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"El camino hacia el saber no es acumular ciencia como algunos acumulan riquezas; es
reconocer la propia realidad de uno en el mundo y juzgarla; es renovar en sí mismo el

misterio de la creación" - Maimónides (Córdoba, siglo XII).
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Chapter 1

Introduction

1.1 The spatial dilemma within rainfed crop systems modelling

Rainfed agriculture plays a decisive role in world food production, accountingfor more than 75% of global cropped area, and being responsible for morethan 60% of total cereals’ production (Cassman et al., 2003; Connor & Mínguez,2012). Sustaining food production by rainfed crops in the years ahead willrequire productivity gains in resource use (Fischer & Connor, 2018). Specificchallenges consist of estimating the magnitude and thus the value of yieldgaps, identifying limiting factors, and implementing profitable and sustainablestrategies (Fischer, 2015; Rattalino-Edreira et al., 2018; Silva, 2017).
Recently, yield gaps in rainfed farming have been assessed with the useof crop simulation models considering the most representative biophysicalconditions and, to a lesser extent, crop management practices observed infarmers’ fields (Spiertz, 2014). However, the considerable spatial variability thatexists in soil hydraulic properties within a field, and the accurate modelling ofcrop heterogeneity requires assessing the spatial variations of water as theyaffect crop behaviour (Nielsen et al., 1973; Miller et al., 1988).
Extraordinary advances in computer engineering and programminglanguages have been accomplished, particularly over the last three decades.These have facilitated crop modelling, which have led to the adoption of suchtools for many applications in agronomy (Passioura, 1996; Jones et al., 2017).However, recent advances have not yet succeeded in scaling up mechanisms
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from point to field level in crop models. While significant progress has beenachieved in the engineering aspects of spatial variation, such as increasingspatial resolution of data systems, variable rate technologies, and automation,much less effort has been dedicated to the simulation of within field cropresponses to spatial variations.
In this thesis, ‘field level’ (or ‘field scale’) is defined as the entire crop plot,and thus the terms ‘intra-plot’ and ‘within-field’ are used as synonyms. While‘point scale’ focuses on the dominant characteristics to represent an area ofinterest, ‘field scale’ considers the entire field/plot area and the inherent spatialvariation of growing conditions.
Most studies on rainfed yield gaps ignore intra-plot variability (Fischer etal., 2014; Guilpart et al., 2017; Lobell et al., 2009; Schils et al., 2018). Thisis partially due to data availability constraints (Beza et al., 2017) and tothe limitations of crop models to simulate processes such as spatial waterdistribution (Tenreiro et al., 2020). Essentially, if crop models are to beused in assisting crop management, they may greatly benefit from spatialwater modelling approaches capable of accurately representing and simulatingwithin-field variation of water-related processes.

1.2 New data assimilation methods

New data assimilation methods can improve the assessment of crop attributes,which reveal new opportunities for modelling spatial variations. Examples arethe opportunities of very-high-resolution remote sensing, thanks to the adventof unmanned aerial vehicles and other airborne platforms, novel computer visiontechniques, machine learning methods, spectral analysis, and object-basedclassification algorithms (Bendig et al., 2015; Berni et al., 2009; Chianucci etal., 2016; Gao et al., 2020; Tenreiro et al., 2021; Viña et al., 2011; Waldner etal., 2019).
For the simulation of water processes at crop field level, severalmethodologies for data assimilation, geospatial simulation, visualization andvalidation of models have been proposed (e.g., geospatial interpolation of
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point based simulations, zonal statistics applied to mapped simulation results,integration of modelling with remote sensing, and other new data assimilationmethods). However, most of these cases have been focused at regional scalesand do not address within-field spatial variation (Droogers & Bastiaanssen,2000; Grassini et al., 2015; Han et al., 2019; Jia et al., 2011; Lobell & Azzari,2017; Lobell et al., 2015; Lorite et al., 2013; Sadler & Russell,1997; Shu etal., 2018; Zwart & Bastiaanssen, 2007). Other promising cases reveal someadvances in the spatial simulation of water and vegetation (Moiling et al., 2005;Booker et al., 2015; Wallor et al., 2018), but still neglecting spatial behaviourof yield determining factors, such as variations of the harvest index caused bydifferences in available soil water (Figure 1.1).
In terms of spatial variations in water distribution, and their effects oncrop growth and development, most of the geostatistical methods applied topoint-based (or partially distributed) models smooth considerably the actualspatial heterogeneity. This occurs because lateral water movement andcause-effect relations between neighbouring areas are ignored in the waterbalance calculation schemes. In addition, relying solely on geostatistics todeal with spatial heterogeneity does not resolve the existing knowledge gapsregarding the driving mechanisms of spatial variations. This issue was raisedby Nielsen & Wendroth (2003), who suggested that statistical methods shouldnot replace research inventiveness in the assessment of spatial and temporalvariations.

1.3 Crop-water modelling approaches and opportunities to
simulate spatial water variations at crop field level

The present doctoral thesis reviewed some of the most widely adopted crop(e.g., WOFOST, DSSAT, APSIM, DAISY, STICS, AquaCrop and MONICA) andhydrologic models (HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE and SWIM),from the standpoint of identifying opportunities for simulating spatial watervariations at crop field level through the incorporation of both surface andsubsurface lateral flows as they affect crop performance (Tenreiro et al., 2020;
4



2022).
The incorporation of lateral flows within the water balance allows abetter simulation of the mechanisms that determine yield variations overspace. However, this requires innovative experimental approaches which shouldaccount for spatially distributed processes and which should be related to thegeomorphological properties with implications for plant available water.
Data collection and field experimentation must be conducted at “real scales”,which is relatively costly and difficult to replicate over long periods of time(Sadras et al., 2020). Therefore, it is accepted that the combination ofboth experimentation and simulation modelling is a valid strategy for makingprogress (Kirkegaard & Hunt, 2010). By combining field experimentation,simulation models, and the use of new data assimilation methods (i.e., remotesensing or artificial neural networks), it should be possible to investigate therelevance of lateral flows.

1.4 Opportunities for site-specific crop management

Progress in the simulation of crop response to spatial variations can delivernew opportunities for better crop production through site-specific management(Basso & Antle, 2020). Site-specific management, linked to the concept ofprecision agriculture, is defined as the agricultural crop management that isconducted at a lower spatial scale than the whole field (Mulla & Schepers,1997). This implies that intra-plot variations are considered, and that crops aremanaged accordingly, considering the site-specific conditions that vary withina single field.
In fields of undulating topography, where rainfed crops experience differentdegrees of water stress due to spatial water variations caused by lateral flows,yields vary spatially within the same field (Halvorson & Doll, 1991; Tenreiro etal., 2022).
The pattern of crop water use can be greatly affected by management(Passioura, 2002), as over fertilization may result in exceedingly vigorous cereal
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crops that are prone to consume an excessive amount of water in the vegetativestage before yield-defining critical stages (Figure 1.1). This may increasewater-stress during grain formation reducing the harvest index, especiallyunder rainfed conditions when crop yields are water-limited (van Herwaardenet al., 1998; Figure 1.1).
Water shortages during grain formation results in yield losses (Figure 1.1)because the crop initiates senescence prematurely in zones with the leastavailable water. Therefore, the spatial variations in soil water supply canjustify a variable fertilization rate over space. From both an economic andan environmental perspective (Lowenberg-DeBoer & Erickson, 2019; Robertsonet al., 2008), different nutrient requirements and application rates represent anopportunity for better farm management with productivity gains in resource useand net margins (Fischer & Connor, 2018; Nielsen & Halvorson, 1991; Sadras,2002; Whelan & McBratney, 2000).

1.5 Thesis research framework

The present thesis focused on the “spatial dilemma” regarding crop simulationunder spatial heterogeneous conditions. This thesis builds upon the mainhypotheses that point-based crop modelling is a limited representation of thefield, that the spatial interpolation of point simulations ignores the existinghydrological interactions and feedback between adjacent areas within thefield, and that up-scaling such processes is a promising step to integrate cropsimulation and decision-making in site-specific management.
Main objective To study the spatial crop-water variations in rainfedwheat systems in Mediterranean conditions, and to evaluate the potential ofhydrologic and crop simulation modelling to predict within-field yield variationand its implications for site-specific management.
Within this context, the following subsequent research objectives wereaddressed:
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First objective

1. To investigate opportunities to simulate spatial water variations atcrop field level by reviewing the main crop-water modelling approaches andidentifying opportunities to simulate spatial water variations at crop field level.
This specific objective will be covered in chapter two.
Second objective

2. To explore new data assimilation methods within crop modelling research.Combining new data assimilation methods with crop simulation modelling fordetermining crop yield variability at field level.
This specific objective will be covered in chapter three.
Third objective

3. To evaluate the agronomic relevance of spatial water variations by:
3.1) assessing experimentally the magnitude and frequency of water lateralflows occurring in crop fields of undulating topography;
3.2) simulating water lateral inflow over multiple years and its contributionto spatial variations of rainfed wheat yields.
3.3) determining the net contribution of lateral water inflows to spatialvariations of rainfed wheat yields in fields of undulating topography.
This specific objective will be covered in chapter four.
Fourth objective

4. To analyse the economic relevance of site-specific management asa strategy to deal with spatial water variations by investigating the mainopportunities for variable application rate of nitrogen under spatial watervariations in rainfed wheat systems from an economic perspective.
This specific objective will be covered in chapter five.
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FIGURES - Chapter 1

Figure 1.1: Schematic representation of grain yield of wheat, biomass at harvest, and harvest index,in relation to the proportion of available water used by flowering time. The scale of the y-axis isarbitrary because it varies according to each crop parameter. Figure adapted from Passioura (2002).
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Chapter 2

Water modelling approaches and
opportunities to simulate spatial water
variations at crop field level

This chapter has been published as:
Tenreiro, T. R., García-Vila, M., Gómez, J. A., Jimenez-Berni, J. A., & Fereres, E. (2020). Watermodelling approaches and opportunities to simulate spatial water variations at crop fieldlevel. Agricultural Water Management, 240, 106254.

Abstract

Considerable spatial variability in soil hydraulic properties exists within a field, even in those consideredhomogeneous. Spatial variability of water as a major driver of crop heterogeneity gains particularrelevance within the context of precision agriculture, but modelling has devoted insufficient efforts toscale up from point to field the associated ’cause-effect’ relations of water spatial variations. Sevencrop simulation models (WOFOST, DSSAT, AP- SIM, DAISY, STICS, AquaCrop and MONICA) and fivehydrologic models (HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE and SWIM) were selected and theirwater modelling approaches were systematically reviewed for comparison. Crop models rely mainlyon ’discrete’ and empirical approaches for modelling soil water movement while hydrologic modelsemphasize more ’continuous’ and mechanistic ones. Combining both types of models may not be thebest way forward as none of the models consider all of the processes which are relevant for the simulationof spatial variations. Hydrologic models pay more attention to spatially variable water processes thancrop simulation models, although their focus is on scales higher than the field which is the relevantscale for assessing the influence of such variations on crop behaviour. Opportunities for progress inthe spatial simulation of water processes at field level will probably come from two different directions.One implying a stronger synergism between both model families by using continuous-type approachesto simulate some mechanisms in existing crop models, and the other through the integration of lateralflows in the simulation of discrete water movement approaches.
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2.1 Introduction

An inherent action of biological sciences is the conceptual representation ofsystems through hierarchical levels (De Wit, 1982; Loomis et al., 1979). Inagronomy related studies, it implies different levels of complexity determinedby the nature of the issue addressed (Ahuja et al., 2019). Over the last 60 years,crop scientists have dedicated particular attention to modelling in an attemptto mathematically represent the functioning of agricultural systems at differentlevels of complexity, and to simulate their response to multiple factors in an‘easy-fast’ and ‘low-cost’ way (Carberry, 2003; Fischer & Connor, 2018; Jin etal., 2018; Jones et al., 2017a; Lobell et al., 2009).
Conceptually, models can be divided into ‘functional-empirical’ or‘mechanistic’ and distinguished according to their spatial scale, being classifiedas ‘point-based’ or ‘distributed’ (ASCE, 1982; Passioura, 1996; Thomas andSmith, 2003). While ‘engineering-oriented’ models tend to be classifiedas functional-empirical, ’science-oriented’ models are mostly consideredmechanistic (or process-based). While point-based scales ignore spatialvariability by averaging or using ‘dominant’ characteristics to model an areaof interest, distributed scales consider the spatial distribution of resourcesand the consequent crop response. Functional-empirical models have shownpotential to support benchmarking, decision and policy making at differenttemporal-spatial scales (Boote et al., 1996; García-Vila et al., 2009; Mateos etal., 2002; Passioura, 1973). Mechanistic models have been mostly used to assistplant breeding for specific environments (Fischer and Connor, 2018; Struik,2016; Yin & Struik, 2007), the identification of global yield- gaps (Byerlee et al.,2014; Boogaard et al., 2013; Grassini et al., 2015); (http://www.yieldgap.org/),and for agro-ecological resource management (Boote et al., 1996; Booker et al.,2015; Fischer et al., 2002; Thorp et al., 2008).
The extraordinary advances in computer engineering and programminglanguages, particularly over the last three decades, have intensified themodelling processes contributing to an increased adoption of such tools formany applications (Jones et al., 2017a; Passioura, 1996; Seidel et al., 2018;
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Thorp et al., 2012). The use of models in large cooperative efforts (such as TheAgricultural Model Intercomparison and Improvement Project; www.agmip.org)has intensified recently, too, partially in response to new needs (Asseng etal., 2014). However, recent advances have not yet succeeded to scale upmechanisms from point to field level in crop models (Ahuja et al., 2019; Fischerand Connor, 2018). Such limitation may be leading to an impasse in modelling,compromising the adoption of these tools, mostly in the context of precisionagriculture (Jones et al., 2017b). In fact, while significant advances have beenmade in the engineering aspects of precision agriculture, such as increasingspatial resolution, variable rate technologies and automation, much less efforthas been devoted to understand the crop mechanisms in response to spatialvariations (Cassman, 1999; McBratney et al., 2005; Monzon et al., 2018).
As considerable spatial variability in soil hydraulic properties exists within afield, even in those considered homogeneous (Nielsen et al., 1973), the accuratemodelling of crop heterogeneity requires assessing the spatial variability ofwater as it affects crop behaviour (Ritchie, 1981; Sadras et al., 2016; Verhagenand Bouma, 1997). This aspect is considered a serious limitation in currentcrop models but it has received limited attention (Ahuja et al., 2014; Jones etal., 2017b).
In the modelling of water, two ‘families’ of models can be distinguished:crop models and hydrology based models. Both families have been widelyused worldwide and different arguments are employed to promote the adoptionof each one depending on the specifications of each case-study (Ahuja et al.,2014; Devia et al., 2015; Jones et al., 2017b). While crop models are centeredon the growth and development as affected by the environment, hydrologicalmodelling emphasizes mostly systems’ water dynamics at different scales. Inthis sense, and in regard to water-related processes, crop models tend to bemore empirically-based while hydrologic models are more mechanistic. Inrelation to spatial scales, while crop models are limited to point-based scales,some hydrological models distribute partially water processes. However,practically all distributed models have in fact ‘discrete characteristics’ (e.g.input parameters, boundary conditions) and follow non-linear relations for
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multi-dimensional representations that lead to important trade-offs betweenaccuracy and data requirements that must be considered (Passioura, 1996). Justas distributed models rely partially on discrete characteristics, the distinctionbetween mechanistic and empirical models is not clear-cut in this case, as thereis a continuum between the two approaches as well, with mechanistic modelshaving always some empirical components.
Essentially, if crop models are to be used to improve water management inprecision agriculture, they may greatly benefit from spatial water modellingapproaches capable of accurately represent and simulate within-field variationof water-related processes. It is important to reflect if this will be morelikely achieved by distributing water processes in crop models (i.e. identifyingconceptual gaps in the water balance structure) or by coupling both families.
Contemporary reviews on crop modelling (Ahuja et al., 2019; Boote et al.,2013; Bouman et al., 1996; de Wit et al., 2018; Holzworth et al., 2015; Jinet al., 2018; Jones et al., 2017a,b; Whisler et al., 1986) have tended to covermost main variables governing crop growth and development (at point-basedscales), models structure and software details, but do not dwell on the modellingapproaches with sufficient detail to be able to identify the main conceptualgaps that constrain the use of models for spatial variable applications. Also,most reviews focus on one or only a few models without reaching out to otherdifferent types of models (Boote et al., 1996; de Wit et al., 2018; Holzworth etal., 2015; van Ittersum et al., 2003). Rarely, a single variable, such as water,has been the subject of specific analyses in crop modelling reviews.
In our case, we have focused solely on water because it is a majordeterminant of spatial heterogeneity in the field (Nielsen et al., 1973, 1987;Ritchie, 1981; Ahuja et al., 1984; Sadler and Russell, 1997; Wallor et al., 2018).In an effort to assist in the scaling up of crop simulation models, we have carriedout a systematic review of the approaches taken to simulate water in a numberof selected crop and hydrologic models.

