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Abstract

The time to event analysis or survival analysis aims at making inferences on the time elapsed

between the recruitment of subjects or the onset of observations, until the occurrence of

some event of interest. Methods used in general statistical analysis, in particular in regression

analysis, are not directly applicable to time to event data due to covariate correlation, censoring

and truncation. While analysing time to event data, medical statistics adopts mainly non-

parametric methods due to difficulty in finding the adequate distribution of the phenomenon

under study.

This study reviews non-parametric classical methods of time to event analysis namely Aalen

Additive Hazards Model (AAHM) trough counting and martingale processes, Cox Proportional

Hazard Model (CPHM) and Cox-Aalen Hazards Model (CAHM) with application to the infant

mortality at Kigali University Teaching Hospital (KUTH) in Rwanda. Proportional hazards

assumption (PHA) was checked by assessing Kaplan-Meier estimates of survival functions per

groups of covariates. Multiple events models were also reviewed and a model suitable to the

dataset was selected. The dataset comprises 2117 newborns and socio-economic and clinical

covariates for mothers and children. Two events per subject were modeled namely, the death

and the occurrence of at least one of the conditions that may also cause long term death to

infants.

To overcome the instability of models (also known as checking consistence of models) and

potential small sample size, re-sampling was applied to both CPHM and appropriate multiple

events model. The popular non-parametric re-sampling methods namely bootstrap and jack-

knife for the available covariates were conducted and then re-sampled models were compared

vi



to the non-re-sampled ones.

The results in different models reveal significant and non-significant covariates, the relative risk

and related standard error and confidence intervals per covariate. Among the results, it was

found that babies from under 20 years old mothers were at relatively higher risk and therefore,

pregnancy of under 20 years old mothers should be avoided. It was also found that an infant’s

abnormality in weight and head increases the risk of infant mortality, clinically recommended

ways of keeping pregnancy against any cause of infant abnormality were then recommended.
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CHAPTER 1

INTRODUCTION

1.1 Background

Infant mortality refers to the death of an infant during the first year of life (Wasserman, 2013).

The analysis of the anatomy of a disparity in infant mortality by Wise (2003) associates infant

mortality with poor maternal health, poor quality and access to medical care and preventive

services, and low socio-economic position. Ester et al. (2011) reported that a half of the 10

million infants who die annually in the world are from Sub-Saharan Africa (SSA). The report

investigated different factors associated to such high infant mortality in SSA and pointed

relatively poor health services due to economic and development indicators. Ester et al. (2011)

suggested two requirements for decreasing infant mortality in SSA. These are extensive pushing

to the economic growth and extensive studies on the main factors of the infant mortality. This

thesis uses a dataset from one of the SSA countries and use different methods of survival

analysis for understanding the factors and the level on which these factors are associated to

the infant mortality.

The foundation of the theory of survival analysis started in 1975 with Aalen (1975). The

theory on survival analysis has been consolidated by Flemming and Harrington (1991) with

interest on using stochastic processes approach in survival analysis. Other researchers who

1



Section 1.1. Background Page 2

discussed on survival analysis include Andersen et al. (1993), Collet (2003), and Hosmer et al.

(2008).

Aalen et al. (2008, p. 1) define survival analysis as a set of statistical methods for data where

the outcome variable is the time until the occurrence of an event of interest.The event of

interest can be for example death, occurrence of a disease or failure of a device. The survival

analysis is complicated by censoring and truncation. Hosmer et al. (2008, pp. 3-9) give three

types of censoring. Left censoring arising when an individual experienced an event before

recruitment. Interval censoring refers to when the event occurs within some interval while

right censoring arises when an individual is not subject to the event until the end of study due

to either loss to follow up, or the event has not occurred at the end of the study, or the event

has occurred from another cause not related to the cause of interest. Two types of truncation

as described by Klein and Moeschberger (2003, pp. 72-73) are left truncation occurring when

subjects under a survival study have been at risk before the study time and right truncation

when interest is only on individuals who have experienced the event by a specified future time

before study termination. In this study, due to the limited time allocated for PhD program and

funds allocated for data collection, the time frame of the study will be one year and therefore

interest will be only on right censoring.

Abundant studies in survival analysis deal with only single event for different subjects under

study. In real world, more than one event may occur on the same subject over time and

data within and among subjects may be correlated. Some examples in biomedical studies

are repeated lung infections with pseudomonas in children with cystic fibrosis, development of

breast cancer in genetically predisposed families, repeated heart attacks per subject, recurrence

of bladder cancer tumors or deteriorating episodes of visual acuity. However, classical survival

analysis is unable to handle multiple events on the same subject. Relatively recent approach
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uses stochastic processes for extending classical survival analysis to multiple events analysis

(Castañeda and Gerritse, 2010). This study will investigate how concepts of classical survival

analysis can be incorporated in stochastic processes to analyse multiple events over time.

The multiple events may be identical or not and may occur more than once per subject with

or without a certain order (Cook and Lawless, 2007, p. 1). An example is the time to the

hospitalisation and death per subject where a typical work has been done by Castañeda and

Gerritse (2010).

The majority of authors are interested only on the time to the first event, however, with

these analyses, biased results may probably occur (Sagara et al., 2014). The mathematical

formulation of multiple events has been intensively studied by authors such as Cook and

Lawless (2007) who provided the likelihood formulation and important properties of multiple

events models, Louzada (2007) who discussed on the important quantity called "intensity"

in likelihood formulation, Sankaran and Anisha (2011) who introduced frailties in multiple

events and Sun et al. (2006) who adapted additive hazard regression models to the multiple

events. Multiple events are analysed through different models such as the Andersen-Gill Model

(AGM); Prentice, Williams and Peterson Total Time Model (PWPTTM); Prentice, Williams

and Peterson Gap Time Model (PWPGTM); the Frailty Model; the Wei, Lin and Weissfeld

Model (WLWM) known also as the Marginal Risk set Model (MRSM) and the Generalised

Estimating Equation Model (GEEM) (Amorim and Cai, 2015; Sagara et al., 2014; Wei et al.,

1989). The existing software packages for multiple events survival analysis include SAS,

STATA and R. An example where interest is taken on STATA is the work of Cleves (2000)

for both ordered and unordered failure events with application to different medical researches,

namely the diabetic retinopathy study, ursodeoxycholic acid in the treatment of biliary cirrhosis

presented and discussed by Lindor et al. (1994) and the bladder cancer data presented by
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Wei et al. (1989). Multiple events have been the interest of Cai and Schaubel (2004) who

used multiple events data, presented by Schaubel et al. (1996) for a cohort study aimed at

determining the incidence of asthma on preschool children. Amorim and Cai (2015) used

the AGM, PWPTTM and PWPGTM while analyzing the case of bladder cancer while Sagara

et al. (2014) analysed multiple events for the case of malaria episodes with a use of the AGM,

PWPM, the GEEM and the Frailty Model.

This study applied single and multiple events methods of survival analysis to the data on infant

mortality obtained from Kigali University Teaching Hospital (KUTH) collected from January

2016 to December 2016.

1.2 Aims and objectives of study

The aim of this study is to review and summarise methods for analysing survival data and

discuss multiple events analysis of survival analysis. The objectives of this study are:

• To review methods of analysis time to event data.

• To use counting processes for analysing survival data.

• To analyse survival data with multiple events.
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1.3 Study methodology

In this study, the classical survival models will be firstly reviewed. The Aalen Additive Hazard

Model (AAHM) for single event per individual which involves Stochastic processes will be

applied to the data. The AAHM will be used for assessing the relationship between the infant

mortality and covariates. The event will be the death at or after birth. The Cox Proportional

Hazard Model (CPHM) and the Cox-Aalen Hazard Model (CAHM) will be also reviewed and

the results of these three models will be compared by using the existing methods of adequacy

checking in survival analysis. Proportional hazards assumption (PHA) will be checked by

assessing the Kaplan-Meier estimates of the survival functions per groups of covariates.

The model parameters in AAHM are considered as time dependent and the interest is taken

on cumulative parameters. The AAHM assesses time dependence of covariates and suggests

the fixed covariates. The CAHM combines multiplicative and additive parts, multiplicative

part includes covariates whose PHA is realised, while covariates showing violation of PHA are

included in the additive part. The CPHM assumes the presence of fixed covariates and would

be preferred if the time dependent covariates are dropped out.

The present study selected a suitable model for multiple events analysis of the infant mortality

at the Kigali University Teaching Hospital. The two events are of interest, namely, death and

the occurrence of at least one of the conditions that may also cause long term death to infants.

To overcome the problem of small sample size and instability in modelling, re-sampled models

were conducted by applying the popular nonparametric re-sampling techniques namely boot-

strap and jackknife.
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1.4 Research content

The research work described in this thesis contains eight chapters. The first chapter gives a

brief background on survival analysis and models of survival analysis and the aim and objectives

of the study. The second chapter describes the dataset that was used throughout the study.

The third chapter reviews basic concepts, nonparametric methods, and single event models

used in survival analysis. The fourth chapter presents multiple events models of survival

analysis. The fifth chapter presents the re-sampled CPHM. Chapter six discusses re-sampled

model with multiple events. Chapter seven discusses on the length of the confidence intervals

in the Cox models and Chapter eight gives conclusions. STATA code for analysing the data

used in this dissertation is given in the Appendix.



CHAPTER 2

BACKGROUND ON THE DATASET

2.1 Dataset

The theoretical results of this thesis will be illustrated by applying the existing methods of

survival analysis and analyse data on infant mortality from KUTH. The time to event primary

dataset of 2117 newborns at KUTH was recorded from the 1st January to 31st December

2016.

At KUTH, all newborns are recorded in registries with all details of mothers and clinical out-

comes of the newborn. The information in the registry provides also references on card index

that provides information on the clinical behavior of babies after leaving the hospital. KUTH

as a site of interest in this study is a central hospital where most of the complicated child-

birth countrywide are transferred. Along 2016, KUTH recorded a relatively high incidence of

stillborn cases (69 stillborn babies or 32.59/1000) and relatively high infant mortality rate (82

babies died over 2048 babies born alive or 40.04/1000).

7
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2.2 Data analysis

A complete case analysis is considered where the event for single event survival analysis is the

death of the infant. Eleven covariates of interest are demographic covariates that include the

age of a mother and the place of residence for parents; clinical covariates for mothers include

obstetric antecedents, type of childbirth and previous abortion. Clinical covariates for children

include APGAR ; gender, number of births at a time, weight, circumference of the head, and

height. The variable age was considered by Gourbin (2005) while studying the interaction of

infant mortality and age of their mothers. Variables residence and gender are included in several

datasets of survival analysis such as for example Collet (2003), Klein and Moeschberger (2003)

and Flemming and Harrington (2005). The standard pediatric measurement of newborns are

found for example in Janssen et al. (2007).
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Table 2.1: Description of variables in the dataset on newborns at Kigali University Teaching

Hospital (KUTH) during the period 01-January-2016 to 31-December-2016.

Variable Description Codes/Values/Unit

Age Age of mother 0=under 20, 1=20 years old to 34 years old, 2=35 years

old and above

Residence Indicator of the residen-

tial area of a mother

0=rural , 1=urban

Antecedents Indicator on whether a

new born is the first or

not

0=Not the first new born, 1 = first newborn,

Abortion Indicator on whether a

mother aborted previ-

ously

0=not aborted, 1=aborted once, 2= aborted more than

once

Childbirth Type of childbirth 0=born using ventouse, 1=born naturally, 2= born after

surgery

Gender Gender of a newborn 0=female, 1=male

Number Indicator of the number

of births at a time

0=singleton, 1=multiple

APGAR Score of appearance,

pulse, grimaces, activity

and respiration of a

newborn

0= APGAR less than 4/10, 1=APGAR from 4/10 to

6/10, 2=APGAR greater or equal to 7/10

Weight Weight of a newborn 0 = under 2500 g, 1= 2500 g to 4500 g, 2= above 4500

g

Head Head circumference of a

newborn

0= below 32 cm, 1=32 cm to 36 cm, 2=above 36 cm

Height Height of a new born 0=below 46 cm, 1=46 cm to 54 cm, 2=above 54 cm

Time Time from recruitment to

study termination

Days

Event Indicator describing if

death occurred during

the study time or not

0=censored, 1=dead

n_events Indicator on the rank of

records per subject

1=first record, 2=second record
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The multiple events analysis considers the second event as one of the conditions that may also

cause long term death to infants such as severe oliguria, severe prematurity, very low birth

weight, macrosomia, severe respiratory distress, gastroparesis, hemolytic, trisomy, asphyxia

and laparoschisis. Table 2.1 describes the variables of interest and Table 2.2 summarises the

dataset. The full dataset can be found via the authors of this thesis.

Table 2.2: Summary on newborns under study.

Total observations 2117

Deaths during the study time 82 (3.873%)

Stillborn babies 69 (3.259 %)

Total events 151 (7.132 %)

Censored babies 1966 (92.867 %)

2.3 Minimum sample size

The minimum sample size according to Peduzzi et al. (1996) is N = 10 k
p

where k is the

number of predictor variables and p is the proportion of the total events. This suggests the

minimum sample size at KUTH as N = 10×11
0.07132

≈ 1542.



CHAPTER 3

CLASSICAL SURVIVAL ANALYSIS WITH
APPLICATION TO INFANT MORTALITY AT KUTH

3.1 Introduction

Infant mortality or mortality of children under their first birthday (Reidpath and Allotey, 2003;

Bourgeois, 1946), attracts attention in several studies worldwide.

Benn Sartorius and Kurt Sartorius (2014) used data of the World Bank from 192 countries

from 1990 to 2011 and found that the average of the Infant Mortality Rate (IMR) was 75/1000

in SSA versus 11/1000 in developed countries. Adetunji and Bos (2006) used the World Bank

dataset from 1960 to 2005 and suggested that low life expectancy at birth in SSA is relatively

higher in Middle Africa as compared to other sub-regional disparities of SSA. Other studies

on infant mortality include Schell et al. (2007) who contributed in studying socio-economic

determinants of infant mortality in 152 low, middle and high income countries worldwide,

Mturi and Curtis (1995) who studied determinants of infant and child mortality in Tanzania

and Sartorius et al. (2011) who conducted an ecological spatial analysis on the infant mortality

in South Africa. The incidence of a relatively higher rate in SSA justifies the need to identify

and analyse the major factors of the infant mortality in SSA, for providing a help to the medical

practitioners and policy makers to implement security measures for better control of the infant

11
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mortality.

This chapter aims at using Kaplan-Meir estimation for presenting survival outcomes of infant

mortality per covariate at KUTH, and for measuring the PHA. AAHM is conducted and fully

interpreted for all covariates with event taken as the infant mortality. AAHM indicates time

dependent covariates and allows to see fixed covariates that are adapted to the CPHM. Also,

AAHM gives an idea on the covariates of multiplicative and additive parts of the CAHM.

Significance is measured for comparing the performance of models.

This chapter comprises five sections. The first section is an introduction to the study. The

second reviews background in survival analysis. The third section discusses nonparametric

methods used in survival analysis. The fourth section discusses the classical survival regression

models and the fifth section gives conclusions.

3.2 Concept of survival analysis

3.2.1 Background

Survival analysis is known also as time to event analysis. Survival analysis aims at making

inferences on the time elapsed between the onset of an initiating event, until the occurrence

of some event of interest. In short, the survival model in time to event analysis measures the

dependence of time to an event on predictor variables. Methods used in general statistical

analysis, in particular in regression analysis, are not directly applicable to survival data due to

censoring and truncation. Hosmer et al. (2008, pp. 3-9) describe three types of censoring: right

censoring arising when an individual is not subject to the event until the end of study due to
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either loss to follow up, or the event has not occurred at the end of the study, or the event has

occurred from another cause not related to the cause of interest. Left censoring arises when

an individual experienced an event before recruitment. Interval censoring refers to when the

event occurs within some interval at the study termination, or the individual dropped out or

observed the event before study termination for reasons unrelated to the study, or the individual

was lost to follow-up. Klein and Moeschberger (2003) describe two types of truncation: left

truncation occurs when subjects under a survival study have been at risk before the study time

and right truncation when interest is only on individuals who have experienced the event by

a specified future time before study termination. In this study, due to the structure of the

recorded dataset, interest will be only on the right censoring.

In survival analysis, a non-negative random variable representing the time to event is generally

characterized by three fundamental functions: the probability density function (in continuous

case) or probability mass function (in discrete case), the survival function and the hazard

function (also known as risk function or intensity rate). Any of these three functions can be

uniquely determined from at least one of the other two functions (Klein and Moeschberger,

2003; Hosmer et al., 2008; Collet, 2003).

3.2.2 Basic functions in survival analysis

Survival function

Assume that T is a random variable representing the time until the occurrence of an event of

interest. Let f(t) be the probability density function (pdf) of T . The cumulative distribution
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function of T is given by

F (t) = Pr(T ≤ t) =

∫ t

−∞
f(z) dz.

The survival function is defined as

S(t) = Pr(T > t) =

∫ ∞
t

f(z) dz = 1− F (t) (3.1)

(Collet, 2003, p. 11). Equation (3.1) yields the following differential equation:

dS(t)

dt
= −f(t). (3.2)

Clearly,

1. S(t) is decreasing on [0,∞) since F (t) is increasing on [0,∞).

2. S(0) = 1 and S(∞) = 0 since F (0) = 0 and F (∞) = 1.

From the survival function, the other useful function can defined:

1. Quantile life time denoted by tq: the smallest value tq for which S (tq) ≤ 1− q where

0 ≤ q ≤ 1.

2. Median lifetime: the 50th percentile and thus corresponds to q = 0.5.

Hazard function

The hazard function also known as risk function or intensity rate is denoted by h(t). The

hazard function is the rate at which an individual is subject to the event along a small interval

of time ∆t given that the individual has not observed the event up to time t (Macdonald,

1996). That is

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
. (3.3)
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The hazard function (3.3) can theoretically take any value from zero to infinity. Equation

(3.3) gives

h(t) =
f(t)

S(t)
. (3.4)

Equations (3.2) and (3.4) yield S(t) as

S(t) = e−H(t) (3.5)

or

H(t) = − lnS(t) (3.6)

where H(t) is the cumulative hazard function given by

H(t) =

∫ t

0

h(z) dz. (3.7)

3.3 Nonparametric estimation of the basic functions

of survival analysis

The non-parametric approaches for estimating the three main functions of survival analysis

include the life-table approach, the Kaplan-Meier approach and the Nelson-Aalen approach.

The details of these approaches, the confidence interval of each function at a given time point

and the related hypothesis test are developed in Collet (2003, pp. 17-36). In practice, the

estimations from these approaches are close. This thesis adopts Kaplan-Meier approach which

is relatively popular in medical statistical studies.
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3.3.1 Kaplan-Meier estimate of survival function

Kaplan and Meier (1958) introduced an approach of estimating the survival function for the

event times as described below: Assume that n is the the number of individuals whose survival

times are t1, t2, . . . , tn.

Let r be the number of event times arranged in ascending order as t(1), t(2), . . . , t(r) with

t(1) < t(2) < . . . < t(r). Let nj denotes the number of individuals at risk before time t(j),

j = 1, 2, . . . , r. Let dj be the number of individuals observing the event before t(j). The

probability that an individual observes an event before time t(j) is estimated by the ratio
dj
nj

and therefore, the probability of surviving at t(j) is 1− dj
nj

. The estimated value of the survival

function at any time t in the time interval from t(k) to t(k+1) is given in Collet (2003, p. 20) as

Ŝ(t) =
k∏
j=1

(
1− dj

nj

)
=

k∏
j=1

(
nj − dj
nj

)
(3.8)

for tk ≤ t < tk+1, k = 1, 2, . . . , r with Ŝ(0) = 1 and Ŝ(∞) = 0. The expression (3.8) is the

Kaplan-Meier estimate of survival function at time t known also as the Product Limit estimate

of the survival function at time t (Kaplan and Meier, 1958).

Taking the number of individuals at risk at time t(j) as

nj − dj = nj+1, j = 1, 2, . . . , k,

(Collet, 2003, pp. 20-21) shows that the Kaplan-Meier estimate (3.8) is given by

Ŝ(t) =
n2

n1

n3

n2

· · · nk+1

nk
=
nk+1

n1

for k = 1, 2, . . . , r − 1.
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It can be shown by using the Greenwood formula (Greenwood, 1926), that the approximation

of the variance of Ŝ(t) is given by

Var
[
Ŝ(t)

]
≈ Ŝ2(t)

k∑
j=1

dj
nj(nj − dj)

.

Hence, the standard error of Ŝ(t) is given by

se
[
Ŝ(t)

]
≈ Ŝ(t)

√√√√ k∑
j=1

dj
nj(nj − dj)

, (3.9)

with t ∈
[
t(k), t(k+1)

)
. If there is no censored survival time,

nj − dj = nj+1. (3.10)

Expanding the sum in (3.9) gives

se
[
Ŝ(t)

]
≈ Ŝ(t)

√
1− Ŝ(t)

n1Ŝ(t)
(3.11)

(Collet, 2003, p. 25). The 100(1− α)% confidence interval for the survival function, S(t) is[
Ŝ(t)− zα

2
se
(
Ŝ(t)

)
; Ŝ(t) + zα

2
se
(
Ŝ(t)

)]
(3.12)

where se
[
Ŝ(t)

]
is given by the formula (3.9) or (3.11), and zα

2
is the upper α

2
-point of the

standard normal distribution.

3.3.2 Kaplan-Meier estimate of the cumulative hazard function

Equation (3.6) can be used to calculate the estimated Kaplan-Meier cumulative hazard function

Ĥ(t). It follows from Equation (3.6) and Equation (3.8) that the estimate of the cumulative

hazard function is given by

Ĥ(t) = − ln Ŝ(t) = −
k∑
j=1

ln

(
1− dj

nj

)
. (3.13)
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The 100(1 − α)% confidence limits of H(t) can be calculated using a log-transformation on

limits of results (3.12). That is[
− ln

(
Ŝ(t)− zα

2
se
(
Ŝ(t)

))
;− ln

(
Ŝ(t) + zα

2
se
(
Ŝ(t)

))]
. (3.14)

3.3.3 Kaplan-Meier estimate of the hazard function

Consider dj, the number of events at the jth event time denoted by t(j); nj, the number of

individuals at risk at time t(j) and h(t), the hazard function at time t in the interval [t(j), t(j+1)).

The Kaplan-Meier estimate of h(t) is

ĥ(t) =
dj
nj τj

(3.15)

where τj = t(j+1) − t(j) for j = 1, 2, . . . , r (Collet, 2003, pp. 30-31). Taking pj =
dj
nj

and

assuming that dj has a binomial distribution with parameters nj and pj, it follows that

Var(dj) = njpj(1− pj) = nj
dj
nj

(
1− dj

nj

)
= dj

nj − dj
nj

. (3.16)

It follows from (3.4) and (3.16) that

Var
[
ĥ(t)

]
=

Var(dj)
n2
j τ

2
j

=
dj(nj − dj)

n3
j τ

2
j

=
d2
j(nj − dj)
n2
j τ

2
j njdj

=
[
ĥ(t)

]2 nj − dj
njdj

and hence

se
[
ĥ(t)

]
= ĥ(t)

√
nj − dj
njdj

. (3.17)

Thus, the 100(1−α)% confidence interval of the Kaplan-Meier of the hazard function at time

t is [
ĥ(t)− zα

2
se(ĥ(t)); ĥ(t) + zα

2
se(ĥ(t))

]
. (3.18)

Collet (2003, p. 31) suggested that this confidence interval is meaningless for small values of

dj because it may be too wide.
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3.3.4 Comparison of two or more groups of survival data

Two or more groups survival time may be compared by using the plots of the survival functions

in one system of axes. Log-rank and Wilcoxon tests are popular tests for comparing survival

functions (Collet, 2003, p. 37-53). The tests are based on the following hypotheses:

H0: no difference in survival experiences of the individuals in groups,

H1: there is difference in survival experiences of the individuals in groups.

Collet (2003, p. 40-50) gives an argument on suitability of the log-rank and Wilcoxon tests.

The log-rank test is suitable if proportional hazards can be assumed Collet (2003). In such

a situation, the plots of survival functions do not cross one another. The Wilcoxon test is

suitable when there is no proportional hazards assumption. Here, the plots cross one another.

The interpretation of tests is summarised in Table 3.1 suggested by Collet (2003).

Table 3.1: Evidence for or against H0 based on comparing the p-value with the level of

significance α = 0.05.

p-value (P ) Interpretation

P > 0.1 No evidence to reject the null hypothesis

0.05 < P ≤ 0.1 Slight evidence against the null hypothesis

0.01 < P ≤ 0.05 Moderate evidence against the null hypothesis

0.001 < P ≤ 0.01 Strong evidence against the null hypothesis

P ≤ 0.001 Overwhelming evidence against the null hypothesis
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3.3.5 Application

Consider the data described in Table 2.1 regarding the survival times of 2117 newborns from

the Kigali University Teaching Hospital (KUTH). The aim of this study is to apply Kaplan-

Meier for estimating the survival function, the cumulative hazard function and the hazard

function as well as their 95% confidence intervals. The length of each time interval is taken

as 30 days and thus 12 intervals are generated. Kaplan-Meier plots of survival function per

covariate are used for making comparison of survival per groups of each covariate. The test

of difference uses either log-rank or Wilcoxon test.

Kaplan-Meier estimates of the survival, cumulative hazard and hazard functions

for the infant mortality at KUTH

The Kaplan-Meier estimates of the survival, cumulative hazard and hazard functions were

calculated and plotted. The 95% confidence limits of S(t), H(t) and h(t) were also calculated

for the data at hand. Portions of the Kaplan-Meier estimates of the survival, cumulative hazard

and hazard functions along with the 95% confidence limits are given in Table 3.2, 3.3 and 3.4,

respectively.

The entire Kaplan-Meier estimates along with the 95% confidence limits for the survival,

cumulative hazard and hazard functions are plotted in Figure 3.1, 3.2 and 3.3, respectively.
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Table 3.2: Survival function estimate and 95% confidence intervals.

Time Beg. Total Fail Net Lost Surv. Function Std. Error 95% Conf. Int.

1 2048 32 5 0.984 0.003 [0.978; 0.989]

2 2011 7 3 0.981 0.003 [0.974 ; 0.986]

3 2001 5 16 0.979 0.003 [0.971; 0.984]

4 1980 3 3 0.977 0.003 [0.970; 0.983]

5 1974 3 0 0.976 0.003 [0.968; 0.981]
...

...
...

...
...

...
...

362 28 0 6 0.959 0.005 [0.949; 0.967]

363 22 0 7 0.959 0.005 [0.949; 0.967]

364 15 0 2 0.959 0.005 [0.949; 0.967]

365 13 0 4 0.959 0.005 [0.949; 0.967]

366 9 0 9 0.959 0.005 [0.949; 0.967]

Figure 3.1: Survival function estimates and 95% confidence limits.
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Table 3.3: Cumulative hazard function estimates and 95% confidence intervals.

Time Beg. Total Fail Net Lost H Std error 95% Conf. Int.

1 2048 32 5 0.0156 0.003 [0.011; 0.022]

2 2011 7 3 0.0191 0.003 [0.014; 0.026]

3 2001 5 16 0.0215 0.003 [0.016; 0.029]

4 1980 3 3 0.023 0.003 [0.017 ; 0.031]

5 1974 3 0 0.0245 0.003 [0.019; 0.032]
...

...
...

...
...

...
...

362 28 0 6 0.0415 0.005 [0.034; 0.051]

363 22 0 7 0.0415 0.005 [0.034; 0.051]

364 15 0 2 0.0415 0.005 [0.034; 0.051]

365 13 0 4 0.0415 0.005 [0.034; 0.051]

366 9 0 9 0.0415 0.005 [0.034 ; 0.051]

Figure 3.2: Cumulative hazard function estimates and 95% confidence limits.

The results show that the percentage surviving throughout the study period is nowhere less
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than 95.85% (CI: 94.87%-96.65%). The cumulative hazard function (Figure 3.2) presents

increasing slopes at about the first three months of the study time, and keep relatively constant

slope elsewhere. This suggests that the hazard of death of infants is constant along the study

time except at the first three months. This is confirmed by the plot of the hazard function

(Figure 3.3). The confidence intervals of the hazard function are too wide since they include

negative values and therefore, they are meaningless.

Table 3.4: Hazard function estimates.

j nj dj ĥ(t) se[ĥ(t)] 95%CI

1 2048 32 0.021 0.003 [0.010; 0.016]

2 2011 7 0.006 0.001 [0.001; 0.003]

3 2001 5 0.005 0.001 [0.000; 0.002]

4 1980 3 0.003 0.001 N/A
...

...
...

...
...

...

21 1606 1 < 0.001 < 0.001 N/A

22 1529 1 < 0.001 < 0.001 N/A

23 1466 1 < 0.001 < 0.001 N/A

24 961 1 < 0.001 < 0.001 N/A
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Figure 3.3: Hazard function estimates.

Comparison of groups of survival data

The comparison among the levels of the variables was done graphically. The illustration

is summarised in Figure 3.4. The results of the log-rank and Wilcoxon test statistics are

summarised in Table 3.5. The log-rank test for comparison is suitable for comparing levels

of variables residence, gender, number, APGAR and weight where the plots do not cross.

Wilcoxon test is suitable in comparing the levels of the rest of variables since their plots cross.

Figure 3.4 (a) suggests that babies whose mothers are 20 years old to 34 years and above 34

years survive better than babies whose mothers are under 20 years old. The Wilcoxon test

strongly support the difference between these categories of age.

Figure 3.4 (j) suggests that babies whose circumference of the head is 32cm and above survive

better than those with the circumference of the head below 32cm, with overwhelming evidence

against the non-difference as shows the Wilcoxon test. Figure 3.4 (k) shows that babies with

normal height (46-54cm) survive better than stunted (under-height babies or babies whose
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height is less than 46cm) and over-height babies (babies whose height exceeds 54cm). The

Wilcoxon test of no-difference is overwhelmingly against the no-difference between the levels

of height. Wilcoxon test shows that there is no evidence of no-difference between levels of

variables antecedents, abortion and childbirth.

Figure 3.4 (b) suggests that urban babies survive better than rural babies, the log-rank test

for no-difference confirms no-difference. Figure 3.4 (f) shows that the female babies survive

better than males but the log-rank test confirms slight evidence against no-difference.
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(a) Age of mothers (b) Residence (c) Antecedents of parents

(d) Previous abortion (e) Type of childbirth (f) Gender of newborns

(g) Number of newborns at a time (h) APGAR of newborns (i) Weight of newborns

(j) Head circumference of newborns (k) Height of newborns

Figure 3.4: Plots of the Kaplan-Meier estimates of the survival function for variables (a)

age, (b) residence (c) antecedents, (d) abortion, (e) childbirth, (f) gender, (g) number, (h)

APGAR, (i) weight (j) head and (k) height for dataset on newborns at KUTH, year 2016.
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Singleton survive better than multiple births as suggests Figure 3.4 (g) but the log-rank test

shows that there is no evidence of difference in levels of the number of newborns at a time.

Figure 3.4 (h) suggests that babies with APGAR greater or equal to 7/10 survive better than

babies whose APGAR is from 4/10 to 6/10 and much better than babies whose APGAR is

less than 4/10. The log-rank test shows an overwhelming evidence against the no-difference

between the levels of APGAR.

Table 3.5: Log-rank and Wilcoxon test statistics.

Variable Log-rank χ2 test statistic (p-value) Wilcoxon χ2 test statistic (p-value)

Age 11.84 (0.003) 12.44 (0.002)

Residence 13.74 (p < 0.001) 13.79 (p < 0.001)

Antecedents 0.10 (0.752) 0.06 (0.812)

Abortion 4.48 (0.107) 3.39 (0.183)

Childbirth 2.14 (0.343) 2.07 (0.355)

Gender 3.45 (0.063) 3.69 (0.055)

Number 1.93 (0.165) 2.23 (0.135)

APGAR 912.49 (p < 0.001) 919.37 (p < 0.001)

Weight 219.90 (p < 0.001) 219.32 (p < 0.001)

Head 382.38 (p < 0.001) 376.31 (p < 0.001)

Height 262.69 (p < 0.001) 259.03 (p < 0.001)
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3.4 Regression models

3.4.1 Cox Proportional Hazards Model (CPHM)

Assume p fixed covariates with values xi = (xi1, xi2, . . . , xip)
′ and h0(t) a hazard function

when values of all covariates are zeros. The CPHM is given by

h(t|xi) = h0(t) exp(βββ′xi) (3.19)

where βββ = (β1, β2, . . . , βp)
′ is a p-dimensional vector of model parameters (Collet, 2003,

p. 58). The quantity

ψ = eβk (3.20)

is called "hazard ratio", and is reported in applied studies as it is easier to interpret than the

log-hazard ratio βk = lnψ (Collet, 2003, p. 90).

3.4.1.1 Parameter estimation in CPHM with no tied events

Parameter estimation for the model (3.19) with no tied events is done using partial likelihood

introduced by Cox (1972) as introduced below. Consider time-to-event data with no tied

events with ordered times to events t(j) for j = 1, 2, . . . , r. Let x(j) be the covariate vector of

the individual whose time to event is t(j). Let R(t(j)) be the set of individuals at risk at time

t(j). The probability for an individual with the vector of covariate x(j) to observe the event at
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t(j) if one of the individuals in R(t(j)) observes the event at t(j) is given by

Pj =
h[t(j)|x(j)]∑

k∈R(t(j))

h(t(j)|x(j))

=
h0(t(j))e

βββ′x(j)∑
l∈R(t(j))

h0(t(j))eβββ
′xl

=
eβββ
′x(j)∑

l∈R(t(j))

eβββ′xl
.

The partial likelihood function is then given by

L(βββ) =
r∏
j=1

Pj =
r∏
j=1

eβββ
′x(j)∑

l∈R(t(j))

eβββ′xl
(3.21)

(Collet, 2003, p. 66). The estimates of parameters β1, β2, . . . , βp are obtained by maximizing

L(βββ) or, equivalently, by maximizing ln[L(βββ)] using the numerical methods such as for example

the Newton-Raphson method (Autar, 2009). The usual Wald test for large samples tests the

null hypothesis as H0 : βββ = βββ0 by assuming that

(β̂ββ − βββ0)′I(β̂ββ)(β̂ββ − βββ0) ∼ χ2
p. (3.22)

In the expression 3.22, I(β̂ββ) is the p×p observed information matrix I(βββ) =
{
−∂2 lnL(βββ)

∂βj∂βk

}
(j,k)∈[1,p]×[1,p]

evaluated at βββ = β̂ββ (Collet, 2003, p. 69). The variance-covariance matrix of the parameter

estimates β̂ββ = (β̂1, β̂2, . . . , β̂p) is I−1(β̂ββ). The variance of the parameter estimates β̂k are

the diagonal elements of I−1(β̂ββ) for k = 1, 2, . . . , p. The likelihood ratio test is an alternative

test for H0: βββ = βββ0 versus H1 : βk 6= 0, for all k ∈ [1, p]. The test assumes that

ln

[
L(β̂ββ)

L(βββ0)

]2

∼ χ2
p

(Klein and Moeschberger, 2003, p. 254). The 100(1−α)% confidence interval for βk is given

by [
β̂k − zα

2
se(β̂k); β̂k + zα

2
se(β̂k)

]
(3.23)
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where se(β̂k) =

√
V̂ar(β̂k) for k = 1, 2, . . . , p and zα

2
is the upper α

2
-percentile of the standard

normal distribution. It follows from result (3.23) that the 100(1− α)% confidence interval of

a hazard ratio ψ = eβk is given by

[
e
β̂k−zα

2
se(β̂k)

; e
β̂k+zα

2
se(β̂k)

]

where ŝe(β̂k) =

√[
I(β̂k)

]−1

.

