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Highlights

• A novel chance-constrained OPF model that accounts for contextual in-
formation

• The dependence between the wind power power forecast and its error is
exploited

• The OPF model is robust to ambiguity in the conditional forecast error
distribution

• Compared to others, our method produces reliable OPF solutions that are
cheaper
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Abstract

In this paper, we develop a distributionally robust chance-constrained formulation

of the Optimal Power Flow problem (OPF) whereby the system operator can lever-

age contextual information. For this purpose, we exploit an ambiguity set based on

probability trimmings and optimal transport through which the dispatch solution is

protected against the incomplete knowledge of the relationship between the OPF un-

certainties and the context that is conveyed by a sample of their joint probability

distribution. We provide a tractable reformulation of the proposed distributionally

robust chance-constrained OPF problem under the popular conditional-value-at-risk

approximation. By way of numerical experiments run on a modified IEEE-118 bus

network with wind uncertainty, we show how the power system can substantially

benefit from taking into account the well-known statistical dependence between the

point forecast of wind power outputs and its associated prediction error. Furthermore,

the experiments conducted also reveal that the distributional robustness conferred on

the OPF solution by our probability-trimmings-based approach is superior to that

bestowed by alternative approaches in terms of expected cost and system reliability.
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1. Introduction

The Optimal Power Flow (OPF) is a fundamental problem in power system op-

erations. Traditionally, the goal of the OPF problem is to minimize the cost of the

power generation dispatch that supplies the electricity demand while complying with

some physical and engineering constraints. The growing penetration of electricity

generation sources like wind and solar power, which are intrinsically uncertain, has

led power system engineers to account for randomness in OPF analyses. Hence, the

OPF is to be formulated today as an optimization problem under uncertainty.

A common way to cope with uncertainty in the constraints of an optimization

problem and, in particular, of an OPF model is by way of the so-called chance con-

straints, which allow the modeler to impose the constraint satisfaction with a certain

probability only. Accordingly, chance-constrained optimal power flow models (CC-

OPF) have been developed to control the violation probability of, for instance, line

and generation capacity limits. In particular, references [13, 23, 28] consider joint

chance constraints, by which the system operator enforces that all constraints must

simultaneously hold with a probability greater than or equal to 1− ϵ, where ϵ ∈ (0, 1)

is a pre-fixed acceptable tolerance of dispatch infeasibility. This is in contrast to single

chance constraints, whereby the probability of constraint satisfaction is imposed on

each constraint of the OPF separately. Although single chance constraints have been

considered in the literature of CC-OPF models due to their attractive tractability

properties (see, e.g., [4, 18, 31] and references therein), they do not provide guaran-

tees on the joint satisfaction of the OPF constraints in general or, when they do, they

usually lead to costly and over-conservative dispatch solutions [23].
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One of the main challenges in solving CC-OPF problems is that the underlying

probability distribution of the random variables affecting the OPF constraints is gen-

erally unknown. In fact, in practice, only past historical observations of those variables

are available to the system operator. Within this context, Distributionally Robust

Optimization (DRO) has emerged as a versatile and powerful paradigm to tackle the

ambiguity of the distribution of an optimization problem’s random parameters. DRO,

therefore considers a set of potential distributions for those parameters, namely, the

so-called ambiguity set [24]. In the literature on DRO, there exist two distinct ways

to specify an ambiguity set, either using statistical moments or probability metrics.

The main drawback of using a moment-based DRO approach is that the available his-

torical information is only used to estimate the moments of the true data-generating

distribution and thus, if new samples of said distribution become available, but the

moment estimates are not modified, the ambiguity set does not change. Alternatively,

in metric-based DRO, the ambiguity set collects all potential distributions whose dis-

tance to a particular nominal distribution is lower than or equal to some pre-fixed

value. Although there are different choices of probability metrics to construct the

ambiguity set, the Wasserstein distance has received much attention within the power

systems community. This is partly due to the performance guarantees provided by

this distance (see, e.g., [19]) in contrast to the moment-based DRO approach.

Thus, distributionally robust chance-constrained optimal power flow (DRCC-OPF)

models seek the optimal dispatch such that all the model constraints are satisfied with

a pre-fixed confidence level for all the probability distributions within the ambiguity

set built either by means of the Wasserstein metric ([1, 2, 22, 32]), using moments

([15, 16, 17, 29]), or by way of a discrete probability distribution with probability

masses and locations varying within a box [12].

Unfortunately, the consideration of joint chance constraints in a DRO framework
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([10, 30]) renders an intractable optimization problem in general. For this reason,

researchers have considered DRO-OPF models based on the well-known conservative,

but far more tractable approximation, given by the concept of conditional-value-at-

risk (CVaR), see, for example, [1, 12, 22] and references therein. The authors in [6]

show that the CVaR offers a tight convex approximation of the chance constraints

under the DRO framework, which justifies its popularity. In addition, by way of

CVaR-based chance-constraints, the power system operator can control not only the

violation probability, but also the violation magnitude, which can be important from

the standpoint of power system operations.

Yet another key issue is that the system operator is able to not only tune the

robustness of the resulting chance-constrained DRO model by adjusting the proba-

bility of constraint violation, but also, and very importantly, through the specificity

degree of the ambiguity set. In this regard, some previous approaches have focused on

producing more meaningful ambiguity sets by incorporating structural information on

the underlying true probability distribution (see, e.g., [1, 2, 15, 16, 17]). More specifi-

cally, the authors in [1] introduce a DRCC-OPF model with single chance constraints,

which considers all distributions within a Wasserstein ball that conform to a given

copula-based dependence structure among the random variables. The authors in [2]

propose an iterative algorithm for solving a bilinear exact reformulation of a DRCC-

OPF model with single chance constraints considering some support information. The

authors of [15] and [16] provide and study DRCC-OPF models where some moment

and unimodality information is included in the ambiguity set. Both aforementioned

approaches are extended in [17] to allow for misspecified modes.

Ideally, one would like to have the smallest ambiguity set that contains the true

data-generating distribution. In this vein, if we have some information on the true

distribution, we should use it to discard all those other distributions that do not
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conform with that information from the ambiguity set. As mentioned above, that

information can be, for example, some dependence structure via copulas [1], support

information [2] or shape information (such as unimodality) [16, 17]. Our aim is also to

leverage a more informed ambiguity set, but, and for the first time to our knowledge,

that information refers to a given context. This side/contextual information (also

known as features or attributes) is related to outcomes of random variables that may

have predictive power on the OPF’s uncertainties. Accordingly, we make use of an

ambiguity set that accounts for the possible dependence between the uncertainties and

these explanatory variables. Thus, the contextual information allows us to discard

implausible distributions.

More specifically, in the work we present here, we exploit the contextual informa-

tion provided by the point forecasts of those uncertainties. In the energy forecasting

community,it is a well known fact that the power forecast error of a wind farm highly

depends on the wind power forecast itself [5, 9]. Within the context of DRCC-OPF,

this means that the wind power point forecast constitutes valuable information to

build a proper ambiguity set for the wind power forecast error.

