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Abstract
We introduce three new Empirical Seawater Property Estimation Routines (ESPERs) capable of predicting sea-

water phosphate, nitrate, silicate, oxygen, total titration seawater alkalinity, total hydrogen scale pH (pHT), and
total dissolved inorganic carbon (DIC) from up to 16 combinations of seawater property measurements. The
routines generate estimates from neural networks (ESPER_NN), locally interpolated regressions (ESPER_LIR), or
both (ESPER_Mixed). They require a salinity value and coordinate information, and benefit from additional sea-
water measurements if available. These routines are intended for seawater property measurement quality control
and quality assessment, generating estimates for calculations that require approximate values, original science,
and producing biogeochemical property context from a data set. Relative to earlier LIR routines, the updates
expand their functionality, including new estimated properties and combinations of predictors, a larger training
data product including new cruises from the 2020 Global Data Analysis Project data product release, and the
implementation of a first-principles approach for quantifying the impacts of anthropogenic carbon on DIC and
pHT. We show that the new routines perform at least as well as existing routines, and, in some cases, outperform
existing approaches, even when limited to the same training data. Given that additional training data has been
incorporated into these updated routines, these updates should be considered an improvement over earlier ver-
sions. The routines are intended for all ocean depths for the interval from 1980 to �2030 c.e., and we caution
against using the routines to directly quantify surface ocean seasonality or make more distant predictions of
DIC or pHT.

Anthropogenic impacts on the environment are changing
the physical and chemical state of the ocean. The accumulation
of excess ocean heat (Roemmich et al. 2012; Purkey and John-
son 2013) and carbon (Sabine et al. 2004; Khatiwala et al. 2013;
Carter et al. 2017, 2019a; Gruber et al. 2019) and the redistribu-
tion of freshwater between regions of the ocean (Durack

et al. 2012) and geological reservoirs are modifying ocean circula-
tion pathways and causing sea level rise (Nerem et al. 2018),
ocean acidification (OA; Feely et al. 2004, 2009; Doney
et al. 2009; Jiang et al. 2019), and ocean deoxygenation (Sasano
et al. 2018). These changes are fundamentally shifting the physi-
cal and chemical environments of marine organisms and threat-
ening ocean ecosystems and services (Gattuso et al. 2015; Doney
et al. 2020).

Global climate change poses a challenge for ocean monitor-
ing, necessitating sustained high-quality measurements across
timescales and across the vast and remote global ocean. A vari-
ety of approaches and platforms have been developed for ocean
monitoring (e.g., autonomous surface vehicles, profiling floats,
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and fixed moorings), each of which has a niche for examin-
ing a range of temporal and spatial scales (Bushinsky
et al. 2019) and each of which has strengths and weaknesses
for addressing aspects of global change (Carter et al. 2019b).
The cost and difficulty of measurements is a limiting factor
for all approaches, so it is impossible as of today to have
extensive high-quality and high-frequency measurements
everywhere they are desired. Given this limitation, an
emerging approach involves using algorithms that have
been trained to reproduce measurements of seawater proper-
ties from co-located measurements of other seawater proper-
ties. These algorithms take advantage of strong regional
correlations between seawater properties that result from
oceanographic processes that shape the distributions of
many different seawater properties in similar ways
(e.g., organic matter cycling with nearly constant stoichio-
metric ratios between macronutrients, and freshwater
cycling that linearly dilutes or concentrates most chemical
concentrations in seawater). Once trained, the algorithms
can be used to predict the desired properties from other
properties that are more routinely measured either remotely
by satellite or using available in situ sensors. This strategy
has seen use for more than two decades (e.g., Goyet
et al. 2000; Lee et al. 2006), though recent advances in skill,
flexibility, and diversity of the algorithms available (Carter
et al. 2016, 2018; Sauzède et al. 2017; Bittig et al. 2018;
Landschützer et al. 2019; Gregor and Gruber 2021) have
made it possible to create climatologies (Broull�on
et al. 2019, 2020; Jiang et al. 2019), calibrate and monitor
drift-adjustments for sensors on autonomous sensor plat-
forms (Johnson et al. 2017; Takeshita et al. 2018), create
novel global data products (Carter et al. 2021), and fill holes
in data sets when the final analysis is not strongly sensitive
to estimate errors, for example, when silicate and phosphate
are estimated for use in seawater carbonate chemistry calcu-
lations (e.g., van Hueven et al. 2011) or when total alkalinity
(TA) is needed to convert pHT between temperatures (Jiang
et al. 2019; Carter et al. 2019a).

The growing number of use cases for seawater property esti-
mation algorithms means it is important to refine the algo-
rithms to the extent possible, especially given that some
observing approaches depend on these algorithms for sensor
calibration and validation. As a notable example, biogeochem-
ical Argo floats calibrate pHT and nitrate sensors using algo-
rithm estimates in the comparatively stable mid-depths of the
ocean (Johnson et al. 2017), and additionally rely on esti-
mated seawater alkalinity at all depths to calculate dissolved
inorganic carbon (DIC) and the partial pressure of CO2 (pCO2)
(Gray et al. 2018; Williams et al. 2018).

Increasing ocean DIC content from anthropogenic carbon
(Cant) storage and decreasing pHT values from OA provide an
ongoing challenge to the accuracy of these algorithms: the
algorithms are trained, or fit, to data collected over the last

three decades, but will be used primarily to estimate seawater
properties specific to recent years and the coming years until
improved algorithms become available. How then should we
deal with the changes from, for example, OA? Three notable
existing algorithms for pHT have simplistic and empirical
treatments of the effects of OA. One has no parameterization
for OA, but instead provides a suggested time-span for the
algorithm (Williams et al. 2016); another uses a simple den-
sity interpolation of empirically derived global changes that,
for example, does not distinguish the rapidly changing inter-
mediate North Atlantic from the comparatively static inter-
mediate subpolar North Pacific (Carter et al. 2018); and the
one last uses a regional empirical approach that risks mis-
attributing long-term change and natural variability in pHT

(Bittig et al. 2018). Broull�on et al. (2020) also use an empirical
relationship to capture the effects of OA for their DIC algo-
rithm. These algorithms are expected to become increasingly
biased under future OA conditions.

In this paper, we improve upon existing algorithms with
new methods and new observational data products and
encode them into a package of software routines in the
MATLAB language. We also introduce a new neural-network
approach that can return estimates from more diverse com-
binations of predictors than previous efforts. We also
improve how the algorithms handle Cant impacts on DIC
and pHT, and the new approach should allow future projec-
tions of these properties to be useful over longer time hori-
zons while avoiding bias from empirical fits to interannual
variability.

Methods
Basics, updates, new methods, and new features

The first of two products in this effort is an improve-
ment upon the Locally Interpolated Regression (LIR) strat-
egy for global and full-water column seawater alkalinity
estimation that was implemented by Carter et al. (2016)
and is similar to a method described by Velo et al. (2013).
This approach was later updated and extended to estimat-
ing seawater pHT and nitrate (Carter et al. 2018: LIRv2) and
was most recently expanded to oxygen, phosphate, and sil-
icate estimates (Carter et al. 2021). The new improvements
in LIR-based empirical seawater property estimation rou-
tines (called here: ESPER_LIR, equivalent to LIRv3), relative
to LIRv2, include:

1. Use of the 2020 release of the GLObal Data Analysis Project
data product (GLODAPv2.2020: Olsen et al. 2020), for pre-
dictor variables with many thousands of new measure-
ments, particularly in the North Pacific, relative to the
GLODAPv2 version used for earlier versions of the global
algorithms.

2. Numerous additional data sets from the Gulf of Mexico
and the Mediterranean Sea as training data, fixing large and
important data gaps in LIRv2.
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3. The ability to return estimates of DIC.
4. Simple and improved estimation of anthropogenic pertur-

bations to pHT and DIC based on first principles, allowing
better predictions of future changes in seawater carbonate
chemistry.

5. Implementation of a distance weighting for the fit in
ESPER_LIR, allowing more data to be used for each of the
many regressions.

6. Ease-of-use changes that allow the insights from the LIR rou-
tines to be more easily adapted for regional applications.

In addition to LIR updates, we introduce new neural-network-
based routines (ESPER_NN) to take advantage of the strengths
of neural networks including the ability to model nonlinear
relationships between predictors and estimated quantities
(Tu 1996). In several important ways this new algorithm imi-
tates the design of the “Carbonate system and Nutrients con-
centration from hYdrological properties and Oxygen using a
Neural-network version B” (CANYON) algorithms designed by
Sauzède et al. (2017) and updated by Bittig et al. (2018). The
significant differences between ESPER_NN and the existing
algorithms are as follows:

1. Inclusion of new data from the GLODAPv2.2020 data prod-
uct (as with the LIR updates).

2. Like ESPER_LIR, ESPER_NN uses a new first-principles-based
approach to estimate the impacts of long-term trends for
pHT and DIC.

3. ESPER_NN can function with 16 combinations of seawater
properties requiring at minimum salinity and coordinate
information, while alternative neural network approaches
also require oxygen and temperature. While the tempera-
ture, salinity, and oxygen are often available and are fre-
quently an ideal predictor combination, there remain
applications where oxygen measurements are not available
(due to absent, failed, or fouled sensors) or not desired as
predictors (such as when estimating preformed properties
from only conservative seawater properties, e.g., Carter
et al. 2021).

By most validation metrics, the ESPER_NN routines perform
comparably to ESPER_LIR routines and, in some places, they
perform better (see “Assessment” section). Nevertheless, we
contend there are reasons to maintain both approaches. First,
the LIR routines offer a degree of simplicity and estimate
explicability that lends them additional value. To highlight
the explicability of the LIR estimates, we have added the abil-
ity to return the coefficients of the equations that were used
to produce each estimate as an additional optional routine
output. This may be useful when querying the LIR routines
for an equation that could be used for a regional study in
another application. Similarly, regional coefficients could be
added into the ESPER_LIR coefficient files to produce a modi-
fied routine that seamlessly transitions to using regional rela-
tionships within a specific area such as a marginal sea, while

still using the relationships derived for the open ocean outside
of that region. Also, as we discuss later, there is merit to hav-
ing and using multiple routines when the errors in the esti-
mates appear to be partially independent, as appears to be the
case with ESPER_LIR and ESPER_NN.

Both new routines are freely available as MATLAB functions
at Zenodo (Carter 2021) and updates will be made available at
the GitHub repository (see“Code Availability” section). Several
changes have been made to the LIR function behavior that are
noted alongside the reasoning behind the changes in
Supporting Information S2.

Data products, training data, and test data
The primary data product used to train these algorithms

is the GLODAPv2.2020 data product update (Olsen
et al. 2020). In addition, we added data sets that will be
included in the CARbon, tracer, and ancillary data In the
MEDiterranean Sea (CARIMED) and that are included in the
Coastal Ocean Data Analysis Project for North America
(CODAP-NA; Jiang et al. 2021) data products. These data
from the Mediterranean Sea (46 cruises spanning from 1976
to 2018 and covering all the sub-basins in the Mediterra-
nean Sea) and the Gulf of Mexico (three cruises spanning
2007 to 2012) are included to ensure these important
regions are well-constrained and the cruise information is
provided in Supporting Information S1.1. These data prod-
ucts are focused on internal consistency and are inclusive
for carbonate system measurements. We do not make a spe-
cial effort in this study to incorporate high-resolution data
from profiling sensors (e.g., 1 m oxygen values) or measure-
ments from data products that focus on macronutrients or
oxygen, but note that this could be an area of focus for
future development.

As with previous versions of LIRs, we excluded data from
GLODAPv2 that has not had secondary quality control checks
(QC), and further omitted several sets of cruises that had large
adjustments or appeared to have noisy measurements at depth
(detailed in Supporting Information S1). We also excluded
measurements from any bottle that lacked measurements for
temperature, salinity, oxygen, and macronutrients (phos-
phate, silicate, and nitrate).

Homogenization of the variety of pH measurement types
and calculations in GLODAPv2.2020 remains a challenge (see
Supporting Information S1.2). As with LIRv2, the ESPERs
return in situ pHT estimates that are intended to be consistent
by default with pHT measured spectrophotometrically with
purified m-cresol purple indicator dye and converted to in situ
conditions, but can be made to return values that are intended
to be consistent with pHT calculated from DIC and TA at in
situ conditions (as CANYON-B does by default) using an
optional flag. These approaches for arriving at pHT values have
a documented disagreement (Carter et al. 2013, 2018; Wil-

liams et al. 2017; Fong and Dickson 2019; �Alvarez et al. 2020),
and we rely on the relationships developed by Carter
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et al. (2018) to interconvert between these pHT estimates. New
observations are challenging the assumptions inherent to this
approach (Takeshita et al. 2021), but currently there is insuffi-
cient data or mechanistic understanding to refine the relation-
ships we use for interconversion.

