e-12 3.84472562e-09
3 1.13178911e-12 1.06059606e-12
4 1.13178911e-12 1.64884773e-12
5 1.13178911e-12 1.13178911e-12
6 1.13178911e-12 1.13178911e-12
7 1.13178911e-12 1.13178911e-12
8 1.13178911e-12 1.13178911e-12
9 1.13178911e-12 1.13178911e-12
10 1.13178911e-12 1.13178911e-12
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Table 3.5 shows the residual error of the SQLM and HO-SQLM when λ = 0.1. The

higher-order spectral quasilinearization method is seen to be more accurate than the spec-

tral quasilinearization method.

3.2.2 Example 2

In this section we consider a more complex problem. The problem is again solved using

both the spectral quasilinearization method and the higher-order spectral quasilineariza-

tion method. This problem is a highly nonlinear initial value problem.

In this example, we solve the equation (see [110])

y′′(t) + y(t) + ay3(t) + b sin(y(t)) = 0, y(0) = π

18 , y′(0) = 0. (3.14)

We begin by linearizing the equations using the SQLM scheme, giving

a2,ry
′′
r+1 + a1,ry

′
r+1 + a0,ryr+1 = Rr, (3.15)

with boundary conditions

yr+1 = 0, at x = π

18 ,

y′r+1 = 0, at x = 0, (3.16)

where

a2,r = 1, a1,r = 0, a0,r = 1 + 3ay2
r + b cos(yr), (3.17)

Rr = 2ay3
r + by cos(yr)− b sin(y). (3.18)

The resulting solution is of the form

AF = RrRrRr (3.19)
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where

A = D2 + a1,rD + a0,rI. (3.20)

The boundary conditions are

yr+1(zN) = π

18 , (3.21)

y′r+1(zN) = 0. (3.22)

Now, for comparison, we use the HO-SQLM to obtain the solution. The nonlinear com-

ponent is given as

N = ay3 + b sin(y), (3.23)

which can be approximated as

N [yi] ≈ ay3
i + b sin(yi) + α0,i(y − yi) +H[y, yi], (3.24)

where

H[y, yi] = ay3 + b sin(y)−
(
ay3

i + b sin(yi)
)
− α0,i (y − yi) , (3.25)

and

α0,i = 3ay2
i + b cos(yi). (3.26)

Equation (3.14) then becomes

y′′ + (1 + α0,i) y +H[y, yi] = α0,iyi −
(
ay3

i + b sin(yi)
)
. (3.27)

Here H[y, yi] will be written as

H[y, yi] = H[yr, yi] + β0,r (yr+1 − yr) , (3.28)

where

β0,r = 3ay2
r + b cos(yr)− α0,i, (3.29)
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so that when we collocate, we have

y′′r+1 + (1 + α0,i) yr+1 +H[yr, yi] + β0,r (yr+1 − yr) = φ, (3.30)

(3.31)

where

φ = α0,i −
(
ay3

i + b sin(yi)
)
. (3.32)

We now write this equation in the form

y′′r+1 + (1 + β0,r + α0,i) yr+1 = φ+ β0,ryr −H[yr, yi]. (3.33)

Applying spectral collocation on equation (3.2.2) results in

(
D2 + (1 + β0,r + α0,i)I

)
Yr+1 = φ+ β0,ryr −H[yr, yi]. (3.34)

This equation has the form

MYr+1 = Φr. (3.35)

where D is the scaled Chebyshev differentiation matrix, M = D2 + (1 + β0,r + α0,i)I and

I is the identity matrix. The solutions are presented in Tables 3.6 to 3.8 and Figure 3.3.
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Table 3.6: Numerical results of equation (3.14) compared with the results in Hosen and
Chowdhury[110].

x ho-SQLM Runge-Kutta method [110] HBM [110]
0.0 0.174532 0.174532 0.174532
0.5 0.132217 0.132306 0.132217
1.0 0.026019 0.026059 0.026019
1.5 -0.092692 -0.092797 -0.092692
2.0 -0.166728 -0.166751 -0.166728
2.5 -0.159977 -0.160017 -0.159977
3.0 -0.075757 -0.075853 -0.075757
3.5 0.044947 0.045014 0.044946
4.0 0.144027 0.144100 0.144027
4.5 0.173455 0.173458 0.173455
5.0 0.118784 0.118883 0.118785

Table 3.6 shows the numerical results for the higher-order spectral quasilinearization

method and some numerical results in the literature. The results are in good agree-

ment with those obtained by Hosen and Chowdhury using the harmonic balance method

(HBM). The results are slightly different to those they obtained through the Runge-Kutta

method.
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Table 3.7: Comparison of the convergence of the HO-SQLM and the SQLM for −y′′(0).

iter. HO-SQLM SQLM

1 0.35349768 0.35349769
2 0.35349768 0.35349772
3 0.35349768 0.35349767
4 0.35349768 0.35349768
5 0.35349768 0.35349768
6 0.35349768 0.35349768
7 0.35349768 0.35349768
8 0.35349768 0.35349768
9 0.35349768 0.35349767
10 0.35349768 0.35349767

Table 3.7 shows a comparison of the convergence of the spectral quasilinearization method

and the higher-order spectral quasilinearization method. The SQLM converges after three

iterations while the HO-SQLM converges at the first iteration. This shows that the HO-

SQLM is a better method for this equation.
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Table 3.8: Comparison of the residual error of the scheme for equation (3.14) using SQLM
and HO-SQLM.

iter. HO-SQLM SQLM

1 4.93725122e-09 1.02214382e-02
2 4.18055163e-09 1.18952284e-05
3 1.25561667e-09 4.82083590e-09
4 7.65845937e-09 3.99137673e-09
5 2.98729458e-09 3.80220183e-09
6 3.23467714e-09 2.76901585e-09
7 4.34062269e-09 3.74399417e-09
8 2.11417966e-09 1.35748007e-09
9 6.78534445e-09 6.21781976e-09
10 4.32607078e-09 6.14506018e-09

Table 3.8 shows the residual errors for the equation (3.14) using the SQLM and the HO-

SQLM. The residual error for SQLM is bigger than that for the HO-SQLM over the first

three iterations. As the number of iterations increases the error improves for the SQLM.

The error for the HO-SQLM is consistently good from the first iteration.
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Figure 3.3: Convergence of the approximations y(t) of equation (3.14) for N = 80.
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Figure (3.3) shows the convergence graphs for the spectral quasilinearization and higher-

order quasilinearization methods. The SQLM starts with a large error and improves as

the number of iterations increases. The error from the HO-SQLM is small from the first

iteration.