The main contributions of this work are thus:

1. We provide a formulation of the DC-OPF problem with joint chance constraints

as a conditional stochastic program, in which both the expected cost of the

power dispatch and the chance constraints are conditioned on some contextual

information, in particular, the point forecasts of the OPF’s uncertainties. To the

best of our knowledge, this work is the first to tackle a chance constraint system

with a distributionally robust approach that accounts for contextual information.

2. To tackle the resulting conditional stochastic program, we propose an entirely

data-driven and non-parametric DRO approach, in which no assumption on the
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relationship between the context and the OPF’s uncertainties (i.e., the point

forecasts and their error in our case) is made. Our approach makes use of the

ambiguity set based on probability trimmings that is introduced in [8] and which

is able to integrate contextual information. We prove that, under the widely

used CVaR-based approximation of the joint chance constraint system [21],

it results in a tractable distributionally robust joint chance-constrained OPF

model.

3. Finally, by way of numerical experiments in which we compare our DRCC-

OPF formulation with alternative approaches in the literature, we show that

exploiting the contextual information provided by the wind power point forecasts

allows identifying dispatch solutions with a better trade-off between expected

cost and system reliability.

The remainder of this paper is organized as follows. Section 2 introduces the

mathematical formulation of the distributionally robust joint chance-constrained DC-

OPF problem with contextual information that we propose. Then, Section 3 provides

a tractable reformulation of the distributionally robust joint chance constraints under

the well-known CVaR approximation, while Section 4 focuses on reformulating the

worst-case expected cost in a manageable way. Results from numerical experiments

are presented and discussed in Section 5. Finally, Section 6 concludes the paper

with some final remarks. The manuscript also contains appendices with the main

notation used throughout the main text and supportive optimization models. The

proofs of theoretical results and additional numerical experiments are available in the

supplementary material associated with this article.

Notation. Unless otherwise stated, in this paper, we use boldface lowercase letters

to represent arrays and boldface capital letters for matrices. Vector 1 (0) is a vector
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of ones (zeros) of appropriate dimension, and the inner product of two vectors u,v

will be denoted by ⟨u,v⟩. The cardinality of a set A will be indicated by |A|. The

support function of a set B ⊆ Rd, SB, is defined as SB(a) := supb∈B⟨a, b⟩. Moreover,

we reserve the symbol “ ̂ ” for objects which are dependent on the sample data

and denote “expectation” with the symbol E. In addition, throughout the paper we

assume that we always have measurability for those objects whose expected values we

consider. The reader is referred to Appendix A for a complete list of the notation

used throughout this paper.

2. DC-OPF under uncertainty: Mathematical Formulation

Next we introduce the DC-OPF problem under uncertainty. The problem is for-

mulated as a distributionally robust version of the joint chance-constrained DC-OPF

model described in [23], where we have also accounted for the procurement of reserve

capacity and its associated cost, as in [16, 17]. Nonetheless, unlike in [23], where the

generators’ cost functions are assumed to be quadratic, here we model those costs

as convex piecewise linear functions. Furthermore, there exists a number of differ-

ent variants of the distributionally robust chance-constrained DC-OPF problem (e.g.,

[2, 12, 16, 22, 32]), which essentially differ in the treatment of the chance constraints

(single vs. joint), the cost structure of generators that is assumed, and the ambiguity

set used. What makes our formulation unique among those variants is its ability to

exploit contextual information.

2.1. Variables and constraints

Consider a power system with a set L of transmission lines, a set B of buses, a setW
of wind power plants (or, more generally, weather-dependent renewable generators),
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and a set G of conventional generators (i.e., dispatchable units that are not weather-

dependent). For ease of formulation, power loads are assumed to be deterministic.

Next we introduce each of the main components of the DC-OPF problem.

1. Wind power plants. For each wind power plant m ∈ W, the random power

output is modeled as fm+ωm, where fm is the predicted power output and ωm is

the (random) wind forecast error at wind power plant m. We denote the system-

wise aggregate wind power forecast error as Ω, i.e., Ω :=
∑

m∈W ωm = ⟨1,ω⟩.
Let f := (fm)m∈W ,ω := (ωm)m∈W be the array of predicted power outputs and

wind power prediction errors, respectively.

2. Generators: For each j ∈ G, the actual power output of generator j, g̃j(ω), is

expressed as the sum of the scheduled generation, gj , and the (random) adjusted

power r̃j(ω) (also known as deployed reserve). As customary, we assume an

affine control policy to counterbalance the wind forecast errors by deploying

generators’ reserves [4], that is,

g̃j(ω) := gj + r̃j(ω) = gj − βjΩ = gj − βj⟨1,ω⟩, ∀j ∈ G (1)

where βj is the participation factor of generator j. Denote by β := (βj)j∈G ,g :=

(gj)j∈G the array of non-negative participation factors and scheduled generation,

respectively. Let g̃(ω) := (g̃j(ω))j∈G , r̃(ω) := (r̃j(ω))j∈G = (−βj⟨1,ω⟩)j∈G be

the array of actual power outputs and deployed reserves, in that order.

The following constraints determine the provision of reserve capacities:

−rD ⩽ r̃(ω) ⩽ rU (2)

with rD, rU being the arrays of downward and upward reserve capacity provided

by the generators, respectively.
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Naturally, the following technical constraints, which link the generation dis-

patches and the provision of reserve capacities, must hold:

g + rU ⩽ gmax, (3)

g − rD ⩾ gmin (4)

where gmin,gmax are the arrays of minimum and maximum power output of the

generators, respectively.

3. Network constraints. The total power generation must equal the total system

demand (power balance constraint), that is,

⟨1, g̃(ω)⟩+ ⟨1, f + ω⟩ = ⟨1,L⟩ (5)

where L := (Lb)b∈B denotes the array of nodal loads. Using (1), Eq. (5) is

equivalent to:

⟨1,g⟩+ ⟨1, f⟩ = ⟨1,L⟩ (6)

⟨1,β⟩ = 1, β ⩾ 0 (7)

which guarantee the power balance both in the dispatch and the real-time stages,

respectively.

Finally, we assume that the power flow through the lines is given by a linear

function of the nodal power injections, that is, MG(g̃(ω))+MW(f +ω)−MBL,

based on the DC power flow approximation, where MG ,MW and MB are the

matrix for generators, wind plants and loads given by the DC power transfer

distribution factors [27], in that order. Hence, the constraints

−Cap ⩽MG(g̃(ω)) +MW(f + ω)−MBL ⩽ Cap (8)

enforce the transmission capacity limits where Cap := (Capℓ)ℓ∈L denotes the

array of transmission line capacities.
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2.2. Dealing with uncertainty in the DC-OPF problem

In practice, it is often the case that the random vector of forecast errors ω shows

some statistical dependence on some features/covariates, which we can model, in

general, by some random vector z. In fact, the forecast wind power output f serves

in itself as an obvious explanatory random vector for the subsequent forecast error ω.

