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ABSTRACT

Degenerative neurological diseases, such as Alzheimer, Multiple Scle-
rosis or Huntington Disease, are illnesses that are not well-known
while at the same time having a significant impact on the quality

of life of the patients and their survival. The focus of this dissertation is
finding biomarkers for the identification of these diseases, ideally in a rapid
a reliable manner. The analysis was carried out using DNA CpG methy-
lation data. In recent years there has been very significant technological
improvements. It is currently possible to obtain the methylation levels for
hundreds of thousands of CpG in a patient in a fast and reliable manner. It
is however challenging to analyze these amounts of new data. A reasonable
approach to tackle this issue is using machine learning techniques that
have proven useful in many other fields. In this dissertation I developed a
nonlinear approach to identifying combinations of CpGs DNA methylation
data, as biomarkers for Alzheimer (AD) disease. It will be shown that this
approach increases the accuracy of the detection on patients with AD when
compared to directly using all the data available. I also analyzed the case of
Huntington Disease (HD).Using nonlinear techniques I was able to reduce
the number of CpGs considered from hundreds of thousands to 237 using a
non-linear approach. It will be shown that using only these 237 CpGs and
non-linear techniques such as artificial neural networks makes it possible
to accurately differentiate between control and HD patients. Additionally,
in this dissertation I present a technique, based on the concept of Shannon
Entropy, to select CpGs as inputs for non-linear classification algorithms. It
will be shown that this approach generates accurate classifications that are
a statistically significant improvement over using all the data available or
randomly selecting the same number of CpGs. The results seems to clearly
illustrate that the analysis of the DNA methylation data, for the identi-
fication of patients suffering from the degenerative neurological diseases
above mentioned, needs to be carefully carry out. Having the possibility of
analyzing hundreds of thousands of CpGs level does not necessarily trans-
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late into better results as some of these levels might be unrelated and only
adding noise to the analysis. It will be shown that the proposed algorithms
generate accurate results while at the same time decreasing the number of
CpGs used. For instance, in the case of Alzheimer the results obtained with
the proposed algorithm generate a sensitivity of 0.9007 and a specificity of
0.9485. One of the underlying expectations is that in the future there will be
curative treatments for these illnesses, which do not currently exists. It is
also assumed that early detection, similarly to many other diseases, might
be important when such treatments appear. Using the current technology
it is relatively simple to analyze DNA methylation data and hence it can
become an interesting biomarker in the context of these illnesses.
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RESUMEN

Las enfermedades neurológicas degenerativas, como el Alzheimer, la
Esclerosis Múltiple o la Enfermedad de Huntington son enfermedades
que aún no son del todo conocidas y, al mismo tiempo, tienen un gran

impacto en la calidad de vida del paciente y en su supervivencia. El enfoque
de esta tesis es encontrar biomarcadores para la identificación de estas
enfermedades, idealmente de una manera rápida y precisa. El análisis se
llevó a cabo utilizando datos de metilación de ADN CpG. En los últimos años
se han producido mejoras tecnológicas muy significativas. Actualmente es
posible obtener los niveles de metilación para cientos de miles de CpG en un
paciente de una manera rápida y confiable. Sin embargo, es difícil analizar
estas cantidades de nuevos datos. Un enfoque razonable para abordar este
problema es el uso de técnicas de aprendizaje automático que han demos-
trado ser útiles en muchos otros campos. En esta tesis doctoral desarrollé
un enfoque no lineal para identificar combinaciones de datos de metilación
del ADN (CpGs), como biomarcadores para la enfermedad de Alzheimer
(EA). Se demostrará que este algoritmo aumenta la precisión de la detección
en pacientes con EA en comparación con el uso directo de todos los datos
disponibles. También analicé el caso de la enfermedad de Huntington (EH).
Usando técnicas no lineales pude reducir el número de CpG considerados de
cientos de miles a 237 utilizando tambien un enfoque no lineal. Se demos-
trará que el uso de solo estos 237 CpG y técnicas no lineales como las redes
neuronales artificiales permite diferenciar con precisión entre pacientes de
control y EH. Adicionalmente, en esta tesis presento una técnica, basada en
el concepto de Entropía de Shannon, para seleccionar CpGs como entradas
para algoritmos de clasificación no lineal. Se demostrará que este enfoque
genera clasificaciones precisas con una mejora estadísticamente significa-
tiva sobre el uso de todos los datos disponibles o la selección aleatoria del
mismo número de CpG.

Los resultados parecen ilustrar claramente que el análisis de los datos
de metilación del ADN, para la identificación de pacientes que sufren de la
enfermedad neurológica degenerativa antes mencionada, debe llevarse a
cabo cuidadosamente. Tener la posibilidad de analizar cientos de miles de
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niveles de CpG no necesariamente se traduce en mejores resultados, ya que
algunos de estos niveles pueden no estar relacionados y solo agregar ruido
al análisis. Se demostrará que los algoritmos propuestos generan resultados
precisos y, al mismo tiempo, disminuyen el número de CpG utilizados. Por
ejemplo, en el caso del Alzheimer los resultados obtenidos con el algoritmo
propuesto generan una sensibilidad de 0,9007 y una especificidad de 0,9485.
Una de las expectativas subyacentes es que en el futuro habrá tratamientos
curativos para estas enfermedades, que actualmente no existen. También
se supone que la detección temprana, de manera similar a muchas otras
enfermedades, podría ser importante cuando aparecen tales tratamientos.
Utilizando la tecnología actual, es relativamente simple analizar los datos
de metilación del ADN y, por lo tanto, puede convertirse en un biomarcador
interesante en el contexto de estas enfermedades.
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1
INTRODUCTION

1.1 Degenerative neurological diseases

D
egenerative neurological diseases have a significant impact on

the quality of life of patients as well as on their survival. Several

of this type of disease have currently no curative therapy [59, 68,

77] but there is a very significant amount of research currently carried out.

Furthermore, as the population, due to advances in medicine and sanitation

among others, tends to live longer some of these illnesses are likely to

appear more frequently [21, 58]. A good example of this is Alzheimer

Disease, which is a paradigm of age-related disease [16, 69]. There is clearly

a wide range of different degenerative neurological diseases with different

causes and prognosis. For several of these disease there is a genetic as well

as environmental factors, like in the case of AD, causing the illness. In this
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CHAPTER 1. INTRODUCTION

dissertation I focus on three different degenerative neurological diseases:

• Alzheimer Disease (AD)

• Huntington Disease (HD)

• Multiple Sclerosis (MS)

These three illnesses have a high mortality rates and typically cause a

significant impact on the quality of life of the patient (depending on the

stage of the illness).

1.1.1 Alzheimer Disease (AD)

Alzheimer disease is the most common type of dementia [64] with some

estimates suggesting that it represent from 60% to 80% of all dementia [41].

The illness receives its name from the doctor Alois Alzheimer, which first

described the illness in 1906 [22, 63, 97]. AD currently has no cure [44, 46]

and has a significant impact on the quality of life of the patient [64]. Most

of the prescribed medications to AD patients are to mange symptons[55].

AD is likely caused by a combination of genetic and environmental factors

[13, 78, 90]. Tanzi et al. concluded that genetic factors to be significant in

80% of the cases [85].

Some of the most visible symptoms of AD is the memory deterioration [39,

47, 94], particularly short-term memory, as well as cognitive impairment.

AD causes deterioration on brain cells. More specifically, Serrano-Pozo et

al. [74] mentioned the following lessons as some of the most frequently
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1.1. DEGENERATIVE NEUROLOGICAL DISEASES

associated with AD: 1) amyloid plaques, 2) cerebral amyloid angiopathy, 3)

Neurofibrillary tangles and 4) Neuronal and synaptic loss.

Amyloid deposits have been long associated with AD [52]. The actual

mechanics of the relationship between deposits and AD remain not fully

understood [73]. Frauschy et al. [36] realized in vivo experiments in rats

injecting amyloids into the cortex and hippocampus. These experiments

show a clear neuronal response to the amyloid. In figure 1.1 it can be seen

a graphical representation of brain deterioration due to AD. The left part

represents a healthy brain while the right side represents the brain of

a patient with AD. It can be seen in the figure that the brain undergoes

physical changes, such as shrinking.

Figure 1.1: Representation of a healthy brain (left) and a brain with AD
(right).

It is common to make the distinction between early onset AD, for patients
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CHAPTER 1. INTRODUCTION

that are <65 years old, and the more common late onset AD for patients over

65 years old [62]. The symptoms in early onset and late onset AD might

be different. For instance, Koedam et al. [53] analyzed 270 patients with

early onset AD and 90 patients with late onset AD. The authors classified

the patients in two categories, one defined as memory presentation and the

other as non-memory presentation. They concluded that 33% of the patients

in the early onset group were classified as non-memory presentation while

only 6% of the late onset AD patients were classified in the same group.

4



1.1. DEGENERATIVE NEUROLOGICAL DISEASES

1.1.2 Huntington Disease (HD)

Huntington Disease (HD) is a fatal [49, 61, 72] neurodegenerative disease

[83] which causes cognitive deterioration [3, 67], movement disorders as well

as psychiatric disorders. Perhaps some of the most recognizable symptoms

are movement disorders such as involuntary movements [50, 79] as well

as muscular rigidity [17, 18]. There are significant amounts of research on

the illness but currently there is no curative therapy [71]. It is understood

that the protein huntingtin [37, 45] plays an important role. A mutation

consisting of the repetition of a CAG trinucleotide seems to be the cause of

the illness [8, 84]. HD causes the progressive degeneration on brain cells

which eventually leads to death. Some of the regions most affected by HD

are the basal ganglia, hypothalamus and brain stem cells [23].

Craufurd et al. [24] studied behavioral changes in HD patients estab-

lishing that some behavioral changes are much more frequent that others.

The authors mentioned that low energy, poor quality of work and impaired

judgment were among the most common behavioral changes. They also

found that depression and irritability occurred in approximately half of the

cases. Psychotic episodes were rare. HD is more frequent among individuals

of European descent [27].
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CHAPTER 1. INTRODUCTION

1.1.3 Multiple Sclerosis (MS)

Multiple Sclerosis (MS) is a severe neurodegenerative, chronic, autoinmune

disease [40] that is characterized by having a deterioration in myelin (sec-

ondary to damage to Schwann cells), see figure 1.2. It is among the most

common non-traumatic reasons of disability among young adults [29]. The

illness is due to genetic [31] and environmental factors[32]. Sospedra et al.

mentioned that the illness likely requires an environmental insult [80].

The symptoms and evolution of MS differs greatly from patient to patient

with a vast array of manifestations [51]. Some of the most common symp-

toms include weakness, tremors and poor coordination. Typically symptoms

[10] are described as:

• Primary – Directly related to the illness, such as weakness.

• Secondary – Related to the primary symptoms, such as Infections.

• Tertiary – due to social and psychological factors, such as depression.

Even tough the illness has attracted a significant amount of research there

is no curative therapy for MS [43, 60, 93]. As with other neurodegenerative

disease prescribed treatments typically focus on managing the symptoms or

stop its progression [25, 38]. It is common for some patients to experienced

periods of remission, which is some cases might last long periods of time.

Cycles of relapse-remission are also very common [70]. Steinman [82]

describes how 80% of the patients experience periodic relapses-remissions

(at the early stages). It is also not uncommon that patients that experience a

relapse-remission type of MS evolve to more debilitating type of MS [35, 81].
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1.1. DEGENERATIVE NEUROLOGICAL DISEASES

Figure 1.2: Representation MS neurological damage. Top (healthy), Bottom
(MS).

The evolution of the illness, such as for instance what triggers periods or

remission of how long will it last, are not well understood.