3.2.3 Example 3

Here, we consider [111]

y′′(t) + y(t)− λy(t)(1− y′(t)2) = 0, y(0) = 1, y′(0) = 0, (3.36)

we use the SQLM to linearize the equation Linearizing the equations using the SQLM

scheme gives

a2,ry
′′
r+1 + a1,ry

′
r+1 + a0,ryr+1 = Rr, (3.37)

with boundary conditions

yr+1 = 0, at x = 1,

y′r+1 = 0, at x = 0. (3.38)

Where

a2,r = 1, a1,r = 2λyry′r, a0,r = 1− λ+ λ(y′r)2, (3.39)

Rr = 2λyry′r. (3.40)

The solution can be presented in the form

AF = RrRrRr, (3.41)

where

A = D2 + a1,rD + a0,rI. (3.42)
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The boundary conditions (3.38) are

yr+1(zN) = 1, (3.43)

y′r+1(zN) = 0. (3.44)

When applying the HO-SQLM, the nonlinear component is written as

N = λyy′2, (3.45)

and approximated as

N ≈ λyiy
′2
i + α0,i(y − yi) + α1,i(y′ − y′i) +H[y, y′, yi, y′i], (3.46)

where

α0,i = λy′2i , α1,i = 2λyiy′i. (3.47)

Equation (3.36) is now written as

y′′ + (1− λ)y + λyiy
′2
i + α0,i(y − yi) + α1,i(y′ − y′i) +H[y, y′, yi, y′i] = 0. (3.48)

This equation becomes

y′′ + α1,iy
′ + (1− λ+ α0,i)y +H[y, y′, yi, y′i] = φ, (3.49)

where

φ = α0,iyi + α1,iy
′
i − λyiy′2i , (3.50)

and

H[y, y′, yi, y′i] = λyy′2− λyiy′2i − α0,i(y − yi)− α1,i(y′ − y′i). (3.51)
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We now write H[y, y′, yi, y′i] as

H[y, y′, yi, y′i] = H[yr, y′r, yi, y′i] + β0,r(yr+1, yr) + β1,r(y′r+1, y
′
r), (3.52)

where

β0,r = λy′2r − α0,i, β1,r = 2λyry′r − α1,i. (3.53)

The numerical scheme for equation (3.49), upon applying spectral collocation is given as

(
D2 + (α1,i + β1,r)D + (1− λ+ α0,i + β0,r)I

)
Yr+1 = φ+ β0,ryr + β1,ry

′
r −H[yr, y′r, yi, y′i].

(3.54)

This equation has the form

MYr+1 = Φr, (3.55)

where

M = D2 + (α1,i + β1,r)D + (1− λ+ α0,i + β0,r)I, (3.56)

and

Φr = φ+ β0,ryr + β1,ry
′
r −H[yr, y′r, yi, y′i], (3.57)

and, as before, D is the transformed Chebyshev differentiation matrix and I is the identity

matrix, both of size (N + 1) by (N + 1).

The solution is presented in Tables 3.9 and 3.10 and Figure 3.4.
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Table 3.9: Numerical results of equation (3.36) in comparison with the results of Alquran
and Al-Khaled[111] and MATLAB inbuilt routine ode45 solver for λ = 0.1.

x HO-SQLM Ref[111] Ref[111] ode45

0.00 1.00000000 1.00000000 1.00000000 1.00000000
0.25 0.97198072 0.97039447 0.97198047 0.96900755
0.50 0.88920312 0.88374859 0.88918750 0.87899686
0.75 0.75558427 0.74618137 0.75541797 0.73802260
1.00 0.57784441 0.56675787 0.57700000 0.55719150
1.25 0.36558877 0.35630944 0.36279297 0.34851910
1.50 0.13107439 0.12652305 0.12418750 0.12355532
1.75 -0.11150949 -0.11048277 -0.12489453 -0.10696207
2.00 -0.34722526 -0.34221415 -0.36800000 -0.33267864
2.25 -0.56177395 -0.55585637 -0.58614453 -0.54290519
2.50 -0.74270802 -0.73870619 -0.75781250 -0.72614995

Table 3.9 shows the results obtained by higher-order spectral quasilinearization method

compared with results in the literature. The results are in agreement with the ones in

literature to a certain number of decimal places.
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Table 3.10: Residual error of the scheme for equation (3.36) in comparison with spectral
quasilinearization method for λ = 0.1.

iter. HO-SQLM SQLM

1 6.55185431e-08 3.46409204e-02
2 9.11008101e-08 1.22463639e-03
3 1.12282578e-08 4.42902092e-08
4 1.27713429e-07 8.67352355e-08
5 8.31496436e-09 3.51923518e-08
6 7.12694600e-08 3.90515197e-08
7 2.55153282e-08 1.22227357e-07
8 4.19619028e-08 2.10769940e-08
9 3.87430191e-08 9.62754712e-09
10 4.68920916e-08 4.68920916e-08

Table 3.10 shows the residual error of the HO-SQLM and the SQLM. The residual error for

the HO-SQLM is much smaller than the error of SQLM. That shows that the HO-SQLM

is more accurate than the SQLM.
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Figure 3.4: Convergence of the approximations y(t) of equation (3.36) for N = 80.
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Figure 3.4 shows the convergence graph of the SQLM and the HO-SQLM. The SQLM gives

a bigger error over the first three iterations, but it reduces as the iterations increases. The

HO-SQLM immediately gives a small error.

3.3 Summary

In this chapter, we have solved the nonlinear Bratu problem. Using the spectral quasi-

linearization method and the higher-order spectral quasilinearization method, we could

compare the efficiency of the two methods. We chose the ho-SQLM over the SQLM since,

with evidence, it is accurate. We included two examples that are initial value problems.

Our tabular and graphical results show that, for this equation, the HO-SQLM is more

suitable than the SQLM, since the evidence is that it is consistently the more accurate of

the two. In chapter 4, we discuss and solve Troesch problem.
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Chapter 4

The Troesch problem

In this chapter, we present a numerical solution of the highly nonlinear Troesch problem.

The finite difference and higher-order spectral quasilinearization methods are used to solve

the problem. A comparison is made between the two methods.

