
Journal of Molecular Liquids 367 (2022) 120371
Contents lists available at ScienceDirect

Journal of Molecular Liquids

journal homepage: www.elsevier .com/locate /mol l iq
Dynamics in field-induced biaxial nematic liquid crystals of board-like
particles
https://doi.org/10.1016/j.molliq.2022.120371
0167-7322/� 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: arodriguezrivas@upo.es (Á. Rodríguez-Rivas), apatti@ugr.es (A.

Patti), acuemen@upo.es (A. Cuetos).
Álvaro Rodríguez-Rivas a,⇑, Alessandro Patti b,c, Alejandro Cuetos a

aDepartment of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
bDepartment of Applied Physics, University of Granada, Fuente Nueva s/n, 18071 Granada, Spain
cDepartment of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom

a r t i c l e i n f o
Article history:
Received 29 July 2022
Revised 8 September 2022
Accepted 11 September 2022
Available online 16 September 2022

Keywords:
Colloids
Cuboids
Biaxial nematics
Diffusion coefficients
Liquid crystals
Dynamic Monte Carlo simulation
a b s t r a c t

Biaxial nematic (NB) liquid crystals have been indicated as promising candidates for the design of next-
generation displays with novel electro-optical properties and faster switching times. While at the molec-
ular scale their existence is still under debate, experimental evidence, supported by theory and simula-
tion, has unambiguously proved that suitable colloidal particles can indeed form NB fluids under specific
conditions. While this discovery has sparked a widespread interest in the characterisation of the phase
behaviour of NB liquid crystals, significantly less attention has been devoted to the study of their trans-
port properties. To bridge this gap, by Dynamic Monte Carlo simulations we have investigated the equi-
librium dynamics of field-induced NB phases comprising monodisperse hard cuboids. In particular, we
calculated the long-time self-diffusion coefficients of cuboids over a wide range of anisotropies, spanning
prolate to oblate geometries. Additionally, we have compared these diffusivities with those that, upon
switching the external field off, are measured in the thermodynamically-stable isotropic or uniaxial
nematic phases at the same density. Our results indicate that while prolate cuboids diffuse significantly
faster in biaxial nematics than in less ordered fluids, we do not observe such an increase with oblate
cuboids at high packing fractions. We show that these changes are most likely due to the field-
induced freezing of the axes perpendicular to the nematic director, along with a substantial increase in
the ordering of the resulting NB phase.
� 2022 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Colloids are two-phase systems comprising a phase homoge-
neously dispersed throughout a continuous medium. The dis-
persed phase can be observed in the form of droplets, particles or
bubbles depending on whether it is a liquid, solid or gas, respec-
tively. Similarly, the dispersing phase can also exist as a fluid or
a solid. The particular case of solid particles dispersed in a liquid
is referred to as colloidal sol or simply sol. This family of colloids
finds broad application in the design of numerous industrially rel-
evant formulations, including paints, foods, pharmaceuticals and
personal-care products. Especially fascinating is the case of sols
comprising anisotropic particles for they can form long-range
ordered mesophases, referred to as liquid crystals (LCs). In partic-
ular, nematic LCs exhibit a merely orientational ordering, with all
particles almost completely aligned along a common direction,
but randomly distributed in the dispersing fluid [1,2].

In order to fully control their properties, it is important to
understand how sols behave under equilibrium and out-of-
equilibrium conditions. More specifically, one should know their
phase behaviour and how this can be perturbed by external stimuli
such as a temperature gradient, a shear, a gravitational or an elec-
tromagnetic field. External stimuli can be as weak as a few kBT per
particle, with kB � 1:381� 10�23 JK�1 the Boltzmann’s constant
and T the absolute temperature. These apparently tiny amounts
of energy are sufficient to spark dramatic changes affecting the
organisation of the dispersed particles in the fluid phase and to
eventually lead to ordered-disordered phase transitions. Consider-
ing that, in most practical applications, colloidal sols are not at the
thermodynamic equilibrium, calculating their phase diagrams is
indeed a necessary step to ponder their use in formulation technol-
ogy, but it is far from being sufficient. It is therefore crucial to
investigate how colloidal sols respond to external forces and how
their dynamical, structural and rheological properties change as a
result of a given perturbation. This is especially important in sols
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Fig. 1. Model HBPs with thickness T, length L=T ¼ 12 and width W=T ¼ 2;3:46 and
8. The unit vectors x̂i; ŷi , and ẑi indicate the orientation of W; T, and L, respectively.
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comprising anisotropic (non-spherical) particles, because the
application of an external stimulus, including confinement, can
order them along a preferential direction, eventually manipulating
the system’s ordering and the complete spectrum of its properties
[3–6]. For instance, upon application of an external shear, isotropic
suspensions of rod-like or disk-like particles can be transformed
into nematic or positionally ordered LCs, such as smectic or colum-
nar LCs, respectively [7]. The more complex the particle geometry
is, the less obvious the system’s response to an external stimulus
will be. In particular, under the action of an external field, uniaxial
particles (e.g. colloidal needles) can orient along their major axis
and thus form prolate nematic LCs, whereas biaxial particles (e.g.
nanoboards) can either orient along their major or minor axis
and form prolate or oblate nematic LCs [8–10]. If both sets of axes
are oriented, these systems are referred to as biaxial nematic (NB)
LCs.