7



CHAPTER 1. INTRODUCTION

1.2 Machine Learning

Machine learning techniques [33, 48] are an increasingly popular set of

tools with applications in many fields [11, 19, 56]. They can be used for

several different purposes, including time series forecasting and classifica-

tion purposes [1, 42, 65, 75]. Artificial neural networks (ANN) [5, 14] are

a subset of these techniques. ANN are a biologically inspired algorithm

[15, 34]. The basic component of an ANN is an artificial neuron [7]. Artificial

neurons can be understood as a mathematical function that generate an

output when provided with an input. Artificial neurons also have a related

weight, as seen in figure 1.3. In the common practice of supervised learning

[26, 57] this weight is iteratively modify in order to make the generated

output as close as possible to the target output. Normally, an artificial

neural networks has many artificial neurons and they are usually grouped

in layers [54, 92]. The above mentioned supervised learning approach is the

approach followed in this dissertation when trying to ascertain if a certain

individual is healthy or present a certain neurodegenerative disease. In this

approach the data is divided into two groups a training and a testing dataset

[6, 28]. The training dataset is sued to train the neural network. During

this process the weights of the individual neurons are iteratively changed to

try to generate a binary output for the overall ANN (either “0” for healthy

individual or “1” for patients with the disease) as accurate as possible. The

training phase is done iteratively until either a certain acceptable level

for the error is reached or a predefined maximum number of iterations is

reached [86, 91]. After the training phase is complete i.e., the weights of the

8



1.2. MACHINE LEARNING

Figure 1.3: Representation of an artificial neuron.

ANN are already obtained. Then the ANN is tested with the testing dataset.

It is important to mention that the testing dataset is not used during the

training phase. Some measure of the error rate is then obtained for the

testing dataset. This error rate in the testing dataset is a more accurate

description of the real accuracy of the network as there could be overfitting

[12, 66] in the training dataset.

As in any other techniques there are advantages and disadvantages

[20, 30, 87] on using machine learning techniques, such as neural networks.

One of the main advantages is that they are flexible [4, 76] and can be

applied to a large number of different problems with accurate result [2,

9, 88]. In basic terms the only requirements, in principle, is having an

underlying process with an input and an output signal. ANN do not require

in depth knowledge of the underlying process [95]. The most frequently

mentioned disadvantage is that these techniques can be difficult to interpret

[28, 89, 96]. The forecast and classification estimations obtained by the

9



CHAPTER 1. INTRODUCTION

ANN are relatively straightforward to be understood. However, the actual

model i.e. the artificial neural network with the optimized weights, is likely

going to be a rather complex mathematical model that might not be easy to

be understood by the researcher.

10
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2
HYPOTHESIS AND OBJECTIVES

I
n this chapter I present the hypothesis underlying this dissertation

as well as the objectives.

2.1 Hypothesis

2.2 Conceptual hypothesis

Biomarkers for neurodegenerative diseases (such as Alzheimer disease,

Huntington disease and multiple sclerosis) can be built using DNA CpG

methylation data. Given the large amount of DNA CpG methylation data

available a machine learning approach is suitable to analyze the data.

Neural networks are a viable machine learning technique to analyze DNA

CpG methylation data. These machine learning techniques can differentiate

11



CHAPTER 2. HYPOTHESIS AND OBJECTIVES

between patients suffering from a neurodegenerative disease and controls

patients using DNA CpG data input.

2.3 Operating hypothesis

Reducing the dimensionality of the input data (DNA Methylation data) i.e.,

reducing the number of CpGs used in the analysis can increase the accuracy

of the classification. The underlying process that enables the identification

of patients vs. control individuals is not necessarily linear. Data needs to

be divided into training and testing dataset when using neural networks

in order to avoid issues such as overfitting. An excessively large amount of

DNA CpG methylation data can introduce noise in the analysis, as not all

CpG methylation levels will be relevant for illness identification.

12



2.4. OBJECTIVES

2.4 Objectives

There are several objectives in this dissertation:

• Objective1. One of the main aims of this dissertation is to provide

alternative approaches to detect neurodegenerative diseases, such

Alzheimer Disease, Huntington Disease and Multiple Sclerosis using

DNA methylation data as input and machine learning techniques as

the data processing tool. This objective was achieved as illustrated in

Chapter 3 (sections 3.1, 3.2 and 3.3).

• Objective 2. Another important objective in this dissertation is to

show the importance of reducing the dimensionality of the input

data i.e., using less CpGs. The objective is to show that appropriate

reduction of the dimensionality of the data can increase the accuracy

of the classification forecasts, differentiating between patients and

control individuals. This objective was also achieved and illustrated

in Chapter 3 (sections 3.1, 3.2 and 3.3).

• Objective 3. Developing algorithms for the selection of CpGs using

non-linear techniques that can generate classification forecasts more

accurate than using all the available CpGs. This results was also

achieved and it is illustrated in Chapter 3 (sections 3.1, 3.2 and 3.3).

• Objective 4. Apply the concept of Shannon Entropy for CpG selection

purposes, showing that it generates better forecasts than a direct

approach using all information available. This aim was also achieved

in Chapter 3 (section 3.1).

13
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CONTRIBUTIONS

In this chapter it can be seen three (Q1) papers already published in peer

review journals.
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An Entropy Approach to Multiple Sclerosis Identification
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2 Biochemical Laboratory, Reina Sofia University Hospital, 14004 Cordoba, Spain
* Correspondence: ga284@cantab.net

Abstract: Multiple sclerosis (MS) is a relatively common neurodegenerative illness that frequently
causes a large level of disability in patients. While its cause is not fully understood, it is likely due to
a combination of genetic and environmental factors. Diagnosis of multiple sclerosis through a simple
clinical examination might be challenging as the evolution of the illness varies significantly from
patient to patient, with some patients experiencing long periods of remission. In this regard, having
a quick and inexpensive tool to help identify the illness, such as DNA CpG (cytosine-phosphate-
guanine) methylation, might be useful. In this paper, a technique is presented, based on the concept
of Shannon Entropy, to select CpGs as inputs for non-linear classification algorithms. It will be shown
that this approach generates accurate classifications that are a statistically significant improvement
over using all the data available or randomly selecting the same number of CpGs. The analysis
controlled for factors such as age, gender and smoking status of the patient. This approach managed
to reduce the number of CpGs used while at the same time significantly increasing the accuracy.

Keywords: multiple sclerosis; DNA methylation; entropy

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune illness affecting the brain and spinal
cord associated with various degrees of disability. In MS, the immune system of the
patient attacks the axons, more specifically, the myelin cover; see Figure 1 for a graphical
illustration [1]. Inflammation is highlighted by some researchers as one of the drivers of
neurodegeneration in MS [2–4]. The evolution of the illness varies greatly from patient to
patient, with some individuals experiencing long periods of remissions due to mechanisms
that are not yet well understood. The usual manifestation age of the illness is from 20
to 45 years old, but it can occasionally manifest at younger ages, even in children [5].
The causes of MS remain unclear, with a complex underlying combination of genetic and
environmental factors the most likely cause [6–10].

Control 

Multiple sclerosis 

Figure 1. Graphical illustration of neurological damage in MS.

There are some gender considerations to take into account, as the illness is more
common in women than men in a 3:1 ratio (and in some countries like Sweden even 5:1).

J. Pers. Med. 2022, 12, 398. https://doi.org/10.3390/jpm12030398 https://www.mdpi.com/journal/jpm
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Some of the common symptoms of the illness include fatigue and numbness, typically in one
side of the body [11,12]. Behavioral and cognition abnormalities are also common [13–15].
Currently there are many therapeutic approaches to control or stop the progression of the
disease, but no curative treatment is available. However, a large amount of research has
been generated regarding this disease. MS has a particularly high prevalence in some areas
of Europe and the United States, particularly in northern regions [16].

CpG DNA methylation data has been used to analyze neurodegenerative diseases
such as Alzheimer’s [17–20] and Parkinson [21–23]. As can be seen in Figure 2, in the
context of DNA methylation, CpG dinucleotide (or CpG) refers to cytosine followed by a
guanine in the same DNA strand (typically 5′ to 3′), not to be confused with cytosine and
guanine pared in two complementary strands.

5’

3’

C C C

C C C

G G G

G G G

A

A A

T T

T

3’

5’

5’

3’

C C C

C C C

G G G

G G G

A

A A

T T

T

3’

5’

CpG Island

Not a 
CpG Island

Figure 2. Illustration of CpG islands.

Methylation is simply the addition of a methyl group at the 5-carbon (see Figure 3).
DNA methylation has been extensively studied in the context of aging, with several
biological clocks built using such types of data. Technological advances in recent years
have made possible the analysis of DNA methylation levels on thousands of CpGs in a fast
and reliable way. In practice, what is obtained is the percentage level of methylation with
a value ranging from 0 to 1 (100% methylated). DNA methylation for cancer diagnostics
has made significant progress in the last decades, including many seminal papers [24–27].
There is also a significant body of research covering diabetes [28–32].

DNA methylation has also been used in the context of multiple sclerosis [33,34]. Most
of the existing literature on the topic tends to use linear approaches. In this paper, we have
followed a non-linear approach, which is in principle more generic and encompassing than
a linear approach. Machine learning techniques have been successfully used in multiple
applications of different types of diseases [35–38]. More specifically, neural networks have
been used as an algorithm for the identification of neurodegenerative illnesses, such as
Alzheimer’s, using DNA methylation data as the input [39–41].
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We applied the concept of Shannon Entropy in the context of DNA methylation ap-
plied to multiple sclerosis identification. As far as we are aware, this approach has not
been followed before. Shannon Entropy is a concept initially developed in information
theory, which attempts to quantify the amount of information contained in a certain set
of data [42]. The precise mathematical definition of this concept will be introduced in the
materials and methods section. It will be shown that using the concept of Shannon Entropy
for CpG selection can generate accurate results.

Methylated

Not Methylated

CpG island (0.66)

C C C
C

C

CCC

G G G

G

G

G G G

T

T
A

A

5’

3’

3’

5’

Figure 3. DNA methylation illustration.

Motivation and Aims

Biomarkers are an increasingly important field, particularly when they can be ana-
lyzed using non or minimally invasive techniques. In this regard, blood is a particularly
interesting tissue as it can be cheaply and quickly obtained from a patient causing only
minimal discomfort. Blood has a significant advantage over other tissues such as brain
matter, which is much harder to obtain. DNA methylation data can be accurately and
rapidly analyzed using technologies such as the Illumina machines. Shannon Entropy is
a concept frequently used in machine learning. The motivation to use this approach for
data selection is in trying to find techniques that might reduce the dimensionality of the
data. Shannon Entropy is one of the few concepts in the existing literature directly related
to the amount of information contained in the data, which seems to be a reasonable starting
point when trying to reduce the dimensionality of the data while maintaining as much
information as possible.

The aim of this article is to develop techniques to identify DNA methylation signatures
applicable for the identification of multiple sclerosis patients.

2. Materials and Methods

The DNA methylation data for each individual was stored in a vector Xi.

Xi =





Xi
1

Xi
2

...
Xi

m





(1)

where m is the number of CpGs analyzed per patient. A numerical example would be:
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X2 =





0.211

0.723

...
0.983





(2)

Which represents all the CpG information available for patient number 2. In this ex-
ample, the methylation level in the first and second CpGs are 21.1% and 72.3%, respectively.
As there is a large number of cases analyzed it is more convenient to group the data in a
matrix form.

X =




X1
1 X2

1 . . . Xn
1

X1
2 X2

2 . . . Xn
2

...
...

...
X1

m X2
m . . . Xn

m




(3)

In this notation, there are n cases (including both patients and controls) with m CpGs
associated with each case. The status of the individual analyzed (multiple sclerosis or
control) was defined with a binary variable {0, 1} stored in a target vector T, with the
value 0 indicating a healthy control case and the value 1 indicating a patient with multiple
sclerosis.

T = {0, 1, 0, . . . , 1} (4)

As there are n cases, there will be n entries for this vector. In this example, the first
and third cases are control cases, and the second one a patient with MS. As a preliminary
step, each CpG was individually linearly modeled against the classification vector T and
only those with a p-value below 5% were included. The rest of the CpGs were discarded.
The dimension of X was reduced from (n · m) to (n · l), where l is the number of CpGs
with a p-value below 5%. p-value prefiltering was carried out in all the data. The Shannon
Entropy (H) concept was then used to further filter the number of CpGs used. The Shannon
Entropy approach step was carried out only for the training dataset. Shannon Entropy can
be intuitively understood as the amount of information contained in some data and it is
a concept borrowed from information theory. The mathematical expression for Shannon
Entropy is as follows:

H = −∑
i

Pilog2(Pi) (5)

This concept is typically applied in discrete mathematics. The probabilities can be
estimated empirically. In simple terms, more entropy translates into more information
contained. After the initial filtering, the absolute value of the Shannon Entropy was
estimated for each CpG.

