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Abstract: The problem of optimally integrating PV DGs into electrical networks to reduce annual costs
(which include energy purchase and investment costs) was addressed in this research by presenting
a new solution methodology. For such purpose, we used a Discrete–Continuous Parallel Particle
Swarm Optimization method (DCPPSO), which considers both the discrete and continuous variables
associated with the location and sizing of DGs in an electrical network and employs a parallel
processing tool to reduce processing times. The optimization parameters of the proposed solution
methodology were tuned using an external optimization algorithm. To validate the performance of
DCPPSO, we employed the 33- and 69-bus test systems and compared it with five other solution
methods: the BONMIN solver of the General Algebraic Modeling System (GAMS) and other four
discrete–continuous methodologies that have been recently proposed. According to the findings,
the DCPPSO produced the best results in terms of quality of the solution, processing time, and
repeatability in electrical networks of any size, since it showed a better performance as the size of the
electrical system increased.

Keywords: metaheuristic methods; parallel processing; PV generation; economic analysis

1. Introduction
1.1. General Context

Due to the accelerated population growth, the current energy crisis, and the pressing
need to use renewable energy resources, numerous industries and researchers worldwide
are working on proposing methodologies for the optimal integration of clean energy
technologies into electrical systems [1]. Particularly, Photovoltaic (PV) systems have
emerged as one of the most widely used distributed generation technologies in the past
decade thanks to their low operation and maintenance costs and the abundant energy
produced by the sun [2].

The integration of PV Distributed Generators (DGs) into electrical networks has been
extensively studied in the specialized literature and the electric power industry. In such
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studies, different technical, financial, and environmental aspects have been considered,
including power losses, voltage profile stability, network loadability, energy purchase and
investment costs, and reduction in CO2 emissions from fossil fuel use [3]. Selecting an
objective function in real life often depends on the needs of the electrical network’s users,
owner, or operator [4]. However, financial aspects such as investment and operation costs
are currently the main focus around the world. Thus, the primary goals of integrating
PV DGs into electrical networks by using economic indices include minimizing energy
purchase or production costs and, with these savings, paying for the investment and
maintenance costs associated with such integration [5]. With the aim to obtain the aforementioned
financial improvements and meet all technical and operating requirements for electrical
grids under a distributed generation scenario, the literature proposes mathematical models
that consider all of the previously mentioned information [3,5]. These mathematical models
allow identifying the impact of different configurations for siting and sizing PV DGs in
electrical systems on the objective function and its constraints. However, due to the fact that
this problem is non-convex and non-linear, it is necessary to use high-level optimization
algorithms and tools to find its solution with the best possible performance.

According to various studies published in recent years, the positive or negative impact
generated by the integration of PV DGs into electrical networks on the economic conditions
of the grid depend on the methodologies employed for such integration, which is why
adequately selecting the solution methodology is vital [6]. Furthermore, the location and
sizing (nominal power installed) of the PV DGs in the electrical grids affect the effectiveness
of the energy management strategies implemented after the integration [7,8]. Thereupon,
researchers have set out to develop new methodologies for solving the aforementioned
problem, with the aim to obtain the best economic impact for the owner or operator of the
electrical network, ensuring that the algorithm provides the best possible solution with
short processing times every time it is executed and that it can consider real scenarios to
meet the needs of both public and private contracts.

1.2. State-of-the-Art

The problem of optimally integrating PV DGs into electrical networks has traditionally
been divided into two sub-problems: (i) the optimal location of the PV DGs and (ii) their
optimal sizing. In the specialized literature, the first sub-problem has been traditionally
solved using a codification composed of discrete variables that assign a particular node in
the electrical system for locating a DGs, as shown in Figure 1a. In the example illustrated
in such figure, a vector of size 1 × 3 is used to locate three PV DGs in an electrical system
composed of 33 buses. According to this vector, the three PV DGs should be located at
buses 4, 19, and 29. As observed in this example, the variables that represent the problem
under analysis are discrete numbers between 1 and the maximum number of buses in the
electrical system.

                          Location                                                        Sizing                      

 

4 19 29 0.11 1.18 2 

 

 

 

 

 

4 19 29 0.11 1.18 2 

(b) Continuous variables 

Half of vector size 

(a) Discrete variables 

(c) Discrete-Continuous variables 

Figure 1. Discrete–continuous codification.

The second sub-problem, related to the sizing of PV DGs located in the first sub-problem,
has traditionally been solved using a continuous codification that establishes the nominal
power for each DG to be installed in the electrical grid, as presented in Figure 1b. In the
example shown in such figure, a vector of size 1 × 3 is used to define the size of three PV
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DGs installed in a network. According to this vector, the power of the PV DGs located at
buses 4, 19, and 29 should be 0.11 kW, 1.18 kW, and 2 kW, respectively. Importantly, the
power limits employed in a continuous codification are chosen between the maximum
and minimum power allowed for the electrical network. These bounds are related to the
energetic potential of the Sun in the area where the electrical system is located [9].