For assessment purposes, we must separate validation
data from training data and withhold the validation data
from the versions of the algorithms used for assessment. It is
better to withhold data from entire cruises to avoid
obtaining unrealistically high skill estimates when
reconstructing data from a synoptic cruise based on algo-
rithms trained with other data from the same cruise. In past
versions of LIRs, this assessment was conducted by creating
algorithms that iteratively omitted each cruise while
reconstructing data from the omitted cruises. However, this
strategy would be too computationally intensive to employ
with the ESPER_NN and would not provide a clear compari-
son to the CANYON-B neural network, which was trained
with the original GLODAPv2 release. Instead, all data in
GLODAPv2.2020 that were added following the original
GLODAPv2 release (i.e., all cruises with GLODAPv2 cruise
numbers ≥1000 and those incorporated from the Gulf of
Mexico and the Mediterranean Sea) are used as test data for
the validation versions of the algorithms that were trained
only with the data in the original GLODAPv2 release. For
general use, a release version of the ESPER_LIR and
ESPER_NN algorithms was trained with the total data set to
benefit from the recent data, and this release version is the
only version provided at Zenodo and GitHub. Data within
several marginal seas (the Gulf of Mexico, the Sea of Japan/
East Sea, and the Mediterranean Sea) are omitted from the
bulk global open-ocean assessment statistics because these
are regions where the validation versions of the algorithms
have insufficient training data (i.e., none) to produce esti-
mates. Similarly, data from the Arctic (here: north of 67.5�N)
are withheld from the global assessment step because the
Arctic is a problematic region for algorithms (see “Regional
tests” section). Instead, algorithm performance is separately
assessed in these regions to explore the limitations of the
approaches used (“Regional tests” section). The numbers of
valid, quality-controlled measurements available for each
algorithm version in each subset of the data are given in
Table 1.

Anthropogenic impacts on carbonate chemistry
The LIPHR (i.e., LIRv2 for pHT) and CANYON-B algo-

rithms use “estimate year” (i.e., for LIPHR, this is the calen-
dar year expressed as a decimal, where the midpoint of the
year 2020 would be given as 2020.5) as a predictor for seawa-
ter properties (or their reconstruction errors in the case of
LIPHRv2) to capture the impacts of long-term trends on pHT

estimates and the training data. However, recent research
suggests that decadal variability in seawater property trends
can rival, regionally, the magnitudes of the secular trends.

This is true even for Cant which exhibits a large secular trend
(Woosley and Millero 2016; DeVries et al. 2017; Carter
et al. 2019a). This finding implies that empirical fits risk
projecting trends from cyclical natural variability into the
future. LIPHR avoids some biases from regional natural vari-
ability by using global empirical fits over density intervals,
but, as a result, the routine is unable to distinguish between
regions with rapid (e.g., the North Atlantic) vs. slow
(e.g., the North Pacific) Cant accumulation. In addition,
LIPHR assumes a fixed OA rate over time, but OA rates might
be expected to accelerate due to the approximately exponen-
tial increase in atmospheric CO2. Therefore, while algo-
rithms like LIPHR seem to accurately predict
contemporaneous deep pHT, it is likely that biases will
emerge over the coming years, particularly in regions where
Cant penetration is large such as the North Atlantic (Gruber
et al. 2019). The risks of natural variability biasing empirical
trend projections are perhaps more acute for the properties
that have weaker secular trends than DIC and pHT, such as
nutrients and oxygen, although the empirical trends in
these properties are usually smaller components of the over-
all variability in their estimates.

Given the challenges associated with accurately quantify-
ing secular changes with short-term, empirical information,
ESPER_LIR and _NN rely on a first-principles-based estimate
of Cant and its impacts on pHT. This approach assumes that
exponential increases in atmospheric anthropogenic CO2

should eventually result in marine Cant concentrations that
increase at rates proportional to atmospheric anthropogenic
CO2 concentrations. In other words, this approach relies on
the assumption that Cant is in transient steady state
(Gammon et al. 1982; Tanhua et al. 2007); this is an
assumption used to adjust data to reference years in the
most recent global Cant distribution change estimates for
the 1994–2007 period (Gruber et al. 2019). This implies
that, locally, the “shape” of the Cant vertical profile (or Cant

vertical gradient) should remain constant over time while

Table 1. Numbers of viable measurement combinations avail-
able for each property within the indicated data product subsets.
The “total” column reflects the training data for the released rou-
tines, whereas the “GLODAPv2” column reflects the training data
for the validation routines used to assess the algorithms against
new/assessment data.

Property GLODAPv2 New/assessment Total

Phosphate 540,511 146,263 711,347

Nitrate 540,511 146,263 711,347

Silicate 540,511 146,263 711,347

Oxygen 540,511 146,263 711,347

TA 203,502 71,832 286,080

pH 162,783 53,615 222,822

DIC 244,062 71,326 323,328
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atmospheric CO2 and ocean Cant values are increasing expo-
nentially according to:

Cant_year_location ¼Cant_2002_locatione0:018989 year�2002ð Þ: ð1Þ

Therefore, if a Cant value is known for a location in a reference
year (e.g., Cant_2002_location in 2002 c.e.), then Cant can be esti-
mated for that location in a desired year (Cant_year_location). The
coefficient within the exponent is derived by solving Eq. (1)
to match Gruber et al.’s (2019) assumption of a �28% Cant

increase over the 13years from 1994 to 2007 (see their
methods supplement). We note that this approach is not able
or intended to resolve non-steady-state variations in Cant

(Gruber et al. 2019), and the errors in the estimates that result
from this deficiency are included implicitly in the assessed
overall uncertainty estimates.

For the ESPERs, we utilize a gridded Cant product referenced
to the year 2002 (Lauvset et al. 2016). This product was created
using the transit time distribution (TTD) method (Waugh
et al. 2006), and gridded to the same 1� � 1� latitude/longitude
resolution with 33 depth surfaces as the Global Data Analysis
Project (GLODAPv2) gridded data product. This reference 2002
field can be used with Eq. 1 to estimate the difference between
Cant in 2002 and Cant in the year in which a measurement was
made, or an estimate is desired. Therefore, rather than having a
time dependent prediction of pHT or DIC, we take the following
steps to address anthropogenic trends (Fig. 1):

1. Start with the unmodified training data set.
2. Transform all training data to the year 2002 by adding/

removing the missing/excess Cant if they are measured
before/after 2002.

3. Train the pHT or DIC algorithms on this modified train-
ing data.

4. Predict pHT or DIC without a time dependence for 2002.
5. Transform the Cant to the desired year (if other than 2002),

recalculating DIC and pHT with the new Cant total
accordingly.

Steps 1 through 3 were performed before training the routines,
while steps 4 and 5 are performed by the ESPER code each
time it is called. Supporting Information S1.3 provides more
detail for the pHT recalculations noted in step 5.

There are uncertainties associated with the assumptions
underlying both the 2002 gridded Cant data product and the
transient steady state approach—particularly in regions
where there are limited measurements of chlorofluorocar-
bons and other tracers used to calibrate the TTD approach.
We therefore assert that Eq. 1 should not be used to esti-
mate Cant distributions for any application where Cant is of
primary interest. However, uncertainties in the adjustments
that come from changes in these Cant estimates over time
should be modest for a window of time around the year
2002 c.e., the year in which the adjustments are zero by def-
inition. Eq. (1) implies that adjustment errors will be smaller
than errors in the underlying 2002 Cant distributions for
any estimate before 2039 (i.e., the Cant doubling time after
2002). As the training data are also adjusted in step 2, the
effective magnitudes of the adjustments are related to the
difference between the years of the estimates and the average
measurement years of the training data used for those algo-
rithms (which for most regions and algorithms is close to
2002 c.e.). These ESPERs should therefore be used with
increasing caution for DIC and pHT after � 2030. Regardless
of these challenges, this parameterization of OA rates should
be more accurate moving forwards than that used by LIPHR,
and any improvements in the Cant estimates should directly
reduce estimate bias in the modern era and the near future.
Notably, implementing this approach decreased overall train-
ing data reconstruction root mean squared error for DIC by
> 10% and decreased the trend in the DIC reconstruction
error from � 0.49 μmol kg�1 yr�1 to less than 0.03 μmol kg�1

yr�1. We caution that these assumptions do not explicitly
consider declines in ocean carbon uptake efficiency and the
assumption of exponential growth can lead to very large DIC
accumulations when used for distant projections. Future
atmospheric CO2 concentrations are highly uncertain, and
user discretion is advised for any projections.

There is no time variance for ESPER estimates of quantities
other than pHT and DIC.

ESPER_LIR construction
ESPER_LIR broadly functions similarly to LIRv2, which is

described in detail by Carter et al. (2018). As with LIRv2, the
ESPER_LIR algorithms use regression coefficients (C) that are
specific to each of 16 equations and 44,957 locations on a 5�

latitude � 5� longitude � 33 depth ocean interior grid
subsampled from the World Ocean Atlas gridded product
grid. These coefficients are interpolated in 3D space to the
locations where regression coefficients are desired. The algo-
rithm then uses the coefficients with user-provided seawater
property predictor information (P) to produce property
estimates.

Fig 1. A schematic showing the approach for adjusting training data and
estimates for effects of anthropogenic carbon accumulation. The “com-
mon year” is 2002.
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The LIR algorithms are constructed by fitting 16 different
regressions that relate the properties of interest, X (e.g., sili-
cate, nitrate, phosphate, oxygen, TA, DIC, and pHT), to combi-
nations of up to five predictor properties, P (including salinity,
potential temperature, nitrate, phosphate, oxygen, and sili-
cate), which are specific to each property of interest (Table 2).
Each equation uses between one and five predictor properties
and the generalized predictor equation is:

X¼C0þ
Xn
i¼1

CiPi: ð2Þ

The 16 variants on Eq. 2 are referred to as "ESPER equations" 1
through 16. Unlike LIRv2, depth is never used as a predictor
for ESPER_LIR and is only used as a coordinate for regression
coefficient interpolation. Versions with depth included as a
predictor performed similarly or worse than versions with
depth omitted during early testing.

The regression coefficients Ci and C0 are fit 44,957 times for
each of the 7 estimated properties and each of the 16 ESPER
equations. At each grid location, “local” data are selected from
the subset of all data that are within 15� in latitude, 30�/cosine
(latitude) in longitude, and within either (100 + z/10) m depth

or 0.1 kg m�3 of the estimated density of seawater at that coor-
dinate location. Here z is the coordinate depth in meters. As
with LIRv2, these window dimensions are iteratively doubled
when fewer than 100 measurements fall within the windows.
These data selection windows are initially twice as wide as the
windows used in LIRv2 in all dimensions. Doubling the baseline
size of these windows is intended to include more data on aver-
age for the regression fits, introduce more modes of oceano-
graphic variability into the fitting data, and thereby reduce
multicollinearity. The average absolute values of regression coef-
ficients in ESPER_LIR are only 80% of the average absolute
values of the coefficients in LIRv2, suggesting ESPER_LIR is
subject to less multicollinearity than LIRv2. However, widen-
ing the windows risks making the regressions less appropriate
locally, so a weighting term is used that is equal to:

W¼max 5,
10 Δzð Þ
100þz

� �2

þ cos latð Þ Δlonð Þð Þ2þ4 Δlatð Þ2
 !�2

:

ð3Þ

The weighting term W reduces the cost of regression misfits to
data that are distant or at significantly different depths from

Table 2. The combinations of predictors used to estimate each property for each of the 16 ESPER equations. Rows with a checkmark
indicate the predictors (listed above by property) are included in that equation for that property.

Property Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5

Phosphate S θ Nitrate Oxygen Silicate

Nitrate S θ Phosphate Oxygen Silicate

Silicate S θ Phosphate Oxygen Nitrate

Oxygen S θ Phosphate Nitrate Silicate

TA S θ Nitrate Oxygen Silicate

pH S θ Nitrate Oxygen Silicate

DIC S θ Nitrate Oxygen Silicate

ESPER Equation #

1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓ ✓

6 ✓ ✓ ✓

7 ✓ ✓ ✓

8 ✓ ✓

9 ✓ ✓ ✓ ✓

10 ✓ ✓ ✓

11 ✓ ✓ ✓

12 ✓ ✓

13 ✓ ✓ ✓

14 ✓ ✓

15 ✓ ✓

16 ✓
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the regression coordinate location, and the maximum func-
tion caps the weights (at a value equivalent to the weight
found when 5� latitude away) to ensure the regressions are
not overly fit to data very near the coordinate where the
denominator approaches 0. The Δz term is the difference
between the regression coordinate depth (z) and the depth of
the measurements. The Δlon is the minimum difference in
the measurement and coordinate longitudes when using
either the �180� to 180� or 0� to 360� conventions, and Δlat
is the difference between the measurement and coordinate lat-
itudes. The regression coefficients (C0 and CPiÞ are then fit
using a regression of the form:

XW¼ C0þ
Xn
i¼1

CPiPi

 !
W: ð4Þ

As with LIRv2, data outside of the Atlantic, Mediterranean,
and Arctic are excluded when fitting Northern Hemisphere
regression coordinates within the Atlantic, Mediterranean, or
Arctic—and vice versa—in order to prevent use of data from
across Central America or the Bering Strait. The widths of the
data inclusion windows and the coefficients in the weighting
function were optimized by selecting the variant of eight com-
binations that had the best validation statistics. However,
some of the combinations yielded comparable results for some
predictors, so this parameter tuning process should not be
considered exhaustive.