H =





H1

H2

.

.

.
Hl





(6)
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Only CpGs with an entropy value (Hi) bigger than certain predefined value (H f
i )

were considered. All the other CpGs were excluded from the analysis. In this way we
obtained H∗.

H∗ =





H∗1
H∗2
.
.
.
H∗q





(7)

In this notation q ≤ l. After selecting the CpGs, it is necessary to choose the clas-
sification algorithm that is used. A neural network with a hidden layer and an output
layer was used. The hidden layer contained 50 artificial neurons, while the output layer
contained a single artificial neuron. The 50 neurons in the hidden layer are of the sigmoid
symmetric transfer function type. The neuron in the output layer is of the type sigmoid
positive transfer function (both of these transfer functions are built-in in Matlab). All the
neurons include a bias factor. The neural network was trained with the scaled conjugate
backpropagation algorithm. Another four learning algorithms were tested (Levenberg–
Marquardt, resilient backpropagation, one-step secant and gradient descent). As in the
case of the transfer functions in the artificial neural networks, the learning algorithms are
also built-in options in Matlab. Among all the learning algorithms, the best results were
obtained using the scaled conjugate backpropagation approach. The data was divided
into a training and a testing dataset. The testing dataset accounted for approximately
15% of the data. All the calculations were carried out in Matlab. Neural networks have
been extensively used for modeling purposes and can accurately describe many complex
underlying dynamics. An important step is to check that the classification error obtained
using the above mentioned Shannon Entropy approach for CpG selection is more accurate
than the one obtained when using the same number of randomly selected CpGs; in other
words, controlling that the improvement in accuracy is not simply due to the reduction in
the dimensionality of the data.

All the calculations were done in Matlab, the Shannon Entropy value was calculated
using an existing Matlab function. The methylation data was analyzed using two decimals
of precision in percentage terms. The analysis did not appear to be very sensitive to an
increase to the third decimal place, but it started to have more impact thereafter (four or
five decimal places in percentage terms). We believe that using two decimal places is a
reasonable precision considering the likely accuracy of the experimental data.

A sensitivity analysis was also carried out. The underlying assumption was that CpGs
with very little data variation would be less useful for classification purposes. In an extreme
case, if the DNA methylation level for a given CpG was the same for all patients, then this
information would not be useful for classification purposes. We did not assume that the
CpGs with the most data variation (measured as the standard deviation) were necessarily
the best choices, as other factors such as experimental noise (and potentially many others)
can increase the variation of the data. However, it seemed reasonable to carry out a
sensitivity analysis over reasonable values of the volatility of the DNA methylation data.

Data

DNA methylation data for 279 individuals were obtained from the GEO database
(publicly available data) with the accession code GSE 106648 [43]. The database contained
both individuals with multiple sclerosis (140) as well as control individuals (139). The
age range was from 16 to 66 years old, and there were 77 male individuals. There were
more females than male patients. This is consistent with the observation that MS tends to
be more common among females than males; 138 of the individuals in the dataset were
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smokers. Age, gender and smoking status (Table 1) were used as inputs in the model. As in
the case of DNA methylation, these factors were allocated to their corresponding training
or testing dataset.

Table 1. Basic descriptive information of the patients.

Description Amount

Male 77
Female 202

Smokers 138
Non-smokers 141

Age 16, 77

The DNA methylation data [43] was obtained from peripheral blood tissue using the
Illumina Human Methylation 450 Beach Chip. There were 485,512 CpG DNA methylation
data per patient.

3. Results

As can be seen in Figure 4, the average classification error using all the available
data with a p-value below 5% was 55.4%, while the error obtained when using only the
CpGs with the top 10% Shannon Entropy values (9499 CpGs) was 19.93%, which is a
statistically significant improvement. Equivalently, the proposed approach (using Shannon
Entropy as a filter) generated a successful classification rate of approximately 80.07%,
while the direct approach (using all the data) generated a successful classification rate
of approximately 44.6%. The direct approach likely generates poor classifications due to
the issue of local minima, which is likely improved by the introduced Shannon Entropy
filtering. The model accuracy was substantially improved while at the same time reducing
the amount of input data required in the mode. After the two steps (p-value filtering
and Shannon Entropy filtering), the amount of CpGs was reduced by approximately 98%
compared to the total initial data available. These results were obtained by dividing the
data into training and testing datasets, with the testing dataset not used during the training
phase. The testing dataset contained approximately 15% of the total data. Unless explicitly
mentioned, all the results shown below refer to the testing dataset results. All the models
controlled for age, gender and smoking status of the patients. As it can be seen in Table 2,
the average sensitivity and specificity obtained were 78.3% and 81.8%, respectively. An
example showing a confusion matrix and ROC can be seen in Figures 5 and 6.

Figure 4. Error rate comparison between direct approach and Shannon Entropy filtered approach.
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Table 2. Average classification forecasting accuracy.

Accuracy Measure Percentage

Average successful classification 80.1%
Sensitivity 78.3%
Specificity 81.8%

Figure 5. A sample confusion matrix (after p-value prefiltering and Shannon Entropy filtering).

Figure 6. ROC (after p-value prefiltering and Shannon Entropy filtering).
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In order to compare the results, two baseline values were obtained using the volatility
(standard deviation) as an indicator. In the first baseline case, the top 2% most volatile
CpGs were selected without any prefiltering (such as p-value). This was done in order to
have a dimensionality comparable to the results obtained using the proposed approach
(p-value prefiltering plus Shannon Entropy filtering). The classification success ratio using
this technique was approximately 51.6%. A second base line level was obtained. In this
case, p-value prefiltering was carried out followed by a selection of the most volatile CpGs.
The threshold value for the volatility was selected in order to make the final dimension
of the data, i.e., number of CpGs selected, approximately the same as the one obtained in
the proposed approach (p-value plus Shannon filtering). The successful classification rate
was 56.1%.

An important test to carry out is comparing the performance of the obtained CpGs
by the Shannon Entropy approach (as inputs for the classification algorithm) to the results
using a matrix of randomly selected CpGs. In this way, we account for the reduction in
dimensionality of the data. Ten randomly selected sets of CpGs of the same size as the one
obtained using the Shannon Entropy approach (9499) were selected. All the included CpGs
in this random approach had p-values of less than 5%, i.e., this analysis was carried out
after the initial linear filtering. Ten simulations were carried out for each of the ten different
randomly selected sets of CpGs. The average value and the confidence interval can be seen
in Figure 7. The Shannon Entropy approach generates classifications that are statistically
significantly more accurate than a random selection of the same size.

As mentioned in the methods and materials section, a sensitivity analysis using the
standard deviation of the DNA methylation data for each CpG was also carried out. In
Figure 8, the results of selecting the CpGs with the highest volatility are shown. The range
selected encompassed the top 5% to the top 50%, in 5% increments. For example, the first
column shows the error rate (misclassifications) when using the top 5% of CpGs according
to their standard deviation from the initial pool containing 9499 CpGs (after the initial
filtering using Shannon Entropy filtering).

Figure 7. Error rate comparison between the Shannon Entropy filtered approach and random selection
of the same size.

The intuition behind this approach is selecting CpGs with variation in the methylation
values. As an extreme example, completely flat data (with standard deviation equal to zero)
will arguably contain no value from a classification point of view. It is also acknowledged
that some of that volatility might be caused by experimental and other sources of noise.
The best results were obtained when using the top 15% most volatile CpGs with an average
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correct classification rate of 81.42%. However, the results were not statistically different
(at a 5% significance) when compared with the results obtained by filtering for Shannon
Entropy only (no filtering according to the standard deviation of the CpGs).

Figure 8. Sensitivity analysis according to the standard deviation of the value of the CpGs. Error rate
as a function of the amount of CpGs selected according to their standard deviation.

4. Discussion

An innovative approach is shown for the selection of DNA methylation CpGs to be
used in non-linear classification models. This approach is based on the concept of Shannon
Entropy, which it is an idea borrowed from the information theory field. Shannon Entropy,
in simple terms, can be understood as a measure of the amount of information contained in
a set of data. The overall data was first filtered, discarding the CpG with p-values above
5%. A quality pre-check of the data was also carried out, excluding CpGs with missing
data. The analyzed dataset appeared to be of good quality with no major data issues.
Using the two steps approach of p-value prefiltering followed by the proposed Shannon
Entropy filtering, the dataset was reduced from an original size of approximately 485,512
to a final size of 9499 CpGs, which represents a 98% reduction. The classification analysis,
distinguishing between control and multiple sclerosis patients, using the entire dataset, did
not generate accurate results. The error rate when using the Shannon Entropy approach
was 19.93% (80.07% correct classification), which is a statistically significant improvement
over the base case. These error rates were obtained using artificial neural networks as the
classification algorithm. All the analyses were carried out controlling for age, gender and
smoking status of the patients. It was also tested if the increase in accuracy was due simply
to the reduction in the dimensionality of the data. In order to do this, several random
CpG configurations of the same size (9499 CpGs) as the one obtained using the Shannon
Entropy approach were tested. Their average error rate was 52.66%, which is statistically
significantly higher than the results obtained using the Shannon Entropy. This suggests
that the Shannon Entropy approach might be a reasonable approach to select potential
CpGs relevant for the classification analysis. This type of tool might become rather useful
in the future, as the amount of CpGs analyzed per person increases and the computational
costs increase accordingly. Another interesting analysis is controlling for the volatility, i.e.,
the standard deviation, of the CpGs. A sensitivity analysis was carried out in this regard by
selecting CpGs according to their standard deviation (in buckets of 5%), i.e., top 5%, top
10%, and so on. When carrying out this type of analysis, there were some improvements in
the average accuracy, but these improvements were not statistically significant.
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These results were consistent with other articles that found a relationship between
DNA methylation in other tissues such as the hippocampus [44]. Using blood as the
selected tissue [43] is better suited for clinical purposes. Having a simple test, such as
one based on DNA methylation data, which can be applied to many different diseases
in a rapid and inexpensive way, can be useful. Multiple sclerosis is a relatively difficult
illness to diagnose. Using only clinical symptoms and imaging, such as MRI, is frequently
requested when the presence of illness is suspected. From a clinical point of view, it might
be practical to have techniques, such as DNA methylation levels in the blood, which can
be identified, with a reasonable level of accuracy, the presence of MS with a simple blood
test. The physician can use the results from the blood-based biomarker combined with the
clinical assessment to decide if it is necessary to carry out further tests, such as imaging.

A very interesting area of future research is the temporal evolution of the DNA
methylation in multiple sclerosis, given the diverse evolution of the illness, particularly
the long periods of remission experienced by some patients. Further research is necessary
to determine feasibility, but it might be possible to use this type of approach for early
detection. As more data becomes available, it might be possible to distinguish between
different types of illness progression using DNA methylation data. It is possible that
differentiating between the different types of evolution might help in targeting therapies in
a more precise way.

5. Conclusions

Technical improvements are making possible the generation of large amounts of
epigenetic data, such as DNA CpG methylation data, that can be used for the detection
of several different types of illnesses, such as multiple sclerosis (MS). Multiple sclerosis is
a complex illness with genetic and environmental factors, and importantly, an uncertain
evolution with some patients experiencing long periods of remission. In this paper, we
present a technique based on the Shannon Entropy concept for the selection of CpGs as
inputs for MS identification using non-linear techniques such as artificial neural networks.
It was shown that using the proposed approach, the number of CpGs used decreased
while the accuracy of the classifications significantly improved. As more DNA methylation
data becomes available, it is important to have techniques to efficiently filter these large
amounts of information. In this regard, borrowing concepts like Shannon Entropy from
other disciplines, such as information theory, might be an interesting approach. Having
more data is likely beneficial but not all the new data will be helpful for analysis with a
large percentage potentially adding noise. Therefore, it is important to develop techniques
to further facilitate quantitative data analysis.