4.1 Literature review

Consider the nonlinear Troesch problem

y′′(x) = n sinh(ny(x)), y(0) = 0, y(1) = 1. (4.1)

The equation has the exact solution

y(x) = 4
n

tanh−1 (u(x)), (4.2)

where n is a positive constant. The Troesch problem is a nonlinear ordinary differential

equation, in the form of a second-order boundary value problem. It was first described

by Weibel and Troesch [112]. The equation has been used in the study of confinement

of a plasma column with radiation pressure [113]. Whereas Troesch solved the problem

using the shooting method, other numerical methods have been employed. For example,

Deeba et al. [114] solved the problem using the Adomian decomposition method. They
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found that the method gave accurate results for the Troesch problem. Chang [115] solved

the Troesch problem successfully using the variational iteration method by transforming

the hyperbolic nonlinear Troesch problem into a polynomial-type nonlinear problem. Al-

though it was noted that the variational iterative method was used successfully to find the

solution, when n > 5, the problem was still complex to solve. Mohyud-Din [116] used He’s

polynomials to solve the Troesch problem, and obtained the polynomials by a homotopy

perturbation method. Roberts and Shipman [117] developed a closed-form solution for the

Troesch problem and found a numerical solution for n = 5. Zarebnia and Sajjadian [118]

applied the Sinc-Galerkin method to the Troesch problem. When they compared results

from that method with the exact solutions and results from other numerical methods.

They concluded that the method was applied successfully to the problem. To solve the

Troesch problem, Feng et al. [119] presented a new algorithm which is a modification of

the homotopy perturbation method. They compared the solutions obtained with those

obtained by the variational iterative method and Adomian decomposition method. They

found that their method gives accurate numerical solutions.

Bisheh-Niasar et al. [120] solved the Troesch problem by using new higher-order accu-

rate schemes for solving two-point boundary value problems. They showed that the order

of Scheme 1 was O(h4) and Scheme 2 was O(h6). They found that the methods were

accurate. Khuri and Sayfy [121] presented a solution for the Troesch problem using the

B-Spline collocation approach. Although they found that the method was efficient, they

noted that the solution was less accurate as the value of n increased. Mohyud-Din [122]

found the method of He’s polynomial was effective in solving the Troesch problem. Ben-

Romdhane and Temimi [123] solved the Troesch problem using a numerical technique that

is based on the Newton-Raphson-Kantorovich scheme.In using the finite difference method

to find the solution at each iteration, with n = 500 which is extremely large, they noted

that the problem became too complex to solve. Doha et al. [124] successfully used the

Jacobi-Gauss collocation method to find a solution for a Troesch problem. Makarov and

Dragunov [125] tested a new technique, named the straight-inverse method, and showed it

could be successfully applied to solve the Troesch problem. Their results showed good ac-

curacy when compared to existing results in the literature. Chang [126] solved the Troesch
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problem using the shooting method. The results were in good agreement with those in the

literature and the exact solution, so the method was judged to be efficient and reliable for

solving the Troesch problem. Mirmoradi et al. [127] successfully applied the homotopy

perturbation method to solve the Troesch problem, which they found to be accurate and

efficient.

4.2 Solution

The solutions were obtained using the higher-order spectral quasilinearization method

and the finite difference method. With these methods having been successfully applied to

the Lane-Emden equation (see Chapter 2) and Bratu equation (see Chapter 3), the aim

here was to show whether these methods could work for a problem as complicated as the

Troesch problem. Now we show the solution for the higher-order spectral quasilinearization

method. Consider equation (4.1), for which the nonlinear component is given as

N = −n sinh (ny),

and approximated as

N ≈ − sinh (nyi) + α0,i(y − yi) +H[y, yi],

where

H[y, yi] = −n sinh(nyi) + n sinh(yi)− α0,i(y − yi), (4.3)

with

α0,i = −n2 cosh (nyi).

Equation (4.1) becomes

y′′r+1 + (1 + α0,i) yr+1 +H[yr, yi] + β0,r (yr+1 − yr) = φ, (4.4)
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where

φ = n sinh(nyi) + α0,iyi, (4.5)

and

β0r = −n2 cosh(nyr)− α0,i. (4.6)

This equation can be written in the form

MYr+1 = Φr. (4.7)

The finite difference discretization for equation (4.1) is

yi+1 − 2yi + yi−1

h2 − n sinh (nyi) = 0.

The equation becomes

yi+1 = h2n sinh(nyi) + 2yi − yi−1 (4.8)

The solution for the Troesch problem, according to the HO-SQLM, is obtained through

iterations by considering the boundary conditions.

The solution is presented in Table 4.1, 4.2 and Figure 4.1. Results from the finite differences

method are shown in Table 4.2.
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Table 4.1: Exact solution and numerical solution by the HO-SQLM for the Troesch prob-
lem for n = 0.5.

x Exact solution HO-SQLM Error
0.00 0.0000000000 0.0000000000 0.0000000000e+00
0.02 0.0234700578 0.0234700578 2.3942653415e-14
0.10 0.0916153363 0.0916153363 1.3045120539e-15
0.21 0.1980162262 0.1980162262 1.6486811916e-14
0.35 0.3329941556 0.3329941556 4.1633363423e-15
0.50 0.4845471647 0.4845471647 1.9428902931e-15
0.65 0.6390233518 0.6390233518 4.9960036108e-15
0.79 0.7816820569 0.7816820569 1.6209256160e-14
0.90 0.8976330073 0.8976330073 2.5535129566e-15
0.98 0.9735503452 0.9735503452 2.9976021665e-14
1.00 1.0000000000 1.0000000000 4.4408920985e-16

Table 4.1 shows the exact solution of the Troesch problem compared with solution and

error from the higher-order spectral quasilinearization method. It is clear that the error

is very small, which shows that the method is accurate.

Table 4.2: Solution of equation (2.7): exact solution, solution by finite difference method
and results in the literature at different values of x

x Exact Finite difference HPM[113] ADM[113]
0.1 0.0959443493 0.0959460130 0.0959443155 0.0959383534
0.2 0.1921287477 0.1921319831 0.1921286848 0.1921180592
0.3 0.2887944009 0.2887990224 0.2887943176 0.2887803297
0.4 0.3861848464 0.3861905708 0.3861847539 0.3861687095
0.5 0.4845471647 0.4845536067 0.4845470753 0.4845302901
0.6 0.5841332484 0.5841399124 0.5841331729 0.5841169798
0.7 0.6852011483 0.6852074191 0.6852010943 0.6851868451
0.8 0.7880165227 0.7880216532 0.7880164925 0.7880055691
0.9 0.8928542161 0.8928573118 0.8928542059 0.8928480234
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Table 4.2 shows a comparison between the exact solution for the Troesch problem, numeri-

cal solution by the finite difference method and other methods from literature, namely, the

homotopy perturbation method (HPM) and the Adomian decomposition method (ADM).