In this approach, we want to exploit this statistical dependence to identify a better

power generation dispatch and provision of reserve capacity.

Let z := (zm)m∈W be the random vector modeling the features and let Q be the

probability measure of the joint distribution of z and ω, which is supported on Ξ. For

convenience, we define ξ := (z,ω). Given the array of forecast wind power outputs,

f := (fm)m∈W , set the contextual information ξ := (z,ω) ∈ Ξ̃ defined by the event

(z = f ; ω ∈ Ξ̃ω), with Ξ̃ω being the support of ω conditional on z = f . The errors

of forecasting the power output of a wind farm are naturally bounded. Their lower

bound is the forecast value itself, while their upper bound is given by the difference of

the capacity of the wind farm and the predicted value. Therefore, Ξ̃ω is the hypercube
∏

m∈W [−fm, Cm− fm], where Cm represents the capacity of wind farm m. Note that

the optimal dispatch is, therefore, parametrized on the predicted wind power outputs

{fm}m∈W .

In real life, however, neither the joint distribution Q, nor the conditional one

Qω/z=f , are known. The system operator only has access to a finite set of samples

of size N (i.e. the training set) of the true joint distribution Q, which we denote as

Ξ̂N
ω := {ξ̂i}Ni=1 = {(ẑi, ω̂i)}Ni=1. In our context, Ξ̂N

ω is made up of N past observations

of the predicted wind power outputs and their associated errors. Hence, the system

operator needs to infer or construct a proxy ofQω/z=f from the sample Ξ̂N
ω , so that this

proxy can be used to compute a reliable and cost-efficient OPF solution. However,

the limited information that Ξ̂N
ω conveys on Qω/z=f makes this inference process
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ambiguous, and as such, we propose employing the following distributionally robust

chance-constrained OPF model to protect the system operator’s decision against this

ambiguity:

min
x∈X

sup
Q

Ξ̃
∈Û

EQ
Ξ̃

[
C(g̃(ω)) + ⟨cD, rD⟩+ ⟨cU , rU ⟩

]
(9)

s.t. inf
Q

Ξ̃
∈Û

Q
Ξ̃


 −rD ⩽ r̃(ω) ⩽ rU

−Cap ⩽ MG(g̃(ω)) +MW(f + ω)−MBL ⩽ Cap


 ⩾ 1− ϵ (10)

where X is the deterministic feasible set for the array of decision variables x =

(g,β, rD, rU ) defined by the constraints (3), (4), (6) and (7).

The set Û in (9)-(10) stands for an ambiguity set for the true conditional distribu-

tion Qω/z=f . Here we will use the ambiguity set based on probability trimmings and

optimal transport introduced in [8], which allows us to exploit the side information

within a DRO framework in a fully data-driven sense. This ambiguity set is formally

introduced in Section 2.3.

Objective function (9) minimizes the expected total operational cost over the

worst-case distribution from the ambiguity set Û , including the sum of the (random)

total generation cost, C(g̃(ω)), and the (deterministic) cost of providing up- and

down-reserve capacities, ⟨cD, rD⟩+ ⟨cU , rU ⟩. The total generation cost function C(·)
is assumed to be given by the sum of |G| convex piecewise linear cost functions with

Sj pieces/blocks, i.e., C(g̃(ω)) :=
∑

j∈G maxs=1,...,Sj{mjsg̃j(ω)+njs}, where mjs, njs

stand for the slope and the intercept of the s-th piece for generator j, respectively.

Parameters cD, cU are the arrays of downward and upward reserve procurement cost of

the generators, respectively. Note that the wind power production cost is assumed to

be zero. Finally, constraint (10) establishes a tolerance ϵ in terms of the joint violation

probability of the OPF constraints under any conditional probability distribution Q
Ξ̃

for ω (given some contextual information) within the ambiguity set Û , which will be

11

                  



defined right after the following remark.

Remark 1. Estimating the probability distribution of the wind power forecast error

conditional on the point prediction, i.e., Qω/z=f (a task that is typically referred to as

probabilistic forecasting) requires postulating a statistical model for that distribution,

following the scheme “from data to decision through prediction” . The “prediction”

step in that scheme may negatively affect the decision value in the end due to model

misspecification, the estimation error and/or simply because of the so-called “opti-

mizer’s curse” or “optimization bias” [19].

Our approach, in contrast, is fully data driven in the sense that it follows an al-

ternative scheme by which the decision is directly inferred from the data without being

forced to use a specific predictive model (which could be the wrong choice). Further-

more, as we explain below, our approach protects the decision against the uncertainty

intrinsic to the process of inferring the conditional forecast error distribution from

samples of the joint distribution of the pair (point prediction, prediction error). This

can be particularly important when the sample size is small and said uncertainty is

high as a result.

2.3. The ambiguity set based on probability trimmings

To formalize the ambiguity set based on probability trimmings that will play

the role of Û in (9)-(10), we first need to introduce a series of probability-related

concepts. We start with the Wasserstein metric of order 1, a well-known metric

for probability distributions with finite first moment closely linked to the optimal

transport problem [26]:

Definition 1 (1-Wasserstein metric). Given two probability measures P,Q with finite

first moment supported on Ξ, that is, P,Q ∈ P1(Ξ), the Wasserstein metric of order 1
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between P and Q, W1

(
P,Q

)
, is given by the value

inf
Π





∫

Ξ2

∥ξ1 − ξ2∥1Π(dξ1, dξ2) :
Π is a joint distribution of ξ1 and ξ2

with marginals P and Q, respectively





Next, we introduce the definition of trimmings and trimming sets of an empirical

probability measure. Essentially, trimming a probability measure allows to play down

the weight of some regions of the measurable space without completely removing them

from the support set.

Definition 2 ((1 − α)-empirical trimmings sets). Consider the sample data {ξ̂i}Ni=1

and their associated empirical measure Q̂N = 1
N

∑N
i=1 δξ̂i

. If α > 0, the set of all

(1−α)-trimmings of Q̂N is given by all probability distributions in the form
∑N

i=1 biδξ̂i

such that 0 ≤ bi ≤ 1
Nα , ∀i = 1, . . . , N , and

∑N
i=1 bi = 1.

For ease of understanding, we provide below an example of a (1 − α)-empirical

trimmings set.