In the future, as more DNA CpG methylation data becomes available, it might be
possible to extend this type of analysis in order to identify patients with different types
of MS evolution. Currently, MS has no cure, but it is a field of intense research. It is
possible that differentiating between the different types of evolution might help in targeting
therapies in a more precise way, and this is a very appealing area of future research.
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Abstract: A nonlinear approach to identifying combinations of CpGs DNA methylation data, as
biomarkers for Alzheimer (AD) disease, is presented in this paper. It will be shown that the presented
algorithm can substantially reduce the amount of CpGs used while generating forecasts that are
more accurate than using all the CpGs available. It is assumed that the process, in principle, can
be non-linear; hence, a non-linear approach might be more appropriate. The proposed algorithm
selects which CpGs to use as input data in a classification problem that tries to distinguish between
patients suffering from AD and healthy control individuals. This type of classification problem is
suitable for techniques, such as support vector machines. The algorithm was used both at a single
dataset level, as well as using multiple datasets. Developing robust algorithms for multi-datasets is
challenging, due to the impact that small differences in laboratory procedures have in the obtained
data. The approach that was followed in the paper can be expanded to multiple datasets, allowing
for a gradual more granular understanding of the underlying process. A 92% successful classification
rate was obtained, using the proposed method, which is a higher value than the result obtained using
all the CpGs available. This is likely due to the reduction in the dimensionality of the data obtained
by the algorithm that, in turn, helps to reduce the risk of reaching a local minima.

Keywords: algorithm; identification; Alzheimer

1. Introduction

Alzheimer (AD) is a relatively common neurological disorder associated with a decline
in cognitive skills [1,2] and memory [3–5]. The causes of Alzheimer are not yet well
understood, even as some processes of the development of amyloid plaque seems to be
a major part of the disease [6]. The development of biomarkers [7] for the detection of
AD is of clear importance. Over the last few decades, there has been a sharp increase
in the amount of information publicly available, with researchers graciously making their
data public. This, coupled with advances, such as the possibility to simultaneously estimate
the methylation [8] levels of thousands of CpGs in the DNA, has created a large amount
of information. CpG refers to having a guanine nucleotide after a cytosine nucleotide
in a section of the DNA sequence. CpGs can be methylated, i.e., having an additional
methyl group added. The level of methylation in the DNA is a frequently used marker
for multiple illnesses [9–12], as well as a estimator of the biological age of the patient;
hence, it has become an important biomarker [13]. The computational task is rather
challenging. Current equipment can quickly analyze the level of methylation of in excess
of 450,000 CpGs [14–16], with the latest generation of machines able to roughly double
that amount [17]. As previously mentioned, methylation data has been linked to many
diseases [18–20] and it is a logical research area for AD biomarkers. An additional challenge
is that, at least in principle, there could be a highly non-linear process that is not necessarily
accurately described by traditional regression analysis. The scope would then, hence,
be to try to identify techniques that select a combination of the CpGs to be analyzed
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and then a non-linear algorithm that is able to predict whether the patient analyzed has
the disease. However, on the other hand, it would not appear reasonable to totally discard
the information presented in linear analysis. In the following sections, a mixed approach is
presented. It will be shown that the approach is able to generate predictions (classifications
between the control and patients suffering from Alzheimer).

1.1. Forecasting and Classification Models

Prediction and/or classification tasks are frequently found in many scientific and
engineering fields with a large amount of potential artificial intelligence related techniques.
The specific topics covered are rather diverse, including weather forecasts [21], plane flight
time deviation [22], distributed networks [23], and many others [24–26]. One frequently
used set of techniques are artificial neural networks. These techniques are extensively
used in many fields. There are, however, several alternatives, which have received less
attention in the existing literature (for instance, k-nearest neighbors and support vector
machines). It should be noted that the k-nearest neighbor technique is frequently used
in data pre-processing for instance in situations, in which the dataset has some missing
values and the researcher needs to estimate those (typically as a previous step before using
them as an input into a more complex model).

In our case the non-linear basic classification algorithm chosen was support vector
machines (SVM) [27–29]. The basic idea of SVM is dividing the data into hyperplanes [30]
and trying to decrease the measures of the classification error. This is achieved by following
the usual supervised learning, in which a proportion of the data are used for training
the SVM, while other portion (not used during the training phase) is used for testing
purposes only, in order to avoid to avoid the issue of overfitting [5,31]. This technique has
been applied in the context of Alzheimer for the classification of MRI images [32,33]. Some
SVM models have been proposed in the context of CpGs methylation related to AD [34].

1.2. CpG DNA Methylation

A CpG is a dinucleotide pair (composed by cytosine a phosphate and guanine),
while methylation refers to the addition of a methyl group to the DNA. Methylation
levels are typically expressed as a percentage with 0 indicating completely unmethylated
and 1 indicating 100% methylated. CpG DNA methylation levels are frequently used as
epigenetic biomarkers [35,36]. Methylation levels change as an individual ages and this
has been used to build biological clocks [37]. Individuals with some illnesses such as some
cancers and Alzheimer present deviations in their levels of methylations.

1.3. Paper Structure

In the next section a related literature review is carried out given an overview of
articles in prediction and classification. The literature review is followed by the materials
and methods section, in which the main algorithm is explained. In this section, there
is also a subsection describing the analyzed data. In Section 4 the results are presented.
This section is divided into two subsection the first one describing the results for a single
dataset and the second subsection describing the results when a multi dataset approach is
followed. The last two sections are the discussion and the conclusions.

2. Literature Review

As previously mentioned, the CpG DNA methylation data were used in a variety
of biomedical applications, such as the creation of biological clocks. For instance, Hor-
vath [38] created an accurate CpG DNA methylation clock. Horvath managed to reduce
the dimensionality of the data from hundred of thousands of CpGs analyzed per patient
to a few hundred. This biological clock is able to predict the age of patients (in years)
with rather high accuracy using as inputs the methylation data of a few hundred CpGs.
A related article is [39], in which the authors used neural networks to predict the forensic



Mathematics 2021, 9, 2482 3 of 14

age of individuals. The authors showed how using machine learning techniques could
improve the accuracy of the age forecast, compared to traditional (linear) models.

Park et al. [40] is an interesting article focusing on DNA methylation and AD. The au-
thors of this article found a link between DNA methylation and AD but similar to Horvath
paper did not use machine learning techniques. Machine learning techniques have been
applied with some success. For instance, ref. [41] used neural networks to analyze the rela-
tionship between gene-promoters methylation and biomarkers (one carbon metabolism
in patients). Another interesting model was created by [42]. In this model the authors
use a combination of DNA methylation and gene expression data to predict AD. The ap-
proached followed by the authors in this paper is different from the one that we pursued
as they increased the amount of input data (including gene expression), while we focus on
trying to reduce the dimensionality of the existing data i.e., select CpGs.

While most of the existing literature focuses on neural networks, there are also some
interesting applications of other techniques such as for instance support vector machines
(SVM). For instance, ref. [43] used SVM for the classification of histones. SVM have also
been used for classification purposes in some illnesses such as colorectal cancer [44]. Even
if SVM appears to be a natural choice for classification problems there seems to be less
existing literature applying it to DNA methylation data in the context of AD identification.

3. Materials and Methods

One of the main objectives of this paper is to be able to accurately generate classifi-
cation forecasts differentiating between individuals with Alzheimer’s disease (AD) and
control cases.The algorithm was built with the intention to be easily expandable from one
to multiple data sets. A categorical variable yi was created to classify individuals.

yj =

{
0 i f Control
1 i f AD

(1)

In this way, a vector Y = {Y1, Y2, . . . , Ync} can be constructed classifying all the existing
cases according to the disease estate (control or AD). In this notation nc denotes the total
number, including both control and AD, of cases considered. Every case analyzed (j) has
an associated vector X j containing all the methylation levels of each CpG.

X j =





X1

X2

.

.

.
Xmn





(2)

This notation is used in order to clearly differentiate between the vector (Xj) con-
taining all the methylation data for a single individual (all CpGs) from the vector (Xi)
containing all the cases for a given CpG.

Xi = {X1, X2, ...., Xnc} (3)

In a matrix notation the complete methylation data can be expressed as follows

X =




X1
1 X1

2 ... X1
nc

X2
1 X2

2 ... X2
nc

. . .

. . .

. . .
Xmn

1 Xmn
2 ... Xmn

nc




(4)
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For clarity purposes it is perhaps convenient shoving a hypothetical (oversimplified)
example, in which 4 patients (nc = 4) are analyzed (2 control and 2 AD) and that only 5
CpGs were included per patient (mn = 5). In this hypothetical example:

Y = {0, 0, 1, 1} (5)

As an example, the methylation data for patient 1 could be:

X1 =





0.9832
0.6145
0.1254
0.7845
0.6548





(6)

Similarly, the methylation data for a single CpG for all patients can be expressed as:

Xi = {0.9832, 0.3215, 0.6574, 0.6584} (7)

And the methylation data for all patients (matrix form) would be as follows:

X =




0.9832 0.3215 0.6574 0.6584
0.6145 0.6548 0.8475 0.7487
0.1254 0.6587 0.3254 0.6514
0.7845 0.3514 0.6254 0.6584
0.6548 0.6547 0.6587 0.6555




(8)

The proposed algorithm has two distinct steps. In the first step an initial filtering is
carried out. This step reduced the dimensionality of the problem. The second step is the
main algorithm. Both steps are described in the following subsections.

3.1. Initial Filtering

1. ∀Xi estimate a linear regression with Y as the dependent variable. Save the p-value for
each Xi.

2. Filter off the Xi with (p-value) < 0.005.

{X1, X2, . . . , Xmn} → {X1, X2, . . . , Xm} (9)

with m < mn.

3.2. Main Algorithm

1. Create a vector grid (D) with the each component representing the dimension (group
of Xi) includes in the simulation. Two grids are included, a fine grid with relative
small differences in the values of the elements (representing the dimensions that the re-
searcher considers more likely) and a broad grid with large differences in values.

Fine grid = {n1, n1 + ∆ns, n1 + 2∆ns, . . . , n1 + l∆ns} (10)

Broad grid = {(n1 + l∆ns) + ∆nl , (n1 + l∆ns) + 2∆nl , . . .

(n1 + l∆ns) + p∆nl}.
(11)

The values inside the above grids represent the Xi selected. As an example, n1 rep-
resents X1. ∆nl and ∆ns are the constant step increases in the fine and broad grids,
respectively. For instance, n1 + ∆nl and n1 + 2∆nl are the second and third elements in
the fine grid. The actual Xi elements related to this second and third values depend on
the actual value of ∆nl . If ∆nl = 1 then the second and third elements related to X2 and
X3, respectively, while if ∆nl = 2, then they relate to X3 and X5, respectively. Where
∆nl > ∆ns, each of these values, i.e., n1 + ∆ns is the number of xi chosen. l ∈ Z+ is a
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constant that specifies (together with nl) the total size of the fine grid, while p ∈ Z+

is the analogous term for the broad grid. For simplicity purposes the case of a fine
grid, starting a X1, followed by a broad grid has been shown but this is not a required
constraint. The intent is giving discretion to the researcher to apply the fine grid to the
area that is considered more important. This is an attempt to bring the expertise of the
researcher into the algorithm. In Equation (12) it can be seen the combination of these
two grids (D).

D = {n1, n1 + ∆ns, n1 + 2∆ns, . . . , n1 + l∆ns, (n1 + l∆ns) + ∆nl ,

(n1 + l∆ns) + 2∆nl , . . . , (n1 + l∆ns) + p∆nl}.
(12)

For clarity purposes, let simplify the notation:

D = {Sj} = {S1, S2, . . . , Sm} (13)

where Equations (12) and (13) are identical. ”S” is a more compact notation with for
instance S1 and S2 representing n1 and n1 + ∆ns, respectively.

2. Create a mapping between each xi = {X1, . . . , Xm} = {Xi}, where each Xi is a vector,
and 10 decile regions. The group of Xi with the highest 10% of the p-value are included
in the first decile and assigned a probability of 100%. The group of Xi with the second
highest 10% of the p-value are included in the second decile and assigned a probability
of 90%. This process is repeated for all deciles creating a mapping.

{X1, . . . , Xm} → B{1.0, 0.9, 0.8, . . . , 0.1} (14)

Where B is a vector of probabilities. In this way, the Xi with the largest p-values are
more likely to be included.

3. For each Sj generate ∀Xi, i=1,. . . ,m, a random number Ri with (0 ≤ Ri ≤ 1). If Ri >
B{Xi} then Xi is not included in the preliminary Sj group of Xis. Otherwise it is
included. In this way a filtering is carried out.