The results are all in agreement with the exact solution.
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Figure 4.1: Comparison of the exact and the approximate solution for Troesch equation
using the HO-SQLM.

Figure 4.1 shows a comparison between the exact solution and the approximate solu-

tion from the higher-order spectral quasilinearization method. The higher-order spectral

quasilinearization method converges to the exact solution.

4.3 Summary

In this chapter, we showed the solution to the Troesch problem according to two numerical

methods; the higher-order spectral quasilinearization method and the finite difference

method. The higher-order spectral quasilinearization method performed better than the

finite difference method.

65



Chapter 5

Conclusion

The aim of this study was to solve the Lane-Emden, the Bratu equations, and the Troesch

problem using different numerical approaches. In this way we could investigate the use and

effectiveness of different numerical methods. The Lane-Emden equation was solved using

the multi-domain spectral quasilinearization method and the finite difference method,

while the Bratu problem was solved using the spectral quasilinearization method and the

higher-order spectral quasilinearization method. The Troesch problem was solved using

the higher-order spectral quasilinearization method and the finite difference method.

Chapter 1 was a review of past studies and an outline of relevant numerical methods.

The methods included the finite difference method, finite element method, Adomian de-

composition method, and spectral methods. In the methods that were used in this project,

the relevant application was also shown.

In Chapter 2, a review of the literature was presented for the Lane-Emden equation.

The nonlinear Lane-Emden equation was first solved using the finite difference method

and the multi-domain spectral quasilinearization method. Then two other variants of the

Lane-Emden equation introduced greater complexity.

These were solved using the same two methods. Accurate results were obtained for both

methods over all three problems. The errors were obtained by using the exact solution. A

comparison was made for the errors to determine the method that is more accurate. The

multi-domain spectral quasilinearization method had the smaller error, which made it to
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be the more accurate method.

In Chapter 3, a literature review concerning the Bratu problem was presented. The

Bratu equation was then solved using the spectral quasilinearization method and the

higher-order spectral quasilinearization method. Three examples were presented, which

were initial value problems. The numerical approximations, convergence, and residual

errors were presented in tables and figures. The higher-order spectral quasilinearization

method showed excellent results. The comparison between results from the two meth-

ods led us to conclude that the higher-order spectral quasilinearization method is more

accurate than spectral quasilinearization method.

In Chapter 4, the Troesch problem was introduced and solved using various methods.

The aim is to determine if the methods could solve such a complex problem. We use

the higher-order spectral quasilinearization method and the finite difference method. The

solutions were represented in tables and figures. The higher-order spectral quasilineariza-

tion method produced accurate results for the problem. The finite difference also produced

good results in comparison to solutions from the literature.

This project has addressed the objectives given in the first chapter. In the compari-

son between the finite difference method and the multi-domain spectral quasilinearization

method for the Lane-Emden equation, we prefer the multi-domain spectral quasilineariza-

tion method as a suitable method to use due to its better convergence, consistency, and

stability. For the Bratu problem a comparison of the spectral quasilinearization method

and the higher-order spectral quasilinearization method showed that the modified method

performed better than did the original method. Accuracy and convergence were more

clearly demonstrated for the higher-order spectral quasilinearization method. We also

solved the Troesch problem using the higher-order spectral quasilinearization method and

the finite difference method. We found that the higher-order spectral quasilinearization

method performed better in finding the solution for the problem.
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Appendix A

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Code for y’’ + (2/x)y’ + y^5 = 0.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MD-SQLM

clear

N = 100;

%clc

[D,tau] = cheb(N);

T = 2; % x in [0,T]

p = 100; % p is the number of intervals

xx = linspace(0,T,p+1);

%--------------------------------------------

% solution in first interval

scale = (xx(2)-xx(1));

x = scale*(tau+1)/2;

D1 = (2/(scale))*D; D2 = D1^2;

%Define the function g(x,y) = -2(2x^2 + 3)y

g = @(x,y)(y.^5);
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alpha0 = 1; beta0 = 0; %initial conditions y(0) and y’(0)

iterations = 20;

%initial guesses

fr = ones(N+1,1); %Chose initial guess that satisfies conditions at x = 0

for it = 1:iterations

%Solve for y

A1 = D1(1:N,1:N);

R1 = fr(1:N)- D1(1:N,N+1)*alpha0;

soly = A1\R1;

yr = [soly;alpha0];

%----------------------------------------------------------

%Solve for f

A2 = D1(1:N,1:N) + diag(2./x(1:N));

R2 = -g(x(1:N),yr(1:N)) - D1(1:N,N+1)*beta0;

solf = A2\R2;

fr = [solf;beta0];

end

yN = yr(1); % y(x_1)

fN = fr(1); % f(x_1)

yapprox = zeros(p,1);%Initialize to save solution at x_i (end of intervals)

fapprox = zeros(p,1);%Initialize to save solution at x_i (end of intervals)

yapprox(1) = yN; %Value of y(x1)

fapprox(1) = fN; %Value of f(x1)

%--------------------------------------------

% solution in the interval [x_{i-1},x_i]
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for i = 2:p

alphai = yr(1); betai = fr(1);

x = (xx(i+1)-xx(i))*tau/2 + (xx(i+1)+xx(i))/2;

D1 = (2/(xx(i+1)-xx(i)))*D;

for it = 1:iterations

%----------------------------------------------------------

%Solve for y

A1 = D1(1:N,1:N);

R1 = fr(1:N) - D1(1:N,N+1)*alphai;

soly = A1\R1;

yr = [soly;alphai];

%----------------------------------------------------------

%Solve for f

A2 = D1(1:N,1:N) + diag(2./x(1:N));