13



2.2 Methodology

2.2.1 Review approach

Since most of the selected models are based on similar fundamentals, thisreview followed a ’process-based’ structure to avoid repetitive comparisonsamong models. The analysis was carried out in three consecutive steps:
1) selection of models based on a literature search of recent reviews;
2) identification and description of plant-soil-water processes addressed bythe selected models;
3) compilation of results and a comparative analysis.

2.2.2 Model selection and soil-plant water processes description

The first step consisted of conducting a web search of the last tenyears of published reviews on modelling that were either crop-based orhydrologic-based. Priority was given to ‘multiple-species’ and ‘comprehensive’models since we focused on models complying with the following two criteria:(1) related literature is accessible and clear regarding fundamentals, equationsand assumptions; and (2) the calibration and parameterization for multiple fieldcrops is possible.
A total of 42 articles were found, out of which 34 were rejected because theywere focused on topics different than a crop model/s review. Eight documentswere selected: one technical report (Kirby et al., 2013) and seven scientificpapers (Donatelli et al., 2017; Holzworth et al., 2015; Jin et al., 2018; Joneset al., 2017a,b; Rauff and Bello, 2015; Shaw et al., 2013). The following seven‘crop-based’ models were selected: WOFOST, DSSAT, APSIM, DAISY, STICS,AquaCrop and MONICA. An equivalent approach was followed to select thehydrology-based models. The initial search yielded a total of 99 results out ofwhich 90 were also rejected for a similar reason as to the crop models. The finalnine documents selected (Devia et al., 2015; Dwarakish and Ganasri, 2015; Gaoand Li, 2014; Golden et al., 2014; Hallouin et al., 2018; Kauffeldt et al., 2016;Salvadore et al., 2015; Song et al., 2015; Sood and Smakhtin, 2015) referred to
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12 models from which a final sample of five models was chosen based on theintended scale of analysis (i.e. small catchment plot or crop field level) and thepotential to be coupled with ‘crop-based’ models in regard to water processes.The models are: HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE and SWIM.
Once models were selected, we proceeded with the identification of allprocesses where water moves along the soil-plant-atmosphere system, calledhere soil-plant water processes. Subsequently, a description of the modellingapproaches followed by the selected models was obtained from the literaturegoing back to the initial publication of each model. Soil-plant water processeswere structured following the fate of water in a hypothetical hydrological unit:(1) pre-infiltration, (2) infiltration, (3) surface-water flow, (4) evaporation, (5)root water uptake and transpiration, (6) internal drainage, (7) capillary rise, (8)subsurface lateral flows, and (9) solute transport.
Following a basic description of all models, every water process wasdescribed in detail as simulated in each of the models. The fundamentalsof the modelling approaches were described based on a literature search thatwas not limited by any time-frame. All results were synthesized in a tablefor a comparison among models (Appendix - Table 1). The tabled results arefully integrated with the text, following the same nomenclature and acronyms.Considering our sample (N = 12 models), a descriptive statistical analysiswas conducted to explore differences among models in regard to the degreeof spatial components and an association plot was produced to justify ourdiscussion.

2.3 Modelling soil-plant water processes

2.3.1 The pre-infiltration phase

The pre-infiltration phase involves all water processes taking place abovethe soil surface (i.e. precipitation, irrigation, surface run-on, canopy ormulch interception, and gravitational flow through plant surfaces, commonlycalled stem-flow). This phase determines the amount of water supplied from
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precipitation (P), including outflows from the snowpack (DAISY, MONICA,HYDRUS-1D/2D, SWAP, MIKE-SHE) and irrigation (I) after subtracting theevaporated fractions of intercepted water by canopy and other surfaces (e.g.mulches). Some models operating at catchment scale (i.e. MIKE-SHE), considersuperficial inflow (SIF ) from run-on as a supply form, too (DHI, 2017b).
Precipitation is taken as an input (Beaudoin et al., 2009; Hansen et al., 1990;Jones et al., 2003; Keating et al., 2003; Nendel et al., 2011; Raes et al., 2009a;Simunek et al., 2008; van Dam et al., 1997; van Van Diepen et al., 1989; Verburget al., 1996), which can be represented at point- or field-scale, depending on thespatial variability of rainfall and the availability of spatially distributed data(Basso et al., 2001; Thorp et al., 2008; Zhou & Zhao, 2019).
Irrigation, when considered (DSSAT, APSIM, DAISY, STICS, AquaCrop,MONICA, HYDRUS, SWAP, SWIM), must be previously set up within amanagement module that can be activated when necessary (Boote et al.,1996; García-Vila and Fereres, 2012; Hussein et al., 2011). Irrigation watersupply is taken as a net inflow, either assuming no losses (DSSAT, APSIM,DAISY, AquaCrop, MONICA, HYDRUS, SWAP, SWIM) or by subtracting thecorresponding application losses (STICS). Four irrigation methods may beconsidered: (1) Surface; (2) Sprinkler; (3) Drip; and (4) Subsurface drip.Irrigation applications may be simulated in three different ways: (1) a calendardefined by the user; (2) a planned irrigation schedule applying constant orvariable rates once a threshold of soil water content is reached; (3) a plannedschedule based on multiple-criteria (e.g. crop phenological stage, soil watercontent, water availability constraints).
The method influences whether irrigation is applied above canopy (i.e.sprinkler pivot) or below (i.e. furrow or drip irrigation). Irrigation applied abovecanopy implies the simulation of pre-infiltration processes such as canopyor mulch interception and evaporation from plant surfaces (STICS, HYDRUS,SWAP). Some models allow users to define the fraction of soil surface wettedby irrigation (AquaCrop).
The fraction of water intercepted by the canopy may be simulated by an
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analogy of the ‘Beer-Lambert law’ (B-L) (Murphy & Knoerr, 1975). Somemodels (APSIM) use the B-L approach to simulate ‘rainfall attenuation’, i.e.interception of rainfall or irrigation water applied over the canopy. The fractionof intercepted water by the canopy (or mulch) may be assumed as part ofa direct evaporation ‘pool’ (Murphy & Knoerr, 1975) or recovered into the‘infiltration pool’ (i.e. the amount reaching the soil surface) in form of stemflow down to the soil surface. For the recovered fraction, Brisson et al. (2003)proposed the simulation of stemflow (SF ) as a function of LAI , light extinctioncoefficient (k ) and an empirical crop coefficient (SFMAX ) that depends on thearchitecture and wettability of plant surfaces (Wang et al., 2015) and the totalwater supply, i.e. irrigation (I) and/or precipitation (P) according to:
SF = SFMAX [1 − e(−kLAI)](P + I) (2.1)

Alternatively, the method proposed by Braden. (1985) and vonHoyningen-Huene. (1981) can also be used to estimate the fraction ofintercepted water (e.g. HYDRUS, SWAP):
INT = aLAI [1 − (1 + bAbCpool

aLAI )−1] (2.2)
where LAI is leaf area index, a is an empirical coefficient (assumed as 0.25by default), b is the soil cover fraction (assumed as 0.33 of LAI), and AbCpoolis the ’above canopy pool’.
Other models (DAISY, STICS) represent the effects of mulch residues onthe modelling of water interception dynamics (Brisson et al., 2003; Hansen etal., 2012). Such advancements have focused on the development of empiricalequations that estimate the quantity of soil cover with time (e.g. STICS).According to the calibration of Scopel et al. (1998), the effect can be representedby a negative logarithmic relation that determines the decomposition rate ofthe mulch type with time.
Some models (DAISY, MONICA, HYDRUS-1D/2D, SWAP, MIKE-SHE)integrate snow accumulation and melting processes within the pre-infiltrationphase. As described by Abrahamsen and Hansen (2000), these processes can
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be determined as a function of precipitation, air temperature, global radiation,ground heat flux, albedo and depth of the snowpack. Water losses from thesnowpack, occur in the form of evaporation, sublimation and percolation (whenthe retention capacity is exceeded), and evaporation tends to have priority oversublimation.
In this sense, the INFpool (expressed in units of length per time, as mmday−1 or cm day−1 in case of daily time-steps) can be calculated as the sumof non-intercepted water from rainfall (P), irrigation (I), and when considered,also superficial inflow from run-on (SIF ) and stemflow (SF ). All contributeeventually as an input to a snow pack module (SPM), if considered, from whichthe melted fractions recover, counting as an input on the estimation of infiltrationin the subsequent time-step. Non-recovered fractions through SF are likelyto be lost through direct evaporation. The INFpool is therefore the amount ofavailable water at soil surface to be infiltrated.

2.3.2 Infiltration

Effective infiltration (INFef f ) is the fraction of INFpool that infiltrates into thesoil at a given time step. The remaining fraction is considered a surface watersurplus, that may originate water ponding (leading to accumulation, evaporationor infiltration in following time-steps) and surface runoff depending on thesurface conditions and topographic characteristics of the area (Allen, 1991).
The simplest approach to estimate INFef f applies a simple capacity model(CAP) in which maximum infiltration capacity is defined as the differencebetween the soil saturation water content (θSAT ) and actual water content(θ), expressed as a fraction of a volume. In this case, the infiltration capacityis defined as the maximum amount of INFpool that infiltrates in a given soilunder specific conditions (WOFOST and MONICA; Appendix).
An alternative and widely adopted approach (DSSAT, APSIM, STICS,AquaCrop; Appendix) is the USDA curve number method (CN-method). Asdiscussed in detail by Allen (1991), this ’infiltration-loss based method’,calculates INFef f as a function of the potential maximum retention (S). S
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(expressed in mm) is defined according to the curve number (CN), which is anempirical parameter, determined from tabled empirical values, according to landcover and soil hydrological group (Cronshey, 1986; Rallison, 1980; Woodwardet al., 2003):
S = 254(100

CN − 1) (2.3)
The soil hydrologic group classification is based on probability distributioncurves of measured infiltration rates related to soil antecedent conditions (Allen,1991; Cronshey, 1986). Therefore, CN is not a constant but varies from eventto event. The robustness of this method is related to the vast quantity offield measurements that support it. However, it reveals some weakness whensurface runoff (SRn) is a small fraction of the INFpool (i.e. arid or semi-aridconditions), a situation where a wider range of CN is observed (Allen, 1991).According to the CN-method, INFef f can be calculated as:

INFef f = INFpool − [ (INFpool − χS)2
INFpool+ (1 − χ )S ] (2.4)

where the subtracted fraction corresponds to SRn and corresponds to the’initial abstraction’ which is the initial fraction of S that can infiltrate beforestarting surface runoff (Allen, 1991). More mechanistic approaches computeinfiltration according to the formulations of Richards (1931) and Richardson(1922) for transient flow conditions (DAISY, HYDRUS-1D/2D, SWAP, MIKE-SHE,SWIM; Appendix). INFef f can be defined by unsaturated soil water movement,which is estimated through numerical solutions of the Richards equation(Buchan, 2003):
INFef f = ∂θ

∂t = ∂
∂z [K (θ)∂ψ∂z − K (θ)] (2.5)

where θ is the volumetric water content of the soil top layer (expressedas a fraction of a volume), t is time, z is the vertical coordinate (expressed inunits of length), positive when water flows downwards, K is the unsaturatedhydraulic conductivity as a function of θ, and ψ is capillary pressure headrelative to atmospheric pressure (unit of length). While the space z and time t
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are independent variables, ψ and θ are dependent variables.
The methods used to solve Richards’ equation are an important issue inhydrological research (van Dam, 2000; van Dam et al., 1997). Many alternativemathematical solutions have been proposed (e.g. geometric means, arithmeticmeans, iterative methods), but the parabolic form of this equation in combinationwith the strong non-linearity of the soil hydraulic functions (i.e. functionsrelating water content, soil pressure head and hydraulic conductivity) makesit a non-consensus and difficult task. Accordingto van Genuchten (1980) andMualem (1976), the soil hydraulic functions can be represented as:

θ(h) = θPWP + θSAT − θPWP(1 + |αh|n)n−1
n

(2.6)
K (θ) = KSAT ( θ − θPWP

θSAT − θPWP
)λ[1 − [1 − ( θ − θPWP

θSAT − θPWP
) n
n−1 ](n−1

n )]2 (2.7)
where θ is the volumetric soil water content as a function of the soil pressurehead (h), θPWP is the volumetric soil water content at permanent wilting point,

θSAT is the volumetric soil water content at saturation point, α and n areempirical shape factors (respectively, expressed in units of length and unitless),
KSAT is the saturated hydraulic conductivity (expressed in units of length pertime), and h is expressed in units of length. When INFpool increases at ahigher rate than the maximum infiltration capacity (i.e. K (θ)=KSAT ), wateraccumulates at soil surface (DAISY, HYDRUS-1D/2D, SWAP, MIKE-SHE). Theponded infiltration can be modeled through a solution of Darcy’s equation(DAISY) or according to the Green-Ampt approach (HYDRUS-1D/2D, SWAP,MIKE-SHE, Appendix), which is based on Darcy’s equation for continuoussaturated conditions and considers the wetting front as the reference elevation,where gravitational head is zero (Green & Ampt, 1911). The decreasinghydraulic gradient caused by the wetting front drives the drop in infiltrationrate over time, which can be mathematically represented as:

INFef f = K (Lf + H0 + HF
Lf

) (2.8)
where K represents the hydraulic conductivity, Lf is the thickness of the soil
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being considered (i.e. the depth of the wetting front), H0 is the pressure headat soil surface and HF is the pressure head at the wetting front (H0 and HF ,both assumed to be constant). Despite being originally developed for flat landconditions, the Green-Ampt approach has also been applied to sloping surfaces(Chen & Young, 2006).
The INFef f estimation approaches that are based on the hydraulicconductivity of the top soil layer assume that after infiltrating into the soil, wateris stored in successive layers downward according to a physical constraint thatis imposed by the drainage ability of the soil (APSIM, STICS, AquaCrop).

2.3.3 Surface-water flow

Surface-water flow can be classified as a loss flow (i.e. when represented as
SRn), a re-distribution flow (i.e. when represented as a lateral flow affectingthe water balance of neighbouring hydrological units) or as a channel flow(i.e., for furrow irrigation simulation applications, as described by van Dam(2000a) and van Dam et al. (1997). However, in most of the selected models(i.e., all except MIKE-SHE), surface water flow is only represented as SRn andtherefore considered as an outflow of the system. It is therefore relevant todiscuss SRn in some detail below.