{X1, . . . , Xm} → {X1, . . . , Xm∗} ∀Sj (15)

4. Randomly Sj elements of m∗ are chosen.
5. Estimate the Hit Ratio (HR)

HR =
CE
TE

(16)

where TE is the total number of classification estimations and CE is the number of
correct classification estimates.

6. Repeat steps (3) to (6) k times for each Sj. In this way there is a mapping:

{S1, . . . , Sm} → {HR(S1), . . . , HR(Sm)} (17)

Remark 1. An alternative approach would be choosing the starting distribution Sj as the one
after which the mean value of the HR does not statistically increase at a 5% confidence level.

7. Define new search interval between the two highest success rates:

max{HR(S1), . . . , HR(m)} → S1
max (18)

max{HR(S1), . . . , HR(m)} < S1
max → S1

max−1 (19)

Iteration 1 (Iter=1) ends, identifying interval:

{S1
max, S1

max−1} (20)
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Remark 2. It is assumed, for simplicity, without loss of generality that S1
max < S1

max−1.
If that it is not the case then the interval needs to be switched ({S1

max−1, S1
max}).

8. Divide the interval identified in the previous step into k− 1 steps.

{S1, . . . , Sk} (21)

where S1 = S1
max and Sk = S1

max−1
9. Create a new mapping estimating the new hit rates (following the same approach as

in previous steps)
{S1, . . . , Sk} = {HR(S1), . . . , HR(Sk)} (22)

10. Repeat Itert times until the maximum number of iterations (Itermax) is reached.

Itert ≥ Itermax (23)

or until the desire hit rate (HRdesired) is reached

HR(S) ≤ HRdesired (24)

or until no further HR improvement is achieved. Select St
max.

A few points need to be highlighted. It is important to reduce the number of combina-
tions to a manageable size. For instance, assuming that there are “m” Xi (after the initial fil-
tering of p-Values) there would be (m

r ) combinations of size r. The well known equation (25)
can be used.

m

∑
r=0

(
m
r

)
= 2m ∀m ∈ N+ (25)

Assuming that at least one of the Xi is selected:

m

∑
r=0

(
m
r

)
=

m

∑
r=1

(
m
r

)
+

(
m
0

)
= 2m (26)

m

∑
r=1

(
m
r

)
= 2m − 1 (27)

For large m values the −1 term is negligible.
In the initial step the problem of having to calculate the estimations for 2m combina-

tions is simplified into calculating a q2q combinations with q < m. If for example, q = m/10,
then the problem is reduced form 210q to 102q combinations. It can be proven that:

210q > 10 · 2q ∀q ≥ 2 (28)

Proof. Using induction. Base case (q=2). 210(k) = 220 = 1, 048, 576; 10 · 2q = 10 · 22 = 40.
1, 048, 576 > 40. Therefore, the base case is confirmed. Assume:

210k > 10 · 2k f or some k ≥ 2 (29)

induction hypothesis
210(k+1) > 10 · 2k+1 (30)

210(k+1) = 210k210 > 10 · 2k210 = 10 · 2k229 = 10 · 2k+129 > 10 · 2k+1 (31)

which completes the proof by induction.
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3.3. Data

The methylation data set (Table 1) were obtained from the GEO database and the cor-
responding accession codes are shown in the table. The methylation data in these two
experiments was obtained following similar approaches and both experiments used an Il-
lumina machine. The raw data were structured in a matrix form. For clarity purposes
a sample for an specific individual is shown in Table 2. In this table it can be seen the methy-
lation level for all 481,868 CpGs analyzed for a single patient. In the second column it can
be seen the identification number for each specific CpG, while in the third column the level
of methylation for each specific CpG is shown. Please notice that this is a percentage
value ranging from 0 (no methylation) to 1 (fully methylated). Additionally, each patient
in the database will be classified according to a binary variable showing if the patient has
Alzheimer of if he/she is a healthy control individual. The binary classification variable
can be seen in the last row of the table (it is either a 0 or a 1).

Table 1. Methylation data sets included in the analysis.

GEO Code Cases Tissue Illness

GSE66351 190 Glian and neuron AD and control
GSE80970 286 Pre-frontal cortex and gyrus AD and control

Table 2. Single patient methylation data.

Number CpG (Indetifier) Methylation Level

1 cg13869341 0.89345
2 cg14008030 0.71088

. . . . . . . . .
481,868 cg05999368 0.51372

AD/Control 0

Hence, the problem becomes a classification problem, in which the algorithm has
to identify how many and which CpGs to use in order to appropriately classify the indi-
viduals in the two categories (AD and healthy). A oversimplified sample (not accurate
for classification purposes but rather clear for explanation purposes) is shown in Table 3.
In this (unrealistic) case only two CpGs were selected for each patient.

Table 3. Single patient methylation data.

Number CpG (Indetifier) Methylation Level

2 cg14008030 0.71088
481,868 cg05999368 0.51372

AD/Control 0

It is perhaps easier to conceptualize if the number and the CpG identifier are omitted
and several patients are shown (Table 4). This table shows the results (for illustration
purposes only) of an unrealistic case, in which the algorithm selects only two CpGs for
each patient. Three patient in total are shown, two are control patients and one has AD.
This clearly illustrates the objective of the algorithm, which is Selectric the CpGs (rows
in this notation) to classify each patient (columns in this notation) according to a binary
variable (last row in this notation).
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Table 4. Multiple patient methylation data.

Patient 1 Patient 2 Patient 3

0.71088 0.63174 0.72582
0.51372 0.62145 0.43212

0 1 0

In this notation, the Table 4 is the solution generated by the algorithm when presented
with the original data of the form shown in Table 5. Table 5 shows all the potential
input variables X j

i (to be selected) where, as previously mentioned, ”i” identifies all the
potential CpGs per patient and the index ”j” identifies the patient. The variable Yi is
the binary variable associated with each patient differentiating between healthy an AD
individuals. When expressed in this notation, it is easy to see that the problem boils down
to a classification problem, suitable for techniques such as support vector machines.

Table 5. Multiple patient methylation data (general data structure).

Patient 1 Patient 2 Patient 3

X1
1 X2

1 X3
1

X1
2 X2

2 X3
2

. . . . . . . . .

X1
481,868 X2

481,868 X3
481,868

Y1 Y2 Y3

4. Results
4.1. Single Data Set

Initially a first estimation using all the available CpGs and a support vector machine
classifier was used. The age of the patient (Table 6) was one of the main factors affecting
the accuracy of the patient classification using the data set GSE 66351. Controlling for age
allowed for better HR rates. Controlling for other variables, such as gender, cell type, or
brain region did not appear to improve the classification accuracy . Three different kernels
were used (linear, Gaussian, and polynomial), with the best results obtained when using
the linear kernel.

Table 6. Hit Rate (HR) of SVM with 3 different kernels for Alzheimer classification (versus control
patients), using all the CpGs available (481,778) and controlling for different factors, such as age,
gender, cell type, or brain region (GSE 66351 test data).

Controls HR (Linear) HR (Gaussian) HR (Polynomial) CpGs

None 0.8211 0.7921 0.8167 All
Age 0.8947 0.8142 0.8391 All

Gender 0.8211 0.7921 0.8167 All
Cell type 0.8211 0.7921 0.8167 All

Brain Region 0.8211 0.7921 0.8167 All

In the initial filtering stage the linear regression between each CpGs (Xi) and the vector
classification (identifying patients suffering from Alzheimer and control patients was
carried out and the p-values stored. CpGs with p-values higher than 0.05 were excluded.
The remaining 41,784 CpGs were included in the analysis. It can be seen in Table 7 that as
in the previous case controlling for age did improve the HR.The linear kernel was used.
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Table 7. HR of SVM for Alzheimer classification (versus control patients), using all CpGs with
p-values < 0.05 (41,784) and controlling for different factors, such as age, gender, cell type, or brain
region (GSE 66351 test data).

Controls Hit Rate CpGs

None 0.7263 41,784
Age 0.8424 41,784

Gender 0.7263 41,784
Cell type 0.7263 41,784

Brain Region 0.7263 41,784

In Figure 1 it is shown that it is possible to achieve high HR using a subset of the CpGs.
This HR is higher than the one obtained using all CpGs. As in all the previous cases,
the HR rate showed is the out-of-sample HR, i.e., the HR obtained using the testing data
that were not used during the training phase. The SVM was trained with approximately
50% of the data contained in the GSE 66351 data set. The testing and training datasets
were divided in a manner that roughly maintained the same proportion of control and
AD individuals in both datasets. 10-fold cross validation was carried out to try to ensure
model robustness. The SVM used linear kernel. The analysis in this figure was carried
out controlling for age, gender, cell type and brain region. As in previous cases, the only
factor that appears to have an impact on the calculation, besides the level of methylation of
the CpGs, was the age. In total, 190 cases of this database was used for either training or
testing purposes. The maximum HR obtained was 0.9684, obtained while using 1000 CpGs.
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Figure 1. Max Hit Rate (HR) versus number of CpGs included in the analysis.

Figure 2 shows the alternative approach mentioned in the methodology, rather
than the maximum HR rate obtained the figure shows the average HR obtained at each
level(number of CpGS) and its related confidence interval (5%). It is clear from both
Figures 1 and 2 that regardless of the approach followed it appears that after a certain
amount of CpGs adding additional CpGs to the analysis does not further increased the HR.
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Figure 2. Average Hit Rate (HR) and confidence interval (5%) versus number of CpGs included
in the analysis.

4.2. Multiple Data Sets

One of the practical issues when carrying out this type of analysis is the lack of con-
sistency between databases, even when there are following similar empirical approaches.
As an example, in the case of the GSE66351 dataset a total of 41,784 CpGs were found to be
statistically significant (after data pre-processing). Of these 41,784 CpGs only 18.98% (7929)
were found to be statistically significant (same p-value) in the GSE80970 dataset. This is
likely due to subtle different in experimental procedures. In order to overcome this issue
only the 7929 CpGs statistically significant CpGs were used when analyzing these two
combined datasets. Besides this different pre-filtering step the rest of the algorithm used
was as described in the previous section. Both data sets were combined and divided into
a training and a test data set.

One of the main differences in the results, besides the actual HR, is that including
the age of the patient in the algorithm (using these reduced starting CpG pools) did not
appear to substantially increase the forecasting accuracy of the model. The best results
when using this approach were obtained when using 4300 CpGs with a combined HR
(out of sample) of 0.9202 (Table 8). The list of the 4300 CpGs can be found in the supple-
mentary material.

Table 8. HR of SVM for AD vs. control patients using 4300 CpGs.

Controls Hit Rate CpGs

GSE66351 0.8710 4300
GSE80970 0.9517 4300

All 0.9202 4300

Following the standard practice [45] the sensitivity, specificity, positive predictive
value (PPV) and negative predictive ratio (NPV) were calculated for all the testing data
combined as well as for the testing data in the GSE66351 and GSE80970 separately, Table 9,
using the obtained model (4300 CpGs) All the cases included in the analysis are out-of-
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sample cases, i.e., not previously used during the training of the support vector machine.
It is important to obtain models that are able to generalize well across different data sets.

Table 9. Classification ratios (out-of-sample), including positive predictive value (PPV) and negative
predictive ratio (NPV).

Ratio All GSE66351 GSE80970

Sensitivity 0.9007 0.8333 0.9506
Specificity 0.9485 0.9394 0.9531

PPV 0.9621 0.9615 0.9625
NPV 0.8679 0.7561 0.9385

5. Discussion

In this paper, an algorithm for the selection of DNA methylation CpG data is pre-
sented. A substantial reduction on the number of CpGs analyzed is achieved, while
the classification precision is higher than when using all CpGs available. The algorithm
is designed to be scalable. In this way, as more data set of Alzheimer DNA methylation
become available, the analysis can be gradually expanding. There appear to be substantial
differences in the data contained in the data sets analyzed. This is likely due to relatively
small experimental procedures. There results obtained (two data sets) are reasonably
precise with a sensitivity of 0.9007 and a specificity of 0.9485, while the PPV and the NPV
were 0.9621 and 0.8679, respectively. It was also appreciated that when using large amounts
of CpGs controlling for age was a crucial steps. However, as the number of CpGs selected
by the algorithm decreased, the importance of controlling for age also decreased. Given
the large amount of possible combinations of CpGs it is of clear importance to develop algo-
rithm for their selection. As an example, it is clearly not feasible to calculate all the possible
combinations of a data set composed by 450,000 CpGs.