Example 1. Suppose the empirical joint measure Q̂N :=
∑3

i=1 δ(ẑi,ω̂i) = 1
3(δ(1,0) +

δ(0,5)+δ(2,3)) (N = 3). If α = 0.5, then 1
Nα = 1

3·0.5 = 2
3 . Therefore, the 0.5-trimmings

set of Q̂N is given by

R0.5(Q̂N ) :=

{
3∑

i=1

biδξ̂i
: 0 ≤ bi ≤

2

3
,∀i = 1, . . . , 3;

3∑

i=1

bi = 1

}

The following statements hold thus true:

Q̂N =
1

3
(δ(1,0) + δ(0,5) + δ(2,3)) ∈ R0.5(Q̂N )

Q =
2

3
δ(1,0) +

1

3
δ(0,5) ∈ R0.5(Q̂N )

P = δ(1,0) ̸∈ R0.5(Q̂N ) (the trimming must retain one point and a half at least)

S =
2

3
δ(1,0) +

1

6
δ(0,5) +

1

6
δ(2,3) ∈ R0.5(Q̂N )
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V =
3

4
δ(1,0) +

1

12
δ(0,5) +

2

12
δ(2,3) ̸∈ R0.5(Q̂N ) (because b1 > 2/3)

Our ambiguity set also relies on the concept of minimum transportation budget,

which is provided below.

Definition 3 (Minimum transportation budget). Given α > 0, the minimum trans-

portation budget, which we denote as ρ
Nα

, is the 1-Wasserstein distance between

the set of probability distributions P1(Ξ̃) and the (1 − α)-trimming of the empirical

distribution Q̂N that is the closest to that set, that is,

ρ
Nα

=
1

Nα

⌊Nα⌋∑

k=1

dist(ξk:N , Ξ̃) +

(
1− ⌊Nα⌋

Nα

)
dist(ξ⌈Nα⌉:N , Ξ̃) (11)

where ξk:N is the k-th nearest data point from the sample to set Ξ̃ and dist(ξj , Ξ̃) :=

inf
ξ∈Ξ̃ dist(ξj , ξ) = inf

ξ∈Ξ̃ ||ξj − ξ||.

The minimum transportation budget is a minimum threshold to ensure the non-

emptiness of the trimmings-based ambiguity set, which is finally defined as follows.

Definition 4 (Ambiguity set based on probability trimmings). Assume that Q ∈
P1(Ξ), α > 0, and consider the set R1−α(Q̂N ) of (1 − α)−trimmings of the empiri-

cal joint distribution Q̂N := 1
N

∑N
i=1 δ(ẑi,ω̂i). If ρ ⩾ ρ

Nα
, where ρ

Nα
is the minimum

transportation budget introduced in Definition 3, then the ambiguity set based on trim-

mings, ÛN (α, ρ), is defined as the set of all distributions Q
Ξ̃
supported on Ξ̃ such that

W1(R1−α(Q̂N ), Q
Ξ̃
) ≤ ρ.

The ambiguity set based on probability trimmings collects all distributions with

support set Ξ̃ that result from a partial optimal transport of mass α from Q̂N to

Ξ̃ within a budget ρ. The parameters α and ρ tune the shape and the size of the

ambiguity set, respectively. Indeed, α can be seen as the minimum amount of mass
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of Q̂N which plays a role in the conditional inference and ρ controls the degree of

robustness/conservativeness. Hereinafter, we refer to α as the trimming level and to

ρ as the transportation budget or robustness parameter. Further technical information

on the ambiguity set ÛN (α, ρ) can be obtained from [8].

Remark 2. In order to account for contextual information in a DRO framework, the

authors in [3] propose an ambiguity set Û different to the one based on probability

trimmings (i.e., ÛN (α, ρ)) that we advocate here. More specifically, the ambiguity

set they suggest is a Wasserstein ball centered at the discrete distribution supported

on the ω̂-coordinates of the K data points from the sample Ξ̂N
ω that are the closest

to Ξ̃. In the supplementary material, we use an example based on a small three-node

system which has been taken from [20] to illustrate that our trimmings-based ambiguity

set generally delivers better dispatch solutions in terms of expected cost and system

reliability than the one introduced in [3] for the DC-OPF problem under uncertainty.

In the next section, we introduce a tractable and conservative approximation of the

distributionally robust joint chance constraints (10) using the notion of Conditional

Value at Risk (CVaR). As previously mentioned, the use of the CVaR in the context

of chance-constrained distributionally robust OPF is very popular in the literature

(see, for example, the recent publications [12] and [22]).

3. A tractable approximation of the distributionally robust joint chance

constraints

The distributionally robust joint chance constraints (10) can be written equiva-

lently as the following distributionally robust single chance constraint, where we have

already replaced the generic Û with the ambiguity set based on probability trimmings
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ÛN (α, ρ):

inf
Q

Ξ̃
∈ÛN (α,ρ)

Q
Ξ̃

(
max
k≤K

⟨a1k,ω⟩+ a2k ⩽ 0

)
⩾ 1− ϵ (12)

Functions ⟨a1k,ω⟩+ a2k, k ≤ K, represent the OPF constraints involved in the joint

chance constraint (10) expressed as inequalities lower than or equal to zero. These

constraints are all linear with respect to the random vector ω.

In practice, the system operator is not only concerned about the joint violation of

the OPF constraints, but also about the magnitude of this violation. Indeed, the joint

chance constraint (12) does not offer guarantees on how positive maxk≤K⟨a1k,ω⟩+a2k

is. This is one of the main reasons to adopt a risk-averse approach to handle the joint

chance constraint via the well-known concept of Conditional-Value-at-Risk (CVaR),

which quantifies the conditional expectation of maxk≤K⟨a1k,ω⟩ + a2k on its right ϵ-

tail. More specifically, the CVaR at level ϵ ∈ (0, 1) of an univariate random variable

ϕ(ω) under the probability measure Q, Q − CVaRϵ(ϕ(ω)), is defined as the value

infτ∈R{τ + 1
ϵEQ[(ϕ(ω) − τ)+]} and when the infimum is attained, τ represents the

Value-at-Risk with confidence level 1− ϵ [25].

In this paper, in lieu of (12), we consider the following tractable (convex) approx-

imation:

sup
Q

Ξ̃
∈ÛN (α,ρ)

Q
Ξ̃
−CVaRϵ

(
max
k≤K

⟨a1k,ω⟩+ a2k

)
⩽ 0 (13)

which is, in addition, conservative, because (13) implies (12).

Constraint (13) can be equivalently reformulated as follows [22], [25]:

inf
τ∈R



τ +

1

ϵ
sup

Q
Ξ̃
∈ÛN (α,ρ)

EQ
Ξ̃

[(
max
k≤K

⟨a1k,ω⟩+ a2k − τ

)+
]
 ⩽ 0 (14)

The next proposition states a tractable reformulation of (14). For ease of exposition,
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we first need to recast function (maxk≤K⟨a1k,ω⟩+ a2k − τ)+ as

(
max
k≤K

⟨a1k,ω⟩+ a2k − τ

)+

:= max
k⩽K+1

⟨a1k,ω⟩+ a′2k (15)

where a′2k = a2k − τ for k ≤ K, a1K+1 = 0 and a′2K+1 = 0.