3.4.1.2 Parameter estimation in CPHM with tied events

For tied events, the approximation of the partial likelihood function of the CPHM is based on

the following procedure.

First, construct a vector sj = (s1j, s2j, . . . , spj)
′ of sums of each of the p covariates for all

individuals with event at the jth ordered event time, t(j), for j = 1, 2, . . . , r. More succinctly,

if there are dj events at time t(j), the hth element of sj is

shj =

dj∑
k=1

xhjk

where xhjk is the value of the hth explanatory variable, h = 1, 2, . . . , p for the kth individual,

k = 1, 2, . . . , dj, who observes the event at time t(j), j = 1, 2, . . . , r. Second, construct the

sets D(t(j)) and R(t(j)) of individuals who observe the event and who are at risk at time

t(j), respectively. Third, express the observed vector of covariates for the ith individual as xi,

i = 1, 2, . . . , n. The Breslow approximation of the partial likelihood function is given by

LB(βββ) =
r∏
j=1

eβββ
′sj[ ∑

i∈R(t(j))

eβββ′xi

]dj . (3.24)
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The Breslow estimation performs well when
dj
nj

is relatively small. Alternatively, the Efron

approximation of the partial likelihood function is given by

LE(βββ) =
r∏
j=1

eβββ
′sj

dj∏
k=1

[ ∑
i∈R(t(j))

eβββ′xi − k−1
dj

∑
i∈Dt(j)

eβββ′xi

] (3.25)

and the Cox approximation of the partial likelihood function is given by

LC(βββ) =
r∏
j=1

eβββ
′sj∑

i∈R(t(j),dj)

eβββ′si
(3.26)

where R(t(j), dj) is the set of dj individuals drawn from the risk set R(t(j)) at time t(j).

In practice, the three approximations of the partial likelihood function lead to similar results

(Collet, 2003, p. 68). STATA provides options for using each of the above approximations with

Breslow being the default.

Maximum likelihood estimation of model parameters and asymptotic variance-covariance ma-

trix of parameter estimates, as well as confidence interval of parameters and test of significance

are conducted in a similar fashion as for the model with no tied events described in Section

3.4.1.1.

3.4.2 Aalen Additive Hazards Model (AAHM)

The hazard function described by the CPHM in the previous section is expressed as the product

of the baseline hazard function and a function of the covariates of interest, and thus propor-

tional hazards may be assumed and covariates may be fixed. Aalen et al. (2008, p. 155-156)

suggest that the additive hazards model may be adequate when there is no assumption of pro-

portionality. Another advantage of the AAHM is that both fixed and time dependent covariates
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are integrated in the model.

The AAHM expresses the hazard rate at time t of the ith of n individuals with vector of

covariates xi(t) = (xi1(t), xi2(t), . . . , xip(t))
′. That is given by

h[t|xi(t)] = β0(t) + β1(t)xi1(t) + β2(t)xi2(t) + . . .+ βp(t)xip(t) (3.27)

where βββ(t) = (β0(t), β1(t), . . . , βp(t))
′ is the vector of parameter functions that may be esti-

mated and β0(t) is the baseline hazard (Aalen, 1989).

Aalen et al. (2008, p. 157) argue that, for computation stability, estimation in model (3.27)

should be based on the cumulative parameter functions

Bk(t) =

∫ t

0

βk(v)dv, (3.28)

k = 0, 1, 2, . . . , p. Clearly, if βk(t) is constant, say βk(t) = βk, then

Bk(t) =

∫ t

0

βkdv = βk t which is represented by a straight line.

Proposition 3.4.1. Let

Yi(t) =


1, if individual i is at risk at time t

0, otherwise.

Model (3.27) leads to the form

dNi(t) =

p∑
k=0

Yi(t)xik(t)dBk(t) + dMi(t) (3.29)

where xi0 = 1.

Proof. Using Aalen et al.’s expression of the intensity process λi(t) of the counting process

{Ni(t), t ≥ 0} of the ith individual at risk at time t as

λi(t) = Yi(t)h (t|xi(t)) (3.30)
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where h (t|xi(t)) is given by Equation (3.27), the intensity process of the counting process

Ni(t) of the ith individual at risk at time t can be written as

λi(t) = Yi(t)h (t|xi(t)) = Yi(t)

[
β0(t) +

p∑
k=1

βk(t)xik(t)

]
. (3.31)

Using (3.28), the intensity process (3.31) can be written as

λi(t) = Yi(t)

[
d

dt
B0(t) +

p∑
k=1

xik(t)
dBk(t)

dt

]

or, equivalently,

λi(t)dt = Yi(t)

[
dB0(t) +

p∑
k=1

xik(t)dBk(t)

]
. (3.32)

But the signal-noise representation of an observed counting process for the ith individual from

the Doob-Meyer decomposition theorem (Doob, 1953) is

dNi(t) = λi(t)dt+ dMi(t) (3.33)

whereMi(t) is the martingale component of the counting process Ni(t). Then, it follows from

(3.32) and (3.33) that

dNi(t) =

p∑
k=0

Yi(t)xik(t)dBk(t) + dMi(t) (3.34)

where xi0 = 1.

Equation (3.34) has the form of a multiple linear regression model for the ith individual with

response variable (observations) dNi(t), covariates Yi(t)xik, random error terms dMi(t) and

parameters dBk(t) for k = 0, 1, 2, . . . , p and i = 0, 1, 2, . . . , n. Model (3.34) can be written

in matrix form as

dN(t) = X(t)dB(t) + dM(t) (3.35)
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where

dN(t) is the n× 1 vector of observations dNi(t)

X(t) is the n× (p+ 1) design matrix with ith row Yi(t), Yi(t)xi1(t), . . . , Yi(t)xip(t)

dB(t) = (dB0(t), dB1(t), . . . , dBp(t))
′ is the (p+ 1)× 1 vector of parameter functions

dM(t) is the n× 1 vector of martingales (error terms) each with mean zero.

Assuming that dN(t) is a Poisson process,

V ar [dN(t)] = E [dN(t)] = λ(t)dt (Andersen et al., 1993, p. 52).

It follows from (3.35) and from the theory of least square estimation that if X(t) is of full

rank, that is [X(t)]′X(t) is non singular, then the ordinary least squares estimator of dB(t) is

dB̂(t) =
[
(X(t))′X(t)

]−1
(X(t))′ dN(t). (3.36)

If X(t) is not of full rank, then dB(t) is not estimable unless some constraint is imposed.

However, most of current statistical packages have built-in routines to deal with matrices that

are not of full rank and provide robust estimates of model parameters. The estimator B̂(t)

is unbiased (Hosmer and Royston, 2002) and obtained by integrating both sides of equation

(3.36) with respect to t, that is

B̂(t) =

∫ t

0

[
(X(t))′X(t)

]−1
(X(t))′ dN(t)

=
∑
tj≤t

[
(X(tj))

′X(tj)
]−1

(X(tj))
′ yj (3.37)

where yj is n× 1 vector of zeros except the jth component equals to unit if the jth individual

observes an event at time tj (Hosmer et al., 2008, p. 319 and Hosmer and Royston, 2002).

Furthermore, the variance-covariance matrix of B̂(t) is

Var
[
B̂(t)

]
=
∑
tj≤t

[
(X(tj))

′X(tj)
]−1

(X(tj))
′D(tj)X(tj)

[
(X(tj))

′X(tj)
]−1 (3.38)
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where D(tj) is an n × n diagonal matrix with elements yj on the main diagonal where yj

are zeros except the jth component equals to unit if the jth individual observes an event at

time tj(Aalen et al., 2008, p. 158, and Hosmer and Royston, 2002). The derivation of results

(3.38) from (3.37) is easy to understand. In fact if two random vectors of variables X and Y

are linked by Y = AX, where A is a matrix, then

Var(Y) = AVar(X)A′

(Mulaik, 2009).

Hosmer and Royston (2002) assumed that if the vector of cumulative parameter coefficients at

time t is estimated by (3.37), and its variance-covariance matrix by (3.38), then the estimator

of the model vector of parameter coefficients at time tj is

β̂ββ(tj) =
[
(X(tj))

′X(tj)
]−1

(X(tj))
′ yj (3.39)

and

Var
[
β̂ββ(tj)

]
=
[
(X(tj))

′X(tj)
]−1

(X(tj))
′D(tj)X(tj)

[
(X(tj))

′X(tj)
]−1

. (3.40)

Aalen et al. (2008, p. 159) showed that the cumulative parameter function estimator B̂(t) has

approximately a multivariate normal distribution around its true value B(t), with the variance-

covariance matrix expressed in (3.38). Therefore, the 100(1−α)% confidence interval for the

kth cumulative parameter functions Bk(t) is expressed by

B̂k(t)± zα
2

√
σ̂kk(t) (3.41)

with σ̂kk(t) the kth diagonal element of the variance-covariance matrix expressed in the equa-

tion (3.38). To test that a covariate Xk has no significant effect on the hazard function given
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in model (3.27), Aalen et al. (2008, p. 164) formulated the null and alternative hypotheses in

the usual way as follows

H0 : βk(t) = 0, ∀t ∈ [0, t0]

versus

H1 : βk(t) > 0 or βk(t) < 0

where t0 is a suitably chosen time point, but often t0 is the upper limit of the study time

interval. If H0 is true, then the increment ∆B̂k(tj) at time tj of the cumulative parameter

function given in (3.37) tends to fluctuate around zero (Aalen et al., 2008, p. 164). Under

the alternative hypothesis H1 : βk(t) > 0, the increment ∆B̂k(tj) tends to be positive while

under H1 : βk(t) < 0, the increment ∆B̂k(tj) tends to be negative. Furthermore if B̂k(t)

approximately follows a straight line, then βk(t) is constant, that is not time-varying. The

test described above is helpful when the estimated cumulative parameter functions are plotted

against time. However, a quantitative measure of significance may be needed to assess the

magnitude of significance. Hosmer and Royston (2002) advised to proceed as follows. Consider

model (3.27) and assume that there is a need to test the null hypothesis

H0 : βk(tj) = 0 for all k with k = 0, 1, . . . , p. (3.42)

Hosmer and Royston (2002) stated that the (p + 1) statistics for the above hypothesis are

obtained from the components of the vector

û =
∑
tj

Kjβ̂ββ(tj) (3.43)

where β̂ββ(tj) given by (3.39) is the vector of estimators of the parameter coefficients for model

(3.27), and Kj is a (p + 1) × (p + 1) diagonal matrix of weights. Four types of weights can

be used (Hosmer and Royston, 2002) .
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Weights 1: Kj = diag(1), that is Kj is a diagonal matrix with each element of the main

diagonal equals to unit.

Weights 2: Kj = diag(nj) where nj is the number of individuals at risk at time tj.

Weights 3: Kj = diag
[
ŜKM(tj−1)

]
where ŜKM(tj−1) is the Kaplan-Meier estimate of the

survival function at time tj−1 for j = 2, 3, . . . and K1 = diag
[
ŜKM(t0) = 1

]
.

Weights 4: Kj = diag
[
ŜKM(tj−1)/se(β̂kk(tj)

]
where β̂kk(tj) is the kth diagonal element (i.e.

a variance) of the variance-covariance matrix (3.40). Hence, Kj is a diagonal matrix whose

main diagonal elements are the ratio of the Kaplan-Meier estimates of the survival function at

time tj−1 and the standard error of the Aalen estimate of the parameter function of interest

at time tj.

To completely define the test statistic to use, the estimator of the variance-covariance matrix

of û given in (3.43) is obtained from the symmetric matrix Kj and the variance of β̂(tj) given

by (3.40). Hence,

V̂ar(û) =
∑
tj

KjVar
[
β̂ββ(tj)

]
K′j

=
∑
tj

Kj

[
(X(tj))

′X(tj)
]−1

(X(tj))
′D(tj)X(tj)

[
(X(tj))

′X(tj)
]−1 K′j. (3.44)

Hence, the test statistic for H0 given in (3.42) is

zuk =
ûk

se(ûk)
(3.45)

where ûk is the kth element of û given in (3.43) and se(ûk) is the square root of the kth

diagonal element of V̂ar(û) given in (3.44). Hosmer and Royston (2002) pointed out that the

statistic zuk in (3.45) approximately follows the standard normal distribution.

To implement the theoretical results discussed in this section, Hosmer and Royston (2002)

provided an ado STATA command, stlh. The plot of parameter functions and related test of
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significance using the command stlh are presented in the appendix of this thesis.

Hosmer and Royston (2002) pointed out that type 3 and mainly type 4 weights should be

recommended since type 1 weights are sensitive to later effects of covariates on the time to

event while type 2 weights are sensitive to earlier effects.

3.4.3 Cox-Aalen Hazards regression Models (CAHM)

CAHM was proposed by Scheike and Zhang (2002). The model consists of partitioning co-

variates into two parts, one part working additively as in AAHM and other part acting multi-

plicatively as in CPHM. Assume that Y (t) is the risk indicator, (X(t), Z(t)) is a (p + q)× 1

vector of covariates; β(t) is a (p× 1) vector of time-varying regression coefficient and α is a

(q × 1) vector of relative risk regression coefficients. Then the hazard function is given by

h(t|x) = Y (t)[X ′(t)β(t)] exp(Z ′(t)α). (3.46)

The estimation is based on cumulative parameter functions B(t) =
∫ t

0
β(v)dv and model

parameters α. Approximate maximum likelihood estimators are derived from the score function

developed in Scheike and Zhang (2002). The score function assumes Aalen additive hazards

model as its covariate dependent baseline. The baseline intensity functions and the relative

risk parameters of the Cox model are suggested by solving the score equations. Numerical

methods such as Newton-Raphson may be used for approximating model parameters.
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3.4.4 Application

Consider the data described in Table 2.1 regarding the survival times of 2117 newborns from

the Kigali University Teaching Hospital (KUTH). The aim of this study is to apply the CPHM,

AAHM and CAHM for estimating the relative risk in each covariate. These three models were

compared to select the relatively better model to the dataset of interest.

CPHM for the infant mortality at KUTH

Table 3.6 presents the estimates of the hazard ratios using the Cox proportional hazard model

(3.19). For handling ties, Breslow, Efron and Cox approaches as defined in Section 3.4.1, give

similar results and thus those presented in Table 3.6 are from the default (Breslow).
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Table 3.6: CPHM for all covariates

Covariate (reference) Level Haz. Ratio Std. Err. z P > z 95% Conf. Int

Age (Under 20 years old) 20 to 34 years old 0.216 0.104 -3.190 0.001 [0.084; 0.554]

35 years old and above 0.279 0.147 -2.420 0.015 [0.099; 0.784]

Residence (Rural) Urban 1.026 0.246 0.110 0.914 [0.642; 1.640]

Antecedents (Not 1st newborn) 1st new born 0.841 0.236 -0.620 0.536 [0.485; 1.457]

Abortion (Not aborted) Aborted once 1.670 0.659 1.300 0.194 [0.771; 3.619]

Aborted more than once 1.171 0.531 0.350 0.728 [0.481; 2.850]

Childbirth (Ventouse) Natural 0.621 0.471 -0.630 0.530 [0.141; 2.745]

Surgery 0.779 0.584 -0.330 0.739 [0.180; 3.383]

Gender (Female) Male 1.852 0.443 2.580 0.010 [1.159; 2.960]

Number (Singleton) Multiple 0.324 0.143 -2.550 0.011 [0.137; 0.770]

APGAR ( Below 4/10) 4/10 to 6/10 0.387 0.149 -2.470 0.014 [0.182; 0.822]

7/10 and above 0.056 0.020 -8.050 p < 0.001 [0.028; 0.113]

Weight (Under 2500 g) 2500 g to 4500 g 0.219 0.087 -3.810 p < 0.001 [0.101; 0.479]

Above 4500 g 0.390 0.418 -0.880 0.379 [0.048; 3.187]

Head (Below 32 cm) 32 cm to 36 cm 0.287 0.111 -3.230 0.001 [0.134; 0.611]

Above 36 cm 0.125 0.132 -1.980 0.048 [0.016; 0.980]

Height (Below 46 cm) 46 cm to 54 cm 0.559 0.234 -1.390 0.165 [0.246; 1.270]

Above 54 cm 1.033 1.114 0.030 0.976 [0.125; 8.550]

The results in Table 3.6 indicate significant differences in levels of covariates age, gender,

number, APGAR, weight and head where p-values are less or equal to 0.05. The model

suggests that the hazard of death of babies whose mothers are from 20 years and 34 years

old is 0.216 (95% CI: 0.084-0.554, p=0.001) times that of babies whose mothers are under

20 years old. The hazard of death of babies whose mothers are 35 years old and above is

0.279 (95% CI: 0.099-0.784, p=0.015) times that of babies whose mothers are under 20 years

old. The argument of Olausson et al. (1999) confirms a relatively higher risk for teenage

pregnancies due to biological immaturity. As for the advanced maternal age, Lampinen et al.

(2009) suggested that relatively poorer outcomes to pregnancies are due to the observed higher
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incidence of chronic medical conditions among older women.

The hazard of death for male babies is 1.852 (95% CI: 1.159-2.960, p=0.010) times that of

female babies. The usual better survival outcome of the females is also reported in several

manuscripts such as Pongou (2013) and Zarulli et al. (2018).

The hazard of death of multiple babies is 0.324 (95% CI: 0.137-0.770, p=0.011) times that of

singleton babies. This is however against the results from studies conducted in Sub-Saharan

Africa by Monden and Smits (2017) and Pongou et al. (2019). This may be due to the small

number of multiple newborns recorded at KUTH along the year 2016.

The hazard of death for babies whose APGAR range from 4/10 to 6/10 is 0.387 (95% CI:

0.182-0.822, p=0.014) times that of babies whose APGAR is below 4/10. The hazard of

death for babies whose APGAR range from 7/10 to 10/10 is 0.056 (95% CI: 0.028-0.113,

p<0.001) times that of babies whose APGAR is below 4/10. The hazard of death for babies

whose weight range from 2500g to 4500g is 0.219 (95% CI: 0.101-0.479, p<0.001) times that

of babies whose weight is below 2500g. The hazard of death for babies whose circumference

of the head range from 32cm to 36cm is 0.287 (95% CI: 0.134-0.611, p=0.001) times that of

babies whose circumference of the head is below 32cm. The hazard of death for babies whose

circumference of the head is above 36cm is 0.125 (95% CI: 0.016-0.980, p=0.048) times that

of babies whose circumference of the head is below 32cm. The results of APGAR, weight

and circumference of the head comply with the recommendations of the clinical medicine as

suggested by Janssen et al. (2007).

Aalen additive hazards model

Unlike the CPHM based on quantitative measurement of the hazard ratio, the cumulative

parameter functions express the hazard by considering the slopes of the plots of cumulative
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parameter functions. The plots of the estimates of the cumulative parameter functions Bk(t)

and associated confidence intervals are presented, giving information about the significance of

the parameters βk(t). The analysis was done in STATA using the command stlh suggested by

Hosmer and Royston (2002).

Figure 3.5 gives the plots of the cumulative parameter functions and their 95% confidence

limits for the variables residence, gender, antecedents and number.
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(a) Residence (b) Gender

(c) Antecedents (d) Number

Figure 3.5: Cumulative parameter function plots for variables residence, gender, antecedents

and number.

Figure 3.5 (a) represents the estimated cumulative parameter function with its 95% confidence
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limits for urban parents compared to rural parents. The plot is approximately horizontal and

negative everywhere but the upper and lower limits of the confidence interval are on either

sides of the zero line. This indicates that the hazard of death for urban babies may be slightly

higher than that of rural babies, but the difference may be not significant.

Figure 3.5 (b) represents the estimated cumulative parameter function with its 95% confidence

limits for the male compared to female babies. The plot is approximately horizontal and positive

everywhere with the upper and lower limits of the confidence interval situated approximately

above the zero line. This indicates that the hazard of death for male babies may be higher

than that of female babies.

Figure 3.5 (c) represents the estimated cumulative parameter function with its 95% confidence

limits for the first new born compared to babies that are not. The plot decreases below the

zero line and becomes horizontal towards the end of study time, with the confidence limits at

either sides of the zero line. This indicates that the hazard of death for babies that are not

first newborn may be slightly higher than that of first newborn.

Figure 3.5 (d) represents the estimated cumulative parameter function with its 95% confidence

limits for the multiple newborns compared to the singletons. The plot decreases below the

zero line and becomes horizontal towards the end of study time, with the confidence limits

approximately below the zero line. This indicates that the hazard of death for singletons may

be higher than that of multiple newborns.

Figure 3.6 gives the plots of the cumulative parameter functions and their 95% confidence

limits for levels of the variable APGAR Figure 3.6 (a) represents the estimated cumulative

parameter function with its 95% confidence limits for the newborn’s APGAR from 4/10 to

6/10 compared to the APGAR < 4/10. The plot increases below the zero line for the first

75 days and then become horizontal below the zero line with the major part of confidence
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intervals situated below the zero line. This indicates that the hazard of death for newborns

with APGAR below 4/10 may be higher than that of newborns with APGAR from 4/10 to

6/10. Figure 3.6 (b) represents the estimated cumulative parameter function with its 95%

confidence limits for the newborn’s APGAR that is 7/10 and above compared to the newborn’s

APGAR below 4/10. The plot is horizontal below the zero line, with confidence limits below

the zero line. This indicates that the hazard of death for newborns with APGAR below 4/10

may be constant and higher than that of newborns whose APGAR is 7/10 and above. The

results of APGAR by AAHM comply with that of the CPHM and the recommendations of the

clinical medicine found in Janssen et al. (2007).

(a) APGAR=4/10 to APGAR=6/10 (b) APGAR=7/10 and above

Figure 3.6: Cumulative parameter function plots for variable APGAR.

Figure 3.7 gives the plots of the cumulative parameter functions and their 95% confidence

limits for levels of the variable age.
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(a) 20 years old to 34 years old (b) 35 years old and above

Figure 3.7: Cumulative parameter function plots for variable age.

Figure 3.7 (a) displays the cumulative parameter function for mothers with 20 years old to 34

years old with its 95% confidence limits for the variable age with reference taken on under

20 years old. The plot is below the horizontal zero line and the slope decreases only during

the first month of study time but a large portion of its 95% confidence interval is below the

zero line. This is an indication that the hazard of death for newborns whose mother is under

20 years old is higher than that of newborns from mothers with 20 years old to 34 years

old. A similar situation is observed for newborns whose mothers are 35 years old and above

as indicates Figure 3.7 (b). The same results were found by applying the CPHM and were

justified by Olausson et al. (1999) and Lampinen et al. (2009).

Figures 3.8 (a) and 3.8 (b) display the cumulative parameter functions with their 95% confi-

dence limits for newborns whose mothers aborted once and newborns whose mothers aborted

more than once, respectively. The plots fluctuate around the zero line. This indicates that the
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differences among the levels of abortion are not significant.

(a) Aborted once (b) Aborted more than once

Figure 3.8: Cumulative parameter function plots for variable abortion.

Figure 3.9 gives the plots of the cumulative parameter functions and their 95% confidence

limits for levels of the variable childbirth. Both Figure 3.9 (a) and 3.9 (b) behave similarly:

the plots are approximately horizontal and negative everywhere but the upper and lower limits

of the confidence interval are on either side of the zero line. This indicates that the hazard

of death of newborns by ventouse is slightly higher than that of newborns naturally and by

surgery.

Figure 3.10 gives the plots of the cumulative parameter functions and their 95% confidence

limits for levels of the variable head. Both Figure 3.10 (a) and 3.10 (b) behave similarly:

the plots are decreasing below the zero line with the upper and lower limits of the confi-

dence interval below the zero line. This indicates that the hazard of death of newborns with

the circumference of head less than 32cm is higher than that of newborns with the normal
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circumference of the head and that of newborns with an extra-normal circumference of the

head.

(a) Born naturally (b) Born by surgery

Figure 3.9: Cumulative parameter function plots for variable childbirth.

Figure 3.11 gives the plots of the cumulative parameter functions and their 95% confidence

limits for levels of the variable height. Both Figure 3.11 (a) and 3.11 (b) behave similarly apart

from the upper limit of the confidence interval of the plot 3.11 (b) situated above the zero

line: the plots are decreasing below the zero line. This indicates that the hazard of death of

newborns with under-height is higher than that of newborns with normal height and newborns

with over-height.
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(a) 32cm to 36cm (b) Above 36cm

Figure 3.10: Cumulative parameter function plots for variable head.

(a) 46cm to 54cm (b) Above 54cm

Figure 3.11: Cumulative parameter function plots for variable height.
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Figure 3.12 gives the plots of the cumulative parameter functions and their 95% confidence

limits for levels of the variable weight. Both Figure 3.12 (a) and 3.12 (b) behave similarly: the

plots are decreasing below the zero line with the major part of the confidence interval below

the zero line. This indicates that the hazard of death of newborns with underweight is higher

than that of both newborns with normal weight and newborns with overweight.

(a) 2500g to 4500g (b) Above 4500g

Figure 3.12: Cumulative parameter function plots for variable weight.

Table 3.7 gives results on the test of significance of parameter functions. Type 1 weights test,

type 2 weights test and type 3 weights test show significant difference between the lowest and

highest levels of variables APGAR (p ≤ 0.001), while all types of weight test show significant

difference between levels of variables head (p< 0.001), gender and weight.
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Table 3.7: Tests for significance of covariates.

Test 1 Test 2 Test 3 Test 4

Covariate (reference) Level z P z P z P z P

Age (Under 20 years old) 20 years old to 34 years old -1.939 0.053 -1.943 0.052 -1.941 0.052 1.988 0.047

35 years old and above -1.992 0.046 -1.971 0.049 -1.992 0.046 -1.768 0.077

Residence (Rural) Urban -0.137 0.891 -0.233 0.816 -0.142 0.887 0.884 0.376

Antecedents (Not first new born) first newborn -2.190 0.028 -2.174 0.030 -2.189 0.029 -2.855 0.004

Abortion (not aborted) aborted once 0.224 0.823 0.230 0.818 0.215 0.829 -5.086 p < 0.001

Aborted more than once 0.771 0.440 0.510 0.610 0.762 0.466 -6.188 p < 0.001

Childbirth (born using ventouse) Born naturally -0.226 0.821 -0.256 0.798 -0.234 0.815 3.089 0.002

Born by surgery -0.246 0.805 -0.298 0.766 -0.254 0.799 3.079 0.002

Gender (Female) Male 2.037 0.042 2.122 0.034 2.046 0.041 2.003 0.045

Number (Single) Multiple -3.488 p < 0.001 -3.365 0.001 -3.472 0.001 -6.177 p < 0.001

APGAR (under 4/10) 4/10 to 6/10 -1.299 0.194 -1.437 0.151 -1.325 0.185 -1.790 0.073

7/10 and above -3.452 0.001 -3.500 p < 0.001 -3.459 0.001 1.508 0.131

Weight (Under 2500 g) 2500 g to 4500g -2.438 0.015 -2.418 0.016 -2.431 0.015 -2.643 0.008

Above 4500 g -1.981 0.048 -1.937 0.053 -1.970 0.049 -5.309 p < 0.001

Head ( below 32 cm) 32 cm to 36 cm -4.192 p < 0.001 -4.199 p < 0.001 -4.191 p < 0.001 -3.754 p < 0.001

Above 36 cm -4.686 p < 0.001 -4.730 p < 0.001 -4.688 p < 0.001 -4.855 p < 0.001

Height (Below 46 cm) 46 cm to 54 cm -2.752 0.006 -2.638 0.008 -2.738 0.006 -3.750 p < 0.001

Above 54 cm -1.227 0.220 -1.098 0.272 -1.213 0.225 -3.964 p < 0.001

Test 1: weights equal to 1.0.

Test 2: weights equal to the size of the risk set.

Test 3: weights equal to Kaplan-Meier (KM) estimator.

Test 4: weights equal to KM/se
(
β̂(t)

)
.

The significant difference for all levels of the variable height is observed in type 4 weight

test (p<0.001). The difference between under-height and normal height is significant by type

1 weight test (p=0.006), type 2 weight test (p=0.008), and type 3 weight test (p=0.006).

Type 4 weight test suggests a significant difference between the age of under 20 years old

and age ranging from 20 years old and 34 years old (p<0.047) and all levels of variable height
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(p<0.001). Type 4 weight test suggests also a significance difference between all levels of

variable abortion (p<0.001) and antecedents (p=0.004) and suggest significant difference

between all levels of childbirth (p=0.002).

Cox-Aalen Hazards Model (CAHM)

Multiplicative part of the CAHM (Table 3.8) shows significance on covariates age, number and

weight where the results are not far from that found for the CPHM, and covariates APGAR

where the CAHM presents a huge difference in levels. The CAHM suggests that the hazard

of death of babies with APGAR less than 4/10 is 16.39 times that of babies with APGAR

4/10 to 6/10 (p-value< 0.001) and 166.7 times that of babies with APGAR greater than 6/10

(p-value< 0.001). Figure 3.13 summarises the additive part of the CAHM. The interpretation

is not far from that of AAHM.

Table 3.8: Multiplicative part of the CAHM

Covariate (Reference) Level Coef Se 95% CI of Coef. HR z P > z 95% CI of HR

Age (Under 20 years old) 20 to 34 years old -1.910 0.411 [-2.720; -1.100] 0.148 -6.250 p < 0.001 [0.066; 0.333]

35 years old and above -1.630 0.436 [-2.480; -0.775] 0.196 -4.570 p < 0.001 [0.084; 0.461]

Residence (Rural) Urban -0.231 0.195 [-0.613; 0.151] 0.794 -1.210 0.228 [0.542; 1.163]

Abortion (Not aborted) Aborted once 0.185 0.367 [-0.534; 0.904] 1.203 0.589 0.556 [0.586; 2.469]

Aborted more than once 0.155 0.403 [-0.635; 0.945] 1.168 0.281 0.778 [0.530; 2.573]

Gender (Female) Male 0.110 0.195 [-0.272; 0.492] 1.116 0.580 0.562 [0.762; 1.636]

Number (Singleton) Multiple -1.340 0.363 [-2.050, -0.629] 0.262 -4.150 p < 0.001 [0.129; 0.533]

APGAR (Below 4/10) 4/10 to 6/10 -2.800 0.325 [-3.440; -2.160] 0.061 -8.400 p < 0.001 [0.032; 0.115]

7/10 and above -5.120 0.357 [-5.820; -4.420] 0.006 -15.800 p < 0.001 [0.003; 0.012]

Weight (Under 2500 g) 2500 g to 4500 g -1.320 0.301 [-1.910; -0.730] 0.267 -5.020 p < 0.001 [0.148; 0.482]

Above 4500 g -1.300 1.130 [-3.510; 0.915] 0.273 -1.080 0.281 [0.030; 2.497]

Head (Below 32 cm) 32 cm to 36 cm 0.077 0.356 [-0.621; 0.774] 1.080 0.241 0.809 [0.537; 2.168]

Above 36 cm -0.264 0.638 [-1.500; 1.000] 0.768 -0.421 0.674 [0.223; 2.718]

Height (Below 46 cm) 46 cm to 54 cm -0.300 0.302 [-0.892; 0.292] 0.741 -1.080 0.279 [0.410; 1.339]

Above 54 cm 0.364 0.652 [-0.914; 1.640] 1.439 0.587 0.557 [0.401; 5.155]
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Figure 3.13: Additive part of the CAHM.

3.5 Conclusion

This chapter reviewed non-parametric methods of the survival analysis, namely, the Kaplan-

Meier method for estimating and graphing survival and the hazard function, the Cox Propor-

tional Hazards Model (CPHM) the Aalen Additive Hazards Model (AAHM) and the Cox-Aalen

Hazards Model (CAHM). These methods were used to analyse the dataset collected at the

Kigali University Teaching Hospital for 2117 newborns during 366 days of the year 2016.

The results revealed that the hazard of death of an infant, is higher in male babies as compared

to female babies; it is higher for babies whose mothers are under 20 years old mothers as

compared to older mothers. Babies born with APGAR greater or equal to 7/10 were found



Section 3.5. Conclusion Page 54

to have a better survival outcome than those born with APGAR less than 7/10. Babies with

normal weight and overweight, were found to have a lower hazard of death compared to

underweight babies. Babies with normal circumference of head were found to survive better

than those with a relatively big head and a relatively small head. Under-height babies were

found to have a higher hazard of death, as compared to babies born with normal height and

over-height newborns. Finally, babies born naturally were found to survive better than those

born using ventouse or those born after surgery. For the CPHM, the results were significant

only for variables age, gender, number, APGAR, weight and head. The results of the AAHM

were significant for all variables except variable residence while for the CAHM, the significance

was found on covariates age, number, APGAR and weight. The results on variable height

were surprisingly not significant by the CPHM and by the CAHM, unlike expected results.

Significance on variable height was rather observed in the AAHM in accordance with related

tests, especially test 4.

This chapter reviewed different models with single event. However, additional events such as

the incidence of chronic disease per subject along the study time would be of interest and this

is beyond single event survival analysis. The extension to several events survival analysis is

therefore targeted in the next chapter.



CHAPTER 4

MULTIPLE EVENTS MODELS

4.1 Introduction

The multiple events processes or processes that generate events repeatedly along the time are

also known as the recurrent event processes (Cook and Lawless, 2007, p. 1). Such processes

are adapted to the repeated event data found in medicine and public health, where the number

of events exhibited is relatively small for a larger number of processes. Multiple events are met

in the other domains such as social science, economics, manufacturing, insurance and reliability

(Cook and Lawless, 2002). In multiple events studies, the number of events in distinct time

intervals is termed as "counts", the gaps are the times between successive events, while the

"event intensity" is the conditional probability of a new event, given the past event (Cook

and Lawless, 2007, p. 1).

Cook and Lawless (2007) discussed different multiplicative models such as the modulated

Poisson model which consist of modelling the intensity processes given the history F , and

the Cox models for ordered and unordered events. The interest in this study will be taken on

the multiplicative models with the ordered events. Ordered events are based on the concept

that the second event cannot occur before the first event, the third event cannot occur before

the second event and so on. The models adapted to ordered events include the Andersen-Gill

55
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Model (AGM), the Wei, Lin and Weissfeld Model (WLWM) and the Prentice, Williams and

Peterson Model (PWPM) (Wei and Glidden, 1997).

The AGM known also as the counting process approach (Andersen and Gill, 1992), assumes

that all event types are indistinguishable and all events within the same subject are assumed

to be independent (Johnson et al., 2004). Therneau (1997) evokes a limitation of AGM of not

allowing multiple events to occur at the same time. The WLWM is also known as the marginal

risk sets model (Wei et al., 1989). The WLWM assumes that events are unordered where each

event has its own stratum and each data point appears in all strata. This allows an analysis of

multiple events occurring at the same time. The PWPM is also known as the conditional risk

set model and was proposed by Prentice, Williams and Peterson (Prentice et al., 1981). In

PWPM, the set up of the dataset is the same as that of the AGM but the analysis is stratified

by failure order (Amorim and Cai, 2015). The PWPM can potentially analyse time to each

event from the previous event, this is known as the gap-time model. Both AGM, WLWM and

PWPM have been alternatively used on bladder cancer data and on the hospitalisation and

death data presented by Castañeda and Gerritse (2010).