The earliest studies of NB phases date back to 1970, when Frei-
ser theoretically predicted their existence by generalising the
Maier-Saupe theory to incorporate the effect of molecular biaxial-
ity on phase behaviour [11]. More than fifty years later, the interest
in this family of LCs is still vivid, especially because an unambigu-
ous evidence of the existence of NB phases in thermotropic systems
is still pending [12]. The pioneering work by Freiser was then fol-
lowed by other equally elegant theories that indeed postulated the
thermodynamic stability of NB LCs as well as the possible existence
of a direct I-to-NB transition for self-dual particles, whose geome-
try is exactly in between oblate and prolate [13–15]. It should be
noticed that these theories were developed either assuming the
restricted-orientation (Zwanzig) model, which only allows six
orthogonal particle orientations [16], or neglecting the existence
of positionally ordered phases, such as smectic LCs and crystals.
Following the first unambiguous experimental evidence of the
existence of biaxial nematics in polydisperse systems of board-
like colloidal particles [17], more recent theories investigated the
effect of size dispersity on the stability of the NB phase, but still
restricting particle orientation [18–20]. Monte Carlo (MC) simula-
tions of freely-rotating cuboids finally showed that only by intro-
ducing a significant degree of size dispersity [21] could biaxial
nematics be observed, confirming former experimental observa-
tions [17] and theoretical intuitions [19]. Simulations also showed
that monodisperse or bi-disperse suspensions of freely-rotating
board-like particles cannot form NB phases [22,23], unless particle
anisotropy is extremely large [24]. It should be anyway noticed
that experiments on highly uniform colloidal cuboids of extreme
anisotropy, probing stacking rather than bulk behaviour, did not
find evidence of the existence of biaxial nematics [25]. Alterna-
tively, an external field imposing alignment of one of the three par-
ticle axes can transform isotropic or uniaxial nematic phases into
biaxial nematics [26].

While a very significant interest has been devoted to the analy-
sis of their phase behaviour, the study of the dynamics of cuboids
in LC phases has received considerably less attention. In this work,
we study the dynamics of a family of colloidal cuboids that form NB

LCs under the application of an external field. To the best of our
knowledge, transport properties in biaxial nematic phases have
not been studied in the past. In particular, we characterise the
resulting mobility of oblate, prolate and self-dual-shaped cuboids
in the direction of the field applied and perpendicularly to it. To
this end, we employ the Dynamic Monte Carlo (DMC) simulation
method, a stochastic technique that can qualitatively and quantita-
tively reproduce the Brownian dynamics of colloids under well-
specified elementary rotational and translational moves. We orig-
inally developed the DMC technique for investigating the dynamics
of monodisperse [27] and polydisperse [28] colloidal sols at equi-
librium and then extended it to the study of unsteady-state pro-
cesses [29], heterogeneous systems [30] and microrheology [31].
2

In its final form, DMC can basically be applied to assess the dynam-
ics of any colloidal suspensions of hard or soft particles. We have
already applied it to study the dynamics of cuboids in the bulk
and under confinement [32–34] as well as the uniaxial-to-biaxial
switching upon application of an external field [35]. However,
the equilibrium dynamics of cuboids forming field-stabilised NB

LCs has not yet been investigated. Our intention is to bridge this
gap in the present paper, which is organised as follows. In Section 2,
we introduce the model and simulation methods applied to equili-
brate the systems of interest and investigate their dynamics.
Because the DMC technique has been presented elsewhere, here
we only remind the key results that are strictly necessary to follow
our arguments and remind the interested reader to our previous
works for details. In Section 3, we characterise the dynamics by
estimating the ability of particles to diffuse at long times as a func-
tion of their geometry. Finally, in Section 4 we draw our
conclusions.

2. Model and simulation details

In this work, we study the equilibrium dynamics of NB LCs of
monodisperse colloidal cuboids. More specifically, we are inter-
ested in characterising the dynamical properties of biaxial nematic
fluids induced by applying an external field to isotropic (I) or uni-
axial nematic (NU) phases that would spontaneously form if the
field was absent. To this end, the cuboids have been modelled as
hard board-like particles (HBPs) of aspect ratio L� � L=T ¼ 12,
where L is the particle length and T the particle thickness and sys-
tem unit length. To study the impact of geometry on the resulting
dynamics, the reduced width, W� � W=T , is varied between 2 and
8 (see Fig. 1 for details). In particular, self-dual shaped particles,

with W� ¼
ffiffiffiffiffi
L�

p
� 3:46, are exactly at the crossover between pro-

late (W� <
ffiffiffiffiffi
L�

p
) and oblate (W� >

ffiffiffiffiffi
L�

p
) particles.