ESPER_NN construction
ESPER_NN relies upon a collection of feed-forward neural

networks to estimate seawater properties with a similar opera-
tion to the LIR algorithm and a similar structure to the
CANYON-B algorithm: ESPER_NN uses the same combination
of predictor measurements as ESPER_LIR to produce estimates
of the same properties, and does so with a function call that
has similar syntax. Unlike ESPER_LIR, in addition to the pre-
dictors noted in Table 2, the ESPER_NN algorithm uses lati-
tude, depth, cos(longitude-20�E), and cos(longitude-110�E) as
predictors in each equation, making the estimates somewhat
more analogous to a mapping approach than the ESPER_LIR
estimates. Similar, but not identical, parameters are used in
CANYON (Sauzède et al. 2017) and CANYON-B (Bittig
et al. 2018): unlike the original CANYON, ESPER_NN offsets
the 0 longitude for the reasons noted by Bittig et al. (2018),
specifically that cos(lon) loses explanatory power at the prime
meridian, which is a region of oceanographic significance. Off-
setting longitudes to 20�E (and 110�E) puts these regions of
minimum explanatory power over land masses to the extent
possible.

ESPER_NN uses 896 neural networks in total: 8 neural net-
works (4 in each of 2 large ocean regions: see later) are used
for each of the 16 combinations of predictors used for each of
the 7 property estimates. ESPER_NN averages estimates from a

“committee” or ensemble of four neural networks with differ-
ent combinations of neurons and hidden layers to minimize
the impact of errors from any one neural network. These four
neural networks include a single one-hidden-layer network
with 40 neurons, and three two-hidden-layer networks with
30/10, 25/15, and 20/20 neurons in the 1st/2nd hidden layers.
One committee of neural networks is used in the Indo-Pacific-
Southern Ocean regions and an additional committee used in
the Atlantic Ocean, Arctic Ocean, and Mediterranean Sea. The
ESPER_NN algorithm linearly interpolates between the out-
puts of these two committees of neural networks by latitude
across the Southern Atlantic and the Bering Sea, being fully in
the Indo-Pacific-Southern Ocean network by 44�S in the
Southern Atlantic and fully in the Atlantic, Arctic, and Medi-
terranean network by 34�S. Similarly, the North-Pacific-to-
Arctic transition occurs between 62.5�N and 70�N along
Pacific longitudes. After this meridional blending step, there is
a zonal transition implemented in the Southern Atlantic
between these blended values and the Indo-Pacific-Southern
Ocean network starting at 19�E and being completely trans-
itioned at 27�E.

Techniques exist for illuminating the relative importance
of predictor variables in machine learning approaches
(e.g., Olden and Jackson 2002), but the exact equations used
by the ESPER_NN algorithm are nevertheless more opaque
and less explainable than the LIR equations. The networks are
fit using the MATLAB r2017 Machine Learning Toolbox
“feedforwardnet” and “train” function defaults, which include
Levenberg Marquardt optimization with 15% of input data
reserved for assessment during iterative fitting steps. However,
the neural networks have been encoded as functions, so users
do not require the Machine Learning Toolbox to operate
ESPER_NN.

Mixed estimates
Bittig et al. (2018) showed that linear regression and neural

network estimates frequently have independent error fields.
From this observation, they proposed that it might be advan-
tageous to combine estimates from both approaches. We test
this idea and find that it has merits in many circumstances.
We therefore also release a wrapper function “ESPER_Mixed.
m” that calls both routines, ESPER_LIR and ESPER_NN, and
averages the estimates. We do not provide a similar wrapper
function for CANYON-B, but we note that our assessment sug-
gests the findings for the mixed approach could also apply to
a mixed version of CANYON-B and ESPER_LIR Eq. 7. The
ESPER_Mixed routine is assessed alongside the other algo-
rithms in “Assessment” section.

Uncertainty estimation
The routines can return uncertainties for every property

estimate, and the uncertainty values vary with input depth
and salinity. These uncertainties are estimated at the 1σ
(i.e., one standard uncertainty) level, so we would expect
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� 95% of new measurements that have been through the
GLODAPv2 QC process to fall within windows of � twice the
ESPER estimated uncertainties. The LIRv2 uncertainty estima-
tion strategy for TA (Carter et al. 2018) is slightly modified
and then implemented for all properties estimated by the two
ESPERs. As before, this approach interpolates baseline error
estimates (EX_Est) in depth and salinity space. The interpolated
values are based on the root mean squared errors (RMSEs) of
all predictions from the validation versions of the routines
within bins of salinity and depth. As with LIRv2, ESPER_LIR
also scales these methodological uncertainties using user-
provided predictor uncertainty estimates. The following equa-
tion is used when the user provides uncertainties for the pre-
dictors (EPi_Provided) that exceed the default assumed input
uncertainties (Table 3):

EX_Output ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
X_Est�

Xn
i¼1

∂X
∂Pi

EPi_Default

� �2

þ
Xn
i¼1

∂X
∂Pi

EPi_Provided

� �2
vuut :

ð5Þ

If the optional EPi_Provided input is omitted then it is assumed
that EPi_Provided equals EP_Default (Table 3), and the two summed
terms in this equation cancel. Here ∂X

∂Pi
is the sensitivity of the

property estimate X to the ith predictor Pi and the EPi terms
are the default and the user-provided predictor uncertainties.
For the ESPER_LIRs, the ∂X

∂Pi
values equal the CPi terms. For

ESPER_NN calculations, the algorithm determines the sensitiv-
ities by iteratively perturbing the input predictors if and only
if the user specifies larger-than-default predictor uncertainties.
The uncertainties in Table 3 are the minimum uncertainties
allowed by the calculations because these are the assumed
uncertainties in the best open ocean training data available, so
these uncertainties reflect one of the upper limits on the qual-
ity of estimates achievable with the algorithms regardless of
the quality of the predictor measurements. The sole difference
from the approach used for LIRv2 TA estimates is that the
interpolated uncertainties now include the component of
uncertainty that originates from potential errors in the train-
ing data. This saves a step in the calculations while providing
numerically equivalent results.

The uncertainty for an ESPER_Mixed estimate is assessed
simplistically as the minimum uncertainty assessed for the
two component ESPER_LIR and ESPER_NN estimates (“Mixed
ESPER” section).

Assessment
Routines are validated using versions of the algorithms

trained only with the data that were present in the original
GLODAPv2 release (Table 1). This cutoff was chosen to make
the validation algorithms for ESPER_LIR and ESPER_NN com-
parable to the LIRv2 and CANYON-B routines to the degree
possible. These “validation” versions of the algorithms are
then used to recreate the “validation data set,” or the newly
added data in the GLODAPv2.2019 and GLODAPv2.2020
updates plus the other cruises from the Mediterranean Sea and
the Gulf of Mexico. The reconstruction errors for these new
measurements are used to derive error statistics for the five
routines that we assess (LIRv2, ESPER_LIR, ESPER_NN,
CANYON-B, and ESPER_Mixed). The validation data set is in
some ways not ideal, in that it is not evenly distributed glob-
ally and there is spatial overlap between the test and the train-
ing data sets (Fig. 2). An alternate approach to assessing
prediction errors involves omitting all training data from
regions of the ocean representative of data gaps between
cruises, and then estimating the errors within these gaps. This
approach has been used previously by Sauzède et al. (2017)
and Carter et al. (2018), but was found to generally yield
smaller uncertainty estimates in the open ocean than
approaches that omit entire cruises (Carter et al. 2018), so we
conservatively rely on the cruise-omission assessments. The
additional data sets from the Gulf of Mexico and the Mediter-
ranean Sea that were incorporated into this paper were omit-
ted from the global-average validation data set because neither
had undergone secondary QC and because a small subset of
the Mediterranean Sea data from GLODAPv2 had been previ-
ously incorporated into the training data product for some
algorithms but not others. New measurements from the Sea of
Japan/East Sea, a biogeochemically distinct region where no
previous measurements existed in the original GLODAPv2
product, are also omitted from bulk validation statistics. How-
ever, validation statistics for these regions are given separately
(“Regional tests” section).

The reported validation statistics are bias (average reconstruc-
tion error), RMSE, and the number of new measurements used
for each assessment (N). The 10th, 50th, and 90th error percen-
tiles were examined as potential additional statistics, but these
statistics were within expectations when assuming normally dis-
tributed errors with the given RMSE and bias statistics.

Macronutrients
The routines work well for macronutrients (i.e., phosphate,

nitrate, and silicate) when given at least two predictors, rep-
roducing the validation data with low average bias and a

Table 3. Assumed default measurement uncertainties, or
EPi_Default or EX_Default as defined in the text.

Property Uncertainty Units

S 0.003

θ 0.003 �C
Phosphate 2% μmol kg�1

Nitrate 2% μmol kg�1

Silicate 2% μmol kg�1

Oxygen 1% μmol kg�1
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Fig 2. The first column contains maps of the measurement locations used to train the ESPER_LIR_validation and ESPER_NN_validation algorithms. The
second column maps the validation data used to assess these versions of the algorithms. The final ESPER_NN and ESPER_LIR algorithms are trained with
data shown in both rows of maps. Panels in the right two columns are two-dimensional histograms showing the number of measurements that fall within
bins of measured (x-axes) and estimated (with ESPER Eq. 1 from Table 2, y-axes) values of the indicated properties for ESPER_LIR. Color indicates the num-
ber of measurements in each bin (bins are small enough as to appear to be pixels), with darker colors indicating more measurements. The rightmost col-
umn is the same as the 3rd column from the left, but for ESPER_NN property estimates. An ideal algorithm would have darker colored boxes along the
1 : 1 lines in the first two rows.
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RMSE that is comparable to the measurement uncertainties
(Tables 4–6). Phosphate and nitrate have a strong and well-
documented covariance in the ocean (Redfield et al. 1963).
This covariance results in low RMSE statistics for the equations
relating these properties to one another (e.g., ESPER Eqs. 1
and 2 in Table 2), but reduces the value of adding the other as
a predictor when one is already included. This covariance is
less strong between silicate and either phosphate or nitrate,
and oxygen is comparably useful to the macronutrients when
predicting silicate. Unsurprisingly, the equations with more
fitting parameters tended to perform better, and the RMSE
ranged from being comparable to nominal � 2% measurement
uncertainty at best (or � 0.04 μmol kg�1 for a phosphate mea-
surement of 2 μmol kg�1

; Olsen et al. 2016) to 3–4 times worse
when only S and coordinate information is used in the predic-
tion. All algorithms assessed perform comparably for the
ESPER equations using T, S, and oxygen as predictors
(i.e., ESPER Eq. 7), but LIRv2 performs slightly worse for sili-
cate. LIRv2 performs comparably to alternatives for many
macronutrient estimates, but alternatives outperform LIRv2
for the equations with the largest RMSE values and fewest pre-
dictors (e.g., ESPER Eqs. 12 and 16), suggesting that the modi-
fications in ESPER_LIR have resulted in an improvement in
the least-accurate estimates. Likely, this is due to the larger
number of measurements available for each regression in
ESPER_LIR relative to LIRv2. Unlike the ESPER_LIR_validation
routine assessed here, the released version of ESPER_LIR bene-
fits from including the newly added data in the recent updates
to GLODAP, and is therefore preferred to LIRv2 even when
the validation statistics are comparable.

Oxygen
Validation statistics are reasonable for oxygen though persis-

tently greater than the nominal 1% measurement uncertainty
(i.e., 3 μmol kg�1 for a 300 μmol kg�1 measurement; Olsen
et al. 2016), ranging from 4.5 to 13.2 μmol kg�1 in the global
ocean for ESPER_NN_validation and ESPER_LIR_validation
(Table 7). LIRv2 is also comparable, but again shows worse vali-
dation statistics for equations with fewer predictors and larger
RMSE values. The statistics are markedly better at intermediate
depths, and range from 2.7 to 6.0 μmol kg�1 between 1000 and
1500 m depth for ESPER_NN_validation. Below the well-lit sur-
face ocean there is no gas exchange and essentially no primary
production of organic matter, and the algorithms are therefore
better able to capture the fewer processes controlling oxygen dis-
tributions. As a result, the oxygen algorithms perform less well
at higher oxygen concentrations, which is evident in the larger
error statistics globally than in the intermediate depth statistics,
as well as in the comparatively diffuse cloud of estimates in the
upper right of the oxygen histograms in Fig. 2. Interestingly, the
neural network estimates in Fig. 2 appear less diffuse than the
LIR-based estimates: the RMSE for ESPER Eq. 1 for only the top
200 m is 8.6, 7.6, and 8.0 μmol kg�1 for the LIR, NN, and Mixed
validation ESPER variants, respectively. This suggests that the

neural network framework is more skillful at capturing the
nonlinear relationships between properties that can result in the
presence of gas exchange and primary production in the surface
ocean. Oxygen estimates show a non-negligible bias, over-
estimating oxygen by an average 0.9 μmol kg�1 for all three
algorithms across ESPER equations. It should be noted that a
large amount of the validation data used for this assessment are
located within the North Pacific where oxygen concentrations
are low, so this could reflect a small regional bias in the algo-
rithms, a tendency to overestimate lower oxygen concentra-
tions, or differences between the test and the training data
products. Supporting this idea, the released versions of the
algorithms—which use all data as training data—still have a
0.6 μmol kg�1 bias for the ESPER_Mixed_validation test data
reconstructions while having a �0.1 μmol kg�1 bias for the
ESPER_Mixed_validation training data reconstructions
(i.e., GLODAPv2) and no significant bias for both data subsets
combined.