4.2 Mathematical formulation of Cox model with mul-

tiple events

Consider the time scale t, t > 0 and a sample of n individuals under study and let

Ni(t) denotes the number of events for individual i, i = 1, 2, ..., n,

Ti1, Ti2, ... denote the times of events for individual i,

Wij = Tij − Tij−1 denote the gaps or times between successive events of the individual i,
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yi(t) denote the fixed or time-varying covariates,

Ni(t) denotes a counting process with intensity process

λi(t) = lim
∆t→0

P (Ni(t+ ∆t)−Ni(t) = 1|Ft)

∆t

where Ft is the history of events and covariates up to the time t (Sankaran and Anisha, 2011).

The mean cumulative function (MCF) µi(t) and the corresponding rate of occurrence function

ρi(t) are defined in Cook and Lawless (2007) as:

µi(t) = E [Ni(t)] (4.1)

and

ρi(t) =
d

dt
µi(t) (4.2)

or

ρi(t)dt = dµi(t). (4.3)

Applying differentiation with respect to t on both sides of (4.1) and using (4.3) yields:

E [dNi(t] = ρi(t)dt. (4.4)

Cook and Lawless (2007) discuss different multiplicative models such as the regression model

for the rate function for both fixed and time dependent covariates expressed by

ρi(t) = ρ0(t)eβββ
′yi(t) (4.5)

and the regression model for the mean functions for the fixed covariates, expressed by

µi(t) = µ0(t)eβββ
′yi ,

where µ0(t) =
∫ t

0
ρ0(v)dv.
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The second approach consists of modelling the intensity process λi(t) given the history F ,

that is

λik(t|F ) = λ0k (t) eβββ
′yik(t). (4.6)

The expression λ0k is the event specific baseline hazard for the kth event over time. Model

(4.6) incorporates the AGM, the WLWM and the PWPM according to the type of the dataset.

Specifically Model (4.6) yields the PWPM gap model of the form

λik(t|F ) = λ0k [B(t)] eβββ
′yik(t),

where B(t) = t− TN(t−) is the time since the last event.

4.3 Likelihoods and maximum likelihood estimation

The likelihoods constructions and maximum likelihood estimates for the multiplicative multiple

events models are well developed in Cook and Lawless (2007, p. 27-58), and specifically,

Louzada (2007) discussed a parametric based estimation for the rate function model; Lawless

and Nadeau (2012) addressed two ways of analyzing the rate function: the first one consists of

specifying the distribution of the intensity process λi(t) such as for example a Poisson process

when λi(t) = ρi(y), or a negative binomial process if λi(t) = 1+rNi(t
−)

1+rµi(t−)
ρi(t). In the second

way, a distribution of the intensity process is not specified, this approach is known as "robust"

and has potential to model means or variances (Sankaran and Anisha, 2011).

Assuming that two events cannot occur simultaneously in continuous time, let ]0, τi[, the

interval of time in which the individual i is observed and ni the number of events of individual

i along ]0, τi[, then the likelihood function for the outcome ni along ]0, τi[ is given by
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L(ΦΦΦ) =
n∏
i=1

Li(φ),

where

Li(φ) =

ni∏
j=1

ρ0 (Tij,ααα) eβββ
′Yi e−

∫ τ
0 Xi(v)ρ0(v,ααα)eβββ

′Yi(v)dv . (4.7)

In (4.7), ΦΦΦ = (ααα,βββ); ααα is called a baseline parameter, τ = max(τ1, τ2, ...τn) and

Xi(v) =


1 if individual i is at risk

0 otherwise.

Using the relationship (4.4), the log-likelihood can be written as

lnL(Φ) =
n∑
i=1

∫ τ

0

Xi(v) [ln ρi(v,Φ)dNi(v)− ρi(v,Φ)dv] .

The maximum likelihood estimates are obtained by solving a system
∂ lnL(ΦΦΦ)

∂ααα
= 0

∂ lnL(ΦΦΦ)
∂βββ

= 0.

(4.8)

The numerical methods such as the Newton-Raphson method are used for solving system

(4.8). The adequacy of parameters is checked by finding the elements III αααααα, III αααβββ, III βββααα and

III ββββββ of the information matrix III and assume that as n → ∞, Φ̂ΦΦ − ΦΦΦ  N
(

0,III −1(Φ̂ΦΦ)
)

(Sankaran and Anisha, 2011).
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4.4 Setup of dataset in AGM, PWPM and WLWM

Numerical examples on the layout of the dataset in the AGM, the PWPM and the WLWM are

found in materials such as Hosmer et al. (2008, p. 289), Andersen et al. (1993), Fisher (1991),

Lin and Ying (1994), O’Brien (1984), Lin and Wei (1992), Clayton and Cuzick (1985) and

Kelly and Lim (2000). Assume that n is a maximum number of events per subject, and that τk,

k = 1, 2, . . . n, are times to events per subject along the study time with range [0, T ]. Under

the AGM, all events are assumed to be in one stratum along the study time. The study time

T is subdivided into intervals defined by the times to events as [0, τ1] ; ]τ1, τ2] ; . . . ; ]τn, T ],

with event indicator for each time interval. The layout of the dataset for PWPM is the same

as for the AGM where for each interval corresponds a specific stratum, making the number of

time intervals per subject equal to the number of strata per subject. The alternative PWPM

based on gap time takes 0 at the lower bound of each interval per subject, the upper bound is

given by the gaps or τk − τk−1, k = 1, 2, . . . , n, the first and the last intervals are respectively

[0, τ1] and [0, T − τn]. Like in PWPM, the kth time interval per subject in WLWM is in the

kth stratum, k = 1, 2, . . . , n. In WLWM, the study time is subdivided into n + 1 intervals

each with lower bound 0 and upper bound equal to the time to event, the first and the last

intervals are respectively [0, τ1] and [0, T ].

4.5 Application

Consider the data described in Table 2.1 regarding the survival times of 2117 newborns from

the Kigali University Teaching Hospital (KUTH). The aim of this study was to apply a suitable
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multiple events model for estimating the relative risk in each covariate.

Two events per subject are of interest: death and occurrence of at least one chronic disease or

complication. The chronic disease or complications recorded at KUTH are severe oliguria, se-

vere prematurity, very low birth weight, macrosomia, severe respiratory distress, gastroparesis,

hemolytic, trisomy, asphyxia and laparoschisis.

The layout of the KUTH dataset follows the indication provided by the WLWM, Table 1 of

Appendix A gives the first 50 entries, the full dataset can be found via the authors of this

thesis.

Model (4.6) was implemented using STATA-15 and the dataset on infant mortality at KUTH

with a portion given in Table 1 of Appendix A. The WLWM was used since death can occur

without a previous chronic disease or complication and the two events could occur at the same

time per subject.

Table 4.1: Unadjusted WLWM for the infant mortality at KUTH from 01-January-2016 to

31-December-2016 with Breslow method of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err z P > z 95% Conf. Int.

Age (Under 20 years old) 20 to 34 years old 0.277 0.997 -3.570 p < 0.001 [0.137; 0.560]

35 years old and above 0.395 0.157 -2.330 0.020 [0.181; 0.863]

Residence (Rural) Urban 0.847 0.139 -1.020 0.309 [0.614; 1.167]

Antecedents (Not 1st newborn) 1st new born 0.806 0.157 -1.100 0.270 [0.550; 1.182]

Abortion (Not aborted) Aborted once 1.405 0.398 1.200 0.231 [0.806; 2.448]

Aborted more than once 0.479 0.161 -2.190 0.028 [0.248; 0.925]

Childbirth (Ventouse) Natural 0.873 0.491 -0.240 0.808 [0.290; 2.627]

Surgery 1.115 0.613 0.200 0.843 [0.380; 3.274]

Gender (Female) Male 1.740 0.296 3.260 0.001 [1.247; 2.429]

Number (Singleton) Multiple 0.409 0.131 -2.790 0.005 [0.218; 0.766]

APGAR (Below 4/10) 4/10 to 6/10 0.377 0.112 -3.300 0.001 [0.211; 0.673]

7/10 and above 0.130 0.036 -7.460 p < 0.001 [0.076; 0.222]

Weight (Under 2500 g) 2500 g to 4500 g 0.250 0.068 -5.070 p < 0.001 [0.146; 0.427]

Above 4500 g 0.442 0.285 -1.270 0.206 [0.125; 1.565]

Head (Below 32 cm) 32 cm to 36 cm 0.456 0.128 -2.800 0.005 [0.263; 0.789]

Above 36 cm 0.290 0.219 -1.640 0.102 [0.066; 1.278]

Height (Below 46 cm) 46 cm to 54 cm 0.894 0.276 -0.360 0.716 [0.488; 1.637]

Above 54 cm 1.670 1.264 0.680 0.498 [0.379; 7.361]
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Table 4.2: Unadjusted WLWM for the infant mortality at KUTH from 01-January-2016 to

31-December-2016 with Efron method of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err. z P > z 95% Conf. Int.

Age (Under 20 years old) 20 to 34 years old 0.230 0.083 -4.080 p < 0.001 [0.114; 0.466]

35 years old and above 0.324 0.129 -2.840 0.005 [0.149; 0.706]

Residence (Rural) Urban 0.831 0.137 -1.120 0.261 [0.602; 1.147]

Antecedents (Not 1st newborn) 1st newborn 0.756 0.149 -1.420 0.156 [0.513; 1.113]

Abortion (Not aborted) Aborted once 1.393 0.396 1.170 0.244 [0.798; 2.430]

Aborted more than once 0.452 0.154 -2.340 0.020 [0.232; 0.880]

Childbirth (Ventouse) Natural 0.736 0.408 -0.550 0.580 [0.249; 2.179]

Surgery 0.921 0.499 -0.150 0.880 [0.319; 2.661]

Gender (Female) Male 1.823 0.312 3.520 p < 0.001 [1.304; 2.549]

Number (Singleton) Multiple 0.324 0.106 -3.430 0.001 [0.170; 0.617]

APGAR (Below 4/10) 4/10 to 6/10 0.214 0.065 -5.090 p < 0.001 [0.118; 0.387]

7/10 and above 0.070 0.020 -9.520 p < 0.001 [0.041; 0.121]

Weight (Under 2500 g) 2500 g to 4500 g 0.231 0.063 -5.340 p < 0.001 [0.135; 0.395]

Above 4500 g 0.412 0.269 -1.360 0.174 [0.115; 1.479]

Head (Below 32 cm) 32 cm to 36 cm 0.422 0.119 -3.060 0.002 [0.243; 0.734]

Above 36 cm 0.246 0.187 -1.840 0.065 [0.055; 1.093]

Height (Below 46 cm) 46 cm to 54 cm 0.917 0.285 -0.280 0.781 [0.499; 1.687]

Above 54 cm 1.692 1.283 0.690 0.488 [0.383; 7.476]

Table 4.3: Unadjusted WLWM for the infant mortality at KUTH from 01-January-2016 to

31-December-2016 with Cox method of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err. z P > z 95% Conf. Int.

Age (Under 20 years old) 20 to 34 years old 0.193 0.085 -3.730 p < 0.001 [0.081; 0.458]

35 years old and above 0.267 0.128 -2.760 0.006 [0.104; 0.682]

Residence (Rural) Urban 0.766 0.150 -1.360 0.175 [0.521; 1.126]

Antecedents (Not 1st newborn) 1st newborn 0.763 0.185 -1.120 0.264 [0.475; 1.226]

Abortion (Not aborted) Aborted once 1.404 0.453 1.050 0.293 [0.746; 2.643]

Aborted more than once 0.378 0.152 -2.420 0.015 [0.172; 0.830]

Childbirth (Ventouse) Natural 0.732 0.481 -0.470 0.635 [0.202; 2.653]

Surgery 1.016 0.654 0.030 0.980 [0.288; 3.590]

Gender (Female) Male 1.991 0.405 3.390 0.001 [1.336; 2.966]

Number (Singleton) Multiple 0.218 0.111 -3.000 0.003 [0.080; 0.589]

APGAR (Below 4/10) 4/10 to 6/10 0.080 0.042 -4.810 p < 0.001 [0.029; 0.224]

7/10 and above 0.021 0.011 -7.840 p < 0.001 [0.008; 0.056]

Weight (Under 2500 g) 2500 g to 4500 g 0.236 0.070 -4.850 p < 0.001 [0.131; 0.423]

Above 4500 g 0.378 0.257 -1.430 0.153 [0.100; 1.436]

Head (Below 32 cm) 32 cm to 36 cm 0.391 0.119 -3.100 0.002 [0.216; 0.708]

Above 36 cm 0.212 0.171 -1.920 0.055 [0.043; 1.033]

Height (Below 46 cm) 46 cm to 54 cm 0.828 0.283 -0.550 0.582 [0.423; 1.620]

Above 54 cm 1.706 1.351 0.670 0.500 [0.361; 8.060]
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Tables 4.1, 4.2 and 4.3 present the estimates of the hazard ratios of the unadjusted WLWMwith

ties handling by Breslow, Efron and Cox approaches, respectively for robustness check. The

results in the latter two approaches were not far from that of the default method (Breslow). In

all the three approaches, significant differences in levels were observed for the same covariates

namely, the age, abortion, gender, number, APGAR, weight and head where p-values are less

or equal to 0.05.

The adjusted WLWM with Breslow, Efron and Cox methods of ties handling are summarised

in Table 4.4 and in Appendix A (Table 2 and Table 3) respectively. The results for different

approaches are close.

Table 4.4: Adjusted WLWM for the infant mortality at KUTH from 01-January-2016 to 31-

December-2016 with Breslow method of ties handling.

Covariate (reference) Level Hazard ratio Std. Err. z P>z 95% Conf. Int.

Age (Under 20 years old) 20 to 34 years old 0.307 0.107 3.380 0.001 [0.155; 0.609 ]

35 years old and above 0.472 0.179 -1.980 0.047 [0.225; 0.992]

Abortion (Not aborted) Aborted once 1.482 0.406 1.430 0.152 [0.866; 2.537]

Aborted more than once 0.541 0.175 -1.900 0.057 [0.287; 1.019]

Gender (Female) Male 1.672 0.280 3.070 0.002 [1.204; 2.321]

Number (Singleton) Multiple 0.401 0.128 -2.860 0.004 [0.214; 0.750]

APGAR (Below 4/10) 4/10 to 6/10 0.414 0.119 -3.080 0.002 [0.236; 0.726]

7/10 and above 0.144 0.038 -7.350 p < 0.001 [0.086; 0.242]

Weight (Under 2500 g) 2500 g to 4500 g 0.238 0.060 -5.650 p < 0.001 [0.144; 0.391]

Above 4500 g 0.447 0.284 -1.270 0.205 [0.129; 1.550]

Head (Below 32 cm) 32 cm to 36 cm 0.420 0.100 -3.660 0.000 [0.264; 0.669]

Above 36 cm 0.284 0.210 -1.700 0.089 [0.067; 1.211]

The adjusted model by default (Breslow) suggests that the risk of death or attracting a chronic

disease or complication of babies whose mothers are from 20 years and 34 years old is 0.307

times that of babies whose mothers are under 20 years old (95% CI:0.155−0.609, p = 0.001).
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The risk of death or attracting a chronic disease or complication of babies whose mothers

aborted more than once previously is 0.541 times that of babies whose mothers did not abort

previously (95% CI:0.287 − 1.019, p = 0.057). The risk of death or attracting a chronic

disease or complication of babies whose mothers are 35 years old and above is 0.472 times

that of babies whose mothers are under 20 years old (95% CI:0.225− 0.992, p = 0.047). The

risk of death or attracting a chronic disease or complication for male babies is 1.672 times

that of female babies (95% CI:1.204 − 2.321, p = 0.002). The risk of death or attracting a

chronic disease or complication of multiple babies is 0.401 times that of singleton babies (95%

CI:0.214−0.750, p = 0.004). The risk of death or attracting a chronic disease or complication

for babies whose APGAR range from 4/10 to 6/10 is 0.414 times that of babies whose APGAR

is below 4/10 (95% CI:0.236 − 0.726, p = 0.002). The risk of death or attracting a chronic

disease or complication for babies whose APGAR range from 7/10 to 10/10 is 0.144 times

that of babies whose APGAR is below 4/10 (95% CI:0.086− 0.242, p < 0.001). The risk of

death or attracting a chronic disease or complication for babies whose weight range from 2500

g to 4500 g is 0.238 times that of babies whose weight is below 2500 g (95% CI:0.144−0.391,

p < 0.001). The risk of death or attracting a chronic disease or complication for babies whose

circumference of the head range from 32 cm to 36 cm is 0.420 times that of babies whose

circumference of the head is below 32 cm (95% CI:0.264 − 0.669, p < 0.001). The risk of

death or attracting a chronic disease or complication for babies whose circumference of the

head is above 36 cm is 0.284 times that of babies whose circumference of the head is below

32 cm (95% CI:0.067− 1.211, p = 0.067).
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4.6 Conclusion

This chapter reviewed different multiplicative multiple events regression models of the time to

event survival data, namely, the mean function regression model, the rate function regression

model and the intensity process regression model. The intensity process regression model

incorporates the popular models such as Andersen- Gill Model (AGM), Wei, Lin and Weisfeld

Model (WLWM) and Prentice, Williams and Peterson Model (PWPM) following on the layout

of the dataset. It was found that data collected at Kigali University Teaching Hospital for

2117 newborns during 366 days of the year 2016 follows the conditions of the WLWM.

The results of the unadjusted WLWM by Breslow, Efron and Cox approaches of ties handling

revealed significance on the age of mothers, information on previous abortion, the gender of

the newborn, the number of newborns at a time, the APGAR, the weight of a newborn and

the circumference of the head of a newborn. The results of the adjusted WLWM by Breslow,

Efron and Cox approaches are close. The default approach (Breslow) indicated that the risk

of death or attracting a chronic disease or clinical complication of infant was higher in male

babies as compared to female babies; it was lower for babies whose mothers are from 20 to 34

years old and above 34 years old as compared to babies whose mothers are under 20 years old.

Babies whose APGAR score falls in intervals 4/10 to 7/10 and 7/0 to 10/10 were found to

have a better survival outcome than those born with APGAR score less than 4/10. Babies with

normal weight and overweight, were found to have a lower risk as compared to underweight

babies. Babies with a normal circumference of the head and those with a large circumference

of the head were found to survive better than babies with a relatively small head.

This chapter extends single event models presented in Chapter 2 to multiple events models.

The following chapter is devoted on using nonparametric re-sampling methods for measuring
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consistency of the results of the CPHM developed in Chapter 2. This extension of the CPHM is

limited on single event analysis while the extension of multiple events by applying re-sampling

techniques follows from the next chapter.



CHAPTER 5

RE-SAMPLED COX PROPORTIONAL HAZARDS
REGRESSION MODELS AND LENGTHS OF

CONFIDENCE INTERVALS

5.1 Introduction

The re-sampling in Cox Proportional Hazards Model (CPHM) consists of conducting the

CPHM on a given number of samples obtained after applying a relevant technique of re-

sampling. The popular nonparametric techniques of re-sampling include a bootstrap method

which is based on random sampling with replacement (Efron and Tibshirani, 1994), jackknife

method which consists of making samples by leaving out one observation a time (Efron and

Tibshirani, 1994), and jackknife after bootstrap (Efron, 1992). The interest in this study will

be on Bootstrap Cox Proportional Hazards Model (BCPHM) and Jackknife Cox Proportional

Hazards Model (JCPHM).

Hamada (1995) points out the aim of using the re-sampling technique in CPHM. Firstly the

re-sampling allows the assessment of the stability of the CPHM. The instability may be caused

by the correlation of the covariates. Secondly, the re-sampling may be used when the sample

size is relatively small. Model adequacy may be satisfied by selecting variables on which the

model is stable rather than testing the proportionality of variables.

67
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BCPHM and JCPHM have been extensively applied to different studies. In Utzet and Sánchez

(1992), bootstrap is applied for estimating the survival function and the hazard rate with

respective standard errors. Bělašková et al. (2013) published a clinical study which uses

BCPHM with consideration of right censoring and delayed entries. The study of Bělašková

et al. adapts BCPHM due to the small sample size (N=61). Xu et al. (2014) conducted

the BCPHM with consideration of a change-point along the study time with right censored

survival data. The study proved consistency of the model by making a comparison with the

model based on data simulation. The JCPHM was adopted by Xiao et al. (2012) together

with a random weighting which consists of approximating the distribution of the maximum

partial likelihood estimates in the CPHM (Wang et al., 2009; Zheng, 1987; Zheng and Tu,

1988). Several other manuscripts discuss the use of the re-sampled survival analysis such

as James (1997), Quan and Tsai (1992), Sauerbrei and Schumacher (1992), Akritas (1986),

Efron (1981), Hjort (1985) and Kim (1990).

In this chapter, due to the computing power of STATA-15 used in this thesis, the BCPHM

with 1000 bootstrap replicates and the JCPHM were used and compared to the CPHM in

modelling the risk of infant death at the Kigali University Teaching Hospital (KUTH) from

01-January-2016 to 31-December-2016 (Gatabazi et al., 2019a).

The present chapter also discusses the lengths of the confidence intervals in both CPHM,

BCPHM and JCPHM. The length of a confidence interval is a function of the confidence

level and the standard error and increases with the confidence level. In statistics, a narrow

confidence interval reflects the accuracy in estimating a statistic of interest. Consequently,

assuming that the confidence level is fixed, the minimum length of a confidence interval

correspond to the minimum standard error (Gatabazi and Kabera, 2015). Many studies discuss

different properties of a confidence interval and its length for a statistic of interest such as
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for example Burr (1994) who discusses the confidence intervals for a Cox model in a re-

sampled framework by considering three statistics namely, the hazard, the survival and the

median survival functions; and Kivaranovich and Leeb (2019) who discuss the lengths of the

confidence intervals in a post-model-selection with polyhedral constraints.

This chapter discusses the reason of high variability of the standard errors for specific covariates

in re-sampled models as compared to the CPHM and generalises significance by means of

stability of models.

The chapter comprises four sections including the introduction presented in Section 5.1. Sec-

tion 5.2 presents the mathematical formulation of bootstrap and jackknife and their application

in CPHM. Section 5.3 presents applications of re-sampled models to the infant mortality data

and discusses the length of the confidence intervals in the Cox model.Section 5.4 gives a

conclusion.



Section 5.2. Nonparametric re-sampling techniques Page 70

5.2 Nonparametric re-sampling techniques

5.2.1 Bootstrap method

Assume a sample

x = x1, x2 . . . , xn,

where xi,i∈[1,n] are independent and identically distributed with distribution Fθ with θ, the

statistical parameter of interest. Consider the distribution function FRn of a random variable

Rn(x, Fθ). A bootstrap method as described by Efron and Tibshirani (1994), consists of

generating

x? = x?1, x?2 . . . , x?B,

where x?ii∈[1,B] are random samples of size n drawn with replacement from the sample x. The

variables of x?ii∈[1,B] are independent and identically distributed with distribution F̂θ,n given x;

F̂θ,n is an estimator of Fθ from x and B is a number of bootstrap samples also (replications).

5.2.2 Bootstrap standard error

Assume B bootstrap samples x?1, x?2 . . . , x?B. Efron and Tibshirani (1994) propose the esti-

mated standard error of the bootstrap statistic of interest θ̂ as

ŝeB =

√√√√ 1

B − 1

B∑
b=1

[
θ̂?(b)− 1

B

B∑
b=1

θ̂?(b)

]2

(5.1)

where θ̂?(b) is an estimate of the statistic of interest from the bth bootstrap sample, b =

1, 2, . . . .B.
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5.2.3 Bootstrap Cox Proportional Hazards Model (BCPHM)

Assume a CPHM, h(t|xi), over the p fixed covariates with values xi = (xi1, xi2, . . . , xip) and

the hazard function h0(t) when values of all covariates are zeros, that is

h(t|xi) = h0(t) exp(βββ′xi) (5.2)

(Collet, 2003), where βββ = (β1, β2, . . . , βp)
′ is a p-dimensional vector of model parameters.

Consider three approaches of approximating the partial likelihood in presence of tied events

defined in Section 3.4.1 as Breslow, Efron, and Cox approaches.

The inference of model (5.2) based on bootstrap consists of applying model (5.2) to each

of the B bootstrap samples x?i, ∀i ∈ [1, B] of covariates xj, ∀j ∈ [1, p]. Bootstrap model

parameter estimation uses either Breslow, Efron or Cox approach. The bootstrap standard

error is obtained by using Equation (5.1).

5.2.4 Jackknife method

Assume a sample

x = x1, x2 . . . , xn,

where xj,j∈[1,n] are the values of the covariate x. Let θ be a statistic of interest. The jackknife

samples consist of leaving out one observation at time, these are n samples

x?i = (x1, x2, . . . , xi−1, xi+1, . . . , xn) ∀i ∈ [1, n] (Efron and Tibshirani, 1994). The jackknife
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standard error estimate as propose Efron and Tibshirani (1994), is

ŝejack =

√√√√n− 1

n

n∑
i=1

[
θ̂?(i)− 1

n

n∑
i=1

θ̂?(i)

]2

(5.3)

where θ?(i), i ∈ [1, n] is a statistic of interest for the ith jackknife sample.

5.2.5 Jackknife Cox Proportional Hazards Model (JCPHM)

Model (5.2) based on jackknife was made by applying it to each of the n jackknife samples x?i,

∀i ∈ [1, n] of covariates xj, ∀j ∈ [1, p]. Either Breslow, Efron or Cox approach can be used

for estimating the jackknife model parameters, with standard error given by Equation (5.3).

5.3 Application

5.3.1 Re-sampled Cox models

Consider the data described in Table 2.1 regarding the survival times of 2117 newborns from

the Kigali University Teaching Hospital (KUTH). The aim of this study is to apply the CPHM

on bootstrap and jackknife samples of covariates. The relative risk in each covariate and

related standard error was estimated and compared to those obtained by the usual CPHM.

The significance in difference of levels of covariates was also explored in both CPHM and

re-sampled CPHM.

STATA-15 displays the results in three tables: Table 5.1 presents the estimates of unadjusted
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CPHM, BCPHM, JCPHM and corresponding adjusted models, by using Breslow estimation

method. Both unadjusted and adjusted CPHM, BCPHM and JCPHM by Efron and Cox

estimation are also presented in Tables 5.2 and 5.3. The results displayed by the JCPHM are

relatively close to that of the CPHM (Table 5.1).

Standard errors in JCPHM and CPHM for all covariates are everywhere similar except for the

upper levels of covariates weight, head and height where a standard error in JCPHM is more

than 40 times that of CPHM. The critical difference in standard errors is also observed in

BCPHM for the upper levels of covariates weight, head and height, for all levels of covariate

childbirth and for the covariate number where a standard error is relatively higher in BCPHM.

Also BCPHM does not take age and number as significant covariates unlike the fact of

JCPHM and CPHM where these covariates are included in significant covariates. Following

the arguments of Parzen and Lipsitz (1999), the χ2 test statistics suggest a higher performance

of the JCPHM as compared to the CPHM and BCPHM since the value of the χ2 is relatively

everywhere lower for the JCPHM.

The results by different approaches of ties handling are close as expected. The analysis is

then made on the STATA-15 default method as proposed by Breslow (1974) . The similarity

observed between the results of JCPHM and that of CPHM is strong as compared to that of

BCPHM and CPHM. The similarity between CPHM and JCPHM suggests that the CPHM

may be stable.

The overall analysis confirms the significance difference of levels of covariates age, gender,

number, APGAR, weight and head. The results show a relatively higher risk of babies from

under 20 years old mothers as compared to the older mothers, that is 4.651 times that of

babies whose mothers’ ages range from 20 to 34 years old; and 3.247 times that of babies

whose mothers are 35 years old and above. The risk of male babies is 1.942 times that of
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female babies. The risk of multiple babies is 0.264 times that of singleton babies. Babies

with APGAR below 4/10 are at a relatively higher risk, that is 2.433 times that of babies with

APGAR ranging from 4/10 to 6/10 and 16.949 times that of babies whose APGAR range from

7/10 to 10/10. The risk of babies whose weight is below 2500g is 5.525 times that of babies

whose weight range from 2500g to 4500g and 2.688 times that of babies with weight above

4500g. The risk for babies born with the circumference of the head below 32cm is 4.808 times

that of newborns whose circumference of head range from 32cm to 36cm; and 9.524 times

that of newborns whose circumference of the head is above 36cm.

The results of BCPHM are also close to that of JCPHM and CPHM for all significant covariates

but the model shows relatively high standard errors for non-significant levels of covariates. The

critical discrepancy between standard errors after re-sampling for some covariates suggests

instability of the CPHM at these specific covariates and this emphasizes their non-significance

in the CPHM.

The stability of the adjusted CPHM is justified by the non-critical difference between the

adjusted re-sampled models.



Table 5.1: Breslow estimation

CPHM BCPHM JCPHM

Covariate (reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20 years old) 20 to 34 years old 0.172 0.086 -3.540 p < 0.001 [0.065; 0.456] 0.172 0.254 -1.190 0.234 [0.009; 3.124] 0.172 0.089 -3.400 0.001 [0.062; 0.475]

35 years old and above 0.216 0.117 -2.840 0.005 [0.075; 0.623] 0.216 0.323 -1.020 0.306 [0.012; 4.058] 0.216 0.124 -2.660 0.008 [0.070; 0.667]

Residence (Rural) Urban 1.014 0.240 0.060 0.954 [0.637; 1.614] 1.014 0.277 0.050 0.960 [0.594; 1.732] 1.014 0.285 0.050 0.961 [0.585; 1.758]

Antecedents (Not 1st newborn) 1st newborn 0.778 0.221 -0.880 0.377 [0.446; 1.358] 0.778 0.223 -0.880 0.381 [0.444; 1.364] 0.778 0.218 -0.900 0.370 [0.449; 1.347]

Abortion (Not aborted) Aborted once 1.646 0.648 1.270 0.206 [0.761; 3.562] 1.646 0.695 1.180 0.238 [0.720; 3.763] 1.646 0.664 1.230 0.217 [0.746; 3.633]

Aborted more than once 1.111 0.503 0.230 0.817 [0.457; 2.700] 1.111 2.084 0.060 0.955 [0.028; 43.927] 1.111 0.556 0.210 0.834 [0.416; 2.966]

Childbirth (Ventouse) Natural 0.593 0.449 -0.690 0.490 [0.135; 2.612] 0.593 3.846 -0.080 0.936 [0.000; 1.963× 105] 0.593 0.469 -0.660 0.509 [0.126; 2.797]

Surgery 0.777 0.580 -0.340 0.736 [0.180; 3.358] 0.777 5.021 -0.040 0.969 [0.000; 2.443× 105] 0.777 0.611 -0.320 0.749 [0.166; 3.630]

Gender (Female) Male 1.964 0.472 2.810 0.005 [1.227; 3.146] 1.964 0.480 2.760 0.006 [1.217; 3.170] 1.964 0.504 2.630 0.009 [1.188; 3.248]

Number (Singleton) Multiple 0.306 0.136 -2.660 0.008 [0.128; 0.732] 0.306 0.730 -0.500 0.620 [0.003; 32.826] 0.306 0.136 -2.670 0.008 [0.128; 0.729]

APGAR (Below 4/10) 4/10 to 6/10 0.335 0.133 -2.760 0.006 [0.154; 0.729] 0.335 0.160 -2.290 0.022 [0.131; 0.856] 0.335 0.157 -2.340 0.020 [0.134; 0.839]

7/10 and above 0.049 0.019 -7.860 p < 0.001 [0.023; 0.103] 0.049 0.020 -7.300 p < 0.001 [0.022; 0.110] 0.049 0.020 -7.380 p < 0.001 [0.022; 0.109]

Weight (Under 2500 g) 2500 g to 4500 g 0.227 0.089 -3.790 p < 0.001 [0.105; 0.489] 0.227 0.102 -3.300 0.001 [0.094; 0.548] 0.227 0.105 -3.210 0.001 [0.091; 0.561]

Above 4500 g 0.392 0.421 -0.870 0.383 [0.048; 3.213] 0.392 8.103 -0.050 0.964 [0.000; 1.600× 1017] 0.392 17.310 -0.020 0.983 [0.000; 1.740× 1037]

Head (Below 32 cm) 32 cm to 36 cm 0.288 0.111 -3.230 0.001 [0.136; 0.613] 0.288 0.121 -2.960 0.003 [0.127; 0.658] 0.288 0.116 -3.090 0.002 [0.131; 0.635]

Above 36 cm 0.122 0.128 -2.010 0.045 [0.016; 0.951] 0.122 2.449 -0.100 0.917 [0.000; 1.670× 1016] 0.122 5.426 -0.050 0.962 [0.000; 1.220× 1037]

Height (Below 36 cm) 46 cm to 54 cm 0.567 0.235 -1.370 0.171 [0.251; 1.278] 0.567 0.240 -1.340 0.180 [0.247; 1.300] 0.567 0.247 -1.300 0.193 [0.241; 1.334]

Above 54 cm 1.020 1.100 0.020 0.986 [0.123; 8.444] 1.020 21.073 0.000 0.999 [0.000; 3.980× 1017] 1.020 44.687 0.000 1.000 [0.000; 2.150× 1037]

Adjusted CPHM Adjusted BCPHM Adjusted JCPHM

Age (Under 20 years old) 20 to 34 years old 0.215 0.105 -3.150 0.002 [0.083; 0.559] - - - - - 0.215 0.104 -3.190 0.001 [0.084; 0.554]

35 years old and above 0.308 0.159 -2.280 0.023 [0.112; 0.848] - - - - - 0.308 0.160 -2.270 0.023 [0.111; 0.852]

Gender (Female) Male 1.942 0.459 2.810 0.005 [1.222; 3.085] 1.562 0.350 1.990 0.046 [1.007; 2.424] 1.942 0.476 2.700 0.007 [1.200; 3.142]

Number (Singleton) Multiple 0.264 0.115 -3.060 0.002 [0.112; 0.619] - - - - - 0.264 0.117 -3.010 0.003 [0.111; 0.629]

APGAR (Below 4/10) 4/10 to 6/10 0.411 0.154 -2.380 0.017 [0.198; 0.856] 0.695 0.288 -0.880 0.379 [0.308; 1.565] 0.411 0.185 -1.970 0.049 [0.170; 0.995]

7/10 and above 0.059 0.021 -7.850 p < 0.001 [0.029; 0.119] 0.100 0.039 -5.880 p < 0.001 [0.046; 0.215] 0.059 0.024 -6.810 p < 0.001 [0.026; 0.133]

Weight (Under 2500 g) 2500 g to 4500 g 0.181 0.064 -4.860 p < 0.001 [0.091; 0.361] 0.200 0.084 -3.840 p < 0.001 [0.088; 0.455] 0.181 0.071 -4.390 p < 0.001 [0.084; 0.389]

Above 4500 g 0.372 0.384 -0.960 0.338 [0.049; 2.809] 0.438 8.985 -0.040 0.968 [0.000; 1.280× 1017] 0.372 16.296 -0.020 0.982 [0.000; 6.880× 1036]

Head (Below 32 cm) 32 cm to 36 cm 0.208 0.068 -4.830 p < 0.001 [0.110; 0.394] 0.216 0.088 -3.760 p < 0.001 [0.097; 0.480] 0.208 0.080 -4.060 p < 0.001 [0.098; 0.444]

Above 36 cm 0.105 0.109 -2.180 0.029 [0.014; 0.797] 0.109 2.234 -0.110 0.914 [0.000; 2.600× 1016] 0.105 4.680 -0.050 0.960 [0.000; 9.160× 1036]

χ2 = 300.360, p < 0.001 χ2 = 296.290, p < 0.001 χ2 = 32.310, p < 0.001



Table 5.2: Efron estimation

CPHM BCPHM JCPHM

Covariate (reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20 years old) 20 to 34 years old 0.160 0.079 -3.680 p < 0.001 [0.060; 0.424] 0.160 0.323 -0.910 0.364 [0.003; 8.374] 0.160 0.087 -3.370 0.001 [0.055; 0.464]