R2 = -g(x(1:N),yr(1:N)) - D1(1:N,N+1)*betai;

solf = A2\R2;

fr = [solf;betai];

end

yN = yr(1); % y(x_i)

fN = fr(1); % f(x_i)

yapprox(i) = yN;

fapprox(i) = fN;

end

yapprox = [1; yapprox];

yexact = (1 + (xx.^2)/3).^(-1/2);

for j = 1:10:p

fprintf(’%10.2f\t%10.11f\t%10.11f\t %10.4e\n’,xx(j),yapprox(j),yexact(j), abs(yapprox(j)-yexact(j)))

end
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%

plot(xx,yexact,’r*’,xx,yapprox,’k-’)

ylabel(’$y(x)$’,’FontSize’,18,’InterPreter’,’Latex’)

xlabel(’x’,’FontSize’,18,’InterPreter’,’Latex’)

legend(’y-exact’,’Multi-domain’)

set(gca,’fontsize’,14)

str = {’N = 100’}; % here put what ever you want

w = [1.6]; % the distance of texts in x-axis

s = [0.89]; % the distance of texts in y-axis

text(w ,s,str) % setup display

% Finite difference method

clear all

clc

N = 60;

a = 0; b = 2;

h = (b-a)/N;

x = a:h:b;

for i = 2:N

u(1) = 1;

u(2) = u(1);

u(i+1) = ((2*x(i) + 2*(h))*u(i) - x(i)*(h^2)*u(i)^5 - x(i)*u(i-1))/(x(i) + 2*h);

end

U = 1./sqrt(1 + (x.^2)/3);
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Error = abs(u-U);

for j = 1:N+1

fprintf(’%10.2f\t %10.11f\t %10.11f \t %10.5e \n’,x(j),u(j),U(j),Error(j));

end

plot(x,u,’k-’,x,U,’r*’)

%plot(x,U,’r*’,x,u,’-k’)

ylabel(’$y(x)$’,’FontSize’,18,’InterPreter’,’Latex’)

xlabel(’x’,’FontSize’,18,’InterPreter’,’Latex’)

legend(’Finite difference’,’y-exact’)

set(gca,’fontsize’,14)

str = {’N = 60’}; % here put what ever you want

w = [1.6]; % the distance of texts in x-axis

s = [0.9]; % the distance of texts in y-axis

text(w ,s,str) % setup display

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Code for y’’ + 2/x y’ + 4*(2*exp(y)+exp(y/2)) = 0.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%MD-SQLM

clear

N = 100;

%clc

[D,tau] = cheb(N);

T = 2; % x in [0,T]

p = 100; % p is the number of intervals

xx = linspace(0,T,p+1);
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%--------------------------------------------

% solution in first interval

scale = (xx(2)-xx(1));

x = scale*(tau+1)/2;

D1 = (2/(scale))*D; D2 = D1^2;

%Define the function g(x,y) = -2(2x^2 + 3)y

g = @(x,y)(4*(2*exp(y)+exp(y/2)));

alpha0 = 0; beta0 = 0; %initial conditions y(0) and y’(0)

iterations = 20;

%initial guesses

fr = ones(N+1,1); %Chose initial guess that satisfies conditions at x = 0

for it = 1:iterations

%Solve for y

A1 = D1(1:N,1:N);

R1 = fr(1:N)- D1(1:N,N+1)*alpha0;

soly = A1\R1;

yr = [soly;alpha0];

%----------------------------------------------------------

%Solve for f

A2 = D1(1:N,1:N) + diag(2./x(1:N));

R2 = -g(x(1:N),yr(1:N)) - D1(1:N,N+1)*beta0;

solf = A2\R2;

fr = [solf;beta0];

end
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yN = yr(1); % y(x_1)

fN = fr(1); % f(x_1)

yapprox = zeros(p,1);%Initialize to save solution at x_i (end of intervals)

fapprox = zeros(p,1);%Initialize to save solution at x_i (end of intervals)

yapprox(1) = yN; %Value of y(x1)

fapprox(1) = fN; %Value of f(x1)

%--------------------------------------------

% solution in the interval [x_{i-1},x_i]

for i = 2:p

alphai = yr(1); betai = fr(1);

x = (xx(i+1)-xx(i))*tau/2 + (xx(i+1)+xx(i))/2;

D1 = (2/(xx(i+1)-xx(i)))*D;

for it = 1:iterations

%----------------------------------------------------------

%Solve for y

A1 = D1(1:N,1:N);

R1 = fr(1:N) - D1(1:N,N+1)*alphai;

soly = A1\R1;

yr = [soly;alphai];

%----------------------------------------------------------

%Solve for f

A2 = D1(1:N,1:N) + diag(2./x(1:N));

R2 = -g(x(1:N),yr(1:N)) - D1(1:N,N+1)*betai;

solf = A2\R2;

fr = [solf;betai];

end

yN = yr(1); % y(x_i)

fN = fr(1); % f(x_i)

yapprox(i) = yN;
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fapprox(i) = fN;

end

yapprox = [0; yapprox];

yexact = -2*log(1+xx.^2);

for j = 1:10:p

fprintf(’%10.2f\t%10.11f\t%10.11f\t %10.4e\n’,xx(j),yapprox(j),yexact(j), abs(yapprox(j)-yexact(j)))

end

%

plot(xx,yexact,’r*’,xx,yapprox,’k-’)

ylabel(’$y(x)$’,’FontSize’,18,’InterPreter’,’Latex’)

xlabel(’x’,’FontSize’,18,’InterPreter’,’Latex’)

legend(’y-exact’,’Multi-domain’)

set(gca,’fontsize’,14)

str = {’N = 100’}; % here put what ever you want

w = [1.6]; % the distance of texts in x-axis

s = [-0.9]; % the distance of texts in y-axis

text(w ,s,str) % setup display

% Finite difference method

clear all

clc

N = 60;

a = 0; b = 2;

h = (b-a)/N;
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x = a:h:b;

for i = 2:N

u(1) = 0;

u(2) = u(1);

u(i+1) = ((2*x(i) + 2*(h))*u(i) - 4*x(i)*(h^2)*(2*exp(u(i))+exp(u(i)/2)) - x(i)*u(i-1))/(x(i) + 2*h);

end

U = -2*log(1+x.^2);

Error = abs(u-U);

for j = 1:N+1

fprintf(’%10.2f\t %10.11f\t %10.11f \t %10.5e \n’,x(j),u(j),U(j),Error(j));

end

plot(x,u,’k-’,x,U,’r*’)

%plot(x,U,’r*’,x,u,’-k’)

ylabel(’$y(x)$’,’FontSize’,18,’InterPreter’,’Latex’)

xlabel(’x’,’FontSize’,18,’InterPreter’,’Latex’)

legend(’Finite difference’,’y-exact’)

set(gca,’fontsize’,14)

str = {’N = 60’}; % here put what ever you want

w = [1.6]; % the distance of texts in x-axis

s = [-0.9]; % the distance of texts in y-axis

text(w ,s,str) % setup display

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Code for y’’ + (2/x) y’’ -6*y - 4*y*lny = 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% MD-SQLM

clear

N = 100;