According to Ponce & Hawkins (1996), SRn can be distinguished intodifferent forms (Appendix): Hortonian overland flow (HRT f ), saturationoverland flow (SAT f ), throughflow (THRf ), the direct channel interceptionflow (DCIf ) and surface phenomena flow (SURf ). Hortonian overland flowis the water flow occurring when rainfall or irrigation (or the combination ofboth by analogy with INFpool) exceeds soil infiltration capacity (i.e. typicallythe case of a rainfall storm). Saturation flow occurs when the profile getssaturated. While Hortonian flow is a ’pre-infiltration’ process, saturation flowis a ’post-infiltration’ one. Throughflow is the horizontal water flow beneath theland surface, usually when the soil is saturated. The direct channel interceptionflow is a type of runoff that refers to the spatial redistribution of rainfall directlyintercepted by channels. This is an important type of flow in high dense andhumid channel areas where channel interception may be the main source of
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surface-water flow, as reported by Hawkins (1973), who assessed watershedscharacterized by frequent storm precipitation events, hilly landscapes and largeareas of stream channels, where direct interception occurs in great extents.Under flat conditions, typical rice landscapes in the Philippines or channelledplots in the Netherlands can be taken as an example of these areas, too. Surfacephenomena flow is all the flow driven by crust development, hydrophobiclayers and frozen ground that do not allow vertical flow to occur. While somemodels simulate SRn (mostly in forms of HRT f , SAT f , THRf ) trough empiricalapproaches based on the CN-method (DSSAT, APSIM, STICS, AquaCrop), othersderive SRn from Richards’ based approaches (DAISY, HYDRUS-1D/2D, SWAP,SWIM). ’Overland flow models’ such as MIKE-SHE dedicate particular attentionto the simulation of SRn by dividing it into HRT f , SAT f , SURf , THRfestimated through a ’diffusive wave’ approach which considers a Manning’stype roughness coefficient, and through the St. Venant equations (Saint-Venant,1871), as explained in detail by DHI (2017a,b).
2.3.4 Evaporation

Evaporation (E ) modelling has three different components: direct evaporationof water intercepted by the crop canopy (Ec), from the soil surface (Es), andfrom mulches (Em).
E = Ec + Es+ Em (2.9)

However not all models calculate the three E components separately(DSSAT, MONICA), because, depending on the calculation procedure,evaporative demand may include all components together. The estimationof evaporation is conceptually divided into two steps for most of theselected models (WOFOST, APSIM, AquaCrop, DAISY, HYDRUS, SWAP): 1)the calculation of evaporative demand (EDe), i.e. mass transfer based on latentheat; and 2) a ’partitioning’ according to the corresponding evaporative surfacearea (i.e. fraction of crop canopy, fraction of uncovered soil, fraction of mulch).
The main formulations used to calculate the evaporative demand (EDe) are
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based on the energy balance balance (Penman, 1948, 1956), which evolved asthe PM equation (Allen et al., 1998; Monteith, 1976; Monteith and Unsworth,1990; Eq. (2.10); WOFOST, DSSAT, APSIM, DAISY, STICS, AquaCrop, MONICA,HYDRUS-1D/2D, SWAP). Other approaches used in the selected models arethe Priestley-Taylor (PT) (Priestley & Taylor, 1972; Eq. (2.11); DSSAT, APSIM,STICS, MONICA), and Hargreaves (HG) (Hargreaves and Samani, 1982; Eq.(2.12); DAISY, HYDRUS-1D/2D) equations. The formulations of the equationsare:
EDe = 0.408∆(Rn − G) + ( φ×900

T+273)U2(es − ea)∆ + φ(1 + 0.34U2) (2.10)
EDe = ∆(Rn − G)∆ + φ αPT (2.11)

EDe = CHRa
√(TMAX − TMIN)(TMEAN + 17.8) (2.12)

where ∆ is the he slope of the saturation vapor pressure function versustemperature (kPa ºC−1), Rn is the daily net radiation at the soil surface (i.e.incoming minus reflected radiation expressed in MJ m−2 day−1), G is the soilheat flux (MJ m−2 day−1), φ is the psychrometric constant that is calculatedaccording to the altitude (set by default as 66 Pa K−1), T represents themean temperature of the air (measured at 2 m height and expressed in ºC),
U2 represents the wind speed (also measured at 2 m height and expressed inm s−1), es represents the saturation vapor pressure, ea the air vapor pressure(the difference of both equals vapour pressure deficit - VPD), both expressedin kPa, αPT is an empirically derived factor that depends on the season andlocation in relation to large water bodies (Castellvi et al., 2001) and varies from1.26 (Priestley and Taylor, 1972) in minimal advection conditions, to maximumreported values that vary from 1.74 to 3.12 (Eaton et al., 2001; Jensen et al.,1990; Viswanadham et al., 1991), CH is a constant parameter, assumed as 0.0023according to Hargreaves and Samani (1982), Ra is the extraterrestrial solarradiation (MJ m−2 d−1), and TMAX and TMIN are respectively maximum andminimum air temperatures (both expressed in ºC).

Once EDe is estimated (expressed in units of length per time, as mm
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day−1), some models follow a Beer-Lambert type approach (INT-BL) using
LAI and the extinction coefficient (k ) to calculate an evaporation coefficient(Ke) to estimate Es (WOFOST, DSSAT, APSIM, DAISY, STICS, MONICA,HYDRUS-1D/2D, SWAP, SWIM), while others follow a soil-cover based method(SC-M), whether using soil cover (SC ) instead (AquaCrop, HYDRUS-1D/2D,SWAP, MIKE-SHE, SWIM). Some models deliver the option to follow bothapproaches. The two approaches are expressed as follows:

Es = ∑(EDeiKe × e−kLAIi) (2.13)
Es = ∑[EDeiKe(1 − SCi)] (2.14)

where the subscript i corresponds to the model time-step (e.g. hourly, daily),and Ke is the evaporation coefficient for wet surfaces set by default as 1.10according to Allen et al. (1998). Alternative approaches derive both daily crop(Eci) and soil water evaporation (Esi) directly from an adaptation of the originalPenman’s equation (PE) (Penman, 1963) as function of the fraction of uncoveredsoil (DSSAT):
E = Eci + Esi = Rsi[(4.88 × 10−3) − (GSi4.37 × 10−3)](Ti + 29) (2.15)

where Ti is the daily air temperature (ºC), Rsi is daily solar radiation (MJm−2) and GSi is a ground surface correction factor defined according to the lightextinction coefficient (k ) and daily values of leaf area index (LAIi) as following:
GSi = (0.1e−kLAIi) + [0.2(1 − e−kLAIi)] (2.16)

Similar approaches can be followed to estimate Em (STICS). However, inthe case of inert mulching, the extinction coefficient decreases in time due tothe decomposition of those residues as well as soil cover fraction (Scopel et al.,1998).
In addition to the previous methods, some models (MIKE-SHE, SWIM,DAISY, STICS) estimate E through soil vegetation atmosphere transfer schemes
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(SVAT, Appendix). The SVAT approach (Brisson et al., 2003; Hansen etal., 2012; van der Keur et al., 2001; Verburg et al., 1996; Verburg, 1996)is based on the aerodynamic transfer of water vapor and integrates theeffect of the aerodynamic resistance to water vapour transport (ra), thesoil-vegetation-atmosphere pathways components resistance (rc), the saturatedvapour pressure at canopy temperature (es(Tc)), the vapour pressure in theoverlying air boundary (eref ), the air density, the ratio of the molecular massof water vapour to that of dry air (ρε) and the canopy pressure (ρs) as follows:
E = ρε

ρs
(es(Tc) − eref
ra + rc

) (2.17)
where the calculation of E accounts for the different evaporation pathways.These approaches are also called networks of resistances (Campbell, 1985;Koster and Suarez, 1994). Some models divide soil evaporation in twoconsecutive stages (APSIM, STICS, AquaCrop, SWAP, MIKE-SHE, SWIM),others integrate it into a single formulation (e.g. WOFOST, DSSAT, DAISY,MONICA, HYDRUS, SWAP). Models integrating one single formulation applydirectly to EDe a ’Beer-Lambert’ type integrated approach (INT-BL) whetherusing LAI (see equation 2.13) or a soil-cover based method (SC-M) if using SC(see equation 2.14).
The ’two-stage method’ (2-stage-M) proposed by Ritchie (1972) and basedon Philip and De Vries (1957), considers that evaporation occurs in twoconsecutive stages: the first limited by the energy available, and the second,limited by water availability. While in the first stage, the evaporative rate isa function of the potential evaporative demand (EDe), in the second stage, afalling response takes place since the surface soil water content decreases withtime and Es depends on the flow of water to the soil surface which decreasesexponentially with time.
The ’2-stage-M’ approach may be integrated into a single formulationconsidering a reduction factor that equals 1 for the first stage, and decreasesto 0 during the second stage (AquaCrop):
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Es = (1 − SC )KrKeEDe (2.18)
When the second stage starts, Kr is calculated through an exponentialrelation that depends on a decline factor (fk ) related to the relative soil watercontent (Wrel) (AquaCrop):

Kr = efk×Wrel − 1
efk − 1 (2.19)

where Wrel is a relative weighting factor, estimated according to Raes etal. (2017). For a given soil type, the second stage evaporation can also beempirically related to the square root of an independent variable, such as time(APSIM):
Esstage−II = η

√
t (2.20)

where η represents a parameter related to the soil type and t is time; Othersuse an empirical parameter (A) as following (STICS):
Esstage−II = √(2A∑

EDi) + A2 + A (2.21)
where parameter (A) depends on the aerodynamic resistance, the latent heatof vaporization, the water vapour pressure, air temperature, and a diffusioncoefficient that is related to the bulk density of the evaporative soil layer andthe surface temperature (Brisson and Perrier, 1991); The second stage Es ratecan still be modeled as a function of soil water flow (q). This tends to bethe case of approaches operating at smaller time-steps (SWAP, MIKE-SHE). Inthis sense, Es gets boundary limited by the maximum upward flow, modelledthrough a numerical solution of Richards’ equation that is simplified in thefollowing form (van Dam and Feddes, 2000):

Esstage−II < −K1/2[ (hatm − h1) − z1
z1 ] (2.22)

where K1/2 represents the average hydraulic conductivity in the top soilevaporative layer (expressed in units of length per time), z1 corresponds tothe thickness of the top soil evaporative layer (expressed in units of length),
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hatm−h1 is the pressure gradient between atmospheric and top layer pressure(expressed in units of length).
2.3.5 Transpiration and root water uptake

Crop transpiration (T ) is determined by the atmospheric-evaporative demand(EDt) and limited by root water uptake. Atmospheric conditions govern EDtwhile root water uptake is a function of both soil water availability andresource capture dynamics (Passioura, 1983). In general, models estimatefirst potential transpiration demand and then actual T rates according tocanopy and root water uptake related factors, as well as to soil water status.Despite the atmospheric demand for transpiration (EDt) being conceptuallythe same as the evaporative demand (EDe), some models have the possibilityto treat them separately as two different calculation procedures depending ondifferent approaches and methods (DSSAT, APSIM, DAISY, STICS, AquaCrop,MONICA, HYDRUS-1D/2D). For this reason, we represent atmospheric demandfor transpiration as EDt and evaporative demand for evaporation as EDe(Appendix).
Similarly to EDe, EDt is estimated by the selected models according toone of the following approaches: Penman-Monteith (WOFOST, DSSAT, APSIM,DAISY, STICS, AquaCrop, MONICA, HYDRUS-1D/2D, SWAP), Priestley-Taylor(DSSAT, APSIM, STICS and MONICA as well), Hargreaves (DAISY,HYDRUS-1D/2D) or a SVAT scheme (MIKE-SHE, SWIM, DAISY and STICSas well). In order to estimate potential crop transpiration (Tc), some modelsmultiply EDt by a crop specific coefficient (Kc) (MONICA), while others usea transpiration coefficient that is equivalent to the crop basal coefficient (Kcb)(AquaCrop). While Kc includes both soil evaporation and crop transpiration,the Kcb is a specific parameter representing the transpiration fraction and aresidual diffusive evaporation component supplied beneath vegetation (Allen etal., 1998, 2005; Raes et al., 2017). Tc is then adjusted to the transpirationsurface through a ’Beer-Lambert type’ integrated approach (INT-BL) using

LAI (MONICA) or through a green canopy soil cover based method (SC-M)(AquaCrop), both equivalent to the evaporation approaches and respectively
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expressed as:
Tc = EDtKc(1 − e−kLAIi) (2.23)

Tc = EDtKcbSC (2.24)
where SC is the green canopy soil cover adjusted for micro-advective effects.According to van Dam et al. (1997), an alternative Tc approach dependingon the ratio between the daily amount of intercepted precipitation and theevaporation rate of water intercepted by the canopy (β) is used (SWAP). Thisapproach assumes that Tc is reduced by the water evaporation from the wetcanopy (Ec), since part of the latent heat flux is ’consumed’ on leaf evaporationprocesses. The canopy transpiration through the leaf stomata gets maximumwhen β gets equal to zero (i.e. when Ec equals zero).
Actual transpiration (Ta) can be reduced in multiple stress situations: soilsaturation, low soil moisture, salinity, and excessive temperatures inducingstomata closure (Hsiao, 1973). This can be modeled through the use of stresscoefficients (Ks), which are calculated as (AquaCrop):

Ks = 1 − Srel (2.25)
Ks = 1 − [eSrelfshape − 1

efshape − 1 ] (2.26)
Ks = SnSx

Sn + (Sx − Sn)e−r(1−Srel) (2.27)
where Srel is the relative stress level and fshape is the curve shape factor,

Sn and Sx are respectively the relative stress level at the lower and upperthreshold and r is a rate factor (Raes et al., 2009b). AquaCrop is the only of theselected models which appears to use both transpiration coefficients equivalentto crop basal coefficients (Kcb) and multiple stress coefficients (Ks). For thisspecific case, Ta is estimated as:
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Ta = EDtKcbSCKs ≤ Si (2.28)
where Ks varies from 0 to 1 according to three main different approaches.

The actual crop transpiration (Ta) is limited by an extraction sink term(Ta<Si), which, in the case of multi-layer models, is computed separately foreach individual soil layer. According to Ritchie (1972, 1981) and Feddes et al.(1978), Si can be calculated as a linear function (LIN) of soil moisture content(θ) or pressure head (h) and the maximum extraction rate (SMAX ):
Si = α(h)SMAX (z) (2.29)

where SMAX depends on the vertical rooting depth and α(h) is a coefficientthat depends linearly on h in three different phases: 1) h is considered toincrease linearly from 0 to 1, between a h-minimum threshold (i.e. saturationconditions) and an intermediate h-threshold; 2) h equals 1 for an intermediateinterval of h (i.e. optimal soil moisture content pressure head for plant uptake);and 3) h decreases linearly from 1 to 0 (i.e. at permanent wilting point). Thecoefficient α can also be represented as a function of soil water content (Raeset al., 2017; van Genuchten, 1980). This approach can be employed in both’discrete’ or ’continuous’ representation schemes of the vadose zone. ’Discrete’schemes determine SMAX (z) as the product of Ta and a root density term(Droot), which can be computed separately for each individual layer (APSIM,STICS, AquaCrop, MONICA) or for the whole root zone (DSSAT, WOFOST),abbreviated as following:
SMAX = TaDroot (2.30)

where Droot represents the fraction of total root density in each layer, whencomputed individually for multiple layers, or the rooted fraction of a singlelayer depth, when computed for the whole root zone. On the other hand, some’continuous’ schemes (DAISY, SWAP, SWIM) define SMAX through an integralequation (from root depth to soil surface) that can be simplified as:
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SMAX = [ Taπroot∫ 0
−Droot πroot∂z

] (2.31)
where πroot is the root length density (expressed in mm mm−3), defined asfunction of both space and time (van Dam et al., 1997). Space can be representedin one (πroot(z, t)) or two dimensions (πroot(x, z, t)) as respectively described byvan Dam et al. (1997) and Simunek & Hopmans (2009).
An alternative approach (APSIM) describes Si through an exponentialrelation (EXP):

Si = [1 − ekl(t−tc)]SMAX (2.32)
where k is a diffusivity constant (expressed in cm2 day−1), l is the root lengthdensity (equivalent to πroot but here expressed in cm of root per cm3 of soil), t istime and tc is the beginning time of water extraction (Passioura, 1983; Tinker,1976). According to DHI (2017b), an alternative to this relation is to simplifythe root depth as a linear function of time while assuming root length densityas constant (MIKE-SHE).
According to van Genuchten (1987), an osmotic pressure term (hφ) can beincluded in the calculation of α (Equation 2.29) that becomes a nonlinearfunction (HYDRUS-1D/2D, SWIM), also time dependent α(h,hφ,z ,t) (Simuneket al., 2018a; van Genuchten, 1987). For the specific case of HYDRUS-2D,a horizontal coordinate is also incorporated into the α(h,hφ,x ,z ,t) extractionfunction (Simunek & Hopmans, 2009), and Si is calculated as:

Si = ∫
ΩR [α(h, hφ, x, z, t) LtLxLz ]Ta (2.33)

where Lx is the width of the root zone (ΩR ), Lz is the depth of ΩR , and Ltis the soil surface associated with the transpiration process, all expressed inunits of length (Simunek & Hopmans, 2009).
Apart from the three general modelling approaches described for Sicalculation, some models (HYDRUS-1D/2D) also include a module forcompensatory mechanisms (Appendix) regulating root water extraction
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(Simunek & Hopmans, 2009). This enables the simulation of physiologicalresponses at the root level under spatially distributed stress conditions (Bouten,1995; Hsiao, 1973; Li et al., 2001). In these cases, a root adaptability factor,defined as the threshold value above which reduced root water (or nutrient)uptake in water (or nutrient) stressed parts of the root zone, is fully compensatedby increased uptake in other root zones that are less stressed.
2.3.6 Redistribution and drainage

Modelling drainage processes has been a central issue in hydrology forcenturies (Skaggs & Chescheir, 1999). For point-based models, drainage isrepresented as a vertical flow (Chescheir, 2003), generally simulated in twomain ways (Appendix): with a ’tipping-bucket’ approach (TBA), or based onDarcy’s or Richards’ equations.
The TBA, as described by Emerman (1995), implicitly considers thatmacropore water flow is the only mechanism of water transport between each’tipping bucket’ (i.e. soil layer). Each ’bucket’ is boundary defined by alower and an upper limit; the θPWP (when empty) and the θFC (when full).If water content exceeds θFC , water excess flows vertically downwards to thenext layer for a given time-step. The TBA models (WOFOST, DSSAT, APSIM,STICS, AquaCrop, MONICA) are simple and fully discrete in time (constantconditions are assumed for a certain time interval). A notable limitation of theTBA approach is the fact that the chosen time step is critical for an accurateprediction of the observation (Emerman, 1995). The minimum effective timestep is the minimum period over which an appropriate fraction of the soil waterexcess (when θ>θFC ) drains down to the next unit. The fundamental equationdescribing internal drainage (D) under TBA is:

D = α(θ − θFC ) (2.34)
where α is the drainage coefficient and θ>θFC (Emerman, 1995; Ritchie,1984).
Modelling approaches based on Darcy’s and Richards’ equations allow
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a continuous representation of soil water movement, for saturated andunsaturated conditions. While Darcy’s is used for steady-state flow modelling(Buchan & Cameron, 2003), Richards’ is used for transient flows (Buchan, 2003;Richards, 1931; Simunek and van Genuchten, 2008). The model formulations aredependent on the spatial-scale, as the flow term (q) can be defined as a one,two or three dimensional vector (Buchan, 2003), leading to different calibrationrequirements and computation times.
Soil water movement also depends on the wetting/drying history of the soil,a phenomenon called hysteresis (Hillel, 1980). In general, hysteresis retardswater movement, while preferential flow enhances water movement. In allcrop models described here, hysteresis is ignored since only one curve is usedto describe the h(θ) relationship (WOFOST, DSSAT, APSIM, DAISY, STICS,AquaCrop, MONICA). This is mostly due to the time and cost associated with thethe inclusion of hysteresis in the calibration of this relationship. However, thismight lead to considerable uncertainties regarding the simulation of infiltrationand lateral flow rates, mostly at larger time-steps (van Dam, 2000b). However,soil water hysteresis effects can be simulated using the Scott’s scaling method(SCOTS), which requires only the calibration of the main drying and wettingwater retention curves to calculate the scanning curves (Scott, 1983). Thescanning curves are derived by linear scaling of the main curves as follows(HYDRUS-1D/2D, SWAP):

θ∗
SAT − θres
θSAT − θres

= θact − θres
θmd − θres

(2.35)
where θSAT∗ is the adapted θSAT , θact is the actual water content, θmd is thewater content of the main drying curve at the actual soil water pressure head,and θres is the residual water content of the wetting scanning curve (Kroes etal., 2017b).

2.3.7 Capillary rise

Quantification of capillary rise (CR ) is of great importance for the accuratesimulation of the water balance, particularly in areas with shallow groundwatertables (Kroes et al., 2017a). However, not all selected models conceptually
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consider CR on the calculations of the water balance. Those following a’tipping-bucket approach’ TBA and considering CR , either take it as an input(STICS, MONICA), or simulate it (DSSAT, AquaCrop) according to relations (soiltexture specific) between water table depth, soil hydraulic properties and actualsoil water content (or pressure head) of the unsaturated receiving layers (Raeset al., 2017). For the first case (STICS, MONICA), CR is defined by a Neumanntype lower boundary condition (i.e., flux is a function of time, as CR depends ona defined calendar). For the second case (DSSAT, AquaCrop), both a Dirichlettype (i.e., CR as a function of soil water content) and a Cauchy type condition(i.e., CR flux as a function of groundwater level) are considered (Raes et al.,2017; Ritchie, 1998). However, none of these cases (DSSAT, STICS, AquaCrop,MONICA), simulate the feedback between the vadose zone and the water table(i.e., the water table depth is not updated).
Models using Richards’ equation (DAISY, HYDRUS-1D/2D, SWAP,MIKE-SHE, SWIM), have different approaches to simulate CR flow whileupdating water table depth (Hansen et al., 2012; Simunek et al., 1999; vanDam, 2000a; van Dam and Feddes, 2000; Verburg, 1996). In the selected modelsthere are four different types (Appendix): 1) models that do not-consider CR (X )(WOFOST, APSIM); 2) models with predefined CR (D−CR ) (STICS, MONICA);3) models simulating CR but without updating water table depth (SnU − CR )(DSSAT, AquaCrop), and 4) models simulating CR and updating water tabledepth (SU − CR ) (DAISY, HYDRUS-1D/2D, SWAP, MIKE-SHE, SWIM).

2.3.8 Subsurface lateral flow

Among the models, subsurface (water) lateral flow (SSLF ) is simulated onlyby Richards’ equation based models. However, most of these models (DAISY,HYDRUS-1D, SWAP, MIKE-SHE, SWIM) limit SSLF simulations to lateraldrainage processes, such as lateral out flows between the simulated plot andneighbouring drainage canals (Simunek et al., 2018b; Simunek et al., 1998;van Dam, 2000a; van Dam et al., 1997; Verburg, 1996). For these cases(Appendix), lateral flow to drains (qdrain) is represented by the Hooghoudtequation (Ritzema, 1994) which can be simplified as follows:
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qdrain = φWL − φdrain
γdrain

= 8K h
SATd∆htot + 4K h

SATd∆h2
tot

L2 (2.36)
where φWL (cm) represents mean groundwater level, φdrain is the drain level(cm), and γdrain is the resistance to drainage (cm day−1); qdrain (cm d−1) isthe drain discharge rate, K h

SAT (cm d−1) is the horizontal saturated hydraulicconductivity, d (cm) is the equivalent depth, which is a reduced value of theimpermeable layer depth below the drain level, ∆htot (cm) is the total hydraulichead difference between the drain level and the phreatic level at midpoint, and
L (cm) is the drain spacing. This approach is not considered fully distributedsince qdrain is assumed as a system water loss but not as a re-distributiveprocess. An alternative approach is used in HYDRUS-2D, which considers
SSLF within the water balance calculation by adding a horizontal term to theRichards’ equation as follows:

∂θ
∂t = ∂

∂z [K (θ)∂ψ∂z − K (θ)] + ∂
∂x [K (h)∂h∂x ] (2.37)

where the hypothetical horizontal gradient of both hydraulic conductivityand pressure head is added to the 1-D vertical formulation. For this case,a ’Galerkin finite-element method’ is used to convert the differential equationinto a discrete type problem (Mohsen, 1982; Simunek et al., 1999). A similarapproach is proposed by van Dam et al. (1997) for introducing ’Neumann-type’conditions in the SWAP model to define the lower boundary in the calculationsof capillary rise (CR ) through Richards’ equation.
2.3.9 Solute transport

Within the scope of this review, and considering the existing relations betweensolute concentration and root water uptake (e.g. salinity, co-limitation asdiscussed by Cossani & Sadras (2003)), we included a general description ofsolute transport processes. We limited our analysis to identify whether saltsand nutrient transport processes are addressed by the selected models.
In AquaCrop, particular attention is given to the salt balance andconsequently, to crop yield response to salinity (Raes et al., 2009a,b). According
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to Raes et al. (2012), incoming and outgoing salt fluxes can be simulated withdownward (i.e. vertical leaching) and upward water movement (i.e. flow ofsaline water through capillary rise from a shallow water table). Conceptually,the salinity concentration for a given layer (σk ) can be updated at each timestep, every time water moves in (∆θin) or moves out (∆θout). For these cases,the salt balance of a given layer is determined for a particular time step as:
∂σk
∂t = (σkθk ) + (σin∆θin) − (σout∆θout)

θk + ∆θin − ∆θout (2.38)
where σk is the specific layer salt content (expressed in g) and θk is theactual water content (expressed in mm) of layer k . Other models, based onRichards’ equation (e.g. HYDRUS, SWAP, SWIM), use differential equationsbased on the convective-dispersive transport (C-D) theory, which can besimplified as:

∂cθ
∂t = [ ∂∂zθD∂c∂z ] − ∂qc

∂z (2.39)
where cθ (mg L−1) is the solute concentration (i.e. salts and nutrients ininorganic form) in soil solution, θ is the soil volumetric water content (cm3cm−3), q is the water flux (cm day−1) and D is the dispersion coefficient which,according to Kersebaum (1989), can be estimated as:

D = D0τ−1 + Dv (qθ ) (2.40)
where D0 is the solute diffusion coefficient (which can be assumed as 2.14 cmday−1 for the case of nitrate), τ represents the tortuosity and Dv is the standarddispersion factor (assumed as 25 cm for the case of nitrate). According to vanGenuchten (1985), solute adsorption effects can be incorporated by consideringthe adsorbed concentrations as a linear function of solute concentrations. Thishas great importance for nutrient transport modelling as following:

∂
∂t (θci + ρSi) = ∂

∂z (D∂ci∂z − qCi) − µwiθci − µsiρSi (2.41)
where ci is the solute concentration (g cm−3), Si is the adsorbedconcentration (mg mg−1 or %), θ is the volumetric water content (%), q the
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volumetric flux (cm day−1), D is the dispersion coefficient (cm2 day−1), ρ theporous medium bulk density (g cm−3), z is distance (cm), and t is time (day);the subscript i delineates the ith chain member. The coefficients wi and sicorrespond to rate constants for the first-order decay in the liquid and solidphases of the soil respectively. Units can be adjusted to multiple temporalscales.
2.4 Crop and hydrologic models: what sets them apart?

The diversity found in the employed methods to simulate the role of watervaried among models and among the different processes, which is partly relatedto the historical development of the models, as shown in the chronologicalmap of modelling approaches presented in Figure 2.1. Note that whilehydrologic models have their foundations mostly on research that startedin the XIX Century, crop models are sustained by more recent approaches,whose fundamentals evolved from the 1950-60’s (Jin et al., 2018; Jones etal., 2017a). After the publication of Darcy’s equation and Beer-Lambert law(Figure 2.1), we note that hydrologists devoted most of their subsequent effortsto the development of modelling approaches of soil-water movement (e.g.infiltration, capillary forces, drainage processes). However, crop plants werestill excluded from the hydrologic system at the time, with modelling prioritizingthe representation of soil-water processes without focusing on related plantprocesses such as transpiration and root water uptake.
This paradigm changed substantially in the 1960’s, when the pioneeringworks of some agronomists and physicists working on photosynthesis (de Wit,1965; Duncan et al., 1967), broadened perspectives and brought biologicalvariables into the water modelling context (Bouman et al., 1996; Jones et al.,2017a). In fact, the study of photosynthesis was at the root of the developmentof the first crop models, leading to an uniform approach where most cropmodels today are radiation driven. This common approach has orientedmodelling towards the simulation of optimal conditions, not paying sufficientattention to the responses to environmental stress, thus limiting their use incrop management research (Loomis et al., 1979). The uncertainty regarding
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future climate scenarios (Hansen and Jones, 2000; Rosenzweig et al., 2014) andthe growing demand for decision support tools within the context of precisionagriculture (McBratney et al., 2005; Cassman, 1999) will very likely requireadditional efforts to improve crop modelling under water-limited conditions, i.e.to integrate more water-driven mechanisms in crop models or, as discussed byPassioura (1996), to transform source-limited approaches into sink-limited.
Regarding the diversity of employed methods among models, there is ahigher diversity in the simulation approaches of pre-infiltration processes(Figure 2.2). The number of components considered in the calculation of theinfiltration pool varies substantially among models (Figure 2.2). The mainissues are related to the incorporation (or exclusion) of snow pack modulesand calculation methods related to canopy interception and surface inflow (oroutflow) from run-on (or runoff) processes (Figure 2.2 and Appendix). Suchdiscrepancies might be the result of a longer scientific heritage, since it appearsthat more time has been dedicated to the study of infiltration-related processesthan to other water balance processes (Figure 2.1), promoting the observeddiversification of methodologies and modelling approaches. Another case ofmethodological discrepancy among models is related to evaporation from soil,where several different methods are used: one or two stages, with the secondstage limited either by time or by soil water flow, which can be modeled inseveral different forms (Section 2.3.4 and Appendix).
The highest degree of concordance among models is related to thecalculation of evaporative demand (Figure 2.2). From the five methods identified(i.e. PE, PM, PT, HG and SVAT schemes; Appendix), the large majority of modelshave adopted PM equation (Section 2.3.4), with the exception of MIKE-SHE andSWIM (Appendix). Similarly, in most cases reviewed (Figure 2.2), the root wateruptake is based on a linear model relating relative uptake to soil water contentbetween the upper and the lower limit (Section 2.3.5).
While evaporative demand is more or less uniformly treated, this is not thecase for the partitioning of ET into evaporation and transpiration. Most modelsfollow a Beer-Lambert type equation depending on the canopy extinctioncoefficient and leaf area index (Section 2.3.4 and 2.3.5), but for some of the
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hydrologic models (HYDRUS-1D, HYDRUS-2D, SWAP, SWIM) an option isoffered to use the soil cover method instead. In general, in the case of most cropmodels, there is a clear agreement on the use of Beer-Lambert formulation, butfor hydrologic models both options seem to be equally adopted (Appendix).
While there is substantial agreement in the fundamental approaches of thereviewed models, there are also major differences among the two model families.The main differences found between crop and hydrologic models are relatedto temporal and spatial resolution of processes in the soil-plant-atmospherecontinuum, and to the degree of mechanistic or empirical-based approachesused (Appendix), implying considerable differences in terms of complexity aswell. While the crop models (with the exception of DAISY) follow a TBA,hydrologic models are based on numerical solutions of Richards’ equation(Section 2.3.6). Such a divergence implies structural differences between bothfamilies not only in terms of spatial resolution but also in terms of temporalscales.
The TBA limits models to a point-based scale where drainage is assumedto be a steady flow (Section 2.3.6), only vertical and discrete in time (resultingin longer time-steps, e.g. daily). The degree of empiricism involved in TBAbased models (i.e. most crop models) is also higher (e.g. CN-method, drainagecoefficients, capillary rise defined by Neumann type conditions). On the otherhand, hydrologic models, based on numerical solutions of Richards, are capableof simulating the water balance at shorter time-steps (e.g. hourly) and ofintegrating some multi-dimensionality in the simulation of water flows bydistributing partially water over the horizontal space.

