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Abstract

This thesis is focused on numerical studies of heat and mass transport processes that occur in

nanofluid boundary layer flows. We investigate heat and mass transfer mechanisms in the flow of

a micropolar nanofluid above a stretching sheet, the squeezed nanofluid flow between two parallel

plates and the impact of activation energy and binary chemical reaction on nanofluid flow past

a rotating disk. We present an analysis of entropy generation in nanofluid flow past a rotating

disk and nanofluid flow past a stretching surface under the influence of an inclined magnetic field.

This study aims to numerically determine to a high degree of accuracy, how nanoparticles can

be utilized to alter heat and transport properties of base fluids in order to enhance or achieve

desirable properties for thermal systems. The heat and mass transfer processes that feature in

nanofluid boundary layer flow are described by complex nonlinear transport equations which are

difficult to solve. Because of the complex nature of the constitutive equations describing the flow

of nanofluids, finding analytic solutions has often proved intractable.

In this study, the model equations are solved using the spectral quasilinearization method. This

method is relatively recent and has not been adequately utilized by researchers in solving related

problems. The accuracy and reliability of the method are tested through convergence error and

residual error analyses. The accuracy is further tested through a comparison of results for limiting

cases with those in the literature. The results confirm the spectral quasilinearization method as

being accurate, efficient, rapidly convergent and suited for solving boundary value problems. In

addition, among other findings, we show that nanofluid concentration enhances heat and mass

transfer rates while the magnetic field reduces the velocity distribution. The fluid flows considered

in this study have significant applications in science, engineering and technology. The findings

will contribute to expanding the existing knowledge on nanofluid flow.
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Chapter 1

Introduction

1.1 Background

Fluid dynamics is primarily concerned with the behaviour and structure of fluids in motion. Fluid

dynamics finds wide applications in construction engineering, wheezing, ventilation, nuclear power

plants, biotechnology, heat exchanger devices, food processing industry and pumps among numerous

others [1]. Fluids are intricately connected with and indispensable to all facets of human endevour

[2, 3].

This study is concerned with the numerical solution of boundary layer equations that describe the

transport of mass and heat in nanofluid flows in a variety of geometrical settings. The boundary

layer theory was first presented in 1904 by Prandtl [4]. Since then, numerous studies have been

conducted on boundary layers and this has led to many inventions and improvements in the design

and manufacture of marine vessels, space shuttles, sports cars, buildings, dams, biotechnology,

aeroplanes, etc [5]. The geometries of interest for this study include a stretching sheet, a rotating

disk and flow between parallel plates. The problems are solved utilizing the spectral quasilinearization

technique.

In recent years, a heightened research interest has been directed towards an emerging and innovative

category of fluids termed nanofluids. The reason for this interest could be explained by the fact that

nanofluids significantly alter the thermal conductivity, electrical conductivity and viscosity of base

fluids [6, 7]. Apart from enhancing the thermo-physical properties of base fluids, nanoparticles
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have also found widespread application in other areas. For instance, silver nanoparticles have been

used in wound treatment [8] while gold nanoparticles are utilized in water treatment [9].

1.2 Newtonian versus non-Newtonian fluids

Fluids can be classified as being either Newtonian or non-Newtonian. The former comprises

fluids that obey Newton’s law of viscosity, namely that the shear stress is directly proportional

to the strain rate. In mathematical terms, this is written as τ = µ(du=dy) where τ, µ and du=dy

denote the shear stress, viscosity and the rate of strain, respectively. Fluids that do not conform

to Newton’s law are termed non-Newtonian fluids [10]. A viscoelastic fluid, which belongs to the

category of non-Newtonian fluids, will deform after a certain threshold stress is reached. However,

upon removing the stress, the stresses inside the fluid will not vanish instantaneously. This flow

behaviour is attributable to the intermolecular forces that continue to hold for some time after the

withdrawal of stress. This period of maintained molecular configuration after the removal of stress

is referred to as the relaxation time [11].

Another notable distinction between Newtonian and non-Newtonian fluids is the Weissenberg

effect as described by Morrison [12]. When a Newtonian fluid is spun at high speed in a bowl,

the fluid is flung away from the blades towards the walls as a consequence of Newton’s first law. In

stark contrast, a non-Newtonian fluid such as a dough of flour climbs the mixing blades. This is the

Weissenberg effect and is due to the elasticity of the viscous fluid [13, 14]. Non-Newtonian fluids

can also be classified into various sub-classes, namely pseudo-plastics, bingham plastics, dilatants,

thixotropic, elastic, rheopectic, viscoelastic, shear-thinning or shear-thickening fluids [15].

The Navier-Stokes equations cannot adequately describe the flow of many non-Newtonian fluids

[16]. Furthermore, no single constitutive model effectively describes the flow dynamics of all non-

Newtonian fluids and as a consequence, there is a variety of models with different rheological

properties that have been proposed in the literature. Examples of such non-Newtonian fluids

include the Carreau-Yasuda, Ellis, Maxwell, Oldroyd-B, Powell Eyring, Williamson, Carreau,
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Jeffrey, Casson, couple stress and micropolar models [17].

In this study we investigate the flow and behaviour of both non-Newtonian and Newtonian fluids.

Studying the flow and behaviour of non-Newtonian fluids is important, for instance, in order to

understand problems that may arise in the operation of machinery. For example, the Weissenberg

effect would need to be taken into account in the operation and design of food processing and other

industrial equipment. Correct rheological constitutive equations that describe the fluid flow are

important in predicting non-Newtonian fluids behaviours to reduce damage to equipment, loss of

resources and energy. In manufacturing, the quality of the end product is dependent on the thermal

energy transfer rate, hence the study of fluid flow is vital for the manufacturing and engineering

processes.

1.3 Mechanisms for Heat and Mass Transport

The transport of heat and mass transfer usually occurs simultaneously in engineering and industrial

processes [18]. Heat and mass transport are concerned with the rates of transfer of thermal energy

and mass which occur naturally in the environment and in diverse applications in engineering

ranging from the cooling of electronic devices, food processing, refrigeration and so on [19, 20].

1.3.1 Heat transfer

If a temperature gradient exists in a system, some thermal energy will transfer from a hotter region

to the cooler region [21]. The transfer of heat occurs through convection, conduction and radiation.

A firm understanding of heat transport processes is vital in the operation as well as the design of

thermal systems. Poor management of heat and heat transfer may result in thermal runaways that

could lead to accidents and energy losses through entropy generation and inefficiency [22, 23].

The transport of heat through molecular interaction is called conduction [24]. Conduction may take

place in gases, solids and liquids. However, transport of heat by conduction occurs predominantly

in solids due to vibrations of constituent molecules coupled with energy transfer by free electrons.

3



In stationary fluids, conduction is due to the collision of molecules at higher temperatures with

those at lower temperatures during random motion [25]. Fourier’s law models the transfer of heat

by conduction and is expressed in one-dimension as

q00x =�k
dT
dx

(1.1)

where q00x is the heat flux (Wm�2) in the x-direction, k the thermal conductivity (Wm�1K�1) and

dT=dx denotes the temperature gradient in the x-direction [1]. Thermal conductivity measures

the ability of a material to transport heat by conduction [19]. Metals possess higher thermal

conductivity than non-metals, hence they are often used as nanoparticles to enhance the thermal

conductivity of base fluids.

Thermal diffusivity is a property that is closely related to thermal conductivity and is defined

mathematically as α = k=ρcp where ρ is the fluid density, k thermal conductivity while cp denotes

the heat capacity of the material. The thermal diffusivity measures how fast heat diffuses through

a substance or material.

The heat transfer between a fluid and a solid surface is predominantly through convection. Convection

is a result of a combination of random molecular motion the bulk fluid motion also known as

advection [20]. For a fluid flow over a bounding surface, the heat transfer by convection is

represented by Newton’s law of cooling

q00 = h(Ts�T∞) (1.2)

where q00 denotes the convective heat flux (Wm�2), h is the coefficient of convective heat transfer

(Wm�2K�1), T∞ and Ts are the ambient and surface temperatures respectively.

Convection in a fluid can be classified as forced, natural or mixed. Forced convection is defined

as energy transfer that is induced by an external agent such as a blower, pump or fan. In natural

convection, energy transport is induced by buoyancy forces due to non-uniform density distribution

as a result of fluid temperature differences [26]. Mixed convection occurs if both forced and free

convection are present.
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Energy transfer may also occur through radiation. Radiation refers to the thermal energy released

by objects as electromagnetic waves as a consequence of their temperature. Radiation does not

require the presence of an intervening medium to transfer heat [19] and can take place in a vacuum.

For a surface that is at a temperature Ts and has surface area As, the maximum radiation that is

emitted by the surface is given by

Q̇ = σAsT 4
s (1.3)

where σ = 5:670� 10�8 is the Stefan-Boltzmann constant. Equation (1.3) is referred to as the

Stefan-Boltzmann law [20]. For real surfaces, the radiation transfer rate is represented by

Q̇ = εσAsT 4
s (1.4)

where ε is the emissivity of the surface and 0 � ε � 1.

Thermal radiation finds significant applications in industry and engineering processes that occur at

elevated temperatures such as in solar power technology, astrophysical flows, combustion engines,

gas turbines, space vehicles and missile launches [27, 28]. In addition to knowledge of convective

processes in fluids, knowledge of thermal radiation is crucial in the design of thermal equipment

and advanced energy conversion systems as this greatly assists in the production of goods with

superior and desirable characteristics [28].

In order to control the rate of cooling and achieve an output of a desired quality, a magnetic field

is often added to the flow configuration of an electrically conductive nanofluid [28]. Such a flow

is termed hydromagnetic or magnetohydrodynamic (MHD) flow and has applications in industry

and engineering which include annealing of copper wires, metal extrusion, polymer extrusion, hot

rolling, etc [28, 29]. In this thesis we consider the magnetic field influence and significance on

nanofluid flows in Chapters 3 and 5.
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1.3.2 Mass transfer

Mass transfer occurs when the density of a substance in a system is non-homogeneous. This

implies that when concentration gradients are present, momentum exchanges and diffusion processes

occur from regions of higher concentration to regions of lower concentration.

For a chemical species in a stationary medium, the rate of the mass diffusion ṁ is proportional to

the concentration gradient dC=dx. This relationship is modelled by Fick’s law

ṁ =�DmA
dC
dx

(1.5)

where A is the surface area through which the mass transfer takes place, C is the solute concentration

and Dm is the mass diffusivity of the chemical species [19].

Mass transfer occurs in many physical processes where convective and diffusive transport of

chemical species are present [18]. Mass transport finds application in separation engineering,

chemical engineering and sub-disciplines such as ceramic engineering, materials engineering,

petroleum engineering, process engineering etc [26]. Equation (1.5) is used in the conservation

of mass equations in Chapters 2-4.

1.4 Boundary layer flow

The boundary layer concept was proposed in 1904 by Ludwig Prandtl [30], who is the father of

boundary layer theory and aerodynamics [31] . A boundary layer is a thin fluid layer adjacent to

a solid surface [32]. The fluid on the surface has zero velocity or moves with the same velocity as

the surface and this condition is known as the no-slip condition. The velocity rapidly changes in

the free stream far from the surface [33].

Boundary layer theory has wide industrial and engineering applications such as in aeronautics,

meteorology, space missions, power generation, high-speed flight, bridge construction, bio-medicine,

turbomachinery, cooling of thermal systems, vehicle design and so on [32, 34]. Knowledge of
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boundary layer theory is important to scientists and engineers as it enhances the understanding of

key fluid dynamic processes.

In this study we investigate the flow of nanofluids past stretching sheets, squeezing plates and

rotating disk surfaces. Kameswaran et al. [35] studied the flow of nanofluid over a shrinking

or stretching sheet with viscous dissipation and a chemical reaction. Their results showed that

a magnetic field had the effect of lowering the mass and heat transfer rates. The influence of

viscous dissipation on nanofluid flow above a stretched or shrunk sheet was reported by Dero et al.

[36]. Their findings indicated that increases in the Biot number, Eckert number, thermo-diffusion

parameters caused a rise in the rate of heat transfer. The Biot number is the ratio of the heat

conduction resistance inside a body to the external heat convection resistance at the surface of the

body [37]. A small value of the Biot number indicates low resistance to heat transfer by conduction

whereas a high value implies the dominance of heat convection over heat conduction. The Eckert

number is a measure of the effect of a fluid’s self-heating due to viscous dissipation [38]. Further

studies on nanofluid flows over shrunk or stretched sheets are available in the references [39–43]

and so on.

The study of viscous fluid flows emanating from two squeezed parallel plates was pioneered

by Stefan [44]. Since then, extensive research has been directed at parallel plates due to their

significant industrial and engineering applications [45]. Ullah et al. [46] examined MHD squeezing

flow of nanofluids with a chemical reaction and heat radiation. They observed that increasing

radiation and the Brownian motion parameters elevated the temperature. Brownian motion is the

random movement of particles that occur in liquids and gases [47]. Further studies focusing on the

flow between squeezing parallel plates are available in the references [48–55]

The study of flow over a rotating disk was pioneered by Von Kármán [56] who introduced the von

Kármán transformations that convert the associated constitutive equations from partial to ordinary

differential equations. Due to industrial and engineering use of such flows [57], many investigators

have shown keen interest in studying rotating disk flows. Among these studies, Hayat et al.

[58] presented a study of nanofluid flow past a rotational disk with heterogeneous-homogeneous
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reactions and variable thickness while Awais et al. [59] analyzed the flow of a nanofluid past a

spinning disk with a heat source/sink. More research on nanofluid flow over rotating disks can be

found in the references [60–63] among many others.

1.5 Studies of Nanofluids

The term nanofluid was first introduced by Choi and Eastman in 1995 [64–66]. Nanofluids are

made from metals, metal oxides, carbides or non-metals [67]. The research on nanofluids is

important due to their diverse and significant applications in engineering, thermal and industrial

processes. The use of nanofluids is prevalent in cooling systems, drug delivery, nuclear reactors,

wire rolling, radiators etc [68–74].

Nanoparticles are used as a strategy to enhance the performance of regular fluids such as ethylene

glycol, water and oil [75]. Nanoparticles alter the viscosities and diffusivities of base fluids

because of the ultrafine nanosolids with increased surface area [66]. The specific heat capacities

of nanoliquids are generally higher than that of base fluids.

Numerous nanofluid models have been reported in the literature [76, 77]. In this study, we consider

the models proposed by Buongiorno [78] and Tiwari and Das [79] respectively. The Buongiorno

model assumes that for nanofluids, convective heat transfer is predominantly caused by Brownian

motion and thermophoresis [80]. The Tiwari and Das model is a single-phase model in which the

suspended nanoparticles and the liquid phase are in thermal equilibrium with the same velocity

[79]. The former model has been used by several researchers that include [80–83] while the latter

model has been used by researchers such as [84–88].

The conductivity and viscosity of nanofluids depend on the concentration as well as the particle

size, shape and the properties of nanosolids and base fluids [89]. The thermal conductivity of

nanofluids tends to increase while viscosity reduces as the size of the nanoparticles increases [7,

90]. Minakov et al. [89] also showed that a Newtonian nanofluid transitions from Newtonian

behaviour to non-Newtonian behaviour on raising the nanoparticle volume fraction and reducing
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the nanoparticle size.

The flow of nanofluids is an expanding research area with numerous questions that remain to be

answered. These questions range from the efficacy of nanofluids as well as the environmental

impact and long term sustainability of associated technologies. In this study, we considered both

non-Newtonian and Newtonian nanofluids. The major distinction between the two is that the

former consists of a non-Newtonian fluid as the base fluid while the latter has a base fluid that

is Newtonian. This study seeks to gain more insight into heat and mass transfer processes in

industrial and engineering systems that involve nanofluid flows.

1.6 Methods of solution

The methods used in solving the complex nonlinear transport equations for nanofluid flow can be

classified as analytic, semi-analytic or numerical methods. The advantages of analytic methods

include that closed form solutions give an instant insight of the problem and that they are less

costly in terms of time and computational resources. The pitfalls of using analytic methods are

that for highly nonlinear systems that occur in engineering and science, such methods may be

cumbersome, difficult to use and possess slow rates of convergence [91, 92].