The results highlight the necessity to reduce the dimensionality of the data. This is
not only in order to facilitate the computations but from a purely statistical point of
view, as well. Ideally the number of factors considered should be of the same order of
magnitude than the number of samples. In this situation there is a large amount of factors
(+450,000) per individual but a relatively small number of individuals. Besides some very
specific trails, such as the ongoing SARS-CoV-2 (COVID-19) trials of some vaccines, it is
very unlikely to have a cohort of patients and control individuals approaching 450,000.
The accuracy of the forecasts increases when the dimensionality of the data are reduced.
This is likely due to a reduction of the risk of the algorithm reaching a local minima.

Several methodological decisions were made in order to try to improve the generaliza-
tion power of the model, i.e., the ability to generate accurate forecast when faced with new
data. One of this decisions was to have a large (50%) testing dataset and to have a process
that can accommodate for multiple datasets as they become available.

6. Conclusions

Having techniques that can determine if an individual has Alzheimer disease is likely
going to become increasingly important. This area of research has, arguably, not received
enough attention in the past. This is probably due to the fact that there was no treatment
available. This has recently changed, with the FDA approving [46–49] the first drug for
the treatment of Alzheimer disease (there were drugs before targeting some of the effects
of the illness but not the actual illness itself).

The results, for instance, in Table 9, suggest that the approached followed can gener-
ate an accurate forecast (out-of-sample), when using a multi dataset approach, which is
a significant development, with, for instance, the sensitivity and the specificity reaching,
respectively, 0.9007 and 0.9485 values, when using 4300 CpGs. The obtained positive
predictive value (PPV) and the negative predictive value (NPV) were also relatively high,
coming in at 0.9621 and 0.8679, respectively. The results also indicate (Figures 1 and 2) that
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increasing the number of CpGs does not improve the forecast. This is very likely related to
the issue of local minima.

It is also important to remark that, as more data becomes available, the algorithm
could be used to classify between healthy and AD patients following a less invasive
approach. Most of the currently available methylation data are related to brain tissue that
requires an invasive procedure to be obtained. However, methylation datasets in numerous
other illnesses already exist, using blood. As blood-based datasets become available,
the algorithm presented in this paper can be easily applied to those, potentially becoming
an additional practical tool for diagnosis of the illness. There are also several interesting
lines of future work. For instance, the addition of new datasets as they become gradually
available.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-739
0/9/19/2482/s1.
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Abstract: Huntington Disease (HD) is a degenerative neurological disease that causes a significant
impact on the quality of life of the patient and eventually death. In this paper we present an approach
to create a biomarker using as an input DNA CpG methylation data to identify HD patients. DNA
CpG methylation is a well-known epigenetic marker for disease state. Technological advances
have made it possible to quickly analyze hundreds of thousands of CpGs. This large amount of
information might introduce noise as potentially not all DNA CpG methylation levels will be related
to the presence of the illness. In this paper, we were able to reduce the number of CpGs considered
from hundreds of thousands to 237 using a non-linear approach. It will be shown that using only these
237 CpGs and non-linear techniques such as artificial neural networks makes it possible to accurately
differentiate between control and HD patients. An underlying assumption in this paper is that there
are no indications suggesting that the process is linear and therefore non-linear techniques, such as
artificial neural networks, are a valid tool to analyze this complex disease. The proposed approach is
able to accurately distinguish between control and HD patients using DNA CpG methylation data
as an input and non-linear forecasting techniques. It should be noted that the dataset analyzed is
relatively small. However, the results seem relatively consistent and the analysis can be repeated
with larger data-sets as they become available.

Keywords: Huntington disease; DNA methylation; neural networks

1. Introduction

Huntington disease (HD) is a neurological progressive disorder [1–4]. The typical
onset of the illness is in mid-adult life [5–7] causing uncontrolled movements as well as
declining cognitive and reasoning skills. The disease is associated with a mutation of a gene
in Chromosome 4 [8–10] related to the gene encoding for the protein huntingtin [11–13].
There are also other proteins associated with the illness. Vonsattel [14] estimates that death
typically occurs approximately 12 to 15 years after the onset of symptoms but some other
authors have mentioned a slightly longer period, approximately 15 to 20 years [15,16].

Ross [17] identified three clinical stages of the disease: (1) early-stage, (2) middle-stage
and (3) late-state. In the early-stage phase the symptoms are relatively minor with some
moderate decrease in motor skills (including some involuntary movements) as well as
increased irritability. In the middle-stage phase typically the symptoms are more apparent
with a visible decrease in motor and cognitive skills. The late-stage is the third and final
stage. In this phase the patient tends to have severe reduction in motor and cognitive skills
with in many cases the patient unable to leave the bed or communicate. Regrettably, there
is no cure for HD.

Currently there is genetic testing available for HD [18–20], which is typically only
carried out when there is significant clinical evidence or family history suggesting the
presence of HD. There are also economic costs to take into account when carrying out
tests. This paper presents a complementary approach for the detection of HD using DNA
methylation data [21–23]. DNA methylation data has been associated with many diseases,
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particularly in illnesses such as different types of cancers. DNA methylation analysis is a
relatively inexpensive and simple technique.

In simple terms, DNA CpG methylation consists of the addition of a methyl group
to a cytosine-phosphate-guanine group as illustrated in Figure 1. DNA methylation is a
well-known epigenetic change [24–26]. Current laboratory equipment can quickly analyze
more than 450,000 CpGs per patient. It should be noted that the resulting data will consist
of a percentage value ranging from 1, meaning that it is fully methylated, to 0, meaning
that it is entirely unmethylated. It should also be noted that there is a new generation of
equipment that can analyze in excess of 800,000 but this equipment is not yet as widely
used as the 450,000 CpGs equipment.

Figure 1. Illustration showing the concept of DNA methylation.

There is a significant amount of literature using DNA CpG methylation data in fields
such as aging [27–29], cancer [30–32], Alzheimer [33–35] and Multiple Sclerosis [36]. A
common approach in the existing literature is trying to identify relevant CpGs using linear
methods. However, in principle there is no indication that the underlying DNA methylation
process of aging or of any these illnesses needs to follow a linear behaviour. There are some
papers using non-linear methods. For instance, Vidaki [37] analyzed DNA methylation
data using neural networks for forensic age purposes. Marchevsky [38] used a similar
approach but in this case applied to the classification of different types of lung cancers.
In fact, one of the most frequent applications is in the classification of different types of
cancers or in differentiating between control and cancer patients [39–44]. This approach has
also been applied in the context of some neurological illnesses, such as Alzheimer [45,46].

Huntington disease has attracted less interest in the existing literature than other
neurological diseases such as Alzheimer. However, there are some interesting articles
exploring the disease in the context of DNA methylation [47–49]. To the best of the
knowledge of the authors of this article, the existing literature covering Huntington in the
context of DNA methylation follows a linear approach.

2. Aims

One of the main aims of this article is to provide alternative approaches to detect
Huntington Disease using available and relatively straightforward techniques based on
DNA methylation. Currently there are no treatments for HD but we are relatively optimistic
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that eventually there will be some treatment break through. It is acknowledged that there
remains significant technical hurdles but when treatments are developed it would be useful
to have techniques for screening.

3. Materials and Methods

A classification variable Yi was defined for each case as follows.

yi =

{
0 i f Control
1 i f Huntington

(1)

Therefore for m cases analyzed there is a vector Y

Y = {y1, . . . ., ym} (2)

There is also an associated vector for each variable yi containing the methylation levels
for n CpGs.

Xp =





X1
p

X2
p

.

.

.
Xn

p





(3)

Hence, the dataset can be visualized as follows:




y1 y2 . . . ym

X1
1 X1

2 . . . X1
m

X2
1 X2

2 . . . X2
m

. . .

. . .

. . .
Xn

1 Xn
2 . . . Xn

m




(4)

The dimensionality of the problem can be defined as n.

3.1. Algorithm

First, the dimensionality of the dataset is reduced. Each CpG is used (individually) as
an input for a classification algorithm. The steps are as follows:

1. Select a classification algorithm ϕ using each CpG (individually) as an input and
the classification variable as output ϕ(Xi, y). In this notation Xi refers to the vector
containing the methylation data for all the cases analyzed for a single CpG.

xi = {Xi
1, Xi

2, . . . , Xi
m} (5)
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2. Separate the data into a training and a testing dataset. For clarity purposes the training
and testing datasets are labeled A and B respectively.

A =




y1 y2 . . . yk

X1
1 X1

2 . . . X1
k

X2
1 X2

2 . . . X2
k

. . .

. . .

. . .
Xn

1 Xn
2 . . . Xn

k




(6)

B =




yk+1 yk+2 . . . ym

X1
k+1 X1

k+2 . . . X1
m

X2
k+1 X2

k+2 . . . X2
m

. . .

. . .

. . .
Xn

k+1 Xn
k+2 . . . Xn

m




(7)

3. Train the non-linear algorithm with the training dataset (ϕ(A)).
4. Estimate classification forecasts

YP = {YPk+1, . . . , YPm} (8)

using the testing dataset and the trained algorithm (ϕ(B))
5. Estimate the accuracy of the forecast (YP) comparing it with the actual values

{yk+1, yk+2, . . . , ym}
(a) For l = k + 1 to m

i f

{
YPl = Yl then al = 1

else al = 0
(9)

(b) Estimate the accuracy

Fi =

{
m

∑
l=k+1

al

}
1

(m− k)
(10)

6. Repeat steps 2 to 5, k times.
7. Estimate the average of the accuracy {Fi

1, . . . , Fi
k}.

MFi =
1
k ∑ Fi (11)

8. Repeat steps 1 to 8 (estimating forecasting accuracy individually for each CpG).

MF = {MF1, . . . , MFn} (12)

9. Define a cut off level (MFc).
10. Exclude from the analysis all MFi < MFc.
11. Create a new list of CpGs according to the condition shown in the previous step.

MFnew = {MF1
∗ , . . . , MFnn

∗ } with nn ≤ n. (13)
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Note: the dimensionality has been reduced from n to nn.

In the second part of the algorithm a combinatorial approach was followed. The start-
ing point of this second part is the already filtered CpG list with the previously mentioned
dimensionality reduction from n to nn. The steps of the second part are as follows:

1. Starting with the reduced list of CpGs. As an example, patient p will now have
associated the following CpGs.





X∗1p

X∗2p

.

.

.
X∗nn

p





(14)

Notice again the reduction in the dimensionality from n to nn (nn < n).
2. The data, as in the first part of the algorithm, was divided into a training and a testing

datasets denoted this time as A∗ and B∗.

A∗ =




y1 y2 . . . yk

X∗11 X∗12 . . . X∗1k

X∗21 X∗22 . . . X∗2k

. . .

. . .

. . .
X∗nn

1 X∗nn
2 . . . X∗nn

k




(15)

B∗ =




yk+1 yk+2 . . . ym

X∗1k+1 X∗1k+2 . . . X∗1m

X∗2k+1 X∗2k+2 . . . X∗2m

. . .

. . .

. . .
X∗nn

k+1 X∗nn
k+2 . . . X∗nn

m




(16)

3. Train the non-linear algorithm with the training dataset (ϕ(A∗)).
4. Estimate classification forecasts

YP∗ = {YP∗k+1, . . . , YP∗m} (17)

using the reduced testing dataset and the trained algorithm (ϕ(B∗)).
5. Estimate the accuracy of the forecast (YP∗) comparing it with the actual values

{Yk+1, Yk+2, . . . , Ym}
(a) For l = k + 1 to m

i f

{
YP∗l = Yl then al = 1

else al = 0
(18)

(b) Estimate the accuracy
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F∗ =

{
m

∑
l=k+1

al

}
1

(m− k)
(19)

6. Repeat steps 2 to 5, k times.
7. Estimate the average of the accuracy {F∗1 , . . . , F∗k }.

MF∗ =
1
k ∑ F∗ (20)

8. Reduce the number of of CpGs considered by one (randomly selected). Hence, the
dimensionality is reduced from nn to nn-1. As an example, the initial reduced CpG
list for patient p was:





X∗1p

X∗2p

.

.

.
X∗nn

p





(21)

After this step the new CpG list is:




X∗∗1p

X∗∗2p

.