2.5 Opportunities to simulate spatial water variation

The ability to simulate continuity and multi-dimensionality does not necessarilyimply the simulation of a full distribution of water over space, as none of thehydrologic models (and none of the crop models) simulates all spatial processesthat we have identified (Figure 2.3). All spatial processes are covered by atleast one model (Figure 2.2), but none of these models covers all of them
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simultaneously (Figure 2.3). Some models consider subsurface lateral flowsbut still ignore surface inflow from run-on (Figure 2.3). Additionally, as moregenerally discussed (Passioura, 1996; Nielsen & Alemi, 1989), the apparentcontinuity associated with hydrologic models can also be a point of discussionas these models follow ’discrete characteristics’ too (e.g. input parameters,boundary conditions, reduced dimensions through the Galerkin finite-elementmethod, Scott’s scaling method for simulating hysteresis), becoming eventuallymore stochastic rather than deterministic.
Regarding the simulation of water processes spatially at crop field level,some methodologies for geospatial simulation, visualization and validation ofmodels (e.g. geospatial interpolation of point based simulations, zonal statisticsapplied to mapped simulation results, integration of modelling with remotesensing) have been proposed (Basso et al., 2001; Booker et al., 2015; Camposet al., 2019; Casa et al., 2015; Droogers and Bastiaanssen, 2000; Er-Raki et al.,2007; Grassini et al., 2015; Han et al., 2019; Jégo et al., 2012; Jia et al., 2011;Lobell et al., 2015; Lorite et al., 2013; McBratney et al., 2005; Moiling et al.,2005; Silvestro et al., 2017; Shu et al., 2018; Ward et al., 2018). However, whilemost of these cases have been developed at regional scales, not addressingwithin-field spatial variation (Droogers and Bastiaanssen, 2000; Grassini etal., 2015; Han et al., 2019; Jia et al., 2011; Lobell and Azzari, 2017; Lobellet al., 2015; Lorite et al., 2013; Sadler and Russell, 1997; Shu et al., 2018;Zwart and Bastiaanssen, 2007), others, that reveal some promising advancesin respect to the spatial simulation of water and vegetation, do still neglectspatial compensations of yield determining factors such as variations of theharvest index or root growth (Moiling et al., 2005; Booker et al., 2015; Ward etal., 2018). In addition, we acknowledge that the assimilation of remote sensingto quantify spatial variations is also problematic as ample variation can beobserved when using reflectance signals to derive canopy structure parameterswith implications on crop transpiration and photosynthetic activity (e.g. LAI ,

SC ), as done by as done by Campos et al. (2019), Casa et al. (2015), Er-Raki etal. (2007), Silvestro et al. (2017), requiring in-situ and crop specific calibrationthat is not straight forward (Gao et al., 2020).
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We emphasize that in terms of water spatial distribution and its effects oncrop growth and development, geostatistical methods applied to point-based(or partially distributed) water balances might smooth considerably the actualspatial heterogeneity, because lateral water movement and ‘cause-effect’relations between neighbouring cells are still partly ignored (Fig. 2.3).This awareness is in line with the observations reported by Wallor et al.(2018). In addition to this, relying solely on geostatistics to deal with spatialheterogeneity does not resolve the existing knowledge gaps in regard to thedriving mechanisms (McBratney et al., 2005). This was also raised by Nielsenand Wendroth (2003), who suggested that statistical methods should not replaceresearch inventiveness in the assessment of spatial and temporal variations.
In order to distribute spatially water processes in crop models, furthersteps might be foreseen in two different directions. One implying a strongersynergism between both model families, that might result in the additionof spatial and continuous mechanisms to crop models, other through theintegration of lateral flows in current TBA based discrete approaches. Thespecific processes and approaches that hold the most promise for advancesare related to the incorporation of surface inflow and subsurface lateral flows(Figure 2.3), by using differential equations (Section 2.3.3 and 2.3.8) or throughnovel water spatial partitioning relations that must be developed for TBA baseddiscrete approaches.
The future will surely be determined by the existing trade-offs betweenmodels complexity and adoption. The excessive simulation time andthe calculation complexity associated with mechanistic structures that wassometimes seen in the past as a constraint to adoption (Loomis et al., 1979;Nielsen and Alemi, 1989; Passioura, 1996), is very likely to be overcome bytoday’s enormous computational capacity of alternative operational systems(Thorp et al., 2012). However, larger calibration and parameterizationrequirements associated to mechanistic approaches that depend on complexnumerical and analytical solutions of nonlinear equations may not meet thesmall ‘appetite for data’ that we aim for in an attractive tool. Therefore, bothways imply important trade-offs between accuracy and data requirements that

40



must be considered. In any case, we conclude that further steps are in needof experimental datasets for the calibration and validation of new upscalingefforts (as also raised by Sadler and Russell (1997)). Spatially distributed datarelated to subsurface soil texture and plant available water will be essential toachieve a better performance of modelling (Wallor et al., 2018). In this sense,crop modelers are strongly encouraged to come up with innovative databases,suitable for upscaling and spatially calibrating modelling tools at field level.
The success of precision agriculture and spatial management will surelybenefit from new advances in the spatial modelling of water as we identifyscope for conceptual improvements. Further (coordinated) research efforts aredefinitely needed, empowering linkages between researchers, farmers, sensingmanufacturers and consultants is highly recommended in order to promote fieldexperiments at ’real scales’ capable of capturing satisfactory levels of spatialvariation.
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FIGURES - Chapter 2

Figure 2.1: Chronological evolution of modelling approaches and theoretical fundamentals; in blue: methodological approaches related to infiltrationprocesses and soil-water movement; in orange: related to evaporation; in green: to transpiration; in dark-purple: plant-root water uptake; in dark-red:crop growth simulation models; in dark-pink: hydrology based models. PE means Penman equation, 2-stage-M corresponds to the 2 stage methodproposed by Ritchie. (1972), PT means Priestley and Taylor, HG represents the Hargreaves equation and PM is Penman-Monteith. FSPM means’functional structural plant modelling. The Beer-Lambert Law, which embraces a wider scope than crop-hydrological issues but it has influenced manymodelling approaches of evaporation and transpiration is represented in black color. All horizontal arrows refer to the time-scale below, except in the caseof ’preferential flow’ and ’3D root modelling’.
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Figure 2.2: Number of models simulating a specific process (N=12), the most common modellingapproaches used. The horizontal bars show the number of models that simulate (use) thecorresponding process (approach). ’NLD’ means that non-linear differential equations are used in theestimation of the extraction sink term (as an alternative to linear or exponential approaches).
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Figure 2.3: ’Spatial scores’ (left); spatial water processes considered in each model (right). Spatial scores represent the relative amount of spatialprocesses found in each model (expressed as the amount of spatial processes considered by a model, divided by the total amount of spatial processes thatwe identified).
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APPENDIX - Chapter 2

Table 1: Synthesis of models. Codes: INFpool = Infiltration pool, INFeff = effective infiltration, INFponding = ponding infiltration, SRn = Forms of surface runoff(2: Horton and saturation flow; 3a: previous plus throughflow; 3b: previous plus surface flow; All: all escribed forms of SRn, P = precipitation, I = irrigation, SPM =snowpack module, SF = stemflow, INT = intercepted pool, SIF = surface inflow (from run on), CAP = capacity model, CN = curve number, G&A = Green and Ampt., PE= Penman equation, PM = Penman-Monteith, PT = Priestly and Taylor, HG = Hargreaves, SVAT = Soil vegetation atmosphere transfer scheme, CU = compensatoryuptake, SSLF = subsurface lateral flow, PF = preferential flow, INT-BL = Integrated through Beer-Lambert equation, SC-M = Soil cover method, LIN = Linear, EXP =Exponential, NLD = Non-linear differential equations, EDe (or EDt ) = Evaporation demand to estimate evaporation (or transpiration), TBA = Tipping bucket approach,D-CR = predefined CR, SnU-CR = simulated CR without updating water table, SU-CR = simulated CR and updated water table.
Model WOFOST DSSAT APSIM DAISY STICS AquaCrop MONICA HYDRUS-1D HYDRUS-2D SWAP MIKE-SHE SWIM

INFpool P P,I P,I P,I,SPM P,I,SF P,I P,I,SPM P,I,INT,SPM P,I,INT,SPM P,I,INT,SPM P,I,INT,SPM,SIF P,I,SPM
INFeff CAP CN CN Richards CN CN CAP Richards Richards Richards Richards Richards
INFponding × × × Darcy × × × G&A G&A G&A G&A ×
SRn 2 2 2 3a 3a 2 2 2 2 2 All 3b
EDe PE,PM PE,PT PM,PT PM,HG PM,PT PM PM,PT PM,HG PM,HG PM SVAT SVAT
EDt PM PM,PT PM,PT PM,HG, SVAT PM,PT,SVAT PM PM,PT PM,HG PM,HG PM SVAT SVAT
2-stage × × ✓ × ✓ ✓ × × × ✓ × ✓

Partitioning INT-BL INT-BL INT-BL INT-BL INT-BL SC-M INT-BL INT-BL,SC-M INT-BL,SC-M INT-BL,SC-M SC-M INT-BL,SC-M
Ks × ✓ ✓ × ✓ ✓ × × × × × ×
Si LIN LIN LIN,EXP LIN LIN LIN LIN LIN,NLD LIN,NLD LIN LIN NLD
CU × × × × × × × ✓ ✓ × × ×
Drainage TBA TBA TBA Richards TBA TBA TBA Richards Richards Richards Richards Richards
CR × SnU-CR × SU-CR D-CR SnU-CR D-CR SU-CR SU-CR SU-CR SU-CR SU-CR
Hysteresis × × × × × × × ✓ ✓ ✓ × ×
SSLF × × × OUT × × × OUT OUT ,IN OUT × ×
PF × × × ✓ × × × ✓ ✓ ✓ ✓ ×

Main sources: (1) Boogaard et al. (2014); (2) Hoogenboom et al. (2017); (3) Verburg (1996), Keating et al. (2003); (4) Hansen et al. (1990), Abrahamsen and Hansen(2000), Hansen et al. (2012); (5) Brisson et al. (2003); (6) Steduto et al. (2009), Raes et al. (2009a, 2017); (7) Nendel et al. (2011); (8) Simunek et al. (1998), Simunek et al.(2018a); (9) Simunek et al. (1999); (10) van Dam et al. (1997), van Dam (2000c), Kroes et al. (2017c); (11) Abbott et al. (1986), DHI (2017b); (12) Verburg et al. (1996).
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SUPPLEMENTARY MATERIAL - Chapter 2

General description of selected models: The following sections are dedicatedto introducing each model regarding historical context, basic structure, andfunctioning, including some relevant calibration and simulation case-studies.
1. The WOrld FOod STudies (WOFOST)

The ‘WOrld FOod STudies’ (WOFOST) is a crop simulation model initially developed by the Centre forWorld Studies (Wageningen University & Research) in cooperation with the Centre for AgrobiologicalResearch (CABO) both located in Wageningen, The Netherlands (Boogaard et al., 2014; de Wit et al.,2018; van Ittersum et al., 2003; van Van Diepen et al., 1989). WOFOST is a radiation-driven model whichshares many of the fundamentals and algorithms with the earlier SUCROS model (Laar et al., 1997). Themodel estimates crop yield at three main production levels (Boogaard et al., 2014; van Van Diepen etal., 1989): 1) Potential crop yield; 2) Water-limited crop yield, assuming optimal nutrient supply; and3) Nutrient-limited crop yield. In this review, we focused on the water-limited production level (YW )since WOFOST only simulates and delivers the water balance components when crops grow underwater-limited conditions (Boogaard et al., 2014; van Van Diepen et al., 1989). WOFOST computes thewater balance through different approaches. Starting with the original single layer ‘tipping bucket’approach (van Van Diepen et al., 1989), a more advanced soil water balance is also currently availablecoupled with the Soil Water Atmosphere Plant (SWAP) model, by applying a numerical solution to theRichard’s equation at a variable time basis in a multi-layer representation (Boogaard et al., 2014; de Witet al., 2018; Eitzinger et al., 2004). However, here we will consider only the original description of thewater processes in WOFOST for comparative purposes. Many calibration and simulation case-studiesare found in literature (Boogaard et al., 2013; de Koning et al., 1995; Dobermann et al., 2000; Eitzingeret al., 2004; Haberle and van Diepen, oct1999; Kassie et al., 2014; Roetter, 1993; Supit, 1997; Todorovicet al., 2009; Wang et al., 2011; Wolf and van Diepen, 1994).
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2. The decision support system for agrotechnology transfer (DSSAT)

The decision support system for agrotechnology transfer (DSSAT) is an integrated system of computersoftware coupling independent models for simulating cropping systems. DSSAT has evolved frompreviously available models such as CERES and CROPGRO (Jones et al., 2017a). This modelling effortstarted in the 1980’s, when different groups produced models in isolation, leading to the divergenceof the modelling community and approaches (Jones et al., 2003). Since that time, efforts were appliedto create the present DSSAT (Jones et al., 2017a). Currently, the DSSAT is continuously testedand improved, partly inspired by the modelling structure of APSIM which resulted in the revisionof the CROPGRO models (Jones et al., 2001). The present version of DSSAT (i.e. CERES-based) isradiation-driven and simulates the effects of management practices on cropping system production, bothshort and long term, delivering predictions for more than 20 crop species (Ahmad et al., 2012; Amiri etal., 2013; Bastos et al., 2002; Boote et al., 2018, 2002; Boote and Scholberg, 2006; Cammarano et al.,2012; Eitzinger et al., 2004; Giraldo et al., 1988; Griffin, 1993; Hartkamp et al., 2002; Hoogenboom et al.,1994; Yiwen Jiang et al., 2016; Jones et al., 2003; Keating et al., 1992; Liu et al., 2011; Malik et al., 2018;Matthews and Hunt, 1994; Modala et al., 2015; Pedreira et al., 2011; Robertson et al., 2002; Saseendranet al., 2010; Singh et al., 2017; Singh and Virmani, 1996; Šťastná et al., 2010; Travasso and Magrin, 1998;White et al., 1995; Woli et al., 2017).
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3. The Agricultural Production Systems Simulator (APSIM)

The Agricultural Production Systems Simulator (APSIM) has been developed by the AgriculturalProduction Systems Research Unit (APSRU), a collaborative group from CSIRO and Queensland StateGovernment agencies in Australia (Keating et al., 2003). APSIM was designed for a wide range ofapplications, from on-farm decision support for Australian farmers (http://www.yieldprophet.com.au/),to support risk assessment for government policy, also making it a guide to scientific research andeducation (Keating et al., 2003). The model is radiation-driven and follows two major modellingconceptual approaches for simulating the soil water balance. It follows a ’tipping bucket’ approach(the SOILWAT module) or it applies a solution of the Richards’ equation for one-dimension,when coupled with the soil and water integrated model (SWIM) (Connolly et al., 2002; Stewartet al., 2006). As for WOFOST, here, we focused only on the SOILWAT module of APSIM. Themodel has been calibrated for several crop species (Ahmed et al., 2016; Delve et al., 2009; Hearn,1994; Keating et al., 1999; Manschadi et al., 2006; Mohanty et al., 2012; Robertson et al., 2002;Robertson and Lilley, 2016; Snow et al., 1999; Zheng et al., 2014). Additional documentation found at:https://www.apsim.info/documentation/model-documentation/soil-modules-documentation/soilwat/

4. The open soil-crop-atmosphere system model (DAISY)

The open soil-crop-atmosphere system model (DAISY) has been developed by the University ofCopenhagen back in the 1990’s and is focused on the simulation of soil organic matter dynamics,water-nitrogen balance and crop productivity (Hansen et al., 1991, 1990). The model is centered on thefunctioning of a crop-carbon module that simulates plant growth as a function of canopy photosynthesisand plant respiration, as affected by weather variables (i.e. global radiation, air temperature), plantstate variables (i.e. LAI), and water and N stress coefficients (Abrahamsen and Hansen, 2000). Thephotosynthesis follows the structure of SUCROS model (Van Keulen et al., 1982). DAISY is particularlyinteresting for carbon and nutrient-balance studies with users such as policy makers interested innitrogen leaching, carbon fixation and soil quality, as well as advisers focused on yield prediction andfertilization planning. The model has been used in multiple case-studies (Hansen et al., 1991; Jensen etal., 1994; Manevski et al., 2016; Rötter et al., 2012).
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5. Simulateur multidisciplinaire pour les cultures standard (STICS)