%clc

[D,tau] = cheb(N);

T = 2; % x in [0,T]

p = 100; % p is the number of intervals

xx = linspace(0,T,p+1);

%--------------------------------------------

% solution in first interval

scale = (xx(2)-xx(1));

x = scale*(tau+1)/2;

D1 = (2/(scale))*D; D2 = D1^2;

%Define the function g(x,y) = -2(2x^2 + 3)y

g = @(x,y)(-6*y-4*y.*log(y));

alpha0 = 1; beta0 = 0; %initial conditions y(0) and y’(0)

iterations = 20;

%initial guesses

fr = ones(N+1,1); %Chose initial guess that satisfies conditions at x = 0

for it = 1:iterations

%Solve for y

A1 = D1(1:N,1:N);

R1 = fr(1:N)- D1(1:N,N+1)*alpha0;

soly = A1\R1;
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yr = [soly;alpha0];

%----------------------------------------------------------

%Solve for f

A2 = D1(1:N,1:N) + diag(2./x(1:N));

R2 = -g(x(1:N),yr(1:N)) - D1(1:N,N+1)*beta0;

solf = A2\R2;

fr = [solf;beta0];

end

yN = yr(1); % y(x_1)

fN = fr(1); % f(x_1)

yapprox = zeros(p,1);%Initialize to save solution at x_i (end of intervals)

fapprox = zeros(p,1);%Initialize to save solution at x_i (end of intervals)

yapprox(1) = yN; %Value of y(x1)

fapprox(1) = fN; %Value of f(x1)

%--------------------------------------------

% solution in the interval [x_{i-1},x_i]

for i = 2:p

alphai = yr(1); betai = fr(1);

x = (xx(i+1)-xx(i))*tau/2 + (xx(i+1)+xx(i))/2;

D1 = (2/(xx(i+1)-xx(i)))*D;

for it = 1:iterations

%----------------------------------------------------------

%Solve for y

A1 = D1(1:N,1:N);

R1 = fr(1:N) - D1(1:N,N+1)*alphai;

soly = A1\R1;

yr = [soly;alphai];

%----------------------------------------------------------
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%Solve for f

A2 = D1(1:N,1:N) + diag(2./x(1:N));

R2 = -g(x(1:N),yr(1:N)) - D1(1:N,N+1)*betai;

solf = A2\R2;

fr = [solf;betai];

end

yN = yr(1); % y(x_i)

fN = fr(1); % f(x_i)

yapprox(i) = yN;

fapprox(i) = fN;

end

yapprox = [1; yapprox];

yexact = exp(xx.^2);

for j = 1:10:p

fprintf(’%10.2f\t%10.11f\t%10.11f\t %10.4e\n’,xx(j),yapprox(j),yexact(j), abs(yapprox(j)-yexact(j)))

end

%

plot(xx,yexact,’r*’,xx,yapprox,’k-’)

ylabel(’$y(x)$’,’FontSize’,18,’InterPreter’,’Latex’)

xlabel(’x’,’FontSize’,18,’InterPreter’,’Latex’)

legend(’y-exact’,’Multi-domain’)

set(gca,’fontsize’,14)

str = {’N = 100’}; % here put what ever you want

w = [1.6]; % the distance of texts in x-axis

s = [45]; % the distance of texts in y-axis

text(w ,s,str) % setup display
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%finite difference method

clear all

clc

N = 100;

a = 0; b = 2;

h = (b-a)/N;

x = a:h:b;

for i = 2:N

u(1) = 1;

u(2) = u(1);

u(i+1) = ((2*x(i) + 2*(h) + 6*(h^2)*x(i))*u(i) - x(i)*u(i-1) + 4*h^2*x(i)*u(i)*log(u(i)))/(x(i) + 2*h);

end

U = exp(x.^2);

Error = abs(u-U);

for j = 1:N+1

fprintf(’%10.2f\t %10.11f\t %10.11f \t %10.5e \n’,x(j),u(j),U(j),Error(j));

end

plot(x,u,’k-’,x,U,’r*’)

%plot(x,U,’r*’,x,u,’-k’)

ylabel(’$y(x)$’,’FontSize’,18,’InterPreter’,’Latex’)

xlabel(’x’,’FontSize’,18,’InterPreter’,’Latex’)

legend(’Finite difference’,’y-exact’)
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set(gca,’fontsize’,14)

str = {’N = 100’}; % here put what ever you want

w = [1.6]; % the distance of texts in x-axis

s = [46]; % the distance of texts in y-axis

text(w ,s,str) % setup display

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Code for y’’ + lambda*exp(y) = 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SQLM AND ho-SQLM

clc

clear all

N = 80;

[D,x] = cheb(N);

a = 1*10^(-10); b = 1;

Lx = b - a;

eta = Lx*(x+1)/2;

D1 = (2/Lx)*D; D2 = D1^2; D3 = D1^3;

I = eye(N+1,N+1);

eps = 3.513830719;

yr = eta.*(eta-1); %zeros(N+1,1);

iterations = 10;
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%sqlm

for r = 1:iterations

yprev = yr;

yr1= D1*yr;

yr2= D2*yr;

a0r = eps*exp(yr);

A = D2 + diag(a0r)*I;

Ry = a0r.*yr - eps*exp(yr);

A(N+1,:) = 0; A(N+1,N+1) = 1; Ry(N+1) = 0;

A(1,:) = 0; A(1,1) = 1; Ry(1) = 0;

Solution = A\Ry;

yr = Solution(1:N+1);

yr1= D1*yr;

yr2 = D2*yr;

error_yr(r) = norm(yr - yprev,inf);

resy(:,r) = max(abs(yr2 + eps*exp(yr)));

resnormyr(r) = norm(resy(:,r),inf);

95



%fprintf(’%10.0f \t %10.8e \n’,r, resnormyr(r))

end

yd = eta.*(eta-1);%zeros(N+1,1);

yd1 = D1*yd;

yi = yr;

yi1 = D1*yi;

for ii = 1:iterations

yprevi = yi;

yi1= D1*yi;

yi2= D2*yi;

a0d = eps*exp(yd);

b0i = eps*exp(yi) - a0d;

gi = eps*exp(yi) - eps*exp(yd) - a0d.*(yi - yd);

phi = a0d.*yd - eps*exp(yd);

A = D2 + diag(a0d + b0i)*I;

Ry = phi + b0i.*yi - gi;