In order to mitigate the disadvantages of using analytic methods, semi-analytic methods have

been developed over the years. Examples of semi-analytic methods that have been used in recent

years include the homotopy perturbation method, Adomian decomposition method, differential

transformation method and the variational iteration method [93, 94]. The Adomian decomposition

method was used by Turkilmazoglu [95] in his 2018 study on heat transfer through extended

surfaces while implemented the variational iteration method in their 2016 investigation of squeezing

nanofluid flow in a rotating channel [96]. In 2017, Eldabe and Abou-Zeid [97] used the homotopy

pertubation method to study hydromagnetic nanofluid flow through a non-Darcy porous medium.

The differential transform method was used by Usman et al [98] to study nanofluid heat transfer.

Due to the complexities that emanate from their highly nonlinear nature, model equations for
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nanofluid flows are difficult to solve explicitly [99]. To address this, several numerical algorithms

have been developed to obtain approximate solutions. As shown by Motsa [100], numerical

methods play a pivotal role in finding solutions to highly nonlinear transport equations for fluid

flow. Examples of numerical methods that have been used to solve fluid flow problems include the

finite element, the Keller-box, finite difference, Runge-Kutta, linearization, spectral and element

free Galerkin methods among many others. Numerical methods, however, have their weaknesses

such as difficulties in handling singularities, convergence and stability issues [101]. The finite

difference method, though a simple and well established numerical method, yields low accuracy

for few grid points. The accuracy improves with increased number of grid points, which has cost

implications in terms of resources and time. In addition, it becomes increasingly difficult to use

the finite differences method to solve problems that involve complex geometries [102].

The finite element method divides the domain into smaller sub-domains termed elements. The

finite element method is easy to use and works well for complex geometries. It captures the

local effects and gives sparse matrices which are easier to solve, leading to reduced cost [103].

Some drawbacks of the finite element method include difficulties in handling singularities and the

existence of some inherent errors that could be fatal [104].

Spectral methods provide a way of discretizing differential equations based on Chebyshev or

Fourier series that provide low approximation errors [26, 105]. The error of approximation is

of order O(1=Nr), where r relates to the number of continuous derivatives and N refers to the

truncation [106]. The principal objective of using the spectral method is to approximate a function

as an expansion of some basis functions [107].

Spectral methods have become popular in recent years due to many advantages when compared

and contrasted with other numerical schemes such as the finite difference, Runge-Kutta and finite

element methods. Spectral methods are easy to use, possess high accuracy and are also less

expensive to use as they require fewer grid points in comparison with established numerical methods

such as the finite element method and the finite difference method [106]. A notable feature of the

spectral methods is spectral accuracy where an increased number of grid points is associated with
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an exponential increase in accuracy. In contrast, for the finite difference method, doubling the

number of grid points only leads to reduction of truncation error by a factor of four [105, 107].

In recent years several investigators have applied spectral methods coupled with other techniques

such as in the spectral local linearization method [101], bivariate spectral relaxation method [26],

bivariate spectral quasilinearization method [106], spectral relaxation method [16], etc.

In order to benefit from the strengths of spectral methods and to mitigate the weaknesses of

other common methods such as the finite difference method, researchers have combined spectral

methods with other methods. Oyelakin et al. [108] utilized a combination of the implicit finite

difference and spectral quasilinearization methods to analyze unsteady nanofluid flow in a porous

medium. Kefayat [109] utilized the finite difference lattice Boltzmann method (FDLBM) in which

finite difference and lattice Boltzmann methods were combined to solve the equations for entropy

generation in non-Newtonian nanofluids. Dehghan and Fakhar-Izadi [110] and Javidi [111] combined

the fourth-order Runge-Kutta method with the Chebyshev spectral collocation to solve the Fitzhugh-

Nagumo and the Burgers-Huxley equations.

In this study, the spectral quasilinearization method is used to solve the equations that model

various nanofluid flows in various geometries. The spectral quasilinearization method is recent

and possesses desirable attributes such as robustness and fast convergence to a solution in only a

few iterations [28, 112].

1.6.1 The Chebyshev collocation method

In using the spectral collocation, we search for an approximate solution U�(x) that satisfies the

differential equation

L[u(x)] = f (x); Ba[u(a)] = τa; Bb[u(b)] = τb; (1.6)

where L; Ba;Bb are differential operators, τa; τb are real constants and x2 (a;b). In the collocation

technique, the differential equations are satisfied at certain discrete points termed collocation or

nodal points.
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The Chebyshev spectral collocation method can be summarized as follows:

Let x0;x1; � � � ;xN be N +1 collocation points. We find an approximate solution U�(x) such that

L[U�(x j)] = f (x j); Ba[U�(x0)] = τa; Bb[U�(xN)] = τb; j = 1;2; � � �N�1; and x j 2 (a;b): (1.7)

Examples of collocation points are Gauss-Chebyshev, Gauss-Radau and Gauss-Lobatto collocation

points which are respectively defined as

x j = cos
[2 j+1]π
2N +2

; x j = cos
2 jπ

2N +1
; x j = cos

jπ
N

for j = 1;2; � � �N: (1.8)

In Chebyshev collocation, the differential equation (1.6) requires that the derivatives are determined

at the collocation points. As shown by Canuto et al. [105] and Trefethen [113] , the first derivative

is written as
�

du
dx

�
j;m

=
N

∑
i=0

Dm;iu j;i (1.9)

where Dm;i represents entries of the Chebyshev collocation differential matrix D defined by

Dm;i =

8>>>>>><
>>>>>>:

cm(�1)m+1

ci(xm�xi)
; m 6= i; and m; i = 0;1; � � � ;N

� xi
2(1�x2

i )
; 1 � m = i � N�1

2N2+1
6 ; m = i = 0

�2N2+1
6 ; m = i = N

where

cm =

8<
:

2; m = 0;N

1; �1 � j � N�1:

In matrix form, the first, second and third derivatives can therefore be written as2
6666664

∂u0
∂x
∂u1
∂x
...

∂uN
∂x

3
7777775
= D

2
6666664

u0

u1
...

uN

3
7777775

;

2
6666664

∂2u0
∂x

∂2u1
∂x
...

∂2uN
∂x

3
7777775
= D2

2
6666664

u0

u1
...

uN

3
7777775

;

2
6666664

∂3u0
∂x

∂3u1
∂x
...

∂3uN
∂x

3
7777775
= D3

2
6666664

u0

u1
...

uN

3
7777775
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where D2 and D3 are evaluated by squaring and cubing D respectively. Higher orders can be

defined similarly. Further details of the Chebyshev differential matrices can be found in [105] and

[113].

1.6.2 The spectral quasilinearization method

The quasilinearization method is a Newton-based method where nonlinear terms are first linearized

by employing Taylor series expansions. The method works on the assumption that differences

between successive iterations is negligibly small. The spectral quasilinearization method is a

combination of linear approximation techniques coupled with the advanced capabilities of the

computer. Detailed descriptions of the method can be found in the reference [101].

The attributes of rapid convergence and elevated levels of accuracy have led a number of researchers

to use spectral quasilinearization as the method of choice in recent studies. RamReddy et al. [114]

used the spectral quasilinearization method in their investigation of heterogeneous-homogeneous

chemical reactions on convective flow of micropolar fluid while Pal et al. [115] utilized the same

numerical technique in their analysis of entropy generation on flow of Jeffery nanofluid above a

stretchable sheet. Further works which utilize the quasilinearization method, include but are not

limited to [116–121].

1.7 Problem statement

Real fluids, be they Newtonian and Non-Newtonian, possess highly nonlinear and complex partial

differential equations that describe their flow behaviour. It is often difficult to solve the constitutive

equations analytically. Numerical methods play a pivotal role in resolving such impediments.

However, some numerical methods have limitations such as instability of solutions and slow rate

of convergence. Furthermore, some numerical methods are resource-intensive which culminates

in high cost in terms of computer memory and time.

The diverse range of constitutive models describing non-Newtonian fluid flows and the challenges

13



emanating from their highly nonlinear nature, implies that there is a great need to develop accurate

numerical algorithms to solve the flow equations. However, the drawbacks associated with numerical

methods imply that there is a need for researchers to develop numerical methods that are accurate,

computationally efficient, less costly, rapidly convergent, robust and stable. This will ensure the

accurate and efficient depiction of the boundary layer flow dynamics for nanofluids.

The main aim of this study is to investigate nanofluid boundary layer flows over different geometries

that are subject to diverse boundary conditions, and to test the efficacy of spectral methods in

solving the flow models.

The specific objectives are:

� to formulate model equations for nanofluid flow over various surfaces or geometries and to

compute solutions of the model equations numerically using the spectral quasilinearization method,

� to test the validity and accuracy of the method by comparison of results with limiting cases in

the literature and through convergence and residual error analysis and to establish the impact of

certain parameters on nanofluid flows.

The remaining portion of this thesis is structured as follows: in Chapter 2 we investigate the flow

of a micropolar nanofluid above a stretchable surface with thermo-diffusion and radiation. The

impact of radiation on nanofluid flow is further studied in Chapter 3 where the squeezed nanofluid

flow between parallel plates is considered. The Cattaneo-Christov heat flux model is adopted in the

study, instead of the conventional Fourier’s law of heat conduction. The effects of a homogeneous

chemical reaction and thermal radiation are analysed and presented. Chapters 4 and 5 deal with

nanofluid flow over rotating disks. In Chapter 4 we investigate the rotational disk flow of nanofluids

where the effects of chemical reaction and activation energy are discussed. In Chapter 5 we study

the steady nanofluid flow over a spinning disk with suction and prescribed heat flux. The measure

of disorder or irreversibility referred to as entropy, is presented. The thesis concludes with Chapter

6 in which a general discussion, conclusions and recommendations for future work are presented.
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Chapter 2

Dual solutions of a micropolar nanofluid flow

with heat mass transfer past a stretching or

shrinking sheet

In this chapter, the flow of a micropolar nanofluid over a nonlinearly stretching or shrinking sheet

is studied and the equations solved using the spectral quasilinearization method. The study of

micropolar fluids was pioneered by Eringen [122]. Micropolar nanofluids are those fluids that

are composed of rigid, randomly oriented particles with their specific microrotations in a viscous

medium [123, 124]. Micropolar nanofluids find wide application in industry, meteorology and

engineering among many others. Common examples of micropolar nanofluids include blood,

colloids, dust in the air, silt carried by rivers, paints, lubricants and so on [125]. In the study, the

effects of nanofluid particle concentration, thermophoresis and Brownian motion are discussed.
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Pr Prandtl number
Prn radiative Prandtl number
qw heat flux per unit area of the sheet
qr radiative heat flux
Rex local Reynolds number
Rd radiation parameter
Shx local Sherwood number
S suction or injection parameter
T temperature in the boundary layer
T∞ temperature of the fluid far away

from the wall
Tw temperature at the sheet
T0 reference temperature

u,v velocities in the x− and y− direction
respectively

U stretching velocity
U0 reference velocity
Greek symbols
α thermal diffusivity
g spin gradient of fluid
σ Stephan-Boltzmann constant
η transformed variable
ρ density of the fluid
μ dynamic viscosity of the fluid
ν kinematic viscosity
λ velocity slip parameter

1. Introduction
Micropolar fluids are fluids in which the local micro-structure and intrinsic motion of fluid
particles are considered in the flow regimen. The theory of micropolar fluids, which was
championed by Eringen (1966) and Eringen (1964), deals with fluids that are composed of
rigid and randomly oriented particles suspended in a viscous medium (Chen et al., 2010;
Liao, 2005; Maripala and Naikoti, 2016). The particles of this category of fluids exhibit both
rotational and translational motion.

Non-Newtonian fluids, a category of fluids to which micropolar fluids belong, find many
applications in engineering, agriculture, meteorology, industry and so on. Increased research
interest in micropolar fluids has manifested through numerous studies in recent years as this
category of fluids represents many industrially important fluid products such as industrial
colloidal fluids, polymeric suspensions, liquid crystals, paints, colloids, ferro-liquids, polymeric
fluids and lubricants. The presence of dust in air and blood flow in veins, arteries and
capillaries may also be studied using micropolar fluid dynamics. The momentum equations of
fluid flow termed Navier–Stokes equations are inadequate to totally describe flow of fluids at
the nano and micro scale (Chen et al., 2010) and are used in conjunction with an additional
model equation that accounts for angular momentum (Zheng et al., 2012).

Ishak et al. (2009) considered dual solutions in the flow of micropolar fluids whereas De
et al. (2016) analysed dual solutions on heat and mass transfer for nanofluid on a stretching/
shrinking sheet with thermal radiation. Kameswaran et al. (2014) investigated dual solutions
of Casson fluid as it flows over shrinking or streching surface. Maripala and Naikoti (2016)
considered the magnetohydrodynamic flow of micropolar nanofluid flow over a radiative
stretching sheet and solved their problem by employing the implicit difference method with
Thomas’ algorithm. RamReddy et al. (2015) studied mixed convection on micropolar fluid
over a porous vertical plate with convective boundary condition and they solved the system
using the spectral quasilinearization method. Their findings disclosed that dual solutions
exist for certain values of mixed convection parameter.

A new branch of solutions over an impermeable plate was reported by Liao (2005) that
was followed by an investigation of a new branch of solutions over a permeable plate
surface two years later (Liao, 2007). In both studies, they reported the existence of two
branches of solution and features of the flow phenomena were discussed in detail. Ever
since, much interest by researchers has been exhibited by focusing more attention on dual
solutions. Sulochana et al. (2016) have reported a transpiration effect on the stagnation-point
flow of a Carreau nanofluid on micropolar fluids. Multiple solutions were also reported by
Dhanai et al. (2015) when they studied the hydromagnetic flow of nanofluid over stretching/
shrinking permeable sheet with viscous dissipation.
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Uddin et al. (2016) have reported on the existence of dual solutions that emanate from
mass and heat transfer of micropolar fluid over an exponentially permeable shrinking sheet.
In their findings, the researchers found that dual solutions for temperature, micro-rotation
and velocity were obtained when the amount of applied suction had reached a certain
threshold. Dual solutions on steady double diffusive boundary layer flow over a vertical
surface immersed in an incompressible micropolar fluid were reported by Ishak et al. (2009).
Rehman and Nadeem (2012) examined the mixed convection transport in micropolar
nanofluid over a vertical slender cylinder.

A nanofluid is formed when nanoparticles are suspended in a base fluid. Examples of
base fluids can be water, ethylene glycol or oil. Nanoparticles, whose diameters range
between 1 and 100 nm, can significantly alter thermal properties of base fluids by increasing
their thermal conductivities (De et al., 2016; Goqo et al., 2016; Nadeem, Rehman, Vajravelu,
Lee and Lee, 2012; Prasad et al., 2014). Nanoparticles can be made of metal oxides
(e.g. titanium oxide), metals (e.g. copper) or non-metals (e.g. graphite). Recently, micropolar
nanofluids have received a considerable interest due to their wide application in industry.
Nadeem et al. have considered the axisymmetric stagnation flow of a micropolar nanofluid
flow in a moving cylinder. They applied the Homotopy analysis method to characterize the
flow. The study of micropolar nanofluid flow with MHD and viscous dissipation effects
towards a stretching sheet was done by Hsiao (2017). Noor et al. (2015) investigated
micropolar nanofluid fluid flow and they applied the shooting method coupled with the
Runga–Kutta Fehlberg scheme to solve the flow model. The effect of nanoparticles on
micropolar fluid flow was considered by Hussain et al. (2014).

Mondal et al. (2019) reported on dual solutions for the magnetohydromagnetic flow of
nanofluid with entropy generation. They solved their problem by applying the spectral
quasilinearization method and showed that this method produced residual errors than those
achieved by applying the fifth-order Runge–Kutta–Fehlberg method. De et al. (2016) applied the
fifth-order Runge–Kutta–Fehlberg method with shooting technique on dual solutions of heat
and mass transfer of nanofluid over a stretching or shrinking sheet with thermal radiation. Goqo
et al. (2016) utilised spectral quasilinearization to analyse combined effects of convective
boundary condition and magnetic field on the unsteady flow of Jeffery nanofluid over a
shrinking sheet with heat generation and thermal radiation. Sithole et al. (2018) studied couple
stress nanofluid flow in a magneto-porous medium by means of spectral quazilinearization.