.

.
X∗∗(nn−1)

p





(22)

9. Repeat steps 2 to 5 with the new CpG list (of dimensionality nn−1).
10. Estimate the average (MF∗∗) of the accuracy {F∗1 , . . . , F∗k }.
11. Choose between the previous and the current configuration

(a) If MF∗∗ > MF∗, then accept the CpG list used to obtain MF∗∗ as the current
best list. MFCurrent = MF∗∗.

(b) If MF∗∗ ≤ MF∗, then reject the CpG list used to obtain MF∗∗ and continue
using the previous list. MFCurrent = MF∗.

12. Repeat steps 8 to 11 until:

(a) The number of iterations reaches a predetermined level (itermax)
or

(b) MFcurrent ≤ MFp, where MFp is a predetermined acceptable value for the
accuracy level.

3.2. Data

DNA methylation data was obtained from the GEO database with the accession code
GSE 147004 [49]. The dataset contains DNA methylation data for 76 samples, including
24 control (healthy), 19 HD pre-manifest and 33 HD manifest. The manifest and the pre-
manifest sets were grouped together. The dataset contains 485,512 CpG DNA methylation
data per patient. The samples were obtained from blood (buffy coat). Age and body fat
index data are also available. As previously mentioned the methylation data is expressed
as a percentage value (from 0 to 1) with a value of 1 suggesting full methylation. Healthy
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(control) cases were assigned the categorical variable 0 while HD patients were assigned the
categorical variable 1. For clarity purposes some potential values for “A” are shown below.

A =




0 0 . . . 1
0.651094 0.650451 . . . 0.634303
0.960434 0.954877 . . . 0.957124

. . .

. . .

. . .
0.077337 0.063247 . . . 0.090948




(23)

where the values in the first row identify healthy cases (with a “0” categorical value) and
HD patients (with a “1” categorical value). All the other rows represent the methylation
level of different CpGs expressed as a percentage value. For instance, the second row is
associated with one CpG (cg00000029), the third row with a different one (cg00001108) and
so on. Some DNA methylation values from an illustrative patient can be seen below.




cg00000029 0.651094
cg00000108 0.960434
cg00000109 0.899284

. .

. .

. .




(24)

3.3. Artificial Neural Networks

The classification technique used was an artificial neural network. Neural networks
are a flexible approach that have been used successfully in multiple disciplines, including
illness identification using DNA methylation data. One of the advantages is that neural
networks do not require previous knowledge of the process to be model.It should be
noted that the algorithm was constructed in a generic way to allow for the use of other
classification techniques. An artificial neural network (ANN) is a well-known technique,
inspired by the human brain. The basic component of an ANN is an artificial neuron which
in basic terms is a mathematical function translating some input signal into an output signal.
The artificial neuron has a related weight associated with it. This weight is a value that it
is calibrated during a training phase. There are many training algorithms. The objective
of these training algorithms is to minimize the classification error when comparing the
actual output value with the output generated by the neural network. Artificial neurons
are typically arranged in layers. One critical factor when deciding the architecture of the
neural network is to decide the number of layers. In this paper we tested several ANN
configurations with the number of layers ranging from 1 to 10. There is no clear definition
of the concept of deep learning but it is typically assumed that a neural network with
several layers can be considered deep learning. The analysis was carried out, using the
standard approach, dividing the dataset in a training dataset and a testing dataset. The
training data set contained approximately two thirds of the cases (66.6%) and the testing
data set one third (33.3%). Unless otherwise stated the forecasting accuracy refers to than
in the testing dataset. Each hidden layer contained 100 sigmoid neurons and the maximum
number of iterations was 1000. The analysis was also repeated using only the pre-manifest
and control cases (excluding the manifest cases). In this second approach the number of
cases is lower. In order to focus on out-of-sample precision the training and the testing data
set were divided into two data sets of roughly equal dimensions.

3.4. Similarities and Differences with Previously Published Research

Although they differ quite a bit from our field of application, some authors have also
carried out a methodological approach similar to that of our study, having used computer-
assisted diagnostic strategies for the detection of neurodegenerative diseases. For this
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purpose, they have used, for example, the pooled analysis of information from clinical
information, such as Lones et al. who designed an algorithm based on the collection of
information related to movement disorders in patients with Parkinson’s disease (PD). To
this end, they performed continuous monitoring of dyskinesia in six patients with PD
using a device that comprised a tri-axial accelerometer and tri-axial gryoscope [50]. Other
authors have also carried out machine-learning approaches based on diagnostic imaging
information, such as Elahifasaee et al., who designed an algorithm for the classification of
diagnostic images compatible with Alzheimer’s disease (AD). To do this, they used a feature
decomposition and kernel discriminant analysis (KDA) applying it to information from
MR brain images from 830 subjects comprising 198 AD patients [51]. Other more recent
studies have also carried out a methodological approach more similar to ours, having used
strategies based on artificial intelligence for the detection of neurodegenerative diseases,
although also based on clinical or neuroimaging information [52,53]. However, very few
investigations use this methodology for the design of diagnostic algorithms based on
information from molecular studies. Bahado-Singh et al. devised a predictive model for the
diagnosis of cerebral palsy using information about DNA epigenetic profiles. These authors
are the first to mention the concept of deep learning that we have discussed previously [54].
Something more similar to our research would be the work published a few months ago
by Sh et al. because like us, these authors use information from the GEO database. Using
a machine-learning model, they have identified the role of natural killer T cells (NKT)
and granulocyte macrophage progenitor (GMP) in the aetiology of AD. To do so, they
relied on information from mRNA data from blood from 711 subjects, including the control
group (238 patients), mild cognitive impairment (189 patients), and AD (284 patients) [55].
Nevertheless, there are no studies with these methodological approaches that are based on
epigenetic information and are focused on Huntington’s disease (HD), so the present study
would be a first in this regard. In accordance with what we have commented on previously,
there are studies that use artificial intelligence formulas as a diagnostic resource, but they
are based on information from neuroimaging tests [56,57]. Perhaps the closest thing are
studies based of genomic information. Lovrecic et al devised a diagnostic algorithm based
on the expression of 12 candidate genes [58]. A decade later, the same research group
used machine learning techniques to study these genes and discovered that two of them
(ARFGEF2 and GOLGA8G) were significantly up-regulated [59]. All the same, as we
initially stated, the use of artificial intelligence strategies based on epigenetic information
for the diagnosis of HD was an unprecedented topic until nowadays.

4. Results

The results for the first part of the algorithm can be seen in Figure 2. The most
accurate classifications were obtained when using a four layers ANN. Further increases
in the number of layers did not appear to increase the accuracy of the forecasts. It can be
seen that the initial increase in the number of layers did improve the accuracy but after
reaching four layers the process seems to have reached a plateau. It should be noted that
the computational time required to carry out this analysis was rather substantial. For
instance, it required 3.45 days to obtain the results for a one-layer ANN architecture and
10.38 days for a 10-layer architecture. The training process, as shown in Table 1, required
significant time. However after training, the application to data from a new patient requires
negligible time (a few seconds). The scaled conjugate gradient training algorithm generated
better forecasts than other training algorithms such as one-step secant backpropagation
or resilient backpropagation. All the calculations were done with an Intel(R) Core(TM)
i5-4590 3.3 GHz computer. There are some options to reduce the computational type. For
instance, the algorithm was designed in order to make it easily parallelizable, particularly
the dimensionality reduction part. This algorithm can be distributed in several computers
in a cluster with each computer analyzing a different group of CpGs.
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Figure 2. Forecasting accuracy and required computational time using different ANN architectures.

The second part of the algorithm further increased the accuracy of the forecasts. The
best results are, similar to the previous case, obtained when using an artificial neural
network with four layers (Table 1). Deeper artificial neural networks, such as the one using
ten hidden layers, did not improve the results obtained using four layers. The sensitivity
and specificity (Table 2) were 0.95 and 0.80 respectively with a final list of 237 CpGs,
representing a very substantial reduction from the initial 485,512 available CpGs. The
complete 237 CpG list can be found in the supplementary material. Controlling for age and
body mass index did not impact the classifications obtained.

Table 1. Forecasting precision obtained with the different neural network configurations (after the
second part of the algorithm). The second column shows the results using control, pre-manifest
and manifest cases while the third column includes only control and pre-manifest cases. The fourth
column shows the computational time required for training the neural network.

N. Layers Max Precision Max Precision Training Time
(Control & Manifest &

Pre-Manifest)
(Control &

Pre-Manifest) (Days)

1 0.80 0.76 3.45
2 0.84 0.81 3.78
3 0.88 0.86 4.12
4 0.92 0.81 4.61
5 0.88 0.76 5.82
6 0.88 0.71 6.17
7 0.84 0.71 7.56
8 0.80 0.67 8.43
9 0.80 0.67 9.62
10 0.84 0.62 10.38

Table 2. Forecasting accuracy results.The second column shows the results using control, pre-manifest
and manifest cases while the third column includes only control and pre-manifest cases.

Field Control & Manifest Control
& Pre-Manifest (%) & Pre-Manifest (%)

Correct classification 0.92 0.86
Sensitivity 0.95 0.88
Specificity 0.80 0.80
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5. Discussion

Huntington disease is a degenerative illness currently without a cure. However, it
is an area of very active research and it is possible that in the future there will be some
treatments. Currently there are some specific genetic tests that can identify the illness
however they are typically only prescribed when there are clear indications of the illness
such as clinical evidences or family history. When treatments become available it is likely
that early detection becomes crucially important. In this regard it would be interesting to be
able to detect the illness in general blood tests as early as possible. Blood DNA methylation
data can be obtained through an inexpensive a relatively quick test that can be carried out
and used to test for indications of multiple different illness, such as cancer, and it is likely
that in the future this type of test will become more widespread. Using the same basic
blood DNA methylation data when testing for other illnesses it may be possible to test for
indications of HD as well.

Increasing our understanding of the DNA methylation dynamics in the context of
Huntington, such as for instance identifying relevant CpGs as well as improving our search
algorithms, can encourage other researchers to obtain more DNA methylation data which
in turn can be used to develop more accurate models, in this way creating a positive
feedback loop. This is particularly important because while there is a significant existing
body of research covering the topic there is much less research than in other degenerative
neurological diseases, such as Alzheimer.

From a computational point of view the results show that increasing the complexity
of the models beyond a certain point did not translate into an increase in the forecasting
accuracy. The best results were obtained using four layers. It is however possible that,
using larger datasets, the complexity of the models i.e., the number of layers, might need
to be further increased but there is clearly an upper limit. There is also a clear trade-off
between the complexity of the model and the required computational time, with some of
the models tested requiring in excess of ten days of computing power. Controlling for age
and body mass composition did not appear to change the forecasts. However, this might
be due to a relatively small data set.

The case of pre-manifest cases was also analyzed independently. It was shown that
the accuracy of the classification was relatively high when using only pre-manifest and
control cases (excluding HD manifest cases). It should be noted that the accuracy when
using this approach (pre-manifest and control only) was high, but lower than that obtained
using all cases (control, pre-manifest and manifest), which might be due to a relatively
small sample size.

6. Future Research and Limitations

As a line of future research it will be interesting to have access to large data sets that
will likely help further improving the accuracy of the model. The relatively small size of the
data pool is one of the limitations of this paper. It would be interesting to have reasonably
large sets of data at different stages of the illness (not only pre-manifest and manifest) in
order to identify the progressions. This systematic, machine-learning driven approach,
may prove to be important when comparing different types of potential future medications
and their impact on the progression of the illness with quantifiable changes in the level of
DNA methylation.

It might be possible to carry out the same type of analysis using some non-invasive
biomarkers such as saliva or urine, rather than blood. This will have certain advantages
with less discomfort for patients and easier collection. So far we have not found data linking
DNA methylation in saliva or urine to HD but it is possible that it can be successfully used
to determine the presence of the illness. Based on the experience with other illnesses it is
likely that there is a different DNA methylation pattern. This would be another interesting
line of future research.

The presented approach to identify relevant combinations of CpGs can be used for
other diseases, as long as there is existing DNA methylation data. Similarly, the algorithm
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was designed to allow for other training techniques besides artificial neural networks. This
is potentially an interesting area of future research.