To solve the problem of optimally integrating PV DGs into electrical networks using
the codification illustrated in Figure 1a,b, multiple master–slave methodologies that combine
optimization algorithms have been proposed in the specialized literature. In such methodologies,
the master stage solves the location problem, while the slave stage solves the sizing
problem. For instance, in [10], the authors also used a master–slave methodology. Their
proposed methodology combines the Chu and Beasly GA and the PSO algorithm to solve
the problem of optimally integrating DGs into electrical networks. The main problem with
their proposed solution methodology is that the authors did not analyze the impact of
the solution in terms of processing time and standard deviation. Currently, it is essential
to analyze these two parameters in order to offer high-quality solution methodologies
that require short processing times and guarantee a good performance each time they are
executed. Furthermore, in the mathematical model used, the authors did not consider
the branch currents and voltage profile limits of the electrical systems, which is why
the solution obtained is not representative of real life. In [11], the authors presented a
Mixed-Integer Nonlinear Programming (MINLP) model to solve the problem of optimally
locating and sizing DGs in radial distribution networks using the BONMIN solver of the
General Algebraic Modeling System (GAMS). They used the 27, 33, and 69-bus test systems
to locate PV DGs and considered the power capacity in Colombia during a normal day,
employing seven comparison methods reported in the literature in order to demonstrate the
effectiveness and robustness of the proposed methodology: particle swarm optimization
and genetic algorithms [10], an optimization technique based on teaching–learning [12],
the harmony search algorithm [13], the symbiotic organism search algorithm [14], and
a heuristic methodology based on a loss-sensitive factor [15]. The results showed that
the proposed methodology achieved the best results in all test scenarios. However, this
technique requires specialized software, which increases its complexity, as it implies special
requirements for installation and implementation and costs associated to the acquisition
of specialized tools. Furthermore, the authors did not analyze the repeatibility and the
processing times required by the proposed methodology. In [6], the authors proposed a
master–slave methodology, in which the master stage employs the Genetic Algorithm (GA),
the Monte Carlo method (MC), and a Loss Sensitive Factor (LSF), and the slave stage uses
the Particle Swarm Optimization (PSO) algorithm; by generating in this way three different
master–slave methodologies. Further, they employed a parallel processing tool to reduce
the processing time required by the proposed methodology. In said study, the authors
compared the results obtained by all the methods under analysis in terms of the quality of
the solution, standard deviation, and processing times by using two test systems with 33
and 69 buses. They were able to demonstrate the excellent performance of the GA/Parallel
PSO and found that all methodologies require longer processing times, whereas the hybrid
methodologies between the LSF/PSO and MC/SO sometimes become stuck in local optima.
The main limitation of this paper is that it did not analyze the standard deviation in order
to evaluate the repeatability of the solutions offered by the studied methodologies.

Aside from the papers mentioned above, there are numerous studies in the specialized
literature that employed master–slave methodologies to solve the problem of optimally
integrating DGs into electrical networks [16–18]. Such methodologies share the same
characteristics: (i) they are methodologies based on sequential programming that avoid
the need for specialized software, (ii) they consider technical and financial aspects as their
objective function and evaluate performance in terms of processing time and repeatability,
and (iii) they require longer processing times to solve the problem under study. Identifying
in this way the current needs of the master–slave methodologies proposed for solving the
problem of optimal integration of PV DGs in AC grids.
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In recent years, several authors have used a discrete–continuous codification to solve
the problem under analysis jointly, as shown in Figure 1c. This single codification combines
the discrete and continuous variables associated with the location and sizing problems
and allows to modify continuous optimization methods to solve the problem under study
by using a unique optimization method. To perform this modification, a vector with a
size 1X2Ng is used, where Ng corresponds to the number of PV distributed generators
located on electric grid. The adaptation made to the codification used for the continuous
algorithms consists of forcing the first half of the vector to turn the continuous variables into
discrete variables between 1 and the maximum number of buses in the electrical system,
thus proposing a possible solution for the location problem. The remaining positions of the
vector are associated with the sizing of the PV distributed generators located in the first half
of the vector. As an example, in Figure 1c, it can be observed that, as in the master–slave
codification, albeit using a unique vector, the PV DGs were located at buses 4, 19, and 29,
with nominal powers of 0.11 kW, 1.18 kW, and 2 kW, respectively.

There are different works in the literature that take advantage of the discrete–continuous
codifications explained herein. An example of this was reported in [19], where the authors
employed the BONMIM solver of GAMS and a discrete–continuous version of the Chu
and Beasley Genetic Algorithm (DCCBGA) to solve the problem of optimally integrating
PV units into electrical networks, identifying that a commercial solver such as BONMIN
becomes stuck in local optima as the nonlinearities and complexities of the problem increase,
particularly regarding variations in power demand and PV generation for an average day in
Colombia. The authors considered a financial objective function, whose aim was to reduce
the energy purchase costs and those related to the installation of the PV DGs. The results
they obtained demonstrated effectiveness and robustness of their proposed methodology.
The authors, however, did not evaluate the repeatability of the obtained solution and
the currents through the branches, which prevents the solution from being implemented.
Despite these drawbacks, the mathematical model developed by the authors has served as
the foundation to design new discrete–continuous methodologies for solving the problem
of optimally integrating PV DGs into electrical networks.

Another work that takes advantage of discrete–continuous codification is presented
in [20], where the authors propose a Modified Arithmetic Optimization Algorithm (MAOA)
for reducing the annual costs related to energy purchasing and PV DG investment costs.
Furthermore, their mathematical model included all constraints associated to the operation
of AC grids within a distributed generation environment, considering the constraint
associated to the maximum current allowed through the branches, which is often neglected
in research and of great importance for electrical analysis. This research employed four
methods for comparison: three methodologies based on metaheuristics, i.e., the DCCBGA [19],
a discrete–continuous version of the Newton–Metaheuristic Algorithm (NMA) [21], and the
Arithmetic Optimization Algorithm (AOA) [22]; as well as the aforementioned BONMIN
solver of the GAMS software. After evaluating all solution methodologies in the 34-bus
test system, the proposed methodology obtained excellent results in terms of quality of the
solution but failed to evaluate the standard deviation of the solution and processing times.
Using the same mathematical model, the authors of [3] proposed a discrete–continuous
version of the vortex search algorithm to solve the problem of optimally integrating PV
DGs into Alternating Current (AC) networks. The authors of such study reported excellent
results in terms of quality of the solution and standard deviation, with an important
improvement in processing times.

Finally, using the same mathematical model, in [5], the authors developed a generalized
normal distribution optimization method, which outperforms the other discrete–continuous
methods mentioned above in terms of the quality of the solution. However, these authors
reported a considerable increase in processing times and failed to evaluate the standard
deviation of the obtained solution. By comparing the results of the works that use
discrete–continuous codification to those that employ master–slave methodologies, it
is possible to observe a notable reduction in processing times for discrete–continuous
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methodologies, as well as in the standard deviation values. Additionally, these new
methodologies showed the best impact on the economic indices used; they showed a
tendency towards effectiveness regarding the solution, repeatability, and processing times.

1.3. Motivations, Contributions, and Scope

From the information presented in the State-of-the-Art section, we identified the
importance of considering a financial objective function when addressing the issue of
integrating PV DGs into electrical networks. Such an objective function should guarantee
the minimization of operating costs and allow the investment costs associated with these
technologies to be covered. It should also satisfy the entire set of constraints that represent
the behavior of electrical networks in a distributed generation environment. Furthermore, it
is crucial to propose an efficient solution technique that improves the quality of the solution
and reduces processing times and the standard deviation every time they are executed. it is
important to observe the growing trend in the use of discrete–continuous methodologies
for achieving the aforementioned goals.