Radiation as a mode of heat transfer has also caught the attention of researchers in the
recent past. This trend can be attributed to the grand importance of radiation in numerous
technological and engineering processes such as solar power harvesting, missile launches,
satellite navigation and space travel. Pal and Mondal (2011) presented the effects of thermal
radiation, Dufour, Soret and chemical reaction on hydromagnetic non-Darcy convective flow
over a stretching sheet. In recent times, many studies have been devoted to investigating
radiation effects in heat and mass transfer processes of fluids. Studies involving radiative
heat flux include those performed by Subhashini et al. (2013), Raptis (1998), Hamid et al.
(2018), De et al. (2015, 2016), Bidin and Nazar (2009), Sithole et al. (2018) and so on.

Many researchers have focused attention on boundary layer flow. Boundary layer theory has
undoubtedly led to modern advances in space flight, air travel, motor sports, irrigation systems,
biomedical technologies, etc. (Schlichting and Gersten, 2016). Boundary layer flow over
stretching/shrinking surfaces has extensive engineering applications like the cooling of metallic
plates, the aerodynamic extrusion of plastic sheets, hot rolling, metal spinning, boundary layer
along liquid film condensation process, artificial fibres, glass-fibre production, paper production,
and drawing of plastic films and so on (Subhashini et al., 2013; Tan et al., 2008; Uddin et al., 2016).

Pioneering studies on boundary layer flow over solid surfaces were done by Sakiadis (1961).
His studies were followed up later by Liao (2005, 2007) who focused attention on flow over
stretching permeable and impermeable walls. Liao solved the model equations by means of the
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Homotopy analysis method, which is classified as an analytic method. The Homotopy
analysis method was also utilised by Nadeem, Rehman, Lee and Lee (2012) to investigate
the flow of second grade fluid in a cylinder with heat transfer. Siddheshwar et al. (2014)
analysed magnetohydrodynamic flow and heat transfer of an exponentially stretching sheet in a
Boussinesq–Stokes suspension.

Most real-life phenomena such as heat and mass transfer, fluid flow, biological and
engineering processes are modelled by non-linear partial and ordinary differential
equations. By their nature such equations are complex and very tough to solve exactly
(Ames, 2014; Motsa et al., 2014; Schlichting and Gersten, 2016). Numerical methods have
been found useful in solving such complex phenomena to a high degree of accuracy.
Examples of such numerical methods include the spectral quasilinearization method, finite
difference method, Runge–Kutta method and so on.

Other numerical methods often employed by researchers include the finite element
method, the Runge–Kutta–Fehlberg method (Hamid et al., 2018; Siddheshwar et al., 2014),
the Keller-box technique (Mishra et al., 2016) and the shooting method (Dhanai et al., 2015).
In this work, we apply the Chebyshev spectral quasilinearization method to solve a problem
involving the flow of a micropolar nanofluid, for the rationale that spectral methods have
been shown to produce high accuracy and precision (Mondal et al., 2019). Furthermore, the
method has several advantages in the recent past (Sithole et al., 2018).

2. Mathematical formulations
In this study, a two-dimensional incompressible flow of a micropolar nanofluid is considered.
The fluid flows steadily over an impervious stretching/sheeting sheet. On the surface of
the sheet, we have uw¼ a(x + b)m, Tw¼T∞ + e(x + b)λ and Cw¼C∞ + d(x + b)β, where the
parameters a, b and m are associated with the shrinking or stretching speed of the surface
while e, b and λ are related to the temperature of the surface (Zheng et al., 2012) whilst d, b and
β are related to the concentration of the surface. The x-axis lies in the direction parallel to the
surface of the sheet, the y-axis is perpendicular thereto, u and v are the velocities in the x and y
directions, respectively.

The model equations emanate from the principles of mass, linear momentum, angular
momentum and energy conservation and are given as (refer to De et al., 2016; Sithole et al., 2018;
Zheng et al., 2012):

@u
@x

þ@v
@y

¼ 0; (1)

u
@u
@x

þv
@u
@y

¼ mþk
r

� �
@2u
@y2

þ k
r
@N
@y

; (2)

rj u
@N
@x

þv
@N
@y

� �
¼ @

@y
g
@N
@y

� �
�k 2Nþ@u

@y

� �
; (3)

u
@j
@x

þv
@j
@y

¼ 0; (4)

u
@T
@x

þv
@T
@y

¼ a
@2T
@y2

� 1
rCp

@qr
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þt DB
@C
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u
@C
@x

þv
@C
@y

¼ DB
@2C
@y2

þ DT

T1

@2T
@y2

� �
: (6)

The associated boundary conditions are as follows:

u ¼ uw; v ¼ j ¼ 0; T ¼ Tw; C ¼ Cw; N ¼ �1
2
@u
@y

at y ¼ 0;

u-0; N-0; T-T1; C-C1 as y-þ1; (7)

where N is the angular velocity (also termed the micro-rotation), DT and DB denote the
thermophoretic diffusion and the Brownian diffusion coefficients, respectively, qr is the
radiative heat flux while j and g are the micro-inertia density and spin gradient of the fluid,
respectively. The parameters μ, ρ, Cp, α and k are the viscosity, the density, the specific heat
capacity at constant pressure, the thermal conductivity and the vortex viscosity of the fluid,
respectively, τ¼ (ρc)p/(ρc)f is the ratio of effective heat capacity of nanoparticles to that of
the micropolar fluid, H¼ μ/ρja represents the micro-inertia parameter, where aW0 and
a o 0 are the stretching and shrinking constants, respectively.

Let g¼ μ(1+ (K /2))j where the material parameter K¼ k/μ represents the viscosity
ratio (Zheng et al., 2012). We note here that K¼ 0 depicts the flow of a viscous and
incompressible Newtonian fluid.

The parameter qr is modelled by the Rosseland approximation as qr ¼ �ð4s=3k1Þ
ð@ðT4Þ=@yÞ (Raptis, 1998). Here, k1 is the mean absorption coefficient and σ the
Stefan–Boltzmann constant. In the Rosseland approximation, we have T4 ¼ 4T3

1T�3T4
1

(Bidin and Nazar, 2009). This implies that @qr=@y
� � ¼ � 16=3

� �ðsT3
1=k1Þ @T=@y

� �
,

hence (5) becomes:

u
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@T
@y
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@y2

þ16sT3
1

3rCpk1

@2T
@y2

þt DB
@C
@y

@T
@y

þ DT

T1

@T
@y

� �2
 !

: (8)

Let c denote the stream function such that u ¼ @c=@y and v ¼ � @c=@x
� �

. The
dimensionless similarity variables are introduced as follows:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þmÞ

2n

r
ðxþbÞm�1

2 y; yðZÞ ¼ T�T1
cðxþbÞl; c ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

að1þmÞ

s
ðxþbÞm�1

2 FðZÞ;

j ¼ 2n
að1þmÞ ðxþbÞ1�miðZÞ; N ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þmÞ

2n

r
ðxþbÞ3m�1

2 hðZÞ; fðZÞ ¼ C�C1
dðxþbÞb: (9)

where v denotes the kinematic viscosity of the fluid and a≠ 0 and a(m + 1)W0.
Applying the similarity variables (9) in Equations (2)−(4), (6) and (8), the system becomes:

k1F
000 þFF 00 þk2h

0�k3 F 0� �2 ¼ 0; (10)

k4 ih0
� �0 þ Fh0�k4F

0h
� ��k2 2hþF 00� � ¼ 0; (11)

k5F
0i�k6Fi

0 ¼ 0; (12)
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y00 þPrn Fy0�k7F
0yþNby0f0 þNt f0� �2n o

¼ 0; (13)

f00 þ Nt
Nb

y00 þLe f0F� 2
mþ1

F 0f
� �

¼ 0; (14)

where:

k1 ¼ ð1þKÞ; k2 ¼ K; k3 ¼
2m
1þm

; k4 ¼ 1þK
2

� �
; k5 ¼ 1�m; (15)

k6 ¼
1þm
2

; k7 ¼
2l

1þm
; Prn ¼

Pr
1þ 4Rd=3
� �; Pr ¼ n

a
; Rd ¼

4sT3
1

k1arCp
; (16)

where Pr is the Prandtl number, Prn is the radiative Prandtl number, Rd is the radiation
parameter, Nb¼ τDB(Cw−C∞)/ν is the Brownian motion parameter, Nt¼ τDT(Tw−T∞)/νT∞
denotes the thermophoresis parameter and Le¼ ν/DB is the Lewis number.

The boundary conditions for Equations (10)−(14) are:

Fð0Þ ¼ 0; yð0Þ ¼ 1; ið0Þ ¼ 0; hð0Þ ¼ �1
2
F 00ð0Þ; fð0Þ ¼ 1;

F 0ð0Þ ¼ 1; yð1Þ ¼ 0; F 0ð1Þ ¼ 0; hð1Þ ¼ 0; fð1Þ ¼ 0: (17)

Equation (12) is integrated by parts to give i(η)¼ εF(η)δ where δ¼ (κ5/κ6) and e is a
constant of integration. IfK≠ 0 and e¼ 0, this implies that i(η)¼ 0, and yields the equation h
(η)¼ (1/2)F″(η), where h(0)¼−(1/2)F″(0), h(∞)¼ 0 meaning that the gyration equals the
angular velocity.

Consequently, Equations (10)−(14) are transformed to the equations:

k4F
000 þFF 00�k3 F 0� �2 ¼ 0; (18)

y00 þPrn Fy0�k7F
0yþNby0f0 þNt f0� �2n o

¼ 0; (19)

f00 þ Nt
Nb

y00 þLe f0F�k8F
0f

� � ¼ 0; (20)

where κ8¼ 2/(m+ 1).
The associated boundary conditions are:

Fð0Þ ¼ 0; yð0Þ ¼ 1; fð0Þ ¼ 1; F 0ð0Þ ¼ 1; yð1Þ ¼ 0; F 0ð1Þ ¼ 0; fð1Þ ¼ 0: (21)

3. Local skin friction, heat and mass transfer coefficients, wall couple stress
The physical quantities of interest are Cf, Nux, Mw which denote the local skin friction
coefficient, the local Nusselt number and the local couple stress at the surface, respectively.
They are defined as:

Cf ¼
2tw
ru2w

; Nux ¼
ðxþbÞqw

k Tw�T1ð Þ; Mw ¼ g
@N
@y

� �
y¼0

: (22)
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Here, τw and qw represent the surface shear stress and the surface heat flux, respectively,
and are given by:

tw ¼ ðmþkÞ @u
@y

þkN
	 


y¼0
; qw ¼ �k

@T
@y

� �
y¼0

: (23)

Using the similarity variables (9), we obtain:

0:5CfRe
0:5
x ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:591þm9

q
ð1þ0:5KÞF 00ð0Þ (24)

NuxRe
0:5
x ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:591þm9

q
y0ð0Þ; (25)

Mw

muwðxÞm�1 ¼
1
2H

ð1þmÞð1þ0:5KÞh0ð0Þ; (26)

where Rex ¼ uwðxþbÞð Þ=n
�� �� is the local Reynolds number.

4. Numerical solution
Equations (18)–(20) form a coupled non-linear system which we solve by utilising the
quasilinearization technique followed by applying the Chebyshev spectral collocation
method. The background theory on these procedures is given in Bellman and Kalaba (1965),
Canuto et al. (2012) and Trefethen (2000).

4.1 Quasilinearization
Consider a system of n non-linear differential equations which we write, without loss of
generality, as:

G1 H 1; H 2; . . .; Hn½ � ¼ 0; (27)

G2 H 1; H 2; . . .; Hn½ � ¼ 0; (28)

Gn H 1; H 2; . . .; Hn½ � ¼ 0; (29)

where:

H 1 ¼ f 1ðZÞ; f 01ðZÞ; f 001ðZÞ; . . .; f ðpÞ1 ðZÞ
n o

; (30)

H 2 ¼ f 2ðZÞ; f 02ðZÞ; f 002ðZÞ; . . .; f ðpÞ2 ðZÞ
n o

; (31)

Hn ¼ f nðZÞ; f 0nðZÞ; f 00nðZÞ; . . .; f ðpÞn ðZÞ
n o

; (32)

here p denotes the order of differentiation while fk(η) and Γk denote the solutions
of the system and the non-linear operators containing all the spatial derivatives of fk(η) for
k¼ 1, 2,…, n, respectively.

It is assumed that the solution can be approximated using the Lagrange interpolation
polynomial of the form:

f kðZÞ ¼
XNZ

j¼0

f kðZjÞLðZÞ; (33)
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for k¼ 0, 1,…, n where:

LðZÞ ¼
YNZ

j ¼ 0

jak

Z�Zk
Zj�Zk

; (34)

and:

LðZkÞ ¼
0; jak

1; j ¼ k

(
: (35)

The grid points ηj for j¼ 0, 1,…, n which are considered in this study are termed
Chebyshev–Gauss–Lobatto grid points and are defined as:

Zj
�  ¼ cos

pj
NZ

� �
: (36)

The system of the n non-linear differential equations under consideration is then linearised
by using the quasilinearization technique, which is outlined in great detail by Bellman and
Kalaba (1965).

Thus applying the quasilinearization technique leads one to obtain a coupled system n
linear of ordinary differential equations given as follows:

Xp
s¼0

a½1�1;s;rðZÞf ðsÞ1;rþ 1ðZÞþ
Xp
s¼0

a½1�2;s;rðZÞf ðsÞ2;rþ 1ðZÞþ � � � þ
Xp
s¼0

a½1�n;s;rðZÞf ðsÞn;rþ 1ðZÞ ¼ R1ðZÞ; (37)

Xp
s¼0

a½2�1;s;rðZÞf ðsÞ1;rþ 1ðZÞþ
Xp
s¼0

a½2�2;s;rðZÞf ðsÞ2;rþ 1ðZÞþ � � � þ
Xp
s¼0

a½2�n;s;rðZÞf ðsÞn;rþ 1ðZÞ ¼ R2ðZÞ; (38)

Xp
s¼0

a½n�1;s;rðZÞf ðsÞ1;rþ 1ðZÞþ
Xp
s¼0

a½n�2;s;rðZÞf ðsÞ2;rþ 1ðZÞþ � � � þ
Xp
s¼0

a½n�n;s;rðZÞf ðsÞn;rþ 1ðZÞ ¼ RnðZÞ; (39)

where a½k�n;s;rðZÞ ¼ @Gk=@f
ðsÞ
n;r and s¼ 0, 1, 2,…, p are the variable coefficients of f ðsÞn;rþ 1 that

correspond to the kth equation for k¼ 1, 2,…, n.
The right hand side of the kth equation is given by:

RkðZÞ ¼
Xp
s¼0

a½k�1;s;rðZÞf ðsÞ1;rðZÞþ
Xp
s¼0

a½k�2;s;rðZÞf ðsÞ2;rðZÞþ � � �

þ
Xp
s¼0

a½k�n;s;rðZÞf ðsÞn;rðZÞ�Gk H 1;r; H 2;r; . . .; Hn;r
� �

: (40)

By following the above procedures, the linearised system of Equations (18)–(20) becomes:

k4F
000 þFrF

00
rþ 1�2k3F

0
r F

0
rþ 1þF 00

r Frþ1 ¼ R1; (41)

�k7PrnyrF
0
rþ 1þPrny

0
r Frþ 1þy00rþ 1þ FrþNbf0

rþ2Nty0r
� 

Prny
0
rþ 1

�k7PrnF
0
ryrþ 1þPrnNby

0
rf

0
rþ 1 ¼ R2; (42)
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k8LefrF
0
rþ1þLef0

rFrþ 1þ Nt
Nb

y00rþ 1þf00
rþ 1þLeFrf

0
rþ 1�k8LeF

0
rfrþ 1 ¼ R3; (43)

where:

R1 ¼ �k3 F 0
r

� �2þF 00
r Fr ; (44)

R2 ¼ �k7PrnyrFr0 þPrnyr0FrþPrnNt y0r
� �2þPrnNb yrð Þ2; (45)

R3 ¼ LeFrf
0
r�k8LefrF

0
r ; (46)

and the associated boundary conditions are:

Frþ 1ð0Þ ¼ 0; yrþ 1ð0Þ ¼ 1; frþ 1ð0Þ ¼ 1; F 0
rþ 1ð0Þ ¼ 1; yrþ 1ð1Þ ¼ 0; frþ 1ð1Þ

¼ 0; F 0
rþ 1ð1Þ ¼ 0: (47)

4.2 Spectral collocation
The linearised system (41)–(43) is solved by evaluating F, θ and ϕ at the Chebyshev–Gauss–
Lobatto grid points ηi, for i¼ 0, 1,…,Nη. The derivatives at the grid points are defined by:

df n
dZ

9 Zið Þ ¼
XNZ

o¼0

Diof nðZoÞ; (48)

where Diof nðZoÞ ¼ dLðZjÞ=dZ: Higher order derivatives are defined by:

dpf n
dZp

9 Zið Þ ¼ DpFn; (49)

where DpFn ¼
PNZ

o¼0 D
p
io f nðZoÞ and Fn ¼ ½f nðZ0Þ; f nðZ1Þ; . . .; f nðZN Z

Þ�T and T denotes
transpose of the matrix.