Another very interesting area of future research is longitudinal analysis. Analyzing
DNA methylation changes as the illness progress could be used to quantitatively map the
progression of the illness. Another important application of longitudinal analysis, after the
above mentioned mapping is created, is as a quantitative measure of the impact of potential
treatments in the progression of the illness. This is a very promising field of research but
unfortunately there is currently not enough data available to be carried out and would
ideally require the monitor of patients over extended periods of time. Longitudinal analysis
could potentially greatly help enhancing the knowledge of the progression of the illness.
Artificial intelligence techniques, such as neural networks, could be a very interesting tool
for analyzing this type of complex and data driven analysis.

7. Conclusions

Huntington disease is a devastating illness. There are several research groups working
on potential treatments for this illness but as of now there is no cure. We are cautiously
confident that eventually there will be a treatment. As previously mentioned, we do not
suggest carry out mass screening at the moment, but when a treatment is developed it will
likely be important to have ways to detect the illness, particularly when using general test
in patients that might be asymptomatic. It is likely that when such treatment arises early
detection will be important. In this scenario, of a treatment available, such a tool could be
used as pre-screening with the healthcare professional taking care of the patient to decide
if it is appropriate to refer the patient to a specialist or to carry out further testing such
as DNA sequencing. In this scenario extreme care should be taken when communicating
with the patient, explaining clearly that the test has a degree of uncertainty and that the
diagnosis is not yet confirmed. This is, once more, in the context of a potential treatment
developed for the illness. The objective is to try to detect the illness as soon as possible
(to increase the chances of a successful treatment) while at the same time minimizing the
potential physiological impact on the patient.
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DISCUSSION

N
eurodegenerative diseases are likely going to become more fre-

quent as life expectancy increase in many countries as a con-

sequence of these diseases being typically age related. These

neurodegenerative illnesses, including Alzheimer Disease, Multiple Sclero-

sis and Huntington Disease do not have yet a curative therapy. However,

there are research teams across the world tackling these illnesses and it is

possible that in the not too distant future we start seeing some treatments

breakthrough. As with other illnesses it is likely that early detection plays

an important role when a treatment is available. In this regard it is impor-

tant to develop biomarkers that can, with a reasonable level of precision,

identify the illness. Ideally these biomarkers should be easily obtained in a

way as minimally invasive as possible. For example through a blood test

rather than a brain tissue sample. In this regard DNA CpG methylation can
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be an interesting option. DNA methylation levels can currently be obtained

relatively easily, although it is only available in research settings. In this

dissertation it is shown how mathematical models, using as an input these

methylation levels can be successfully apply to the identification of patients

with Alzheimer Disease, Multiple Sclerosis and Huntington Disease. It

is important to mention that the underlying process relating methylation

levels and the presence of any of these neurodegenerative illness is not

necessarily linear and hence it seems reasonable to use non-linear mod-

eling techniques such as machine learning techniques. More specifically,

neural networks were extensively used in this dissertation as a forecasting

classification tool.

In the case of Alzheimer Disease a model for the selection of CpGs to be

included was presented. This approach managed to reduce the number of

CpGs used for several hundred thousands to only 4,300 while increasing the

accuracy of the classification. The sensitivity and specificity of this approach

differentiating patients with AD from control individuals were 0.9007 and

0.9485 respectively. The proposed selection algorithm used a nonlinear

combinatorial approach. It should also be noticed that it is not possible

to tests all the potential combinations of more 400,000 CpGs. Reducing

the dimensionality of the data i.e., reducing the number of CpGs seems a

reasonable step as not all the CpGs will have information that it is relevant

for the task of differentiating between AD and control patients. The results

shows that the algorithms generates more accurate results than using all

the CpG available directly.

Multiple sclerosis was another of the neurodegenerative illness analyzed
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in this dissertation. A CpG selection approach based on the concept of

Shannon Entropy was used. Shannon Entropy is a concept borrowed from

the field of information theory and can be understood as the amount of

information present in a given set of data. For instance, if the set of data

consists only of a vector composed of four identical number i.e., the number 1,

the information contained in this vector is a priori potentially less than the

information contained in a vector of the same size but composed of integer

number ranging from 1 to 9. I present an algorithm, based on this idea,

which is able to reduce the number of CpGs substantially while increasing

the accuracy of the classification. The number of CpGs was decreased by

98% (only 3% of the initial CpGs were selected). In total number the amount

of CpGs were reduced from the original 485,512 to the final 9,499. The

correct classification rate obtained using this approach as 80.07%, which is

a statistically significant improvement over the base case. It was also tested

the hypothesis that the improvement in accuracy was due to the benefit of

a (random) decrease in dimensionality. It was shown that this was not the

case. In fact random combinations of CpGs of the same total number than

the one selected by the algorithm did not generate accurate results, further

suggesting that the use of the Shannon Entropy approach is a valid one.

Another algorithm was presented, in this case for the identification of

Huntington disease. This approach also reduced the number of CpGs used

as inputs. Huntington Disease, similarly to some other neurodegenerative

disease does not currently have a cure but it is an area of intense research.

It was shown in this dissertation that it is possible to use machine learning

techniques, such a neural networks, for the identification of patients with
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HD, suing as input DNA methylation levels from blood samples. Several

different types of neural networks configurations were analyzed. The best

results were obtained when using a neural network with four hidden layers.

Increasing the complexity of the neural network after a certain threshold

did not appear to increase accuracy. It also should be pointed out that

the computational demands should be taken into account with some of the

models requiring in excess of ten days to be completed.

This dissertation shows that it is possible to use, with reasonable levels

of accuracy, machine learning techniques, such as neural networks, and

nonlinear combinatorial algorithms, for the task of identifying patients with

a neurodegenerative disease, using DNA CpG methylation data as an input.

It was also illustrated the importance of the selection of the CpGs. Given

the rapidly increasing number of CpGs available, with some machines now

able to generate in excess of 800,000 of CpGs methylation levels per patient,

it becomes clear that this CpGs selection process needs to be carried out in

an automated fashion.

62



C
H

A
P

T
E

R

5
FUTURE INVESTIGATIONS

A
s technological advances enable increasingly large number of

CpGs to be analyzed in a rapid way the importance of having

appropriate algorithms to distinguish between patients with neu-

rodegenerative illnesses and control cases will also increase. Technological

advances have increase the number of CpGs by an order of magnitude in

recent years with the first machines able to analyze only approximately

20,000 CpGs while the current ones reaching more than 800,000. It is likely

that in the not to distant future the number of CpGs will increase again

by another order of magnitude. It would be interesting to see, as a line of

future research, if the algorithm proposed in this dissertation can generate

accurate classification with these increased databases. Another interesting

line of future research would be a comparison of DNA methylation pro-

files among different neurodegenerative diseases. There might be some
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commonalities among these profiles.

It would also seem interesting to study the time evolution of methylation

profiles. For instance, it might be possible to try to forecast the expected

relapse-remission patterns of patients with Multiple Sclerosis. So far, to the

best of my knowledge, it remains uncertain what type of evolution a patient

with Multiple Sclerosis is going to have with very substantial differences in

the relapse-remission patterns among different patients.

The amount of data in the field of methylation is very likely going to

continue increasing. Big data techniques are therefore likely to play an

important role as more traditional approaches are likely unfeasible when

trying to handle hundred of thousands or even millions of variables.
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CONCLUSIONS

Having techniques that can determine if an individual has Alzheimer Dis-

ease, Huntington Disease or Multiple Sclerosis is likely going to become

increasingly important. This area of research has, arguably, not received

enough attention in the past. This is probably due to the fact that there

was no curative therapy. In the case of Alzheimer the results suggest that

the approached followed can generate an accurate forecast (out-of-sample),

when using a multi dataset approach, which is a significant development,

with, for instance, the sensitivity and the specificity reaching, respectively,

0.9007 and 0.9485 values, when using 4300 CpGs. The obtained positive

predictive value (PPV) and the negative predictive value (NPV) were also

relatively high, coming in at 0.9621 and 0.8679, respectively. The results

also indicate that increasing the number of CpGs does not improve the

forecast. This is very likely related to the issue of local minima.
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I also proposed another algorithm applied to the case of Huntington

Disease. In this case, the sensitivity and specificity obtained were 0.95 and

0.80 respectively. The algorithm was able to reduce the initial list of 485,512

CpGs to a total number of 237 CpGs, while at the same time increasing

the accuracy of the classification forecasts distinguishing between control

and HD cases. As in other neurodegenerative disease there is no curative

therapy for HD. However, there are many research teams working on this

illness and I am cautiously optimistic that there will be progress. When a

curative therapy is available it is likely that early detection might play an

important role.

Finally, I also introduced the concept of Shannon Entropy applied to

the identification of patients with Multiple Sclerosis. To the best of my

knowledge this concept has never been used for the selection of DNA CpG

methylation as an input for a classification forecast for Multiple Sclerosis (or

any other neurodegenerative disease). The proposed algorithm generated a

correct classification rate of approximately 80.07%. This was an statistically

significant improvements compared to using all the CpGs available as well

as compared to randomly selected groups of CpGs of the same dimensions

than the selected by the Shannon Entropy approach.

The nonlinear algorithms presented for all the neurodegenerative dis-

eases analyzed, including Alzheimer Disease, Huntington Disease and

Multiple Sclerosis, generated more accurate classification forecasts than the

direct approach of using all the available data. They also generated more ac-

curate forecasts than filtering only using liner criteria, suggesting that the

underlying mechanism linking CpG methylation data and the identification
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of a given illness might not be necessarily linear and that a combinatorial

nonlinear approach might be a valid analysis technique.
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Spain during March 15-20, 2022 

On behalf of the Scientific Committee, we are pleased to inform you that your abstract has been 

accepted for both a Paper (onsite) + ePoster presentation (virtual platform). 

The ePoster will consist of a 1-page PDF file and a 5-minutes MP3 audio file. You will be sent a 

link to upload your ePoster in December 2021. 

Instructions for preparing both the Paper and ePoster will be posted here. 

Registration for the Conference 
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of presenters who have registered and paid their fees by Monday, 15th November 

2021 will be included in the final program. You may register and pay associated fees 

online here. Please note that you are asked to register earlier than regular delegates as 

we need to finalise anyone who has a poster in the program. 

 Please let us know if you will not be the presenting author, or if you will be registered as 

part of a group/by a company. 

 In order to prepare the correct number of boards for onsite presentation, you will be asked 

to confirm, by no later than January 15th, 2022, that you are able to travel to Barcelona and 

present the Paper Poster onsite. A questionnaire for confirmation will be sent to you in 

early January 2022. 

For any questions regarding your abstract, please contact us at adpd_abstracts@kenes.com.  

Yours sincerely, 

AD/PD 2022 Conference Secretariat 
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Abstract Number: 605  

Abstract Title: APPLICATIONS OF NEURAL NETWORKS IN ALZHEIMER DISEASE 

METHYLATION BIOMARKERS  

Dear Dr. Gerardo Alfonso Perez, 

Thank you for your abstract submission for the upcoming hybrid AD/PD22: 16th International 

Conference on Alzheimer’s & Parkinson’s Diseases taking place Online and in Barcelona, 

Spain during March 15-20, 2022 

On behalf of the Scientific Committee, we are pleased to inform you that your abstract has been 

accepted for both a Paper (onsite) + ePoster presentation (virtual platform). 

The ePoster will consist of a 1-page PDF file and a 5-minutes MP3 audio file. You will be sent a 

link to upload your ePoster in December 2021. 

Instructions for preparing both the Paper and ePoster will be posted here. 

Registration for the Conference 

 The Poster is only secured in the program by registering for the Conference. Only abstracts 

of presenters who have registered and paid their fees by Monday, 15th November 

2021 will be included in the final program. You may register and pay associated fees 

online here. Please note that you are asked to register earlier than regular delegates as 

we need to finalise anyone who has a poster in the program. 

 Please let us know if you will not be the presenting author, or if you will be registered as 

part of a group/by a company. 

 In order to prepare the correct number of boards for onsite presentation, you will be asked 

to confirm, by no later than January 15th, 2022, that you are able to travel to Barcelona and 

present the Paper Poster onsite. A questionnaire for confirmation will be sent to you in 

early January 2022. 

For any questions regarding your abstract, please contact us at adpd_abstracts@kenes.com.  

Yours sincerely, 

AD/PD 2022 Conference Secretariat 
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