Because particles interact via a hard potential, their phase beha-
viour [22] is fully determined by shape anisotropy and packing
fraction g � m0Np=V , with m0 ¼ LWT the particle volume, V the sim-
ulation box volume and Np the number of HBPs, which ranges



Á. Rodríguez-Rivas, A. Patti and A. Cuetos Journal of Molecular Liquids 367 (2022) 120371
between 1152 and 4608 depending on W�. The packing fraction
has been set according to the system phase diagram, available to
the interested reader in Ref. [22]. Specifically, for NB phases
obtained by field-induced reorientation of NU phases, we set
g ¼ 0:340 for the complete spectrum of geometries studied. We
note that this value of the packing fraction is the same as that
recently used to investigate the equilibrium dynamics of thermo-
dynamically stable NU LCs [32] and it is hence especially appropri-
ate to ponder the effect of orientational ordering (biaxiality vs
uniaxiality) on long-time particle dynamics. By contrast, the
dynamics of NB phases obtained by applying an external field to I
phases has been studied at different packing fractions, between
0.220 and 0.307, depending on W�, corresponding to state points
that are just below the I-I�NU transition [22]. In the following,
the abbreviations NU

B and NI
B will be employed to indicate field-

induced NB LCs obtained from NU and I phases, respectively.
To induce the onset of the NB phase, we applied an external field

that promotes the alignment of the particle intermediate axis x̂i

along the field direction ê [26]:

Uext ¼ ef
2

1� 3 � ðx̂i � êÞ2
� �

; ð1Þ

where ef indicates the field strength. In order to ensure the collec-
tive rearrangement of the fluid and the stabilisation of well-defined
biaxial nematics in all the cases studied in this work, we have set
bef ¼ 2, with b�1 the energy unit. Weaker field intensities, with
bef 6 1 generally give weakly ordered NB phases regardless the par-
ticle width [26].

The simulations of all systems consisted of an equilibration run
followed by a production run. Thus, we first equilibrated I and NU

phases with the field switched off, then we switched the field on to
induce biaxiality, and finally produced the time trajectory of the
so-obtained NB fluids. To equilibrate the systems, with the field
on or off, we performed standard MC simulations of typically 105

cycles, with one cycle consisting of Np independent attempts to
displace the particle center of mass and/or reorient its axes. Shall
an attempted move lead to an overlap between two particles, then
the move is rejected. If this is not the case, the move is accepted
according to the Metropolis algorithm [36,37], which incorporates
the energy difference between new and old configurations as
determined by the external field defined in Eq. 1. No other energy
contributions are considered due to the hard-core nature of the
particles. The interested reader is referred to Refs. [38,39] for
details on the estimation of overlaps between cuboids. All simula-
tions were run in the canonical ensemble and in orthogonal boxes
with periodic boundaries. To assess equilibration, we monitored
the stabilisation of the packing fraction and order parameters,
which are obtained from diagonalisation of the following second-
rank symmetric tensor[40]:

Q kk ¼ 1
2Np

XNp

i¼1

ð3k̂i � k̂i � IÞ
* +

; ð2Þ

where k̂i ¼ x̂i; ŷi; ẑi and I is the identity tensor. The resulting eigen-
values S2;W ; S2;T and S2;L identify the uniaxial order parameters asso-
ciated to the collective orientation of each particle axes, while the
corresponding eigenvectors m̂; p̂ and n̂ represent the respective
nematic directors. A relatively large value of at least one of these
order parameters is the evidence of the alignment of the corre-
sponding particle axis along the direction defined by the associate
nematic director. Similarly, the biaxial order parameters B2;W ;B2;T

and B2;L identify the occurrence of biaxiality by measuring the fluc-
tuations of the particle axes perpendicular to the nematic director
associated to the corresponding eigenvalue of the tensor defined
in Eq. 2. For example, if HBPs aligned along their ẑ axis, then S2;L
3

would be the largest uniaxial order parameter and n̂ the main
nematic director. In this case, the biaxial character of the

system can be determined as B2;L ¼ ðm̂ � Q̂ xx � m̂þ p̂ � Q̂ yy � p̂� m̂�
Q̂ yy � m̂� p̂ � Q̂ xx � p̂Þ=3. Similar expressions can be used to obtain
B2;W and B2;T . However, to assess the onset of biaxiality is not neces-
sary to monitor the three biaxial order parameters, but only that
associated to the axis displaying the largest uniaxial order parame-
ter [41–43]. The values of uniaxial and biaxial order parameters of
the NB phases explored in this work are consistent with those
obtained in previous works [22,23,26].

Following equilibration, configurations of NI
B and NU

B fluids have
been employed as starting points for the production of time trajec-
tories and the estimation of the dynamical properties of interest.
Similarly to MC simulations, each DMC cycle consists of Np inde-
pendent attempts to move randomly-selected HBPs. Nevertheless,
in this case, translational and rotational moves are always
attempted simultaneously. We showed that this choice satisfies
the simple balance condition, which is a sufficient and necessary
condition [44], and does not alter the Boltzmann distribution of
the ensemble [27].