’Simulateur multidisciplinaire pour les cultures standard’ (STICS) is a model developed by a consortiumback in 1996 (Brisson et al., 2003). STICS simulates daily crop growth and soil, water and nitrogenbalances relying on radiation-driven relationships (Beaudoin et al., 2009; Brisson et al., 2003; Whisleret al., 1986). The model reveals high adaptability to several crop species by using generic parametersrelevant for most crops, while keeping options concerning both physiological and managementparameters that can be adjusted for each crop (Brisson et al., 2003). STICS has promoted a richcommunication environment between users and developers leading to a constant improvement of themodel (Hunink et al., 2011). Despite being initially developed for two main crops (wheat and maize),many simulation studies for multiple species may be found in the literature (Brisson et al., 2002; Garciade Cortazar Atauri, 2006; Jégo et al., 2012; Rötter et al., 2012; Salo et al., 2016). STICS is able tosimulate dormancy periods, bud breaking mechanisms, symbiotic N fixation, and detailed effects ofmulching, which makes it possible to be used in simulations of perennial crops (Garcia de CortazarAtauri, 2006).
6. The FAO crop model to simulate yield response to water (AquaCrop)

AquaCrop is a water-driven model for simulating productivity of major annual crops (Steduto et al.,2009). The model simulates biomass production by assuming a linear relation between biomass andtranspiration through a water productivity (WP) conservative parameter (Steduto et al., 2012, 2009;Tanner and Sinclair, 1983). The WP value is normalized for reference evapotranspiration and CO2concentration (Steduto et al., 2007). Contrary to other models, AquaCrop uses canopy cover (CC)instead of LAI to characterize crop growth. Despite its relatively simplicity, Aquacrop is rooted inthe fundamental processes involved in crop productivity with special emphasis on the responses towater deficits both from a physiological and an agronomic perspective (Dirk Raes et al., 2009). Themodel simulates yield responses to salinity and has been applied to the simulations of irrigatedcropping systems (García-Vila et al., 2009; García-Vila and Fereres, 2012) and for decision support atthe irrigation district level (Lorite et al., 2007). AquaCrop has been widely calibrated and validatedduring its lifetime (Araya et al., 2016, 2010a b, 2010b a; Ćosić et al., 2017; Espadafor et al., 2017;García-Vila et al., 2009; Geerts et al., 2009, 2008; Heng et al., 2009; Hsiao et al., 2009; Linker et al., 2016;Maniruzzaman et al., 2015; Montoya et al., 2016; Paredes et al., 2015; Rinaldi et al., 2011; Stricevic et al.,2011; Todorovic et al., 2009; Wellens et al., 2013; Zeleke et al., 2011).
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7. The MOdel for NItrogen and CArbon dynamics (MONICA)

MONICA is the acronym for "MOdel of NItrogen and CArbon dynamics in Agro-ecosystems" and hasbeen developed by the Institute of Landscape Systems Analysis from the Leibniz Centre for AgriculturalLandscape Research (ZALF). It was first released in 2011 and since then it has been updated to theV2.0 version published in 2016 (Berg, 2018; Nendel, 2014; Nendel et al., 2011). MONICA describesmechanistically the transport and bio-chemical cycling of carbon, nitrogen and water in agro-ecosystemsat daily time steps (Berg, 2018). The model simulates crop growth with a radiation-driven approach asin the SUCROS model (Van Keulen et al., 1982). The model emerged from improvements on the carboncycle of the HERMES model (Kersebaum, 2007, 1995). HERMES simulation of nitrogen mineralizationfrom the soil organic pool, was replaced by an approach similar to that of DAISY, which also takes intoaccount the dynamics of soil microbial biomass (Ahuja et al., 2014; ISMC, 2017; Wallor et al., 2018).MONICA has also been used to develop decision support systems (http://www.landcare2020.de), used onboth tropical and temperate conditions (Wenkel et al., 2013). The model has been calibrated for severalcrop species used in several case-studies (Nendel et al., 2013, 2011; Rötter et al., 2012; Salo et al., 2016;Specka et al., 2015).

8. The HYDRUS-1D package

The HYDRUS-1D is a software package developed by the International Groundwater ModellingCenter and the University of California at Riverside. The model aims primarily to generate a finiteelement solution capable to simulate one-dimensional movement of water (i.e. lumped scale), heat,and multiple solutes in variably saturated media (Simunek et al., 1998). The HYDRUS packages usea Microsoft Windows based graphical user interface for input data management and discretization ofnodes, parameterization, execution and output visualization. Recent applications of the HYDRUS-1Dinclude evaluations of irrigation schemes, studies of root water uptake, groundwater recharge andnutrient transport (Li et al., 2017; Šimůnek et al., 2016; Slama et al., 2019; Tafteh and Sepaskhah, 2012;Wang et al., 2014; Zhou and Zhao, 2019). The model estimates crop water uptake based on potentialevapotranspiration as an input or through radiation-driven crop growth, such as the one in SUCROSor WOFOST used in parallel (Li et al., 2017). Crop-simulation with HYDRUS-1D has been done formultiple crop species (Hou et al., 2017; Li et al., 2017; Tafteh and Sepaskhah, 2012; Zhou and Zhao,2019).
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9. The HYDRUS-2D package

HYDRUS-2D emerged from HYDRUS-1D. It is also a Microsoft Windows based Modelling environmentfor analyzing water flow and solute transport in variably saturated porous media, but in this casefor two-dimensions. The software package includes a 2D finite element approach for simulatingthe movement of water, heat, and multiple solutes. The model includes a parameter optimizationalgorithm for inverse estimation of soil hydraulic and/or solute transport parameters. The modelis supported by an interactive graphics-based interface for data-prepossessing, generation of amultidimensional structured grid, and graphic presentation of the results. Regarding crop growth andwater uptake, a similar approach as in HYDRUS-1D is followed. Several applications in regard toirrigation management, simulation of flow to drainage systems, movement of salts and agro-chemicals,and seasonal simulation of water flow can (Deb Sanjit K. et al., 2016; Karandish and Šimůnek, 2016;Siyal et al., 2012; Skaggs et al., 2004). The software package has been upgraded and it is now fullyintegrated with the HYDRUS-2D/3D version which is the current extension developed for both 2D and3D applications (Šimŭnek et al., 2018). The new version has a new graphical environment and it iscommercially distributed (i.e. not for free) by the International Groundwater Modelling Center (IGWMC).

10. The Soil Water Atmosphere and Plant model (SWAP)

SWAP was designed in Wageningen to simulate flow and transport processes at field scale level (VanDam et al., 1997). The model simulates transport of water, solutes and heat in unsaturated/saturatedsoils, and it addresses both research and practical questions in the field of agriculture, watermanagement and environmental analyses (Kroes and Supit, 2011; van Dam, 2000). The crop growthmodule is based on that of WOFOST (Kroes and Supit, 2011; van Dam, 2000), but the model can alsobe coupled with other crop models for estimation of crop related parameters (Dokoohaki et al., 2016).The soil moisture, heat and solute modules exchange status information each time step. Crop growth isaffected by actual soil moisture and salinity on a daily basis but hydrological processes (i.e. infiltration,runoff, etc) are simulated at time-steps less than one minute. The model accounts for macro-porousflow and water repellency situations. Main applications are related to surface water management anddrainage studies (Ben-Asher et al., 2006; Yao Jiang et al., 2016; Kroes and Supit, 2011; Sarwar et al.,2000; Smets et al., 1997; van Schaik et al., 2010).
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11. The integrated catchment model - ’Système Hydrologique Européen’
(MIKE-SHE)

MIKE-SHE emerged from the ’Système Hydrologique Européen (SHE)’ (Abbott et al., 1986) as theresult of an European consortium formed by the Institute of Hydrology (UK), the engineering companySOGREAH (FR) and the Danish Hydraulic Institute (DHI). Its tailor-based approach allows the userto adjust the complexity of the modelling approaches, according to the conditions of the intendedcase-study (DHI, 2017a a, 2017b b). Within the current review and for simplification purposes,MIKE-SHE is described according to the approaches set by default (i.e. demo model). Information onother options may be found in the latest version of the manual (DHI, 2017a a, 2017b b). MIKE SHEhas been developed for integrated catchment hydrology applications, such as the conjunctive use andmanagement of surface and groundwater, irrigation and drought management, wetland management andrestoration, environmental river flows modelling, floodplain management, groundwater-induced floodingsimulation, nutrient transportation and management and integrated mine water management (Butts andGraham, 2005). The model has been used at the crop field scale, too (Hashemi et al., 2018; Singh et al.,1999).
12. Soil Water Infiltration and Movement model (SWIM)

SWIM is a software package developed in Australia within the CSIRO Division of Soils (Verburg et al.,1996b a). The model has been used to simulate runoff, infiltration, redistribution flow and transport ofnutrients, plant uptake and transpiration, soil evaporation, and vertical drainage (Ross, 1990; Verburg etal., 1996a b, 1996b a). The model does not compute evapotranspiration which must be taken as an inputparameter, or from a radiation-driven crop model, such as APSIM that must be run in parallel. This hasbeen done for some crop species under different growing conditions (Stewart et al., 2006; Verburg et al.,1996a).
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13. Synthesis of models
Table: Synthesis of models. Codes: Synthesis of models. Codes: (NL) = The Netherlands, (USA) = UnitedStates of America, (AUS) = Australia, (DK) = Denmark, (FR) = France, (DE) = Germany, WUR = WageningenUniversity and Research, CABO = Centre for Agrobiological Research, CSIRO = Commonwealth Scientific andIndustrial Research Organisation, DHI – Danish Hydraulic Institute for Water and Environment, USAID = USAgency for International Development, USDA = US Department of Agriculture, DA-DBSE = Department ofAgriculture and Department of Basic Sciences and Environment from the University of Copenhagen, INRA =French National Institute for Agricultural Research, FAO (UN) = Food and Agriculture Organization of UnitedNations, ZALF = Institute of Leibniz Centre for Agricultural Landscape Research, IGWMC = InternationalGroundwater Modelling Center, UCR = University of California Riverside. The ’time-scale’ indicates the extentof each simulation time-step (i.e. hourly or less than one-hour when models simulate water processes in a scaleof minutes). The ’spatial-scale’ is characterized as ’point-based’ for cases where all water flows occur verticallyor as ’semi-distributed’ for models that partially distribute water over the horizontal space.

ID Model Type Released Research institution Country Spatial-scale Time-scale

1 WOFOST Crop 1980’s WUR/CABO NL Point-based daily2 DSSAT Crop 1980’s USAID/USA USA Point-based daily3 APSIM Crop 1990’s CSIRO AUS Point-based daily4 DAISY Crop 1990’s DA-DBSE DK Semi-Distributed daily5 STICS Crop 1990’s INRA FR Point-based daily6 AquaCrop Crop 2000’s FAO UN Point-based daily7 MONICA Crop 2010’s ZALF DE Point-based daily8 HYDRUS-1D Hydrology 1980’s IGWMC/UCR USA Semi-Distributed <hour9 HYDRUS-2D Hydrology 1990’s IGWMC/UCR USA Semi-Distributed <hour10 SWAP Hydrology 1990’s WUR NL Semi-Distributed <hour11 MIKE-SHE Hydrology 1990’s DHI DK Semi-Distributed <hour12 SWIM Hydrology 1990’s CSIRO AUS Point-based <hour
Original sources: 1) van Van Diepen et al. (1989); 2) Jones et al. (2003); 3) Keating et al. (2003); 4) Hansen etal. (1990); 5) Brisson et al. (2003); 6) Steduto et al. (2009); 7) Nendel et al. (2011); 8) Simunek et al. (1998); 9)Simunek et al. (1999); 10) van Dam et al. (1997); 11) Abbott et al. (1986); 12) Verburg et al. (1996).
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Chapter 3

Using NDVI for the assessment of canopy
cover in agricultural crops within modelling
research

This chapter has been published as:
Tenreiro, T. R., García-Vila, M., Gómez, J. A., Jiménez-Berni, J. A., & Fereres, E. (2021). UsingNDVI for the assessment of canopy cover in agricultural crops within modelling research.Computers and Electronics in Agriculture, 182, 106038.

Abstract

The fraction of green canopy cover (CC) is an important feature commonly used to characterize cropgrowth and for calibration of crop and hydrological models. It is well accepted that there is a relationbetween CC and NDVI through linear or quadratic models, however a straight-forward empiricalapproach, to derive CC from NDVI observations, is still lacking. In this study, we conducted ameta-analysis of the NDVI-CC relationships with data collected from 19 different studies (N=1397).Generic models are proposed here for 13 different agricultural crops, and the associated degree ofuncertainty, together with the magnitude of error were quantified for each model (RMSE around 6-18%of CC). We observed that correlations are adequate for the majority of crops as R2 values were above 75%for most cases, and coefficient estimates were significant for most of the linear and quadratic models.Extrapolation to conditions different than those found in the studies may require local validation, asobtained regressions are affected by non-sampling errors or sources of systematic error that needfurther investigation. In a case study with wheat, we tested the use of NDVI as a proxy to estimate CCand to calibrate the AquaCrop model. Simulation outcomes were validated with field data collected fromthree growing seasons and confirmed that the NDVI-CC relationship was useful for modelling research.We highlight that the overall applicability of these relationships to modelling is promising as the RMSEare in line with acceptable levels published in several sensitivity analyses.
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3.1 Introduction

The fraction of green canopy cover (CC) is defined as the fraction of projectedground area covered by photosynthetically active vegetation (Wittich andHansing, 1995). This key vegetation feature is used to quantify crop canopygrowth, radiation interception, and evapotranspiration partitioning in both cropand hydrological modelling applications (Allen and Pereira, 2009; Bouman,1995; Dorigo et al., 2007; Gómez et al., 2009; Steduto et al., 2009; Steven et al.,1986; Tenreiro et al., 2020).
Proximal and remote sensing have both been used to characterize CCthrough the use of the ‘Normalized Difference Vegetation Index’ (NDVI)(Jasinski, 1990; Hatfield et al., 2008; Plant, 2001; Trout et al., 2008). Inaddition to the NDVI, other indices have been developed to characterizethe vegetation through remote sensing observations. Examples are the SoilAdjusted Vegetation Index (SAVI), the Atmospherically Resistant VegetationIndex (ARVI), the Global Environment Monitoring Index (GEMI), the EnhancedVegetation Index (EVI), the Green Chlorophyll Index (CIGreen), the Red-edgeChlorophyll Index (CIRed−edge), the Weighted Difference Vegetation Index(WDVI) (Basso et al., 2004; Baret & Guyot, 1991; Gitelson, 2013; Huete, 1988;Jiang et al., 2008; Rondeaux et al., 1996; Viña et al., 2011; Wiegand et al., 1991).Theoretically, many advantages can be attributed to some of these indices incomparison with the NDVI, which is commonly known for its limitations indealing with soil background and atmospheric effects (Purevdorj et al., 1998;Rondeaux et al., 1996; Viña at el., 2011). However, NDVI is still one of the mostwidely adopted vegetation indices due to its simplicity of use and interpretation,thus its popularity in the literature, and the fact that it is readily available frommost satellite and other remote sensing providers (Pettorelli et al., 2005, VanLeeuwen et al., 2006; Scheftic et al., 2014; Maestrini & Basso, 2018; Meng etal., 2013; Weiss et al., 2001).
Gao et al. (2020) have found in their review generally good agreement on therelation between CC and NDVI through linear or quadratic models, althoughthey reported considerable variability among and within different vegetation
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types. It has been well accepted that, aside from other factors, correlationsbetween NDVI and CC vary among crop species (Gitelson, 2016), but it isunclear which are the standard correlations to be considered for differentgroups of crop types, how tight is the association between the two variables,and thus the degree of uncertainty in predicting CC from NDVI.
The identification of standard models, i.e. correlations with similarregression coefficients and NDVI saturation thresholds (Gutman and Ignatov,1997), associated with similar light extinction coefficients (Campbell andNorman, 1998), would enable us to propose generic algorithms that wouldnot require re-parameterization for some crop types, allowing the extension ofexisting NDVI-CC correlations into modelling applications for many other cropspecies (Gitelson, 2013).
One increasingly important application for the spatial analysis of croppingsystems, is the estimation of CC via remote sensing to calibrate simulationmodels (Campos et al., 2019; Casa et al., 2015; Er-Raki et al., 2007; Jin etal., 2018a; Mohamed Sallah et al., 2019; Silvestro et al., 2017). In orderto explore how correlations between NDVI and CC relate to specific cropspecies and groups of crop types, we conducted a meta-analysis in which wecompiled information that correlated remote and proximal sensing NDVI withfield observations of CC for different crop species and types. With this analysis,we also aimed to contribute to the improvement and standardization of CCmodel calibration with NDVI, by suggesting generic and robust correlations tobe used for different agricultural crops, as an interesting alternative to in situmeasurements of CC that can be costly and time consuming.
A meta-analysis has generally multiple applications in applied research.Within this particular study we highlight its value for exploring heterogeneityamong crop species and types regarding NDVI-CC correlations, to identifygeneral patterns in existing data and opportunities for future research (Krupniket al., 2019; Stewart, 2010).
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3.2 Materials & Methods