Total titration seawater alkalinity
Seawater alkalinity continues to show strong predictability

even with comparatively few predictors (Table 8) and has the
smallest relative range in RMSE values with the least precise
estimates having a RMSE that is less than double the RMSE of
the most precise estimates (ranging from 3.7 to 5.2 μmol kg�1

for TA for ESPER_NN_validation estimates). The small range in
assessed RMSE values is expected because all ESPER equations
use S, and freshwater cycling is a major driver explaining vari-
ability in both S and TA. The excellent validation metrics for
new and existing algorithms for TA likely reflect particularly
precise TA measurements in the newly added cruises in
GLODAPv2.2020, in part due to increased use of certified ref-
erence materials for TA (Dickson et al. 2003).

Interestingly, there is an estimate bias averaging 0.5 to
1 μmol kg�1 across ESPER equations for the various routines. It
is difficult to identify the cause of these average mismatches
when considering that the GLODAP secondary QC effort
already adjusted several cruises to be in line with the existing
GLODAPv2 data product. However, Olsen et al. (2019) note
that many of the newly added cruises in the North Pacific
show a negative bias against earlier cruises, consistent with
this observation. Also, many of these cruises use single-point
spectrophotometric TA titration endpoint detections, which
Bockmon and Dickson (2015) previously noted could be a
source of disagreement with TA values from full-pH-range
titration fits. Interestingly, Sharp and Byrne (2020) have pro-
vided a mechanistic explanation that would account for these
analytical disagreements if alkaline organic molecules were
present in open-ocean seawater. While this discussion high-
lights the challenges of creating a consistent data product
across research groups, the high precision and modest bias of
this TA reconstruction nevertheless demonstrates the high
quality of the underlying measurements and the importance
of the GLODAPv2 secondary QC process.
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In situ pH on the total scale
There is some difficulty comparing across pHT algorithms

because the training data for earlier pHT algorithms were sup-
plemented with several additional cruises (Bittig et al. 2018;
Carter et al. 2018), many of which were since added to the
GLODAPv2 data product in annual updates. This means that
some algorithms would benefit from overlap between the
training and validation data products in this comparison. The
comparison cannot simply be limited to the truly new cruises
because there are not many additional cruises where purified
spectrophotometric dye measurements were made that were
not used to train earlier algorithms; we limit our comparison
to cruises with these spectrophotometric measurements
because it has been shown that there are consistent disagree-
ments between measured and calculated pHT (Carter

et al. 2018; �Alvarez et al. 2020). Moreover, measurements
made with purified dyes are consistent with measurements
made by sensors that have been shown to have the expected
Nernstian response to pHT changes (Takeshita et al. 2020)
lending support to the use of spectrophotometric pHT values
over the disagreeing calculated values. Complicating the com-
parison further, the three new cruises that were not included
in LIRv2 or CANYON-B pHT training data that do meet our
criteria had large adjustments applied during the GLODAP sec-
ondary QC. Therefore, for this study we do not re-assess LIRv2
or CANYON-B, and instead show that the ESPERs have similar
validation statistics (Table 9) to those published by earlier vali-
dation efforts for these algorithms (Bittig et al. 2018; Carter
et al. 2018). We do note however, that the statistics obtained
when we assess all four algorithms using T, S, and oxygen
with the same data (not shown) are quite close to each other
despite the partial overlap between training and validation
data sets. This suggests all four algorithms are valid for pHT.

It is difficult to read into pHT validation statistics too much
given the comparatively small number of valid assessment
data points. However, one pattern in pHT assessment statistics
that is apparent is that pH reconstructions benefit significantly
from the use of either nitrate or oxygen as predictors, as these
predictors provide information regarding organic matter
remineralization. The ESPER equations with neither quantity
have higher RMSE values, even when silicate is included as a
predictor.

Total dissolved inorganic carbon
The routines reproduce DIC measurements with good skill

and a small positive average bias, with RMSE values ranging
from 4.8 to 16.7 μmol kg�1 globally and 3.2 to 7.0 μmol kg�1

at intermediate depths for the various validation versions
(Table 10). Assessment statistics are comparable across the
three routines that estimate DIC (LIRv2 does not). We caution
that DIC does not have seasonal resolution in the surface
ocean in most regions of its training data product. Therefore,
estimates within the surface ocean should be treated with cau-
tion, and we recommend avoiding interpreting seasonality in

the ESPER estimates. This caution applies to all property esti-
mates, but is important to note for DIC specifically because of
the high sensitivity of DIC to most modes of seasonal variabil-
ity and the large scientific interest in seasonal DIC cycling.
DIC calculations from measured pH or pCO2 and estimated TA
are expected to be less challenged by the lack of seasonal reso-
lution than direct DIC estimates, as TA seasonality is usually
less pronounced than DIC seasonality. These two approaches
to DIC seasonality reconstruction can return quite different
results in the surface ocean (Supporting Information S1.4).
There are empirical routines for global DIC estimation
(Broull�on et al. 2020) and surface DIC estimation (Gregor and
Gruber 2021) that are also trained with the surface pCO2 mea-
surements. In the many regions where surface pCO2 has better
seasonal data coverage than GLODAPv2, these routines are
likely to better resolve DIC surface seasonality than ESPER or
other DIC algorithms trained primarily with discrete DIC
measurements.

Regional tests
We assess the performance of the algorithms in eight regions

independently (Fig. 3). Some of these regions are where biogeo-
chemical Argo floats are currently being deployed (i.e., the North
Atlantic, California Current, Equatorial Pacific, and the Southern
Ocean) and therefore where there is additional interest in the per-
formance of the algorithms. Other regions are biogeochemically
distinct places where there were no training data used for the
CANYON-B and/or LIRv2 algorithms (i.e., Sea of Japan/East Sea,
Gulf of Mexico, and the Mediterranean). These regions therefore
allow tests of the likely errors one can expect when applying
global algorithms to biogeochemically distinct regions where
there were no available training data. Finally, the Arctic is a prob-
lematic region for the algorithms that warrants special attention.

We first consider the Southern Ocean, the Equatorial
Pacific, the California Current, and the Northern Atlantic. The
validation statistics in these regions where there are active ongo-
ing biogeochemical float deployment efforts are, for the most
part, consistent with the global average statistics. The Northern
Atlantic shows validation statistics that are somewhat worse
than global averages for macronutrients and oxygen and the
California Current shows oxygen RMSE values that are equally
elevated. Given the active physical processes and biogeochemi-
cal cycling in these regions of interest (and the comparatively
small validation data set in the California Current), none of
these sets of validation statistics are unexpected. We therefore
conclude that the algorithms should function within expecta-
tions in these important regions and suggest Table 11 can be
used to get a sense for how the global validation statistics might
vary on a regional level.

The Sea of Japan/East Sea provides an excellent case study to
assess the use of algorithms in regions without training data for
three reasons: (1) this region had no data in the first GLODAPv2
release, and thus is a region where neither LIRv2 nor
CANYON-B had training data; (2) a large quantity of high-
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quality data from the Sea of Japan/East Sea were included with
the GLODAPv2.2020 release; and (3) the Sea of Japan/East Sea is
biogeochemically distinct from the open ocean to the east of
Japan, providing a challenge for the predictive capabilities of the
approaches. Neither of the earlier generation of algorithms work
well there with large average biases and RMSE values that are
approximately nine times greater on average than in the first set

of regions considered, but with significant variance between
properties and routines (Table 11). LIRv2 is especially problem-
atic in this region, and the marked improvement in
ESPER_LIR_validation relative to LIRv2 suggests the wider data
inclusion windows did indeed reduce variance inflation in this
region. The release versions of the ESPERs that do include data
from the Sea of Japan/East Sea as training data indeed reproduce

Table 4. Assessment statistics, reported as bias (� RMSE) in μmol kg�1, for various phosphate estimation routines presented both glob-
ally (top rows) and for intermediate ocean depths (bottom rows, provided for comparison only as there are no float-based phosphate
sensors calibrated using algorithms). The equation numbers are specific to the LIR approach, but the equivalent seawater property pre-
dictors are used for the other algorithms in the same row.

Global

LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed
N 146,263 146,263 146,263 146,263 146,263

Eq. 1 0.002 (� 0.035) 0.001 (� 0.036) 0.001 (� 0.036) — 0.003 (� 0.039)

Eq. 2 0.001 (� 0.039) 0.000 (� 0.038) 0.001 (� 0.037) — 0.002 (� 0.039)

Eq. 3 0.003 (� 0.044) 0.001 (� 0.044) 0.001 (� 0.040) — 0.003 (� 0.042)

Eq. 4 �0.001 (� 0.061) �0.006 (� 0.060) �0.003 (� 0.053) — 0.000 (� 0.045)

Eq. 5 0.002 (� 0.036) 0.001 (� 0.037) 0.002 (� 0.036) — 0.003 (� 0.039)

Eq. 6 0.001 (� 0.041) �0.001 (� 0.039) 0.001 (� 0.038) — 0.002 (� 0.039)

Eq. 7 0.005 (� 0.052) 0.004 (� 0.051) 0.003 (� 0.043) 0.004 (� 0.043) 0.004 (� 0.045)

Eq. 8 �0.003 (� 0.089) �0.003 (� 0.086) �0.002 (� 0.075) — 0.001 (� 0.053)

Eq. 9 0.003 (� 0.036) 0.002 (� 0.037) 0.002 (� 0.036) — 0.003 (� 0.039)

Eq. 10 0.002 (� 0.040) 0.000 (� 0.039) 0.001 (� 0.039) — 0.002 (� 0.038)

Eq. 11 0.005 (� 0.048) 0.002 (� 0.049) 0.002 (� 0.044) — 0.003 (� 0.043)

Eq. 12 �0.003 (� 0.079) �0.006 (� 0.065) �0.003 (� 0.057) — 0.001 (� 0.046)

Eq. 13 0.004 (� 0.037) 0.002 (� 0.038) 0.003 (� 0.037) — 0.003 (� 0.039)

Eq. 14 0.002 (� 0.043) 0.000 (� 0.040) 0.002 (� 0.040) — 0.003 (� 0.039)

Eq. 15 0.011 (� 0.069) 0.008 (� 0.067) 0.007 (� 0.059) — 0.005 (� 0.051)

Eq. 16 0.008 (� 0.152) 0.005 (� 0.141) 0.004 (� 0.129) — 0.004 (� 0.078)

Intermediate depth only (i.e., > 1000 m and < 1500 m depth)

N 14,397 14,397 14,397 14,397 14,397

Eq. 1 0.009 (� 0.030) 0.007 (� 0.030) 0.007 (� 0.028) — 0.007 (� 0.029)

Eq. 2 0.009 (� 0.031) 0.006 (� 0.030) 0.008 (� 0.030) — 0.008 (� 0.029)

Eq. 3 0.011 (� 0.032) 0.008 (� 0.032) 0.009 (� 0.030) — 0.008 (� 0.030)

Eq. 4 0.012 (� 0.040) 0.007 (� 0.038) 0.006 (� 0.036) — 0.007 (� 0.031)

Eq. 5 0.010 (� 0.029) 0.007 (� 0.029) 0.008 (� 0.029) — 0.008 (� 0.029)

Eq. 6 0.009 (� 0.030) 0.006 (� 0.030) 0.008 (� 0.030) — 0.008 (� 0.029)

Eq. 7 0.011 (� 0.031) 0.008 (� 0.031) 0.010 (� 0.030) 0.011 (� 0.031) 0.009 (� 0.030)

Eq. 8 0.012 (� 0.044) 0.003 (� 0.041) 0.005 (� 0.046) — 0.007 (� 0.034)

Eq. 9 0.009 (� 0.030) 0.007 (� 0.030) 0.007 (� 0.029) — 0.008 (� 0.029)

Eq. 10 0.009 (� 0.031) 0.006 (� 0.030) 0.005 (� 0.029) — 0.006 (� 0.028)

Eq. 11 0.011 (� 0.032) 0.008 (� 0.032) 0.009 (� 0.031) — 0.008 (� 0.030)

Eq. 12 0.012 (� 0.046) 0.005 (� 0.038) 0.005 (� 0.038) — 0.007 (� 0.032)

Eq. 13 0.010 (� 0.030) 0.007 (� 0.029) 0.007 (� 0.029) — 0.007 (� 0.029)

Eq. 14 0.009 (� 0.031) 0.006 (� 0.030) 0.007 (� 0.030) — 0.007 (� 0.028)

Eq. 15 0.012 (� 0.033) 0.008 (� 0.031) 0.010 (� 0.032) — 0.009 (� 0.031)

Eq. 16 0.013 (� 0.056) 0.000 (� 0.049) 0.002 (� 0.053) — 0.005 (� 0.037)
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these data with comparable fidelity to the global statistics
(Supporting Information S1.4). We conclude this region is not a
special challenge for algorithms when training data are
included. The release versions of these algorithms updated with
the new data should therefore work in the now-measured por-
tions of the Sea of Japan/East Sea.