In light of this, this paper presents the discrete–continuous optimization methodology
for solving the problem of optimal integration of PV DGs in electrical networks; by
implementing a Discrete–Continuous Parallel version of the Particle Swarm Optimization
(DCPPSO) method with the aim to reduce the annual costs and the processing times
required for solving the problem under study.This solution strategy has, as the objective
function, the reduction in the annual costs of electrical systems, which include the energy
purchase or production costs and the investment costs associated with the installation of
the PV DGs.

The selection of the DCPPSO for solving the problem of optimal integration of PV DGs
in AC electrical networks was based on the excellent results reported in the literature for the
PSO algorithm in solving electrical problems such as the optimal power flow, the optimal
sizing of distributed generators, and the optimal operation of energy storage systems,
among others [23–25]. Another important reason to use this optimization algorithm is
related to the fact that this optimization algorithm works with a population within its
iterative process, making it possible to apply parallel processing tools in order to improve
its effectiveness in terms of processing times [26]. Furthermore, the literature review
demonstrated that the implementation of a discrete–continuous codification allows solving
problems with discrete and continuous variables such as the optimal PV DG integration
problem addressed in this work, thus improving the solution along with its repeatability
and processing times. Therefore, the authors of this work decided to use a discrete version
of the PSO in order to solve the problem regarding the optimal integration of PV DGs in
AC grids, including parallel processing techniques with the aim to reduce the processing
times. This resulted in the the DCPPSO, which, to the best of the authors’ knowledge, has
not been used to solve the problem studied on our work.

The academic contributions made by this research are as follows:

i. A detailed description of the mathematical model that represents the problem of
optimally integrating PV DGs into electrical systems. This model establishes, as
its objective function, the minimization of the annual costs of the network, and it
considers the entire set of constraints that represent the behavior of electrical networks
in a distributed generation environment.

ii. A new application for the discrete–continuous parallel PSO method that allows
solving problems related to PV DG integration and combines discrete (location) and
continuous variables (sizing).

iii. An efficient methodology (DCPPSO) in terms of the quality of the solution, processing
times, and standard deviation to solve the problem of optimally integrating PV DGs
into electrical networks while considering variations in power generation and demand.

Finally, the industrial contributions of this paper are presented below:
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i. A new methodology for the optimal integration of DGs in AC networks that pays for
the investment costs associated with the use of these technologies by making use of
the energy saving costs, thus obtaining an annual costs reduction of about 27%.

ii. A method for siting and sizing PV DGs that considers all operating and technical
constraints posed by AC grids within an environment of distributed generation.

iii. A new methodology that allows evaluating multiple PV power technologies, electrical
systems, and power demand and generation scenarios with short processing times
and guarantees standard deviation values lower than 0.26%. This methodology will
allow electrical companies to provide multiple electrical designs in the periods of time
set by both public and private contracts.

1.4. Structure of the Paper

This paper consists of six sections. Section 1 provides an introduction to the subject
matter. Section 2 introduces the set of equations that compose the mathematical model
that represents the problem under study. Section 3 describes the discrete–continuous
optimization methodology proposed here to solve the problem of optimally integrating
PV DGs into electrical networks. Section 4 presents the test systems, methods used
for comparison, and aspects considered to evaluate the effectiveness, repeatability, and
robustness of the proposed methodology. Section 5 analyzes and discusses the simulation
results. Finally, Section 6 draws the conclusions and outlines future lines of work.

2. Mathematical Formulation

This section presents the mathematical model of the problem of optimally locating
and sizing PV DGs into AC networks, whose aim is to reduce the associated investment,
maintenance, and energy purchase costs. This mathematical model only considers the
active power injected by the PV DGs installed in the electrical network, as is customary in
the literature [5].

PV units were chosen as the distributed generation technology for this mathematical
formulation because they are the most widely used distributed generation technology
around the world. This is because it has demonstrated the best growth in terms of
performance and integration complexity in recent decades and has led to reductions in
investment and maintenance costs over time [27]. Additionally, we selected an objective
function based on financial aspects: the need to minimize the operating costs of electrical
networks and to cover the investment costs associated with PV technologies [28]. The
next sub-section describes the mathematical formulation employed in order to address
the problem of optimal placement and sizing of renewable energy sources based on PV
generators for distribution system applications.

2.1. Objective Function

The mathematical structure of the objective function that represents the problem
of the optimal integration of PV generation sources in distribution grids is presented in
Equation (1).

OF = min ( f1 + f2) (1)

Note that the proposed objective function in (1) is composed of two components,
i.e., the annual investment ( f1) and the operating costs of the electrical network ( f2). The
components of the objective function and the multiplying factors are presented from (2)
to (5).

f1 = CkWhTFaFc

(
∑

i∈ΩH
∑

i∈ΩN

pcg
i,h∆h

)
(2)

Equation (2) presents the function that can be used to calculate the costs of the energy
purchased or produced by the conventional generators installed in the electrical network
during the useful life of the PV DGs. In this equation, CkWh represents the costs (per kWh) of
the energy purchased or produced by the conventional generators. Since the model works
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with annual values, and the aim is to estimate the total energy purchase or production
costs over a year of operation, parameter T in this equation denotes the number of days
in an ordinary year (i.e., 365 days). Moreover, pcg

i,h is the active power supplied by each
conventional generator installed at bus i during time period h, and ∆h is the time during
which power is supplied by the generator located at bus i.

Fa =

(
ta

1− (1 + ta)
−Nt

)
(3)

Fc =

(
∑
t∈T

(
1 + te

1 + ta

)t
)

(4)

To annualize the costs of the energy purchased during the useful life of the PV DGs, we
used two annuity factors. The first factor (Fa), which is described in Equation (3), integrates
the energy purchase costs per year during the useful life of the PV DGs. In this equation,
ta denotes the fixed return rate on the investments made by the owner or operator of the
network over the planning horizon, and Nt is the number of years that the project lasts.
The second factor (Fc), which is presented in Equation (4), represents the annual increase in
power demand during the planning horizon. In (4), te denotes the percentage rise in energy
purchase costs during the planning horizon. Finally, ΩN , ΩH, and ΩT are the set of buses
in the electrical system, the time periods analyzed in a one-day operation, and the number
of years in the useful life of the PV DGs, respectively.

f2 = CpvFa

 ∑
i∈Ωpv

ppv
i

+ T

 ∑
i∈ΩH

∑
i∈Ωpv

Cpv
OandM ppv

i,h∆h

 (5)

Equation (5) can be employed to calculate the annual investment costs associated with
the installation of the PV DGs in the electrical network, as well as their maintenance costs.
In this equation, Cpv denotes the cost per kW for the PV DGs; ppv

i , the total PV power
integrated into the electrical network; Cpv

OandM, the maintenance costs per kW produced
by the PV DGs. In addition, Ωpv is the set that contains all the buses where the DGs
were installed.