In particular, elementary displacements and rotations are gen-
erated from uniform distributions that depend on the translational
and rotational diffusion coefficients at infinite dilution, Dtra

a and Drot
a

respectively, with a ¼ L;W; T . For translations, the elementary dis-
placement is defined by dr ¼ XW x̂þ XT ŷ þ XLẑ, decoupling into the
three unitary directions and restricted by the maximum displace-

ments jXaj 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtra

a dtMC

q
. In the case of rotations, the particles axes

are reoriented by three consecutive rigid rotations around L;W and
T , respectively, with the maximum rotation around each particle

axis jYaj 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Drot

a dtMC

q
. In all the cases, dtMC ¼ 10�2s, with

s ¼ T3bl the time unit and l the viscosity of the solvent. The
infinite-dilution diffusion coefficients have been obtained by using
the open-source software HYDRO++[45,46], and are shown in table
1. Finally, to express the results as a function of an actual Brownian
dynamics timescale, the MC timescale need to be rescaled, using
the acceptance rate A, as [27]:

dtBD ¼ A

3
dtMC ð3Þ

In this study, we have calculated a set of dynamical observables.
These include the isotropic mean-squared displacement (MSD) as
well as its parallel and perpendicular components with respect to
the nematic director m̂; p̂ or n̂.

Dr2 tð Þ� � ¼ 1
Np

XNp

i¼1

ri tð Þ � ri 0ð Þj j2
* +

; ð4Þ

Dr2k tð Þ
D E

¼ 1
Np

XNp

i¼1

rk;i tð Þ � rk;i 0ð Þ�� ��2* +
; ð5Þ

Dr2 tð Þ� � ¼ 1
2Np

XNp

i¼1

r?;i tð Þ � r?;i 0ð Þ�� ��2* +
ð6Þ

where . . .h i denotes average over 200 independent trajectories,
while rk;i and r?;i are, respectively, the projections of the displace-
ment of particle i in the directions parallel and perpendicular to
the nematic director. These directional MSDs are especially useful
if the system exhibits nematic ordering as they provide an insight
into the particle translational self-diffusion coefficients, which are
proportional to the long-time slope of the MSD vs time, that is
D ¼ limt!þ1 Dr2

� �
=2dt, where d ¼ 1 for parallel and perpendicular

MSDs, and d ¼ 3 for the total MSD.
We have also calculated the orientational diffusion coefficients

which provides information on the particle orientational relax-



Table 1
Table of infinite-dilution translational and orientational diffusion coefficients of HBPs as obtained from HYDRO++ [45,46]. Particle reduced length is L� ¼ 12; s ¼ T3bl is the time
unit and l the viscosity of the solvent.

W�
Dtra

T Dtra
W Dtra

L Drot
T Drot

W Drot
L

ð10�2T2=sÞ ð10�2T2=sÞ ð10�2T2=sÞ ð10�4=sÞ ð10�4=sÞ ð10�3=sÞ
2 1:79 1:95 2:54 8:63 7:87 8:43
2.5 1:67 1:88 2:36 7:90 7:08 5:78
3 1:57 1:81 2:22 7:26 6:45 4:18
3.46 1:40 1:80 2:20 6:70 6:00 3:20
4 1:40 1:71 1:99 6:19 5:54 2:45
6 1:15 1:52 1:67 4:60 4:34 1:11
8 0:94 1:38 1:46 3:49 3:57 0:63

Fig. 2. MSDs of HBPs in NU (e�f ¼ 0) and field-induced NU
B (e�f ¼ 2) phases, both at

g ¼ 0:34. Empty circles and squares correspond, respectively, to the parallel and
perpendicular MSD in the NU phase. Solid circles, squares and triangles refer to the
MSDs obtained in the NU

B phase along the nematic directors n̂; m̂ and p̂, respectively.
Isotropic MSDs are represented by solid (NU) and dotted-dashed (NU

B ) lines.
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ation. Due to their biaxial geometry, HBPs exhibit three indepen-
dent orientational diffusion coefficients, corresponding to the re-
orientation of the three particle axes x̂; ŷ and ẑ. These coefficients
have been calculated via the orientational time-correlation func-
tions [47,48]

Ca ¼ hP1 êaðtÞ � êað0Þ½ �i ð7Þ
where êa ¼ x̂i; ŷi or ẑi; P1 � � �½ � is the first Legendre polynomial, and
the brackets indicate ensemble averages over Np particles and 200
different trajectories. For each particle axes, the corresponding
relaxation time has been calculated as follows:

sa ¼
Z 1

0
Cadt ð8Þ

and the three different long time orientational diffusion coefficients
are given by Dor

a ¼ 1=2sa. These diffusion coefficients indicate how
fast the reorientation of each of the particle axes is at long times.
By contrast, the rotation coefficients Drot

a are related to the rigid
rotation of the cuboidal particle around the axis a ¼ L;W and T
or T.