Two additional marginal seas deserve mention. GLODAPv2
does not yet include data from the Gulf of Mexico or the

Mediterranean Sea that have been subjected to the GLODAPv2
secondary quality control process (some data from the Medi-
terranean Sea are included, but with QC flags of 0). However,
due to the large errors expected within marginal seas (and
now demonstrated for the Sea of Japan) when training data
are absent or omitted, data from two cruises to the Mediterra-
nean were included in the training data for CANYON-B
despite the lack of secondary QC. We now do similarly in the

Table 5. Assessment statistics, reported as bias (� RMSE) in μmol kg�1, for various nitrate estimation routines presented both globally
(top rows) and for the intermediate ocean where float-based sensor measurements are often checked against algorithm-based estimates
(bottom rows).

Global

LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed
N 146,263 146,263 146,263 146,263 146,263

Eq. 1 0.03 (� 0.52) 0.02 (� 0.48) 0.00 (� 0.42) — 0.03 (� 0.49)

Eq. 2 0.01 (� 0.56) 0.00 (� 0.52) �0.01 (� 0.47) — 0.03 (� 0.49)

Eq. 3 0.04 (� 0.61) 0.01 (� 0.59) 0.00 (� 0.50) — 0.03 (� 0.55)

Eq. 4 �0.02 (� 0.86) �0.09 (� 0.82) �0.07 (� 0.72) — 0.00 (� 0.59)

Eq. 5 0.03 (� 0.54) 0.03 (� 0.49) 0.02 (� 0.43) — 0.04 (� 0.50)

Eq. 6 0.00 (� 0.58) �0.01 (� 0.55) �0.01 (� 0.50) — 0.03 (� 0.50)

Eq. 7 0.06 (� 0.72) 0.06 (� 0.70) 0.03 (� 0.56) 0.03 (� 0.56) 0.04 (� 0.59)

Eq. 8 �0.06 (� 1.26) �0.04 (� 1.21) �0.05 (� 1.04) — 0.01 (� 0.73)

Eq. 9 0.03 (� 0.54) 0.02 (� 0.50) 0.01 (� 0.44) — 0.04 (� 0.50)

Eq. 10 0.00 (� 0.58) �0.01 (� 0.54) �0.01 (� 0.49) — 0.03 (� 0.50)

Eq. 11 0.05 (� 0.67) 0.02 (� 0.65) 0.00 (� 0.57) — 0.03 (� 0.56)

Eq. 12 �0.08 (� 1.21) �0.10 (� 0.89) �0.06 (� 0.77) — 0.00 (� 0.60)

Eq. 13 0.05 (� 0.57) 0.04 (� 0.52) 0.03 (� 0.48) — 0.05 (� 0.52)

Eq. 14 0.00 (� 0.62) 0.00 (� 0.57) �0.01 (� 0.53) — 0.03 (� 0.51)

Eq. 15 0.12 (� 0.96) 0.11 (� 0.91) 0.08 (� 0.81) — 0.07 (� 0.69)

Eq. 16 0.06 (� 2.22) 0.06 (� 2.00) 0.02 (� 1.83) — 0.04 (� 1.08)

Intermediate depth only (i.e., > 1000 m and < 1500 m depth)

N 14,397 14,397 14,397 14,397 14,397

Eq. 1 �0.01 (� 0.32) �0.01 (� 0.31) �0.01 (� 0.29) — 0.01 (� 0.30)

Eq. 2 �0.04 (� 0.36) �0.05 (� 0.34) �0.04 (� 0.34) — �0.01 (� 0.30)

Eq. 3 0.03 (� 0.33) 0.02 (� 0.32) 0.02 (� 0.31) — 0.02 (� 0.31)

Eq. 4 0.05 (� 0.45) 0.01 (� 0.40) �0.01 (� 0.44) — 0.00 (� 0.34)

Eq. 5 �0.01 (� 0.33) �0.02 (� 0.32) 0.00 (� 0.30) — 0.01 (� 0.30)

Eq. 6 �0.05 (� 0.38) �0.08 (� 0.38) �0.07 (� 0.38) — �0.02 (� 0.31)

Eq. 7 0.04 (� 0.34) 0.02 (� 0.33) 0.04 (� 0.33) 0.04 (� 0.33) 0.03 (� 0.32)

Eq. 8 0.05 (� 0.54) �0.05 (� 0.53) �0.01 (� 0.58) — 0.01 (� 0.40)

Eq. 9 �0.01 (� 0.32) �0.02 (� 0.32) 0.00 (� 0.30) — 0.01 (� 0.30)

Eq. 10 �0.05 (� 0.37) �0.07 (� 0.37) �0.07 (� 0.34) — �0.02 (� 0.30)

Eq. 11 0.03 (� 0.34) 0.02 (� 0.32) 0.03 (� 0.32) — 0.02 (� 0.31)

Eq. 12 0.04 (� 0.55) �0.03 (� 0.45) �0.02 (� 0.46) — 0.00 (� 0.35)

Eq. 13 �0.01 (� 0.34) �0.02 (� 0.33) �0.01 (� 0.32) — 0.01 (� 0.31)

Eq. 14 �0.06 (� 0.40) �0.10 (� 0.39) �0.07 (� 0.40) — �0.03 (� 0.32)

Eq. 15 0.05 (� 0.37) 0.02 (� 0.34) 0.03 (� 0.36) — 0.03 (� 0.33)

Eq. 16 0.06 (� 0.73) �0.09 (� 0.65) �0.06 (� 0.71) — �0.02 (� 0.45)
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ESPERs and include additional data gathered as part of the
CODAP-NA (Jiang et al. 2021) and ongoing CARIMED efforts
(Supporting Information S1.1). The same lessons from the Sea
of Japan/East Sea analysis apply to the reconstruction of mea-
surements from the Gulf of Mexico and the Mediterranean
Sea (Table 11). We caution that ESPER_LIR is challenged by
the lack of data below 2000 m depth in the Mediterranean

and increases its window sizes large enough to incorporate
data at depth from the deep North Atlantic. This results in
poor RMSE statistics even when the test data are included with
the training data (Supporting Information S1.4). Until this is
addressed, it is recommended that users interested in this area
use ESPER_NN or CANYON_MED (Fourrier et al. 2020) in
place of ESPER_LIR or ESPER_Mixed. Such regional algorithms

Table 6. Assessment statistics, reported as bias (� RMSE) in μmol kg�1, for various silicate estimation routines presented both globally
(top rows) and for the intermediate ocean (bottom rows, provided for comparison only as there are no float-based sensors for phos-
phate that are calibrated using algorithms).

Global

LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed
N 146,263 146,263 146,263 146,263 146,263

Eq. 1 �0.3 (� 2.4) 0.0 (� 2.2) 0.0 (� 1.8) — 0.1 (� 1.9)

Eq. 2 �0.3 (� 2.5) �0.1 (� 2.5) �0.1 (� 2.1) — 0.0 (� 2.0)

Eq. 3 �0.2 (� 2.4) 0.0 (� 2.2) 0.1 (� 2.0) — 0.1 (� 2.0)

Eq. 4 �0.3 (� 2.6) �0.1 (� 2.5) 0.0 (� 2.0) — 0.1 (� 2.0)

Eq. 5 �0.2 (� 2.4) 0.0 (� 2.3) 0.1 (� 1.8) — 0.1 (� 1.9)

Eq. 6 �0.3 (� 2.7) �0.2 (� 2.6) �0.1 (� 2.1) — 0.0 (� 2.0)

Eq. 7 �0.2 (� 2.7) 0.1 (� 2.3) 0.1 (� 2.0) 0.1 (� 1.9) 0.1 (� 2.0)

Eq. 8 �0.3 (� 3.6) �0.1 (� 3.3) �0.1 (� 2.7) — 0.0 (� 2.2)

Eq. 9 0.0 (� 4.1) 0.1 (� 3.0) 0.1 (� 2.6) — 0.1 (� 2.2)

Eq. 10 �0.1 (� 5.0) 0.1 (� 3.1) 0.0 (� 2.6) — 0.0 (� 2.2)

Eq. 11 0.0 (� 4.3) 0.1 (� 3.0) 0.1 (� 2.6) — 0.1 (� 2.1)

Eq. 12 0.0 (� 4.9) 0.1 (� 3.1) 0.0 (� 2.7) — 0.1 (� 2.2)

Eq. 13 0.1 (� 4.6) 0.1 (� 3.2) 0.1 (� 2.7) — 0.1 (� 2.2)

Eq. 14 �0.1 (� 5.2) 0.0 (� 3.3) �0.1 (� 2.8) — 0.0 (� 2.2)

Eq. 15 0.3 (� 5.5) 0.3 (� 3.4) 0.2 (� 3.2) — 0.2 (� 2.4)

Eq. 16 0.4 (� 6.9) 0.1 (� 5.4) �0.1 (� 5.3) — 0.0 (� 3.2)

Intermediate depth only (i.e., > 1000 m and < 1500 m depth)

N 14,397 14,397 14,397 14,397 14,397

Eq. 1 �0.3 (� 2.0) �0.2 (� 1.7) �0.1 (� 1.6) — �0.1 (� 1.5)

Eq. 2 �0.3 (� 2.1) �0.3 (� 2.1) �0.2 (� 2.0) — �0.2 (� 1.6)

Eq. 3 �0.3 (� 2.0) �0.1 (� 1.6) �0.1 (� 1.7) — �0.1 (� 1.5)

Eq. 4 �0.3 (� 2.1) �0.2 (� 1.9) �0.1 (� 1.9) — �0.1 (� 1.6)

Eq. 5 �0.3 (� 2.1) �0.2 (� 1.8) �0.1 (� 1.6) — �0.1 (� 1.5)

Eq. 6 �0.3 (� 2.3) �0.5 (� 2.4) �0.3 (� 2.0) — �0.2 (� 1.6)

Eq. 7 �0.3 (� 2.1) �0.1 (� 1.6) �0.2 (� 1.7) 0.0 (� 1.5) �0.2 (� 1.5)

Eq. 8 �0.1 (� 2.7) �0.3 (� 2.6) �0.1 (� 2.4) — �0.1 (� 1.7)

Eq. 9 0.0 (� 3.4) �0.1 (� 3.3) �0.2 (� 3.3) — �0.2 (� 2.2)

Eq. 10 0.0 (� 5.7) �0.1 (� 3.2) �0.2 (� 3.3) — �0.2 (� 2.1)

Eq. 11 0.0 (� 3.7) �0.1 (� 2.9) �0.1 (� 3.4) — �0.1 (� 2.2)

Eq. 12 0.1 (� 5.5) 0.0 (� 3.0) 0.0 (� 3.3) — �0.1 (� 2.1)

Eq. 13 0.0 (� 4.1) �0.1 (� 3.7) �0.3 (� 3.4) — �0.2 (� 2.2)

Eq. 14 �0.1 (� 6.4) �0.4 (� 3.4) �0.4 (� 3.6) — �0.3 (� 2.3)

Eq. 15 0.1 (� 5.3) 0.0 (� 3.2) �0.1 (� 3.8) — �0.1 (� 2.3)

Eq. 16 0.2 (� 6.1) �0.4 (� 4.0) �0.1 (� 4.7) — �0.1 (� 2.7)
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can be meaningfully better for regional efforts, and work in
progress on a regional algorithm for the Gulf of Mexico shows
promise for reducing the RMS misfit to the observations from
this region. The Gulf of Mexico challenges the ESPERs because
this is a region where the underlying TTD-based Cant data
product does not contain estimates, so Cant is crudely

triangulated between the Pacific and Atlantic in this region.
A regional algorithm could address this limitation with a more
sophisticated approach.

Finally, with intense seasonality, strong freshwater cycling
and riverine inputs, seasonal ice cover, and broad continental
shelves, the Arctic is an interesting “worst case scenario” for

Table 7. Assessment statistics, reported as bias (� RMSE) in μmol kg�1, for various oxygen estimation routines presented both globally
(top rows) and for the intermediate ocean (bottom rows, provided for comparison only as float-based oxygen sensors are not com-
monly quality controlled against algorithms).