35 years old and above 0.199 0.107 -2.990 0.003 [0.069; 0.573] 0.199 0.406 -0.790 0.429 [0.004; 10.896] 0.199 0.120 -2.680 0.007 [0.061; 0.648]

Residence (Rural) Urban 1.029 0.246 0.120 0.907 [0.643; 1.645] 1.029 0.307 0.090 0.925 [0.573; 1.847] 1.029 0.314 0.090 0.927 [0.565; 1.871]

Antecedents (Not 1st newborn) 1st newborn 0.723 0.212 -1.110 0.268 [0.407; 1.283] 0.723 0.227 -1.030 0.301 [0.391; 1.337] 0.723 0.233 -1.010 0.314 [0.384; 1.359]

Abortion (Not aborted) Aborted once 1.588 0.628 1.170 0.242 [0.732; 3.448] 1.588 0.696 1.060 0.291 [0.673; 3.749] 1.588 0.659 1.110 0.265 [0.704; 3.585]

Aborted more than once 1.147 0.519 0.300 0.762 [0.473; 2.782] 1.147 4.651 0.030 0.973 [0.000; 3.251× 103] 1.147 0.587 0.270 0.789 [0.420; 3.127]

Childbirth (Ventouse) Natural 0.532 0.400 -0.840 0.401 [0.122; 2.319] 0.532 3.646 -0.090 0.927 [0.000; 3.605× 105] 0.532 0.448 -0.750 0.454 [0.102; 2.772]

Surgery 0.695 0.515 -0.490 0.624 [0.163; 2.969] 0.695 4.766 -0.050 0.958 [0.000; 4.743× 105] 0.695 0.579 -0.440 0.663 [0.136; 3.558]

Gender (Female) Male 2.061 0.500 2.980 0.003 [1.282; 3.315] 2.061 0.556 2.680 0.007 [1.215; 3.496] 2.061 0.592 2.520 0.012 [1.173; 3.621]

Number (Singleton) Multiple 0.243 0.113 -3.040 0.002 [0.098; 0.606] 0.243 0.135 -2.540 0.011 [0.082; 0.724] 0.243 0.141 -2.440 0.015 [0.078; 0.759]

APGAR (Below 4/10) 4/10 to 6/10 0.207 0.084 -3.880 p < 0.001 [0.094; 0.460] 0.207 0.116 -2.820 0.005 [0.070; 0.618] 0.207 0.120 -2.710 0.007 [0.066; 0.648]

7/10 and above 0.030 0.012 -8.960 p < 0.001 [0.014; 0.065] 0.030 0.015 -7.070 p < 0.001 [0.011; 0.080] 0.030 0.016 -6.750 p < 0.001 [0.011; 0.083]

Weight (Under 2500 g) 2500 g to 4500 g 0.222 0.088 -3.800 p < 0.001 [0.102; 0.483] 0.222 0.105 -3.180 0.001 [0.088; 0.562] 0.222 0.107 -3.110 0.002 [0.086; 0.574]

Above 4500 g 0.389 0.426 -0.860 0.389 [0.045; 3.338] 0.389 8.081 -0.050 0.964 [0.000; 1.950× 1017] 0.389 17.369 -0.020 0.983 [0.000; 4.530× 1037]

Head (Below 32 cm) 32 cm to 36 cm 0.284 0.110 -3.250 0.001 [0.133; 0.607] 0.284 0.115 -3.100 0.002 [0.129; 0.629] 0.284 0.119 -3.000 0.003 [0.125; 0.647]

Above 36 cm 0.110 0.117 -2.070 0.038 [0.014; 0.886] 0.110 2.350 -0.100 0.918 [0.000; 1.590× 1017] 0.110 3.679 -0.070 0.947 [0.000; 3.080× 1027]

Height (Below 36 cm) 46 cm to 54 cm 0.569 0.238 -1.350 0.177 [0.251; 1.291] 0.569 0.252 -1.270 0.202 [0.239; 1.354] 0.569 0.273 -1.180 0.240 [0.222; 1.457]

Above 54 cm 1.010 1.094 0.010 0.993 [0.121; 8.431] 1.010 21.269 0.000 1.000 [0.000; 1.8.460× 1017] 1.010 44.776 0.000 1.000 [0.000; 5.730× 1037]

Adjusted CPHM Adjusted BCPHM Adjusted JCPHM

Age (Under 20 years old) 20 to 34 years old 0.201 0.098 -3.280 0.001 [0.077; 0.524] - - - - - 0.201 0.102 -3.170 0.002 [0.075; 0.543]

35 years old and above 0.293 0.152 -2.360 0.018 [0.106; 0.811] - - - - - 0.293 0.160 -2.250 0.025 [0.101; 0.856]

Gender (Female) Male 2.071 0.495 3.050 0.002 [1.297; 3.308] 1.562 0.400 1.740 0.081 [0.946; 2.579] 2.071 0.587 2.570 0.010 [1.188; 3.611]

Number (Singleton) Multiple 0.205 0.092 -3.520 p < 0.001 [0.085; 0.495] - - - - - 0.205 0.118 -2.740 0.006 [0.066; 0.637]

APGAR (Below 4/10) 4/10 to 6/10 0.273 0.103 -3.430 0.001 [0.130; 0.573] 0.545 0.273 -1.210 0.226 [0.204; 1.457] 0.273 0.169 -2.100 0.036 [0.081; 0.919]

7/10 and above 0.038 0.014 -8.980 p < 0.001 [0.019; 0.078] 0.077 0.036 -5.440 p < 0.001 [0.030; 0.193] 0.038 0.023 -5.530 p < 0.001 [0.012; 0.122]

Weight (Under 2500 g) 2500 g to 4500 g 0.179 0.063 -4.890 p < 0.001 [0.090; 0.356] 0.201 0.083 -3.880 0.000 [0.089; 0.452] 0.179 0.071 -4.360 p < 0.001 [0.082; 0.388]

Above 4500 g 0.379 0.396 -0.930 0.353 [0.049; 2.938] 0.477 9.872 -0.040 0.971 [0.000; 2.040× 1017] 0.379 16.849 -0.020 0.983 [0.000; 2.970× 1037]

Head (Below 32 cm) 32 cm to 36 cm 0.205 0.067 -4.860 p < 0.001 [0.108; 0.388] 0.215 0.090 -3.680 p < 0.001 [0.095; 0.487] 0.205 0.081 -4.030 p < 0.001 [0.095; 0.443]

Above 36 cm 0.095 0.100 -2.250 0.025 [0.012; 0.740] 0.105 2.180 -0.110 0.914 [0.000; 5.960× 1016] 0.095 4.226 -0.050 0.958 [0.000; 5.340× 1036]

χ2 = 316.160, p < 0.001 χ2 = 297.200, p < 0.001 χ2 = 29.760, p < 0.001



Table 5.3: Cox estimation

CPHM BCPHM JCPHM

Covariate (reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20 years old) 20 to 34 years old 0.140 0.075 -3.690 p < 0.001 [0.050; 0.398] 0.140 0.257 -1.070 0.283 [0.004; 5.064] 0.140 0.084 -3.260 0.001 [0.043; 0.457]

35 years old and above 0.171 0.098 -3.090 0.002 [0.056; 0.523] 0.171 0.313 -0.960 0.335 [0.005; 6.216] 0.171 0.111 -2.710 0.007 [0.048; 0.613]

Residence (Rural) Urban 1.003 0.258 0.010 0.990 [0.606; 1.660] 1.003 0.347 0.010 0.993 [0.510; 1.974] 1.003 0.342 0.010 0.993 [0.514; 1.956]

Antecedents (Not 1st newborn) 1st newborn 0.726 0.231 -1.010 0.313 [0.389; 1.353] 0.726 0.280 -0.830 0.406 [0.341; 1.545] 0.726 0.268 -0.870 0.386 [0.351; 1.498]

Abortion (Not aborted) Aborted once 1.671 0.686 1.250 0.211 [0.748; 3.735] 1.671 0.763 1.120 0.261 [0.683; 4.091] 1.671 0.722 1.190 0.234 [0.717; 3.897]

Aborted more than once 1.388 0.697 0.650 0.514 [0.519; 3.712] 1.388 0.756 0.600 0.548 [0.477; 4.038] 1.388 0.849 0.540 0.593 [0.418; 4.609]

Childbirth (Ventouse) Natural 0.533 0.422 -0.790 0.427 [0.113; 2.517] 0.533 3.473 -0.100 0.923 [0.000; 1.883× 105] 0.533 0.449 -0.750 0.456 [0.102; 2.786]

Surgery 0.759 0.590 -0.360 0.722 [0.166; 3.479] 0.759 4.946 -0.040 0.966 [0.000; 2.683× 105] 0.759 0.628 -0.330 0.739 [0.150; 3.850]

Gender (Female) Male 2.195 0.570 3.030 0.002 [1.319; 3.652] 2.195 0.672 2.570 0.010 [1.204; 3.999] 2.195 0.695 2.480 0.013 [1.179; 4.086]

Number (Singleton) Multiple 0.203 0.110 -2.950 0.003 [0.071; 0.585] 0.203 0.693 -0.470 0.640 [0.000; 162.000] 0.203 0.196 -1.650 0.099 [0.031; 1.353]

APGAR (Below 4/10) 4/10 to 6/10 0.167 0.085 -3.500 p < 0.001 [0.061; 0.455] 0.167 0.602 -0.500 0.620 [0.000; 197.300] 0.167 0.180 -1.660 0.098 [0.020; 1.392]

7/10 and above 0.022 0.010 -8.140 p < 0.001 [0.009; 0.055] 0.022 0.078 -1.070 0.284 [0.000; 24.091] 0.022 0.021 -3.880 p < 0.001 [0.003; 0.151]

Weight (Under 2500 g) 2500 g to 4500 g 0.221 0.088 -3.790 p < 0.001 [0.101; 0.482] 0.221 0.105 -3.180 0.001 [0.087; 0.560] 0.221 0.105 -3.170 0.002 [0.087; 0.562]

Above 4500 g 0.324 0.362 -1.010 0.313 [0.036; 2.892] 0.324 6.266 -0.060 0.954 [0.000; 9.150× 1015] 0.324 10.526 -0.030 0.972 [0.000; 1.450× 1027]

Head (Below 32 cm) 32 cm to 36 cm 0.285 0.110 -3.240 0.001 [0.133; 0.609] 0.285 0.119 -3.020 0.003 [0.126; 0.644] 0.285 0.117 -3.050 0.002 [0.127; 0.639]

Above 36 cm 0.106 0.114 -2.090 0.036 [0.013; 0.866] 0.106 2.091 -0.110 0.909 [0.000; 5.660× 1015] 0.106 3.780 -0.060 0.950 [0.000; 1.910× 1029]

Height (Below 36 cm) 46 cm to 54 cm 0.539 0.226 -1.480 0.140 [0.237; 1.225] 0.539 0.236 -1.410 0.158 [0.229; 1.270] 0.539 0.252 -1.320 0.186 [0.216; 1.346]

Above 54 cm 1.037 1.120 0.030 0.973 [0.125; 8.613] 1.037 20.074 0.000 0.998 [0.000; 3.080× 1016] 1.037 41.221 0.000 0.999 [0.000; 7.290× 1033]

Adjusted CPHM Adjusted BCPHM Adjusted JCPHM

Age (Under 20 years old) 20 to 34 years old 0.173 0.092 -3.310 0.001 [0.061; 0.488] - - - - - 0.181 0.096 -3.230 0.001 [0.064; 0.511]

35 years old and above 0.250 0.139 -2.490 0.013 [0.084; 0.745] - - - - - 0.248 0.139 -2.490 0.013 [0.083; 0.744]

Gender (Female) Male 2.150 0.550 2.990 0.003 [1.302; 3.549] 2.031 0.473 3.050 0.002 [1.287; 3.205] 1.778 0.506 2.020 0.043 [1.018; 3.106]

Number (Singleton) Multiple 0.176 0.091 -3.350 0.001 [0.064; 0.486] - - - - - - - - - -

APGAR (Below 4/10) 4/10 to 6/10 0.249 0.114 -3.030 0.002 [0.101; 0.612] - - - - - 0.516 0.330 -1.030 0.301 [0.147; 1.809]

7/10 and above 0.030 0.013 -8.220 p < 0.001 [0.013; 0.069] - - - - - 0.060 0.035 -4.820 p < 0.001 [0.019; 0.188]

Weight (Under 2500 g) 2500 g to 4500 g 0.176 0.062 -4.910 p < 0.001 [0.088; 0.352] 0.149 0.053 -5.380 p < 0.001 [0.075; 0.299] 0.209 0.082 -3.990 p < 0.001 [0.097; 0.451]

Above 4500 g 0.325 0.347 -1.050 0.293 [0.040; 2.636] 0.367 6.399 -0.060 0.954 [0.000; 2.450× 1014] 0.425 16.781 -0.020 0.983 [0.000; 1.840× 1033]

Head (Below 32 cm) 32 cm to 36 cm 0.196 0.064 -5.020 p < 0.001 [0.103; 0.370] 0.120 0.038 -6.700 p < 0.001 [0.065; 0.224] 0.198 0.077 -4.180 p < 0.001 [0.093; 0.423]

Above 36 cm 0.090 0.095 -2.290 0.022 [0.011; 0.706] 0.073 1.284 -0.150 0.882 [0.000; 7.170× 1013] 0.098 4.324 -0.050 0.958 [0.000; 3.360× 1036]

χ2 = 316.430, p < 0.001 χ2 = 210.070, p < 0.001 χ2 = 31.380, p < 0.001
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5.3.2 Lengths of the confidence intervals in CPHM, BCPHM and

JCPHM

Table 5.4 presents the Breslow estimates of the adjusted CPHM, BCPHM and JCPHM with

the confidence intervals of the relative hazards in the last column of the table.

The lengths of the confidence intervals of the relative hazards are relatively narrow and approx-

imately the same for all the three models for covariates gender, APGAR and the intermediate

levels of covariates weight and head. The two re-sampled models reveal that the upper levels

of covariates weight and head are not significant as the confidence interval is infinitely wide

due to the observed rapid increase of the standard error of the relative hazards.

The study shows that re-sampling contradicts the significance found at the upper lever of

covariate head in the CPHM, but also re-sampled models strongly confirms non-significance

of the upper level of covariate weight in CPHM.
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Table 5.4: Breslow estimation

CPHM

Covariate (reference) Level HR SE Z PV 95% CI L

Age (Under 20 years old) 20 to 34 years old 0.215 0.105 -3.150 0.002 [0.083; 0.559] 0.476

35 years old and above 0.308 0.159 -2.280 0.023 [0.112; 0.848] 0.736

Gender (Female) Male 1.942 0.459 2.810 0.005 [1.222; 3.085] 1.862

Number (Singleton) Multiple 0.264 0.115 -3.060 0.002 [0.112; 0.619] 0.507

APGAR (Below 4/10) 4/10 to 6/10 0.411 0.154 -2.380 0.017 [0.198; 0.856] 0.658

7/10 and above 0.059 0.021 -7.850 p < 0.01 [0.029; 0.119] 0.090

Weight (Under 2500g) 2500 g to 4500 g 0.181 0.064 -4.860 p < 0.001 [0.091; 0.361] 0.270

Above 4500 g 0.372 0.384 -0.960 0.338 [0.049; 2.809] 2.760

Head (Below 32 cm) 32 cm to 36 cm 0.208 0.068 -4.830 p < 0.001 [0.110; 0.394] 0.284

Above 36 cm 0.105 0.109 -2.180 0.029 [0.014; 0.797] 0.783

BCPHM

Age (Under 20 years old) 20 to 34 years old

35 years old and above

Gender (Female) Male 1.562 0.350 1.990 0.046 [1.007; 2.424] 1.417

Number (Singleton) Multiple

APGAR (Below 4/10) 4/10 to 6/10 0.695 0.288 -0.880 0.379 [0.308; 1.565] 1.257

7/10 and above 0.100 0.039 -5.880 p < 0.001 [0.046; 0.215] 0.169

Weight (Under 2500g) 2500 g to 4500 g 0.200 0.084 -3.840 p < 0.001 [0.088; 0.455] 0.367

Above 4500 g 0.438 8.985 -0.040 0.968 [0.000; 1.280*10^17] 1.280*10^17

Head (Below 32 cm) 32 cm to 36 cm 0.216 0.088 -3.760 p < 0.001 [0.097; 0.480] 0.383

Above 36 cm 0.109 2.234 -0.110 0.914 [0.000; 2.600*10^16] 2.600*10^16

JCPHM

Age (Under 20 years old) 20 to 34 years old 0.215 0.104 -3.190 0.001 [0.084; 0.554] 0.470

35 years old and above 0.308 0.160 -2.270 0.023 [0.111; 0.852] 0.741

Gender (Female) Male 1.942 0.476 2.700 0.007 [1.200; 3.142] 1.942

Number (Singleton) Multiple 0.264 0.117 -3.010 0.003 [0.111; 0.629] 0.518

APGAR (Below 4/10) 4/10 to 6/10 0.411 0.185 -1.970 0.049 [0.170; 0.995] 0.825

7/10 and above 0.059 0.024 -6.810 p < 0.001 [0.026; 0.133] 0.107

Weight (Under 2500g) 2500 g to 4500 g 0.181 0.071 -4.390 p < 0.001 [0.084; 0.389 0.304

Above 4500 g 0.372 16.296 -0.020 0.982 [0.000; 6.880*10^36] 6.880*10^36

Head (Below 32 cm) 32 cm to 36 cm 0.208 0.080 -4.060 p < 0.001 [0.098; 0.444] 0.346

Above 36 cm 0.105 4.680 -0.050 0.960 [0.000; 9.160*10^36] 9.160*10^36
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5.4 Conclusion

This chapter reviewed different methods of re-sampling in the Cox Proportional hazards Model

(CPHM) namely, the Bootstrap Cox Proportional Hazards Model (BCPHM) and the Jackknife

Cox Proportional Hazards Model (JCPHM) and discussed the lengths of the confidence in-

tervals in CPHM, BCPHM and JCPHM. The results after re-sampling are compared to that

of the CPHM for three different ties handling methods namely, Breslow, Efron and Cox ap-

proximation. The χ2 test statistics show everywhere a higher performance of the JCPHM as

compared to the CPHM and BCPHM.

The results displayed by the JCPHM and CPHM are very close and suggested significance

on covariates age, abortion, gender, number, APGAR, weight and head. Male babies are at

a relatively higher risk as compared to female babies. The risk is higher for babies whose

mothers are under 20 years old as compared to older mothers. Babies born with APGAR less

than 4/10 were found to have a higher risk as compared to newborns with APGAR greater

than 4/10. Underweight babies were found to have a higher risk as compared to babies with

normal weight and overweight. Babies with a normal circumference of the head were found

to survive better than those with a relatively big head and a relatively small head. Under-

height babies were found to have a higher risk as compared to babies born with normal height

and over-height newborns. The results of the BCPHM are not far from that of JCPHM and

CPHM but the non-significant covariates displayed relatively higher standard errors, leading

to the relatively wide lengths of the corresponding confidence intervals. The overall results of

the re-sampled models showed a relatively higher standard error per non-significant covariate.

Due to a relatively higher risk to death of infant from under 20 years old mothers, pregnancy

of mothers belonging in such range of age should be avoided. Also as abnormality leads to a
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relatively higher risk to the infant mortality, clinically recommended nutrition during pregnancy

would decrease abnormality of a newborn; decreasing then the infant mortality.

The present chapter uses the nonparametric re-sampled model for measuring the consistency

of the results of the CPHM presented in Chapter 2. The results of the re-sampled models with

multiple events are presented in the next chapter.



CHAPTER 6

RE-SAMPLED MARGINAL RISK SET MODEL

6.1 Introduction

The multiple events model for the infant mortality at the Kigali University Teaching hospital

analysed in Chapter 4 leaves a question on the stability of the adopted model. The analysis

used the primary dataset of the year 2016 with two events per subject, namely, death and the

occurrence of at least one of the common conditions that may also cause long term death to

infants. It was found that the Marginal Risk Set Model (MRSM) also known as the Wei, Lin

and Weissfeld Model (WLWM) is appropriate for fitting the data. The WLWM is among the

multiplicative methods for analysing ordered events found in Cook and Lawless (2007). Other

multiplicative models include the Andersen-Gill Model (AGM) and the Prentice, Williams and

Peterson Model (PWPM) (Wei and Glidden, 1997).

The AGM is known also as the counting process approach (Andersen and Gill, 1992). The

AGM assumes that all event types are not different and all events within the same subject

are assumed to be independent (Johnson et al., 2004). A limitation of AGM as evoked by

Therneau (1997) is found on not allowing multiple events to occur at the same time.

The PWPM also known as the Conditional Risk Set Model was proposed by Prentice, Williams

and Peterson (Prentice et al., 1981). In PWPM, the idea is the same as that of the AGM

82



Section 6.1. Introduction Page 83

apart from stratifying the data by failure order (Amorim and Cai, 2015). The PWPM is also

potential to analyse time to each event from the previous event known as a gap-time model.

However, as for the AGM, the PWPM is unable to model several events occurring at the same

time per individual.

The MRSM assumes that events are unordered where each event has its own stratum and

each data point appears in all strata Wei et al. (1989). This allows an analysis of simultaneous

events per subject.

The present study uses two popular nonparametric methods of re-sampling namely, bootstrap

based on random sampling with replacement (Efron and Tibshirani, 1994), and jackknife

method which consists of making samples by leaving out one observation a time (Efron and

Tibshirani, 1994). The re-sampling in modelling survival analysis allows the assessment of the

stability of the survival regression models. One cause of the instability of the model may be the

small sample size (Hamada, 1995). The size of the sample in the KUTH data is 2117 and the

record is effective in the year 2016. The long term results could be assumed due to the stability

observed after re-sampling. Several manuscripts on re-sampling in survival analysis are limited

on the re-sampled Cox proportional hazards model and on estimating standard errors of the

survival and hazard functions such as in Utzet and Sánchez (1992), Bělašková et al. (2013),

Xu et al. (2014) and Xiao et al. (2012) where bootstrap is involved; Wang et al. (2009), Zheng

(1987), Zheng and Tu (1988) in which the jackknife is implicated or James (1997), Quan and

Tsai (1992), Sauerbrei and Schumacher (1992), Akritas (1986), Efron (1981), Hjort (1985)

and Kim (1990) where hazard and survival functions with their respective standard errors are

of interest.

This study utilises the bootstrap-based MRSM with 1000 replicates and the jackknife-based

MRSM. The results were then compared to that of the MRSM found in Gatabazi et al. (2018)
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and in Gatabazi et al. (2019b).

6.2 Marginal Risk Set Model (MRSM)

Let h(t|xi) be the hazard function of the survival time T given the p fixed covariates xi =

(xi1, xi2, . . . , xip). Assume that h0(t) is the hazard function when values of all covariates are

zeros, then

h(t|xi) = h0(t) exp(βββ′xi) (6.1)

(Collet, 2003), where βββ = (β1, β2, . . . , βp)
′ is a p-dimensional vector of model parameters.

Define an indicator function

δij(t) =


1 if individual i is at risk of the jth event

0 otherwise.

The marginal risk set model or the Wei Lin and Weisfeld Model (WLWM) assumes that the

kth time interval per subject is in the kth stratum, k = 1, 2, . . . , n. In WLWM, the study time

is subdivided into n+ 1 intervals each with lower bound 0 and upper bound equal to the time

to an event, the first and the last intervals are respectively [0, τ1] and [0, T ]. The hazard

function for the jth event for individual i is given by

h(t|xi) = δij(t)h0j(t) exp(βββ′jxi). (6.2)
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6.3 Maximum likelihood and parameter estimation

Assuming that two events cannot occur simultaneously in continuous time, let ]0, τi[, the

interval of time in which the individual i is observed and ni the number of events of individual

i along ]0, τi[, then the probability density function for the outcome ni along ]0, τi[ is given by

L(ΦΦΦ) =
n∏
i=1

Li(φ)

where

Li(φ) =

ni∏
j=1

h(t|xi) e−
∫ τi
0 δij(v)h(v|xi)dv. (6.3)

In (6.3), individual i has ni events with ni ≥ 0 at times ti1≤ti2≤ · · · ≤tini .

The appropriate partial likelihood functions for tied time to event data is well described in

Collet (2003) and in Gatabazi and Kabera (2015) and include Breslow’s, Efron’s and Cox’s

techniques. The maximum likelihood estimates are obtained by solving a system
∂ lnL(ΦΦΦ)

∂ααα
= 0

∂ lnL(ΦΦΦ)
∂βββ

= 0

(6.4)

where ααα is known as the baseline parameter vector while βββ is a vector of model parameters.

The numerical methods such as the Newton-Raphson method are used for solving system

(6.4). The adequacy of parameters is checked by finding the elements III αααααα, III αααβββ, III βββααα and

III ββββββ of the information matrix III and assume that as n → ∞, Φ̂ΦΦ − ΦΦΦ  N
(

0,III −1(Φ̂ΦΦ)
)

(Sankaran and Anisha, 2011).
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6.4 Re-sampled MRSM

6.4.1 Bootstrap Marginal Risk Set Model (BMRSM)

Consider the p fixed covariates xi = (xi1, xi2, . . . , xin) in Equation (6.2) where xij,i∈[1,p] are

independent and identically distributed possibly with distribution Fθ where θ is the statistical

parameter of interest. Consider the distribution function FRn of a random variable Rn(x, Fθ).

A bootstrap method as described in Efron and Tibshirani (1994), consists of generating

x?i = x?1i , x
?2
i . . . , x?Bi ,

where x?ki , k ∈ [1, B] are random samples of size n drawn with replacement from the sample

xi. The variables of x?ki are independent and identically distributed with distribution F̂θ,n

given x; F̂θ,n is an estimator of Fθ from xi; B is a number of bootstrap samples also known

as replications.

The estimated standard error of the bootstrap statistic of interest θ̂ is given in Efron and

Tibshirani (1994) as

ŝeB =

√√√√ 1

B − 1

B∑
b=1

[
θ̂?(b)− 1

B

B∑
b=1

θ̂?(b)

]2

(6.5)

where θ̂?(b) is an estimate of the statistic of interest from the bth bootstrap sample, b =

1, 2, . . . .B. The inference of model (6.2) based on bootstrap consists of applying model (6.2)

to each of the B bootstrap samples x?ki , ∀k ∈ [1, B] of covariates xi, ∀i ∈ [1, p]. Bootstrap

model parameter estimation in the presence of tied events uses either Breslow, Efron or Cox

approach. The bootstrap standard error is obtained by using Equation (6.5).
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6.4.2 Jackknife Marginal Risk Set Model (JMRSM)

Consider the p fixed covariates xi = (xi1, xi2, . . . , xin) in Equation (6.2). Let θ be a statistic

of interest. The jackknife samples consist of leaving out one observation at time, these are n

samples x?i = (xi1, xi2, . . . , xi k−1, xi k+1, . . . , xin) ∀j ∈ [1, n] (Efron and Tibshirani, 1994).

The jackknife standard error estimate as proposed by Efron and Tibshirani (1994), is

ŝejack =

√√√√n− 1

n

n∑
i=1

[
θ̂?(i)− 1

n

n∑
i=1

θ̂?(i)

]2

(6.6)

where θ?(i), i ∈ [1, n] is a statistic of interest for the ith jackknife sample.

The JMRSM consists of applying model (6.2) to each of the n jackknife samples x?ki of

covariates xi, i ∈ [1, p]. Either Breslow, Efron or Cox approach is used for estimating the

jackknife model parameters, with standard error given by Equation (6.6).

6.5 Application

Consider the data described in Table 2.1 regarding the survival times of 2117 newborns from

the Kigali University Teaching Hospital (KUTH). The aim of this study is to apply the MRSM

on bootstrap and jackknife samples of covariates. The relative risk in each covariate and

related standard error were estimated and compared to that obtained by the usual MRSM

obtained in Chapter 4. The significance in difference of levels of covariates are also explored in

both MRSM and re-sampled MRSM. Using Breslow estimation, Table 6.1 presents unadjusted

MRSM, BMRSM, JMRSM and corresponding adjusted models. Unadjusted and adjusted
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MRSM, BMRSM and JMRSM by Efron and Cox approaches are also presented in Tables 6.2

and 6.3, respectively.

The results of the unadjusted JMRSM were relatively close to that of the unadjusted MRSM

(Table 6.1). The standard errors in JMRSM and MRSM are close for all covariates. The

standard errors in BMRSM and MRSM are also close for covariates except all levels of covariate

childbirth where a standard error in BMRSM is about 4 times that of MRSM and the upper

levels of covariates weight, head and height where a standard error in BMRSM is about

20 times that of MRSM. Significance difference in levels of covariates is found at the same

covariates for both MRSM, BMRSM and JMRSM except at the upper level of the covariate

abortion where significance is suggested by the MRSM.

The bootstrap and jackknife re-sampling techniques were applied to the MRSM and then

constructed the BMRSM and JMRSM through three different approaches of ties handling.

The overall results of MRSM, BMRSM and JMRSM by different approaches of ties handling

are similar as expected. The STATA default method (Breslow) is then of interest in the

analysis. The JMRSM is adopted for checking stability since the results are closer to that

of MRSM compared to the results of BMRSM. The similarity between MRSM and JMRSM

suggests that the MRSM may be stable.



Table 6.1: Breslow estimation

MRSM BMRSM JMRSM

Covariate (reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20 years old) 20 to 34 years old 0.277 0.100 -3.570 0.000 [0.137; 0.560] 0.277 0.088 -4.060 0.000 [0.149; 0.515] 0.277 0.081 -4.360 0.000 [0.155; 0.493]

35 years old and above 0.395 0.157 -2.330 0.020 [0.181; 0.863] 0.395 0.132 -2.780 0.005 [0.205; 0.761] 0.395 0.127 -2.890 0.004 [0.210; 0.741]

Residence (Rural) Urban 0.847 0.139 -1.020 0.309 [0.614; 1.167] 0.847 0.148 -0.950 0.341 [0.601; 1.193] 0.847 0.158 -0.890 0.372 [0.587; 1.220]

Antecedents (Not 1st newborn) 1st newborn 0.806 0.157 -1.100 0.270 [0.550; 1.182] 0.806 0.138 -1.260 0.207 [0.577; 1.126] 0.806 0.134 -1.300 0.193 [0.582; 1.116]

Abortion (Not aborted) Aborted once 1.405 0.398 1.200 0.231 [0.806; 2.448] 1.405 0.459 1.040 0.298 [0.741; 2.664] 1.405 0.471 1.010 0.311 [0.728; 2.710]

Aborted more than once 0.479 0.161 -2.190 0.028 [0.248; 0.925] 0.479 0.280 -1.260 0.208 [0.152; 1.507] 0.479 0.360 -0.980 0.328 [0.110; 2.094]

Childbirth (Ventouse) Natural 0.873 0.491 -0.240 0.808 [0.290; 2.627] 0.873 1.973 -0.060 0.952 [0.010; 73.427] 0.873 0.329 -0.360 0.718 [0.416; 1.829]

Surgery 1.115 0.613 0.200 0.843 [0.380; 3.274] 1.115 2.517 0.050 0.962 [0.013; 93.040] 1.115 0.372 0.330 0.744 [0.580; 2.143]

Gender (Female) Male 1.740 0.296 3.260 0.001 [1.247; 2.429] 1.740 0.324 2.980 0.003 [1.209; 2.505] 1.740 0.337 2.860 0.004 [1.191; 2.544]

Number (Singleton) Multiple 0.409 0.131 -2.790 0.005 [0.218; 0.766] 0.409 0.107 -3.420 0.001 [0.245; 0.682] 0.409 0.100 -3.640 0.000 [0.252; 0.661]

APGAR (Below 4/10) 4/10 to 6/10 0.377 0.112 -3.300 0.001 [0.211; 0.673] 0.377 0.127 -2.900 0.004 [0.195; 0.729] 0.377 0.139 -2.640 0.008 [0.182; 0.778]

7/10 and above 0.130 0.036 -7.460 0.000 [0.076; 0.222] 0.130 0.033 -8.130 0.000 [0.079; 0.212] 0.130 0.031 -8.470 0.000 [0.081; 0.208]

Weight (Under 2500 g) 2500 g to 4500 g 0.250 0.068 -5.070 0.000 [0.146; 0.427] 0.250 0.064 -5.430 0.000 [0.151; 0.412] 0.250 0.063 -5.540 0.000 [0.153; 0.408]

Above 4500 g 0.442 0.285 -1.270 0.206 [0.125; 1.565] 0.442 4.002 -0.090 0.928 [0.000; 2.290×107] 0.442 0.508 -0.710 0.478 [0.046; 4.222

Head (Below 32 cm) 32 cm to 36 cm 0.456 0.128 -2.800 0.005 [0.263; 0.789] 0.456 0.115 -3.100 0.002 [0.277; 0.749] 0.456 0.117 -3.070 0.002 [0.275; 0.753]

Above 36 cm 0.290 0.219 -1.640 0.102 [0.066; 1.278] 0.290 4.156 -0.090 0.931 [0.000; 4.470×1011] 0.290 0.284 -1.270 0.206 [0.043; 1.971]

Height (Below 36 cm) 46 cm to 54 cm 0.894 0.276 -0.360 0.716 [0.488; 1.637] 0.894 0.241 -0.420 0.677 [0.527; 1.516] 0.894 0.253 -0.400 0.692 [0.513; 1.557]

Above 54 cm 1.670 1.264 0.680 0.498 [0.379; 7.361] 1.670 22.884 0.040 0.970 [0.000; 7.73× 1011] 1.670 1.612 0.530 0.596 [0.251; 11.093]

Adjusted MRSM Adjusted BMRSM Adjusted JMRSM

Covariate (reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20 years old) 20 to 34 years old 0.307 0.107 -3.380 0.001 [0.155; 0.609] 0.309 0.089 -4.080 0.000 [0.176; 0.543] 0.309 0.083 -4.370 0.000 [0.182; 0.523]

35 years old and above 0.472 0.179 -1.980 0.047 [0.225; 0.992] 0.489 0.145 -2.420 0.016 [0.274; 0.874] 0.489 0.137 -2.550 0.011 [0.282; 0.848]

Abortion (Not aborted) Aborted once 1.482 0.406 1.430 0.152 [0.866; 2.537] - - - - - - - - - -

Aborted more than once 0.541 0.175 -1.900 0.057 [0.287; 1.019] - - - - - - - - - -

Gender (Female) Male 1.672 0.280 3.070 0.002 [1.204; 2.321] 1.607 0.304 2.510 0.012 [1.109; 2.328] 1.607 0.316 2.410 0.016 [1.093; 2.363]

Number (Singleton) Multiple 0.401 0.128 -2.860 0.004 [0.214; 0.750] 0.417 0.106 -3.450 0.001 [0.254; 0.686] 0.417 0.103 -3.550 0.000 [0.258; 0.677]

APGAR (Below 4/10) 4/10 to 6/10 0.414 0.119 -3.080 0.002 [0.236; 0.726] 0.412 0.137 -2.660 0.008 [0.215; 0.791] 0.412 0.142 -2.580 0.010 [0.210; 0.809]

7/10 and above 0.144 0.038 -7.350 0.000 [0.086; 0.242] 0.150 0.034 -8.370 0.000 [0.096; 0.234] 0.150 0.033 -8.580 0.000 [0.098; 0.232]