2.2. Set of Constraints

The proposed mathematical model considers all the constraints associated with the
operation of an electrical network in a PV distributed generation environment. The
equations that represent the technical and operating conditions of a network are presented
from (6) to (13) and are described below.

pcg
i,h + ppv

i Cpv
h − Pd

i,h = vi,h ∑
j∈ΩN

Yijvj,hcos
(

θi,h − θj,h − ϕij

)
(6)

qcg
i,h −Qd

i,h = vi,h ∑
j∈ΩN

Yijvi,hsin
(

θi,h − θj,h − ϕij

)
(7)

Pcg,min
i ≤ pcg

i,h ≤ Pcg,max
i (8)

Qcg,min
i ≤ qcg

i,h ≤ Qcg,max
i (9)

xi p
pv,min
i ≤ ppv

i ≤ xi p
pv,max
i (10)

∑
i∈Ωpv

xi ≤ Navail
pv (11)
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vmin
i ≤ vi,h ≤ vmax

i (12)

Iij,h ≤ Imax
ij (13)

Equation (6) represents the overall active power balance. In this equation, Pd
i,h denotes

the active power demanded at bus i in time period h. vi,h and vj,h are the voltage profiles
at buses i and j in time period h, while θi,h and θj,h are the angles of such voltage profiles
in the same time period. Yij and ϕij denote the magnitude and angle, respectively, of the
admittance of the line that connects buses i and j.

Equation (7) represents the overall reactive power balance. In this equation, Qd
i,h is the

reactive power demanded by the load connected at bus i in time period h; qcg
i,h, the reactive

power injected by the conventional generator at bus i in time period h.
Equation (8) presents the minimum and maximum active power to be supplied by

the conventional generators to the electrical network. In this equation, pcg,min
i and pcg,max

i
are the minimum and maximum active power that can be delivered by the conventional
generator located at bus i, respectively. Meanwhile, Equation (9) represents the minimum
and maximum reactive power to be supplied by the conventional generator located at bus
i. In this equation, qcg,min

i and qcg,max
i denote the minimum and maximum reactive power

that can be delivered by this generator.
Equation (10) defines the minimum (ppv,min

i ) and maximum (ppv,max
i ) power to be

supplied by the PV DG located at bus i. In this equation, xi is the binary variable associated
with the installation (xi = 1) or not (xi = 0) of a PV DG at bus i. vmin

i and vmax
i denote the

voltage regulation bounds allowed at bus i.
Equation (11) establishes the maximum number of PV DGs (Navail

pv ) available to be
integrated into the electrical network. Finally, Equations (12) and (13), which represent
the voltage and current limits allowed for the electrical network, can be used to evaluate
the impact of distributed generation on the operating conditions of the network. In these
equations, vmin

i and vmax
i are the minimum and maximum voltage profiles allowed at bus i,

while Iij,h and Imax
ij denote the estimated and maximum current, respectively, allowed at

the line that connects buses i and j.
The parameters used in the proposed mathematical formulation to calculate the annual

investment and operating costs are presented in Table 1 and were taken from [3]. The
parametrization of the test feeders used for numerical validations in this research are
described in Section 4.

Table 1. Parameters used to calculate the objective function [3].

Parameter Value Unit Parameter Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % Nt 20 years
∆h 1 h te 2 %
Cpv 1036.49 USD/kWp C0andM 0.0019 USD/kWh

Navail
pv 3 - ∆V ±10 %

Ppv,min
k

0 kW Ppv,max
k 2400 kW

α1 100× 104 USD/V α2 100× 104 USD/V
α3 100× 104 USD/W α4 100× 104 USD/A

3. Proposed Methodology

This manuscript presents a new methodology for solving the problem of optimally locating
and sizing PV DGs in AC and DC networks. This methodology uses a discrete–continuous
codification and parallel processing to improve the trade-off between quality of the solution,
processing time, and repeatability of the obtained solution every time it is executed. The
proposed methodology, which corresponds to a new discrete–continuous parallel version
of the PSO algorithm, is presented in Figure 2 and described below.
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START 

1. Read the electrical system's data, the power generation and demand 

curves, and the parameters of the optimization method. 

2. Generate de initial particle swarm using 

the discrete-continuous codification. 

3. Solve the hourly power flow for each particle in the swarm using 

parallel processing. 

4. Select the solution and position obtained by each particle as the best particle 

solution and position. 

9. Have the stopping 

criterion been met? 

5. Select the best solution of the particle swarm and its associated position as 

the incumbent solution to the problem. 

FINISH 

Parallel proccessing 

Yes 

No 

Worker 1 Worker 2 Worker n 

. . .  .  
Solve the hourly 

power flow for 

particle 1. 

Solve the hourly 

power flow for 

particle 2. 

Solve the hourly 

power flow for 

particle n. 

6.  Calculate the velocity vector and update the position of the particle swarm. 

7. Solve the hourly power flow for each particle in the swarm using 

parallel processing. 

Parallel proccessing 

8. Update the best particle solution and position, as well as the incumbent 

solution to the problem. 

Figure 2. Discrete–Continuous Parallel version of the Particle Swarm Optimization algorithm (DCPPSO).

The proposed methodology consists of ten steps, which can be used to find a solution
to the problem of optimally locating and sizing PV DGs in AC and DC current networks to
reduce annual investment and operating costs. In step 1, the electrical system’s data, the
power generation and demand curves, and the parameters of the optimization methods
are loaded.