Global

LIRv2 ESPER_LIR ESPER_NN CANYON-B* Mixed
N 146,263 146,263 146,263 —* 146,263

Eq. 1 0.5 (� 5.3) 0.6 (� 5.2) 0.5 (� 4.5) — 0.6 (� 4.7)

Eq. 2 0.4 (� 5.7) 0.5 (� 5.6) 0.5 (� 5.0) — 0.6 (� 4.8)

Eq. 3 0.5 (� 5.8) 0.6 (� 5.5) 0.6 (� 4.8) — 0.6 (� 4.9)

Eq. 4 0.7 (� 8.0) 1.3 (� 7.6) 1.0 (� 7.1) — 0.8 (� 5.6)

Eq. 5 0.6 (� 5.5) 0.8 (� 5.4) 0.7 (� 4.7) — 0.7 (� 4.8)

Eq. 6 0.7 (� 5.9) 0.8 (� 5.8) 0.6 (� 5.3) — 0.7 (� 4.8)

Eq. 7 0.6 (� 6.2) 0.7 (� 5.6) 0.5 (� 5.0) — 0.6 (� 5.0)

Eq. 8 1.1 (� 10.8) 1.2 (� 10.0) 1.1 (� 9.7) — 0.9 (� 6.6)

Eq. 9 1.1 (� 8.1) 1.0 (� 7.9) 1.1 (� 7.0) — 0.9 (� 5.6)

Eq. 10 1.1 (� 8.8) 1.0 (� 8.3) 1.1 (� 7.6) — 0.9 (� 5.7)

Eq. 11 1.1 (� 8.4) 1.0 (� 8.0) 1.0 (� 7.4) — 0.9 (� 5.8)

Eq. 12 2.0 (� 14.2) 1.7 (� 9.9) 1.4 (� 9.5) — 1.1 (� 6.5)

Eq. 13 1.4 (� 9.8) 1.3 (� 8.2) 1.1 (� 7.3) — 0.9 (� 5.7)

Eq. 14 1.5 (� 10.4) 1.3 (� 8.4) 1.2 (� 7.7) — 1.0 (� 5.8)

Eq. 15 1.4 (� 9.8) 1.2 (� 8.2) 1.0 (� 7.6) — 0.9 (� 5.9)

Eq. 16 1.6 (� 18.6) 1.2 (� 13.7) 0.8 (� 13.1) — 0.8 (� 7.9)

Intermediate depth only (i.e., >1000 m and < 1500 m depth)

N 14,397 14,397 14,397 —* 14,397

Eq. 1 0.2 (� 2.8) 0.4 (� 2.6) 0.6 (� 2.7) — 0.5 (� 2.6)

Eq. 2 0.4 (� 3.4) 0.7 (� 2.9) 0.8 (� 3.1) — 0.6 (� 2.6)

Eq. 3 0.0 (� 3.0) 0.2 (� 2.6) 0.1 (� 2.8) — 0.3 (� 2.6)

Eq. 4 �0.4 (� 4.3) 0.2 (� 3.3) 0.1 (� 4.2) — 0.3 (� 2.9)

Eq. 5 0.4 (� 3.0) 0.6 (� 2.9) 0.8 (� 3.1) — 0.6 (� 2.8)

Eq. 6 0.6 (� 3.8) 1.1 (� 3.5) 1.1 (� 3.9) — 0.8 (� 3.0)

Eq. 7 0.0 (� 3.2) 0.4 (� 2.9) 0.4 (� 3.1) — 0.4 (� 2.8)

Eq. 8 �0.3 (� 5.1) 0.8 (� 4.8) 0.2 (� 5.9) — 0.3 (� 3.7)

Eq. 9 0.4 (� 3.8) 0.8 (� 3.9) 1.0 (� 3.6) — 0.7 (� 3.0)

Eq. 10 0.7 (� 4.2) 1.2 (� 4.7) 1.2 (� 4.1) — 0.8 (� 3.0)

Eq. 11 0.2 (� 3.9) 0.6 (� 3.8) 0.7 (� 4.0) — 0.6 (� 3.1)

Eq. 12 �0.2 (� 6.1) 0.7 (� 4.8) 0.4 (� 5.4) — 0.4 (� 3.4)

Eq. 13 0.7 (� 5.4) 1.0 (� 4.0) 0.8 (� 4.0) — 0.6 (� 3.1)

Eq. 14 1.1 (� 5.7) 1.5 (� 4.5) 1.2 (� 4.4) — 0.8 (� 3.1)

Eq. 15 0.4 (� 5.5) 0.8 (� 4.0) 0.6 (� 4.3) — 0.5 (� 3.2)

Eq. 16 0.0 (� 7.6) 1.4 (� 6.2) 0.2 (� 6.0) — 0.3 (� 3.7)

*This routine does not estimate this quantity.
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the algorithms, even when training data are available. The val-
idation statistics in this region are significantly worse than the
global statistics (RMSEs average � 2.3 times greater, though
again with variance between properties and routines,
Table 11). These larger uncertainties found in the Arctic could
perhaps be generalized to other problematic regions such as
shallow coastal areas, small marginal seas, areas with signifi-
cant riverine inputs, or other areas with seasonal ice cover.

Mixed ESPER
As proposed by Bittig et al. (2018), averaging the estimates

from ESPER_LIR_validation and ESPER_NN_validation indeed
seems to improve the global average prediction statistics,
though the improvement is sometimes small and often the
individual residuals are greater with the ESPER_Mixed estimate
than for the better of the two estimates. For equations with
few predictors (e.g., ESPER Eq. 16, using S as the only seawater

Table 8. Assessment statistics, reported as bias (� RMSE) in μmol kg�1, for various TA estimation routines presented both globally (top
rows) and for the intermediate ocean (bottom rows, provided for comparison only as TA sensors have yet to be widely deployed on
floats).

Global

LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed
N 71,832 71,832 71,832 71,832 71,832

Eq. 1 0.8 (� 3.6) 0.8 (� 3.6) 0.8 (� 3.7) — 0.8 (� 3.5)

Eq. 2 0.7 (� 3.6) 0.8 (� 3.6) 0.8 (� 3.7) — 0.8 (� 3.5)

Eq. 3 0.7 (� 3.7) 0.8 (� 3.6) 0.8 (� 3.7) — 0.7 (� 3.5)

Eq. 4 0.7 (� 3.7) 0.9 (� 3.6) 0.9 (� 3.8) — 0.8 (� 3.6)

Eq. 5 0.5 (� 3.9) 0.6 (� 3.7) 0.7 (� 3.7) — 0.7 (� 3.6)

Eq. 6 0.4 (� 4.0) 0.5 (� 3.8) 0.7 (� 3.9) — 0.7 (� 3.6)

Eq. 7 0.5 (� 4.0) 0.7 (� 3.7) 0.8 (� 3.8) 0.4 (� 4.2) 0.7 (� 3.6)

Eq. 8 0.5 (� 4.3) 0.6 (� 4.0) 0.8 (� 4.1) — 0.7 (� 3.7)

Eq. 9 0.7 (� 3.7) 0.8 (� 3.7) 0.9 (� 3.7) — 0.8 (� 3.5)

Eq. 10 0.7 (� 3.7) 0.9 (� 3.7) 0.9 (� 3.7) — 0.8 (� 3.5)

Eq. 11 0.7 (� 3.7) 0.9 (� 3.7) 0.9 (� 3.6) — 0.8 (� 3.5)

Eq. 12 0.8 (� 3.9) 1.0 (� 3.7) 0.9 (� 3.7) — 0.8 (� 3.5)

Eq. 13 0.7 (� 4.4) 0.8 (� 3.9) 0.8 (� 4.0) — 0.7 (� 3.6)

Eq. 14 0.7 (� 4.9) 0.7 (� 4.1) 0.8 (� 4.0) — 0.7 (� 3.6)

Eq. 15 1.0 (� 4.8) 0.9 (� 4.0) 0.9 (� 4.0) — 0.8 (� 3.6)

Eq. 16 1.2 (� 6.5) 0.9 (� 5.0) 0.7 (� 5.2) — 0.7 (� 4.0)

Intermediate depth only (i.e., >1000 m and < 1500 m depth)

N 6797 6797 6797 6797 6797

Eq. 1 0.9 (� 3.0) 0.8 (� 2.9) 1.0 (� 3.0) — 0.8 (� 2.8)

Eq. 2 0.9 (� 2.9) 0.8 (� 2.9) 0.9 (� 2.9) — 0.8 (� 2.8)

Eq. 3 0.9 (� 2.9) 0.8 (� 2.9) 0.9 (� 3.0) — 0.8 (� 2.8)

Eq. 4 0.8 (� 3.0) 0.8 (� 2.9) 0.9 (� 3.0) — 0.8 (� 2.9)

Eq. 5 0.6 (� 3.2) 0.6 (� 2.9) 0.7 (� 3.1) — 0.7 (� 2.9)

Eq. 6 0.6 (� 3.2) 0.5 (� 2.9) 0.8 (� 3.2) — 0.7 (� 2.9)

Eq. 7 0.6 (� 3.2) 0.6 (� 2.9) 0.7 (� 3.1) 0.5 (� 3.2) 0.7 (� 2.9)

Eq. 8 0.7 (� 3.2) 0.6 (� 2.9) 0.8 (� 3.3) — 0.7 (� 3.0)

Eq. 9 0.9 (� 3.0) 0.9 (� 2.9) 0.9 (� 3.0) — 0.8 (� 2.9)

Eq. 10 0.8 (� 3.0) 0.8 (� 2.9) 1.0 (� 3.1) — 0.8 (� 2.9)

Eq. 11 0.9 (� 3.0) 0.9 (� 2.9) 1.0 (� 3.0) — 0.8 (� 2.9)

Eq. 12 0.8 (� 3.0) 0.9 (� 2.9) 1.0 (� 3.1) — 0.8 (� 2.9)

Eq. 13 0.7 (� 3.8) 0.6 (� 3.2) 0.6 (� 3.6) — 0.6 (� 3.1)

Eq. 14 0.7 (� 4.1) 0.5 (� 3.2) 0.6 (� 3.6) — 0.6 (� 3.1)

Eq. 15 0.8 (� 3.8) 0.6 (� 3.2) 0.8 (� 3.7) — 0.7 (� 3.1)

Eq. 16 0.9 (� 4.4) 0.6 (� 3.4) 0.7 (� 4.5) — 0.6 (� 3.3)
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property predictor) the improvement in the global open-ocean
average RMSE is pronounced for all seven properties estimated
by the routines. We therefore recommend using ESPER_Mixed
over ESPER_LIR or ESPER_NN unless there is reason to prefer
one approach over another due to, for example, the results of
a regional validation exercise in the region of interest.

Discussion and summary statements
Several patterns hold across the various properties. For

example, including more predictors leads to better estimates
on average (Fig. 4, showing an average across all properties for
both ESPERs) when the predictor measurements are high qual-
ity (i.e., comparable to the measurements in GLODAPv2).

Table 9. Assessment statistics, reported as bias (� RMSE), for various pH estimation routines presented both globally (top rows) and
for the intermediate ocean where float-based sensor measurements are often checked against algorithm-based estimates (bottom rows).
Only measurements made with purified dyes were used in these assessments to ensure the validation data had no adjustments beyond
those applied in the GLODAPv2.2020 secondary quality control process.

Global

LIRv2 ESPER_LIR ESPER_NN CANYON-B Mixed
N 20,181 20,181 20,181 20,181 20,181

Eq. 1 �0.007 (� 0.012) �0.004 (� 0.013) �0.004 (� 0.011) — �0.004 (� 0.011)

Eq. 2 �0.006 (� 0.015) �0.002 (� 0.014) �0.002 (� 0.013) — �0.003 (� 0.011)

Eq. 3 �0.007 (� 0.013) �0.004 (� 0.013) �0.004 (� 0.011) — �0.004 (� 0.011)

Eq. 4 �0.005 (� 0.022) �0.001 (� 0.017) �0.002 (� 0.016) — �0.003 (� 0.012)

Eq. 5 �0.007 (� 0.012) �0.004 (� 0.012) �0.004 (� 0.011) — �0.004 (� 0.011)

Eq. 6 �0.005 (� 0.015) �0.001 (� 0.014) �0.002 (� 0.014) — �0.003 (� 0.011)

Eq. 7 �0.007 (� 0.013) �0.004 (� 0.013) �0.004 (� 0.011) —* �0.004 (� 0.011)

Eq. 8 �0.005 (� 0.026) 0.000 (� 0.020) 0.000 (� 0.021) — �0.002 (� 0.014)

Eq. 9 �0.007 (� 0.013) �0.004 (� 0.014) �0.003 (� 0.012) — �0.004 (� 0.011)

Eq. 10 �0.005 (� 0.016) �0.002 (� 0.015) �0.001 (� 0.014) — �0.003 (� 0.012)

Eq. 11 �0.007 (� 0.013) �0.004 (� 0.014) �0.003 (� 0.012) — �0.004 (� 0.011)

Eq. 12 �0.004 (� 0.023) �0.001 (� 0.018) �0.001 (� 0.018) — �0.003 (� 0.013)

Eq. 13 �0.006 (� 0.013) �0.004 (� 0.013) �0.003 (� 0.012) — �0.004 (� 0.011)

Eq. 14 �0.004 (� 0.017) �0.001 (� 0.015) �0.001 (� 0.014) — �0.003 (� 0.012)

Eq. 15 �0.006 (� 0.013) �0.004 (� 0.014) �0.004 (� 0.012) — �0.004 (� 0.012)

Eq. 16 �0.005 (� 0.033) �0.001 (� 0.026) �0.002 (� 0.027) — �0.003 (� 0.017)