3.2.1 Meta-analysis

The meta-analysis was developed from a systematic review of all calibrationstudies published with the following keyword combinations on the title:“vegetation index + canopy cover”, “vegetation indices + canopy cover”, “NDVI+ canopy cover”, “NDVI + ground cover”, “NDVI + coverage”, “vegetation indices+ cover”, “NDVI + cover”, and “remote sensing + groundcover”. A total of 22published articles (Calera et al., 2001; Carlson et al., 1994; Carlson and Ripley,1997; de la Casa et al., 2018, 2014; Derrien et al., 1992; Er-Raki et al., 2007;Gitelson, 2013; Gitelson et al., 2002; Goodwin et al., 2018; Gutman and Ignatov,1998; Imukova et al., 2015; Jasinski, 1990; Jiang et al., 2006; Jiménez-Muñoz etal., 2009; Johnson and Trout, 2012; Lukina et al., 1999; Prabhakara et al., 2015;Purevdorj et al., 1998; Todd and Hoffer, 1998; Trout et al., 2008; Verger et al.,2009) were selected according to the abstract, from which five were rejecteddue to lack of data on measured CC (Carlson and Ripley, 1997; Derrien et al.,1992; Gutman and Ignatov, 1998; Jasinski, 1990; Todd and Hoffer, 1998).
Additionally, we included in the analysis two unpublished databasescollected by us as follows: 1) Data collected in 2012-15 (N= 33) for multipleannual crops in the region of Córdoba, Spain; 2) Data collected in 2019-20(N=16) in a commercial wheat plot, located in the region of Córdoba, Spain.Following is a brief description of both databases.
The first unpublished database contains 33 observation units: winter wheat(N=6), sunflower (N=5), cotton (N=5), maize (N=5), basil (N=3), common bean(N=2), garlic (N=1), watermelon (N=1), asparagus (N=1), sorghum (N=1),onion (N=1), chickpea (N=1), and rosemary (N=1). CC data were collectedin spring-summer cloud free days (i.e., April-July) at plot level (2-5 ha), invisually homogeneous zones and excluding field border stripes with the samewidth of the satellite spatial resolution (30 m). The zonal average of satelliteNDVI (Landsat-7) was estimated from 25-55 pixels, varying from case to caseaccording to the area of observation. CC was measured with the GreenCropTracker software at different growth stages, at a height of 1 m above the canopy,
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perpendicularly to the ground to minimize the significance of angular effects,with a digital camera (Nikon Coolpix S7000 16 MP) between 10:00–15:00 localtime (Cihlar et al., 1987).
The second unpublished database has 16 observation units and wascollected in a commercial wheat field at four different dates, from cropemergence to anthesis. The field was divided in four observation zones,according to a clustering analysis of historical NDVI patterns and fieldgeomorphological properties. Each zone was approximately 2 ha, excludingborder stripes with the same width of each satellite pixel (10 m). Border stripeswere excluded to guarantee that all satellite pixels considered within eachzone were entirely located within the same zone. At each zone, the averageof approximately 200 pixels of NDVI was plotted against the average of 10observation points of CC, following a random sampling scheme. CC groundmeasurements were taken with a digital camera (Canon EOS 550D + EFS18-135 mm CMOS APS-C 18.7 MP) at 1.8 m height (at 10:00–12:00 localtime) using an image processing package (Patrignani & Ochsner, 2015). Allobservations were conducted under clear sky conditions (0-2% cloud cover) andsatellite data were atmospherically corrected using the Sen2Cor processor andPlanet-DEM (i.e., Sentinel-2 Level-2A products).
Fiji Image-J software (https://imagej.net/) was used to extract the datafrom each document. The final database (N=1397) combined information onNDVI, measured CC, crop species, location of the study, NDVI source (i.e.,satellite or in-situ measured with a digital camera or a spectroradiometer)and coefficient of determination (R2). Both published and unpublished sourcesof data were considered together because it is accepted that the inclusion ofunpublished data minimizes the effects of publication bias in meta-analysis,while it maximizes the total sample size, thus enabling the extrapolation ofresults to a larger extent of case-studies (Krupnik et al., 2019).
All data were grouped according to crop species, crop type (i.e., cereals,grain legumes, grasslands, horticultural, industrial crops, and forage legumes),growing season (i.e., winter-spring, spring-summer, perennial crops) and NDVIsource. Crop species with less than 10 observations entered the general
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correlations but were excluded from the regression analyses of specific cropspecies due to excessive data skewness (i.e., asymmetry of the cumulativeprobability distribution). Crop types were defined according to taxonomiccriteria (e.g. cereals, legumes), agronomic use (e.g. grain, forage) and canopystructure. Regarding canopy structure, crop species were clustered accordingto the mean values of the leaf angle distribution parameter (extracted fromTable 15.1 in Campbell & Norman. (1998)). Regression analysis was used toestimate model coefficients, expressed linearly as following:
CC (%) = a · NDV I + b (3.1)

where a represents the inverse of the difference between the NDVI valueof an area of bare soil and the NDVI value of a pure vegetation pixel, and
b corresponds to the negative fraction of the same bare soil NDVI dividedby the difference of the previous two (Qi et al., 2000). Alternative models werealso tested, including quadratic models through polynomial regression analysis(Gao et al., 2020), as well as logarithmic and exponential models, respectivelyexpressed as:

CC (%) = a · NDV I2 + b · NDV I + c (3.2)
CC (%) = a · log(NDV I) + b (3.3)

CC (%) = a · eb·NDV I (3.4)
Least Squares Fitting (LSF) and statistical hypothesis testing wererespectively used to estimate the regression coefficients and their significancelevel (stats package in R; Team, 2002). For each group correlation, the nullhypothesis was tested with the non-parametric Mann–Whitney U test sincesamples were not normally distributed. Non-normality was checked with theShapiro-Wilk test (Acutis et al., 2012). The NDVI saturation threshold wasestimated by solving the best fitted regression with CC equal to 100% (Gutman& Ignatov, 1997). The performance of each model was evaluated by comparing
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simulated sets of CC against measured CC. Root mean square error (RMSE)and R2 were used as statistical indicators of performance for model evaluation.The RMSE quantifies the weighted variations in error (residual) between thepredicted and observed values of CC, while the R2 indicates the percentage ofvariance that is explained by each model.
3.2.2 A case study – testing NDVI-CC correlations in simulations with the

AquaCrop model

The applicability of our results was tested using four independent sets ofexperimental data. The NDVI-CC model obtained for wheat was used to assesssite-specific time-series of NDVI, used to estimate CC values, and to calibrateCC curves at multiple locations in simulations of the AquaCrop model (Stedutoet al., 2009). The site-specific time-series of NDVI were defined throughinterpolation of discrete values, obtained from Sentinel-2A imagery, at dateswith clear sky conditions and for each selected observation point (N=28). Threedifferent seasons of satellite data (i.e. 2015/16, 2017/18 and 2019/20) wereused to assess four different ‘f ield×year’ dataset combinations in two wheatfields grown in 2019/20 (i.e. trial A and B), one in 2017/18 (trial C), and onein 2015/16 (trial D). While trials B, C and D correspond to the same field atdifferent seasons, trial A was located in a different field nearby (Appendix -Table A.3.1).
The two experimental fields are located in Cordoba, southern Spain (37.8◦N, 4.8◦ W, mean altitude 170 m). Field one (trial A) and field two (trials B, Cand D) are 42 and 36 ha, respectively. The soils are of clay texture with highbulk density (1.65-1.88 g cm3) and of 1.2-1.6 m depth. The spatial variationof soil properties was characterized in field one by using an electromagneticinduction sensor (DUALEM-21S) to measure soil ECa (dS/m) at 35 and 85cm depth. Soil samples (%Clay, %Sand, pH) were collected at 35 cm depthfollowing a multistage sampling scheme that was based on two different clustersof superficial ECa. In field two, soil properties were averaged for the entire fieldaccording to on-farm records.
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The wheat cultivars KIKO-NICK-R1, Anthoris-R1, KIKO-NICK-R1 andAmilcar were sown in trial A, B, C and D, respectively. Seeding rates were 200(±20) kg/ha. Trial A was fertilized with two applications of Calcium AmmoniumNitrate plus Sulphur (230 + 180 kg/ha). Trials B, C and D were respectivelyfertilized with 165, 180 and 190 kg N/ha (Ubesol + Urea), and 60 kg P/ha(Diammonium phosphate).
Ground measurements of CC were conducted in trial A, every 15-20 days,from sowing to harvest. CC was measured using a digital camera (CanonEOS 550D + EFS 18-135 mm CMOS APS-C 18.7 MP) at 1.8 m height andan image processing package (Patrignani and Ochsner, 2015). Yield wasspatially assessed and it was determined with the ’New Holland’ PrecisionLand Manager (PLM) software, taking as an input the shapefiles generated bythe combine harvester monitor (Fendt PLI C 5275). Yield values were calculatedwith a spatial resolution of 100 m2, following the equation of Reitz & Kutzbach(1996). An evaluation of the estimated yield data from the combine monitorwas performed by comparison with manual samples taken at each point in trialA (sampled areas of 0.9 m2). Spatial yield data was computed with R-studio(Lovelace et al., 2019).
The AquaCrop model was parameterized with data collected at 28 differentobservation points, 10 corresponding to trial A and six to each of the remainingtrials (Appendix - Table A.3.1). Soil parameterization was divided into twodifferent soil types for trial A, while only one soil type was considered forthe other trials (Appendix - Table A.3.1). Soil hydraulic parameters wereestimated with the ’USDA-rosetta program’ (Schaap et al., 2001). Daily weatherdata were obtained from a weather station nearby. Crop parameterizationincluded sowing and harvesting dates, mean emergence date, seeding rate,site-specific plant density, root growth rate and crop stages duration (Appendix- Table A.3.1). Crop stages duration were obtained from field observations ofphenological development and adjusted according to the CC curves obtainedfrom satellite NDVI, i.e. the vegetative stage duration and the beginning dateof crop senescence, both expressed in calendar terms (Figure 3.1). Both thefitted maximum canopy cover (CCMAX ) and the corresponding date, when crop
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reaches maximum CC, were estimated by solving the first derivative of the fittedCC curve. More information regarding the parametrization procedures of theAquaCrop model may be found in Steduto et al. (2012). Our methodologicalapproach is synthesized in Figure 3.1.
Simulated yield values were plotted against point-based observations,estimated from the corresponding yield maps. RMSE of simulated yield wascalculated for each field and the coefficient of variation (CV) of simulated yieldsof different sites was assessed and compared with the CV of observed yields.The CC values, estimated from NDVI, were compared with the fitted curvevalues used in the model parameterization. Ground measures of CC, taken infield A, were used for validation of CC values estimated from NDVI. The Willmottindex of agreement (d), the Pearson correlation coefficient (r) and the RMSE(expressed in % of CC) were estimated and used for this evaluation.

3.3 Results & Discussion

3.3.1 General results of the meta-analysis

The meta-analysis yielded a total of 1397 data points (Table 3.1 and Figure3.2). Within a total of 26 different crop species recorded, 13 had more than 10observations (N>10) and followed a log-concave cumulative probability functionof NDVI (Figure 3.3). For these 13 crop species, the NDVI values followed abimodal distribution and the obtained correlations had a normal distribution ofresiduals according to the corresponding histogram for each regression.
Within the total universe of data points collected (N=1397), 34 wereclassified as ‘unknown’ crop species due to lack of information regarding thespecies in the publications. These points (2.5% of total sample size) were usedfor the general correlations but discarded for the specific groups regressions.A general standard model (N=1397) was established. The best fitted modelfollows a linear structure (Table 3.2), in which the effects of soil background andcrop traits are highly simplified (Gao et al., 2020; Gutman and Ignatov, 1997).
In this meta-analysis we found that the satellite NDVI (N=524) tends
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to overestimate CC for low levels of NDVI (Figure 3.3-C and Table 3.2) incomparison to in-situ proximal sensing (N=873). This is justified by thenoise effect that disturbs the reflected signals of low vegetated surfaces(Todd & Hoffer, 1998). This effect is more relevant when using satellite databecause the spatial resolution of the sensors is commonly larger than thescale of individual vegetation objects, which enhances the noise effect of soilbackground. The lower R2 of the satellite generic model may also be explainedby a larger number of crop species being considered (Table 3.1). However,when considering only species with more than 10 observations, no differencesregarding the species composition of these two groups (i.e. satellite and in-situ)were observed (results not shown).
The cumulative probabilities of NDVI for each crop type followed logarithmicshapes. All best fitted models were either linear or quadratic (Table 3.2). Bycontrast, the R2 values of logarithmic and exponential models were considerablylower than those for linear and quadratic regressions, and RMSE (of logarithmicand exponential models) were on average 10-25% higher (results not shown).
For most crop types, within a NDVI range of 0.25-0.75, the regressions didnot differ considerably from each other (Figure 3.3). Below and above thoselimits, soil background noise and NDVI saturation effects make it difficult toestimate CC accurately (Carlson and Ripley, 1997; Prabhakara et al., 2015;Xue & Su, 2017). However, despite the general linear trend, an exceptionalbehaviour is observed for the case of grain legumes (i.e., soybean) becausethe best fitted correlation was quadratic (Table 3.2). For this specific casethe quadratic model was a better alternative to the linear one (de la Casa etal., 2018; Gitelson et al., 2013). By contrast, in cereals and other field crops(i.e., horticultural and industrial crops), the linear model seems to be adequate(Table 3.2). However, we must highlight that, independently on the best fittedmodel, most models have considerable RMSE (Table 3.2), suggesting that forapplications that require high accuracy, local calibration must be conducted.
According to the proportion of total data variation, the obtained R2 valuesindicate a fair fitness of observed data in the models proposed (Figure 3.4and Table 3.2). The correlations were satisfactory as R2 values were above
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70-75% for most cases and coefficient estimates were significant for most models(Table 3.2), but sources of systematic error need to be identified to increase theaccuracy of NDVI-CC correlations. The observed trend of RMSE increasing (and
R2 decreasing) with sampling size reveals the limitations to extrapolate thesemodels to different environments than those in calibration studies (Figure 3.5). Asimilar effect is observed when increasing the number of databases consideredin each model, which might be associated to non-sampling errors or sourcesof systematic error among studies (Poate & Daplyn, 1993). The uncertainty ofeach individual observation was not captured in our analysis because it wasnot possible to identify a common and objective indicator of uncertainty, whichwould be independent on sampling size and directly comparable among allobservations considered. Nevertheless, we acknowledge that the variability ofthe random disturbance of observations did not differ greatly across groupsof input data as the residuals plotted against fitted values were randomlydistributed within comparable ranges, and the ’Cook’s distance’, which wasplotted for each group of input data, did not show influential outliers (resultsnot shown).