In this work, we employed two curves that depict the typical behavior of PV generation
and power demand in a region of Colombia during a normal day (see Figure 3) [19]. Such
curves were selected with the intention of including, in the operating costs, the variations
in PV generation and power demand, which allows the problem under analysis to be
represented in a more realistic manner. It is important to highlight that, when these average
curves were obtained by the referenced authors, with the aim to represent the energetic
behavior in a particular region of Colombia, they considered the uncertainties in power
demand and generation associated with both the users and the PV generators (radiance
and temperature).
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Figure 3. Average behavior of PV generation and power demand in Colombia during a normal
day [19].

The DCPPSO was tuned using the PSO algorithm [23], and the following parameters
were obtained: a cognitive and social component of 1.93 and 1.79, respectively; a maximum
and minimum velocity of 0.1 and −0.1, respectively; a range of inertia between 0.7 and
0.001; a maximum number of iterations of 219; a maximum number of non-improvement
iterations of 50.

In step 2, the initial particle swarm is generated using the discrete–continuous codification
presented in Figure 1c. Since the traditional PSO algorithm works with continuous variables,
the variables associated with the location of the PV DGs must be discretized, guaranteeing
at all times that the maximum number of buses in the electrical system under analysis
is respected. The variables associated with the sizing of the PV DGs are created in the
traditional manner, according to the power limits set for these devices (see Equation (10)).

In step 3, the Hourly Power Flow (HPF) is solved for each particle in the swarm using
parallel processing in order to evaluate the objective function and the set of constraints.
This power flow is responsible for assessing the energy purchase costs associated with the
behavior of the power demand and PV generation during a normal day, as well as the
investment in the PV DGs and their maintenance costs. The aim is to estimate the annual
costs of these expenses over the planning horizon determined by the useful life of the PV
DGs. To that end, we used an adapted version of the power flow method reported in [29],
which employs successive approximations to calculate the voltages at the load terminals.
In such adapted version, the location and sizing of the PV generators proposed by each
particle in the swarm is assessed, taking into account the variation in power demand and
PV generation in each period of the time horizon (24 h).

Figure 4 describes the HPF process implemented in this research to evaluate the
objective function of the problem under analysis. The algorithm starts by reading the
electrical data (buses, lines, etc.) and power flow parameters (number of iterations,
convergence error, and initial voltages). Then, the data on the power demanded by the
loads and the power produced by the PV DGs every hour in the time horizon (24 h, i.e., a
one-day operation) are loaded. These data are employed in the HPF to solve the power
flow problem using the power flow method based on Successive Approximations (SA) [29].
Then, the HPF evaluates Equation (2) and validates the constraints for each hour in the
period of analysis. This process is repeated until all hours in the time horizon (24 h, in
this case) have been evaluated. Subsequently, the values obtained for each hour using
Equation (2) are summed to calculate the overall costs of the energy purchased or produced
by the conventional generators installed in the electrical network during the useful life of
the PV DGs. Afterward, the annual investment costs associated with the installation of the
PV DGs in the electrical network are estimated by including their maintenance costs using
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Equation (5). Finally, the value of the objective function is calculated and stored using
Equation (1).

 
START 

1. Data reading and assignment of HPF parameters. 

hour=1 

2. Load the power demanded by the loads during hour under 

analysis. 

6. hour=24? 

FINISH 

Yes 

No 

3. Load the power produced by the PV DGs  during the hour under 

analysis. 

4.  Solve the AC power flow for the hour under analysis using the 

successive approximation method. 

5. Evaluate Equation 2 and verify the constraints for the hour under 

analysis. 

7. Add the values obtained for each hour using Equation 2 in order to estimate 

the overal costs of the energy purchased or produced by the conventional 

generators intalledon the electrical network during the useful life of the PV DGs. 

 

hour=hour+1 

8. Calculate the annual investment costs associated with the installation 

of the PV DGs in the electrical network by including their mantenance 

costs using Equation 5. 

 

9. Calculate and return the value of the objective 

function using Equation 1. 

Figure 4. Hourly power flow proposed to evaluate the objective function in the DCPPSO method.

Step 3 is the step of the algorithm that takes up the majority of the total processing time.
For this reason, and in order to improve the performance of the proposed methodology,
we used parallel processing. This tool allowed us to simultaneously evaluate multiple
individuals in the population and, thus, reduce the time required by step 3. Equation (14)
can be used to calculate the processing time required to evaluate the entire particle swarm
using parallel processing, i.e., the Parallel Processing Time (PPT). In this equation, n denotes
the number of particles in the swarm; W, the number of workers in the computer; and
MTPR, the longest time required to evaluate all the particles using parallel processing [30].
Moreover, function CEIL in this equation makes it possible to obtain the integer of the
ratio between the number of particles (n) and the number of workers (W); this in order
to determine the number of times that the MTPR is required depending on the n and W
selected or used.

PPT = CEIL(n/W) ·MTRP (14)

The remaining steps of the DCPPSO method are similar to those in the conventional
PSO algorithm. In step 4, the solution and position obtained by each particle in the swarm
is chosen as the best particle solution and position. In step 5, the best solution of the particle
swarm and its associated position is selected as the incumbent solution to the problem. In
step 6, the velocity vector is calculated, and the position of the particle swarm is updated.
In step 7, the HPF is solved for each particle using parallel processing. In step 8, the
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best particle solution and position are updated, as well as the incumbent solution to the
problem. In step 9, the stopping criteria defined for the DCPPSO algorithm are evaluated.
In this case, we used the maximum number of iterations and the maximum number of
non-improvement iterations as the stopping criteria. If the stopping criteria are met, the
DCPPSO algorithm stops; otherwise, it begins another iteration starting from step 6.

4. Test Systems, Methods Used for Comparison, and Considerations
4.1. Test Systems

Two of the most widely used test systems in the specialized literature were employed
in this document in order to evaluate the effectiveness and robustness of the solution
methodologies proposed to solve the problem of integrating DGs into electrical networks:
the 33- and 69-bus test systems [10,31]. The next sub-sections describe both test systems.

4.1.1. 33-Bus Test System

This test system is a radial distribution network that consists of 33 buses and 32 lines.
The schematic configuration of the IEEE 33-bus grid is depicted in Figure 5.
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Figure 5. Electrical diagram of the 33-bus test system.