3. Results

In the present section, our goal is understanding to what extent
the dynamics of HBPs in biaxial nematics exhibits distinctive
details that are not detected in less ordered fluids. In addition,
we would like to ascertain the dependence of particle mobility
on shape anisotropy and therefore the existence of especially suit-
able geometries, among those investigated here, that favour rota-
tional and translational diffusion as compared to others. To this
end, we have determined the MSD of a wide spectrum of shapes,
spanning rod-like to disk-like particles, by tuning the particle
width and keeping constant thickness and length. In Fig. 2, we
compare the MSDs obtained in the NU phase at g ¼ 0:34 with those
in the NU

B phase at the same packing fraction. At this g value the
nematic phase is stable over the whole range of W=T studied
[22]. The former have been calculated in thermodynamically stable
phases with no field applied (e�f � bef ¼ 0), whereas the latter have
been obtained upon application of the external field Uext, with
intensity e�f ¼ 2. In particular, three different particle anisotropies
are shown in this figure: prolate HBPs with W� ¼ 2 (top frame),
self-dual shaped HBPs with W� ¼

ffiffiffiffiffi
L�

p
� 3:46 (middle frame) and

oblate HBPs with W� ¼ 8 (bottom frame). The NU phase at

g ¼ 0:34 was shown to exhibit a prolate character for W� 6
ffiffiffiffiffi
L�

p

[22], with the particle unit vectors ẑi strongly correlated along
the nematic director n̂, but x̂i and ŷi randomly oriented. By con-

trast, for W� >
ffiffiffiffiffi
L�

p
, the NU phase exhibits a clearly oblate charac-

ter, with the particle unit vectors ŷi strongly correlated along the
nematic director p̂, while x̂i and ẑi almost completely uncorrelated.
For simplicity, prolate and oblate uniaxial nematic LCs are respec-
tively indicated as Nþ

U and N�
U. Consequently, it makes sense to cal-
4

culate the MSD along n̂ in Nþ
U phases or p̂ in N�

U phases as well as in
directions perpendicular to these nematic directors. Parallel and
perpendicular MSDs in these uniaxial phases are reported in the
three frames of Fig. 2 and indicated by empty circles and squares,



Fig. 3. Self-diffusion coefficients at g ¼ 0:340, as a function of particle width and
reduced by D0. Empty circles and squares correspond, respectively, to self-diffusion
coefficients calculated in the NU phase along the nematic director and perpendic-
ularly to it. Solid circles, squares and triangles refer to the self-diffusion coefficients
obtained in the NU

B phase along the nematic directors n̂; m̂ and p̂, respectively. The
inset reports the total (isotropic) self-diffusion coefficients for uniaxial (empty
circles) and biaxial (solid circles) phases. Vertical dashed lines at W� ¼

ffiffiffiffiffi
L�

p
� 3:46

indicates the transition from prolate to oblate particle shapes. Solid and dotted lines
are guides for the eye.
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respectively. In agreement with our recent works on hard cuboids
[32] and soft repulsive spherocylinders [49], the tendencies of
Fig. 2 confirm that, in Nþ

U phases (frames (a) and (b)), the long-
time particle mobility along n̂ is more pronounced than that in
planes perpendicular to n̂. By contrast, the MSDs obtained in N�

U

phases (frame (c)) indicate that oblate HBPs prefer to move in
planes perpendicular to the relevant nematic director rather than
parallel to it.

Upon application of Uext, the system experiences a re-
equilibration, with the particles forced to reorient their unit vector
x̂ along the direction of the field. Such a transitory out-of-
equilibrium condition is then followed by a new equilibrium state
where biaxiality is observed if the field intensity is sufficiently
strong [26]. In the so-obtained NU

B phase, the symmetry in the par-
ticle orientation is broken and, consequently, it makes sense to
study the dynamics along three mutually perpendicular nematic
directors, m̂; p̂ and n̂, with the unit vectors x̂; ŷ and ẑ preferentially
oriented, respectively, along each of them. Due to this symmetry
breaking, particle diffusion is not expected to be isotropic, but
instead to change along the directions defined by the three nematic
directors. To test this hypothesis, we have investigated the equilib-
rium dynamics of the field-induced NU

B phases and the resulting
MSDs are reported in Fig. 2 for prolate, self-dual shaped and oblate
HBPs. In particular, in each frame we show the MSD parallel to m̂
(solid squares), p̂ (solid triangles) and n̂ (solid circles). In the top
frame, where we analyse the dynamics of rod-like HBPs, the MSD
parallel to n̂ does not seem to be especially affected by the pres-
ence of the external field as it increases very slightly, at long times,
as compared to the MSD calculated in the parental Nþ

U phase. Sim-
ilar tendencies are also noticed in systems of self-dual shaped
HBPs, although here the difference between the two parallel MSDs
is more significant, and in systems of oblate HBPs, where the
dynamics along p̂ in N�

U and NU
B phases are practically

indistinguishable.
To fully appreciate the effect of field-induced phase biaxiality

on the dynamics of HBPs, we now analyse the MSDs along the
directions perpendicular to the main nematic director. While in
the Nþ