Initial guesses are selected in such a way that they satisfy the boundary conditions of
our system. We chose the initial guesses for our system of equations as F0(η)¼ 1−e−η,
θ0¼ e−η, ϕ0¼ e−η and h0(η)¼−(1/2)F″(0)e−η. The system (18)–(20) is solved by the spectral
quasilinearization method. The solution for h(η) is then deduced from the solution for F.
A more detailed treatment on the spectral quasilinearization method can be found in Motsa
et al. (2011), RamReddy et al. (2015) and Sithole et al. (2018).

5. Results and discussion
We investigate the effect of increasing or decreasing certain parameters on the flow in order
to gain better understanding of the flow dynamics. The results of the dual solutions are
depicted graphically in tables and figures. The results are then discussed and conclusions
are drawn from them.

Table I illustrates that the error norm ||yr+1−yr||→0 as r→∞ and this confirms the
accuracy and effectiveness of the SQLM scheme in solving the micropolar nanofluid flow
problem under consideration. Table II shows numerical results for Nu=Re1=2x and
comparison is made with results obtained in Ali (1995) and Zheng et al. (2012) and they are
found to be in good agreement.

As shown in Figure 1, an increase in viscosity ratio K is associated with the appreciation
of f′(η). The viscosity ratio is defined as the ratio of the turbulent velocity to the
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dynamic viscosity. An increase in the viscosity ratio thus leads to the thickening of the
momentum boundary layer as expected.

The downward variation of nanoparticle concentration against the increase of Lewis
number is shown in Figure 2. Such behaviour is physically possible because the Lewis
number is defined by the ratio of the Schmidt number to the Prandtl number (De et al., 2016).
Thus increasing the Schmidt number would result in an increase the Lewis number, that
would in turn be accompanied by an increase of the concentration. Hence, an inverse
relationship exists between Le and ϕ. This trend is in agreement with the results of De et al.
(2015) and Sithole et al. (2018). It is also evident from Figure 3 that an increase in Lewis
number is accompanied by a rise in temperature.

The behaviour of the angular velocity variable h(η) as the viscosity ratio increases is
illustrated in Figure 4. As the viscosity ratio increases, the dual angular velocity decreases
for lower values of η but the opposite is true for higher values of η. This trend is consistent
with that one observed in Zheng et al. (2012).

K m Prn λ Ali (1995) Zheng et al. (2012) Present results

0 −0.2 0.72 1 0.8342828 0.846583 0.840482
0 −0.2 1 1 1.0063930 1.018910 1.013521
0 −0.2 3 1 1.8221270 1.856360 1.834747
0 −0.2 0.72 0 0.3349597 0.382401 0.336920

Table I.
Comparison of values

of Nu=Re1=2x

Iteration, r ||Fr+1−Fr||∞ ||θr+1−θr||∞

1 5.04 × 10−2 6.58 × 10−1

2 1.71 × 10−3 2.72 × 10−5

3 3.57 × 10−5 4.60 × 10−5

4 3.07 × 10−10 1.18 × 10−9

5 4.11 × 10−11 8.11 × 10−11

Table II.
Convergence of the
solutions: Pr ¼ 1,

λ ¼ 1, m ¼ 3,
K ¼ 0
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Figure 1.
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Figure 5 shows how the thermophoresis parameter Nt affects the temperature of the
boundary layer. An upward change in Nt leads to the enhancement of both temperature and
concentration profiles. An increase in nanoparticle concentration may be attributed to the
improved volume fraction which is the result of an increase of the thermophoresis
parameter. The same fluid behaviour is also reported in De et al. (2016).

The influence of the thermophoresis parameter Nt on the nanoparticle concentration is
shown in Figure 6. It is observed that an increase in Nt enhances the concentration
boundary layer as expected, due to the increased volume fraction of the nanoparticles. This
was also witnessed in Sithole et al. (2018).

The effect of the Prandtl number Prn on the temperature and concentration profiles is
shown in Figures 7 and 8. The Prandtl number is a dimensionless quantity that correlates
the viscosity of a fluid with the thermal conductivity. It is apparent from the plots that a rise
in the Prandtl number results in the depletion of the temperature and an increase in the
concentration profile. This also agrees with observations reported in Sithole et al. (2018).
That heat diffuses very quickly in liquid metals (Pr ≪ 1)) and very slowly in oils (Pr ≫ 1)
has widely been reported in the literature (Agbage et al., 2016). When Pr ≪ 1, thermal
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Figure 5.
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Figure 6.
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diffusivity dominates over the momentum diffusivity, while the reverse is true when Pr≪ 1.
In our study, the high conductivity of the nanofluid due to the presence of the nanoparticles
means that rapid heat and mass diffuse rapidly from the sheet surface resulting in the
depletion of the temperature and concentration profiles. In this study, we chose the value
Prn¼ 2 to represent the Prandtl number to investigate the flow dynamics of a micropolar
fluid over a shrinking or stretching sheet.

Figures 9–11 illustrate the influence of the material parameter m and the viscosity ratio
K on the skin friction, heat transfer rate and couple stress. It is observed that an increase in
m appreciates the skin friction and couple stress while it depreciates the rate of heat
transfer. However, as the viscosity ratio K is increased, the skin friction and couple stress
decrease while the heat transfer increases. These findings are consistent with what was
reported in Zheng et al. (2012).

6. Conclusions
The paper considers the steady and incompressible flow phenomena of a micropolar fluid in
which a shrinking or stretching sheet is considered. The spectral quasilinearization method
was used to numerically solve the coupled system of partial differential equations and
results were presented graphically and analysed.
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The study is an extension on the work by Zheng et al. (2012). The novelty of this study is
that we take into account nanoparticles, Brownian motion and thermophoresis in the flow of
a micropolar fluid. The aim of this study was to gain better insight on the phenomenon of
boundary layer flow of micropolar nanofluid. The effects of various parameters such as K,
Le, Nt, Prn on the flow in the presence of thermal radiation were investigated and the
following conclusions were drawn from the results:

(1) an increase in the viscosity rate results in the enhancement of momentum
boundary layer;

(2) as the viscosity ratio increases, the dual angular velocity decreases for lower values
of η but the opposite is true for higher values of η;

(3) an increase in the Lewis number is accompanied by an appreciation of the thermal
boundary layer and the depletion of the concentration boundary layer;

(4) an increase in the thermophoresis parameter leads to an increase of both the
concentration and temperature boundary layers;

(5) an increase in the Prandtl number results in the depletion of the thermal boundary
layer but leads to the thickening of the concentration boundary layer;

(6) an increase in m appreciates the skin friction and couple stress while it depreciates
the rate of heat transfer; and

(7) as the viscosity ratio K is increased, the skin friction and couple stress decrease
while the heat transfer increases.

7. Implications for research, practice and society
This study considered the flow of micropolar nanofluid by using the spectral
quasilinearization method. The study of dual solutions for micropolar nanofluids by
applying the quasilinearization method, to the best of our knowledge, has not been
considered before. This study therefore aims to enhance a better insight into the dynamics
of micropolar nanofluids, as they find wide applications in engineering, technology and
industry. In practice, it has been observed that adding nanofluids to a micropolar fluid has
the advantage of enhancing the effective heat transfer properties by significantly improving
the thermal conductive and convective properties of fluids. This observation has been
confirmed by our research and this helps bridge the gap between theory and practice. The
spectral quasilinearization technique, which is a recent method, has not been widely used
before to study flow regimes involving micropolar nanofluids. Our study therefore plays a
role in building up knowledge on the use of the spectral quasilinearization method. This
method, which has been found to converge after a few iterations, has several advantages, for
example, it is computationally efficient and less time-consuming.

The results of this study, in which we applied spectral quasilinearization method, would
create opportunities for collaboration among researchers, some of whom have been using
different methods in their own research work. The findings of the study also add knowledge to
the discipline of mathematical modelling which can be beneficial to students, especially those
focusing on the numerical study of fluid flow. The results of the study would bring to the fore
better insight on the dynamics involved in micropolar nanofluid flow and this ensures that more
efficient products such as paints, lubricants, coolants, to name just but a few, are manufactured
to the benefit of society. The production of improved and more efficient products and new
technologies will lead to higher demand for the products and this ensures superior productivity
in the industrial, engineering and technology sector. Superior profitability may lead to industrial
expansion, increased employment for the society, a better quality of life for the society and this
contributes to social, economic and political stability.

252

MMMS
16,2

30



References

Agbage, T.M., Mondal, S., Motsa, S.S. and Sibanda, P. (2016), “A numerical study of unsteady
non-Newtownian Powell-Eyring nanofluid flow over a shrinking sheet with heat generation and
thermal reaction”, Alexandra Engineering Journal, Vol. 56 No. 1, pp. 81-91.

Ali, M.E. (1995), “On thermal boundary layer on a power-law stretched surface with suction or
injection”, International Journal of Heat and Fluid Flow, Vol. 16 No. 4, pp. 280-290.

Ames,W.F. (2014),Numerical Methods for Partial Differential Equations, Academic Press, San Diego, CA.

Bellman, R.E. and Kalaba, R.E. (1965), Quasilinearization and Nolinear Boundary-Value Problems,
RAND Corporation, Santa Monica, CA.

Bidin, B. and Nazar, R. (2009), “Numerical solution of the boundary layer flow over an exponentially
stretching sheet with thermal radiation”, European Journal of Scientific Research, Vol. 33 No. 4,
pp. 710-717.

Canuto, C., Hussaini, M.Y., Quarteroni, A. and Thomas, A. Jr (2012), Spectral Methods in Fluid
Dynamics, Springer Science & Business Media, Berlin.

Chen, J., Liang, C. and Lee, J.D. (2010), “Theory and simulation of micropolar fluid dynamics”,
Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and
Nanosystems, Vol. 224 Nos 1–2, pp. 31-39.

De, P., Mondal, H. and Bera, U.K. (2015), “Heat and mass transfer in a hydromagnetic nanofluid past a
non-linear stretching surface with thermal radiation”, Journal of Nanofluids, Vol. 4 No. 2,
pp. 230-238.

De, P., Mondal, H. and Bera, U.K. (2016), “Dual solutions of heat and mass transfer of nanofluid over a
stretching/shrinking sheet with thermal radiation”, Meccanica, Vol. 51 No. 1, pp. 117-124.

Dhanai, R., Rana, P. and Kumar, L. (2015), “Multiple solutions of MHD boundary layer flow and heat
transfer behavior of nanofluids induced by a power-law stretching/shrinking permeable sheet
with viscous dissipation”, Powder Technology, Vol. 273, pp. 62-70, available at: https://doi.org/
10.1016/j.powtec.2014.12.035

Eringen, A.C. (1964), “Simple microfluids”, International Journal of Engineering Science, Vol. 2 No. 2,
pp. 205-217.

Eringen, A.C. (1966), “Theory of micropolar fluids”, Journal of Mathematics and Mechanics, Vol. 16
No. 1, pp. 1-18.

Goqo, S.P., Mondal, S., Sibanda, P. and Motsa, S.S. (2016), “An Unsteady magnetohydrodynamic Jeffery
nanofluid flow over a shrinking sheet with thermal radiation and convective boundary condition
using spectral quasilinearisation method”, Journal of Computational and Theoretical
Nanoscience, Vol. 13 No. 10, pp. 7483-7492.

Hamid, A., Khan, M. and Khan, U. (2018), “Thermal radiation effects on Williamson fluid flow due to an
expanding/contracting cylinder with nanomaterials: dual solutions”, Physics Letters A, Vol. 382
No. 30, pp. 1982-1991.

Hsiao, K.L. (2017), “Micropolar nanofluid flow with MHD and viscous dissipation effects towards a
stretching sheet with multimedia feature”, International Journal of Heat and Mass Transfer,
Vol. 112, pp. 983-990, available at: https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042

Hussain, S.T., Nadeem, S. and Haq, R.U. (2014), “Model-based analysis of micropolar nanofluid flow
over a stretching surface”, The European Physical Journal Plus, Vol. 129 No. 8, pp. 161-170.

Ishak, A., Nazar, R. and Pop, I. (2009), “Dual solutions in mixed convection boundary layer flow of
micropolar fluids”, Communications in Nonlinear Science and Numerical Simulation, Vol. 14
No. 4, pp. 1324-1333.

Kameswaran, P.K., Shaw, S. and Sibanda, P. (2014), “Dual solutions of Casson fluid flow over a
stretching or shrinking sheet”, Sadhana, Vol. 39 No. 6, pp. 1573-1583.

Liao, S. (2005), “A new branch of solutions of boundary-layer flows over an impermeable stretched
plate”, International Journal of Heat and Mass Transfer, Vol. 48 No. 12, pp. 2529-2539.

253

Dual solutions
of a micropolar
nanofluid flow

31



Liao, S.J. (2007), “A new branch of solutions of boundary-layer flows over a permeable stretching
plate”, International Journal of Non-Linear Mechanics, Vol. 42 No. 6, pp. 819-830.

Maripala, S. and Naikoti, K. (2016), “MHD effects on micropolar nanofluid flow over a radiative
stretching surface with thermal conductivity”, Advances in Applied Science Research, Vol. 7
No. 3, pp. 73-82.

Mishra, S.R., Baag, S. and Mohapatra, D.K. (2016), “Chemical reaction and Soret effects on
hydromagnetic micropolar fluid along a stretching sheet”, Engineering Science and Technology,
an International Journal, Vol. 19 No. 4, pp. 1919-1928.

Mondal, H., Almakki, M. and Sibanda, P. (2019), “Dual solutions for three-dimensional
magnetohydrodynamic nanofluid flow with entropy generation”, Journal of Computational
Design and Engineering, available at: https://doi.org/10.1016/j.jcde.2019.01.003

Motsa, S.S., Dlamini, P.G. and Khumalo, M. (2014), “Spectral relaxation method and spectral
quasilinearization method for solving unsteady boundary layer flow problems”, Advances in
Mathematical Physics, Vol. 2014, 12pp., available at: https://doi.org/10.1155/2014/341964

Motsa, S.S., Sibanda, P. and Shateyi, S. (2011), “On a new quasilinearization method for systems of
nonlinear boundary value problems”, Mathematical Methods in the Applied Sciences, Vol. 34
No. 11, pp. 1406-1413.

Nadeem, S., Rehman, A., Lee, C. and Lee, J. (2012), “Boundary layer flow of second grade fluid in a
cylinder with heat transfer”, Mathematical Problems in Engineering, Vol. 2012, 13pp.,
available at: https://doi.org/10.1155/2012/640289

Nadeem, S., Rehman, A., Vajravelu, K., Lee, J. and Lee, C. (2012), “Axisymmetric stagnation flow of a
micropolar nanofluid in a moving cylinder”, Mathematical Problems in Engineering, Vol. 2012,
18pp., available at: http://dx.doi.org/10.1155/2012/378259

Noor, N.F.M., Haq, R.U., Nadeem, S. and Hashim, I. (2015), “Mixed convection stagnation flow of a
micropolar nanofluid along a vertically stretching surface with slip effects”, Meccanica, Vol. 50
No. 8, pp. 2007-2022.

Pal, D. and Mondal, H. (2011), “Effects of Soret Dufour, chemical reaction and thermal radiation on
MHD non-Darcy unsteady mixed convective heat and mass transfer over a stretching sheet”,
Communications in Nonlinear Science and Numerical Simulation, Vol. 16 No. 4, pp. 1942-1958.

Prasad, V.R., Gaffar, S.A. and Bg, O.A. (2014), “Heat and mass transfer of nanofluid from horizontal
cylinder to micropolar fluid”, Journal of Thermophysics and Heat Transfer, Vol. 29 No. 1,
pp. 127-139.

RamReddy, C., Pradeepa, T. and Srinivasacharya, D. (2015), “Numerical study of mixed convection
flow of a micropolar fluid towards permeable vertical plate with convective boundary
condition”, Journal of Applied Analysis and Computation, Vol. 6 No. 2, pp. 254-270.