Table 2 presents the electrical parameters of this test system. From left to right,
this table specifies the sending bus (bus i), the receiving bus (bus j), the resistance and
admittance of the line that connects buses i and j, and the active and reactive power
demanded at node j. This test system uses a base power of 100 kw and a base voltage
of 12.66 kV. To ensure a secure operation of the distribution network, the voltage limits
were set to ±10% of the nominal voltage, and a maximum current of 380 A was considered,
which is associated with the use of a 400-kcmil electrical conductor. We used the same
electrical conductor for all the lines (a nontelescopic topology). This maximum current
value was obtained by running a power flow at the hour of peak power demand, without
considering the DGs installed in the electrical system.

Table 2. Parameters of the 33-bus test system.

Bus i Bus j Rij[Ω] Xij[Ω] P[kW] Q[kvar] Bus i Bus j Rij[Ω] Xij[Ω] P[kW] Q[kvar]

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8900 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2890 1.7210 60 20 32 33 0.3410 0.5302 60 40
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4.1.2. 69-Bus Test System

This test system consists of 69 buses and 68 lines. Its electrical diagram is illustrated in
Figure 6, and its electrical parameters, which are described in [10], are presented in Table 3.
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Figure 6. Electrical diagram of the 69-bus test system.

Table 3. Parameters of the 69-bus test system.

Bus i Bus j Rij[Ω] Xij[Ω] P[kW] Q[kvar] Bus i Bus j Rij[Ω] Xij[Ω] P[kW] Q[kvar]

1 2 0.0005 0.0012 0 0 3 36 0.0044 0.0108 26 18.55
2 3 0.0005 0.0012 0 0 36 37 0.0640 0.1565 26 18.55
3 4 0.0015 0.0036 0 0 37 38 0.1053 0.1230 0 0
4 5 0.0215 0.0294 0 0 38 39 0.0304 0.0355 24 17
5 6 0.3660 0.1864 2.6 2.2 39 40 0.0018 0.0021 24 17
6 7 0.3810 0.1941 40.4 30 40 41 0.7283 0.8509 102 1
7 8 0.0922 0.0470 75 54 41 42 0.3100 0.3623 0 0
8 9 0.0493 0.0251 30 22 42 43 0.0410 0.0478 6 4.3
9 10 0.8190 0.2707 28 19 43 44 0.0092 0.0116 0 0

10 11 0.1872 0.0619 145 104 44 45 0.1089 0.1373 39.22 26.3
11 12 0.7114 0.2351 145 104 45 46 0.0009 0.0012 39.22 26.3
12 13 1.0300 0.3400 8 5 4 47 0.0034 0.0084 0 0
13 14 1.0440 0.3400 8 5 47 48 0.0851 0.2083 79 56.4
14 15 1.0580 0.3496 0 0 48 49 0.2898 0.7091 384.7 274.5
15 16 0.1966 0.0650 45 30 49 50 0.0822 0.2011 384.7 274.5
16 17 0.3744 0.1238 60 35 8 51 0.0928 0.0473 40.5 28.3
17 18 0.0047 0.0016 60 35 51 52 0.3319 0.1140 3.6 2.7
18 19 0.3276 0.1083 0 0 9 53 0.1740 0.0886 4.35 3.5
19 20 0.2106 0.0690 1 0.6 53 54 0.2030 0.1034 26.4 19
20 21 0.3416 0.1129 114 81 54 55 0.2842 0.1447 24 17.2
21 22 0.0140 0.0046 5 3.5 55 56 0.2813 0.1433 0 0
22 23 0.1591 0.0526 0 0 56 57 1.5900 0.5337 0 0
23 24 0.3463 0.1145 28 20 57 58 0.7837 0.2630 0 0
24 25 0.7488 0.2475 0 0 58 59 0.3042 0.1006 100 72
25 26 0.3089 0.1021 14 10 59 60 0.3861 0.1172 0 0
26 27 0.1732 0.0572 14 10 60 61 0.5075 0.2585 1244 888
3 28 0.0044 0.0108 26 18.6 61 62 0.0974 0.0496 32 23

28 29 0.0640 0.1565 26 18.6 62 63 0.1450 0.0738 0 0
29 30 0.3978 0.1315 0 0 63 64 0.7105 0.3619 227 162
30 31 0.0702 0.0232 0 0 64 65 1.0410 0.5302 59 42
31 32 0.3510 0.1160 0 0 65 66 0.2012 0.0611 18 13
32 33 0.8390 0.2816 10 10 66 67 0.0047 0.0014 18 13
33 34 1.7080 0.5646 14 14 67 68 0.7394 0.2444 28 20
34 35 1.4740 0.4873 4 4 68 69 0.0047 0.0016 28 20

The same base power, base voltage, and voltage limits used for the 33-bus were
employed in 69-bus test system. By using these values, we obtained a maximum current
for this test system of 430 A, which is associated with the use of a 500-kcmil conductor. This
maximum current value was obtained by running a power flow at the hour of peak power
demand, without considering the DGs installed in the electrical network.
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4.2. Methods Used for Comparison

To compare our proposed solution methodology, the following five optimization
methods were employed (some based on commercial software and some on sequential
programming): the BONMIM solver of the GAMS, the Discrete–Continuous version of
the Chu and Beasly Genetic Algorithm (DCCBGA) [19], the discrete–continuous version
of the Newton Metaheuristic Algorithm (DCNMA) [21], the Discrete–Continuous version
of the Vortex Search Algorithm (DCVSA) [3], and the Discrete–Continuous version of the
Generalized Normal Distribution Optimization (DCGNDO) method [5]. These methodologies
were selected because they are the most widely used in the specialized literature and have
yielded excellent results in terms of the quality of the solution, repeatability, and processing
times. Moreover, the studies in which such solution methodologies were introduced
employed the same test scenarios and mathematical model as those presented in Section 2
of this manuscript.

4.3. Considerations

The following are the main aspects considered in order to find a solution to the problem
under analysis and assess the effectiveness of the DCPPSO:

• The maximum number of DGs to be integrated into the electrical network was three,
and their power limits were set to 0–2.4 p.u. [3].

• The parameters of the DCPPSO, as well as the power generation and demand curves
used for all comparison methodologies were as described in Section 3.

• The parameters employed for the successive approximation power flow method used
in the HPF were taken from [29].

• With the aim to test the methods used for comparison, the optimization parameters
were employed as reported by their authors. These used tuning methodologies to find
the computational parameters for each solution methodology, thus allowing to obtain
the best performance in terms of the quality of the solution and processing times.