A(N+1,:) = 0; A(N+1,N+1) = 1; Ry(N+1) = 0;

A(1,:) = 0; A(1,1) = 1; Ry(1) = 0;

Solution = A\Ry;
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yi = Solution(1:N+1);

yi1= D1*yi;

yi2 = D2*yi;

%------------------------------------------------------------------------

%ERROR ANALYSIS

%----------------------------------------------------------------------

error_yi(ii) = norm(yi - yprevi,inf);

resy(:,ii) = max(abs(yi2 + eps*exp(yi)));

resnormyi(ii) = norm(resy(:,ii),inf);

fprintf(’%10.0f \t %10.8e \n’,ii, resnormyi(ii))

end

theta_c = 4.79871456;

% theta_c = 0.3172227274;

theta = sqrt(2*eps)*cosh(0.25*theta_c);

u_exact = -2*log((cosh((eta - 0.5).*(0.5*theta)))./(cosh(0.25*theta)));

% ur0 = ur;

plot(eta, yr, ’k’, eta, yi, ’bd’, eta, u_exact, ’r*’,’LineWidth’,2.2)

xlabel(’$\eta$’,’Interpreter’,’Latex’,’FontSize’,20)

ylabel(’$u$’,’Interpreter’,’Latex’,’Rotation’,90,’FontSize’,20)

legend(’SQLM’,’ho-SQLM’, ’Exact Solution’);

set(gca,’fontsize’,14)

str = {’N = 80’}; % here put what ever you want
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w = [0.6]; % the distance of texts in x-axis

s = [0.6]; % the distance of texts in y-axis

text(w ,s,str) % setup display

figure(1)

semilogy(1:iterations,error_yi,’k-*’,’LineWidth’,2)

xlabel(’$iterations$’,’Fontsize’, 16, ’InterPreter’, ’Latex’)

ylabel(’$Error~norm$’,’Fontsize’, 16, ’InterPreter’,’Latex’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Code for y’’ + y + a*y^3 + b*sin(y) = 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SQLM and ho-SQLM

clc

clear all

N = 80;

[D,x] = cheb(N);

a = 0; b = 1;

Lx = b - a;

eta = Lx*(x+1)/2;

D1 = (2/Lx)*D; D2 = D1^2; D3 = D1^3;
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I = eye(N+1,N+1);

A_0 = pi/18;

a_0 = 1;

xr = A_0*cos(eta);

iterations = 10;

b_0 = 1;

%sqlm

for r = 1:iterations

xprev = xr;

xr1= D1*xr;

xr2= D2*xr;

a1r = 3*a_0*xr.^2 + b_0*cos(xr);

A = D2 + I + diag(a1r)*I;

Rx = a1r.*xr - (a_0*xr.^3 + b_0*sin(xr)) ;

A(N+1,:) = 0; A(N+1,N+1) = 1; Rx(N+1) = A_0;

A(N,:) = D1(N+1,:); Rx(N) = 0;

Solution = A\Rx;
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xr = Solution(1:N+1);

xr1= D1*xr;

xr2 = D2*xr;

error_xr(r) = norm(xr - xprev,inf);

resx(:,r) = max(abs(xr2 + xr + a_0*xr.^3 + b_0*sin(xr)));

resnormx(r) = norm(resx(:,r),inf);

% fprintf(’%10.0f \t %10.8f \n’,r, -xr2(N+1))

fprintf(’%10.0f \t %10.8e \n’,r, resnormx(r))

end

xd = A_0*cos(eta);

xi = xr;

for i = 1:iterations

xprevi = xi;

a0d = 3*a_0*xd.^2 + b_0*cos(xd);

b0i = 3*a_0*xi.^2 + b_0*cos(xi) - a0d;

gi = (a_0*xi.^3 + b_0*sin(xi)) - (a_0*xd.^3 + b_0*sin(xd)) - a0d.*(xi - xd);

phi = a0d.*xd - (a_0*xd.^3 + b_0*sin(xd));

Ar = D2 + I + diag(a0d + b0i)*I;

Rr = phi + b0i.*xi - gi; %(a0d + b0i).*xi - (xi + a_0*xi.^3 + b_0*sin(xi));

Ar(N+1,:) = 0; Ar(N+1,N+1) = 1; Rr(N+1) = A_0;

Ar(N,:) = D1(N+1,:); Rr(N) = 0;
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Solution = Ar\Rr;

xi = Solution(1:N+1);

xi1= D1*xi;

xi2 = D2*xi;

error_xi(i) = norm(xi - xprevi,inf);

resxi(:,i) = (xi2 + xi + a_0*xi.^3 + b_0*sin(xi));

resnormxi(i) = norm(resxi(:,i),inf);

% fprintf(’%10.0f \t %10.8f \n’,i, -xi2(N+1))

fprintf(’%10.0f \t %10.8e \n’,i, resnormxi(i))

end

figure(1)

semilogy(1:iterations,error_xr,’k-*’,1:iterations,error_xi,’r-*’,’LineWidth’,2)

xlabel(’iterations’,’Fontsize’, 16, ’InterPreter’, ’Latex’)

ylabel(’Error~norm’,’Fontsize’, 16, ’InterPreter’,’Latex’)

legend(’SQLM’,’ho-SQLM’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Code for y’’ + y - lambda*y(1 - (y’)^2) = 0.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc

clear all
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N = 80;

[D,x] = cheb(N);

a = 0; b = 2.5;

Lx = b - a;

eta = Lx*(x+1)/2;

D1 = (2/Lx)*D; D2 = D1^2; D3 = D1^3;

I = eye(N+1,N+1);

eps = 0.1;

yr = ones(N+1,1);

iterations = 10;

%sqlm

for r = 1:iterations

yprev = yr;

yr1= D1*yr;

yr2= D2*yr;

a0r = eps*yr1.^2;

a1r = 2*eps*yr.*yr1;
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A = D2 + diag(a1r)*D1 + diag(1 - eps + a0r)*I;

Ry = a0r.*yr + a1r.*yr1 - eps*yr.*(yr1.^2);

A(N+1,:) = 0; A(N+1,N+1) = 1; Ry(N+1) = 1;

A(N,:) = D1(N+1,:); Ry(N) = 0;

Solution = A\Ry;

yr = Solution(1:N+1);

yr1= D1*yr;

yr2 = D2*yr;