Raptis, A. (1998), “Flow of a micropolar fluid past a continuously moving plate by the presence of
radiation”, International Journal of Heat and Mass Transfer, Vol. 18 No. 41, pp. 2865-2866.

Rehman, A. and Nadeem, S. (2012), “Mixed convection heat transfer in micropolar nanofluid over a
vertical slender cylinder”, Chinese Physics Letters, Vol. 29 No. 12, available at: https://doi.org/10.
1088/0256-307X/29/12/124701

Sakiadis, B.C. (1961), “Boundary layer behavior on continuous solid surfaces: I. boundary-layer
equations for two-dimensional and axisymmetric flow”, AIChE Journal, Vol. 7 No. 1, pp. 26-28.

Schlichting, H. and Gersten, K. (2016), Boundary-Layer Theory, Springer, Berlin.

Siddheshwar, P.G., Sekhar, G.N. and Chethan, A.S. (2014), “MHD flow and heat transfer of an
exponential stretching sheet in a Boussinesq-Stokes suspension”, Journal of Applied Fluid
Mechanics, Vol. 7 No. 1, pp. 169-176.

Sithole, H., Mondal, H., Goqo, S., Sibanda, P. and Motsa, S. (2018), “Numerical simulation of couple
stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical
reaction”, Applied Mathematics and Computation, Vol. 339, pp. 820-836, available at: https://
doi.org/10.1016/j.amc.2018.07.042

254

MMMS
16,2

32



Subhashini, S.V., Sumathi, R. and Pop, I. (2013), “Dual solutions in a thermal diffusive flow over a
stretching sheet with variable thickness”, International Communications in Heat and Mass
Transfer, Vol. 48, pp. 61-66, available at: https://doi.org/10.1016/j.icheatmasstransfer.2013.09.007

Sulochana, C., Ashwinkumar, G.P. and Sandeep, N. (2016), “Transpiration effect on stagnation-point
flow of a Carreau nanofluid in the presence of thermophoresis and Brownian motion”,
Alexandria Engineering Journal, Vol. 55 No. 2, pp. 1151-1157.

Tan, Y., You, X.C., Xu, H. and Liao, S.J. (2008), “A new branch of the temperature distribution of
boundary-layer flows over an impermeable stretching plate”, Heat and Mass Transfer, Vol. 44
No. 5, pp. 501-504.

Trefethen, L.N. (2000), Spectral Methods in MATLAB, Vol. 10, Siam, Philadelphia, PA.

Uddin, M.S., Bhattacharyya, K. and Shafie, S. (2016), “Micropolar fluid flow and heat transfer over
an exponentially permeable shrinking sheet”, Propulsion and Power Research, Vol. 5 No. 4,
pp. 310-317.

Zheng, L., Niu, J. and Zhang, X. (2012), “Dual solutions for flow and radiative heat transfer of a
micropolar fluid over stretching/shrinking sheet dual solutions for flow and radiative heat
transfer of a micropolar fluid over stretching/shrinking sheet”, International Journal of Heat and
Mass Transfer, Vol. 55 Nos 25–26, pp. 7577-7586.

Further reading

Ishak, A. (2011), “MHD boundary layer flow due to an exponentially stretching sheet with radiation
effect”, Sains Malaysiana, Vol. 40 No. 4, pp. 391-395.

Morrison, F.A. (2001), Understanding Rheology, Oxford University Press, New York, NY.

Corresponding author
Hiranmoy Mondal can be contacted at: hiranmoymondal@yahoo.co.in

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

255

Dual solutions
of a micropolar
nanofluid flow

33



Summary

In this chapter, a study of the dual solutions for a micropolar nanofluid flow past a stretching or

shrinking surface was carried out. The model equations were solved numerically by using the

spectral quasilinearization method. Important properties of flow were analyzed and presented.

The impact of heat radiation, Brownian motion and thermophoresis on the thermal, momentum

and concentration profiles was investigated and discussed.
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Chapter 3

Effect of Cattaneo-Christov heat flux on the

flow of nanofluid between parallel plates

In this chapter, we investigate the impact of Cattaneo-Christov heat flux on the squeezed nanofluid

flow between parallel plates. The pioneering study on parallel plates was initiated by Stefan

[44]. Squeezing flow between parallel plates finds application in the food processing industry,

polymer manufacturing and lubrication technology among numerous others [126]. This study

explores the effects of magnetic field, homogeneous chemical reaction, radiation and heat source

on the nanofluid flow between squeezing parallel plates. The model equations are solved using the

spectral quasilinearization technique that has been shown in the literature to be accurate, robust

and to converge rapidly to the correct solution [28]. Detailed discussions on squeezing nanofluid

flows between parallel plates can be found in the studies [127–133] among others.
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Abstract. In this paper, we numerically solve the equations for hydromagnetic nanofluid flow past semi-infinite parallel plates 
where thermal radiation and a chemical reaction are assumed to be present and significant. The objective is to give insights on 
the important mechanisms that influence the flow of an electrically conducting nanofluid between parallel plates, subject to a 
homogeneous chemical reaction and thermal radiation. These flows have great significance in industrial and engineering 
applications. The reduced nonlinear model equations are solved using a Newton based spectral quasilinearization method. The 
accuracy and convergence of the method is established using error analysis. The changes in the fluid properties with various 
parameters of interest is demonstrated and discussed. The spectral quasilinearization method was found to be rapidly 
convergent and accuracy is shown through the computation of solution errors.  

Keywords: Cattaneo-Christov; Hydromagnetic flow; Quasilinearization; Chebyshev spectral collocation; Gauss Lobatto grid 
points. 

1. Introduction 

A nanofluid consists of a base fluid such as water, kerosene, oil or ethylene glycol and suspensions of nanometer sized 
particles of average size less than 100�� [45]. The nanoparticles are usually metals or metal oxides with higher thermal 
conductivities than base fluids. The minute size of nanoparticles has the desirable effect of increasing the surface area, which 
results in increased thermal conductivity of the fluid. Nanoparticles also play the valuable role of improving the viscosity and 
diffusivity of the base fluid. Nanofluids have important applications in the cooling of heat engines and microsystems, space 
vehicles, nanomedicine, materials processing, etc. [16]. For this reason, research studies on the rheology of nanofluids has 
increased on a massive scale in the last few years. 

Recently, Muhammad et al. [32] presented a study of bioconvection in the flow of a Carreau nanofluid containing micro-
organisms over a wedge. A study using spherical gold (Au) nanoparticles was given by Quresh et al. [38]. Muhammad et al. [35] 
presented a Darcy-Forcheimer revised model for a nanofluid flow with convective boundary conditions. Sithole et al. [43] 
discussed the flow of a couple stress nanofluid in a magneto-porous medium while accounting for a chemical reaction and 
thermal radiation while Pal and Mondal [17] studied the unsteady natural convective MHD boundary-layer flow with a chemical 
reaction. Sandeep and Sulochana [32] studied the flow of Jeffrey, Maxwell and Oldroyd-B nanofluids with a non-uniform heat 
source or sink.  

Magnetohydrodynamics (MHD) is concerned with the study of electrically conducting fluids. This category of flows finds 
applications in, inter alia, MHD generators, micro MHD pumps, drug delivery, etc. The effects of a magnetic field on different 
characteristics of electrically conducting fluids have been discussed by, among others, Pal and Mondal [27] and Takhar et al. [47]. 
Chamkha et al. [4] studied MHD mixed convection flow in a vertical channel. Other studies on MHD flow can be found in 
Chamkha [4, 6], Patil et al. [18], Pal and Mondal [37], Mondal et al. [26-28] and many others. Research has shown that in wire 
drawing, subjecting an electrically conducting fluid to a transverse magnetic field may be used to control the rate of stretching 
and cooling to achieve desirable properties of the finished product [17]. 
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Gorla and Chamkha [16] investigated convection in flow past a vertical plate in a porous medium saturated with a nanofluid. 
Reddy et al. [40] investigated nanofluid flow past a flat plate in a porous medium. They reported that the shape of nanoparticles 
has a marked effect on the rate of heat transfer. Mondal and Sibanda [29] studied entropy generation in Sakiadis nanofluid flow. 
Their study revealed that entropy generation rises in tandem with increased Reynolds numbers. 

MHD viscous nanofluid flow between parallel plates has of late received considerable attention from researchers due to their 
wide application in science and industry. Such flows occur in food processing industries, polymer manufacturing industries, 
lubricating machines, hydro-dynamical equipment among many other areas. The pioneering study on such flows was done by 
Stefan [46].  

A study of unsteady squeezing flow and heat transfer in flow between parallel plates was presented by Mustafa et al. [35]. 
They observed that the Nusselt number diminishes with the radiation parameter and the Hartmann number but appreciates with 
increases in the squeeze number and the Eckert number. A squeezing flow of a third grade fluid was investigated by Shafiq et al. 
[42] while Das and Mohammed [8] investigated unsteady squeezing flow subjected to a magnetic field. Dib et al. [10] obtained 
analytical solutions of the equations that model unsteady squeezing nanofluid flow using the Duan-Rach Approach. Sobamowo 
and Akinshilo [44] investigated double diffusive magnetohydrodynamic squeezing nanofluid flow passing two parallel disks with 
temperature jump and slip boundary conditions using the homotopy perturbation method.  

Lately, many researchers have used the Cattaneo-Christov model in place of some classical models in the study of heat 
transport problems. In these models heat transfer between two objects is due to a temperature gradient existing between the 
objects. However, it has been noted that Fourier’s law has some inadequacies in fully accounting for the characteristics of heat 
transfer.  

Hayat et al. [20] and Farooq et al. [15] analyzed models based on Christov heat and mass fluxes in a porous media. Hayat et al. 
[19] interrogated stretching surface in Christov heat flux. Additional literature on the Cattaneo-Christov model can be found in 
Hayat [20-21], Mondal and Sibanda [29], Oyelakin [36] and Dogonchi and Ganji [13]. 

The objective of this work is to determine the characteristics of nanofluid flow and heat transfer using the Christov heat flux 
law and to solve the transport equations the spectral quasilinearization method (SQLM). The SQLM is an iterative Newton-based 
method in which nonlinear terms in a differential equation are linearized using a Taylor series expansion. In the last decade, 
many studies have been published where the SQLM was used to solve boundary value problems in fluid dynamics. This trend is 
attributed to the fact that the SQLM has been found to be robust and efficient. Indeed, it leads to faster convergence in 
comparison with many other numerical methods such as the finite difference method, Runge-Kutta method and so on [[30, 43]. 
Other recent studies that used the SQLM include papers by Alharbey et al. [1], Magodora et al. [24], Motsa et al. [31], and Pal et al. 
[37]. 

In Section 2, we describe the configuration and give the equations that model the flow and the associated boundary 
conditions for the squeezing flow. In section 3 the steps followed in applying the SQLM to solve model equations are given. The 
results are discussed in section 4 with comparisons to previously published literature. The convergence analysis of the SQLM is 
given to justify its use and give confidence to the findings in the study. Methods that give a fast rate of convergence are 
important in saving computer memory, time and precision. The choices of parameter values used is informed by literature and a 
consideration of engineering and industrial applications.  

2. Mathematical formulation 

 The two-dimensional incompressible Cattaneo-Christov heat flux model between infinite parallel plates saturated with a 
nanofluid is considered. The parallel plates are placed at 0.5( ) (1 )H t l tα± =± −  where l is the position at t = 0 and α  is the squeezing 
parameter with dimensions of 1/[time]. For the values of 0α>  , the parallel plates are squeezed with velocity ( ) /v t dH dt=  at 

1 /t α= , while for 0t < , the plates are pulled apart 1 0( ) / (1 ),K t k tα= − . The nanofluid is assumed to be Newtonian. A 
homogeneous reaction and the base fluid, having the time-dependent reaction rate, is assumed while a time-dependent 
magnetic field 0.5

0( ) (1 )B t B tα −= −  is applied across the two parallel plates [13, 35]. The slip velocity is assumed to be negligible. 
Copper nanoparticles are suspended in water which is the base fluid. The thermal and physical properties of these nanofluids are 
shown in Table 1. The orientations of the �-axis and the �-axis appear in Fig. 1. The velocity components u and v are oriented in x 
and y directions, respectively. A heat source is placed between plates as depicted on Fig. 1. In tandem with the above 
assumptions the model equations for mass conservation, linear momentum conservation, energy conservation and mass 
diffusion are given as:  

0
u v

x y

∂ ∂
+ =

∂ ∂
 (1) 

2 2
2

2 2 ( ) ,nf nf f

u u u P u u
u v B t u

t x y x x y
ρ µ σ
   ∂ ∂ ∂ ∂ ∂ ∂   + + =− + + −     ∂ ∂ ∂ ∂ ∂ ∂   

 (2) 

2 2

2 2 ,nf nf

v v v P v v
u v

t x y y x y
ρ µ
   ∂ ∂ ∂ ∂ ∂ ∂   + + =− + +     ∂ ∂ ∂ ∂ ∂ ∂   

 (3) 

( )
2 2

02 2 ,r
p nfnf

T T T T T q
C u v k Q T

t x y x y y
ρ ε

   ∂ ∂ ∂ ∂ ∂ ∂   + + + ∆ = + − +     ∂ ∂ ∂ ∂ ∂ ∂   
 (4) 

2 2

12 2 ( ) ,T
B

C C C C D T
u v D K t C

t x y y T y∞

 ∂ ∂ ∂ ∂ ∂  + + = + +  ∂ ∂ ∂ ∂ ∂ 
 (5) 
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Fig. 1. Flow configuration 

 
where DT is the thermophoretic diffusion, DB is the Brownian diffusion, p is the pressure of nanofluid, k0 is the uniform reaction 
rate, B0 is the uniform magnetic field, qr is the radiative heat flux and: 

2 2 2 2 2 2
2 2

2 2 2. 2 2 2 .
T u T T T v T u T v T v T u T T T T

u v u v u v uv u v
y t x t x t y t y x x y y x y y x x y x y

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∆= + + + + + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (6) 

The dynamic viscosity is calculated from the Brinkman model [14] as: 

2.5(1 )
f

nf

µ
µ

ϕ
=

−
 (7) 

The other properties of nanofluid are defined as in Rashidi et al. [39]:  

(1 ) snf fρ ϕ ρ ϕρ= − +  (8) 

( ) ( )( ) ( )1p p pnf f s
C C Cρ ϕ ρ ϕ ρ= − +  (9) 

2 2 ( )
.

2 2 ( )
s snf f f

s sf f f

k k k k k

k k k k k

ϕ

ϕ

+ − −
=

+ + −
 (10) 

The boundary conditions for the model are (refer to Dogonchi and Ganji [13] and Mustafa et al. [35]):  

0, , , , at ( ),

0 at 0,

w H H

dH
u v v T T C C y H t

dt
u C T

v y
y y y

= = = = = =

∂ ∂ ∂
= = = = =

∂ ∂ ∂

 (11) 

where wv denotes velocity at the plate surface. By the Roseland approximation, the radiative index rq  is taken as 
* * 44 / 3 ( / )r nfq k T yσ=− ∂ ∂  and 4 3 44 3 .T T T T∞ ∞= −  This implies that * 3 */ (16 / 3)( / ) / ,r nfq y T k T yσ ∞∂ ∂ =− ∂ ∂  hence (4) becomes: 

2 2 * 3 2
0

2 2 * 2

16
,

( ) 3( ) ( )
nf

p p pnf nf nf nf

k QT T T T T T T
u v T

t x y C x y C k y C

σ
ε

ρ ρ ρ

∞
 ∂ ∂ ∂ ∂ ∂ ∂ + + + ∆= + + +  ∂ ∂ ∂ ∂ ∂ ∂ 

 (12) 

Let � denote the stream function such that /u yψ= ∂ ∂  and /v xψ=−∂ ∂ , we introduce the following dimensionless variables: 

, ( ) , '( ), ( ), ( ) ,
2(1 )1 2 1H H

y lT x C
u f v f g

T t Cl t t

αα
η θ η η η η

αα α
= = = =− =

−− −
 (13) 

Upon effecting the above similarity variables, the model equations and their associated boundary conditions transform to: 

( )1 23 '' ' '' ''' ''' '' 0,ivf S f f f f f f M fα η α− + + − − =  (14) 

2 2
1 2'' [ ' ' ( '' ' ' 2 '' ' ' '')] 0,f f f ff fθ β θ ηθ γ η θ η θ η θ θ θ β θ+ − − − − + + + =  (15) 

'' ( ' ') 0,g ScS fg g Sc gη ζ+ − − =  (16) 

The boundary conditions are: 

(0) 0, ''(0) 0, '(0) 0, '(0) 0,

(1) 1, '(1) 0, (1) 1, (1) 1,

f f g

f f g

θ

θ

= = = =

= = = =
 (17) 
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Table 1. Material properties of base fluid and nanoparticles. 