• In order to assess the repeatability and precision of the studied solution methodologies,
each of them was executed 100 times, evaluating the obtained standard deviation and
mean values.

• All simulations were performed using Matlab 2020 in a Dell Precision T7600 Workstation
with an Intel(R)Xeon(R) CPU ES-2670 @ 2.50 GHz processor and 32 GB of RAM.

5. Simulation Results

This section presents all the numerical validations for the proposed and comparison
optimization methods in both test feeders.

5.1. 33-Bus Test System

Table 4 shows the results obtained by each solution methodology in the 33-bus test
system. From left to right, this table details the solution methodology implemented, the
buses where the PV DGs were located and their installed nominal power, the annual costs
(USD/year) obtained by each solution method and their percentage reduction with respect
to the base case (whose values are reported in the second row of the table), the required
processing time, the standard deviation obtained after 100 executions, the worst voltage
profile, and the maximum current obtained in the time horizon under study.

Figure 7 shows the improvements obtained by the DCPPSO with respect to the
other solution methods in terms of annual costs, processing time, and standard deviation.
Regarding annual costs (annual energy purchase costs plus investment costs), the DCPPSO
and the DCGNDO provided the same solution (see Table 4), which is why the improvement
obtained by the DCPPSO with respect to the DCGNDO was zero. When compared to the
other solution methodologies, these two methods obtained an average reduction in annual
costs of 0.0165%, 0.0070%, 0.0581%, 0.0150%, and 0.0024% with respect to the BONMIN
solver, the DCCBGA, the DCNMA, and the DCVSA, respectively.
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Table 4. Simulation results obtained by the solution methodologies in the 33-bus test system (AC and
DC networks).

Methodology Bus/Power [MVAr] Acost (USD/Year)/Reduction [%] Time [s] STD [%] Vworst [p.u.] Imax [A]

Base case [0–2.4] 3,700,455.380 - - [0.9–1.1] 380

BONMIN
17/1.3539
18/0.2105
33/2.1451

2,701,824.14/29.9867 3.64 0 0.90 366

DCCBGA
11/0.7604
15/0.9689
30/1.9059

2,699,932.29/27.0378 5.30 0.0452 0.90 366

DCNMA
8/0.2770
16/1.2688
30/2.0961

2,700,227.33/27.0298 20.21 0.0812 0.90 365

DCVSA
11/0.7606

14/1.08517
31/1.8029

2,699,761,71/27.0424 170.23 0.0427 0.90 366

DCGNDO
10/1.0083
16/0.9137
31/1.7257

2,699,671.75/27.0436 268.69 0.0700 0.90 365

DCPPSO
10/1.0092
16/0.9137
31/1.7245

2,699,671.75/27.0436 8.32 0.0246 0.90 366
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45.52379
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Figure 7. Improvements obtained by the DCPPSO with respect to the other methods in the 33-bus
test system.

As for processing times, the BONMIN solver and the DCCBGA were faster than the
proposed solution methodology, as they reduced processing times by 128.57% and 56.98%
with respect to the DCPPSO. However, these two methods produced the worst results in
terms of quality of the solution and standard deviation when compared to the DCPPSO.
Hence, their improvements in processing times are not considered significant, as both
methods show a fast convergence to local optima. When compared to the other solution
methodologies, the DCPPSO achieved an average reduction in processing times of 83.61%,
with a reduction of 58.83%, 95.11%, and 96.90% with respect to the DCNMA, the DCVSA,
and the DCGNDO.

Finally, after analyzing the improvements obtained by the DCPPSO in terms of
standard deviation, it was found to be superior to the other methods. It obtained an average
reduction in standard deviation of 57.45%, with a maximum and minimum reduction of 60.70%
(with respect to the DCCVGA) and 42.33% (with respect to the DCNMA), respectively.
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These improvements obtained by the DCPPSO in the 33-bus test system demonstrate
its superiority in terms of quality of the solution, processing time, and repeatability.
Therefore, the proposed solution methodology is regarded as the best option to solve
the problem of optimally integrating PV DGs into electrical networks to reduce annual
costs.

5.2. 69-Bus Test System

Table 5, which is organized in the same way as Table 4, presents the simulation
results obtained by the solution methodologies in the 69-bus test system. Based on these
results, Figure 8 illustrates the performance of the proposed solution methodology when
compared to the other methods. Note that this work did not report on the performance
of the BONMIN solver in this test system because it was unable to converge to a solution.
This is due to the large size of the solution space, as well as the nonlinear and non-convex
nature of the problem under study.

Table 5. Simulation results obtained by the solution methodologies in the 69-bus test system (AC and
DC networks).

Methodology Bus/Power [MVAr] Acost (USD/Year)/Reduction [%] Time [s] STD [%] Vworst
[p.u.] Imax [A]

Base case [0–2.4] 3,700,455.380 - - [0.9–1.1] 430

DCCBGA
24/0.5325
61/1.8954
64/1.3771

2,825,783.32/27.1397 22.36 0.0999 0.90 394

DCNMA
12/0.0794
60/1.3805
61/2.3776

2,826,368.60/27.1367 91.81 0.1900 0.90 393

DCVSA
16/0.2632

61/2.27197
63/0.11166

2,824.923.29/27.1501 887.64 0.0942 0.90 394

DCGNDO
21/0.4812

61/2.4
64/0.9169

2,824923.38/27.1589 1237.23 0.2558 0.90 393

DCPPSO
21/0.489

61/2.4
64/0.9169

2,824,923.29/27.1589 55.15 0.0267 0.90 393
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Figure 8. Improvements obtained by the DCPPSO with respect to the other methods in the 69-bus
test system.



Energies 2022, 15, 7465 17 of 20

When analyzing the results obtained by the DCPPSO in terms of reduction in annual
costs, it provided the best results for the 69-bus test system. It showed an improvement of
0.0221%, 0.0372%, 0.0087%, and 2× 10−6% with respect to the DCCBGA, the DCNMA, the
DCVSA, and the DCGNDP, respectively, for an average improvement of 0.0170%. Hence, it
is regarded as the best algorithm to solve the problem of the optimal integration of DGs in
the 69-bus test system.