U and N�
U phases all these directions are equivalent, in the

NU
B phase there are two preferential directions, which correspond

to the nematic directors, p̂ and m̂ in case of prolate nematics or
m̂ and n̂ for oblate nematics. The resulting MSDs along these direc-
tors are strongly determined by the intensity of the applied field,
which is always coupled to the particle unit vector x̂i and thus
aligned with the nematic director m̂ in NU

B phases of prolate and
oblate HBPs. By imposing reorientation of the unit vectors x̂i, the
field is also forcing the reorientation of the unit vectors ŷi (prolate
case) or ẑi (oblate case), thus intimately correlating the dynamics
of particles along these two directions with their geometry. It fol-
lows that particle anisotropy contributes to determine the effect of
the applied field on the dynamics and the resulting differences
observed in the directional MSDs should be assessed with this in
mind. If we analyse the dynamics along the directors that are
directly affected by the external field, we observe that, in NU

B

phases of prolate HBPs, the long-time MSD in the direction of m̂
(and hence of ê) is larger than that in the direction of p̂. This differ-
ence decreases from W� ¼ 3:46 to W� ¼ 2 and would most likely
disappear atW� ¼ 1 with the rod-like cuboids exhibiting a squared
cross section. By contrast, in NU

B phases of oblate HBPs (W� ¼ 8),
with the field forcing the reorientation of m̂ and n̂, the MSDs par-
allel to these two directions are very similar to each other and to
the corresponding MSD in the parental N�

U phase. Finally, if we
compare the mobility along the relevant nematic directors of the
initial uniaxial phases with that of the resulting biaxial phases,
5

we notice that the long-time MSD along n̂ of prolate and self-
dual shaped HBPs is larger in NU

B than in Nþ
U phases, but no differ-

ence is detected between the long-time MSDs along p̂ measured in
NU

B and N�
U phases of oblate HBPs. In other words, applying an

external field does not have any tangible impact on the dynamics
of oblate HBPs, which exhibit essentially the same MSDs in uniax-
ial and biaxial nematics. This behaviour has also been observed at
W� ¼ 4 and 6.

To better assess the dynamics of HBPs, we have calculated the
self-diffusion coefficients from the slope of the MSDs at sufficiently
long time scales, where Dr2

� �
changes linearly with time. The com-

plete set of directional self-diffusion coefficients obtained in Nþ
U

and NB phases for 2 6 W� 6 8 are shown in Fig. 3, while the total
self-diffusion coefficients are reported in the inset, both reduced
by D0 � T2s�1. Prolate HBPs (W� < 3:46) exhibit an increase of
their diffusion coefficient in the direction of n̂ upon transition from
the NU to the NU

B phase (empty vs solid circles). As far as the diffu-
sion in planes perpendicular to n̂ is concerned, we note that the
field sparks the alignment of the particle minor axes along the
directors m̂ and p̂, which is not observed in Nþ

U phase. As such, it
makes sense to calculate only one self-diffusion coefficient perpen-
dicular to n̂ in the Nþ

U phase, but two distinct self-diffusion coeffi-

cients, along m̂ and p̂, in the NU
B phase. Interestingly, applying an

external field induces a faster dynamics along the field direction
(m̂), but slows down the dynamics in the direction perpendicular
to it (p̂), thus breaking the symmetry of in-plane diffusion that is
observed in uniaxial nematics. We believe that these contrasting
effects are due to an equilibrium between the preferential paths
that a full orientational (biaxial) ordering creates and the resulting
resistance to rotation that limits the ability of particles to diffuse
through dense phases.

Similar considerations are also valid for oblate HBPs
(W� > 3:46). In this case, the self-diffusion coefficient in the direc-
tion of the main nematic director p̂ does not change upon applica-
tion of the external field (empty circles vs solid triangles). The
difference between the self-diffusivities calculated in planes per-
pendicular to p̂ exhibit similar tendencies to those reported for
prolate particles, but tend to become negligible at sufficiently large
particle width. In particular, at W� ¼ 8, the two perpendicular self-



Fig. 4. MSD of HBPs in I (e�f ¼ 0) and field-induced NI
B (e�f ¼ 2) phases at (a)

g ¼ 0:252, (b) g ¼ 0:307 and (c) g ¼ 0:220. Red solid line and blue dotted-dashed
line refer to the total MSDs in the I and NI

B phase, respectively. Solid circles, squares
and triangles refer to the MSDs obtained in the NI

B phase along the nematic
directors n̂; m̂ and p̂, respectively.
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diffusion coefficients of the NU
B phase have almost the same value,

which is indistinguishable from that of the parental N�
U phase. A

possible explanation for this behaviour is that the differences of
field-induced biaxial nematics with the N�

U phase are not as rele-
vant as those with the Nþ

U phase. More specifically, in the N�
U phase,

diffusion in planes perpendicular to the nematic director is
enhanced by the formation of two-dimensional channels that
depend on particle geometry and orientation [32,49]. In the NU

B

phase, these channels favour particle diffusion especially along n̂,
the direction perpendicular to the surface area WT that offers a
lower resistance to flow than the surface area LT. However, the lar-
ger W, the less relevant this difference as the values of the self-
diffusivities at W� ¼ 8 confirm. In the limit of W ¼ L, the two per-
pendicular self-diffusion coefficients should be the same. We
expect a similar behaviour in systems of prolate HPBs with
W ¼ T (not shown here).