Property Water (base fluid) Copper (nanoparticles) 

Density, ρ ( 3kgm− ) 

Specific heat capacity,  Cp ( )1 1Jkg K− −  

Thermal conductivity, ( )1 1Wm Kκ
− −  

997.1 

4179 

0.613 

893.3 

385 

401 

 

where 1 1 2 2 2 1 3 4 2 4/ , 1 / , Pr / (3 / (3 4)), ( / )(3 / (3 4)).sA A A SA A N N H A N Nα α β β= = = + = +  The dimensionless constants iA  for i = 1, 

2, 3, 4 are defined as 1 2 3 4/ , / , ( ) / ( ) and / .p pnf f nf f nf f nf fA A A C C A k kρ ρ µ µ ρ ρ= = = = Here Pr is the Prandtl number, Sc the Schmidt 

number, S the squeeze number, ζ  is the chemical reaction parameter, Hs the heat source parameter, M the magnetic parameter, 

N the radiation parameter, γ  the reaction parameter are defined as: 

22
0

( )
Pr , , , ,

2
pf f f

Bf f f

C lk l
Sc S

k D

υ ρ υ α
ζ

υ υ
= = = =

* 2 22
00

* 3

(1 )(1 )
, , , .

4 2(1 )
nf nf nf

S

f f

k k t l BQ l t
H N M

k T t

σ αα αε
γ

σ α µ∞

−−
= = = =

−
 (18) 

Physical properties of scientific and engineering interest are the skin friction Cf, the Nusselt number Nuf and the Sherwood 
number Shf are defined by: 

* *
2

*

( ) ( )( )

16 1
, ,

3
nf

w Hf f f nf f
Hf nf y h t y h ty h t

u T T C
C v k T Nu k Sh

y k y C y

µ σ

ρ
∞

= ==

 ∂ ∂ ∂ = = + =− ∂ ∂ ∂ 
 (19) 

They are deduced from eq. (13) and eq. (19) as: 

2 ''(1),fC A f= ,    4

3 4
3
N

Nu A
N

 + =   
, 1 '(1).t gα− =−   (20) 

3. Method of Solution 

The method of quasilinearization is used to linearize the nonlinear ordinary differential eq. (14)-(16). Details of this method 
can be found in Bellman and Kalaba [2]. The iterative scheme that is obtained from applying quasilinearization is: 

''' '' '
1 13 1 12 1 11 1 10 1 1

iv
r r r r r r r r rf a f a f a f a f R+ + + + ++ + − + =  (21) 

' '' '
21 1 20 1 22 1 21 1 20 1 2r r r r r r r r r ra f a f b b b Rθ θ θ+ + + + ++ + + + =  (22) 

30 1 1 31 1 30 1 3''' ' ,r r r r r r ra f g c g c g R+ + + ++ + − =  (23) 

where  

'
13 1 12 1 2( ), (3 ) ,r r r ra S f a S f Mα η α α= − = + +  (24) 

' ''
11 1 10 1, ,r r r ra S f a fα α= =  (25) 

' ' ' '' ' ' ''
21 1 1 20 1 1 1 1, 2 2 ,r r r r r r r r r r ra f a f fβ γθ β γ θ β θ β γηθ β γ θ β γ θ= − = + − −  (26) 

2 2 ' '
22 1 1 1 21 1 1 1 11 1 2 , ,r r r r r r r rb f f b f f f fβ γη β γη β γ β β η β γη β γ= − + − = − + −  (27) 

'
20 2 30 31 30, , , ,r r r r r rb a ScSg c ScS f ScS c Scβ η ζ= = = − =  (28) 

with the boundary conditions are  

' ' '
1 1 1 1

'
1 1 1 1

(0) 0, (0) 0, (0) 0, (0) 0,

(1) 1, (1) 0, (1) 1, (1) 1,
r r r r

r r r r

f f g

f f g

θ

θ

+ + + +

+ + + +

= = = =

= = = =
 (29) 

where the subscript r denote the previous approximation while the r+1 denotes the current iteration. Further discussion of the 
quasilinearization method can be found in Magodora et al. [24], Motsa et al. [30], Mondal and Bharti [28] and Mondal and Sibanda 
[29].  

The next step in using the SQLM is to apply the spectral method to the linearized system eq. (23) - (25). Details of the spectral 
method can be found in Canuto et al. [3], Sithole et al. [43], Pal et al. [37] and Trefethen [48]. The domain of the problem is 

[0,1].η ∈  
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Fig. 2. The impact of squeeze parameter S on nanofluid velocity. Fig. 3. The impact of squeeze parameter S on temperature. 

  

Fig. 4. The impact of squeeze parameter S on concentration of diffusing 

species. 

Fig. 5. The impact of the radiation parameter N on temperature. 

  

Fig. 6. The impact of solid volume fraction φ  on temperature. Fig. 7. The impact of heat source parameter SH  on temperature of 

diffusing species. 
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To solve the system (22)-(24) with the spectral method, we convert the domain [0,1] to [ 1,1]zη ∈ ∈ −  by letting ( 1) / 2.zη = +  

For discretization, we use the Gauss-Lobatto grid points cos( / ) for 0, 1, 2,..., .i i N i Nη π= =  The derivatives at the Gauss-Lobatto 

nodes are calculated as 
0

/ ( )
i

N

n n wiww
df d D f

η
η η

=
=∑ , where D is the Chebyshev differential matrix and ( ) ( ) / .n w wiw iD f d dη τ η η=  

Higher order derivatives are defined as /
i

p p p
n nd f d D Fηη =  where 0 10

( ) and [ ( ), ( ),.... ( )]
Np p T

n n w n n n n Niww
D F D f F f f fη

η η η η
=

= =∑  and T 

denotes transpose of the matrix. 

 The following initial guesses are chosen in such a way that they satisfy the boundary conditions 

3 2 21 3
, , .

2 2
r and gη η θ η η=− + = =   

Applying spectral method to system (21)-(23) yields  

11 1 12 1 13 1 1r r rA f A A g Rθ+ + ++ + =  (30) 

21 1 22 1 23 1 2r r rA f A A g Rθ+ + ++ + =  (31) 

31 1 32 1 33 1 3r r rA f A A g Rθ+ + ++ + =  (32) 

The boundary conditions for , ,f gθ  and their derivatives are imposed on the first row, second row, second last row or last 
row of the square matrices 11 22,A A  and 33A  as illustrated by Sithole et al. [43]. The linear system AY=R is then solved using 
MATLAB code where  

11 12 13

21 22 23 1 1 1 1 2 3

31 32 33

, [ ] , [ ]T T
r r r

A A A

A A A A Y f g R R R R

A A A

θ+ + +

    = = =     

 (33) 

4. Results and discussion 

The study used the spectral quasilinearization method to investigate the momentum, thermal and concentration properties 
of a hydromagnetic flow of copper nanofluid between parallel plates in the presence of a homogeneous chemical reaction and 
thermal radiation. The validity of our methodology and accuracy of results is demonstrated in Table 2 by comparison with 
previously published results. Excellent agreement is observed. 

To show the convergence of the numerical scheme, we computed the solution errors in , ,f gθ  respectively. The solution 
errors give the differences between successive iterations, as defined by the norms above. The solution errors are shown in Figs. 
13-15 and it is observed that they all reduce, to the order of 10-12 after a few iterations, thereby demonstrating fast convergence of 
the numerical scheme.  

The different profiles when the parameters , , , , , , andSS M N H Scϕ γ ζ are varied are shown in Figs. 2-11. For the purpose of our 
numerical simulation we have used the values of 1, 1, 0.01, Pr 1, 1, 0.1, 1, 0.1 and 1SS M Sc N Hϕ γ ζ= = = = = = = = = unless 
otherwise stated. When a particular parameter is varied, all other parameters are taken to be constant. 

  

Fig. 8. The impact of the relaxation parameter γ  on temperature. Fig. 9. The impact of magnetic parameter M on temperature. 
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Fig. 10. The impact magnetic parameter M on velocity. Fig. 11. The impact of the Schmidt number Sc on concentration. 

  

Fig. 12. The impact of chemical reaction parameter ζ on concentration. Fig. 13. Solution error for f when 0.3, 0.01, 0.1, 1S M Sc=− = = =φ and 

1.=ζ  

Figs. 2-4 indicate the influence of the squeezing parameter S, on the various profiles. A downward variation of the squeezing 
parameter is associated with increased momentum and thermal boundary layers, while the opposite is true for the concentration 
boundary layer. We considered only negative values of S which correspond to squeezing flow where the plates move towards 
each other. This action squeezes out the nanofluid and enhances the fluid velocity. Coupled with a greater surface area of the 
nanoparticles, increased velocity implies enhanced kinetic energy of the nanofluid. This in turn leads to higher thermal 
conductivity in the nanofluid, hence the increased temperature profiles. It is also apparent that the increased reaction rate 
causes the species diffusion to reduce significantly due to enhanced velocity and temperature of nanofluid. 

The influence of the radiation parameter N on the temperature profiles is shown in Fig. 5 where an increase in radiation leads 
to an increase in the temperature. As expected, this rise in the temperature increases the Nusselt number as shown in Table 3. It 
is assumed there is no velocity slip, and as a consequence, Fig. 6 shows that an increase in the volume fraction ϕ , reduces the 
fluid temperature profiles. The volume fraction is the volumetric concentration of the nanoparticles in the base fluid. Such a 
relationship between the volume fraction and the temperature were also obtained by Dongonchi et al. [8]. 

The temperature profiles when heat source parameter Hs is varied, is illustrated in Fig. 7. It is observed, as would be expected, 
that the temperature increases with the heat source parameter. The physical interpretation of this scenario is that an increased 
heat source parameter implies increased heat energy being released into the flow, thereby enhancing the thermal boundary layer 
thickness. 

Figure 8 shows the impact of different values of the relaxation parameter γ , where an increase in γ  is accompanied by a 
diminished thermal boundary layer hence a reduced temperature profile. Figures 9 and 10 show the impact of the magnetic 
parameter on the thermal and momentum profiles respectively. An increased magnetic field reduces the thermal and 
momentum boundary layers. Strengthening the magnetic field normal to the flow causes the rise of a Lorenz force, which 
opposes the flow of the electrically conducting nanofluid.  
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Table 2. Comparison of skin friction coefficient and local Sherwood number values as squeeze parameter S varies at �=1 and when 

1, Pr 1, 0.01, 0,SSc H= = = =φ . 

S 
''(1)f−  '(1)g  

Mustafa et al. [35] Dogonchi and Ganji [11] Present Result Mustafa et al.[35] Present Results 

2 4.1673389 4.167041 4.1673892 0.7018132 0.7018132 

0.5 3.336449 3.336449 3.3364495 0.7442243 0.7442243 

0.01 3.007134 3.007133 3.0071338 0.7612252 0.7612252 

-0.5 2.614038 2.617403 2.6174038 0.7814023 0.7814023 

-1 2.170090 2.170090 2.1700909 0.8045580 0.8045588 

 
Table 3. Effects of certain parameters on skin friction coefficient, local Nusselt and Sherwood numbers. 

 

 
 

 

 

 

 

 

 

 
 

Fig. 14. Solution error for θ  when 0.3, 0.01, 0.1, 1S M Sc=− = = =φ and 

1.=ζ  

Fig. 15. Solution error for g when 0.3, 0.01, 0.1, 1,S M Sc=− = = =φ

and 1.=ζ  

The effect of different values of Schmidt number on the species concentration profiles is shown in Fig. 11. The Schmidt 
number is a ratio of mass diffusion to momentum diffusion. It is noted that reduced molecular activity occurs due to increased 
Schmidt number. The influence of the chemical reaction parameter ζ  on the species concentration is portrayed in Fig. 12. It is 
noticeable that an increased chemical reaction parameter leads to increased chemical reaction, which consequently leads to 
decreased concentration of the diffusing species, as expected. Table 3 shows the effects of varying the parameter 

, , , , andSS M Hϕ γ ζ on ''(1), '(1) and '(1).f gθ−  It is apparent that an increase in the magnetic parameter M is associated with a 
decrease in '(1) '(1)and gθ  but is accompanied by an increase in ''(1)f− . 

5. Conclusion 

 The study considered heat and mass transfer in an electrically conducting nanofluid between parallel plates with radiation, 
homogeneous chemical reaction and a magnetic field that is transverse to the flow. The model equations were solved 
numerically using the spectral quasilinearization method. The accuracy of the method was shown through convergence analysis 
and by comparing current results with published results in the literature, excellent agreement was established. This study 
illustrates the efficiency and precision of the spectral quasilinearization method in solving nonlinear flow problems. The impact 
of the Schmidt number Sc, the relaxation parameter γ , the squeeze parameter S, the solid volume fraction ϕ , the radiation 
parameter N, the heat source parameter HS, the magnetic parameter M and the chemical reaction parameter ζ  on the skin 
friction coefficient, Nusselt number, Sherwood number, velocity, temperature and concentration profiles was examined and the 
results discussed in detail. Highlights of the results from the study are that: 

Parameter Value ''(1)f−  '(1)−θ  '(1)g  

φ  
0 2.4244886 0.0595669 0.8030504 

0.01 2.3706990 0.0565725 0.8033708 

S 
-0.4 2.8912768 0.0465793 0.7768018 

-0.6 2.7288755 0.0494688 0.7850880 

γ  
0.1 2.3706990 0.0565725 0.8033708 

0.2 2.3706990 0.0540696 0.8033708 

M 
0 2.1179478 0.0572280 0.8048802 

2 2.6048013 0.0559913 0.8048802 

HS 
0.1 2.3706990 0.0565725 0.8033708 

0.2 2.3706990 0.1153963 0.8033708 

ζ  
1 2.3706990 0.0565725 0.9205214 

1.2 2.3706990 0.0565725 1.1287782 
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1. An increase in the magnetic parameter leads to a decrease in the local Nusselt and Sherwood numbers but is accompanied 
by an increase in the skin friction coefficient.  
2. An increase in the volume fraction acts to reduce the Sherwood numbers.  
3. The temperature decreased with the relaxation parameter and increased with the heat source parameter. 
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Nomenclature 

Ai dimensionless constants, where i =1, 2, 3, 4 Sc Schmidt number 
B(t) variable magnetic field SQLM spectral quasilinearization method 
B0 uniform magnetic field T temperature (K) 
C concentration (mol/m3) TH temperature of plate (K) 
CH concentration at plate surface (mol/m3) �	 free stream temperature (K) 

	 free stream concentration (mol/m3) Greek letters 
Cp specific heat capacity (Jkg-1K-1) α  squeeze rate (s-1) 
DB Brownian diffusion η  dimensionless variable 
DT thermophoretic diffusion ρ  density (kgm-3) 
f dimensionless velocity ϕ  volume fraction of nanoparticles 
g dimensionless concentration Θ  dimensionless temperature 
Hs heat source parameter σ  electrical conductivity (��) 
k thermal conductivity (Wm-1K-1) *σ  Stefan-Boltzmann constant 

k0 uniform reaction rate µ  dynamic viscosity (Nsm-2) 
k* mean absorption coefficient  υ  kinematic viscosity (m2s-1) 

K1(t) time - dependent reaction rate γ  reaction parameter 

M magnetic parameter ζ  chemical reaction parameter 
N radiation parameter Subscripts 

Pr Prandtl number f  base fluid 

qr radiative heat flux nf  nanofluid 

S squeeze parameter   
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46Summary

The study interrogated the effects of Cattaneo-Christov heat flux on the flow of nanofluid between

parallel plates. The squeezing flow between parallel plates is key in many industrial processes.

The findings of the study showed that the rates of heat and mass transfer decrease with increased

magnetic field strength while the reverse trend was witnessed for the skin friction. The temperature

was found to decline with increasing relaxation parameter. The contrary trend was observed for

the heat source parameter.