Regarding processing times, the DCCBGA was the fastest of all the methods, with a
processing time of 22.36 s. However, this method yielded the worst results in terms of the
quality of the solution and its standard deviation values, which is why, when compared
to the other methods, it is not considered to be suitable for solving the problem under
analysis. The second-fastest method was the DCPPSO (Figure 8), with an average reduction
in processing times of 63.24% when compared to the other solution methodologies.

Finally, as for the standard deviation, the DCPPSO obtained the best results, with a
maximum reduction of 89.55% (with respect to the DCGNDO) and a minimum reduction
of 71.64% (with respect to the DCVSA). It achieved an average reduction of 80.10% when
compared to the other methodologies.

According to these results, the DCPPSO performs better than the other methods as
the large electrical network increases. It produced the best results in terms of quality of
the solution and repeatability, with excellent processing times. Finally, after analyzing the
information in columns 6 and 7 of Table 5, all solution methods were found to meet the
voltage profile and current limits established for the 69-bus test system.

5.3. Additional Comments

After applying the proposed solution methodology based on DCPPSO to determine
the optimal sizes and locations of the PV generation units in radial distribution systems
and comparing its results with recently developed literature approaches, the numerical
results in the IEEE 33- and 69-node test feeders allowed observing that:

i. The proposed DCPPSO approach, as well as the compared methodologies, find
adequate results for the studied problem, with small differences between them.
However, the proposed DCPPSO approach exhibits better optimization properties
regarding the ability to find the best solution for both test feeders.

ii. With regard to the processing times of the proposed and comparison approaches, in the
IEEE 33-bus grid, it was evidenced that the solution of the exact MINLP model in the
GAMS software with the BONMIN tool has lower processing times when compared
to metaheuristic techniques. However, the main problem with this solver is that it
is stuck in local optimal solutions, unlike all the metaheuristic-based optimization
approaches used for comparison. In addition, in the case of the IEEE 69-bus grid, it
was observed that the BONMIN solver does not ensure convergence to any feasible
solution, which confirms the high complexity of the exact MINLP model.

iii. For comparing metaheuristics, a typical approach is based on assessing their numerical
performance via standard deviations as presented in Tables 4 and 5. These results
confirmed that the proposed DCPPSO is the most effective metaheuristic-based
approach to solve the studied problem. However, in the IEEE 33-bus system, the
standard deviation of the BONMIN solver is zero, which is not the case of the DCPPSO.
This is an understandable result, since the BONMIN solver deals with the MINLP
model by using a combination of the Branch and Bound method with interior points,
which implies that, for the same inputs, the results will be the same. However, it
does not have the ability to escape from local optimal solutions, unlike the proposed
DCPPSO approach. This makes the DCPPSO the best solution alternative for the
problem analyzed in this research.

iv. The numerical performance regarding processing times when comparing the DCCBGA
and the proposed DCPPSO showed that, in both test feeders, the first approach takes
only a few seconds when compared to our proposal. This situation is explained by
the fact that the DCCBGA evaluates the initial population one time, and, at each
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iteration, only two new individuals are evaluated, i.e., if the population size is Ni
and the number of iterations is tmax, then the total evaluations of the DCCBGA is
Ni + 2tmax; whereas our proposal is a population-based approach that evaluates Ns
individuals in each iteration, which implies, after the search process ends, a total
of (tmax + 1)Ns. These evaluations of the potential solutions for both approaches
(DCCBGA vs. DCPPSO) clearly demonstrate that the proposed DCPPSO approach
requires additional processing times. Nevertheless, this translates into better solutions
in comparison with all metaheuristic-based approaches.

6. Conclusions

This work proposed a new methodology for solving the problem of optimally integrating
PV DGs into electrical networks to reduce annual costs (including energy purchase and
investment costs). The proposed solution methodology uses the Discrete–Continuous
Parallel Particle Swarm Optimization method (DCPPSO), which considers both the discrete
and continuous variables associated with the location and sizing of DGs in an electrical
network. The optimization parameters of the proposed solution methodology were tuned
using the PSO algorithm. To validate the performance of the DCPPSO, we employed the 33-
and 69-bus test systems and compared it with other five solution methods, one of which
uses specialized software and the others employ a discrete–continuous codification.

Regarding the results obtained in the 33-bus test system, the DCPPSO achieved an
average reduction in annual costs, processing times, and standard deviation of 0.0165%,
13.0586%, and 57.45%, respectively. This demonstrates its excellent performance in terms
of effectiveness and repeatability in small electrical networks. By analyzing the results
reported for the 33-bus test system, it is possible to notice that the implementation of
metaheuristic algorithms allowed obtaining solutions with an average reduction in annual
cost of 0.53% with respect to the commercial software highly used in the literature (the
BONMIN solver of GAMS), with a maximum standard deviation value of 0.08%, with
the DCPPSO thus being the solution methodology with the best performance. This is
due to the fact that the mathematical formulation of the DG location problem includes a
non-linearity that prevents exact methods such as the BONMIN solver from obtaining the
optimal solution, trapping them in local optima.

As for the 69-bus test system, the authors of this manuscript did not evaluate the
performance of the BONMIN solver because it was unable to solve the nonlinear and
nonconvex problem associated with this electrical system. This proves that as the size of
the electrical system increases, the complexity of the problem under analysis increases
too. Regarding the results obtained by the other methods in this test system, the DCPPSO
achieved an average reduction in annual costs, processing times, and standard deviation
of 0.0170%, 32.56%, and 80.10%, respectively. Hence, the proposed solution methodology
presented the best performance and repeatability.

When comparing the results obtained in the 33- and 69-bus test systems, the DCPPSO
achieved an average reduction in annual costs, processing times, and standard deviation of
0.0005%, 19.5014%, and 22.65%, respectively. This demonstrates that the larger the solution
space, the better the quality of the solution provided by the DCPPSO. Thus, it is possible
conclude that the proposed solution methodology is the best option to solve the problem of
optimally integrating PV DGs into electrical networks to reduce annual costs.

Future studies should consider using an objective function focused on technical and
environmental aspects as well, with the aim of analyzing the financial, technical, and
environmental impacts of integrating PV DGs into electrical networks. Furthermore, they
could consider integrating energy storage systems in parallel with PV DGs in order to
improve the financial impact of distributed generation resources on annual costs and other
aspects used as objective functions.
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