Proposition 1 (Reformulation of the CVaR-based distributionally robust joint

chance constraints). Set α > 0. Then, for any value of ρ ⩾ ρ
Nα

, the CVaR-based

distributionally robust joint chance constraints defined by (13) can be equivalently re-

formulated as follows:

inf
τ∈R,λ2⩾0,µi⩾0,θ2∈R,γik,vik

{
τ +

1

ϵ

[
λ2ρ+ θ2 +

1

Nα

N∑

i=1

µi

]}
⩽ 0 (16a)

s.t. µi + θ2 + λ2∥z∗ − ẑi∥1 ⩾ a′2k + S
Ξ̃ω

(vik)

− ⟨γik, ω̂i⟩,∀i ⩽ N, ∀k ⩽ K + 1 (16b)

γik − vik = −a1k, ∀i ⩽ N, ∀k ⩽ K + 1 (16c)

∥γik∥∞ ⩽ λ2, ∀i ⩽ N, ∀k ⩽ K + 1 (16d)

where S
Ξ̃ω

(·) stands for the support function of Ξ̃ω and ⟨·, ·⟩ represents the dot product

(see Appendix A.5).

Once we have reformulated the CVaR-based distributionally robust joint chance

constraint (13), we only need to reformulate the DRO problem defined by the inner

supremum in (9). Since this requires a careful and independent analysis, we consider

it in the following section.

4. An exact tractable reformulation of the worst-case expected cost

In what follows, we provide an exact and tractable reformulation of the objective

function (9) as a continuous linear program.
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The term

C(g̃(ω)) =
∑

j∈G
max

s=1,...,Sj

{
mjs [gj − βjΩ] + njs

}
(17)

is the sum of the maximum of univariate linear functions in terms of Ω, which is,

moreover, convex in Ω. This observation is key to reformulating (9) in a tractable

way. In fact, the ambiguity set ÛN (α, ρ) for the worst-case probability distribution in

the inner supremum of (9) can be equivalently replaced with the following one, which

is also expressed in terms of Ω only:

ÛΩ
N (α, ρ) := {P

Ξ̃Ω
: W1(R1−α(P̂N ), P

Ξ̃Ω
) ≤ ρ, P

Ξ̃Ω
(Ξ̃Ω) = 1} (18)

where P̂N := 1
N

∑N
i=1 δ(ẑi,Ω̂i)

is the empirical distribution supported on the samples

(ẑ, Ω̂i), i = 1, . . . , N ; and Ξ̃Ω stands for the event

(z = f ; Ω ∈ [Ω,Ω]), with [Ω,Ω] =

[
−

∑

m∈W
fm,

∑

m∈W
(Cm − fm)

]

The interval [Ω,Ω] is the conditional support for the random variable Ω (that is,

the support set for the system-wise aggregate wind power forecast error, given the

predicted power outputs of the wind farms). Essentially, what we have done above

is to map the original probability space for the random vector (z,ω) onto a new

probability space for the random vector (z,Ω) by the linear map ω 7→ ∑
m∈W ωm,

Ω =
∑

m∈W ωm, which leaves the objective cost function unaltered. In doing so, the

inner supremum in (9) can be fully recast in terms of Ω only as follows:

sup
P
Ξ̃Ω

∈ÛΩ
N (α,ρ)

EP
Ξ̃Ω


∑

j∈G
max

s=1,...,Sj

{
mjs [gj − βjΩ] + njs

}
+ ⟨cD, rD⟩+ ⟨cU , rU ⟩


 (19)

The proposition below presents a tractable reformulation of (19) as a continuous

linear program.
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Proposition 2 (LP reduction of the worst-case expected cost). Set α > 0 and assume

that ∥(z,Ω)∥ := ∥z∥+ |Ω| for some norm ∥ ·∥ in Rdz. Then, for any value of ρ ⩾ ρ
Nα

,

the DRO problem defined by (19) can be reformulated as the following continuous

linear program:

inf
λ⩾0;θ∈R,µi,ti,tij ,tij ,t̂ij∀i⩽N, ∀j∈G

λρ+ θ +
1

Nα

N∑

i=1

µi + ⟨cD, rD⟩+ ⟨cU , rU ⟩ (20a)

s.t. µi + θ + λ∥z∗ − ẑi∥ ⩾ ti,∀i ⩽ N (20b)

ti ⩾
∑

j∈G
tij − λ(Ω− Ω̂i), ∀i ∈ I (20c)

ti ⩾
∑

j∈G
tij − λ(Ω− Ω̂i), ∀i ∈ I (20d)

ti ⩾
∑

j∈G
tij + λ(Ω− Ω̂i), ∀i ∈ I (20e)

ti ⩾
∑

j∈G
tij + λ(Ω− Ω̂i), ∀i ∈ I (20f)

ti ⩾
∑

j∈G
tij − λ(Ω− Ω̂i), ∀i ∈ I (20g)

ti ⩾
∑

j∈G
tij + λ(Ω− Ω̂i), ∀i ∈ I (20h)

ti ⩾
∑

j∈G
t̂ij , ∀i ∈ I (20i)

µi ⩾ 0, ∀i ⩽ N (20j)

tij ⩾ mjs [gj − βjΩ] + njs, ∀i ⩽ N, ∀j ∈ G, ∀s ⩽ Sj (20k)

tij ⩾ mjs

[
gj − βjΩ

]
+ njs, ∀i ⩽ N, ∀j ∈ G, ∀s ⩽ Sj (20l)

t̂ij ⩾ mjs

[
gj − βjΩ̂i

]
+ njs, ∀i ⩽ N, ∀j ∈ G, ∀s ⩽ Sj (20m)

where I := {i ∈ {1, . . . N} : Ω̂i < Ω}, I := {i ∈ {1, . . . N} : Ω̂i ∈ [Ω,Ω]}, and

I := {i ∈ {1, . . . N} : Ω̂i > Ω}.
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5. Numerical results

In this section, we present and discuss results from a series of numerical experi-

ments that have been run on a modified version of the IEEE 118-bus system considered

in [12]. All the data and codes needed to reproduce those experiments are available

for download in the GITHUB repository [7]. The experiments have been carried out

on a Linux-based server using up to 13200 CPUs running in paralell, each clocking

at 2.6 GHz with 200 GB of RAM. We have employed CPLEX 20.1.0 under DOc-

plex Python Modeling API to solve the associated continuous linear programs with

the barrier algorithm using up to 22 threads. In addition, we have set the CPLEX

parameter preprocessing dual to 1.