Chapter 4

Numerical studies on gold-water chemical reacting

nanofluid with activation energy past a rotating

disk

In Chapter 3, the effect of the Cattaneo-Christov heat flux on nanofluid flow between squeezing

parallel plates was studied. In the current chapter, attention is shifted to nanofluid flow past a

rotating disk where the effects of binary chemical reaction and activation energy are taken into

consideration. The pioneering study of fluid flow over an infinite rotating disk was done by

Von-Kármán in 1921 [56]. Activation energy is the minimum amount of energy that is required

to start a chemical reaction [134] while a binary chemical reaction occurs in two stages [135].

Problems involving rotating disks, binary chemical reaction and activation energy occur frequently

in industrial processes [136]. Varying the parameters of interest and observing their effects on the

flow properties such as velocity, concentration, thermal, skin friction rates of heat and mass transfer

has implications on controlling the chemical reaction processes in order to improve efficiency

and production. More discussions on nanofluid flows with activation energy and binary chemical

reaction can be viewed in the references [137–141], etc.
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Abstract

The present study examines the steady incompressible gold-water chemically reacting nanouid ow near a
rotating disk in the presence of activation energy and Brownian di�usion. The model equations are treated
with the Newton-based spectral quasilinearization method to ascertain the e�ects of di�erent parameters
of interest such as volume fraction and the Prandtl number on the velocity, temperature, concentration
and heat and mass transfer rates. This method has been shown in the literature to be robust and rapidly
convergent. The validity of the results is checked by comparing numerical results, in the limiting case, with
published results in the literature. The study showed that the rate of ow, heat and mass transfer appreciate
with increased volume fraction of the nanoparticles. Increasing the Prandtl number was found to decrease
temperature but increase concentration. A rise in the Schmidt number resulted in decreased temperature but
did not have any appreciable e�ect on the concentration. Additionally, a lower temperature was predicted
from a rise in activation energy while concentration was predicted to appreciate as a result of increased
activation energy. The study has applications in the removal of contaminants in the beverages and waste
water recovery industries.

Key words: Nanouid, Binary chemical reaction, Activation energy, Quasilinearization, Rotating disk,
Brownian motion, Chebyshev spectral collocation.
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Nomenclature

a0; au constants
C concentration
C0 concentration at disk surface
Cf skin-friction coe�cient
Cp speci�c heat capacity at constant pressure
DB Brownian di�usion coe�cient
Dm mass di�usivity
Ea activation energy
kf thermal conductivity of base uid
knf thermal conductivity of nanouid
kr2 reaction rate constant
L non-dimensional length scale
m non-dimensional length scale
n �tted rate constant
Nu Nusselt number
P pressure
P (�) non-dimensional pressure
Pr Prandtl number
qm surface mass ux
qw surface heat ux
r radial coordinate
Re local Reynolds number
Sc Schmidt number
T temperature
T0 temperature on the disk surfce
T1 temperature of the uid far away from the disk surface
(u; v; w) radial, azimuthal and axial velocity components
(U; V;W ) radial, azimuthal and axial non-dimensional velocity components
U0 characteristic velocity
z axial coordinate

Greek Symbols
� non-dimensional axial coordinate
� azimuthal coordinate
�nf density of nanouid
�f density of base uid
�s density of nanoparticles
�nf dynamic viscosity of nanouid
�f kinematic viscosity of base uid
� chemical reaction constant
� nanouid volume fraction
� local shear stress
�zr radial component of shear stress
�z� azimuthal component of shear stress

1. Introduction

Fluid ow over rotating surfaces has attracted immense attention by researchers thanks to its wide
industrial, technological and engineering applications. Pioneering studies on Newtonian uid ow over
rotating in�nite disks were mooted by Von Karman in 1921 [1, 2]. Such ows are prevalent in air cleaning

2
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devices, cooling of electronic components, turbine systems, aerodynamics, food processing, and so on [3].
The focus on uid ow over rotating disks has grown in leaps and bounds to also include non-Newtonian
uids like Sisko uid, paints, colloids, micropolar uids, among many others.

A nanouid consists of a base uid like water, kerosene, oil or glycol and suspensions of very minute solid
particles whose average diameters lie between 1� 100 nm [4]. Nanoparticles are often made from metals or
metal oxides and they possess more desirable properties than the base uids. For example, nanouids have
higher viscosity and di�usivity as a consequence of their increased area [5, 6]. Nanoparticles �nd widespread
application within the sugar industry, food processing industry, footwear industry, textile industry, gas
industry, wastewater industry etc [7]. Additionally, nanoparticles are exploited within the biomedical �eld,
for instance, in drug therapy, cancer therapy and diabetes therapy. Nanoparticles also feature prominently
in microchips cooling, water treatment, wire rolling and drawing, radiators, paints, polymer production,
wastewater treatment, materials processing, etc [8, 9]. The phenomenon of non-linear thermal radiation and
gyrotactic microorganisms on the Magneto-Burgers nanouid was tackled by Khan et al. [10]. Khan et al
[11] also investigated e�ects of non-linear thermal radiation on 3D Carreau uid ow. Other recent studies
on di�erent types of nanouids include the works of [12, 13].

The immense industrial, engineering and technological applications of rotating nanouid ows have led
to numerous research outputs in the recent past. Turkyilmazoglu [14] investigated nanouid ow past a
rotating disk. In his work, he considered �ve di�erent nanoparticles immersed in water as the base uid.
Yin et al. [15] researched on ow of rotating disk with uniform stretching rate in velocity components with
enhanced nanoparticle volume fraction on the ow. They also observed that the axial velocity increased
with increases in volume fraction far away from the disk surface. Rehman et al. [6] interrogated entropy
analysis of radioactive rotating nanouid with thermal slip. As part of their �ndings, they reported the
Bejan number as a decreasing function of nanoparticle volume fraction. Their study also revealed that more
entropy is generated due to the presence of nanoparticles as compared to regular uid ow. Oloniiju et
al. [16] investigated the unsteady ow of a second-grade uid with viscous dissipation e�ects in a rotating
coordinate system. Their �ndings show that slow rotation results in a rapid depreciation within the thickness
of the thermal, momentum and concentration boundary layers.

Recently, several researches that specialize on the inuence of Arrhenius energy of activation on nanouid
ow are reported in literature. Dhlamini et al. [17] reported on the consequences of energy of activation
and binary reaction e�ects in double-di�usive ow of nanouid with convective boundary conditions. The
researchers acknowledged that the thermophoresis and activation parameters were positively correlated with
the concentration of the chemical species while the reaction rate constant and therefore the Brownian
parameter reduced the chemical species concentration. Abbas et al.[18] analyzed the consequences of binary
reaction and energy of activation on unsteady physical phenomenon ow of a Casson uid near a stagnation
point over a shrinking/stretching sheet. They determined that a rise the in energy of activation enhances
the concentration.

Maleque et al. [19] reported on the inuence of the energy of activation and binary reaction on the
hydromagnetic ow of a viscous uid with heat generation/absorption and viscous dissipation. They found
that increasing activation leads to increased temperature, concentration and velocity distributions. More
recently, Ijaz et al.[3] explored the entropy generation optimization, energy of activation and binary reaction
for convective ow of Sisko model on a rotating disk that's radially stretchable within the presence of
a consistent vertical magnetic ux . They observed that concentration reduces with increasing Schmidt
number but appreciates with increasing energy of activation. Subbarayudu et al. [20] investigated binary
reaction and activation energy and CNTs and Maxwell nanouid considering the Cattaneo-Christov heat
di�usion model. Meanwhile the impact of activation energy on Eyring-Powell nanouid above a stretching
cylinder was studied by Reddy et al. [21]. The same investigators also reported on the impact of the binary
chemical reaction on magnetohydrodynamic ow of Casson nanouid by considering Cattaneo-Christov heat
ux model [22]. Quite recently Mabood et al. [23] tackled second law analysis on hydromagnetic ow of
nanouid over a rotating disk.

The main aim of our current work is to research the consequences of binary chemical reaction and energy
of activation on the steady incompressible ow of gold-water nanouid past an impermeable rotating disk.
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We consider water as the base uid and gold nanoparticles as the nanomaterial. Gold is nonreactive at
the macroscopic level but becomes very reactive at the nanoscale level. Gold nanoparticles have also been
found to possess superior optoelectronic and catalytic properties [9, 24]. Aside from being used as a store
and symbol of wealth, research has in recent years shown that gold (Au) nanoparticles can �nd e�ective
application in water treatment. The high absorption capacity of gold nanoparticles has been utilized in
removing mercury from contaminated water [24]. In our current study, the governing equations are presented
as a system of coupled non-linear partial di�erential equations which are then solved numerically using
the spectral quasilinearization method. This study seeks to o�er more insight into the e�ects of various
parameters on the steady ow of gold-water nanouid past a rotating disk. It is hoped this study will
motivate future research on how gold could be used to, among other things, improve removal of contaminants
from beverages and drinking water. This will result in improved health and better quality of life for humanity.

2. Problem formulation

We consider nanouid ow over a horizontal in�nite disk that is rotating about the z-axis in the presence of
Arrhenius activation energy and binary chemical reaction. The cylindrical polar coordinate system (r; �; z)
is chosen so that u, v and w are the velocity components in the radial, azimuthal and axial directions,
respectively. The geometry of the problem is depicted in Fig. 1 below.

The concentration of the di�using species is represented by C while T represents the temperature of the
nanouid. The concentration and temperature far away from the disk surface are denoted as C1 and T1
while at the disk surface they are C0 and T0, respectively. It is assumed that:

1. the ow is steady and incompressible,
2. the disk is impermeable,
3. the disk rotates at a uniform angular velocity 
.

The basic equations of motion, heat and mass transportation are represented by [14, 25]:
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= �

1

�nf

@p

@r
+
�nf
�nf

�
@2u
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+
1

r

@u

@r
�

u

r2
+
@2u

@z2

�
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u
@v
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+
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+ w
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@z
=

�nf
�nf

�
@2v

@r2
+
1

r

@v

@r
�

v

r2
+
@2v

@z2

�
; (3)

u
@w

@r
+ w

@w

@z
= �

1

�nf

@p

@z
+
�nf
�nf

�
@2w

@r2
+
1

r

@w

@r
+
@2w

@z2

�
; (4)

u
@T

@r
+ w

@T

@z
=

knf
(�Cp)nf

�
@2T

@r2
+
1

r

@T

@r
+
@2T

@z2

�
(5)

u
@C

@r
+ w

@C

@z
= DB

�
@2C

@r2
+
1

r

@C

@r
+
@2C

@z2

�
� k2re

�Ea=�T (C � C1) (T=T1)
n

(6)

where p is the pressure, �nf and �nf are the dynamic viscosity and density of the nanouid respectively, C
and T are the concentration and temperature of the nanouid respectively, (�Cp)s is the speci�c heat capacity
of the nanoparticles, (�Cp)nf is the speci�c heat capacity of the nanouid, �nf is the dynamic viscosity of
the nanouid, DB is the Brownian di�usion coe�cient, knf is the thermal conductivity of the nanouid,
eEa=kT (C � C1) (T=T1)

n
is the Arrhenius function, � = 8:61 x 10�5eV=K is the Boltzmann constant, kr

2

is the chemical reaction rate constant, Ea is the activation energy and n is a �tted rate constant that lies in
the range �1 < n < 1 [3, 19].

The boundary conditions are:

u = 0; v = 
r; w = 0 ; T = T0; C = C0 at z = 0;

u = 0; v = 0; T ! T1; C ! C1; p! p1 as z !1:
(7)
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Figure 1: Geometry of the problem.

We make use of the Brinkman model to de�ne as the nanouid [26]:

�nf =
�f

(1� �)2:5
; (8)

where �f is the viscosity of the base uid and � the volume fraction of the nanopartiles.
The other properties of the nanouid are given as [14, 15, 27]:

�nf = (1� �)�f + ��s (9)

(�Cp)nf = (1� �)(�Cp)f + �(�Cp)s (10)

knf
kf

=
ks + 2kf � 2�(kf � ks)

ks + 2kf + 2�(kf � ks)
; (11)

where �f is the density of the base uid, �s the density of the nanoparticles, � the nanoparticle volume
fraction.

The thermo-physical properties of the nanomaterial are given in Table 1 below as [28]:

Table 1: Thermo-physical properties of base uid and nanoparticles.

Property Water (base uid) Gold (nanoparticles)
Density, � (kgm�3) 997.1 19300
Speci�c heat capacity, Cp (Jkg

�1K�1) 4179 1290
Thermal conductivity, k (Wm�1K�1) 0.613 318

We make use of the Von-K�arm�an similarity transformations [15, 29, 30] shown in (12) to convert the
system of partial di�erential equations(1)-(6) to a sytem of ordinary di�erential equations:

u = r
U(�); v = r
V (�); w = L
W (�); p = p1 + 2�nf�nf
P (�);

T = �(�)(T0 � T1) + T1; C = '(�)(C0 � C1) + C1; � = (1=L) z
(12)

where U(�); V (�);W (�) are the non-dimensional forms of radial, azimuthal and axial velocities respectively,
P (�) the non-dimensional pressure, L =

p
(�f=
) the non-dimensional length scale, �f the kinematic

viscosity for the ow and � the non-dimensional axial coordinate.
Applying the transformations (12) to the model equations (1)-(6), gives the non-dimensional form of the

equations as:
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2U +W 0 = 0; (13)

auU
00
� U2 + V 2

�WU 0 = 0; (14)

auV
00
� 2UV �WV 0 = 0; (15)

1

Pr
a��

00
�W�0 = 0; (16)

1

Sc
'00 �W'0 � �2e�E=(1+m�)(1 +mn�)' = 0; (17)

au(W
00
� 2P 0)�WW 0 = 0; (18)

in which prime (0) signi�es the derivative with respect to �, m = (T0 � T1)=T1 is the relative temperature
constant, � the dimensionless chemical reaction rate constant where �2 = k2r=
, Sc = �f=DB the Schmidt
number, Pr = (�fCpf )=kf is the Prandtl number, au and a� are constants that are de�ned by:

au =
1�

(1� �)2:5(1� �+ � �s
�f

� ; a� = (knf=kf )�
1� �+ �

(�Cp)s
(�Cp)f

� : (19)

The associated boundary conditions are:

U = 0; V = 1; W = 0 ; T = T0; C = C0; at � = 0;

U = 0; V = 0; � = 0; ' = 0; P = 0; as � !1:
(20)

The skin friction, Nusselt Number and Sherwood number are the physical quantities of interest and are
de�ned as:

Cf =
�

�nfU2
0

; Nu =
rqw

kf (T0 � T1)
; Sh =

rqm
Dm(C0 � C1)

; (21)

where U0 is a characteristic velocity, � =
�
�zr

2 + �z�
2
�0:5

the local shear stress, �zr the radial component
of shear stress, �z� the azimuthal component of shear stress, qw the surface heat ux, qm the surface mass
ux, Dm the mass di�usivity. We de�ne �zr; �z�; qw; qm; Dm as:

�zr = �nf

�
@u

@z
+
@w

@r

�����
ẑ=0

; �z� = �nf

�
@v

@z
+
1

r

@w

@�

�����
ẑ=0

; qw = �knf
@T

@z

����
ẑ=0

; qm = �Dm
@C

@z

����
ẑ=0

:

(22)

It follows that the skin friction coe�cient, Nusselt number and Sherwood number, are given by:

Re
1
2Cf = [U 0(0)

2
+ V 0(0)

2
]0:5=(1� �)2:5; Re�

1
2Nu = �(knf=kf )�

0(0); Re�
1
2Sh = �0(0); (23)

where Re = 
r2=�f is the local Reynolds number.
The non-linear sytem of ordinary di�erential equations (13)-(18) is solved by utilizing the spectral

quasililinearization method. We begin by solving the equations (13)-(17 for U; V W; � and ' �rst, while
equation (18) can be manipulated at a later stage to determine the pressure distribution if required [29, 31].