We also analyse, in the inset of Fig. 3, the total diffusion coeffi-
cients in the NU (empty symbols) and NU

B (solid symbols) phases.
They show a monotonic decrease with the particle width in the
biaxial phase, but a more intriguing behaviour, with a minimum
at the self-dual shape, in the uniaxial phase. We believe that this
result, which had been also observed in recent simulations [32],
is due to dimensionality of the above-mentioned channels, being
1 in Nþ

U phases and 2 in N�
U phases. Surprisingly, at sufficiently large

particle width, the difference between the total self-diffusion coef-
ficients measured in the field-free uniaxial and field-induced biax-
ial phases become negligible, suggesting very similar diffusive
dynamics. While the application of an external field to Nþ

U phases
produces a drastic change in structural ordering and dynamics,
the same field applied to N�

U phases has an effect on structure only,
but it does not seem to affect dynamics. This is again due to the
presence of preferential paths for diffusion: their dimensionality
remains unchanged upon the field-induced uniaxial-to-biaxial
transition of oblate HBPs, but increases from 1 to 2 in case the
same transition is produced in systems of prolate HBPs.

In light of these observations, we now discuss the case when the
same external field is applied to thermodynamically stable I phases
and induces an I-to-NI

B phase transition. The MSDs along the direc-

tion of the nematic directors n̂; m̂ and p̂ in the NI
B phase are shown

in Fig. 4 for prolate (W� ¼ 2), self-dual shaped (W� ¼ 3:46) and
oblate (W� ¼ 8) HBPs at g ¼ 0:252; 0:307 and 0:220, respectively.
A study at the same packing fraction in the isotropic phase, as in
the nematic phase, is only possible at very low values of g (see
phase diagram in Ref. [22]). Therefore, we have chosen to take,
for each value of W�, packing fractions close to the isotropic to
nematic transition. The total MSDs, both in the field-induced NI

B

and parental I phases, are also shown for comparison. At the three
packing fractions, one can observe an increase of the long-time
mobility in the biaxial phase as compared to the I phase. Similarly
to the increase in the long-time mobility sparked by the NU-to-N

U
B

transition, also in this case the onset of two-dimensional channels
boost particle diffusion with an increase in the total MSD at long
time scales and for the three particle geometries studied. The
directional components of the MSD in the NI

B phase (along the
main nematic director, along the external field and perpendicular
to both) unveil a dependence on particle size that confirms the
observations discussed for the NU

B phase. In particular, the largest
and smallest long-time MSDs are obtained, respectively, in the
direction of the particle length, that is along n̂, and in the direction
of p̂.

In Fig. 5, we show the diffusion coefficients obtained in I and NI
B

phases. One can observe that, at the prolate limit, the diffusion
coefficient in the direction parallel to the main nematic director
6

n̂ (solid circles) is larger than that in the directions perpendicular
to it, while an opposite tendency is detected at the oblate limit,
where the main nematic director p̂ is aligned with the particle
thickness (solid triangle). This behaviour resembles that reported
on the diffusion of uniaxial nematics of cuboidal [32] and sphero-
cylindrical particles [49], and confirms the tendencies we have dis-
cussed for NU

B fluids. The analogies observed between the field-

induced NU
B and NI

B phases suggest that, despite the differences in
their orientational ordering and packing, these two phases are
dynamically equivalent. Fig. 5 indicates that prolate, self-dual-
shaped and oblate cuboids in NI

B fluids exhibit a larger self-
diffusivity along n̂ over the whole range of particle anisotropies.
This self-diffusivity decreases upon increasing W� and eventually
matches that along the direction m̂ of the external field at
W� ¼ 8. The mobility along the third nematic director, p̂, is the
slowest one and does not change significantly, with a slight mini-
mum at the self-dual shape, across the whole range of particle ani-



Fig. 5. Self-diffusion coefficients reduced by D0, in the induced biaxial phase NI
B at

packing fraction between 0:220 and 0:307 (see text). Solid circles, squares and
triangles refer to the self-diffusion coefficients obtained along the nematic directors
n̂; m̂ and p̂, respectively. Empty and solid circles in the inset refer, respectively, to
the total diffusion coefficients in the parental I and the field-induced NI

B phases.
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sotropies. The total self-diffusion coefficients in the parental I and
field-induced NI

B phases are presented in the inset of Fig. 5. The dif-
fusion in the biaxial phase is significantly faster than that in the I
phase, but, interestingly, the qualitative behaviour is very similar,
with a minimum observed at the self-dual shape in both cases. In
practice, inducing a biaxial ordering leads to a faster diffusion.
Moreover, by comparing the insets of Figs. 3 and 5, one can observe
that inducing biaxiality from I phases leads to a faster diffusion as
compared to biaxial nematics induced from uniaxial phases. This
difference is just a consequence of the fact that NU phases
(g ¼ 0:340) are denser than I phases (0:220 6 g 6 0:307).