We solve the CC-DRO OPF problem (9)–(10) using the CVaR-based approxima-

tion stated in Section 3, but with different ambiguity sets, namely: (i) The ambiguity

set based on probability trimmings, introduced in this paper, which we refer to as

DROTRIMM; and (ii) a Wasserstein ball centered at the empirical distribution sup-

ported on the ω̂-coordinates of the N samples in Ξ̂N
ω , i.e., {(ẑi, ω̂i)}Ni=1. This leads

to the distributionally robust chance-constrained OPF model proposed in [22], which

we call DROW. Importantly, this is a DRO model that fully ignores the contextual

information, since the center of the Wasserstein ball it uses is made up of all past

samples of wind power forecast errors (regardless of the current wind power point

predictions). Roughly speaking, DROTRIMM also works with all the past N samples

of wind power forecast errors, but only those that lead to the worst-case conditional

distribution of the prediction errors are moved onto the conditional support. However,

this movement must entail a transportation cost smaller than or equal to a given bud-

get ρ and the computation of that cost is directly contingent on the current context

(that is, the current wind power point forecasts).
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In addition, we benchmark the previous two distributionally robust methods with

an alternative approach that is commonly used in the literature for solving optimiza-

tion problems with probabilistic constraints, known as the scenario approach, but

adapted to account for contextual information. We have taken the required adapta-

tion from [14, Chapter 4], which, in our setting, involves solving a DC-OPF problem

in which the uncertain constraints are enforced for the wind power forecast errors

associated with the K samples nearest to the context. We refer to this adaptation of

the popular scenario approach as SCENA.

The training data consist of a set of pairs {(ẑi, ω̂i)}Ni=1, from which we can directly

obtain the collection of pairs {(ẑi, Ω̂i)}Ni=1, where Ω̂i :=
∑

m∈W ω̂i,m. For ease of

computation and to simplify the analysis below, we have considered the same radius

or transportation budget for the two ambiguity sets in both the objective and the

chance constraints of the DRO OPF problem (9)–(10).

5.1. Evaluation of the out-of-sample performance via re-optimization

Given a context (in the form of point forecasts of the power outputs of the wind

farms), a training dataset, and a robustness parameter ρ, each method met (either

DROW or DROTRIMM in our case) provides a forward generation dispatch and

reserve capacity provision ymet := (g, rD, rU ). To evaluate the actual or out-of-

sample performance of that ymet, we draw a sample of wind power forecast errors ω̂j

from a test dataset, and the vector of recourse variables r (that is, the real-time power

adjustments) is computed by solving the deterministic optimal power flow available in

Appendix B. In this deterministic OPF problem, wind spillage (with a cost equal to 0)

and involuntary load curtailment (with a cost equal to $500/MWh) are considered as

feasible recourse actions, aside from the deployment of reserves by generators. In this

way, the out-of-sample performance of a method met, which produces the forward
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dispatch ymet, J(ymet), is computed by the empirical out-of-sample cost averaged

over the test set formed by a certain number of samples of Qω/z=f . In addition, in

order to measure the reliability of a solution (that is, if ymet is feasible or not in real

time), the violation probability is estimated over the test set. In this estimation, we

count as a violation every time a recourse action involving load curtailment or wind

spillage is to be taken in real time to restore the power balance. This is equivalent to

counting (over the test set) the number of times a constraint is violated in the original

affine-policy-based OPF model.

5.2. A 118-bus case study

As previously mentioned, we consider a modified version of the IEEE 118-bus

system used in [12]. The system includes 54 conventional generators and eight wind

power plants that we have added and placed at buses 2, 16, 33, 37, 55, 67, 83, and

116. In addition, the piecewise linear cost functions of all generators are comprised

of three pieces or blocks. All the data pertaining to the network, generators, and

transmission lines are available at the GITHUB repository [7].

We analyze two scenarios, which differ in the level of wind power penetration in the

system. Below we explain how we have generated samples for the joint distribution

of the wind power forecast and its error at each wind power plant. The so generated

samples are also available online at the GITHUB repository [7]:

1. Let f̃m be the per-unit point forecast of the power output at wind plant m ∈ W.

A sample of f̃m, for all m ∈ W, is randomly drawn with replacement from a

collection of 16 694 p.u. wind power data recorded in several zones and made

available by the Global Energy Forecasting Competition 2014 [11]. We have

selected zones 1, 2, 3, 4, 5, 6, 9, and 10 of the aforementioned data set and
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assigned them to the eight wind power plants located at buses 16, 116, 83, 2,

55, 67, 33, and 37, respectively.

2. For each wind farm m ∈ W, we have assumed that the (nominal, normalized)

random variable Wm, which represents the nominal actual power generated at

wind plant m, follows a Beta distribution with mean f̃m and standard deviation

σ. This standard deviation depends on both physical parameters and the quality

of the forecasting model, following the model proposed in [9]. For simplicity, in

all numerical experiments, given f̃m, we determine σ as the value of the following

function σ(f̃m) := 0.2f̃m+0.02, empirically obtained in [9] for the case of a lead

time of six hours. Therefore, the actual wind power production, and hence,

the forecast error are conditional on the forecast power output issued. More

specifically, the forecast error is given as the difference of a realization Ŵm of

the r.v. Wm ∼ Beta(A,B) and the point forecast f̃m, where A,B > 0 are the

solution (if it exists) of the following system of non-linear equations:

f̃m =
A

A+B
(21a)

σ2(f̃m) =
AB

(A+B)2(A+B + 1)
(21b)

To ensure that this non-linear system of equations has a solution, the samples

f̃m from the dataset that are less than or equal to 0.05 p.u. are set to 0.05, and

the ones greater than or equal to 0.95 p.u. are set to 0.95. Thus, for each wind

power plant, the per-unit point forecast lies in the interval [0.05, 0.95].

3. To work with MW, we multiply the per-unit realized power output and the point

prediction f̃m by the wind plant capacity Cm, thus getting a pair of predicted

power output and its error (Cmf̃m, Cm(Ŵm − f̃m)) for wind farm m.

4. Steps 1, 2 and 3 are repeated N times to get the desired sample size.
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Each independent run in our simulations involves repeating the above process.

Finally, the test set used to compute the out-of-sample performance of a data-

driven solution via re-optimization (i.e., the actual probability of violating the un-

certain OPF constraints and the actual expected operational cost) is constructed by

drawing 1000 samples from the wind-power-data generating model based on the beta

distribution presented above, with mean equal to the point prediction acting as the

selected context. Therefore, this test set constitutes a discrete approximation of the

forecast error distribution conditional on a given context, which will be specified later.

Importantly, the shape and size of the ambiguity set that DROTRIMM uses is to be

changed with the sample size N (which is indicative of the amount of information on

the joint distribution of (z,ω) we have). Consequently, the trimming level α defining

this set is to be dependent on N . Accordingly, we have set αN := KN/N , where

KN is the number of nearest neighbors used by SCENA. We have specifically taken

KN := ⌊N0.9⌋ so that the resulting αN is consistent with the convergence results

included in [8]. Observe that both α and K have been augmented with the subscript

N to make their dependence on the sample size explicit.

5.2.1. Medium wind penetration case

In this case, all eight wind farms in the system have a capacity of 200 MW and

the context is given by z∗ = 180 · 1 MW, that is, the point forecast is 180 MW for

all the wind power plants. Hence, the level of wind power penetration in the system

(i.e., the ratio of the predicted system-wise wind power production to the total system

demand) is approximately 63%.