Weight (Under 2500 g) 2500 g to 4500 g 0.238 0.060 -5.650 0.000 [0.144; 0.391 0.240 0.057 -6.030 0.000 [0.151; 0.381] 0.240 0.057 -6.040 0.000 [0.151; 0.381]

Above 4500 g 0.447 0.284 -1.270 0.205 [0.129; 1.550 0.478 4.519 -0.080 0.938 [0.000; 5.32×107] 0.478 0.419 -0.840 0.400 [0.086; 2.669]

Head (Below 32 cm) 32 cm to 36 cm 0.420 0.100 -3.660 0.000 [0.264; 0.669] 0.439 0.103 -3.500 0.000 [0.277; 0.696] 0.439 0.107 -3.390 0.001 [0.273; 0.707]

Above 36 cm 0.284 0.210 -1.700 0.089 [0.067; 1.211] 0.303 4.200 -0.090 0.931 [0.000; 1.970×1011] 0.303 0.298 -1.210 0.225 [0.044; 2.084]



Table 6.2: Efron estimation

MRSM BMRSM JMRSM

Covariate (reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20 years old) 20 to 34 years old 0.230 0.083 -4.080 0.000 [0.114; 0.466] 0.230 0.086 -3.940 0.000 [0.111; 0.478] 0.230 0.083 -4.090 0.000 [0.114; 0.466]

35 years old and above 0.324 0.129 -2.840 0.005 [0.149; 0.706] 0.324 0.128 -2.850 0.004 [0.149; 0.703] 0.324 0.125 -2.920 0.004 [0.152; 0.691]

Residence (Rural) Urban 0.831 0.137 -1.120 0.261 [0.602; 1.147] 0.831 0.160 -0.960 0.337 [0.570; 1.212] 0.831 0.174 -0.890 0.376 [0.552; 1.252]

Antecedents (Not 1st newborn) 1st newborn 0.756 0.149 -1.420 0.156 [0.513; 1.113] 0.756 0.149 -1.420 0.155 [0.514; 1.112] 0.756 0.143 -1.480 0.140 [0.521; 1.096]

Abortion (Not aborted) Aborted once 1.393 0.396 1.170 0.244 [0.798; 2.430] 1.393 0.470 0.980 0.326 [0.719; 2.699] 1.393 0.522 0.880 0.377 [0.668; 2.904]

Aborted more than once 0.452 0.154 -2.340 0.020 [0.232; 0.880] 0.452 0.322 -1.110 0.265 [0.112; 1.826] 0.452 0.391 -0.920 0.359 [0.083; 2.465]

Childbirth (Ventouse) Natural 0.736 0.408 -0.550 0.580 [0.249; 2.179] 0.736 1.482 -0.150 0.879 [0.014; 38.109] 0.736 0.336 -0.670 0.502 [0.301; 1.801]

Surgery 0.921 0.499 -0.150 0.880 [0.319; 2.661] 0.921 1.858 -0.040 0.968 [0.018; 47.963] 0.921 0.388 -0.190 0.846 [0.403; 2.104]

Gender (Female) Male 1.823 0.312 3.520 0.000 [1.304; 2.549] 1.823 0.361 3.040 0.002 [1.238; 2.687] 1.823 0.400 2.740 0.006 [1.186; 2.804]

Number (Singleton) Multiple 0.324 0.106 -3.430 0.001 [0.170; 0.617] 0.324 0.100 -3.670 0.000 [0.177; 0.591] 0.324 0.096 -3.810 0.000 [0.181; 0.578]

APGAR (Below 4/10) 4/10 to 6/10 0.214 0.065 -5.090 0.000 [0.118; 0.387] 0.214 0.080 -4.100 0.000 [0.102; 0.447] 0.214 0.093 -3.550 0.000 [0.091; 0.501]

7/10 and above 0.070 0.020 -9.520 0.000 [0.041; 0.121] 0.070 0.019 -9.660 0.000 [0.041; 0.120 0.070 0.019 -9.830 0.000 [0.041; 0.119]

Weight (Under 2500 g) 2500 g to 4500 g 0.231 0.063 -5.340 0.000 [0.135; 0.395] 0.231 0.064 -5.310 0.000 [0.134; 0.396] 0.231 0.062 -5.440 0.000 [0.136; 0.391]

Above 4500 g 0.412 0.269 -1.360 0.174 [0.115; 1.479] 0.412 3.892 -0.090 0.925 [0.000; 4.57×107] 0.412 0.485 -0.750 0.451 [0.041; 4.149]

Head (Below 32 cm) 32 cm to 36 cm 0.422 0.119 -3.060 0.002 [0.243; 0.734] 0.422 0.115 -3.160 0.002 [0.247; 0.720] 0.422 0.118 -3.090 0.002 [0.244; 0.729]

Above 36 cm 0.246 0.187 -1.840 0.065 [0.055; 1.093] 0.246 3.784 -0.090 0.927 [0.000; 3.030 ×1012] 0.246 0.251 -1.370 0.169 [0.033; 1.819]

Height (Below 36 cm) 46 cm to 54 cm 0.917 0.285 -0.280 0.781 [0.499; 1.687] 0.917 0.290 -0.270 0.784 [0.494; 1.704] 0.917 0.294 -0.270 0.788 [0.489; 1.721]

Above 54 cm 1.692 1.283 0.690 0.488 [0.383; 7.476] 1.692 24.567 0.040 0.971 [0.000; 3.890 ×1012] 1.692 1.700 0.520 0.601 [0.236; 12.140]

Adjusted MRSM Adjusted BMRSM Adjusted JMRSM

Covariate (reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20 years old) 20 to 34 years old 0.262 0.092 -3.810 0.000 [0.132; 0.522] 0.265 0.088 -3.980 0.000 [0.138; 0.509] 0.265 0.088 -4.000 0.000 [0.138; 0.508]

35 years old and above 0.407 0.155 -2.360 0.018 [0.193; 0.859] 0.421 0.151 -2.410 0.016 [0.208; 0.850] 0.421 0.146 -2.490 0.013 [0.213; 0.833]

Abortion (Not aborted) Aborted once 1.487 0.408 1.440 0.149 [0.868; 2.546] - - - - - - - - - -

Aborted more than once 0.520 0.170 -2.000 0.046 [0.274; 0.987] - - - - - - - - - -

Gender (Female) Male 1.764 0.297 3.370 0.001 [1.268; 2.453] 1.684 0.336 2.610 0.009 [1.138; 2.490] 1.684 0.367 2.390 0.017 [1.098; 2.582]

Number (Singleton) Multiple 0.308 0.101 -3.580 0.000 [0.162; 0.586] 0.322 0.097 -3.750 0.000 [0.178; 0.583] 0.322 0.101 -3.630 0.000 [0.175; 0.594]

APGAR (Below 4/10) 4/10 to 6/10 0.249 0.073 -4.730 0.000 [0.140; 0.442] 0.246 0.093 -3.720 0.000 [0.117; 0.515] 0.246 0.100 -3.450 0.001 [0.110; 0.546]

7/10 and above 0.081 0.022 -9.400 0.000 [0.048; 0.137] 0.085 0.021 -9.940 0.000 [0.052; 0.138] 0.085 0.021 -9.830 0.000 [0.052; 0.138]

Weight (Under 2500 g) 2500 g to 4500 g 0.222 0.057 -5.910 0.000 [0.135; 0.366] 0.225 0.057 -5.910 0.000 [0.137; 0.369] 0.225 0.056 -5.990 0.000 [0.138; 0.367]

Above 4500 g 0.430 0.276 -1.310 0.189 [0.122; 1.512] 0.487 5.083 -0.070 0.945 [0.000; 3.730 ×108] 0.487 0.453 -0.770 0.440 [0.078; 3.023]

Head (Below 32 cm) 32 cm to 36 cm 0.388 0.093 -3.940 0.000 [0.243; 0.622] 0.403 0.105 -3.490 0.000 [0.242; 0.671] 0.403 0.108 -3.380 0.001 [0.238; 0.683]

Above 36 cm 0.235 0.175 -1.940 0.052 [0.054; 1.014] 0.252 3.678 -0.090 0.925 [0.000; 6.680 ×1011] 0.252 0.259 -1.340 0.180 [0.034; 1.889]



Table 6.3: Cox estimation

MRSM BMRSM JMRSM

Covariate (reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20 years old) 20 to 34 years old 0.193 0.085 -3.730 0.000 [0.081; 0.458] 0.193 0.094 -3.370 0.001 [0.074; 0.502] 0.193 0.088 -3.600 0.000 [0.079; 0.472]

35 years old and above 0.267 0.128 -2.760 0.006 [0.104; 0.682] 0.267 0.131 -2.700 0.007 [0.102; 0.697] 0.267 0.124 -2.850 0.004 [0.107; 0.662]

Residence (Rural) Urban 0.766 0.150 -1.360 0.175 [0.521; 1.126] 0.766 0.221 -0.920 0.356 [0.435; 1.349] 0.766 0.221 -0.920 0.356 [0.435; 1.350]

Antecedents (Not 1st newborn) 1st newborn 0.763 0.185 -1.120 0.264 [0.475; 1.226] 0.763 0.219 -0.940 0.345 [0.435; 1.338] 0.763 0.194 -1.060 0.289 [0.463; 1.258]

Abortion (Not aborted) Aborted once 1.404 0.453 1.050 0.293 [0.746; 2.643] 1.404 0.627 0.760 0.448 [0.585; 3.369] 1.404 0.593 0.800 0.422 [0.613; 3.215]

Aborted more than once 0.378 0.152 -2.420 0.015 [0.172; 0.830] 0.378 0.336 -1.100 0.274 [0.066; 2.155] 0.378 0.446 -0.830 0.409 [0.038; 3.814]

Childbirth (Ventouse) Natural 0.732 0.481 -0.470 0.635 [0.202; 2.653] 0.732 0.369 -0.620 0.537 [0.273; 1.968] 0.732 0.365 -0.630 0.532 [0.276; 1.945]

Surgery 1.016 0.654 0.030 0.980 [0.288; 3.590] 1.016 0.480 0.030 0.973 [0.403; 2.565] 1.016 0.455 0.040 0.971 [0.423; 2.443]

Gender (Female) Male 1.991 0.405 3.390 0.001 [1.336;2.966] 1.991 0.534 2.570 0.010 [1.177; 3.368] 1.991 0.601 2.280 0.023 [1.101; 3.599]

Number (Singleton) Multiple 0.218 0.111 -3.000 0.003 [0.080; 0.589] 0.218 0.155 -2.140 0.033 [0.054; 0.882] 0.218 0.131 -2.530 0.011 [0.067; 0.709]

APGAR (Below 4/10) 4/10 to 6/10 0.080 0.042 -4.810 0.000 [0.029; 0.224] 0.080 0.056 -3.580 0.000 [0.020; 0.319] 0.080 0.052 -3.870 0.000 [0.022; 0.287]

7/10 and above 0.021 0.011 -7.840 0.000 [0.008; 0.056] 0.021 0.014 -5.970 0.000 [0.006; 0.076] 0.021 0.011 -7.230 0.000 [0.008; 0.061]

Weight (Under 2500 g) 2500 g to 4500 g 0.236 0.070 -4.850 0.000 [0.131; 0.423] 0.236 0.077 -4.420 0.000 [0.124; 0.448] 0.236 0.068 -5.000 0.000 [0.134; 0.415]

Above 4500 g 0.378 0.257 -1.430 0.153 [0.100; 1.436] 0.378 4.696 -0.080 0.938 [0.000; 1.410 ×1010] 0.378 0.473 -0.780 0.437 [0.033; 4.386]

Head (Below 32 cm) 32 cm to 36 cm 0.391 0.119 -3.100 0.002 [0.216; 0.708] 0.391 0.101 -3.640 0.000 [0.236; 0.649] 0.391 0.115 -3.180 0.001 [0.219; 0.698]

Above 36 cm 0.212 0.171 -1.920 0.055 [0.043; 1.033] 0.212 3.376 -0.100 0.922 [0.000; 7.780 ×1012] 0.212 0.238 -1.380 0.167 [0.023; 1.913]

Height (Below 36 cm) 46 cm to 54 cm 0.828 0.283 -0.550 0.582 [0.423; 1.620] 0.828 0.254 -0.610 0.539 [0.454; 1.512] 0.828 0.284 -0.550 0.582 [0.423; 1.622]

Above 54 cm 1.706 1.351 0.670 0.500 [0.361; 8.060] 1.706 28.569 0.030 0.975 [0.000; 3.090×1014] 1.706 1.747 0.520 0.602 [0.229; 12.707]

Adjusted MRSM Adjusted BMRSM Adjusted JMRSM

Covariate (reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20 years old) 20 to 34 years old 0.218 0.094 -3.520 0.000 [0.094; 0.509] 0.219 0.078 -4.280 0.000 [0.109; 0.439] 0.219 0.087 -3.830 0.000 [0.101; 0.476]

35 years old and above 0.341 0.157 -2.340 0.019 [0.138; 0.841] 0.352 0.133 -2.760 0.006 [0.167; 0.738] 0.352 0.141 -2.610 0.009 [0.160; 0.771]

Abortion (Not aborted) Aborted once 1.479 0.459 1.260 0.208 [0.804; 2.719] - - - - - - - - - -

Aborted more than once 0.424 0.161 -2.260 0.024 [0.201; 0.892] - - - - - - - - - -

Gender (Female) Male 1.886 0.374 3.200 0.001 [1.278; 2.783] 1.833 0.544 2.040 0.041 [1.025; 3.278] 1.833 0.528 2.100 0.036 [1.042; 3.225]

Number (Singleton) Multiple 0.214 0.108 -3.050 0.002 [0.079; 0.576] 0.227 0.136 -2.480 0.013 [0.070; 0.732] 0.227 0.135 -2.490 0.013 [0.070; 0.730]

APGAR (Below 4/10) 4/10 to 6/10 0.098 0.050 -4.550 0.000 [0.036; 0.267] 0.091 0.053 -4.100 0.000 [0.029; 0.286] 0.091 0.062 -3.530 0.000 [0.024; 0.345]

7/10 and above 0.026 0.012 -7.680 0.000 [0.010; 0.066] 0.026 0.013 -7.660 0.000 [0.010; 0.067] 0.026 0.013 -7.420 0.000 [0.010; 0.069]

Weight (Under 2500 g) 2500 g to 4500 g 0.213 0.057 -5.730 0.000 [0.125; 0.361] 0.215 0.060 -5.540 0.000 [0.125; 0.371] 0.215 0.057 -5.810 0.000 [0.128; 0.362]

Above 4500 g 0.364 0.245 -1.500 0.134 [0.097; 1.364] 0.398 4.183 -0.090 0.930 [0.000; 3.590 ×108] 0.398 0.385 -0.950 0.340 [0.060; 2.650]

Head (Below 32 cm) 32 cm to 36 cm 0.349 0.090 -4.080 0.000 [0.211; 0.579] 0.374 0.102 -3.590 0.000 [0.219; 0.640] 0.374 0.105 -3.510 0.000 [0.216; 0.648]

Above 36 cm 0.199 0.160 -2.020 0.044 [0.042; 0.957] 0.222 3.684 -0.090 0.928 [0.000; 7.970 ×1013] 0.222 0.253 -1.320 0.186 [0.024; 2.067]
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The overall analysis confirms the significant difference in all levels of covariates age, gender,

number and APGAR and intermediate levels of covariates weight and head. The re-sampled

adjusted models by Breslow technique of handling tied events suggest that the risk of death

attracting a chronic disease of babies whose mothers’ age range from 20 to 34 years old is

0.265 times that of babies whose mothers are under 20 years old. The risk of babies whose

mothers are 35 years old and above is 0.421 times that of babies whose mothers are under 20

years old. The risk for male babies is 1.684 times that of female babies. The risk of multiple

babies is 0.322 times that of singleton babies. The risk of babies whose APGAR range from

4/10 to 6/10 is 0.246 times that of babies whose APGAR is below 4/10. The risk of babies

whose APGAR range from 7/10 to 10/10 is 0.085 times that of babies whose APGAR is below

4/10. The risk of babies whose weight range from 2500g to 4500g is 0.225 times that of babies

whose weight is below 2500g. The risk of babies whose weight is above 4500g is 0.372 times

that of babies whose weight is below 2500g. The risk of babies whose circumference of the

head range from 32cm to 36cm is 0.403 times that of babies whose circumference of the head

is below 32cm.

The results of BMRSM are close to that of JMRSM and MRSM for all significant covariates

but the re-sampled models show relatively higher standard errors for some non-significant

covariates. The discrepancy between standard errors after re-sampling for covariates such as

childbirth,weight, head and height suggests instability of the MRSM at these specific covariates

and this emphasizes their non-significance in the MRSM.
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6.6 Conclusion

Different methods of re-sampling in MRSM were described in this chapter namely, the boot-

strap and jackknife. The results of Bootstrap Marginal Risk Set Model (BMRSM) and Jack-

knife Marginal Risk Set Model (JMRSM) are compared to that of the MRSM for three different

methods of ties handling namely, Breslow, Efron and Cox approximations.

The JMRSM and MRSM have displayed relatively close results with significance on covariates

age, abortion, gender, number, APGAR, weight and head. The models revealed that the risk

of death or attracting chronic disease of an infant is higher in male babies as compared to

female babies. The risk is higher for babies whose mothers are under 20 years old mothers as

compared to older mothers. Babies born with APGAR greater or equal to 7/10 were found to

have a better survival outcome than those born with APGAR less than 4/10 and those whose

APGAR range between 4/10 and 6/10. The risk is lower for underweight babies as compared

to babies with normal weight and overweight. The survival outcome for babies with normal

circumference of the head was found to be better than those with a relatively small head.

Both BMRSM, JMRSM and MRSM displayed close results for significant covariates. However,

the BMRSM displayed relatively higher standard error for some non-significant covariates and

this emphasizes their insignificance in MRSM. Babies from under 20 years old mothers were

found at relatively higher risk and hence pregnancy of mothers belonging in such range of age

should be avoided. Also abnormality in infant’s weight and head lead to relatively higher risk

to infant mortality, clinically recommended ways of keeping pregnancy against any cause of

infant abnormality should be reinforced.



CHAPTER 7

CONCLUSIONS

The research work provided in this dissertation described the main points of the non-parametric

classical survival analysis and their application to the infant mortality data.

The basic functions of survival analysis reviewed were the survival function, the hazard function

and the cumulative hazard function by using Kaplan-Meier estimation. Non-parametric survival

regression models were also reviewed namely, the Cox Proportional Hazards Model (CPHM),

the Aalen Additive Hazards Model (AAHM) and the Cox-Aalen Hazards Model (CAHM).

Multiple events methods reviewed include the Andersen-Gill Model (AGM), the Marginal Risk

Set Model (MRSM) also known as the Wei, Lin and Weissfeld Model (WLWM) and the

Prentice, Williams and Peterson Model (PWPM); the MRSM was selected due to the structure

of the dataset of interest. Re-sampled CPHM and re-sampled MRSM were also conducted

and compared respectively to CPHM and MRSM.

The theoretical results described were applied to data on infant mortality collected at the

Kigali University Teaching Hospital (KUTH) during the period from the first January 2016 to

the 31st December 2016. The total number of newborns with complete information were 2117

of whom 69 were stillborn and 82 died during the study time.

The covariates reported in the data were the age of mothers, the gender of a newborn, residen-

tial area of parents, indicator on whether a newborn is the first or not, indicator on whether a

mother aborted previously, number of newborns at a time, APGAR score of a newborn, weight
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of a newborn, circumference of the head of a newborn and height of a newborn. The death of

a newborn was considered as an event in single event analysis while multiple events analysis

included the death of a newborn and the occurrence of at least one of the conditions that

may also cause long term death to infants such as severe oliguria, severe prematurity, very

low birth weight, macrosomia, severe respiratory distress, gastroparesis, hemolytic, trisomy,

asphyxia and laparoschisis.

Exploratory analysis of the data was done using Kaplan-Meier estimation. Proportional Hazards

Assumption (PHA) was checked by assessing Kaplan-Meier estimates of survival functions

per groups of covariates. It was found that PHA is violated for covariates antecedents and

childbirth. The data analysis was done using the CPHM, AAHM and CAHM as single event

regression models and MRSM as multiple events regression model.

The CPHM for all covariates showed significance on covariates age, gender, number, APGAR,

weight and head while the unadjusted re-sampled CPHM models revealed significance on the

age, abortion, gender, number, APGAR, weight and head. The four tests of AAHM showed

significance for the present covariates except residence. AAHM indicated time dependent

covariates and revealed that fixed covariates may be age, APGAR and childbirth. The CAHM

combined multiplicative and additive parts with fixed covariates taken at the multiplicative

part, while time dependent covariates are included in the additive part. The CPHM assumes

the presence of fixed covariates and would be preferred if the time dependent covariates are

dropped out. The CAHM takes the covariates antecedents and childbirth that violate the PHA

at its additive part and all other covariates at its multiplicative part. It was found that CAHM

would be appropriate if the model is based on covariates age, number, APGAR and weight

where significance is read. The AAHM distinguishes time dependent and fixed covariates and

shown advantage at the point of significance of covariates.
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The results obtained from the multiple events analysis revealed that the MRSM fit the data

well. The covariates age, abortion, gender, number, APGAR, weight and head were found to

have significant effect. The re-sampled MRSM confirmed significant difference of the levels of

covariates age, gender, number, APGAR,weight and head.

The overall study suggests that infant from under 20 years mothers was at relatively higher

risk of death. This complies with studies such as that of Basinga et al. (2012), Olausson

et al. (1999) or Lampinen et al. (2009). Pregnancy for under 20 years old mothers should

then be avoided. Also a newborn’s head and weight abnormality led to a relatively higher risk

to infant mortality in line of the recommendations of the clinical medicine as compiled for

example by Janssen et al. (2007). Clinically recommended nutrition during pregnancy would

decrease abnormality of the newborn, leading to the infant mortality decrease.

The work described in this dissertation has a number of limitations. For example, it would

be good to investigate subject effect or groups of subjects effects. This could be done by

introducing a frailty variable in the CPHM or in the AAHM to account for the heterogeneity

of the subjects or groups of subjects (Hosmer et al., 2008, p. 296, Aalen et al., 2008, p. 231).

The analysis was limited to only 11 variables. Unavailable variables concerning mothers that

could improve models are for example, demographic variables such as education level, em-

ployment and income, behavioral variables such as smoking habit, alcohol consumption and

dietary and physio-therapeutic variables such as sports activity level. These variables were

not recorded in the registry at KUTH. This study for Rwanda would be extended to further

countries in Sub-Saharan Africa, Africa or worldwide.
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Table 1: First 50 entries of the dataset on infant mortality at KUTH from 01-January-2016

to 31-December-2016

no id age residence antecedents abortion childbirth gender number apgar weight head height tstart tstop event n_events

1 1 1 0 0 0 2 0 0 2 1 1 1 0 39 0 1

2 2 1 0 0 1 1 1 0 2 1 1 1 0 212 0 1

3 3 1 1 1 0 1 1 0 2 1 1 1 0 196 0 1

4 4 1 1 0 0 2 0 0 2 1 1 1 0 128 0 1

5 5 1 0 0 0 2 1 0 2 1 1 1 0 335 0 1

6 6 1 1 0 0 1 0 0 2 1 1 1 0 262 0 1

7 7 2 0 0 0 1 0 0 2 1 1 1 0 214 0 1

8 8 1 0 0 0 1 1 0 2 1 1 1 0 228 0 1

9 9 2 1 0 0 1 0 0 2 1 1 1 0 355 0 1

10 10 1 1 1 0 2 1 0 2 0 1 1 0 25 0 1

11 11 1 1 0 0 2 0 0 2 0 0 0 0 256 0 1

12 12 2 0 1 0 2 0 1 2 0 1 1 0 179 0 1

13 13 2 0 1 0 2 0 1 2 0 1 1 0 179 0 1

14 14 2 0 1 0 2 1 1 2 0 0 0 0 179 0 1

15 15 2 0 0 0 2 1 0 2 1 1 1 0 348 0 1

16 16 1 1 0 1 2 0 0 2 1 1 1 0 305 0 1

17 17 1 1 0 0 1 0 0 2 1 1 1 0 45 0 1

18 18 1 0 0 0 2 1 0 2 1 1 1 0 129 0 1

19 19 1 1 0 0 2 1 0 0 2 1 1 0 0 1 1

20 19 1 1 0 0 2 1 0 0 2 1 1 0 0 1 2

21 20 1 1 1 0 2 0 0 2 1 1 1 0 137 0 1

22 21 0 1 1 0 1 0 0 2 1 1 1 0 293 0 1

23 22 2 1 0 2 1 0 0 2 1 1 1 0 70 0 1

24 25 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1

25 25 1 0 1 0 1 1 0 1 1 1 1 0 1 1 2

26 23 1 1 0 0 1 0 0 2 1 1 1 0 218 0 1

27 24 1 1 0 0 1 1 0 2 1 1 1 0 260 0 1

28 26 2 0 0 0 2 0 0 2 1 1 1 0 24 0 1

29 27 1 1 0 0 2 0 0 2 1 1 1 0 16 0 1

30 28 1 0 1 0 2 1 0 2 0 0 0 0 318 0 1

31 29 2 0 1 0 2 0 0 2 0 0 0 0 1 1 1

32 29 2 0 1 0 2 0 0 2 0 0 0 0 6 1 2

33 30 1 1 0 0 1 0 0 2 1 1 1 0 249 0 1

34 31 1 1 1 0 2 0 0 2 1 1 1 0 311 0 1

35 32 1 1 0 0 1 1 0 2 1 1 1 0 357 0 1

36 33 1 1 0 0 1 1 0 2 0 1 1 0 232 0 1

37 34 1 1 1 0 1 1 0 2 1 1 1 0 356 0 1

38 35 1 1 0 0 1 0 0 2 1 1 1 0 140 0 1

39 36 1 1 1 0 2 0 0 2 1 1 2 0 272 0 1

40 37 2 0 1 0 2 0 0 2 1 1 1 0 203 0 1

41 38 1 1 0 0 2 1 0 2 1 2 0 0 235 0 1

42 39 1 1 0 0 2 0 0 2 1 1 1 0 305 0 1

43 40 1 1 1 0 1 0 0 2 1 1 1 0 263 0 1

44 41 2 0 0 2 2 0 0 2 0 0 0 0 192 0 1

45 42 1 1 0 0 1 1 0 2 1 1 1 0 248 0 1

46 43 1 1 0 0 1 1 0 2 0 0 0 0 1 1 1

47 43 1 1 0 0 1 1 0 2 0 0 0 0 4 1 2

48 44 1 1 0 0 1 1 0 2 1 1 1 0 254 0 1

49 45 2 1 0 0 0 0 0 2 1 1 1 0 333 0 1

50 46 1 1 0 0 2 1 0 2 1 1 1 0 39 0 1



Table 2: Adjusted WLWM for the infant mortality at KUTH from 01-January-2016 to 31-

December-2016 with Efron method of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err. z P>z 95% Conf. Int.

Age (Under 20 years old) 20 to 34 years old 0.262 0.092 -3.810 p < 0.001 [0.132; 0.522]

35 years old and above 0.407 0.155 -2.360 0.018 [0.193; 0.859]

Abortion (Not aborted) Aborted once 1.487 0.408 1.440 0.149 [0.868; 2.546]

Aborted more than once 0.520 0.170 -2.000 0.046 [0.274; 0.987]

Gender (Female) Male 1.764 0.297 3.370 0.001 [1.268; 2.453]

Number (Singleton) Multiple 0.308 0.101 -3.580 p < 0.001 [0.162; 0.586]

APGAR (Below 4/10) 4/10 to 6/10 0.249 0.073 -4.730 p < 0.001 [0.140; 0.442]

7/10 and above 0.081 0.022 -9.400 p < 0.001 [0.048; 0.137]

Weight (Under 2500 g) 2500 g to 4500 g 0.222 0.057 -5.910 p < 0.001 [0.135; 0.366]

Above 4500 g 0.430 0.276 -1.310 0.189 [0.122; 1.512]

Head (Below 32 cm) 32 cm to 36 cm 0.388 0.093 -3.940 p < 0.001 [0.243; 0.622]

Above 36 cm 0.235 0.175 -1.940 0.052 [0.054; 1.014]

Table 3: Adjusted WLWM for the infant mortality at KUTH from 01-January-2016 to 31-

December-2016 with Cox method of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err. z P>z 95% Conf. Int.

Age (Under 20 years old) 20 to 34 years old 0.218 0.094 -3.520 p < 0.001 [0.094; 0.509]

35 years old and above 0.341 0.157 -2.340 0.019 [0.138; 0.841]

Abortion (Not aborted) Aborted once 1.479 0.459 1.260 0.208 [0.804; 2.719]

Aborted more than once 0.424 0.161 -2.260 0.024 [0.201; 0.892]

Gender (Female) Male 1.886 0.374 3.200 0.001 [1.278; 2.783]

Number (Singleton) Multiple 0.214 0.108 -3.050 0.002 [0.079; 0.576]

APGAR (Below 4/10) 4/10 to 6/10 0.098 0.050 -4.550 p < 0.001 [0.036; 0.267]

7/10 and above 0.026 0.012 -7.680 p < 0.001 [0.010; 0.066]

Weight (Under 2500 g) 2500 g to 4500 g 0.213 0.057 -5.730 p < 0.001 [0.125; 0.361]

Above 4500 g 0.364 0.245 -1.500 0.134 [0.097; 1.364]

Head (Below 32 cm) 32 cm to 36 cm 0.349 0.090 -4.080 p < 0.001 [0.211; 0.579]

Above 36 cm 0.199 0.160 -2.020 0.044 [0.042; 0.957]
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Abstract:

Introduction:

The present study applies multiple events survival analysis to infant mortality at the Kigali University Teaching Hospital (KUTH) in
Rwanda.

Materials and Methods:

The primary dataset consists of newborns from KUTH recorded in the year 2016 and in the current paper, a complete case analysis
was used. Two events per subject were modeled namely death and the occurrence of at least one of the following conditions that may
also  cause  long-term  death  to  infants  such  as  severe  oliguria,  severe  prematurity,  very  low  birth  weight,  macrosomia,  severe
respiratory  distress,  gastroparesis,  hemolytic,  trisomy,  asphyxia  and  laparoschisis.  Covariates  of  interest  include  demographic
covariates namely the age and the place of residence for parents; clinical covariates for parents include obstetric antecedents, type of
childbirth  and  previous  abortion.  Clinical  covariates  for  babies  include  APGAR,  gender,  number  of  births  at  a  time,  weight,
circumference of the head, and height.

Results/Conclusion:

The results revealed that Wei, Lin and Weissfeld Model (WLWM) fit the data well. The covariates age, abortion, gender, number,
APGAR, weight and head were found to have a significant effect.

Keywords: Survival analysis, Multiple events, Rate function, Mean function, Intensity process, Infant mortality.

1. INTRODUCTION

The multiple events processes or processes that generate events repeatedly along the time are also known as the
recurrent  event  processes  [1].  Such  processes  are  adapted  to  the  repeated  event  data  found in  medicine  and  public
health, where the number of events exhibited is relatively small for a larger number of processes. Multiple events are
met in other domain such as social science, economics, manufacturing, insurance and reliability [2]. In multiple events
studies, the number of events in distinct time intervals is termed as “counts”, the gaps are the times between successive
event, while the “event intensity” is the conditional probability of new event, given the past event, per unit of time [1].

Cook and Lawless  [1]  discuss  different  multiplicative  approach models  such  as  the  modulated Poisson model
which consists of modeling the intensity processes given the history, and the Cox Models for ordered and unordered
events. The interest in this study will be taken on the multiplicative model with the ordered events. Ordered events are
based on the concept that the second event cannot occur before the first event, the third event cannot occur before the
second event and so on. The models adapted to ordered events include the Andersen-Gill Model (AGM), the Wei, Lin

* Address correspondence to this author at the School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag
X01 Scottsville - 3209 South Africa; Tel: +27710513309; E-mail: gatabazi001@gmail.com
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and Weissfeld Model (WLWM) and the Prentice, Williams and Peterson Model (PWPM) [3].

The AGM known also as the counting process approach [4], assumes that all event types are indistinguishable and
all events within the same subject are assumed to be independent [5]. Therneau [6] evokes a limitation of AGM of not
allowing multiple events to occur at the same time. The WLWM is also known as the marginal risk sets model [7]. The
WLWM assumes that events are unordered where each event has its own stratum and each data point appears in all
strata. This allows an analysis of multiple events occurring at the same time. The PWPM also known as the conditional
risk set model was proposed by Prentice, Williams and Peterson [8]. In PWPM, the set up of the dataset is the same as
that of the AGM but the analysis is stratified by failure order [9]. The PWPM can potentially analyse time to each event
from the previous event, this is known as the gap-time model. AGM, WLWM and PWPM have been alternatively used
on bladder cancer data and on the hospitalisation and death data presented by Castañeda and Gerritse [10].

The WLWM will be used in this study for modeling the risk of infant at Kigali University Teaching Hospital from
01-January-2016  to  31-December-2016  with  two  events  namely  death  or  occurrence  of  a  chronic  disease  or
complication that is due to the type of the dataset where the events of interest can occur on the same day taken as a unit
in this study.

Including the introduction, the study comprises four sections: Section 2 is the methodology of the study where the
mathematical  formulation  of  AGM,  PWPM  and  WLWM  is  described.  Section  3  gives  the  main  results  and
interpretation  and  Section  4  gives  conclusion.

2. METHODOLOGY

2.1. Mathematical Formulation of Cox Model with Multiple Events

Consider the time scale t, t > 0 and a sample of n individuals under study and let

Ni(t) denotes the number of events for individual i, i = 1, 2,..., n,

Ti1Ti2 denote the times of events for individual i,

Wij = Tij-Ti,j-1 denote the gaps or times between successive events of the individual i,

yi(t)’s denote the fixed or time-varying covarites.

Ni(t) is a counting process with intensity process

with  the history of events and covariates up to the time t [11]. The mean cumulative function (MCF) µi(t) and the
corresponding rate of occurrence function ρi(t) are defined in [1] as:

(1)

and

(2)

or

(3)

Applying differentiation on both sides of (1) and using (3) yields:

(4)

Cook and Lawless [1] discuss different multiplicative approaches models such as the regression model for the rate
function for both fixed and time-dependent covariates expressed by:

 𝜆𝑖(𝑡) = lim
Δ𝑡→0

𝑃(𝑁𝑖(𝑡+Δ𝑡)−𝑁𝑖(𝑡)=1|ℱ𝑡  

 𝜇𝑖(𝑡) = 𝐸[𝑁𝑖(𝑡)] 

 𝜌𝑖(𝑡) =
𝑑

𝑑𝑡
𝜇𝑖(𝑡). 

 𝜌𝑖(𝑡)𝑑𝑡 = 𝑑𝜇𝑖(𝑡). 

 𝐸[𝑑𝑁𝑖(𝑡] = 𝜌𝑖(𝑡)𝑑𝑡 

Δ𝑡

ℱ𝑡
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(5)

and the regression model for the mean functions for the fixed covariates, expressed by

where 

The second approach consisted of modeling the intensity process λi(t) given the history F, that is

(6)

The expression λk is the event specific baseline hazard for the kth event over time. Model (6) incorporate the AGM,
WLWM and the PWPM according to the type of the dataset. Specifically Model (6) yield PWPM gap model of the form

where B(t) = t-TN(t) is the time since the last event.