3. Numerical solution

The non-linear ordinary di�erential equations (13)-(17) subject to the boundary conditions (20) are solved
by applying the spectral quasilinearization method, which has been shown in literature to be highly robust
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and rapidly convergent [17, 32, 33] As an initial step of this method, we implement the quasilinearization
procedure, to obtain the following system of linear algebraic equations:

a10rUr+1 + c11rW
0

r+1 = R1; (24)

a22rU
00

r+1 + a21rU
0

r+1 + a20rUr+1 + b20rVr+1 + c20rWr+1 = R2 (25)

a30rUr+1 + b32rV
00

r+1 + b31rV
0

r+1 + b30rVr+1 + c30rWr+1 = R3 (26)

c40rWr+1 + d42r�
00

r+1 + d41r�
0

r+1 = R4; (27)

c50rWr+1 + d50r�r+1 + e52r'
00

r+1 + e51r'
0

r+1 + e50r'r+1 = R5; (28)

where,

a10r = 2; c11r = 1; R1 = 0; (29)

a22r = au; a21r = �Wr; a20r = �2Ur; b20r = 2Vr; c20r = �U
0

r; R2 = �U
2
r � U 0

rWr + V 2
r ; (30)

a30r = �2Vr; b32r = au; b31r = �Wr; b30r = �2Ur; c30r = �V
0

r ; R3 = �2VrUr � V 0

rWr; c40r = ��
0

r;
(31)

d42r = a�=Pr; d41r = �Wr; R4 = �Wr�
0

r; (32)

d50r = �
1

(1 +m�r)2
mE�2're

�
E

1+m�r �mn�2're
�

E
1+m�r �

1

(1 +m�r)2
Enm2�2�r're

�
E

1+m�r ; (33)

c50r = �'
0

r; e52r = 1=Sc; e51r = �Wr; e50r = ��
2e�

E
1+m�r �mn�2�re

�
E

1+m�r ; (34)

R5 = c50rWr + d50r�r + e52r'
00

r + e51r'
0

r + e50r'� �5; (35)

where �5 =
1
Sc'

00

r �Wr'
0

r � �2e�
E

1+m�r (1 +mn�r)'r.
The transformed boundary conditions are now

Ur+1(0) = 0; Vr+1(0) = 1; Wr+1(0) = 0; �r+1(0) = 1; 'r+1(0) = 1;

Ur+1(1) = 0; Vr+1(1) = 0; �(1)r+1 = 0; 'r+1(1) = 0:
(36)

The domain of the ow problem is � 2 [0;1). To solve the system of equations (24)-(28) with the spectral
method, we need to transform the domain from � = [0;1) to x = [�1; 1]. We use the truncation method
[29] to approximate [0;1) with the computational domain [0; Lx], where Lx is a �xed length that is larger
than the boundary layer thickness. The domain [0; Lx] is transformed from [0; Lx] to x = [�1; 1] by letting
� = Lx(x+ 1)=2 [17, 29].

The scaled di�erentiation matrices are now D = 2D=Lx, D
2 = 4D2=L2

x, where D is the Chebyshev
spectral di�erentiation matrix. For a general function f(�) on a given interval, using Gauss-Lobatto grid
points
�i = cos

�
�i
N

�
, for i = 0; 1; :::; N are de�ned as

dfn
d�

���
(�i)

=

NX
!=0

Di!fn(�!) (37)

where Di!fn(�!) =
d

d�
(L!(�i)) and L is the Lagrange polynomial [34]

Higher order derivatives are de�ned as:

dpfn
d�p

���
(�i)

= DpFn; (38)

where DpFn =
PN�

!=0D
p
i!fn(�!) and Fn = [fn(�0); fn(�1); :::; fn(�N )]

T
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The initial guesses satisfy the boundary conditions:
U = �3e��; V = e��; W = �3; � = e�� and ' = e��:

Applying the Chebyshev spectral collocation procedure to system (24)-(28) yields [34]:

A11Ur+1 +A12Vr+1 +A13Wr+1 +A14�r+1 +A15'r+1 = R1 (39)

A21Ur+1 +A22Vr+1 +A23Wr+1 +A24�r+1 +A25'r+1 = R2 (40)

A31Ur+1 +A32Vr+1 +A33Wr+1 +A34�r+1 +A35'r+1 = R3 (41)

A41Ur+1 +A42Vr+1 +A43Wr+1 +A44�r+1 +A45'r+1 = R4 (42)

A51Ur+1 +A52Vr+1 +A53Wr+1 +A54�r+1 +A55'r+1 = R5 (43)

where

A11 = diag(a10r)I; A12 = 0; A13 = diag(c11r)D; A14 = A15 = 0 (44)

A21 = diag(a22r)D
2 + diag(a21r)D+ diag(a20r)I; A22 = diag(b20r)I; A23 = diag(c20r)I; A24 = A25 = 0;

(45)

A31 = diag(a30r)I; A32 = diag(b32r)D
2 + diag(b31r)D+ diag(b30r)I; A33 = diag(c30r)I; A34 = A35 = 0;

(46)

A41 = A42 = A45 = 0; A43 = diag(c40r)D; A44 = diag(d42r)D
2 + diag(d41r)D; (47)

A51 = A52 = 0; A53 = diag(c50r)I; A54 = diag(d52r)D
2 + diag(d50r)I; (48)

A55 = diag(e52r)D
2 + diag(e51r)D+ diag(e50r)I; (49)

Ur+1 = [U1;r+1; U2;r+1; :::; UN+1;r+1]
T ; Vr+1 = [V1;r+1; V2;r+1; :::; VN+1;r+1]

T ; (50)

Wr+1 = [W1;r+1; W2;r+1; :::;WN+1;r+1]
T ;�r+1 = [�1;r+1; �2;r+1; :::;�N+1;r+1]

T ; (51)

'r+1 = ['1;r+1; '2;r+1; :::;'N+1;r+1]
T ; (52)

0 is the (N + 1) � (N + 1) null matrix: (53)

The boundary conditions (36) are imposed on the �rst row, second row, second to last row or last row
of the square matrices A11; A22; :::; A33 accordingly and the linear system AY = R is then solved to get
Y = A�1R where

A =

2
66664

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55

3
77775 ;Y =

2
66664

Ur+1

Vr+1

Wr+1

�r+1
'r+1

3
77775 ;R =

2
66664

R1

R2

R3

R4

R5

3
77775 ;

4. Results & Discussion

The study investigated the momentum, thermal and concentration properties of a gold-water chemical
reacting nanouid past a rotating disc with activation energy and Brownian di�usion. The validity of our
results were checked by making a comparison of present results for U 0(0); �V 0(0); �W (1) and ��0(0) with
those presented by Rashidi et al. [35], Turkyilmazoglu [14] and Yin et al. [15]. Excellent agreement was
observed as displayed in Table 2.

We analyze the e�ects of varying the parameters of interest one at a time, while keeping the others
constant. The solutions are evaluated at � = 0:1, Sc = 1, Pr = 6:2, � = 1, m = 1, n = 0:1 and E = 1,
unless stated otherwise. The numerical results are displayed graphically in Figs. 2-16.
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Prn Ref. [35] Ref. [14] Ref. [15] Present results
U 0(0) 0:510186 0:51023262 0:51022941 0:510229411
�V 0(0) 0:61589 0:61592201 0:61591990 0:615919910
�W (1) - - - - - - 0:88447411 0:88446912 0:884014124
��0(0) - - - - - - 0:93387794 0:93387285 0:933872852

Table 2: Comparison of numerical solutions for U 0(0); � V 0(0); �W (1) and ��0(0) when Pr = 6:2; � = 0 and ' = 0

Figs. 2-5 exhibit the inuence of the volume fraction of nanoparticles on the velocity components and
temperature distribution. The upward variation of the nanouid volume fraction on the cylindrical velocity
components has insigni�cant e�ects very close to the rotating disk surface. However further away from the
disk surface, the velocity components are shown to depreciate, while the opposite trend is observed for the
axial component, where increased volume fraction implies higher axial velocity.

0 2 4 6

0

0.1

0.2

0.3

= 0.1

=0.12

=0.14

Figure 2: The impact of nanouid volume fraction � on radial velocity U(�).
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=0.14

1.4 1.6 1.8
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0.15

0.2

0.25
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0.35

Figure 3: The impact of nanouid volume fraction � on azimuthal velocity V (�).

The inuence of the chemical reaction constant (�), the relative temperature constant (m) and the �tted
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rate constant index (n) are shown in Figs. 6-11. The pro�les demonstrate the depletion of both temperature
and concentration as �; m and n increase. Such an occurrence has important applications, for example, in
the cooling of devices.
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-0.8

-0.6

-0.4

-0.2

0

W
(ξ
)

φ= 0.1

φ=0.12

φ=0.14

Figure 4: The impact of nanouid volume fraction � on axial velocity W (�).
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φ = 0.12

φ = 0.14

Figure 5: The impact of nanouid volume fraction � on temperature �(�).

Figs. 12-16 depict the variation of temperature and concentration with Prandtl number (Pr), Schmidt
number (Sc) and dimensionless activation energy (E). Fig. 12 shows that an increased Prandtl number
leads to decrease temperature while Fig. 13 indicates that an increased Prandtl number results in a rise in
concentration. A value of Prandtl number that is greater than unity signi�es the dominance of momentum
di�usivity over the thermal conductivity. Increasing the Prandtl number would imply that the thermal
boundary layer decreases [36]. This trend, as expected, is shown in Fig. 12.

The Schmidt number is de�ned as the ratio of momentum di�usivity (kinematic viscosity) to mass
di�usivity. As illustrated in Fig. 14, an increase in the Schmidt number implies a reduction in mass
di�usivity, which leads to reduced concentration. Fig. 15 shows that an increase in activation energy results
in a lower temperature, while the reverse is depicted in Fig. 16. This agrees with Awad et al. [37] who also
obtained the same result.

10

57



0 5 10

ξ

0

0.2

0.4

0.6

0.8

1

θ
(ξ
)

λ = 1

λ = 3

λ = 5

Figure 6: E�ect of � on temperature.
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Figure 7: E�ect of � on concentration.
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Figure 8: E�ect of m on temperature.
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Figure 9: E�ect of m on concentration.
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Figure 10: E�ect of n on temperature.
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Figure 11: E�ect of n on concentration.
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Figure 12: E�ect of Pr on temperature.
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Figure 13: E�ect of Pr on concentration.
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Figure 14: E�ect of Sc on concentration.
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Figure 15: E�ect of activation energy on temperature.
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Figure 16: E�ect of activation energy on concentration.
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Parameter Symbol Value Re0:5Cf Re�0:5Nu Re�0:5Sh

0:1 1:4135 1.6203 1.0062
Volume fraction �

0.12 1.5461 1:7255 1.0095

0.14 1.6810 1:8313 1.0134

6.2 1.6203 1.0062
Prandtl number Pr

7 1:7080 0.9991

8 1:8081 0.9914

1 1.0062
Schmidt number Sc

3 1.8395

5 2.4076

0.1 1.3076
Activation energy E

0.5 1.1625

1 1.0062

1 1.0062
Reaction rate constant �

3 3.0930

5 5.2927

Table 3: E�ects of �, Pr, Sc, E and � on the skin friction coe�cient, Nusselt number, and Sherwood number for � = 0:1; Sc =
1; P r = 6:2, � = 1;m = 1; n = 1 and E = 1.

Table 3 shows the e�ects of �, Pr, Sc, E and � on the skin friction, Sherwood number and Nusselt
number. The volume fraction of the nanoparticles is positively correlated with Cf , NUx and the Shx.
Increased volume fraction implies increased thermal conductivity, which in turn leads to increased thermal
and mass di�usivities. It is also apparent from Table 3 that the Prandtl number increases the Nusselt number
but reduces the Sherwood number. An increased Prandtl number signi�es the dominance of momentum
di�usivity. Hence the velocity boundary layer diminishes more than the thermal boundary layer which
in turn implies a higher rate of heat transfer. The Sherwood number appreciates with increased Schmidt
number and the same trend is observed with the reaction rate. However, it is observed that activation energy
has the e�ect of reducing the mass ow rate.

5. Conclusion

In this study, we investigated the momentum, thermal and concentration properties of a gold-water
chemical reacting nanouid past a rotating disc with activation energy and Brownian di�usion. We solved
the problem by employing the spectral quasilinearization method. We veri�ed the accuracy and validity of
the results by comparing numerical solutions with published results in the literature. We also validated the
convergence of the method by analyzing the residual errors. We found that the parameters �; �; m; n; Pr; Sc
and E had varying e�ects on the radial velocity, azimuthal velocity, axial velocity, temperature and concentration
distributions. The impact of these parameters were graphically presented and analyzed. Among other
�ndings, we found that

1. increasing the volume fraction of the gold nanoparticles leads to a depletion of the radial and tangential
velocities, while it increases the axial velocity,

2. a rise in nanoparticle volume fraction results in decreased temperature,
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3. an increase in activation energy leads to elevated concentration but depressed temperature,

4. a rise in nanouid volume fraction leads to increased skin friction and heat and mass transfer rates.
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68Summary

In this chapter, the effect of activation energy and a binary chemical reaction on nanofluid flow

past a rotating disk was studied. The model equations were solved numerically using the spectral

quasilinearization method. Comparison of results for limiting cases with those in the literature

were made for some parameters of interest and good agreement was obtained. The residual errors

showed that convergence was fast thereby confirming the effectiveness of the method.



Chapter 5

Effect on entropy generation analysis for heat

transfer nanofluid near a rotating disk using

quasilinearization method

In Chapter 4, the effects of binary chemical reaction and activation energy past a rotating disk

were studied. In this chapter, the effects of the magnetic field, suction and prescribed heat flux

on nanofluid flow past a permeable rotating disk are investigated. In addition, an analysis of

entropy generation is given for the flow. Entropy generation analysis plays an important role in

identifying sources of irreversibilities in thermal systems [142]. This aids in reducing energy

losses and inefficiencies for the system. Detailed discussions of entropy generation in nanofluid

flows past rotating disks are available in the references [143–147], among other studies.

1
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99Summary

In this chapter, we studied nanofluid flow over a rotating disk with suction and a prescribed

heat flux condition. The nonlinear system of equations describing the flow was solved using the

spectral quasilinearization method. The efficiency and accuracy of the method was shown through

a convergence error analysis. Entropy generation analysis showed that an upward variation of

the magnetic field the nanoparticle volume fraction tended to increase irreversibility. Entropy

generation analysis is important in reducing inefficiencies and losses of scarce energy resources

for thermal systems.



Chapter 6

Conclusion

In this study, we have investigated nanofluid flows over a diverse range of solid surfaces, such as a

stretching sheet, parallel plates and rotating disks. The coupled equations describing the nanofluid

flows are highly nonlinear and complex and finding analytic solutions was not possible. The

spectral quasilinearization method was used to solve the model equations. Through comparison

with results in the literature for limiting cases and through error and residual error analyses, the

results show that the spectral quasilinearization method is accurate, efficient, rapidly convergent,

robust and appropriate for solving nanofluid boundary value problems.

In Chapter 2, the micropolar nanofluid flow above a shrinkable/stretchable sheet with thermal

radiation, thermophoresis and Brownian motion was investigated. Dual solutions were found to

exist depending on whether the surface was stretching or shrinking. The findings are in good

agreement, for limiting cases, with results in the literature. It was observed that an increase in the

Lewis number leads to increased temperature and reduced concentration. Furthermore, an increase

in the Prandtl number led to a drop in temperature distribution and increased concentration.

In Chapter 3, we investigated squeezed flow between parallel plates with Cattaneo-Christov heat

flux model for heat conduction. The effects of the homogeneous chemical reaction, radiation and

magnetic field were studied. The results show that an increase in the magnetic field is accompanied

by a decrease in the mass and heat transfer rates. However, increasing the magnetic field leads to

a rise in the skin friction. In addition, increasing the nanoparticle concentration has the effect

of reducing the rate of mass transfer. The temperature decreases as a consequence of raising the
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relaxation parameter. The same trend is observed when the magnetic field strength is increased.

In Chapter 4, we investigated nanofluid flow above a rotating disk with activation energy and binary

chemical reaction. A decrease in the radial and tangential velocities and a rise in the axial velocity

were realised upon increasing the nanoparticle concentration. An increase in the nanoparticle

volume fraction was also accompanied by an elevation of the skin friction and the rates of mass

and heat transfer.

In Chapter 5, we studied nanofluid flow past a permeable rotational disk. The impact of prescribed

heat flux, magnetic field and suction on the flow were considered. Convergence error analysis

showed that convergence was rapid and was attained after a few iterations. This proves the accuracy

and suitability of the spectral quasilinearization numerical scheme. Excellent agreement with

results in the literature was obtained for limiting cases, and this validated our results. An increase

in the nanoparticle concentration yields a fall in velocity but a rise in temperature. The magnetic

field enhancement is observed to cause a drop in the radial, tangential and axial velocities. The

magnetic field and suction are also observed to positively correlate with the skin friction. Higher

values of nanoparticle concentration and magnetic field strength have the effects of reducing the

entropy generation.
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