Figures 1 and 2 illustrate the box plots corresponding to the total downward and

upward reserve capacity that is scheduled, the violation probability and the expected

cost delivered out of sample by SCENA, DROTRIMM and DROW as a function of
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Figure 1. Medium level of wind penetration, N = 100 and ϵ = 0.1: Total downward and upward

reserve capacity and performance metrics

their corresponding robustness parameter for sample sizes N = 100 and N = 300,

respectively. Naturally, the results provided by SCENA do not change along the x-

axis in the plots, because this method is not based on distributional robustness. The

box plots have been obtained from 200 independent runs for each sample size. We

have set ϵ = 0.1. The robustness parameter of DROW is the radius of the Wasserstein

ball, while the robustness parameter for DROTRIMM is the budget excess over the

minimum transportation budget (see Definition 4) [8].
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Figure 2. Medium level of wind penetration, N = 300 and ϵ = 0.1: Total downward and upward

reserve capacity and performance metrics
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The color-shaded areas have been obtained by joining the minimum and maximum

edge cases of the box plots, while the associated bold colored lines link their means.

These figures allow us to check which of the methods provides the most cost-efficient

dispatch solutions on average without exceeding the threshold ϵ. As expected, the

reliability of the OPF solution given by DROW and DROTRIMM increases as the

value of their robustness parameter is augmented, because more reserve capacity is

procured. In turn, as more reserve capacity is scheduled, the magnitude and frequency

of expensive load shedding events tend to diminish, which explains why the expected

system operating cost may also decrease with the robustness parameter. This justifies

the use of Distributionally Robust Optimization to tackle the chance-constrained OPF

problem. However, when said parameter reaches a large enough value, the expected

cost starts to grow quickly, because the cost of procuring additional reserve capacity

no longer compensates for the cost savings entailed by the reduction in the amount

of curtailed load.

While SCENA provides OPF solutions that are competitive in terms of expected

cost, these solutions do not comply with the specified reliability threshold in many of

the runs. In addition, the performance of the OPF solutions obtained from SCENA

exhibit a high variability, which is clearly due to the fact that this method is a

non-robust approach and as such, is highly negatively affected by the uncertainty

associated with the conditional inference it must perform.

On the other hand, when comparing DROW and DROTRIMM, whereas the for-

mer needs a lower value of the robustness parameter to attain the desired level of

solution reliability, DROTRIMM gets to identify OPF solutions that are also reliable,

while systematically cheaper on average. This phenomenon becomes even more evi-

dent when we increase the sample size N from 100 to 300. Indeed, a richer joint data

sample contains more information on the statistical dependence of the wind power
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forecast error on the associated point prediction, which our approach manages to take

advantage of. To give some numbers, if we just consider the range of values for the ro-

bustness parameters for which the violation probability is kept below the tolerance ϵ,

the average expected cost savings of DROTRIMM with respect to DROW go from

0.82%, when N = 100 to 1.82%, when N = 300. From a technical point of view,

DROW tends to produce OPF solutions with a higher cost because it underestimates

the amount of upward reserve capacity that should be procured, clearly because this

method is oblivious to the context and therefore, plans for the marginal distribution

of the wind power forecast errors and not for the conditional one.

To elaborate further on the differences among the three methods, Table 1 includes

the maximum, average, and minimum out-of-sample expected cost1 under the value

of the robustness parameter that is optimal for methods DROW and DROTRIMM,

i.e., which leads to reliable OPF solutions with the minimum average expected cost

for each of these two approaches. The standard deviation of this cost is also provided

in the last row of Table 1. When N = 100, the (exacerbated) robustness of DROW

produces OPF solutions with low average cost and variance, although DROTRIMM

manages to find OPF solutions that are more economical in expectation. When

N = 300, DROTRIMM clearly beats DROW on all metrics, because the excessive

robustness of DROW (which is the result of ignoring the context) no longer pays off.

Again, SCENA provides the cheapest OPF solutions on average, but these are useless

because they do not satisfy the reliability requirement.

1These statistics are computed over the 200 hundred independent runs.
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Table 1. Medium level of wind penetration, summary data for total expected cost [$] under the

optimal value of the robustness parameter for methods DROW and DROTRIMM.

N = 100 N = 300

DROTRIMM DROW SCENA DROTRIMM DROW SCENA

max 24790 24388 25795 23250 23972 24160

avg 23068 23258 22493 22826 23250 22588

min 22511 22649 21325 22443 22728 21602

std 300 295 742 159 246 496

5.2.2. High wind penetration case

In this alternative setting, all the wind farms have a capacity of 250 MW and the

context is given by z∗ = 225 · 1 MW. Hence, the level of wind power penetration in

the system is approximately 80%.

Figures 3 and 4, and Table 2 are analogous to Figures 1 and 2, and Table 1 of

the previous case, respectively. The higher level of wind power penetration in this

new instance implies a higher level of uncertainty in the system. This accentuates

the difference in performance between DROW and DROTRIMM when N = 100, that

is, in a small sample regime. More specifically, the relative difference between the

out-of-sample average expected cost achieved by DROW and DROTRIMM increases

from 0.82% in the previous case to 2.27% in this new one. It is true, though, that

DROW offers reliable OPF solutions with the lowest variance in expected cost when

N = 100, provided that its robustness parameter is optimally tuned, see Table 2.

However, its superiority in this respect ends when N grows to 300, at which point

DROTRIMM provides the most cost-efficient OPF solutions in every respect2. Again

2Note in Table 2 that, while the standard deviation of the expected cost is a bit higher under
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Table 2. High level of wind penetration, summary data for total expected cost [$] under the optimal

value of the robustness parameter for DROW and DROTRIMM.

N = 100 N = 300

DROTRIMM DROW SCENA DROTRIMM DROW SCENA

max 19794 18804 21699 18101 18255 19863

avg 17334 17737 16483 17025 17274 16779

min 16490 16795 15040 16486 16703 15639

std 488 381 1093 296 292 767

the reason for this difference in performance has to do with the different provision of

upward and downward reserve capacity that DROW and DROTRIMM prescribe.

For its part, the SCENA method keeps on providing cheap, but unreliable OPF

solutions under a higher level of wind power penetration. In fact, the variability in

cost, violation probability and reserves of the OPF solutions given by this method is

remarkably high in contrast with that of DROTRIMM and DROW, even higher than

in the case of a medium wind power penetration level (compare the range of the box

plots in Figure 4).

We conclude this section with a remark on computational time. DROTRIMM

and DROW have the same complexity (essentially, the number of constraints grows

linearly with the sample size N). The continuous linear program that results from

tackling the chance-constrained DRO OPF problem by way of DROTRIMM and the

CVaR approximation takes around 15 minutes to be solved on average, for a sample

DROTRIMM than under DROW when N = 300, the maximum and minimum values reached by the

expected cost under each method reveals that DROTRIMM produces a distribution of the expected

cost displaced towards cheaper OPF solutions.
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Figure 3. High level of wind penetration, N = 100 and ϵ = 0.1: Total downward and upward reserve

capacity and performance metrics
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Figure 4. High level of wind penetration, N = 300 and ϵ = 0.1: Total downward and upward reserve

capacity and performance metrics
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size N = 300, using CPLEX 20.1.0 on a Linux-based server with 22 CPUs clocking

at 2.6 GHz and 200 GB of RAM in total.