Finally, in Fig. 6, we report the orientational self-diffusion coef-
ficients of the particle unit vectors x̂; ŷ and ẑ, respectively associ-
ated to W; T and I, as calculated with Eqs. (7) and (8). As a
general tendency, we observe that prolate HBPs rotate faster than
oblate HBPs in isotropic and nematic phases. Switching the field on
enhances this difference, especially for rotations of the minor axes
x̂i and ŷi around the particle length. By contrast, phase transitions
have a weaker impact on the ability to rotate of oblate HBPs as can
be especially appreciated in the right frame of Fig. 6, reporting
rotational self-diffusion coefficients in the I and NI

B phases.
4. Conclusions

In summary, we have investigated the dynamics of field-
induced biaxial nematics and compared it to the dynamics
observed in the parental isotropic and uniaxial nematic phases.
Fig. 6. Orientational self-diffusion coefficients corresponding to the rotation of the partic
phases at (g ¼ 0:340). (b) Results obtained for I and NI

B phases cases with the same rang
external field off.
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The NB phase has been induced by coupling the particle intermedi-
ate axis to an external field that forces particle alignment and pro-
duces biaxiality. We stress that colloidal suspensions of cuboids
are unable to spontaneously assemble into biaxial nematic phases,
unless (i) a degree of size dispersity is incorporated [21], (ii) their
aspect ratio is significantly large [24], or (iii) an external stimulus
is applied [35]. If none of these conditions are met, then HBPs pref-
erentially form uniaxial nematic or smectic LCs with no evidence of
biaxial nematics. In particular, investigating the response of col-
loidal HBPs to external fields is crucial to better understand their
potential use in practical applications, especially because these
stimuli are able to sensibly enrich their phase behaviour, introduc-
ing phases that cannot be observed otherwise, and their dynamics,
directly modifying the particle ability to translate and rotate and
hence making them more or less appealing for specific formula-
tions. From this point of view, the rules governing the dynamics
of these systems are as relevant as those regulating their phase
behaviour. To this end, we have applied dynamic Monte Carlo sim-
ulation, a stochastic technique that can qualitatively and quantita-
tively reproduce the Brownian motion of colloids. More
specifically, we have calculated the translational and rotational
self-diffusion coefficients of prolate, self-dual-shaped and oblate
HBPs in the uniaxial parental I and NU phases as well as in the biax-
ial field-induced NI

B and NU
B phases.

The formation of the biaxial nematic phase has an impact on the
dynamical properties of prolate HBPs, but less on the dynamics of
oblate HBPs. In particular, we observed that forW 6

ffiffiffi
L

p
, the forma-

tion of the NU
B phase leads to an increase in the total self-diffusion

coefficient. For this geometry, the uniaxial-to-biaxial phase transi-
tion is accompanied by an increase in the dimensionality of prefer-
ential channels for diffusion that result from the alignment of
particles. Basically, the dimensionality of channels increases from
1 in field-off uniaxial phase to 3 in the field-on biaxial phase, thus
enhancing the ability of HBPs to diffuse. By contrast, no change in
these channels’ dimensionality is observed in systems of oblate
HBPs. This explains why the difference between the HBPs’ dynam-
ics in N�

U and NU
B phases is less relevant. For similar reasons, the

most relevant differences are detected upon transition from the I
phase, which does not present preferential channels, to the NI

B

phase, whose channels are observed along the three nematic direc-
tors. Remarkably, for a given particle width, the diffusion coeffi-
cient in the NI

B phase is larger than in the NU
B phase. Although in

this case the nematic order is higher, the lower packing in the NI
B

phases seems to play a relevant role. This is important if biaxial
materials with short response times are to be designed. Therefore,
the higher orientational order in the biaxial phase results in an
increase of the diffusion coefficients overall and in the direction
le axes ẑi (circles), x̂i (squares), and ŷi (triangles). (a) Results obtained for NU and NU
B

e of packing fraction. The empty symbols correspond to the phases developed with
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of the applied field. Consequently, the diffusion channels have a
considerable impact on the orientational self-diffusion coefficients,
with a generalized decrease in values; except in the case of vector ẑ
for prolate cuboids in the NU

B phase, where it increases slightly, and
also in the case of vector ŷ for oblate cuboids in the same phase,
where changes of the same value are not observed with respect
to the case without field. Comparing this last case with the results
obtained at lower packing fraction, we observe a decrease in the
orientational self-diffusion coefficient when applying the field,
which indicates the formation of the channels and the consequent
increase in the translational diffusion coefficients for W >

ffiffiffi
L

p

cases. Conversely, a higher correlation of the ŷ vectors results in
a lower diffusion along the corresponding director. This is similar
to what happens in N�

U phases [32], and is a consequence of steric
hindrances for particles to diffuse in this direction.
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