2.2. Likelihoods and Maximum Likelihood Estimation

The likelihoods constructions and maximum likelihood estimates for the multiplicative multiple events models are
well  developed  in  [1],  and  specifically  [12],  discussed  a  parametric  based  estimation  for  the  rate  function  model;
Lawless and Nadeau [13] addressed two ways of analyzing the rate function: The first one consists of specifying the
distribution of the intensity process λi(t) such as for example a Poisson process when λi(t) = ρi(y), or a negative binomial

process  if .  In  the  second way, a distribution of the intensity process is not specified, this

approach known as “robust” is potential to model means or variances [11].

Assuming that two events cannot occur simultaneously in continuous time, let ]0, τi[, the interval of time in which
the individual i is observed and ni the number of events of individual i along ]0, τi[, then the probability density function
for the outcome ni along ]0, τi[ is given by:

where

(7)

In (7), ϕ = (α, β); α is called a baseline parameter, τ = max(τ1, τ2,...τn) and:

Using the relationship (4), the log-likelihood can be written:

 𝜌𝑖(𝑡) = 𝜌0(𝑡)𝑒𝛽′𝑦𝑖(𝑡).  

 𝜇𝑖(𝑡) = 𝜇0(𝑡)𝑒𝛽′𝑦𝑖 

𝜇0(𝑡) = ∫
𝑡

0
𝜌0(𝑣)𝑑𝑣. 

 𝜆𝑖𝑘(𝑡|ℱ) = 𝜆0𝑘(𝑡)𝑒𝛽′𝑦𝑖𝑘(𝑡). 

 𝜆𝑖𝑘(𝑡|ℱ) = 𝜆0𝑘[𝐵(𝑡)]𝑒𝛽′𝑦𝑖𝑘(𝑡). 

𝜆𝑖(𝑡) =
1+𝑟𝑁𝑖(𝑡−)

1+𝑟𝜇𝑖(𝑡−)
𝜌𝑖(𝑡)

 𝐿(𝚽) = ∏𝑛
𝑖=1 𝐿𝑖(𝜙) 

 𝐿𝑖(𝚽) = ∏𝑛𝑖
𝑗=1 𝜌0(𝑇𝑖𝑗, 𝛼)𝑒𝛽′𝑌𝑖  𝑒− ∫

𝜏
0 𝑋𝑖(𝑣)𝜌0(𝑣,𝛼)𝑒𝛽′𝑌𝑖(𝑣)𝑑𝑣

. 

Xi(v) =

{
1 if individual i is at risk

0 otherwise.
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The maximum likelihood estimates are obtained by solving a system:

(8)

The numerical methods such as the Newton-Raphson method are used for solving the system (8). The adequacy of
parameters is checked by finding the elements Iαα, Iαβ, Iβα and Iββ of the information matrix I and assume that as n → ∞,

 [11].

2.3. Setup of Dataset in AGM, PWPM and WLWM

Numerical examples on the layout of dataset in the AGM, the PWPM and the WLWM are found in materials such
as [14 - 21]. Assume that n is a maximum number of events per subject, and that τk, k = 1, 2,...n, are times to events per
subject along the study time with range [0, T]. Under the AGM, All events are assumed to be in one stratum along the
study time. The study time T is subdivided into intervals defined by the times to events such as 0 - τ1; τ1-τ2; τn-T, with
event indicator for each time interval. The layout of dataset for PWPM is the same as for the AGM where for each
interval corresponds a specific stratum, making the number of time intervals per subject equal to the number of strata
per subject. The alternative PWPM based on gape time take 0 at lower bound of each interval per subject, the upper
bound is given by the gaps or τk-τk-1, k = 1, 2,...,n; the first and the last intervals are respectively 0 - τ1 and T-τn. Like in
PWPM, the kth  time interval per subject in WLWM is in the kth  stratum, k  = 1, 2,...,n.  In WLWM, the study time is
subdivided into n + 1 intervals each with lower bound 0 and upper bound equal to the time to event, the first and the last
intervals are respectively 0 - τ1 and 0 - T.

2.4. Dataset

The primary dataset of newborns at KUTH is recorded from 1st January to 31st December 2016 and a complete case
analysis is considered. Two events per subject are of interest: death and occurrence of at least one chronic disease or
complication. The chronic disease or complications recorded at KUTH are severe oliguria, severe prematurity, very low
birth weight, macrosomia, severe respiratory distress, gastroparesis, hemolytic, trisomy, asphyxia and laparoschisis.
Beside the event status and the time to an event, eleven covariates are of interest: demographic covariates that include
the age and the place of residence for parents; clinical covariates for parents which include obstetric antecedents, type
of childbirth and previous abortion. Clinical covariates for children include APGAR; gender, number of births at a time,
weight, circumference of the head, and height, Table 1 describes the variables of interest.

Table 1.  Description of variables in the dataset on newborns at Kigali  University Teaching Hospital  (KUTH) during the
period 01-January-2016 to 31-December-2016.

Variable Description
Codes/Values/Unit Variable Description Codes/Values/Unit Variable Description Codes/Values/Unit

Variable Description Codes/Values/Unit

Age Age of parent 0 = under 20, 1 = 20 years old to 34 years old, 2 = 35 years
old and above

Residence Indicator of the residential area of a parent 0 = rural, 1 = urban
Antecedents Indicator on whether a new born is the first or not 0 = Not the first new born, 1 = first newborn,

Abortion Indicator on whether a parent aborted previously 0 = not aborted, 1aborted once, 2 = aborted more than once

Childbirth Type of childbirth 0 = born using ventouse, 1 = born naturally, 2 = born after
surgery

Gender Gender of a newborn 0 = female, 1 = male
Number Indicator of the number of births at a time 0 = singleton, 1 = multiple

APGAR Score of appearance, pulse, grimaces, activity and
respiration of a newborn

0 = APGAR less than 4/10, 1 = APGAR from 4/10 to 6/10 to,
2 = APGAR greater or equal to 7/10

Weight Weight of a newborn 0 = under 2500 g, 1 = 2500 g to 4500 g, 2 = above 4500 g

 ln𝐿(Φ) = ∑𝑛
𝑖=1 ∫

𝜏

0
𝑋𝑖(𝑣)[ln𝜌𝑖(𝑣, Φ)𝑑𝑁𝑖(𝑣) − 𝜌𝑖(𝑣, Φ)𝑑𝑣] 

 

{
∂ lnL(ΦΦΦ)

∂ααα
= 0

∂ lnL(ΦΦΦ)
∂βββ

= 0

Φ̂ΦΦ−ΦΦΦ N
(

0,III −1(Φ̂ΦΦ)
)
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Variable Description
Codes/Values/Unit Variable Description Codes/Values/Unit Variable Description Codes/Values/Unit

Head Head circumference of a newborn 0 below 32 cm, 1 = 32 cm to 36 cm, 2 = above 36 cm
Height Height of a new born 0 = below 46 cm, 1=46 cm to 54 cm, 2 = above 54 cm
Time Time from recruitment to study termination Days

Event Indicator describing if death occurred during the study
time or not 0 = censored, 1 = dead

Indicator on the rank of records per subject 1 = first record, 2 = second record

The layout follows the indication provided by the WLWM, Table 2 gives the first 50 entries, the full dataset can be
found via the authors of this article.

Table 2. First 50 entries of the dataset on infant mortality at KUTH from 01-January-2016 to 31-December-2016.

No Id Age Residence Antecedents Abortion Childbirth Gender Number Apgar Weight Head Height Tstart Tstop Event N_events
1 1 0 0 0 2 0 0 2 1 1 1 0 39 0 1
2 1 0 0 1 1 1 0 2 1 1 1 0 212 0 1
3 1 1 1 0 1 1 0 2 1 1 1 0 196 0 1
4 1 1 0 0 2 0 0 2 1 1 1 0 128 0 1
5 1 0 0 0 2 1 0 2 1 1 1 0 335 0 1
6 1 1 0 0 1 0 0 2 1 1 1 0 262 0 1
7 2 0 0 0 1 0 0 2 1 1 1 0 214 0 1
8 1 0 0 0 1 1 0 2 1 1 1 0 228 0 1
9 2 1 0 0 1 0 0 2 1 1 1 0 355 0 1
10 1 1 1 0 2 1 0 2 0 1 1 0 25 0 1
11 1 1 0 0 2 0 0 2 0 0 0 0 256 0 1
12 2 0 1 0 2 0 1 2 0 1 1 0 179 0 1
13 2 0 1 0 2 0 1 2 0 1 1 0 179 0 1
14 2 0 1 0 2 1 1 2 0 0 0 0 179 0 1
15 2 0 0 0 2 1 0 2 1 1 1 0 348 0 1
16 1 1 0 1 2 0 0 2 1 1 1 0 305 0 1
17 1 1 0 0 1 0 0 2 1 1 1 0 45 0 1
18 1 0 0 0 2 1 0 2 1 1 1 0 129 0 1
19 1 1 0 0 2 1 0 0 2 1 1 0 0 1 1
19 1 1 0 0 2 1 0 0 2 1 1 0 0 1 2
20 1 1 1 0 2 0 0 2 1 1 1 0 137 0 1
21 0 1 1 0 1 0 0 2 1 1 1 0 293 0 1
22 2 1 0 2 1 0 0 2 1 1 1 0 70 0 1
25 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1
25 1 0 1 0 1 1 0 1 1 1 1 0 1 1 2
23 1 1 0 0 1 0 0 2 1 1 1 0 218 0 1
24 1 1 0 0 1 1 0 2 1 1 1 0 260 0 1
26 2 0 0 0 2 0 0 2 1 1 1 0 24 0 1
27 1 1 0 0 2 0 0 2 1 1 1 0 16 0 1
28 1 0 1 0 2 1 0 2 0 0 0 0 318 0 1
29 2 0 1 0 2 0 0 2 0 0 0 0 1 1 1
29 2 0 1 0 2 0 0 2 0 0 0 0 6 1 2
30 1 1 0 0 1 0 0 2 1 1 1 0 249 0 1
31 1 1 1 0 2 0 0 2 1 1 1 0 311 0 1
32 1 1 0 0 1 1 0 2 1 1 1 0 357 0 1
33 1 1 0 0 1 1 0 2 0 1 1 0 232 0 1
34 1 1 1 0 1 1 0 2 1 1 1 0 356 0 1
35 1 1 0 0 1 0 0 2 1 1 1 0 140 0 1
36 1 1 1 0 2 0 0 2 1 1 2 0 272 0 1

(Table 1) contd.....
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No Id Age Residence Antecedents Abortion Childbirth Gender Number Apgar Weight Head Height Tstart Tstop Event N_events
37 2 0 1 0 2 0 0 2 1 1 1 0 203 0 1
38 1 1 0 0 2 1 0 2 1 2 0 0 235 0 1
39 1 1 0 0 2 0 0 2 1 1 1 0 305 0 1
40 1 1 1 0 1 0 0 2 1 1 1 0 263 0 1
41 2 0 0 2 2 0 0 2 0 0 0 0 192 0 1
42 1 1 0 0 1 1 0 2 1 1 1 0 248 0 1
43 1 1 0 0 1 1 0 2 0 0 0 0 1 1 1
43 1 1 0 0 1 1 0 2 0 0 0 0 4 1 2
44 1 1 0 0 1 1 0 2 1 1 1 0 254 0 1
45 2 1 0 0 0 0 0 2 1 1 1 0 333 0 1
46 1 1 0 0 2 1 0 2 1 1 1 0 39 0 1

3. RESULTS AND INTERPRETATION

Model is implemented by using STATA package, version 14 and the dataset on infant mortality at KUTH with a
portion given in Table 2. The WLWM is used since death can occur without a previous chronic disease or complication
and the two events could occur at the same time per subject.

Tables 3, 4 and 5 present the estimates of the hazard ratios of the unadjusted WLWM with ties handling by Breslow,
Efron and Cox approaches, respectively. The results in the later two approaches are not far from that of the default
method (Breslow). Significant differences in levels are observed for the same covariates in all approaches for the age,
abortion, gender, number, APGAR, weight and head where p-values are less or equal to.

Table 3. Unadjusted WLWM for the infant mortality at KUTH from 01-January-2016 to 31-December-2016 with Breslow
method of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err z P > z 95% Conf. Int.
Age (Under 20 years old) 20 to 34 years old 0.277 0.997 -3.570 p < 0.001 [0.137; 0.560]

35 years old and above 0.395 0.157 -2.330 0.020 [0.181; 0.863]
Residence (Rural) Urban 0.847 0.139 -1.020 0.309 [0.614; 1.167]

Antecedents (Not 1st newborn) 1st new born 0.806 0.157 -1.100 0.270 [0.550; 1.182]
Abortion (Not aborted) Aborted once 1.405 0.398 1.200 0.231 [0.806; 2.448]

Aborted more than once 0.479 0.161 -2.190 0.028 [0.248; 0.925]
Childbirth (Ventouse) Natural 0.873 0.491 -0.240 0.808 [0.290; 2.627]

Surgery 1.115 0.613 0.200 0.843 [0.380; 3.274]
Gender (Female) Male 1.740 0.296 3.260 0.001 [1.247; 2.429]

Number (Singleton) Multiple 0.409 0.131 -2.790 0.005 [0.218; 0.766]
APGAR (Below 4/10) 4/10 to 6/10 0.377 0.112 -3.300 0.001 [0.211; 0.673]

7/10 and above 0.130 0.036 -7.460 p < 0.001 [0.076; 0.222]
Weight (Under 2500 g) 2500 g to 4500 g 0.250 0.068 -5.070 p < 0.001 [0.146; 0.427]

Above 4500 g 0.442 0.285 -1.270 0.206 [0.125; 1.565]
Head (Below 32 cm) 32 cm to 36 cm 0.456 0.128 -2.800 0.005 [0.263; 0.789]

Above 36 cm 0.290 0.219 -1.640 0.102 [0.066; 1.278]
Height (Below 46 cm) 46 cm to 54 cm 0.894 0.276 -0.360 0.716 [0.488; 1.637]

Above 54 cm 1.670 1.264 0.680 0.498 [0.379; 7.361]

Table 4.  Unadjusted WLWM for the infant  mortality  at  KUTH from 01-January-2016 to 31-December-2016 with Efron
method of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err. z P > z 95% Conf. Int.
Age (Under 20 years old) 20 to 34 years old 0.230 0.083 -4.080 p < 0.001 [0.114; 0.466]

35 years old and above 0.324 0.129 -2.840 0.005 [0.149; 0.706]
Residence (Rural) Urban 0.831 0.137 -1.120 0.261 [0.602; 1.147]

Antecedents (Not 1st newborn) 1st newborn 0.756 0.149 -1.420 0.156 [0.513; 1.113]
Abortion (Not aborted) Aborted once 1.393 0.396 1.170 0.244 [0.798; 2.430]

Aborted more than once 0.452 0.154 -2.340 0.020 [0.232; 0.880]

(Table 2) contd.....
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Covariate (reference) Level Hazard Ratio Std. Err. z P > z 95% Conf. Int.
Childbirth (Ventouse) Natural 0.736 0.408 -0.550 0.580 [0.249; 2.179]

Surgery 0.921 0.499 -0.150 0.880 [0.319; 2.661]
Gender (Female) Male 1.823 0.312 3.520 p < 0.001 [1.304; 2.549]

Number (Singleton) Multiple 0.324 0.106 -3.430 0.001 [0.170; 0.617]
APGAR (Below 4/10) 4/10 to 6/10 0.214 0.065 -5.090 p < 0.001 [0.118; 0.387]

7/10 and above 0.070 0.020 -9.520 p < 0.001 [0.041; 0.121]
Weight (Under 2500 g) 2500 g to 4500 g 0.231 0.063 -5.340 p < 0.001 [0.135; 0.395]

Above 4500 g 0.412 0.269 -1.360 0.174 [0.115; 1.479]
Head (Below 32 cm) 32 cm to 36 cm 0.422 0.119 -3.060 0.002 [0.243; 0.734]

Above 36 cm 0.246 0.187 -1.840 0.065 [0.055; 1.093]
Height (Below 46 cm) 46 cm to 54 cm 0.917 0.285 -0.280 0.781 [0.499; 1.687]

Above 54 cm 1.692 1.283 0.690 0.488 [0.383; 7.476]

Table  5.  Unadjusted  WLWM  for  the  infant  mortality  at  KUTH  from  01-January-2016  to  31-December-2016  with  Cox
method of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err. z P > z 95% Conf. Int.
Age (Under 20 years old) 20 to 34 years old 0.193 0.085 -3.730 p < 0.001 [0.081; 0.458]

35 years old and above 0.267 0.128 -2.760 0.006 [0.104; 0.682]
Residence (Rural) Urban 0.766 0.150 -1.360 0.175 [0.521; 1.126]

Antecedents (Not 1st newborn) 1st newborn 0.763 0.185 -1.120 0.264 [0.475; 1.226]
Abortion (Not aborted) Aborted once 1.404 0.453 1.050 0.293 [0.746; 2.643]

Aborted more than once 0.378 0.152 -2.420 0.015 [0.172; 0.830]
Childbirth (Ventouse) Natural 0.732 0.481 -0.470 0.635 [0.202; 2.653]

Surgery 1.016 0.654 0.030 0.980 [0.288; 3.590]
Gender (Female) Male 1.991 0.405 3.390 0.001 [1.336; 2.966]

Number (Singleton) Multiple 0.218 0.111 -3.000 0.003 [0.080; 0.589]
APGAR (Below 4/10) 4/10 to 6/10 0.080 0.042 -4.810 p < 0.001 [0.029; 0.224]

7/10 and above 0.021 0.011 -7.840 p < 0.001 [0.008; 0.056]
Weight (Under 2500 g) 2500 g to 4500 g 0.236 0.070 -4.850 p < 0.001 [0.131; 0.423]

Above 4500 g 0.378 0.257 -1.430 0.153 [0.100; 1.436]
Head (Below 32 cm) 32 cm to 36 cm 0.391 0.119 -3.100 0.002 [0.216; 0.708]

Above 36 cm 0.212 0.171 -1.920 0.055 [0.043; 1.033]
Height (Below 46 cm) 46 cm to 54 cm 0.828 0.283 -0.550 0.582 [0.423; 1.620]

Above 54 cm 1.706 1.351 0.670 0.500 [0.361; 8.060]

The adjusted WLWM with Breslow74, Efron77 and Cox72 methods of ties handling is summarised in Tables 6, 7
and 8 and the results are not critically different.

Table  6.  Adjusted WLWM for  the  infant  mortality  at  KUTH from 01-January-2016 to  31-December-2016 with  Breslow
method of ties handling.

Covariate (reference) Level Hazard ratio Std. Err. z P > z 95% Conf. Int.
Age (Under 20 years old) 20 to 34 years old 0.307 0.107 3.380 0.001 [0.155; 0.609 ]

35 years old and above 0.472 0.179 -1.980 0.047 [0.225; 0.992]
Abortion (Not aborted) Aborted once 1.482 0.406 1.430 0.152 [0.866; 2.537]

Aborted more than once 0.541 0.175 -1.900 0.057 [0.287; 1.019]
Gender (Female) Male 1.672 0.280 3.070 0.002 [1.204; 2.321]

Number (Singleton) Multiple 0.401 0.128 -2.860 0.004 [0.214; 0.750]
APGAR (Below 4/10) 4/10 to 6/10 0.414 0.119 -3.080 0.002 [0.236; 0.726]

7/10 and above 0.144 0.038 -7.350 p < 0.001 [0.086; 0.242]
Weight (Under 2500 g) 2500 g to 4500 g 0.238 0.060 -5.650 p < 0.001 [0.144; 0.391]

Above 4500 g 0.447 0.284 -1.270 0.205 [0.129; 1.550]
Head (Below 32 cm) 32 cm to 36 cm 0.420 0.100 -3.660 0.000 [0.264; 0.669]

Above 36 cm 0.284 0.210 -1.700 0.089 [0.067; 1.211]

(Table 4) contd.....
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Table 7. Adjusted WLWM for the infant mortality at KUTH from 01-January-2016 to 31-December-2016 with Efron method
of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err. z P > z 95% Conf. Int.
Age (Under 20 years old) 20 to 34 years old 0.262 0.092 -3.810 p < 0.001 [0.132; 0.522]

35 years old and above 0.407 0.155 -2.360 0.018 [0.193; 0.859]
Abortion (Not aborted) Aborted once 1.487 0.408 1.440 0.149 [0.868; 2.546]

Aborted more than once 0.520 0.170 -2.000 0.046 [0.274; 0.987]
Gender (Female) Male 1.764 0.297 3.370 0.001 [1.268; 2.453]

Number (Singleton) Multiple 0.308 0.101 -3.580 p < 0.001 [0.162; 0.586]
APGAR (Below 4/10) 4/10 to 6/10 0.249 0.073 -4.730 p < 0.001 [0.140; 0.442]

7/10 and above 0.081 0.022 -9.400 p < 0.001 [0.048; 0.137]
Weight (Under 2500 g) 2500 g to 4500 g 0.222 0.057 -5.910 p < 0.001 [0.135; 0.366]

Above 4500 g 0.430 0.276 -1.310 0.189 [0.122; 1.512]
Head (Below 32 cm) 32 cm to 36 cm 0.388 0.093 -3.940 p < 0.001 [0.243; 0.622]

Above 36 cm 0.235 0.175 -1.940 0.052 [0.054; 1.014]

Table 8. Adjusted WLWM for the infant mortality at KUTH from 01-January-2016 to 31-December-2016 with Cox method
of ties handling.

Covariate (reference) Level Hazard Ratio Std. Err. z P > z 95% Conf. Int.
Age (Under 20 years old) 20 to 34 years old 0.218 0.094 -3.520 p < 0.001 [0.094; 0.509]

35 years old and above 0.341 0.157 -2.340 0.019 [0.138; 0.841]
Abortion (Not aborted) Aborted once 1.479 0.459 1.260 0.208 [0.804; 2.719]

Aborted more than once 0.424 0.161 -2.260 0.024 [0.201; 0.892]
Gender (Female) Male 1.886 0.374 3.200 0.001 [1.278; 2.783]

Number (Singleton) Multiple 0.214 0.108 -3.050 0.002 [0.079; 0.576]
APGAR (Below 4/10) 4/10 to 6/10 0.098 0.050 -4.550 p < 0.001 [0.036; 0.267]

7/10 and above 0.026 0.012 -7.680 p < 0.001 [0.010; 0.066]
Weight (Under 2500 g) 2500 g to 4500 g 0.213 0.057 -5.730 p < 0.001 [0.125; 0.361]

Above 4500 g 0.364 0.245 -1.500 0.134 [0.097; 1.364]
Head (Below 32 cm) 32 cm to 36 cm 0.349 0.090 -4.080 p < 0.001 [0.211; 0.579]

Above 36 cm 0.199 0.160 -2.020 0.044 [0.042; 0.957]

The  adjusted  model  by  default  (Breslow)  suggests  that  the  risk  of  death  or  attracting  a  chronic  disease  or
complication of babies whose parents are from 20 years and 34 years old is 0.307 times that of babies whose parents are
under 20 years old (95% CI:0.155-0.609, p = 0.001). The risk of death or attracting a chronic disease or complication of
babies whose parents aborted more than once previously is 0.541 times that of babies whose parents did not aborted
previously (95% CI:0.287-1.019, p = 0.057). The risk of death or attracting a chronic disease or complication of babies
whose parents are 35 years old and above is 0.472 times that of babies whose parents are under 20 years old (95%
CI:0.225-0.992, p = 0.047). The risk of death or attracting a chronic disease or complication for male babies is 1.672
times  that  of  female  babies  (95%  CI:1.204-2.321,  p  =  0.002).  The  risk  of  death  or  attracting  a  chronic  disease  or
complication of multiple babies is 0.401 times that of singleton babies (95% CI:0.214-0.750, p = 0.004) The risk of
death or attracting a chronic disease or complication for babies whose APGAR range from 4/10 to 6/10 is 0.414 times
that of babies whose APGAR is below 4/10 (95% CI:0.236-0.726, p = 0.002). The risk of death or attracting a chronic
disease  or  complication  for  babies  whose  APGAR  range  from  7/10  to  10/10  is  0.144  times  that  of  babies  whose
APGAR  is  below  4/10  (95%  CI:0.086-0.242,  p  <  0.001).  The  risk  of  death  or  attracting  a  chronic  disease  or
complication for babies whose weight range from 2500 g to 4500 g is 0.238 times that of babies whose weight is below
2500 g (95% CI:0.144-0.391, p < 0.001). The risk of death or attracting a chronic disease or complication for babies
whose circumference of head range from 32 cm to 36 cm is 0.420 times that of babies whose circumference of head is is
below 32 cm (95% CI:0.264-0.669, p < 0.001). The risk of death or attracting a chronic disease or complication for
babies whose circumference of head is above 36 cm is 0.284 times that of babies whose circumference of head is is
below 32 cm (95% CI:0.067-1.211, p = 0.067).
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CONCLUSION

This paper reviewed different multiplicative multiple events regression models of the time to event survival data
namely the mean function regression model, the rate function regression model and the intensity process regression
model. The intensity process regression model incorporates the popular models such as Andersen- Gill Model (AGM),
Wei, Lin and Weisfeld Model (WLWM) and the Prentice, Williams and Peterson Model (PWPM) following on the
layout of the dataset. It was found that data collected at Kigali University Teaching Hospital for 2117 newborns during
365 days of the year 2016 follows the conditions of the WLWM.

The results of the unadjusted WLWM by Breslow, Efron and Cox approaches of ties handling revealed significance
on the age of female parents, information on previous abortion, gender of newborn, number of newborns at a time,
APGAR, weight of a newborn and the circumference of the head of a newborn. The results of adjusted WLWM by
Breslow, Efron and Cox are not critically different. The default approach (Breslow) indicated that the risk of death or
attracting a chronic disease or clinical complication of infant is higher in male babies as compared to female babies; it is
lower for babies whose parents are from 20 to 34 years old and above 34 years old as compared to babies whose parents
are under 20 years old. Babies whose APGAR fall in intervals 4/10 to 7/10 and 7/0 to 10/10 were found to have a better
survival outcome than those born with APGAR less than 4/10. Babies with normal weight and overweight were found
to have a lower risk as compared to underweight babies. Babies with a normal circumference of head and those with
large circumference of head were found to survive better than babies with the relatively small head.

Analysis was limited to only 11 variables. Unavailable variables concerning parents that could improve models are,
for  example,  demographic  variables  such as  education level,  employment  and income,  behavioral  variables  such as
smoking habit, alcohol consumption and dietary and physio-therapeutic variables such as sports activity level. These
variables are not recorded in registry at KUTH.

The  future  work  will  consist  of  testing  parametric  distribution  that  could  be  adapted  to  the  infant  mortality  at
KUTH. The suitable parametric model will be fitted by using appropriate parametric regression model.
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Abstract:

Introduction:

Resampling technique as a way of overcoming instability in Cox Proportional hazard model is used for measuring the risk and related standard
error for the infant mortality, given socio-economic and clinical covariates for mother and children at the Kigali University Teaching Hospital in
Rwanda.

Methods:

Bootstrap and jackknife Cox proportional hazards models was applied to N=2117 newborn data collected in 2016 at the Kigali University Teaching
Hospital in Rwanda.

Results:

The unadjusted models revealed significance of the age of female parents, information on previous abortion, gender of a newborn, number of
newborns at a time, APGAR, the weight of a newborn and the circumference of the head of a newborn.

Conclusion:

Statistical  analysis  supports  two  major  findings:  1)  parents  under  20  years  of  age  indicate  a  relatively  higher  risk  of  infant  death,  and  2)
abnormality  in  the  newborn's  head  and  weight  indicates  a  relatively  higher  risk  of  infant  mortality.  Recommendations  include  avoidance  of
pregnancy until after age 20 and clinically recommended nutrition for the mother during pregnancy to decrease the risk of infant mortality.
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1. INTRODUCTION

The  resampling  in  Cox  proportional  hazards  model
consists  of  conducting  the  Cox  Proportional  Hazards  Model
(CPHM) on a given number of samples obtained after applying
a relevant technique of resampling. The popular nonparametric
techniques  of  resampling  include  bootstrap  method  which  is
based  on  random  sampling  with  replacement  [1],  jackknife
method which consists of making samples by leaving out one
observation a time [1], and jackknife after bootstrap [2]. The
interest  in  this  study  will  be  on  Bootstrap  Cox  Proportional
Hazards  Model  (BCPHM)  and  Jackknife  Cox  Proportional
Hazards  Model  (JCPHM).

* Address correspondence to this author at the School of Mathematics, Statistics
and Computer  Science University of  KwaZulu-Natal  Pietermaritzburg Private
Bag  X  01  Scottsville  3209,  South  Africa;  Tel:  +27710513309;  E-mail:
gatabazi001@gmail.com

Hamada  [3]  points  out  the  aim  of  using  the  resampling
technique  in  CPHM.  Firstly  the  resampling  allows  the
assessment of the stability of the CPHM. The instability may
be caused by the  correlation of  the  covariates.  Secondly,  the
resampling  may  be  used  when  the  sample  size  is  relatively
small. Model adequacy may be satisfied by selecting  variable
on  which  the  model  is  stable  rather  than  testing  the
proportionality  of  variables.

BCPHM  and  JCPHM  have  been  extensively  applied  to
different studies. In [4], bootstrap is applied for estimating the
survival function and the hazard rate with respective standard
errors.  Belašková,  Fišerová,  and  Krupicková  [5]  published  a
clinical study which used BCPHM with consideration of right
censoring and delayed entries.  The study of  Belašková et  al.
adapted  BCPHM  due  to  the  small  sample  size  (N=61).  Xu,
Sen, and Ying [6] conducted the BCPHM with consideration of
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a  change-point  along  the  study  time  with  right  censored
survival data. The study proved the consistency of the model
by  making  a  comparison  with  the  model  based  on  data
simulation. The JCPHM was adopted by Xiao, Yao-Hua, and
Dong-Sheng  [7]  together  with  a  random  weighting  which
consists  of  approximating  the  distribution  of  the  maximum
partial likelihood estimates in the CPHM [8 - 10]. Several other
manuscripts also discussed the use of the resampled survival
analysis  including [11 -  17].  In  this  study,  the  BCPHM with
1000  bootstrap  replicates  and  the  JCPHM  were  used  and
compared to the CPHM in modeling the risk of infant death at
the Kigali University teaching Hospital from 01-January-2016
to  31-December-2016.  The  study  comprises  five  sections
including  the  introduction  presented  in  Section  1.  Section  2
presents  the  methods  of  the  study  where  mathematical
formulation of bootstrap and jackknife are reviewed. Section 3
gives  the  main  results.  Section  4  discusses  the  results  and
Section 5 concludes the paper.

2. METHODOLOGY

2.1. Bootstrap Method

2.1.1. Bootstrap

Assume a sample

 are  independent  and  identically  distributed
with  distribution   where   is  the  statistical  parameter  of
interest.  Consider the distribution function  of a random
variable  The  bootstrap  method  as  described by
Efron and Tibshirani [1], consists of generating

where   are  random  samples  of  size  n  drawn with

replacement from the sample x.  The varibles  are
independent and identically  distributed  with  distribution 
given x;  is an estimator of  from x; B is a number of
bootstrap samples (replications).

2.1.2. Bootstrap Standard Error

Assume  B  bootstrap  samples  
Efron and Tibshirani [1] propose the estimated standard error
of the bootstrap statistic of interest  as:

(1)

where *(b) is an estimate of the statistic of interest from the
bth bootstrap sample, b=1,2, …, B.

2.1.3. Bootstrap Cox Proportional Hazard Model (BCPHM)

Assume a CPHM, h (t|xi) over the p fixed covariates with

values  and  the  hazard  function
h(t) when values of all covariates are zeros, that is

(2)

[18],  where   is  a  p-dimensional
vector of model parameters.

Consider  three  approaches  of  approximating  the  partial
likelihood in the presence of tied events namely Breslow [19]
approximation of the partial likelihood function given by:

(3)

Efron [20] approximation of the partial likelihood function is
given by:

(4)

and Cox [21] approximation of the partial likelihood function
is given by:

(5)

where  is the set of dj individuals drawn from the
risk set  at time t(j). The inference of model (2) based on
bootstrap consists of applying model (2) to each of the B boot-
strap  samples   of  covariates  .
Bootstrap  model  parameter  estimation  uses  either  Breslow,
Efron  or  Cox  approach.  The  bootstrap  standard  error  is
obtained  by  using  Equation  (1).

2.2. Jackknife Method

2.2.1. Jackknife

Assume a sample

where  are the values of the covariate x. Let  be a
statistic  of  interest.  The jackknife samples consist  of  leaving
out one observation at a time, that is n samples

 [1]. The
jackknife standard error estimate as proposed [1], is given as:

(6)

where   is  a  statistic  of  interest  for  the  ith

jackknife sample.

2.2.2. Jackknife Cox Proportional Hazard Model (JCPHM)

Model  (2)  based  on  jackknife  is  made  by  applying  it  to
each of the n  jackknife samples  [1, n] of covariates

. Either Breslow, Efron or Cox approach is used
for  estimating  the  jackknife  model  parameters,  with  the
standard  error  given  by  Eq  (6).

 𝐱 = 𝑥 , 𝑥 , … , 𝑥𝑛, 

𝐱∗ = 𝐱∗ ,  𝐱∗ , … ,  𝐱∗ , 

                          ̂ = √ − ∑ [𝜃∗ 𝑏 − ∑ 𝜃∗ 𝑏= ]=                                                                   

                           ℎ |𝐱 = ℎ exp 𝜷′𝐱                                    𝜷 = 𝛽 , 𝛽 , … , 𝛽𝑝 ′

 𝑥 , ∈[ ,𝑛] 𝐹𝜃 𝐹𝑅𝑛𝑅𝑛 𝐱, 𝐹𝜃 . 𝜃

𝜃
𝜃

 𝐱 = (𝑥 , 𝑥 , … , 𝑥 𝑝)

𝐱 , ∈[ , ]∗ 𝐱 , ∈[ , ]∗
  �̂�𝜃,𝑛  𝐹𝜃   �̂�𝜃,𝑛 

s 𝐱∗ ,  𝐱∗ , … ,  𝐱∗ . 

                           𝐿 𝜷 = ∏ 𝑒𝜷′𝐬
[∑ 𝑒𝜷′𝐱∈ℜ 𝑡 ]𝑑𝑟= ;                                           

        

   

      𝐿𝐸 𝜷 = ∏ 𝑒𝜷′𝐬∏ [∑ 𝑒𝜷′𝐱∈ℜ 𝑡 − −𝑑 ∑ 𝑒𝜷′𝐱∈𝔇 𝑡 ]𝑑=1
𝑟= ;    

            

           𝐿 𝜷 = ∏ 𝑒𝜷′𝐬∑ 𝑒𝜷′𝐒∈ℜ 𝑡 ,   𝑑𝑟=                     

ℜ( ,   ) ℜ( )
 𝐱∗ , ∀ ∈ [ , 𝐵] 𝐱 , ∀ ∈ [ , 𝑝]

           ̂ = √𝑛−𝑛 ∑ [𝜃∗ − 𝑛 ∑ 𝜃∗𝑛= ]𝑛=                    

𝐱 = 𝑥 , 𝑥 , … , 𝑥𝑛, 𝑥 , ∈[ ,𝑛] 𝜃
𝐱∗ = 𝑥 , 𝑥 , … , 𝑥 , 𝑥 , … , 𝑥𝑛  ∀ ∈ [ , 𝑛]

 𝜃∗ , ∈ [ , 𝑛]

 

𝐱∗  ∀ ∈𝐱 , ∀ ∈ [ , 𝑝]

modelling



138   The Open Public Health Journal, 2019, Volume 12 Gatabazi et al.

2.3. Dataset

Table  1  describes  the  variables  of  interest  and  Table  2
summarises the dataset. The full dataset can be obtained from
the authors of this article.