6. Conclusion

In this paper, we have developed a distributionally robust chance-constrained

OPF model that is able to exploit contextual information through an ambiguity set

based on probability trimmings. We have provided a reformulation of this model as

a continuous linear program using the well-known CVaR approximation. By way of

a series of numerical experiments conducted on a modified 118-bus power network

with wind uncertainty, we have shown that, by exploiting the statistical dependence

between the point forecast of the wind power outputs and its associated forecast error,

our approach can identify dispatch solutions that, while satisfying the required system

reliability, lead to costs savings of up to several percentage points with respect to the

OPF solutions provided by an alternative DRO method that ignores said statistical

dependence.

In future work, we plan to devise data-driven schemes for appropriately tuning the

robustness parameter in our distributionally robust chance-constrained OPF model in

accordance with the risk preferences of the system operator (for instance, by resorting

to cross-validation or bootstrapping). We also want to extend this model to account

for intertemporal constraints, which, among other things, would involve adapting our

probability-trimming-based ambiguity set to deal with stochastic processes and time

series data.
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Appendix A. Notation

The main notation used throughout the text is stated below for quick reference.

Other symbols are defined as required.

Appendix A.1. Sets, numbers and indices

B Set of buses, indexed by b.

L Set of lines, indexed by ℓ.

G Set of generators (dispatchable units), indexed by j.

W Set of wind power plants, indexed by m.

Appendix A.2. Parameters and functions

f Array of forecasted power outputs [MW].

f̃ Array of nominal (p.u.) forecasted power outputs.

L Array of loads [MW].

gmin,gmax Array of upper and lower capacity limits of generators [MW].

Cap Array of line capacities [MW].

C Array of installed capacities of the wind power plants [MW].

MG/W/B Matrix of DC power transfer distribution factors, which maps nodal power

injections to line flows for generators/wind farms/loads.

cD, cU Array of downward and upward reserve capacity costs [$/MW].
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C(·) Total production cost function, which is given by the sum of |G| con-

vex piecewise linear cost functions with Sj pieces for generator j, i.e.,

C(g̃(ω)) :=
∑

j∈G maxs=1,...,Sj{mjsg̃j(ω) + njs}, where mjs, njs are the

slope and the intercept of the s-th piece for generator j, respectively [$].

Appendix A.3. Random variables and uncertain parameters

z Random vector of features/covariates.

ω Random vector representing the wind power forecast errors of the |W| wind
power plants [MW].

ξ Random vector representing the pair of features/covariates and the wind

power forecast errors of the |W| wind farms, that is, ξ := (z,ω).

Wm Actual power output at wind power plant m ∈ W in per unit.

Ξω Support set of the random vector ω.

Ξ̃ω Support set of the random vector ω conditional on z = f , which is given by

the hypercube
∏

m∈W [−fm, Cm − fm].

Ξ Support set of the random vector (z,ω).

Ξ̃ Contextual information, that is, the event (z = f ; ω ∈ Ξ̃ω).

Ω Random variable defined as
∑

m∈W ωm, which describes the system-wise

aggregate wind power forecast error [MW].

Ξ̃Ω Contextual information linked to the random vector (z,Ω), that is, the event

(z = f ; Ω ∈ [Ω,Ω]), with [Ω,Ω] =
[
−∑

m∈W fm,
∑

m∈W(Cm − fm)
]
.

g̃(ω) Array of power generation outputs of generators (random vector) [MW].
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r̃(ω) Array of reserves deployed by generators (random vector) [MW].

EQ Expectation operator with respect to the probability measure Q.

δξ Dirac distribution at ξ.

Appendix A.4. Variables

g Generators’ power dispatch [MW].

β Array of generators’ participation factors.

rD, rU Array of downward/upward reserve capacities provided by generators [MW].

x Vector of decision variables, that is, x := (g,β, rD, rU ).

y Vector of first-stage decision variables (power dispatch and reserve capacity

provision), that is, y := (g, rD, rU ).

Appendix A.5. Other symbols

1 Array of ones (of appropriate dimension).

0 Array of zeros (of appropriate dimension).

|A| Cardinality of a set A.

(x)+ Positive part of x, i.e., max{x, 0}.

⌊x⌋ Floor function of x, given by max{m ∈ Z / m ⩽ x}.

⟨·, ·⟩ Dot product.

W1 1-Wasserstein distance.
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P1(Ξ),P1(Ξ̃) The set of all probability distributions with finite first moment sup-

ported on Ξ, Ξ̃, respectively.

R1−α(P ) The set of all (1− α)-trimmings of the probability distribution P .

ρ Robustness parameter.

ρ
Nα

Minimum transportation budget.

SB Support function of a set B ⊆ Rd, defined as SB(a) := supb∈B⟨a, b⟩.

Q−CVaRϵ(ϕ(ω)) Conditional Value at Risk at level ϵ ∈ (0, 1) of ϕ(ω) under the

probability measure Q; that is, the value infτ∈R{τ + 1
ϵEQ[(ϕ(ω)− τ)+]}.

Appendix B. Real-time re-dispatch problem

This appendix contains the optimization program used to evaluate the out-of-

sample performance of a given solution of the chance-constrained DC-OPF problem.

Given N , a data-driven solution yN := (g, rD, rU )N and a realization of the forecast

error ω̂i, the operator of the system solves the following deterministic linear program:

min
r,∆d,∆ω

C(gN + r) + ⟨cshed,∆d⟩+ ⟨cD, rDN ⟩+ ⟨cU , rUN ⟩ (B.1)

s.t. 0 ⩽ ∆d ⩽ L (B.2)

0 ⩽ ∆ω ⩽ f + ω̂i (B.3)

− rDN ⩽ r ⩽ rUN (B.4)

⟨1, r⟩+ ⟨1,∆d⟩+ ⟨1, ω̂i −∆ω⟩ = 0 (B.5)

−Cap ⩽ MG(gN + r) +MW(f + ω̂i −∆ω)−MB(L−∆d) ⩽ Cap (B.6)
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where r, ∆d and ∆ω are the deployed reserves, load shedding and wind spillage

vector of decision variables; and the parameter cshedb is the load shedding cost at bus

b. The objective function in (B.1) minimizes the total operational cost of the system,

which comprises the electricity generation cost, the load shedding cost and the total

cost of up- and down-reserve capacities. The latter is known and constant and thus,

does not intervene in the minimization. Constraints (B.2) and (B.3) limit the amount

of load involuntarily curtailed and the amount of wind power unused to the actual

realizations of the load and the wind power production, respectively. Constraint (B.4)

ensures that the deployed reserves are kept within the reserve capacities scheduled in

the forward stage. Constraint (B.5) constitutes the real-time power balance equation

and, finally, constraints (B.6) enforce the transmission capacity limits.
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