Intermediate depth only (i.e., >1000 m and < 1500 m depth)

N 2352 2352 2352 2352 2352

Eq. 1 �0.008 (� 0.011) �0.002 (� 0.008) �0.002 (� 0.007) — �0.002 (� 0.006)

Eq. 2 �0.007 (� 0.013) �0.001 (� 0.008) �0.001 (� 0.008) — �0.001 (� 0.006)

Eq. 3 �0.008 (� 0.011) �0.002 (� 0.007) �0.001 (� 0.006) — �0.001 (� 0.006)

Eq. 4 �0.008 (� 0.024) �0.001 (� 0.009) �0.002 (� 0.011) — �0.002 (� 0.008)

Eq. 5 �0.008 (� 0.011) �0.002 (� 0.007) �0.002 (� 0.007) — �0.002 (� 0.006)

Eq. 6 �0.007 (� 0.013) 0.001 (� 0.008) 0.000 (� 0.007) — �0.001 (� 0.006)

Eq. 7 �0.008 (� 0.011) �0.002 (� 0.007) �0.002 (� 0.007) —* �0.002 (� 0.006)

Eq. 8 �0.008 (� 0.024) 0.001 (� 0.009) 0.000 (� 0.014) — �0.001 (� 0.008)

Eq. 9 �0.007 (� 0.011) �0.002 (� 0.008) �0.001 (� 0.006) — �0.002 (� 0.006)

Eq. 10 �0.007 (� 0.013) 0.001 (� 0.008) 0.000 (� 0.008) — �0.001 (� 0.006)

Eq. 11 �0.007 (� 0.011) �0.002 (� 0.007) �0.001 (� 0.007) — �0.002 (� 0.006)

Eq. 12 �0.008 (� 0.024) 0.000 (� 0.010) 0.000 (� 0.013) — �0.001 (� 0.008)

Eq. 13 �0.007 (� 0.011) �0.002 (� 0.007) �0.002 (� 0.007) — �0.002 (� 0.007)

Eq. 14 �0.007 (� 0.014) 0.001 (� 0.007) 0.000 (� 0.008) — �0.001 (� 0.006)

Eq. 15 �0.007 (� 0.011) �0.001 (� 0.007) �0.001 (� 0.007) — �0.001 (� 0.006)

Eq. 16 �0.008 (� 0.028) 0.002 (� 0.010) 0.001 (� 0.015) — �0.001 (� 0.009)

*No viable comparison in this effort due to overlap between training and validation data subsets.
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However, estimate improvements are marginal beyond four
predictors. Also, ESPER Eqs. 6 and 7 do nearly as well as any
equation despite having only three predictors
(i.e., temperature; salinity; and either oxygen, nitrate, or phos-
phate, depending on the predicted property). This observation
shows the predictive power of including at least one macronu-
trient or oxygen as a predictor for biogeochemical properties.

A second important generalization is that all predictions do
better at depth (> 1000 m) though this is especially the case
for gas distribution reconstructions: the intermediate-depth
RMSE values average 55% of the global RMSE values for oxy-
gen, pHT, and DIC (Tables 7, 9, and 10, respectively) whereas
they average � 70% of the global RMSE values for phosphate,
nitrate, silicate, and TA (Tables 4–6 and 8, respectively). The

Table 10. Assessment statistics, reported as bias (� RMSE) in μmol kg�1, for various DIC estimation routines presented both globally
(top rows) and for the intermediate ocean (bottom rows, provided for comparison only as DIC sensors have yet to be widely deployed
on floats).

Global

LIRv2* ESPER_LIR ESPER_NN CANYON-B Mixed
N —* 71,326 71,326 71,326 71,326

Eq. 1 — 0.4 (� 5.1) 0.4 (� 4.9) — 0.4 (� 4.8)

Eq. 2 — 0.2 (� 5.8) 0.4 (� 5.7) — 0.4 (� 4.9)

Eq. 3 — 0.3 (� 4.9) 0.4 (� 4.8) — 0.4 (� 4.8)

Eq. 4 — �0.2 (� 6.6) 0.0 (� 6.6) — 0.2 (� 5.2)

Eq. 5 — 0.3 (� 5.1) 0.4 (� 5.1) — 0.4 (� 4.9)

Eq. 6 — 0.0 (� 6.1) 0.3 (� 6.4) — 0.3 (� 5.2)

Eq. 7 — 0.4 (� 5.3) 0.4 (� 5.1) �1.3 (� 5.8) 0.4 (� 5.0)

Eq. 8 — �0.4 (� 8.7) �0.1 (� 8.6) — 0.1 (� 6.0)

Eq. 9 — 0.6 (� 8.2) 0.6 (� 6.9) — 0.5 (� 5.3)

Eq. 10 — 0.3 (� 9.0) 0.4 (� 7.3) — 0.4 (� 5.3)

Eq. 11 — 0.5 (� 7.4) 0.6 (� 6.7) — 0.5 (� 5.3)

Eq. 12 — �0.2 (� 9.3) 0.1 (� 8.5) — 0.3 (� 5.7)

Eq. 13 — 0.6 (� 7.9) 0.7 (� 7.3) — 0.5 (� 5.5)

Eq. 14 — 0.1 (� 8.7) 0.3 (� 8.0) — 0.3 (� 5.6)

Eq. 15 — 0.8 (� 8.9) 0.8 (� 8.4) — 0.6 (� 6.1)

Eq. 16 — 0.6 (� 16.7) 0.3 (� 15.7) — 0.4 (� 8.9)

Intermediate depth only (i.e., >1000 m and < 1500 m depth)

N —* 6740 6740 6740 6740

Eq. 1 — �0.2 (� 3.3) �0.1 (� 3.3) — �0.2 (� 3.3)

Eq. 2 — �0.3 (� 3.5) 0.0 (� 3.7) — �0.1 (� 3.3)

Eq. 3 — �0.2 (� 3.3) 0.1 (� 3.2) — �0.1 (� 3.2)

Eq. 4 — �0.1 (� 3.8) 0.0 (� 4.3) — �0.1 (� 3.5)

Eq. 5 — �0.2 (� 3.3) �0.1 (� 3.4) — �0.2 (� 3.3)

Eq. 6 — �0.5 (� 3.7) �0.2 (� 4.1) — �0.2 (� 3.5)

Eq. 7 — �0.2 (� 3.3) �0.2 (� 3.5) �0.8 (� 3.4) �0.2 (� 3.3)

Eq. 8 — �0.5 (� 4.5) �0.4 (� 5.4) — �0.3 (� 3.9)

Eq. 9 — 0.0 (� 3.4) 0.1 (� 3.3) — �0.1 (� 3.2)

Eq. 10 — �0.2 (� 3.5) �0.1 (� 3.7) — �0.2 (� 3.3)

Eq. 11 — �0.1 (� 3.4) 0.1 (� 3.3) — �0.1 (� 3.2)

Eq. 12 — �0.2 (� 3.8) 0.0 (� 4.4) — �0.1 (� 3.5)

Eq. 13 — �0.2 (� 3.7) �0.1 (� 4.0) — �0.2 (� 3.5)

Eq. 14 — �0.4 (� 4.0) �0.5 (� 4.5) — �0.4 (� 3.6)

Eq. 15 — �0.1 (� 3.8) 0.0 (� 4.2) — �0.1 (� 3.5)

Eq. 16 — �0.7 (� 5.7) �0.3 (� 6.8) — �0.3 (� 4.4)

*This routine does not estimate this quantity.
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larger, near surface estimate errors for parameters influenced
by air–sea gas exchange (e.g., pHT, DIC, and oxygen) are likely
the result of their decoupling with predictor variables that are
not gases (or are gases with different equilibration and resi-
dence times). These changes in parameter relationships near
the surface due to air–sea exchange are also sensitive to
dynamic processes (e.g., wind speed), which are not well cap-
tured by the predictor parameters, and are thus difficult to
parameterize in static algorithm relationships.

Finally, regional errors are sometimes significantly larger
than global open-ocean errors, and regional biases are almost
always larger than the global biases. This highlights an impor-
tant caution for users of these routines: the global statistics
may not be appropriate for estimates over a more limited area.
For this, we note both that it is important to validate the algo-
rithm estimates for a given region/application and to consider
how large of an average estimate bias is likely for a region of a
given size. As an example, we have assessed how the bias
decreases as the size of the latitude and longitude window
considered increases for ESPER_NN_validation nitrate esti-
mates (Fig. 5). These average regional biases are computed by
iteratively averaging all estimate errors inside windows of a
given size around each of the grid points used by the LIR rou-
tines. Then, for each window size considered we compute an
area-weighted average of the absolute values of the bias esti-
mates for the grid points. In the example presented, the aver-
age estimate bias is approximately half of the global RMSE
when estimates are averaged over a 10� � 10� window, and as
expected the bias becomes smaller as the averaging window
grows. This shows that the estimates retain significant regional
bias, implying nearby algorithm estimates cannot be treated
as statistically independent. For a float or mooring that stays

within a small spatial region, this algorithm bias could be
somewhat worse still than shown in Fig. 5. For pCO2 calcula-
tions based on pHT measurements that are adjusted to algo-
rithm values, even a small average bias could lead to a
meaningful change in calculated air–sea CO2 flux.

Comments and recommendations
We have updated global algorithms for seawater biogeo-

chemical property estimation and their associated MATLAB
routines with new functionality using new methods and new
data. We show that our new methods are mechanistically at
least as skillful as earlier methods and are in some cases better.
They also have the advantages of being trained with the latest
quality-controlled data products, easy to implement in
MATLAB, capable of estimating a variety of seawater proper-
ties, flexible with the choice of input parameters, and capable
of adapting several aspects of their outputs to user needs
(e.g., calculated-like or measured-like pHT). Where possible,
our validation statistics provide comparisons using validation
versions of the algorithms with identical training and valida-
tion data sets for all versions of the routines assessed. We
therefore recommend these updates even when validation
metrics are comparable to those of earlier routines because the
newer routines are trained from a larger data set with better
temporal and spatial coverage. Two important features of our
new routines are (1) the flexibility to predict many seawater
properties from 16 combinations of seawater properties using
either a regression approach or a neural network approach
and (2) the implementation of a simple estimate of the
impacts of Cant on pHT and DIC based on first principles.
While the new Cant estimation strategy is an improvement

Fig 3. A map showing the regions considered independently in “Regional Tests” section.
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Table 11. Regional assessment statistics for ESPER Eq. 7 of the validation versions of the algorithms and for CANYON-B. These statistics
are obtained without including any training data from the new data added in the 2019 and 2020 GLODAPv2 data product updates;
without the supplemental data in the Gulf of Mexico; and, in the case of LIRv2, ESPER_LIR, and ESPER_NN, without any measurements
in the Mediterranean. The released ESPER_LIR and ESPER_NN routines should perform significantly better in the Sea of Japan/East Sea,
the Gulf of Mexico, and the Mediterranean. Statistics obtained when these data are included are provided as Supporting Information.

Southern Ocean Phosphate Nitrate Silicate Oxygen TA pH DIC
N 20,294 20,294 20,294 20,294 11,088 4094 11,945

LIRv2 0.000 (� 0.059) �0.03 (� 0.77) �0.4 (� 5.1) 0.0 (� 6.3) �0.3 (� 3.3) �0.001 (� 0.011) —

ESPER_LIR �0.004 (� 0.062) �0.07 (� 0.76) 0.1 (� 4.8) 0.0 (� 6.3) 0.3 (� 3.0) �0.001 (� 0.013) 1.4 (� 4.7)

ESPER_NN �0.003 (� 0.054) �0.03 (� 0.69) 0.0 (� 3.9) 0.6 (� 6.1) 0.7 (� 3.1) �0.002 (� 0.010) 1.6 (� 4.6)

CANYON-B �0.001 (� 0.055) �0.04 (� 0.65) 0.1 (� 3.7) —* �0.4 (� 3.1) �0.002 (� 0.009) �0.8 (� 4.3)

ESPER_Mixed �0.003 (� 0.057) �0.05 (� 0.71) 0.1 (� 4.1) 0.3 (� 5.8) 0.5 (� 2.9) �0.001 (� 0.011) 1.5 (� 4.6)

Equatorial Pacific Phosphate Nitrate Silicate Oxygen TA pH DIC
N 23,169 23,169 23,169 23,169 8661 1739 8969

LIRv2 �0.003 (� 0.038) 0.04 (� 0.54) 0.1 (� 1.2) 0.7 (� 4.6) 0.8 (� 3.5) �0.012 (� 0.016) —

ESPER_LIR �0.002 (� 0.041) 0.09 (� 0.56) 0.3 (� 1.4) 1.0 (� 4.7) 0.9 (� 3.3) �0.007 (� 0.017) �0.8 (� 5.1)

ESPER_NN �0.003 (� 0.033) 0.05 (� 0.37) 0.3 (� 1.3) 0.2 (� 3.9) 1.0 (� 3.4) �0.007 (� 0.014) �0.5 (� 5.2)

CANYON-B �0.003 (� 0.033) 0.04 (� 0.38) 0.2 (� 1.2) —* 0.1 (� 4.4) �0.004 (� 0.011) �1.3 (� 5.1)