Table  1.  Description  of  variables  in  the  dataset  on
newborns at Kigali University Teaching Hospital (KUTH)
during the period 01-January-2016 to 31-December-2016.

Variable Description Codes/Values/Unit

Age Age of parent
0=under 20, 1=20 years old to
34 years old, 2=35 years old
and above

Residence
Indicator of the
residential area of a
parent

0=rural, 1=urban

Antecedents
Indicator on whether a
new born is the first or
not

0=Not the first newborn, 1 =
first newborn,

Abortion
Indicator on whether a
parent aborted
previously

0=not aborted, 1=aborted once,
2= aborted more than once

Child birth Type of child birth 0=born using ventouse, 1=born
naturally, 2= born after surgery

Gender Gender of a newborn 0=female, 1=male

Number Indicator of the number
of births at a time 0=singleton, 1=multiple

APGAR

Score of appearance,
pulse, grimaces, activity
and respiration of a
newborn

0= APGAR less than 4/10,
1=APGAR from 4/10 to 6/10,
2=APGAR greater or equal to
7/10

Weight Weight of a newborn 0 = under 2500 g, 1= 2500 g to
4500 g, 2= above 4500 g

Head Head circumference of a
newborn

0= below 32 cm, 1=32 cm to 36
cm, 2=above 36 cm

Height Height of a newborn 0=below 46 cm, 1=46 cm to 54
cm, 2=above 54 cm

Time Time from recruitment
to study termination Days

Event
Indicator describing if
death occurred during
the study time or not

0=censored, 1=dead

n_events Indicator on the rank of
records per subject 1=first record, 2=second record

The time to event primary dataset of 2117 newborns at the
Kigali  University  Teaching  Hospital  (KUTH)  was  recorded
from  1st  January  to  31st  December  2016.  A  complete  case
analysis is considered where the event is the death of the infant.

Eighty-two  babies  died  during  the  study  time,  69  stillborn
babies were recorded and 1966 babies were censored. Eleven
covariates of interest are demographic covariates that include
the  age  and  the  place  of  residence  for  parents;  clinical
covariates  for  parents  include  obstetric  antecedents,  type  of
childbirth  and  previous  abortion.  Clinical  covariates  for
children include APGAR; gender, number of births at a time,
weight, circumference of the head, and height. The minimum
sample size according to Peduzzi et al. [22] is  where
k is the number of predictor variables and p is the number of
events. This suggests the minimum sample size at KUTH as:

Table 2. Summary of newborns under study.

Total Observations 2117
Deaths during the study time 82 (3.873%)
Stillborn babies 69 (3.259%)
Total events 151 (7.132 %)
Censored babies 1966 (92.867%)

3. RESULTS

STATA-15  displays  the  results  in  three  tables:  Table  3
presents estimates of unadjusted CPHM, BCPHM, JCPHM and
corresponding adjusted models,  by using Breslow estimation
method.  Both  unadjusted  and  adjusted  CPHM,  BCPHM  and
JCPHM  by  Efron  and  Cox  estimation  are  also  presented  in
Tables 4 and 5. The results displayed by the jackknife model
are  relatively  close  to  that  of  the  Cox  proportional  hazards
model (Table 3). The standard errors in JCPHM and CPHM are
not  critically different  for  all  covariates  except  for  the upper
levels of covariates weight, head and height where the standard
error  in  JCPHM  is  more  than  40  times  that  of  CPHM.  The
critical difference in standard error is also observed in BCPHM
for the upper levels of covariates weight, head and height, for
all levels of covariate childbirth and for the covariate number
where the standard error is relatively higher in BCPHM. Also,
BCPHM  does  not  take  age  and  number  as  significant
covariates unlike the fact of JCPHM and CPHM where these
covariates  are  included  in  significant  covariates.  Following
suggestions  in  [23],  the  χ2  test  statistics  suggest  a  higher
performance  of  the  JCPHM  as  compared  to  the  CPHM  and
BCPHM  since  the  value  of  the  χ2  is  relatively  everywhere
lower for the JCPHM.

Table 3. Breslow estimation.

CPHM BCPHM JCPHM
Covariate

(Reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20
years old)

20 to 34
years old 0.172 0.086 -3.540 p <

0.001
[0.065;
0.456] 0.172 0.254 -1.190 0.234 [0.009;

3.124] 0.172 0.089 -3.400 0.001 [0.062;
0.475]

35 years
old and
above

0.216 0.117 -2.840 0.005 [0.075;
0.623] 0.216 0.323 -1.020 0.306 [0.012;

4.058] 0.216 0.124 -2.660 0.008 [0.070;
0.667]

Residence
(Rural) Urban 1.014 0.240 0.060 0.954 [0.637;

1.614] 1.014 0.277 0.050 0.960 [0.594;
1.732] 1.014 0.285 0.050 0.961 [0.585;

1.758]

 

 𝑁 = 𝑝  

𝑁 = ×. 7 ≈ . 
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CPHM BCPHM JCPHM
Covariate

(Reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Antecedents
(Not 1st
newborn)

1st
newborn 0.778 0.221 -0.880 0.377 [0.446;

1.358] 0.778 0.223 -0.880 0.381 [0.444;
1.364] 0.778 0.218 -0.900 0.370 [0.449;

1.347]

Abortion (Not
aborted)

Aborted
once 1.646 0.648 1.270 0.206 [0.761;

3.562] 1.646 0.695 1.180 0.238 [0.720;
3.763] 1.646 0.664 1.230 0.217 [0.746;

3.633]
Aborted
more than
once

1.111 0.503 0.230 0.817 [0.457;
2.700] 1.111 2.084 0.060 0.955 [0.028;

43.927] 1.111 0.556 0.210 0.834 [0.416;
2.966]

Childbirth
(Ventouse) Natural 0.593 0.449 -0.690 0.490 [0.135;

2.612] 0.593 3.846 -0.080 0.936
[0.000;
1.963x

105]
0.593 0.469 -0.660 0.509 [0.126;

2.797]

Surgery 0.777 0.580 -0.340 0.736 [0.180;
3.358] 0.777 5.021 -0.040 0.969

[0.000;
2.443x

105]
0.777 0.611 -0.320 0.749 [0.166;

3.630]

Gender
(Female) Male 1.964 0.472 2.810 0.005 [1.227;

3.146] 1.964 0.480 2.760 0.006 [1.217;
3.170] 1.964 0.504 2.630 0.009 [1.188;

3.248]
Number
(Singleton) Multiple 0.306 0.136 -2.660 0.008 [0.128;

0.732] 0.306 0.730 -0.500 0.620 [0.003;
32.826] 0.306 0.136 -2.670 0.008 [0.128;

0.729]
APGAR
(Below 4/10)

4/10 to
6/10 0.335 0.133 -2.760 0.006 [0.154;

0.729] 0.335 0.160 -2.290 0.022 [0.131;
0.856] 0.335 0.157 -2.340 0.020 [0.134;

0.839]
7/10 and
above 0.049 0.019 -7.860 p <

0.001
[0.023;
0.103] 0.049 0.020 -7.300 p <

0.001
[0.022;
0.110] 0.049 0.020 -7.380 p <

0.001
[0.022;
0.109]

Weight (Under
2500 g)

2500 g to
4500 g 0.227 0.089 -3.790 p <

0.001
[0.105;
0.489] 0.227 0.102 -3.300 0.001 [0.094;

0.548] 0.227 0.105 -3.210 0.001 [0.091;
0.561]

Above
4500 g 0.392 0.421 -0.870 0.383 [0.048;

3.213] 0.392 8.103 -0.050 0.964
[0.000;
1.600x
1017]

0.392 17.310 -0.020 0.983
[0.000;
1.740x
1037]

Head (Below
32 cm)

32 cm to
36 cm 0.288 0.111 -3.230 0.001 [0.136;

0.613] 0.288 0.121 -2.960 0.003 [0.127;
0.658] 0.288 0.116 -3.090 0.002 [0.131;

0.635]

Above 36
cm 0.122 0.128 -2.010 0.045 [0.016;

0.951] 0.122 2.449 -0.100 0.917
[0.000;
1.670x
1016]

0.122 5.426 -0.050 0.962
[0.000;
1.220x
1037]

Height (Below
36 cm)

46 cm to
54 cm 0.567 0.235 -1.370 0.171 [0.251;

1.278] 0.567 0.240 -1.340 0.180 [0.247;
1.300] 0.567 0.247 -1.300 0.193 [0.241;

1.334]

Above 54
cm 1.020 1.100 0.020 0.986 [0.123;

8.444] 1.020 21.073 0.000 0.999
[0.000;
3.980x
1017]

1.020 44.687 0.000 1.000
[0.000;
2.150x
1037]

Adjusted CPHM Adjusted BCPHM Adjusted JCPHM
Age (Under 20
years old)

20 to 34
years old 0.215 0.105 -3.150 0.002 [0.083;

0.559] - - - - - 0.215 0.104 -3.190 0.001 [0.084;
0.554]

35 years
old and
above

0.308 0.159 -2.280 0.023 [0.112;
0.848] - - - - - 0.308 0.160 -2.270 0.023 [0.111;

0.852]

Gender
(Female) Male 1.942 0.459 2.810 0.005 [1.222;

3.085] 1.562 0.350 1.990 0.046 [1.007;
2.424] 1.942 0.476 2.700 0.007 [1.200;

3.142]
Number
(Singleton) Multiple 0.264 0.115 -3.060 0.002 [0.112;

0.619] - - - - - 0.264 0.117 -3.010 0.003 [0.111;
0.629]

APGAR
(Below 4/10)

4/10 to
6/10 0.411 0.154 -2.380 0.017 [0.198;

0.856] 0.695 0.288 -0.880 0.379 [0.308;
1.565] 0.411 0.185 -1.970 0.049 [0.170;

0.995]
7/10 and
above 0.059 0.021 -7.850 p <

0.001
[0.029;
0.119] 0.100 0.039 -5.880 p <

0.001
[0.046;
0.215] 0.059 0.024 -6.810 p <

0.001
[0.026;
0.133]

Weight (Under
2500 g)

2500 g to
4500 g 0.181 0.064 -4.860 p <

0.001
[0.091;
0.361] 0.200 0.084 -3.840 p <

0.001
[0.088;
0.455] 0.181 0.071 -4.390 p <

0.001
[0.084;
0.389]

Above
4500 g 0.372 0.384 -0.960 0.338 [0.049;

2.809] 0.438 8.985 -0.040 0.968
[0.000;
1.280x
1017]

0.372 16.296 -0.020 0.982
[0.000;
6.880x
1036]

Head (Below
32 cm)

32 cm to
36 cm 0.208 0.068 -4.830 p <

0.001
[0.110;
0.394] 0.216 0.088 -3.760 p <

0.001
[0.097;
0.480] 0.208 0.080 -4.060 p <

0.001
[0.098;
0.444]

(Table 3) contd.....
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CPHM BCPHM JCPHM
Covariate

(Reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Above 36
cm 0.105 0.109 -2.180 0.029 [0.014;

0.797] 0.109 2.234 -0.110 0.914
[0.000;
2.600x
1016]

0.105 4.680 -0.050 0.960
[0.000;
9.160x
1036]

= 300.360, p < 0.001 = 296.290, p < 0.001 = 32.310, p < 0.001

Table 4. Efron estimation.

CPHM BCPHM JCPHM
Covariate

(Reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20
years old)

20 to 34
years old 0.160 0.079 -3.680 p <

0.001
[0.060;
0.424] 0.160 0.323 -0.910 0.364 [0.003;

8.374] 0.160 0.087 -3.370 0.001 [0.055;
0.464]

35 years
old and
above

0.199 0.107 -2.990 0.003 [0.069;
0.573] 0.199 0.406 -0.790 0.429 [0.004;

10.896] 0.199 0.120 -2.680 0.007 [0.061;
0.648]

Residence
(Rural) Urban 1.029 0.246 0.120 0.907 [0.643;

1.645] 1.029 0.307 0.090 0.925 [0.573;
1.847] 1.029 0.314 0.090 0.927 [0.565;

1.871]
Antecedents
(Not 1st
newborn)

1st
newborn 0.723 0.212 -1.110 0.268 [0.407;

1.283] 0.723 0.227 -1.030 0.301 [0.391;
1.337] 0.723 0.233 -1.010 0.314 [0.384;

1.359]

Abortion (Not
aborted)

Aborted
once 1.588 0.628 1.170 0.242 [0.732;

3.448] 1.588 0.696 1.060 0.291 [0.673;
3.749] 1.588 0.659 1.110 0.265 [0.704;

3.585]
Aborted
more than
once

1.147 0.519 0.300 0.762 [0.473;
2.782] 1.147 4.651 0.030 0.973

[0.000;
3.251x

103]
1.147 0.587 0.270 0.789 [0.420;

3.127]

Childbirth
(Ventouse) Natural 0.532 0.400 -0.840 0.401 [0.122;

2.319] 0.532 3.646 -0.090 0.927
[0.000;
3.605x

105]
0.532 0.448 -0.750 0.454 [0.102;

2.772]

Surgery 0.695 0.515 -0.490 0.624 [0.163;
2.969] 0.695 4.766 -0.050 0.958

[0.000;
4.743x

105]
0.695 0.579 -0.440 0.663 [0.136;

3.558]

Gender
(Female) Male 2.061 0.500 2.980 0.003 [1.282;

3.315] 2.061 0.556 2.680 0.007 [1.215;
3.496] 2.061 0.592 2.520 0.012 [1.173;

3.621]
Number
(Singleton) Multiple 0.243 0.113 -3.040 0.002 [0.098;

0.606] 0.243 0.135 -2.540 0.011 [0.082;
0.724] 0.243 0.141 -2.440 0.015 [0.078;

0.759]
APGAR
(Below 4/10)

4/10 to
6/10 0.207 0.084 -3.880 p <

0.001
[0.094;
0.460] 0.207 0.116 -2.820 0.005 [0.070;

0.618] 0.207 0.120 -2.710 0.007 [0.066;
0.648]

7/10 and
above 0.030 0.012 -8.960 p <

0.001
[0.014;
0.065] 0.030 0.015 -7.070 p <

0.001
[0.011;
0.080] 0.030 0.016 -6.750 p <

0.001
[0.011;
0.083]

Weight (Under
2500 g)

2500 g to
4500 g 0.222 0.088 -3.800 p <

0.001
[0.102;
0.483] 0.222 0.105 -3.180 0.001 [0.088;

0.562] 0.222 0.107 -3.110 0.002 [0.086;
0.574]

Above
4500 g 0.389 0.426 -0.860 0.389 [0.045;

3.338] 0.389 8.081 -0.050 0.964
[0.000;
1.950x
1017]

0.389 17.369 -0.020 0.983
[0.000;
4.530x
1037]

Head (Below
32 cm)

32 cm to
36 cm 0.284 0.110 -3.250 0.001 [0.133;

0.607] 0.284 0.115 -3.100 0.002 [0.129;
0.629] 0.284 0.119 -3.000 0.003 [0.125;

0.647]

Above 36
cm 0.110 0.117 -2.070 0.038 [0.014;

0.886] 0.110 2.350 -0.100 0.918
[0.000;
1.590x
1017]

0.110 3.679 -0.070 0.947
[0.000;
3.080x
1027]

Height (Below
36 cm)

46 cm to
54 cm 0.569 0.238 -1.350 0.177 [0.251;

1.291] 0.569 0.252 -1.270 0.202 [0.239;
1.354] 0.569 0.273 -1.180 0.240 [0.222;

1.457]

Above 54
cm 1.010 1.094 0.010 0.993 [0.121;

8.431] 1.010 21.269 0.000 1.000
[0.000;
18.460x

1017]
1.010 44.776 0.000 1.000

[0.000;
5.730x
1037]

Adjusted CPHM Adjusted BCPHM Adjusted JCPHM
Age (Under 20
years old)

20 to 34
years old 0.201 0.098 -3.280 0.001 [0.077;

0.524] - - - - - 0.201 0.102 -3.170 0.002 [0.075;
0.543]

(Table 3) contd.....
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CPHM BCPHM JCPHM
Covariate

(Reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

35 years
old and
above

0.293 0.152 -2.360 0.018 [0.106;
0.811] - - - - - 0.293 0.160 -2.250 0.025 [0.101;

0.856]

Gender
(Female) Male 2.071 0.495 3.050 0.002 [1.297;

3.308] 1.562 0.400 1.740 0.081 [0.946;
2.579] 2.071 0.587 2.570 0.010 [1.188;

3.611]
Number
(Singleton) Multiple 0.205 0.092 -3.520 p <

0.001
[0.085;
0.495] - - - - - 0.205 0.118 -2.740 0.006 [0.066;

0.637]
APGAR
(Below 4/10)

4/10 to
6/10 0.273 0.103 -3.430 0.001 [0.130;

0.573] 0.545 0.273 -1.210 0.226 [0.204;
1.457] 0.273 0.169 -2.100 0.036 [0.081;

0.919]
7/10 and
above 0.038 0.014 -8.980 p <

0.001
[0.019;
0.078] 0.077 0.036 -5.440 p <

0.001
[0.030;
0.193] 0.038 0.023 -5.530 p <

0.001
[0.012;
0.122]

Weight (Under
2500 g)

2500 g to
4500 g 0.179 0.063 -4.890 p <

0.001
[0.090;
0.356] 0.201 0.083 -3.880 0.000 [0.089;

0.452] 0.179 0.071 -4.360 p <
0.001

[0.082;
0.388]

Above
4500 g 0.379 0.396 -0.930 0.353 [0.049;

2.938] 0.477 9.872 -0.040 0.971
[0.000;
2.040x
1017]

0.379 16.849 -0.020 0.983
[0.000;
2.970x
1037]

Head (Below
32 cm)

32 cm to
36 cm 0.205 0.067 -4.860 p <

0.001
[0.108;
0.388] 0.215 0.090 -3.680 p <

0.001
[0.095;
0.487] 0.205 0.081 -4.030 p <

0.001
[0.095;
0.443]

Above 36
cm 0.095 0.100 -2.250 0.025 [0.012;

0.740] 0.105 2.180 -0.110 0.914
[0.000;
5.960x
1016]

0.095 4.226 -0.050 0.958
[0.000;
5.340x
1036]

= 316.160, p < 0.001 = 297.200, p < 0.001 = 29.760, p < 0.001

Table 5. Cox estimation.

CPHM BCPHM JCPHM
Covariate

(Reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Age (Under 20
years old)

20 to 34
years old 0.140 0.075 -3.690 p <

0.001
[0.050;
0.398] 0.140 0.257 -1.070 0.283 [0.004;

5.064] 0.140 0.084 -3.260 0.001 [0.043;
0.457]

35 years
old and
above

0.171 0.098 -3.090 0.002 [0.056;
0.523] 0.171 0.313 -0.960 0.335 [0.005;

6.216] 0.171 0.111 -2.710 0.007 [0.048;
0.613]

Residence
(Rural) Urban 1.003 0.258 0.010 0.990 [0.606;

1.660] 1.003 0.347 0.010 0.993 [0.510;
1.974] 1.003 0.342 0.010 0.993 [0.514;

1.956]
Antecedents
(Not 1st
newborn)

1st
newborn 0.726 0.231 -1.010 0.313 [0.389;

1.353] 0.726 0.280 -0.830 0.406 [0.341;
1.545] 0.726 0.268 -0.870 0.386 [0.351;

1.498]

Abortion (Not
aborted)

Aborted
once 1.671 0.686 1.250 0.211 [0.748;

3.735] 1.671 0.763 1.120 0.261 [0.683;
4.091] 1.671 0.722 1.190 0.234 [0.717;

3.897]
Aborted
more than
once

1.388 0.697 0.650 0.514 [0.519;
3.712] 1.388 0.756 0.600 0.548 [0.477;

4.038] 1.388 0.849 0.540 0.593 [0.418;
4.609]

Childbirth
(Ventouse) Natural 0.533 0.422 -0.790 0.427 [0.113;

2.517] 0.533 3.473 -0.100 0.923 [0.000;
1.883x 105] 0.533 0.449 -0.750 0.456 [0.102;

2.786]

Surgery 0.759 0.590 -0.360 0.722 [0.166;
3.479] 0.759 4.946 -0.040 0.966 [0.000;

2.683x 105] 0.759 0.628 -0.330 0.739 [0.150;
3.850]

Gender
(Female) Male 2.195 0.570 3.030 0.002 [1.319;

3.652] 2.195 0.672 2.570 0.010 [1.204;
3.999] 2.195 0.695 2.480 0.013 [1.179;

4.086]
Number
(Singleton) Multiple 0.203 0.110 -2.950 0.003 [0.071;

0.585] 0.203 0.693 -0.470 0.640 [0.000;
162.000] 0.203 0.196 -1.650 0.099 [0.031;

1.353]
APGAR
(Below 4/10)

4/10 to
6/10 0.167 0.085 -3.500 p <

0.001
[0.061;
0.455] 0.167 0.602 -0.500 0.620 [0.000;

197.300] 0.167 0.180 -1.660 0.098 [0.020;
1.392]

7/10 and
above 0.022 0.010 -8.140 p <

0.001
[0.009;
0.055] 0.022 0.078 -1.070 0.284 [0.000;

24.091] 0.022 0.021 -3.880 p <
0.001

[0.003;
0.151]

Weight (Under
2500 g)

2500 g to
4500 g 0.221 0.088 -3.790 p <

0.001
[0.101;
0.482] 0.221 0.105 -3.180 0.001 [0.087;

0.560] 0.221 0.105 -3.170 0.002 [0.087;
0.562]

(Table 4) contd.....
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CPHM BCPHM JCPHM
Covariate

(Reference) Level HR SE z P>z 95% CI HR SE z P>z 95% CI HR SE z P>z 95% CI

Above
4500 g 0.324 0.362 -1.010 0.313 [0.036;

2.892] 0.324 6.266 -0.060 0.954
[0.000;
9.150x
1015]

0.324 10.526 -0.030 0.972
[0.000;
1.450x
1027]

Head (Below
32 cm)

32 cm to
36 cm 0.285 0.110 -3.240 0.001 [0.133;

0.609] 0.285 0.119 -3.020 0.003 [0.126;
0.644] 0.285 0.117 -3.050 0.002 [0.127;

0.639]

Above 36
cm 0.106 0.114 -2.090 0.036 [0.013;

0.866] 0.106 2.091 -0.110 0.909
[0.000;
5.660x
1015]

0.106 3.780 -0.060 0.950
[0.000;
1.910x
1029]

Height (Below
36 cm)

46 cm to
54 cm 0.539 0.226 -1.480 0.140 [0.237;

1.225] 0.539 0.236 -1.410 0.158 [0.229;
1.270] 0.539 0.252 -1.320 0.186 [0.216;

1.346]

Above 54
cm 1.037 1.120 0.030 0.973 [0.125;

8.613] 1.037 20.074 0.000 0.998
[0.000;
3.080x
1016]

1.037 41.221 0.000 0.999
[0.000;
7.290x
1033]

Adjusted CPHM Adjusted BCPHM Adjusted JCPHM
Age (Under 20
years old)

20 to 34
years old 0.173 0.092 -3.310 0.001 [0.061;

0.488] - - - - - 0.181 0.096 -3.230 0.001 [0.064;
0.511]

35 years
old and
above

0.250 0.139 -2.490 0.013 [0.084;
0.745] - - - - - 0.248 0.139 -2.490 0.013 [0.083;

0.744]

Gender
(Female) Male 2.150 0.550 2.990 0.003 [1.302;

3.549] 2.031 0.473 3.050 0.002 [1.287;
3.205] 1.778 0.506 2.020 0.043 [1.018;

3.106]
Number
(Singleton) Multiple 0.176 0.091 -3.350 0.001 [0.064;

0.486] - - - - - - - - - -

APGAR
(Below 4/10)

4/10 to
6/10 0.249 0.114 -3.030 0.002 [0.101;

0.612] - - - - - 0.516 0.330 -1.030 0.301 [0.147;
1.809]

7/10 and
above 0.030 0.013 -8.220 p <

0.001
[0.013;
0.069] - - - - - 0.060 0.035 -4.820 p <

0.001
[0.019;
0.188]

Weight (Under
2500 g)

2500 g to
4500 g 0.176 0.062 -4.910 p <

0.001
[0.088;
0.352] 0.149 0.053 -5.380 p <

0.001
[0.075;
0.299] 0.209 0.082 -3.990 p <

0.001
[0.097;
0.451]

Above
4500 g 0.325 0.347 -1.050 0.293 [0.040;

2.636] 0.367 6.399 -0.060 0.954
[0.000;
2.450x
1014]

0.425 16.781 -0.020 0.983
[0.000;
1.840x
1033]

Head (Below
32 cm)

32 cm to
36 cm 0.196 0.064 -5.020 p <

0.001
[0.103;
0.370] 0.120 0.038 -6.700 p <

0.001
[0.065;
0.224] 0.198 0.077 -4.180 p <

0.001
[0.093;
0.423]

Above 36
cm 0.090 0.095 -2.290 0.022 [0.011;

0.706] 0.073 1.284 -0.150 0.882
[0.000;
7.170x
1013]

0.098 4.324 -0.050 0.958
[0.000;
3.360x
1036]

= 316.430, p < 0.001 = 210.070, p < 0.001 = 31.380, p < 0.001

4. DISCUSSION

The resampling methods adopted in the Cox Proportional
Hazard  Model  (CPHM)  include  Bootstrap  Cox  Proportional
Hazards  Model  (BCPHM)  and  Jackknife  Cox  Proportional
Hazards  Model  (JCPHM)  with  three  approaches  of  ties
handling. The results by different approaches of ties handling
are  not  critically  different  as  expected.  The  analysis  is  then
made  on  the  STATA-15  default  method  [19].  The  similarity
observed between the results of JCPHM and those of CPHM is
relatively  stronger  than  that  of  BCPHM  and  CPHM.  The
similarity  between  CPHM  and  JCPHM  suggests  that  the
CPHM  may  be  stable.  The  overall  analysis  confirms  the
significant  difference  of  levels  of  covariates  age,  gender,
number, APGAR, weight and head. The results show relatively
higher  risk  of  babies  from  under  20  years  old  parents  as
compared to the older parents, that is 4.651 times that of babies
whose parents’ ages range from 20 to 34 years, and 3.247 times
that of babies whose parents are 35 years old and above. The
risk of male babies is 1.942 times that of female babies. The

risk of multiple babies is 0.264 times that of singleton babies.
Babies with APGAR below 4/10 are at a relatively higher risk,
that is 2.433 times that babies with APGAR ranging from 4/10
to 6/10 and 16.949 times that of babies whose APGAR range
from 7/10 to 10/10. The risk of babies whose weight is below
2500 g is 5.525 times that of babies whose weight range from
2500 g to 4500 g and 2.688 times that of babies with weight
above 4500 g. The risk for babies born with a circumference of
head  below  32  cm  is  4.808  times  that  of  newborns  whose
circumference of head ranges from 32 cm to 36 cm, and 9.524
times that of newborns whose circumference of head is above
36 cm.

The  results  of  BCPHM are  also  close  to  that  of  JCPHM
and CPHM for all significant covariates but the model shows a
relatively  high  standard  error  for  non-significant  levels  of
covariates.  The  critical  discrepancy  between  standard  errors
after resampling for some covariates suggests instability of the
CPHM at  these  specific  covariates  and this  emphasizes  their
non-significance in the CPHM.

(Table 5) contd.....
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The dataset was recorded for one year. The stability of the
adjusted  CPHM  is  justified  by  the  non-critical  difference
between  the  adjusted  resampled  models.

CONCLUSION

This  paper  reviewed  different  methods  of  resampling  in
Cox  Proportional  Hazards  Model  (CPHM)  namely  the
Bootstrap Cox Proportional Hazards Model (BCPHM) and the
Jackknife  Cox  Proportional  Hazards  Model  (JCPHM).  The
results after resampling are compared to that of the CPHM for
three different  ties  handling methods namely Breslow, Efron
and Cox approximation. The test statistics show everywhere a
higher performance of the JCPHM as compared to the CPHM
and BCPHM.

The results displayed by the JCPHM and CPHM are very
close  and  suggested  the  significance  of  the  age  of  female
parent,  information  on  previous  abortion,  the  gender  of  a
newborn,  the  number  of  newborns  at  a  time,  APGAR,  the
weight  of  a  newborn and the  circumference of  the  head of  a
newborn.  Male  babies  are  at  a  relatively  higher  risk  as
compared to female babies. The risk is higher for babies whose
parents are under 20 years old as compared to older parents.
Babies born with APGAR less than 4/10 were found to have a
higher risk as compared to newborns with APGAR greater than
4/10. Underweight babies were found to have a higher risk as
compared  to  babies  with  normal  weight  and  overweight.
Babies with a normal circumference of the head were found to
survive  better  than  those  with  a  relatively  big  head  and
relatively small head. Under-height babies were found to have
a higher risk as compared to babies born with normal height
and over-height newborns. The results of the BCPHM are not
far  from  that  of  JCPHM  and  CPHM  but  the  non-significant
covariates  displayed  relatively  higher  standard  error.  The
overall  results  for  non-significant  covariates  showed  a
relatively  higher  standard  error  after  resampling.  Due  to  a
relatively higher risk to death of an infant from under 20 years
old parents, the pregnancy of parents belonging in such range
of  age  should  be  avoided.  Also  as  abnormality  lead  to  a
relatively  higher  risk  to  infant  mortality,  clinically
recommended  nutrition  during  pregnancy  would  decrease
abnormality  of  the  newborn;  this  would  decrease  the  infant
mortality.

Analysis was limited to one event which is the death of the
infant. Resampling with multiple events could improve models
where  an  alternative  event  is  attracting  a  chronic  disease  or
clinical complication for the infant during the study time.
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CPHM = Cox Proportional Hazards Model
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KUTH = Kigali University Teaching Hospital
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Abstract

Background: The Infant Mortality Rate (IMR) in Sub-Saharan Africa (SSA) remains the highest relatively to the rest of
the world. In the past decade, the policy on reducing infant mortality in SSA was reinforced and both infant
mortality and parental death decreased critically for some countries of SSA. The analysis of risk to death or
attracting chronic disease may be done for helping medical practitioners and decision makers and for better
preventing the infant mortality.

Methods: This study uses popular statistical methods of re-sampling and one selected model of multiple events
analysis for measuring the survival outcomes for the infants born in 2016 at Kigali University Teaching Hospital
(KUTH) in Rwanda, a country of SSA, amidst maternal and child’s socio-economic and clinical covariates. Dataset
comprises the newborns with correct information on the covariates of interest. The Bootstrap Marginal Risk Set
Model (BMRSM) and Jackknife Marginal Risk Set Model (JMRSM) for the available maternal and child’s socio-
economic and clinical covariates were conducted and then compared to the outcome with Marginal Risk Set
Model (MRSM). That was for measuring stability of the MRSM.

Results: The 2117 newborns had the correct information on all the covariates, 82 babies died along the study time,
69 stillborn babies were observed while 1966 were censored. Both BMRSM JMRSM and MRSM displayed the close
results for significant covariates. The BMRSM displayed in some instance, relatively higher standard errors for non-
significant covariates and this emphasized their insignificance in MRSM. The models revealed that female babies
survive better than male babies. The risk is higher for babies whose parents are under 20 years old parents as
compared to other parents’ age groups, the risk decreases as the APGAR increases, is lower for underweight babies
than babies with normal weight and overweight and is lower for babies with normal circumference of head as
compared to those with relatively small head.

Conclusion: The results of JMRSM were closer to MRSM than that of BMRSM. Newborns of mothers aged less than
20 years were at relatively higher risk of dying than those who their mothers were aged 20 years and above. Being
abnormal in weight and head increased the risk of infant mortality. Avoidance of teenage pregnancy and provision
of clinical care including an adequate dietary intake during pregnancy would reduce the IMR in Kigali.

Keywords: Infant mortality, Survival analysis, Marginal risk set model, Re-sampling, Covariate, Rwanda
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Background
The discrepancy in IMR and low life expectancy of
the SSA versus the other parts of the world attracts
several researchers. The report of the World Bank in
2011 pointed that the IMR was 75/1000 in SSA ver-
sus 11/1000 in developed countries [1]. The same re-
port pointed that half of the ten million children
who die every year is in SSA. The World Bank data-
set from 1960 to 2005 suggests that low life expect-
ancy at birth in SSA is relatively higher in Middle
Africa as compared to other sub-regional disparities
of SSA [2]. The World Bank records of 2017 indi-
cated that the IMR was 51.50/1000 in SSA [3]. Cen-
tral African Republic had the highest IMR of 87.60/
1000, the lowest IMR were found in Mauritius
(11.60/1000), the IMR in Rwanda was 28.90/1000.
Several studies on factors that could lower the infant
mortality have been done and recommendations were
suggested but the IMR remains a problem in SSA.
The multiple events model for infant mortality at the

Kigali University Teaching Hospital analysed in [4]
leaves a question on whether the adopted model is
stable. The main causes of instability may be the correl-
ation of the covariates or relatively small sample size [5].
One of the ways of assessing instability in survival re-
gression models is a use of re-sampling techniques [6].
The analysis in [4] is a none re-sampled model that used
the primary dataset of the year 2016. Two observable
events per subject are death and the occurrence of at
least one of the common conditions that may also cause
the long-term death to infants. It was found that the
Marginal Risk Set Model (MRSM) also known as the
Wei, Lin and Weissfeld Model (WLWM) fit the data
well. The WLWM is among the multiplicative methods
for analysing ordered events found in [7]. Other multi-
plicative models include the Andersen-Gill Model
(AGM) and the Prentice, Williams and Peterson Model
(PWPM) [8].
The present study uses two popular nonparametric

methods of re-sampling namely bootstrap which is based
on the random samples with replacement [9], and jack-
knife method that is based on sampling by leaving out
one observation at time [9]. The size of the sample in [4]
is 2117 and the record is effective in the year 2016. The
long-term results could be assumed according to the
stability potentially observed after re-sampling. Several
manuscripts on re-sampling in survival analysis are
limited on the re-sampled Cox proportional hazards
model and on estimating standard errors of the survival
and hazard functions such as in [6, 10–13] where boot-
strap is involved [13–16]; in which the jackknife is impli-
cated or [17–22] where hazard and survival functions
with their respective standard errors are of interest. The
present study analyses the bootstrap-based MRSM with

1000 replicates and the jackknife-based MRSM. The re-
sults are then compared to that of the MRSM.

Methods
Dataset
The time to event data of 2117 newborns at the KUTH
is recorded from the 1st January to the 31st December
2016. At KUTH, all newborns are recorded in registries
with all details of parents and clinical outcomes of each
newborn. The information in registry provides refer-
ences on card indexes that provide information on clin-
ical behavior of babies after leaving the hospital. KUTH
as a site of interest in this study is a central Hospital
where most of complicated childbirths countrywide are
transferred. In 2016, KUTH recorded relatively high in-
cidence of stillborn cases (69 stillborn babies or 3.259%)
and relatively high infant mortality rate (3.873%). Table 1
summarises the information on newborns at KUTH
along the study time.
The study is interested on subjects with a correct in-

formation on the covariates of interests. The two events
per subject are observed namely the death and the inci-
dence of at least one chronic disease or complication
such as severe oliguria, severe prematurity, very low birth
weight, macrosomia, severe respiratory distress, gastro-
paresis, hemolytic, trisomy, asphyxia and laparoschisis.
Apart from the event status and the time to event, 11 co-
variates are recorded and subdivided in demographic co-
variates which include the age and the place of residence
for parents; clinical covariates for female parents that in-
clude obstetric antecedents, type of childbirth and previ-
ous abortion. Clinical covariates for babies include
APGAR; gender, number of births at a time, weight, cir-
cumference of the head, and height. Table 2 gives a de-
scription of the variables of interest.