%------------------------------------------------------------------------

%ERROR ANALYSIS

%----------------------------------------------------------------------

error_yr(r) = norm(yr - yprev,inf);

resy(:,r) = max(abs(yr2 + yr - eps*yr + eps*yr.*(yr1.^2)));

resnormyr(r) = norm(resy(:,r),inf);

% fprintf(’%10.0f \t %10.8f \n’,r, -yr2(N+1))

% fprintf(’%10.0f \t %10.8e \n’,r, resnormyr(r))

end
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%ho-sqlm

yd = ones(N+1,1);

yd1 = D1*yd;

yi = yr;

yi1 = D1*yi;

for i = 1:iterations

yprevi = yi;

yi1= D1*yi;

yi2= D2*yi;

a0d = eps*yd1.^2;

a1d = 2*eps*yd.*yd1;

b0i = eps*yi1.^2 - a0d;

b1i = 2*eps*yi.*yi1 - a1d;

gi = eps*yi.*(yi1.^2) - eps*yd.*(yd1.^2) - a0d.*(yi - yd) - a1d.*(yi1 - yd1);

phi = a0d.*yd + a1d.*yd1 - eps*yd.*(yd1.^2);

A = D2 + diag(a1d + b1i)*D1 + diag(1 - eps + a0d + b0i)*I;

Ry = phi + b0i.*yi + b1i.*yi1 - gi;

A(N+1,:) = 0; A(N+1,N+1) = 1; Ry(N+1) = 1;

A(N,:) = D1(N+1,:); Ry(N) = 0;

Solution = A\Ry;
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yi = Solution(1:N+1);

yi1= D1*yi;

yi2 = D2*yi;

%------------------------------------------------------------------------

%ERROR ANALYSIS

%----------------------------------------------------------------------

error_yi(i) = norm(yi - yprevi,inf);

resy(:,i) = max(abs(yi2 + yi - eps*yi.*(1 - yi1.^2)));

resnormyi(i) = norm(resy(:,i),inf);

% fprintf(’%10.0f \t %10.8f \n’,i, -yi2(N+1))

% fprintf(’%10.0f \t %10.8e \n’,i, resnormyi(i))

end

figure(1)

semilogy(1:iterations,error_yr,’k-*’,1:iterations,error_yi,’r-*’,’LineWidth’,2)

xlabel(’iterations’,’Fontsize’, 16, ’InterPreter’, ’Latex’)

ylabel(’Error~norm’,’Fontsize’, 16, ’InterPreter’,’Latex’)

legend(’SQLM’,’ho-SQLM’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Code for y’’ = n*sinh(n*y)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%ho-SQLM

clc

clear all
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N = 30;

[D,x] = cheb(N);

a = 0; b = 1;

Lx = b - a;

eta = Lx*(x+1)/2;

D1 = (2/Lx)*D; D2 = D1^2; D3 = D1^3;

I = eye(N+1,N+1);

n = 0.5;

yr = eta;

iterations = 10;

%sqlm

for r = 1:iterations

yprev = yr;

yr1= D1*yr;

yr2= D2*yr;

a0r = -n^2*cosh(n*yr);

A = D2 + diag(a0r)*I;
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Ry = a0r.*yr + n*sinh(n*yr);

A(N+1,:) = 0; A(N+1,N+1) = 1; Ry(N+1) = 0;

A(1,:) = 0; A(1,1) = 1; Ry(1) = 1;

Solution = A\Ry;

yr = Solution(1:N+1);

yr1= D1*yr;

yr2 = D2*yr;

error_yr(r) = norm(yr - yprev,inf);

% resy(:,r) = max(abs(yr2 + eps*exp(yr)));

resnormyr(r) = norm(yr2 - n*sinh(n*yr),inf);

% fprintf(’%10.0f \t %10.8e \n’,r, resnormyr(r))

end

yd = eta;%zeros(N+1,1);

yd1 = D1*yd;

yi = yr;

yi1 = D1*yi;

for ii = 1:iterations

yprevi = yi;

yi1= D1*yi;
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yi2= D2*yi;

a0d = -n^2*cosh(n*yd);

b0i = -n^2*cosh(n*yi) - a0d;

gi = -n*sinh(n*yd) + n*sinh(n*yd) - a0d.*(yi - yd);

phi = a0d.*yd + n*sinh(n*yd);

A = D2 + diag(a0d + b0i)*I;

Ry = phi + b0i.*yi - gi;

A(N+1,:) = 0; A(N+1,N+1) = 1; Ry(N+1) = 0;

A(1,:) = 0; A(1,1) = 1; Ry(1) = 1;

Solution = A\Ry;

yi = Solution(1:N+1);

yi1= D1*yi;

yi2 = D2*yi;

error_yi(ii) = norm(yi - yprevi, inf);

resnormyi(ii) = norm(yi2 - n*sinh(n*yi),inf);

% error_yi(ii) = norm(yi - yprevi,inf);

% resy(:,ii) = max(abs(yi2 + eps*exp(yi)));

% resnormyi(ii) = norm(resy(:,ii),inf);
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%fprintf(’%10.0f %10.8e \t %10.8e \n’,ii,resnormyr(ii),resnormyi(ii))

% fprintf(’%10.2f \t %10.20f \t %10.20f \n’,ii,yr1(N+1),yi1(N+1))

end

for j = 1:N+1

fprintf(’%10.2f \t %10.10f \t %10.10f \n’,eta(j),yr(j),yi(j))

end

figure(1)

semilogy(1:iterations,error_yr,’k-*’,1:iterations,error_yi,’r->’,’LineWidth’,2)

xlabel(’$iterations$’,’Fontsize’, 16, ’InterPreter’, ’Latex’)

ylabel(’$Convergence~Error$’,’Fontsize’, 16, ’InterPreter’,’Latex’)

legend(’SQLM’,’ho-SQLM’)

str = {’N = 10’}; % here put what ever you want

% w = [8]; % the distance of texts in x-axis

% s = [10^-5]; % the distance of texts in y-axis

% text(w ,s,str) % setup display

% Finite difference method

clc

clear all

N = 30;

a = 0;

b = 1;

109



h = (b - a)/N;

u0 = 0;

uL = 1;

x = a:h:b;

u = zeros(1,N+1);

steps =10;

u(1) = u0;

u(N+1) = uL;

n = 0.5;

for j = 1:steps

u(2:N) = (1/3)*(u(3:N+1) + u(2:N) +u(1:N-1) - n*h^2*sinh(n*u(2:N)));

end

for m = 1:N+1

fprintf(’%10.2f\t %10.8f\n’, x(m), u(m))

end
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