ESPER_Mixed �0.003 (� 0.034) 0.07 (� 0.43) 0.3 (� 1.3) 0.6 (� 3.9) 1.0 (� 3.2) �0.007 (� 0.014) �0.6 (� 5.0)

California current Phosphate Nitrate Silicate Oxygen TA pH DIC
N 466 466 466 466 283 191 276

LIRv2 �0.012 (� 0.049) 0.02 (� 0.79) �0.8 (� 3.3) 0.4 (� 9.0) 2.2 (� 3.8) �0.008 (� 0.012) —

ESPER_LIR �0.004 (� 0.046) 0.00 (� 0.75) �0.2 (� 2.4) 0.6 (� 8.2) 2.3 (� 4.9) �0.007 (� 0.015) �0.3 (� 4.5)

ESPER_NN 0.002 (� 0.044) �0.02 (� 0.55) 0.7 (� 1.7) 0.5 (� 5.6) 3.0 (� 4.3) �0.004 (� 0.011) 1.2 (� 4.6)

CANYON-B �0.006 (� 0.042) 0.04 (� 0.58) 0.0 (� 1.9) —* 3.6 (� 5.2) �0.002 (� 0.010) 1.3 (� 5.1)

ESPER_Mixed �0.001 (� 0.042) �0.01 (� 0.54) 0.3 (� 1.7) 0.5 (� 5.6) 2.7 (� 4.1) �0.006 (� 0.012) 0.5 (� 4.1)

Northern Atlantic Phosphate Nitrate Silicate Oxygen TA pH DIC
N 10,829 10,829 10,829 10,829 6619 1123 4743

LIRv2 0.009 (� 0.070) 0.14 (� 1.16) 0.3 (� 2.5) 0.7 (� 9.8) �0.6 (� 6.3) 0.003 (� 0.010) —

ESPER_LIR 0.006 (� 0.071) 0.05 (� 1.23) 0.3 (� 1.2) 0.6 (� 9.2) �0.7 (� 5.0) �0.003 (� 0.011) 1.0 (� 7.7)

ESPER_NN 0.009 (� 0.069) 0.12 (� 0.99) 0.3 (� 1.0) 0.1 (� 7.7) �1.0 (� 5.4) �0.004 (� 0.009) 0.9 (� 8.3)

CANYON-B 0.012 (� 0.067) 0.09 (� 1.02) 0.2 (� 1.1) —* �0.3 (� 5.7) �0.004 (� 0.008) �1.0 (� 8.6)

ESPER_Mixed 0.008 (� 0.067) 0.09 (� 1.05) 0.3 (� 1.0) 0.4 (� 8.2) �0.8 (� 5.0) �0.003 (� 0.009) 1.0 (� 7.7)

Sea of Japan/East Sea Phosphate Nitrate Silicate Oxygen TA pH DIC
N 5995 5995 5995 5995 1450 0 1480

LIRv2 0.431 (� 0.459) 6.20 (� 6.90) 46.2 (� 54.6) �19.1 (� 63.2) �31.7 (� 209.3) —† —

ESPER_LIR 0.101 (� 0.154) 1.63 (� 2.11) 3.0 (� 7.7) 6.6 (� 15.5) 51.4 (� 63.0) —† 2.2 (� 17.2)

ESPER_NN 0.029 (� 0.066) 1.16 (� 1.58) 3.6 (� 4.6) 5.4 (� 10.3) 48.7 (� 55.5) —† 16.8 (� 20.0)

CANYON-B 0.385 (� 0.409) 5.88 (� 6.42) 21.0 (� 23.6) —* 28.3 (� 33.8) —† 12.3 (� 18.4)

ESPER_Mixed 0.065 (� 0.094) 1.40 (� 1.66) 3.3 (� 5.3) 6.0 (� 10.8) 50.0 (� 58.8) —† 9.5 (� 14.2)

Gulf of Mexico Phosphate Nitrate Silicate Oxygen TA pH DIC
N 1067 1067 1067 1067 943 0 909

LIRv2 �0.004 (� 0.123) 0.27 (� 1.71) 0.5 (� 3.8) 8.6 (� 16.1) �0.9 (� 11.4) —† —

ESPER_LIR �0.009 (� 0.110) 0.30 (� 1.58) �0.3 (� 2.1) 6.6 (� 16.6) �16.3 (� 44.5) —† �8.7 (� 26.1)

(Continues)
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over the LIRv2 approach for estimating the impacts of OA on
pH, it nevertheless is quite simplistic and should not be relied
upon when Cant distributions are themselves of interest.

We test the practice of averaging estimates from multiple
algorithms and find that it frequently improves estimates (in a
global open-ocean RMSE sense). This practice is therefore rec-
ommended for most applications, and we suggest further
improvements might be obtained by averaging estimates from
still more algorithms such as CANYON-B or its updates.
A wrapper function for averaging CANYON-B values is under
development and may eventually be included at the same
GitHub repository as the ESPER functions.

Our assessment also revealed/reinforced several important
ideas to consider when using algorithm estimates: First it is
critical to have measurements in the training data set that are
near to the region in which estimates are desired. Poor recon-
structions of the properties of seawater in the Sea of Japan/
East Sea from the versions of the routines that did not include
measurements in this Sea highlight the importance of this
caution. Write-ups of earlier algorithm assessment efforts also
cautioned against the use of the algorithms in coastal environ-
ments and marginal seas where the algorithms did not have
training data, but this case study helps quantify the large
likely errors when proceeding despite this caution, as many

data-poor marginal seas remain. Second, global oxygen, DIC,
and pH estimation routine validation statistics are not as
strong as the equivalent statistics when limited to intermedi-
ate depths. This is likely because the current generation of
algorithms lacks data with sufficient temporal resolution to
capture seasonal or shorter patterns of variability associated
with gas exchanges. It is possible that the algorithms could be
improved by incorporating measurements from the biogeo-
chemical Argo array or other data products that are more sea-
sonally resolved than GLODAPv2, though care would have to
be taken to avoid reinforcing the algorithms with float data
that is calibrated against earlier versions of the algorithms.
This could perhaps be accomplished by removing float mea-
surements that reside below the depths that experience sea-
sonal variability from the data products used to train these
future algorithms. At least until such an improvement is made
seasonal variability in the estimated fields should be treated
with caution.

At intermediate depths, ESPER_LIR_validation Eq. 8 repro-
duces oxygen with an RMSE of 4.8 μmol kg�1 using only T and
S as predictors (and 3.7 μmol kg�1 for ESPER_Mixed_validation),
raising the possibility that estimates could be used to check oxy-
gen sensor performance on in situ platforms. Currently, most
float oxygen sensors are subjected to a 1-point gain calibration

Table 11. Continued

Gulf of Mexico Phosphate Nitrate Silicate Oxygen TA pH DIC
N 1067 1067 1067 1067 943 0 909

ESPER_NN 0.002 (� 0.108) 0.35 (� 1.39) 1.0 (� 3.4) 7.3 (� 16.5) �27.5 (� 47.4) —† �19.6 (� 41.6)

CANYON-B 0.056 (� 0.125) 0.68 (� 1.40) 2.5 (� 5.2) —* 4.5 (� 13.0) —† �5.1 (� 16.8)

ESPER_Mixed �0.003 (� 0.099) 0.32 (� 1.38) 0.4 (� 2.4) 7.0 (� 15.8) �21.9 (� 45.1) —† �14.2 (� 33.4)

Mediterranean Phosphate Nitrate Silicate Oxygen TA pH DIC
N 11,394 11,394 11,394 11,394 5164 0 2604

LIRv2 0.081 (� 0.254) 1.90 (� 4.85) 0.5 (� 7.3) �10.4 (� 50.0) �37.9 (� 71.2) —† —

ESPER_LIR 0.003 (� 0.585) 2.44 (� 7.72) �4.0 (� 37.5) �25.1 (� 92.5) �43.9 (� 72.1) —† �105.9 (� 169.9)

ESPER_NN 0.095 (� 0.199) �2.40 (� 6.21) �28.6 (� 40.1) 1.8 (� 15.3) �30.0 (� 43.9) —† �40.7 (� 48.9)

CANYON-B —† —† —† —* —† —† �3.0 (� 26.2)

ESPER_Mixed 0.049 (� 0.325) 0.02 (� 4.82) �16.3 (� 30.2) �11.6 (� 45.7) �37.0 (� 54.3) —† �73.3 (� 101.6)

Arctic Phosphate Nitrate Silicate Oxygen TA pH DIC
N 6117 6117 6117 6117 3189 1634 2947

LIRv2 0.036 (� 0.122) 0.28 (� 1.20) 0.5 (� 3.4) 2.7 (� 11.8) 1.5 (� 19.4) —† —

ESPER_LIR 0.043 (� 0.121) 0.25 (� 1.22) 0.4 (� 2.9) 3.3 (� 11.4) 0.0 (� 12.7) 0.003 (� 0.032) �1.0 (� 18.7)

ESPER_NN 0.022 (� 0.104) 0.19 (� 0.95) 0.0 (� 2.3) 1.9 (� 11.1) �2.9 (� 13.3) 0.021 (� 0.054) �2.6 (� 16.0)

CANYON-B —† —† —† —† —† —† —†

ESPER_Mixed 0.033 (� 0.099) 0.22 (� 1.00) 0.2 (� 2.3) 2.6 (� 10.8) �1.5 (� 11.5) 0.012 (� 0.037) �1.8 (� 16.4)

*This routine does notestimate this quantity.
†No viable comparison in this effort due to partial or complete overlap between training and validation data subsets or insufficient viable measurements.
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against air–oxygen readings or climatological values at high oxy-
gen concentrations, and a deep algorithm estimate could allow
a 2-point check that would assess sensor performance at low
oxygen saturation. Comparisons at park depths could circum-
vent potential issues associated with slow sensor response times.

Our use of a smaller committee of neural networks with
somewhat fewer nodes/neurons than is used by CANYON-B is
a pragmatic decision based on the computational costs associ-
ated with training neural networks for many combinations of
predictors and regions, and we have only done a small
amount of neural network structure optimization. However, it
should be noted that our use of separate network committees
for the Indo-Pacific and Arctic-Atlantic regions effectively dou-
bles the complexity of our networks, and that increasing the
complexity further did not seem to meaningfully improve our
predictions in limited trials. It is nevertheless likely that fur-
ther improvements in fit and predictive power could be
obtained with additional tuning.

While the neural networks are powerful, we demonstrate
that the regression-based approach of the ESPER_LIR routines
can nevertheless yield comparably skillful estimates in the
open ocean or under the right conditions. We contend that
the LIR machinery has an advantage of being more explain-
able than a neural network, and therefore that the LIRs serve a
valuable role among seawater prediction routines. An example

of where that could prove useful would be in adapting the
LIRs to work in an inland sea. A user could append their own
grid of regression coefficients determined for a marginal sea
such as the Baltic or Mediterranean Seas or an inland water-
way such as the Puget Sound, and the routine would transi-
tion seamlessly between global estimates and regionally
appropriate estimates. This is a future direction for LIR devel-
opment that would require partnerships with researchers
investigating such bodies of water.

The ESPER_LIR routine lacks predictors derived from
coordinate information—rather, this information is used in
the interpolation of regression coefficients only. As a result,
the LIR routines struggle more than the neural networks
when applied in regions that are dissimilar from the train-
ing data in property space but are nearby in physical space.
This can be seen clearly as larger reconstruction errors in
the Mediterranean, the Gulf of Mexico, and the Sea of
Japan/East Sea. This was doubly true for the LIRv2 routines
which tended to also be less well-constrained than the
ESPER_LIR (i.e., LIRv3) routines. By contrast, the neural net-
works also struggle, but tend to have better RMSE statistics
for these regions. We reiterate that the release versions of
the ESPERs should substantially outperform the bleak assess-
ment statistics given for such regions because the release
versions of these routines are trained with data in these
regions (unlike the _validation versions, which are used to
highlight the dangers of using algorithms in regions where
they were not trained).

Fig 4. The average global RMSE across all property estimates for both
ESPER variants normalized to the RMSE of the equation with the lowest
average global RMSE (ESPER Eq. 1) and plotted against the number of
predictors required for each estimate (x-axis). The point labels correspond
to the ESPER equation numbers in Table 2. RMSE generally decreases as
the number of predictors increases, but not all predictors have the same
predictive power and the incremental increase in predictive power dimin-
ishes when more than three predictors are used.

Fig 5. Average absolute bias in ESPER_NN_validation ESPER Eq. 7 nitrate
estimates (y-axis) vs. the size of the latitude and longitude windows (x-
axis) over which the average of the absolute biases was computed. The
three lines correspond to bias estimates that were averaged over a narrow
100 m depth window (blue line), over all depths (orange), and over the
1000–1500 m depth range commonly used for float calibration (red).
Biases are area-weighted average estimates for each of the grid locations
used by the ESPER_NN routine. Nitrate ESPER Eq. 7 is chosen as this is one
of the equations that is used to calibrate and validate nitrate sensors on
biogeochemical Argo floats.
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