Statistical methods
Marginal risk set model
Assume that h(t|xi) is the hazard function of the survival
time T given the p fixed covariates xi = (xi1, xi2,. .., xip).
Let h0(t) be the hazard function when xi = (0, 0,. .., 0) for
all i, then

h tjxið Þ ¼ h0 tð Þ exp β‘xi
� � ð1Þ

Table 1 Summary on newborns under study

Total observations 2117

Deaths during the study time 82 (3.873%)

Stillborn babies 69 (3.259%)

Total events 151 (7.132%)

Censored babies 1966 (92.867%)
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where β = (β1, β2,. .., βp)
’ is a p-dimensional vector of

model parameters [23]. Define an indicator function as.
δij(t) = 1 if individual i is at risk of the jth event and

δij(t) = 0 otherwise.
The marginal risk set model (MRSM) or the Wei Lin

and Weisfeld Model (WLWM) assumes that events are
unordered where each event has its own stratum and
each data point appears in all strata [4, 24]. In other
words, the kth time interval per subject is in the kth

stratum, k = 1, 2,. .., n.
The hazard function for the jth event for the individual

i is given by

h tjxið Þ ¼ δi j tð Þh0 j tð Þ exp β‘ j xi
� �

ð2Þ

Maximum likelihood and parameter estimation
Let]0, τi [be the interval of time in which the individual i
is observed with ni the number of events of the individ-
ual i along]0, τi [and Assume that two events cannot
occur simultaneously in continuous time. The probabil-
ity density function for the outcome ni along]0, τi [is
given by.

L(Φ) ¼ Qn
i¼1

LiðφÞ
where

Li φð Þ ¼
Yni
j¼1

h tjxið Þe−
R τi

0
δij vð Þh vjxið Þdv

: ð3Þ

In (3), individual i has ni events with ni ≥ 0 at times
ti1 ≤ ti2 ≤ · · · ≤ tini .

The appropriate partial likelihood functions for tied
time to event data is well described in [24] and in [25]
and include Breslow’s, Efron’s and Cox’s techniques. The
maximum likelihood estimates are given by a system

f
∂ lnL Φð Þ

∂α
∂ lnL Φð Þ

∂β

ð4Þ

where α is known as the baseline parameter vector
while β is a vector of model parameters. The Newton-
Raphson method is one of numerical methods used for
solving system (4). The adequacy checking of the likeli-
hood estimates is done by finding the elements ℑαα, ℑαβ,
ℑβα and ℑββ of the information matrix ℑ and assume that

as n→∞; Φ̂−Φ↦Nð0;ℑ−1ðΦ̂ÞÞ [4, 26].
In MRSM, n is assumed to be the maximum number of

events per subject while τk, k = 1, 2, ...n are times to events
per subject along the study time with range [0, T]. The
study time is partitioned into n + 1 intervals of the form

0−τ1; 0−τ2; :::; 0−τn; 0−T : ð5Þ
STATA 15 provides results of the MRSM by applying

the Cox Proportional Hazards Model (CPHM) to the

Table 2 Description of variables in the dataset on newborns at Kigali University Teaching Hospital (KUTH) during the period 01-
January-2016 to 31-December-2016

Variable Description Codes/Values/Unit

Age Age of parent 0 = under 20, 1 = 20 years old to 34 years old, 2 = 35 years
old and above

Residence Indicator of the residential area of a parent 0 = rural, 1 = urban

Antecedents Indicator on whether a new born is the first or not 0 = Not the first new born, 1 = first newborn,

Abortion Indicator on whether a parent aborted previously 0 = not aborted, 1 = aborted once, 2 = aborted more than once

Childbirth
Gender

Type of childbirth Gender of a newborn 0 = born using ventouse, 1 = born naturally, 2 = born after
surgery 0 = female, 1 = male

Number Indicator of the number of births at a time 0 = singleton, 1 = multiple

APGAR Score of appearance, pulse, grimaces, activity and
respiration of a newborn

0 = APGAR less than 4/10, 1 = APGAR from 4/10 to 6/10,
2 = APGAR greater or equal to 7/10

Weight Weight of a newborn 0 = under 2500 g, 1 = 2500 g to 4500 g, 2 = above 4500 g

Head Head circumference of a newborn 0 = below 32 cm, 1 = 32 cm to 36 cm, 2 = above 36 cm

Height Height of a new born 0 = below 46 cm, 1 = 46 cm to 54 cm, 2 = above 54 cm

Time Time from recruitment to study termination Days

Event Indicator describing if death occurred during the
study time or not

0 = censored, 1 = dead

n events Indicator on the rank of records per subject 1 = first record, 2 = second record
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dataset in the setup (5). The test of proportional hazards
assumption is done by checking patterns of survival
functions per groups of each covariate. Figure 1 presents
the patterns of survival functions per groups of each
covariate using Kaplan-Meier estimation. The patterns
are approximately parallel for the covariates of inter-
est. This allows a construction of the MRSM for all
the covariates.

Re-sampled MRSM
The Bootstrap Marginal Risk set Model (BMRSM) is the
inference of model (2) based on bootstrap samples (see
Appendix). The BMRSM consists of applying model (2)
to each of the B bootstrap samples xi

*k, ∀k ∈ [1, B] of co-
variates xi, ∀i ∈ [1, p]. Bootstrap model parameter esti-
mation in presence of tied events uses either Breslow,
Efron or Cox approach. The bootstrap standard error is
obtained by using Eq. (6) of the Appendix.
As for the BMRSM, the Jackknife Marginal Risk

Model (JMRSM) consists of applying model (2) to
each of the n jackknife samples xi

*k of covariates xi, i
∈ [1, p] with a use of Breslow, Efron or Cox approach

for estimating the jackknife model parameters. The
Jackknife standard error is given by Eq. (7) found in
the Appendix.

Results
Using Breslow estimation [27], Table 3 presents un-
adjusted MRSM, BMRSM, JMRSM and corresponding
adjusted models. Unadjusted and adjusted MRSM,
BMRSM and JMRSM are also presented in Tables 4 and
5 for Efron [28] and Cox estimation [29].
The results of the unadjusted JMRSM are relatively

close to that of the unadjusted MRSM (Table 3). The
standard errors in JMRSM and MRSM are close for
all covariates. The standard errors in BMRSM and
MRSM are also close for covariates except for all
levels of covariates childbirth where the standard
error in BMRSM is about 4 times that of MRSM and
the upper levels of covariates weight, head and height
where the standard error in BMRSM is about 20
times that of MRSM. Significance difference in levels
of covariates is found at the same covariates for both
MRSM, BMRSM and JMRSM except at the upper

Fig. 1 Plots of the survival function per groups of covariates

Gatabazi et al. BMC Pediatrics           (2020) 20:62 Page 4 of 11



Table 3 Breslow estimation

MRSM BMRSM JMRSM

Covariate
(reference)

Level HR SE P > z 95%
CI

HR SE P > z 95% CI HR SE P > z 95% CI

Age (Under 20
years old)

20 to 34
years old

0.277 0.100 p < 0.001 [0.137;
0.560]

0.277 0.088 p < 0.001 [0.149; 0.515] 0.277 0.081 p < 0.001 [0.155;
0.493]

35 years old
and above

0.395 0.157 0.020 [0.181;
0.863]

0.395 0.132 0.005 [0.205; 0.761] 0.395 0.127 0.004 [0.210;
0.741]

Residence (Rural) Urban 0.847 0.139 0.309 [0.614;
1.167]

0.847 0.148 0.341 [0.601; 1.193] 0.847 0.158 0.372 [0.587;
1.220]

Antecedents (Not
1st newborn)

1st newborn 0.806 0.157 0.270 [0.550;
1.182]

0.806 0.138 0.207 [0.577; 1.126] 0.806 0.134 0.193 [0.582;
1.116]

Abortion (Not
aborted)

Aborted once 1.405 0.398 0.231 [0.806;
2.448]

1.405 0.459 0.298 [0.741; 2.664] 1.405 0.471 0.311 [0.728;
2.710]

Aborted more
than once

0.479 0.161 0.028 [0.248;
0.925]

0.479 0.280 0.208 [0.152; 1.507] 0.479 0.360 0.328 [0.110;
2.094]

Childbirth
(Ventouse)

Natural 0.873 0.491 0.808 [0.290;
2.627]

0.873 1.973 0.952 [0.010; 73.427] 0.873 0.329 0.718 [0.416;
1.829]

Surgery 1.115 0.613 0.843 [0.380;
3.274]

1.115 2.517 0.962 [0.013; 93.040] 1.115 0.372 0.744 [0.580;
2.143]

Gender (Female) Male 1.740 0.296 0.001 [1.247;
2.429]

1.740 0.324 0.003 [1.209; 2.505] 1.740 0.337 0.004 [1.191;
2.544]

Number
(Singleton)

Multiple 0.409 0.131 0.005 [0.218;
0.766]

0.409 0.107 0.001 [0.245; 0.682] 0.409 0.100 p < 0.001 [0.252;
0.661]

APGAR (Below 4/
10)

4/10 to 6/10 0.377 0.112 0.001 [0.211;
0.673]

0.377 0.127 0.004 [0.195; 0.729] 0.377 0.139 0.008 [0.182;
0.778]

7/10 and
above

0.130 0.036 p < 0.001 [0.076;
0.222]

0.130 0.033 p < 0.001 [0.079; 0.212] 0.130 0.031 p < 0.001 [0.081;
0.208]

Weight (Under
2500 g)

2500 g to 4500
g

0.250 0.068 p < 0.001 [0.146;
0.427]

0.250 0.064 p < 0.001 [0.151; 0.412] 0.250 0.063 p < 0.001 [0.153;
0.408]

Above 4500 g 0.442 0.285 0.206 [0.125;
1.565]

0.442 4.002 0.928 [0.000; 2.290 ×
107]

0.442 0.508 0.478 [0.046;
4.222

Head (Below 32
cm)

32 cm to 36 cm 0.456 0.128 0.005 [0.263;
0.789]

0.456 0.115
0

0.002 [0.277; 0.749] 0.456 0.117 0.002 [0.275;
0.753]

Above 36 cm 0.290 0.219 0.102 [0.066;
1.278]

0.290 4.156 0.931 [0.000; 4.470 ×
1011]

0.290 0.284 0.206 [0.043;
1.971]

Height (Below
36 cm)

46 cm to 54 cm 0.894 0.276 0.716 [0.488;
1.637]

0.894 0.241 0.677 [0.527; 1.516] 0.894 0.253 0.692 [0.513;
1.557]

Above 54 cm 1.670 1.264 0.498 [0.379;
7.361]

1.670 22.884 0.970 [0.000; 7.73 ×
1011]

1.670 1.612 0.596 [0.251;
11.093]

Adjusted MRSM Adjusted BMRSM Adjusted JMRSM

Covariate
(reference)

Level HR SE P > z 95%
CI

HR SE P > z 95% CI HR SE P > z 95% CI

Age (Under
20 years old)

20 to 34
years old

0.307 0.107 0.001 [0.155;
0.609]

0.309 0.089 p < 0.001 [0.176; 0.543] 0.309 0.083 p < 0.001 [0.182;
0.523]

35 years old
and above

0.472 0.179 0.047 [0.225;
0.992]

0.489 0.145 0.016 [0.274; 0.874] 0.489 0.137 0.011 [0.282;
0.848]

Abortion (Not
aborted)

Aborted once 1.482 0.406 0.152 [0.866;
2.537]

– – – – – – – –

Aborted more
than once

0.541 0.175 0.057 [0.287;
1.019]

1.607 -
0.304

- 0.012 - [1.109; 2.328] – – – –

Gender (Female) Male 1.672 0.280 0.002 [1.204;
2.321]

0.417 0.106 0.001 [0.254; 0.686] 1.607 0.316 0.016 [1.093;
2.363]

Number
(Singleton)

Multiple 0.401 0.128 0.004 [0.214;
0.750]

0.412 0.137 0.008 [0.215; 0.791] 0.417 0.103 p < 0.001 [0.258;
0.677]
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level of the covariate abortion where significance is
suggested by the MRSM. Following the recommenda-
tions of Parzen and Lipsitz [30], the χ2 test statistics
suggest a higher performance of the JCPHM as com-
pared to the CPHM and BCPHM since the χ2 is rela-
tively everywhere lower for the JCPHM..

Discussion
The overall results of MRSM, BMRSM and JMRSM
by different approaches of ties handling (Tables 3, 4
and 5) are not critically different as expected. The
STATA default method (Breslow) is then of interest
in the analysis. The JMRSM is adopted for checking
stability since the results are closer to that of MRSM
than that of BMRSM. The similarity between MRSM
and JMRSM suggests that the MRSM may be stable.
The global analysis upholds the significance difference
of all levels of covariates age, gender, number and
APGAR and intermediate levels of covariates weight
and head.
The re-sampled adjusted models by Breslow tech-

nique of handling tied events suggest that the risk of
death or attracting a chronic disease of babies whose
parents’ age range from 20 to 34 years old is lower
than that of babies whose parents are under 20 years
old and that of babies whose parents are 35 years and
above. Basinga et al. [31] argue that the unintended
pregnancy induces abortion in Rwanda, their study
suggests a relatively higher rate of teenage unintended
pregnancies as compared to the other age ranges, this
contributes on the first hand, to the increase of infant
mortality rate. On the second hand, the study by
Olausson et al. [32] confirms a relatively higher risk
for teenage pregnancies due to biological immaturity.
As for the advanced maternal age, Lampinen et al.
[33] point that it is associated with relatively poorer

outcomes to pregnancies due to the observed higher
incidence of chronic medical conditions among older
women.
The results show that the risk for male babies is

higher than that of female babies. This complies with
the usual better survival outcome of the females as
reports several manuscripts such as [34] or [35]. Mul-
tiple babies survive better than singleton babies; this
is however against the results from studies conducted
in Sub-Saharan Africa by Monden and Smits [36] and
Pongou et al. [37]. This may be due to the small
number of multiple newborns recorded at KUTH
along the year 2016. The survival outcomes of babies
whose APGAR is below 4/10 are poorer than that of
babies with higher APGAR score. Babies whose
weight range from 2500 g to 4500 g survive better
than those whose weight is below 2500 g and those
whose weight is above 4500 g while babies whose cir-
cumference of head range from 32 cm to 36 cm sur-
vive better than those whose circumference of head is
below 32 cm. The results of APGAR, weight and cir-
cumference of the head comply with the recommen-
dations of the clinical medicine and related
manuscripts such as [38] for example.
The study shows that the BMRSM is close to

JMRSM and MRSM for all significant covariate but
the BMRSM shows relatively higher standard errors
for some non-significant covariates. The discrepancy
between standard errors after re-sampling for covari-
ates such as childbirth, weight, head and height sug-
gests the instability of the MRSM at these specific
covariates and this emphasizes their non-significance
in the MRSM.
The present analysis is limited on eleven covariates.

Unavailable covariates concerning parents that could
improve models are, for example, demographic

Table 3 Breslow estimation (Continued)

MRSM BMRSM JMRSM

APGAR (Below
4/10)

4/10 to 6/10 0.414 0.119 0.002 [0.236;
0.726]

0.150 0.034 p < 0.001 [0.096; 0.234] 0.412 0.142 0.010 [0.210;
0.809]

7/10 and
above

0.144 0.038 p < 0.001 [0.086;
0.242]

0.240 0.057 p < 0.001 [0.151; 0.381] 0.150 0.033 p < 0.001 [0.098;
0.232]

Weight (Under
2500 g)

2500 g to
4500 g

0.238 0.060 p < 0.001 [0.144;
0.391

0.478 4.519 0.938 [0.000; 5.32 × 107] 0.240 0.057 p < 0.001 [0.151;
0.381]

Above 4500 g 0.447 0.284 0.205 [0.129;
1.550

0.439 0.103 p < 0.001 [0.277; 0.696] 0.478 0.419 0.400 [0.086;
2.669]

Head (Below
32 cm)

32 cm to 36 cm 0.420 0.100 p < 0.001 [0.264;
0.669]

0.303 4.200 0.931 [0.000;
1.970 × 1011]

0.439 0.107 0.001 [0.273;
0.707]

Above 36 cm 0.284 0.210 0.089 [0.067;
1.211]

0.303 0.298 0.225 [0.044;
2.084]

χ 2 = 213.161, p < 0.001 χ 2 = 203.14, p < 0.001 χ 2 = 22.310, p < 0.001
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Table 4 Efron estimation

MRSM BMRSM JMRSM

Covariate
(reference)

Level HR SE P > z 95% CI HR SE P > z 95% CI HR SE P > z 95% CI

Age (Under
20 years old)

20 to 34
years old

0.230 0.083 p < 0.001 [0.114;
0.466]

0.230 0.086 p < 0.001 [0.111;
0.478]

0.230 0.083 p < 0.001 [0.114;
0.466]

35 years old
and above

0.324 0.129 0.005 [0.149;
0.706]

0.324 0.128 0.004 [0.149;
0.703]

0.324 0.125 0.004 [0.152;
0.691]

Residence (Rural) Urban 0.831 0.137 0.261 [0.602;
1.147]

0.831 0.160 0.337 [0.570;
1.212]

0.831 0.174 0.376 [0.552;
1.252]

Antecedents (Not
1st newborn)

1st newborn 0.756 0.149 0.156 [0.513;
1.113]

0.756 0.149 0.155 [0.514;
1.112]

0.756 0.143 0.140 [0.521;
1.096]

Abortion (Not
aborted)

Aborted once 1.393 0.396 0.244 [0.798;
2.430]

1.393 0.470 0.326 [0.719;
2.699]

1.393 0.522 0.377 [0.668;
2.904]

Aborted more
than once

0.452 0.154 0.020 [0.232;
0.880]

0.452 0.322 0.265 [0.112;
1.826]

0.452 0.391 0.359 [0.083;
2.465]

Childbirth
(Ventouse)

Natural 0.736 0.408 0.580 [0.249;
2.179]

0.736 1.482 0.879 [0.014;
38.109]

0.736 0.336 0.502 [0.301;
1.801]

Surgery 0.921 0.499 0.880 [0.319;
2.661]

0.921 1.858 0.968 [0.018;
47.963]

0.921 0.388 0.846 [0.403;
2.104]

Gender (Female) Male 1.823 0.312 p < 0.001 [1.304;
2.549]

1.823 0.361 0.002 [1.238;
2.687]

1.823 0.400 0.006 [1.186;
2.804]

Number (Singleton) Multiple 0.324 0.106 0.001 [0.170;
0.617]

0.324 0.100 p < 0.001 [0.177;
0.591]

0.324 0.096 p < 0.001 [0.181;
0.578]

APGAR (Below
4/10)

4/10 to 6/10 0.214 0.065 p < 0.001 [0.118;
0.387]

0.214 0.080 p < 0.001 [0.102;
0.447]

0.214 0.093 p < 0.001 [0.091;
0.501]

7/10 and
above

0.070 0.020 p < 0.001 [0.041;
0.121]

0.070 0.019 p < 0.001 [0.041;
0.120

0.070 0.019 p < 0.001 [0.041;
0.119]

Weight (Under
2500 g)

2500 g to
4500 g

0.231 0.063 p < 0.001 [0.135;
0.395]

0.231 0.064 p < 0.001 [0.134;
0.396]

0.231 0.062 p < 0.001 [0.136;
0.391]

Above 4500 g 0.412 0.269 0.174 [0.115;
1.479]

0.412 3.892 0.925 [0.000;
4.57 × 107]

0.412 0.485 0.451 [0.041;
4.149]

Head (Below
32 cm)

32 cm to 36 cm 0.422 0.119 0.002 [0.243;
0.734]

0.422 0.115 0.002 [0.247;
0.720]

0.422 0.118 0.002 [0.244;
0.729]

Above 36 cm 0.246 0.187 0.065 [0.055;
1.093]

0.246 3.784 0.927 [0.000;
3.030 × 1012]

0.246 0.251 0.169 [0.033;
1.819]

Height (Below
36 cm)

46 cm to 54 cm 0.917 0.285 0.781 [0.499;
1.687]

0.917 0.290 0.784 [0.494;
1.704]

0.917 0.294 0.788 [0.489;
1.721]

Above 54 cm 1.692 1.283 0.488 [0.383;
7.476]

1.692 24.567 0.971 [0.000;
3.890 × 1012]

1.692 1.700 0.601 [0.236;
12.140]

Adjusted MRSM Adjusted BMRSM Adjusted JMRSM

Covariate
(reference)

Level HR SE P > z 95% CI HR SE P > z 95% CI HR SE P > z 95% CI

Age (Under 20
years old)

20 to 34
years old

0.262 0.092 p < 0.001 [0.132;
0.522]

0.265 0.088 p < 0.001 [0.138;
0.509]

0.265 0.088 p < 0.001 [0.138;
0.508]

35 years old and
above

0.407 0.155 0.018 [0.193;
0.859]

0.421 0.151 0.016 [0.208;
0.850]

0.421 0.146 0.013 [0.213;
0.833]

Abortion (Not
aborted)

Aborted once 1.487 0.408 0.149 [0.868;
2.546]

– – – – – – – –

Aborted more
than once

0.520 0.170 0.046 [0.274;
0.987]

- 1.684 - 0.336 - 0.009 - [1.138;
2.490]

– – – –

Gender (Female) Male 1.764 0.297 0.001 [1.268;
2.453]

0.322 0.097 p < 0.001 [0.178;
0.583]

1.684 0.367 0.017 [1.098;
2.582]

Number (Singleton) Multiple 0.308 0.101 p < 0.001 [0.162;
0.586]

0.246 0.093 p < 0.001 [0.117;
0.515]

0.322 0.101 p < 0.001 [0.175;
0.594]
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covariates such as the parent’s education level, em-
ployment and income; behavioral covariates namely
smoking habit, alcohol consumption and dietary and
physiotherapeutic variables such as sports activity
level. These variables are not recorded in registry at
KUTH.

Conclusion
Marginal Risk Set Model (MRSM) and related re-
sampling using Bootstrap (BMRSM) and Jackknife
(JMRSM) are described and compared with a use of
the dataset on infant mortality. The JMRSM and
MRSM displayed relatively close results. The risk is
higher for babies whose parents are under 20 years
old parents as compared to older parents. Babies born
with APGAR greater or equal to 7/10 were found to
have a better survival outcome than those born with
APGAR less than 4/10 and those whose APGAR
range between 4/10 and 6/10. The risk is lower for
underweight babies as compared to babies with nor-
mal weight and overweight. The survival outcomes
for babies with normal circumference of head were
found to be better than those with relatively small
head. The study suggests that pregnancy of under 20
years old parents should be avoided, also appropriate
clinical ways of keeping pregnancy against any cause
of infant abnormality could help in lowering infant
mortality.

Appendix
Bootstrap and Jackknife re-sampling methods
Bootstrap
Consider the p fixed covariates xi = (xi1, xi2,. .., xin) in Eq.
(2) where xi j,i∈[1,p] are independent and identically
distributed possibly with distribution Fθ where θ is the
statistical parameter of interest. Consider the distribu-
tion function FRn of a random variable Rn(x, Fθ). A

bootstrap method as described in [9], consists of gener-
ating samples.
xi

* = xi
*1, xi

*2, …, xi
*B,

where xi
*k, k ∈ [1, B] are random samples of size n

drawn with replacement from the sample xi.
The variables of xi

*k are independent and identically

distributed with distribution F̂θ;n, given x; F̂θ;n is an esti-
mator of Fθ from xi; B is a number of bootstrap samples
also known as replications.
The estimated standard error of the bootstrap statistic

of interest is given in Efron and Tibshirani [9] as

ŝeB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B−1

XB
b¼1

θ̂
�
bð Þ− 1

B

XB
b¼1

θ̂
�
bð Þ

" #2
vuut ð6Þ

where θ̂
�ðbÞ is an estimate of the statistic of interest

from the bth bootstrap sample,
b = 1, 2,. .. .B

Jackknife
Consider the p fixed covariates xi = (xi1, xi2,. .., xin) in Eq.
(2).
Let θ be a statistic of interest. The jackknife samples

consist of leaving out one observation at a time, that is n
samples.
xi

* = (xi1, xi2,. .., xi k − 1, xi k + 1,. .., xin) ∀ k ∈ [1, n] [9].
The jackknife standard error estimate as propose [9],

is

ŝejack ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1
n

Xn
i¼1

θ̂
�
ið Þ− 1

n

Xn
i¼1

θ̂
�
ið Þ

" #2
vuut ð7Þ

where θ∗(i), i ∈ [1, n] is a statistic of interest for the ith

jackknife sample.

Table 4 Efron estimation (Continued)

MRSM BMRSM JMRSM

APGAR (Below
4/10)

4/10 to 6/10 0.249 0.073 p < 0.001 [0.140;
0.442]

0.085 0.021 p < 0.001 [0.052;
0.138]

0.246 0.100 0.001 [0.110;
0.546]

7/10 and above 0.081 0.022 p < 0.001 [0.048;
0.137]

0.225 0.057 p < 0.001 [0.137;
0.369]

0.085 0.021 p < 0.001 [0.052;
0.138]

Weight (Under
2500 g)

2500 g to
4500 g

0.222 0.057 p < 0.001 [0.135;
0.366]

0.487 5.083 0.945 [0.000;
3.730 × 108]

0.225 0.056 p < 0.001 [0.138;
0.367]

Above 4500 g 0.430 0.276 0.189 [0.122;
1.512]

0.403 0.105 p < 0.001 [0.242;
0.671]

0.487 0.453 0.440 [0.078;
3.023]

Head (Below
32 cm)

32 cm to 36 cm 0.388 0.093 p < 0.001 [0.243;
0.622]

0.252 3.678 0.925 [0.000;
6.680 × 1011]

0.403 0.108 0.001 [0.238;
0.683]

Above 36 cm 0.235 0.175 0.052 [0.054;
1.014]

0.252 0.259 0.180 [0.034;
1.889]

χ 2 = 203.061, p < 0.001 χ 2 = 172.14, p < 0.001 χ 2 = 21.514, p < 0.001
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Table 5 Cox estimation

MRSM BMRSM JMRSM

Covariate
(reference)

Level HR SE P > z 95%
CI

HR SE P > z 95% CI HR SE P > z 95% CI

Age (Under 20
years old)

20 to 34 years
old

0.193 0.085 p < 0.001 [0.081;
0.458]

0.193 0.094 0.001 [0.074;
0.502]

0.193 0.088 p < 0.001 [0.079;
0.472]

35 years old
and above

0.267 0.128
p < 0.001

0.006 [0.104;
0.682]

0.267 0.131 0.007 [0.102;
0.697]

0.267 0.124 0.004 [0.107;
0.662]

Residence (Rural) Urban 0.766 0.150 0.175 [0.521;
1.126]

0.766 0.221 0.356 [0.435;
1.349]

0.766 0.221 0.356 [0.435;
1.350]

Antecedents (Not
1st newborn)

1st newborn 0.763 0.185 0.264 [0.475;
1.226]

0.763 0.219 0.345 [0.435;
1.338]

0.763 0.194 0.289 [0.463;
1.258]

Abortion (Not
aborted)

Aborted once 1.404 0.453 0.293 [0.746;
2.643]

1.404 0.627 0.448 [0.585;
3.369]

1.404 0.593 0.422 [0.613;
3.215]

Aborted more
than once

0.378 0.152 0.015 [0.172;
0.830]

0.378 0.336 0.274 [0.066;
2.155]

0.378 0.446 0.409 [0.038;
3.814]

Childbirth
(Ventouse)

Natural 0.732 0.481 0.635 [0.202;
2.653]

0.732 0.369 0.537 [0.273;
1.968]

0.732 0.365 0.532 [0.276;
1.945]

Surgery 1.016 0.654 0.980 [0.288;
3.590]

1.016 0.480 0.973 [0.403;
2.565]

1.016 0.455 0.971 [0.423;
2.443]

Gender (Female) Male 1.991 0.405 0.001 [1.336;
2.966]

1.991 0.534 0.010 [1.177;
3.368]

1.991 0.601 0.023 [1.101;
3.599]

Number
(Singleton)

Multiple 0.218 0.111 0.003 [0.080;
0.589]

0.218 0.155 0.033 [0.054;
0.882]

0.218 0.131 0.011 [0.067;
0.709]

APGAR (Below
4/10)

4/10 to 6/10 0.080 0.042 p < 0.001 [0.029;
0.224]

0.080 0.056 p < 0.001 [0.020;
0.319]

0.080 0.052 p < 0.001 [0.022;
0.287]

7/10 and
above

0.021 0.011 p < 0.001 [0.008;
0.056]

0.021 0.014 p < 0.001 [0.006;
0.076]

0.021 0.011 p < 0.001 [0.008;
0.061]

Weight (Under
2500 g)

2500 g to
4500 g

0.236 0.070 p < 0.001 [0.131;
0.423]

0.236 0.077 p < 0.001 [0.124;
0.448]

0.236 0.068 p < 0.001 [0.134;
0.415]

Above 4500 g 0.378 0.257 0.153 [0.100;
1.436]

0.378 4.696 0.938 [0.000;
1.410 × 1010]

0.378 0.473 0.437 [0.033;
4.386]

Head (Below
32 cm)

32 cm to 36
cm

0.391 0.119 0.002 [0.216;
0.708]

0.391 0.101 p < 0.001 [0.236;
0.649]

0.391 0.115 0.001 [0.219;
0.698]

Above 36 cm 0.212 0.171 0.055 [0.043;
1.033]

0.212 3.376 0.922 [0.000;
7.780 × 1012]

0.212 0.238 0.167 [0.023;
1.913]

Height (Below
36 cm)

46 cm to 54
cm

0.828 0.283 0.582 [0.423;
1.620]

0.828 0.254 0.539 [0.454;
1.512]

0.828 0.284 0.582 [0.423;
1.622]

Above 54 cm 1.706 1.351 0.500 [0.361;
8.060]

1.706 28.569 0.975 [0.000;
3.090 × 1014]

1.706 1.747 0.602 [0.229;
12.707]

Adjusted MRSM Adjusted BMRSM Adjusted JMRSM

Covariate
(reference)

Level HR SE P > z 95%
CI

HR SE P > z 95% CI HR SE P > z 95% CI

Age (Under 20
years old)

20 to 34 years
old

0.218 0.094 p < 0.001 [0.094;
0.509]

0.219 0.078 p < 0.001 [0.109;
0.439]

0.219 0.087 p < 0.001 [0.101;
0.476]

35 years old
and above

0.341 0.157 0.019 [0.138;
0.841]

0.352 0.133 0.006 [0.167;
0.738]

0.352 0.141 0.009 [0.160;
0.771]

Abortion (Not
aborted)

Aborted once 1.479 0.459 0.208 [0.804;
2.719]

– – – – – – – –

Aborted more
than once

0.424 0.161 0.024 [0.201;
0.892]

-
1.833

-
0.544

- 0.041 - [1.025;
3.278]

– – – –

Gender (Female) Male 1.886 0.374 0.001 [1.278;
2.783]

0.227 0.136 0.013 [0.070;
0.732]

1.833 0.528 0.036 [1.042;
3.225]

Number
(Singleton)

Multiple 0.214 0.108 0.002 [0.079;
0.576]

0.091 0.053 p < 0.001 [0.029;
0.286]

0.227 0.135 0.013 [0.070;
0.730]
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Appendix C

STATA code

/**Generating age groups**/

gen agegroup=0 if age<20

replace agegroup=1 if age>=20 & age<35

replace agegroup=2 if age>=35

label var agegroup "Age groups"

label values agegroup age

label define age 0 "<20" 1 "[20,35)" 2 "35+"

/** Setting data as time to event survival data **/

stset time, failure(event)

/**Life table estimate of the survival function**/

ltable time event, survival

/**Graph of the life table survival function with 95% confidence limits**/

ltable time event, graph notable survival ci plotopts(recast(line) ///

lcolor(blue)) ciopts(recast(rline) lcolor(black) lpattern (dash)) ///

164



ytitle(Survival function estimate) xtitle(Time (in days))

/**Kaplan-Meier estimate of the survival function**/

sts list

/**Graph of Kaplan-Meier estimate of the survival function with 95% confidence limits**/

sts graph, ci plotopts(recast(line) lcolor(blue)) ciopts(recast(rline) lcolor(black) ///

lpattern(dash)) ytitle(Survival function estimate) ylabel(6) xtitle(Time (in days))

/**Log-rank test for comparison of survival function for variables age, residence, antecedents,

abortion, childbirth, gender, number, APGAR, weight, head and height, respectively**/

sts test age, logrank

sts test residence, logrank

sts test antecedents, logrank

sts test abortion, logrank

sts test childbirth, logrank

sts test gender, logrank

sts test number, logrank

sts test apgar, logrank

sts test weight, logrank

sts test head, logrank

sts test height, logrank /**Wilcoxon test for for comparison of survival function for variables

age, residence, antecedents, abortion, childbirth, gender, number, APGAR, weight, head and

height, respectively**/

sts test age, wilcoxon

sts test residence, wilcoxon



sts test antecedents, wilcoxon

sts test abortion, wilcoxon

sts test childbirth, wilcoxon

sts test gender, wilcoxon

sts test number, wilcoxon

sts test apgar, wilcoxon

sts test weight, wilcoxon

sts test head, wilcoxon

sts test height, wilcoxon

/**Cox proportional hazards model for original dataset**/

xi: stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender i.number i.apgar i.weight

i.head i.height

/**Stepwise Cox proportional hazard model**/

xi: stepwise stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender i.number i.apgar

i.weight i.head i.height, pr(0.05)

/**Marginal risk set mode**/

stset tstop, fail(event) exit(time.) enter(tstart)///

stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender i.number i.apgar i.weight

i.head i.height,///

strata(rec)

/**Aalen additive hazards regression models with 4 tests based on weights**/

xi: stlh i.age i.residence i.antecedents i.abortion i.childbirth i.gender i.number i.apgar i.weight

i.head i.height, ///



xlabel(0,500,1000,1500,2000) l1title("Cumulative parameter function") testwt(1 2 3 4) ///

b2title("Time (in days)")

/**Bootstrap Cox Proportional Hazards model**/

/**Breslow estimation**/

bootstrap, reps(1000): stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender

i.number i.apgar i.weight i.head i.height

/**Efron estimation**/

bootstrap, reps(1000): stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender

i.number i.apgar i.weight i.head i.height, efron

/**Cox estimation**/

bootstrap, reps(1000): stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender

i.number i.apgar i.weight i.head i.height, exactp

/**Jackknife Cox Proportional Hazards model**/

/**Breslow estimation**/

jackknife: stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender i.number i.apgar

i.weight i.head i.height

/**Efron estimation**/

jackknife: stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender i.number i.apgar

i.weight i.head i.height, efron

/**Cox estimation**/

jackknife: stcox i.age i.residence i.antecedents i.abortion i.childbirth



i.gender i.number i.apgar i.weight i.head i.height, exactp

/**Bootstrap Marginal risk set mode**/

stset tstop, fail(event) exit(time.) enter(tstart)///

bootstrap, reps(1000): stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender

i.number i.apgar i.weight i.head i.height,///

strata(rec)

/**Jackknife Marginal risk set mode**/

stset tstop, fail(event) exit(time.) enter(tstart)///

jackknife: stcox i.age i.residence i.antecedents i.abortion i.childbirth i.gender i.number i.apgar

i.weight i.head i.height,///

strata(rec)
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