Saturation effects of NDVI were only observed for grasslands, broccoli,lettuce and sunflower (Table 3.2), which is likely due to a stronger asymptoticbehavior of CC, caused by more horizontal leaf angle distribution (Table 3.1) andhigher canopy expansion rate, both typical of these crops (Campbell & Norman,1998; Johnson & Trout, 2012). The slight saturation effect that is observedin these crops might also be associated with lower variability of the redreflectance. At advanced phenological stages, the NDVI can become insensitiveto the variation in red reflectance, when NIR reflectance surpasses largelythe reflectance of red wavelength (Gitelson, 2016). For these crops, the NDVIsaturated above 0.9, which is equivalent to a Leaf Area Index (LAI) betweenthree and four, depending on the crop species (Bouman et al., 1992). Underoptimal conditions, the LAI of upright canopy crops (e.g. cereals) can easilyreach a value of six, with substantial mutual shading. Therefore, saturationeffects are likely to be observed in the NDVI-LAI relations, but the same maynot apply to CC where these relations appear to be mostly linear (Table 3.2
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and Figure 3.4). There are slight saturation effects in the NDVI-CC of somecases due to a higher leaf angle distribution parameter (Table 3.1 and 3.2).Our results suggest that it may be more interesting to correlate NDVI with CCthan with LAI, because, in relative terms, the exploitable range between bothvariables is larger in the case of CC.
Despite the overall satisfactory goodness-of-fit, the coefficients ofdetermination varied among crop types and species, as well as the RMSE(Figure 3.5). Different models can be proposed for several crops species andgroups of crop types, but under levels of uncertainty that range from 6% to 18%(Table 3.2 and Figure 3.4). However, we recognize that the highest accuracydoes not necessarily imply the best option. Existing trade-offs betweentemporal and spatial resolution of input data must also be considered (Lobell,2013). While remote sensing NDVI overestimates CC, mostly in situations oflower CC (Figure 3.3-C), the higher temporal resolution of NDVI satellite dataand the lower cost associated to its access and use are offsetting reasons tosupport its use.

3.3.2 Applications of NDVI-CC correlations

The capacity to model agronomic mechanisms causing spatial variation in yield,with practical implications for site-specific management remains a challengethat is far from being resolved (Lamb et al., 1997; Leroux et al., 2017, 2018).However, with the widespread advances in yield monitoring, the suitableequilibrium between temporal and spatial resolution of freely available remotesensing NDVI data, and using Table 3.2 regressions, it may be possible toestimate CC with a fine-resolution for various crop types, and use it formanagement applications in precision agriculture.
We believe that the use of NDVI-CC generic correlations will contributeto the standardization of the main approaches taken in the assimilation ofCC into crop modelling applications (e.g. Jin et al., 2020). For these specificcases, the use of present regressions will have different implications in thevarious applications of crop simulation models. CC values used to update crop
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simulation models will introduce inevitably uncertainty, however, even with theobserved RMSE levels, the use of input canopy data is likely to result in betteryield predictions than without any data assimilation of this kind (Doraiswamyet al., 2003; Huang et al., 2015). The average error observed will propagatein different ways towards the estimates, not only depending on what is beingsimulated but also on the range of variation for both CC and final estimates(Guo et al., 2019; Jin et al., 2018b). However, we believe that for many practicalapplications at field level, the observed RMSE are acceptable, as the temporalintegration of high frequency canopy data, interpolated under similar levelsof input error, have resulted in tolerable RMSE yield estimates for decisionmaking (Dente et al., 2008; Waldner et al., 2019).
In crop simulation models that integrate multiple processes (e.g. Stedutoet al., 2009), CC dependent parameters have a low first order effect on yieldbecause simulated yield is mostly regulated by second order effects andinteractions among multiple parameters through different simulated processes(Silvestro et al., 2017). Therefore, the assimilation of Table 3.2 regressionsdoes not imply an error propagation towards the final estimates in the sameorder of magnitude due to model plasticity (i.e. the aptitude of a model tovary the sensitivity to input parameters under variable application conditions).Silvestro et al. (2017) conducted a global sensitivity analysis of wheat yieldsimulated with the model AquaCrop, and for a variation of CC-dependentparameters within a range of ±33%, the final estimates showed an acceptablesensitivity index (i.e. 0.1-0.7 ton/ha). Considering the R2 and RMSE values ofTable 3.2 models, we hypothesize that the final yield estimates will have lessuncertainty than that reported by Silvestro et al. (2017). This is mostly valid forthe simulation of potential yield because, under crop stress conditions, largeruncertainty in the final estimates is expected for the same level of input error(Guo et al., 2019; Vanuytrecht et al., 2014).
Additional potential is seen in the use of the NDVI-CC correlations hereinfor assessment of spatial variations, where absolute values are less criticalthan spatial-temporal relative variations, such as site-specific emergencedates derived from zonal CC, spatial variation of vegetative growth rates, the
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estimation of different dates of CC peak in different management zones, therelative variation of starting dates for crop senescence within the same field.These are also examples of CC dependent parameters that have minimal firstorder effects on the final yield estimates (Vanuytrecht et al., 2014).
The proposed models may be considered adequate for many applications,but there is an effect of irregular sampling sizes that must be considered (Figure3.5), as well as sources of systematic error that affect extrapolation of Table 3.2models. Our analysis shows that CC may be estimated from NDVI albeit atdifferent levels of accuracy, depending on the crop. The NDVI-CC relations forsome crop species are supported by enough data availability, while in othercrop types more data is needed (e.g., industrial and horticultural crops). Eventhough more attention has been devoted to cereals than other crop types (Table3.1), there is insufficient data for important cereals such as rice, oat or sorghum.The same applies to several other horticultural and field crops such as potato,onion and sugar beet.

3.3.3 Application to the simulation of wheat yields

The spatial-temporal assimilation of CC data into the AquaCrop model wasperformed in a case study with wheat, eight to 10 satellite images per seasonwere used to obtain NDVI at each observation site (Supplementary material).Daily values of CC were estimated with the wheat NDVI-CC model developedhere. The ground measurements of CC (N=12), collected at each observationsite in trial A (N=10), indicated a suitable goodness-of-fit as the estimated CCcurves showed a mean RMSE of 12.03 % (± 2.9) which is line with the RMSEvalues of the meta-analysis results (Table 3.2). Both the Pearson correlationcoefficient (r) and the Willmott’s index of agreement (d) were bar-plotted,separately for each observation site (Figure 3.6-A). These two correlationindices indicated a good level of model performance, with mean values of 0.92and 0.93 (± 0.03).
The AquaCrop model, calibrated with CC curves that were adjusted with theresults of our meta-analysis (Figure 3.6-C and -D), was capable to simulate
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accurately crop yield (Figure 3.6-B). Our modelling captured a fair fraction ofthe overall variation of observations (Table 3.3), both in terms of space and time(i.e. two different fields at the same year vs. the same field at multiple years).
The RMSE of our yield estimates (Table 3.3) was within the acceptablesensitivity index range reported by Silvestro et al. (2017). In relative terms,we observed that our modelling approach was capable to explain most of thetotal observed variation. Our simulated yields showed, for each ‘f ield × year’combination, CV values ranging from 52 to 87% of the observed CV (Table 3.3).The combine harvest data was also well correlated with the manual samplingrecords (RMSE = 0.327 Mg/ha, Appendix - Table A.3.2). This indicates thatthe error magnitude of simulated yields using the NDVI-CC relationship maybe acceptable in many practical applications. As measured, both the simulatedyield and the combine harvest data RMSE’s were within comparable ranges(0.327-0.504 Mg/ha), which indicates that assimilating NDVI-CC into simulationmodelling results in a similar level of uncertainty with yield mapping fromcombine harvest data, used in precision agriculture.
It must be highlighted that AquaCrop simulated yields correspond towater-limited yields. It is known that these can deviate from reality dueto the model point-based structure (Tenreiro el al., 2020). We believe thatthe inclusion of spatial variations in water availability is likely to close thegap between simulated and observed yield CV. In this case-study, the use ofthe NDVI-CC empirical model, to calibrate a crop simulation model, providedsimulation results that were very much in line with measured observations,suggesting that our meta-analysis results will contribute to new advances inmodelling research applications.

3.3.4 Closing remarks

We evaluated the robustness of several NDVI-CC relations as proposed byDorigo et al. (2007), who recommended to test the predictive capacityof statistical relationships, within this context, over independent data sets,including other crops and observations at both different locations and
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phenological stages. Our analysis provides substantial empirical evidence tosupport the use of linear and quadratic models to estimate CC from NDVI(Carlson and Ripley, 1997; Qi et al., 2000). It also contributes new findingsto recently published ones (e.g., Gao et al., 2020). Gao et al. (2020)addressed the NDVI-CC correlation from a mechanistic perspective, focusingon theoretical considerations of linear and quadratic models, and on reviewingrelative vegetation abundance algorithms and correction methods of NDVIestimations. Our study approaches these models empirically by compilingmultiple experimental data and proposes generic and ‘easy-to-use’ correlations,which are computationally undemanding (Dorigo et al., 2007), and enablecanopy data assimilation into modelling applications for many crop species.
While our study has only considered the relationships between NDVI andCC, we recognize that the use of other vegetation indices may be a viablealternative, more precise in some cases. However, the NDVI was the onlyindex that is common across all the studies used in this analysis and theuse of alternative indices would require access to the raw reflectance data,which would not be possible for many studies. The recent advances invery-high-resolution (VHR) remote sensing thanks to the advent of unmannedaerial vehicles (UAVs) and other airborne platforms, combined with novelcomputer vision techniques (e.g. machine learning image recognition, spectralanalysis, object-based classification), can improve the study of canopy attributessuch as CC (Chianucci et al., 2016). However, the broader adoption of thesetechnologies may be limited in countries where the use of UAVs is bannedor strictly regulated. Moreover, the area throughput of airborne platformsis still very limited, particularly when compared with satellite imagery. Inaddition, estimating CC from historical satellite data through computationallyundemanding models, such as the ones presented here, extends the timewindow of many of the applications discussed here.
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3.4 Conclusion

Several practical advantages of using NDVI for the assessment of CC wereidentified and discussed. Our results were also experimentally tested, providinga quantitative evidence that our models can be used in multiple applicationswithin modelling research. We concluded that, despite the overall uncertaintyof the models presented, our results can be adopted with fair confidencein modelling applications, mostly in cases where the relative variations ofpredictions are prioritized over the absolute accuracy level. Examples of theseare the spatial assessment of the vegetative state of a crop as well as theuse of simulation models to deal with relative variations within the context ofprecision agriculture. We believe that the empirical models presented herewill contribute to the use of NDVI for determining CC, thus improving cropgrowth estimates in experimental and modelling approaches that will assist indecision-making in agricultural systems.
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FIGURES - Chapter 3

Figure 3.1: Our case study methodological scheme. Simulations at point based scale were conducted for 28 different sites at three different seasons.
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Figure 3.2: NDVI plotted against CC for all datasets. The dots are colored according to the data source. Grey vertical lines represent the residuals (error)for each observation and points are sized according to the corresponding error level, the bigger the point the larger the error.
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Figure 3.3: NDVI data plotted against CC, dots colored according to NDVI source (A) or crop type (D). Cumulative probability curves (B and E) and bestfitted regression lines (C and F) for each group of data.
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Figure 3.4: NDVI data plotted against CC (A, D, G and J), cumulative probability curves (B, E, Hand K) and smooth regression lines (C, F, I, L) for each group of data. Dots and lines are coloredaccording to crop species (A-I) or growing season (J-L). Crop species with N<10 were excluded fromregressions.
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Figure 3.5: Statistical indicators of model performance: R2 and RMSE plotted against samplingsize (A and B, respectively) and against the number of data sources used for each model (C andD, respectively). Both indicators followed a logarithmic response curve, negative for the case of R2and positive for RMSE. All regression coefficients were significant and R2 values ranged around 0.6(results not shown).
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Figure 3.6: A) Evaluation of simulated CC in comparison with the ground measurements taken in TrialA. The bars represent the RMSE, the Pearson correlation coefficient (r) and the Willmott’s index ofagreement (d) of estimated CC at each observation point; B) Simulated vs. observed yield (Mg/ha).Green dots correspond to the estimated yield values obtained from yield mapping (i.e. according tothe equation of Reitz & Kutzbach. (1996)) plotted against manual samples taken in Trial A, orangedots represent (AquaCrop) simulated vs. observed yields, units are expressed in Mg/ha; The satelliteNDVI estimated CC time-series, plotted in calendar days, and the CC curve assimilated into theAquaCrop model: C) Point B2 in Trial B and D) Point C1 in Trial D. .
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TABLES - Chapter 3

Table 3.1: Sampling groups characterization: N [data sources], N [data points] and N [crop species]refer respectively to the number of data sources, data points and crop species included in eachsampling group. The canopy structure was expressed by the leaf angle distribution parameter (χ ),obtained from Campbell & Norman. (1998).
Model N [data sources] N [data points] N [Crop species] Canopy structure (χ )

General 18 1397 26 -
Satellite 9 524 22 -
In-situ 9 873 10 -
Cereals 10 551 6 0.9-1.65
Grain legumes 3 312 3 <0.85
Grassland 2 291 a. 0.7-2.5
Horticultural crops 4 65 10 1.5-1.9
Industrial crops 3 93 3 2-3
Legumes forage 3 51 2 ≃2.5
Winter-spring crops 8 459 6 -
Spring-summer crops 10 601 18 -
Perennial crops 5 303 2 -

Crop types species (N>10): 1) Cereals (Barley, Maize, Triticale, Rye, Wheat), 2) Grain legumes (Soybean), 3)Grassland (a. non-specified), 4) Horticultural crops (Broccoli, Lettuce), 5) Industrial crops (Canola, Sunflower), 6)Legumes forage (Alfalfa, Clover). The table values also consider crop species with less than 10 observations.
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Table 3.2: Model coefficient estimates of each group for linear and quadratic regressions. The bestfitted regressions are highlighted in bold, which were selected as those maximizing R2 while keepinga minimal amount of significant coefficients. Root mean square error (RMSE) was estimated for thebest fitted regression of each group. Significance codes: ’***’ 0.1% ’**’ 1% ’*’ 5%.
Model

Linear Quadratic
RMSE

NDVI
saturationa b R2 a b c R2 threshold

General [N=1397] 105.427*** -6.501*** 0.71 4.257 100.719*** -5.439* 0.71 15.9 1.01
Satellite [N=524] 97.088*** 4.106* 0.62 -44.549** 146.135*** -6.606 0.63 18.2 0.97
In-situ [N=873] 112.023*** -13.813*** 0.81 27.786*** 81.174*** -6.705** 0.81 12.3 1.01
Cereals [N=551] 95.241*** -4.118* 0.72 27.916* 63.478*** 3.445 0.72 13.7 1.09
Grain legumes [N=312] 97.268*** 11.079*** 0.69 -113.005*** 225.360*** -17.147*** 0.74 15.9 0.99
Grassland [N=291] 141.287*** -30.004*** 0.80 107.530*** 32.505 -5.786 0.82 12.1 0.92
Horticultural crops [N=65] 109.663*** -13.552*** 0.85 29.041 91.741* -8.496 0.84 11.9 1.04
Industrial crops [N=93] 104.355*** -6.822* 0.83 0.659 103.659*** -6.694 0.83 12.4 1.02
Legumes forage [N=51] 113.290*** -15.240*** 0.93 77.263*** 35.651* -1.626 0.95 7.4 1.02
Barley [N=72] 93.243*** -1.58 0.82 -84.847*** 193.324*** -27.172*** 0.87 8.0 1.13
Maize [N=143] 113.956*** -22.268*** 0.78 55.121* 49.001 -5.697 0.78 12.1 1.07
Soybean [N=309] 97.003*** 11.290*** 0.69 -113.388*** 225.74*** -17.189*** 0.74 16.1 0.99
Triticale [N=27] 66.410*** 26.722*** 0.98 -20.198* 87.413*** 22.736*** 0.98 2.6 1.10
Rye [N=10] 48.520*** 39.733*** 0.94 -7.791 59.550 36.128* 0.93 1.95 1.24
Wheat [N=298] 97.368*** -4.492* 0.71 36.124* 56.9** 4.94 0.72 14.2 1.07
Alfalfa [N=12] 115.79*** -20.07 0.75 -145.82 304.17 -79.42 0.73 6.2 1.04
Broccoli [N=11] 132.291*** -19.550** 0.96 124.463* 12.387 2.216 0.96 6.2 0.90
Canola [N=78] 112.335*** -13.869*** 0.89 41.193 70.062** -6.601 0.89 10.2 1.01
Clover [N=39] 114.154*** -14.786*** 0.95 81.896*** 31.767* -1.270 0.96 7.4 1.01
Lettuce [N=43] 126.706*** -19.464*** 0.94 81.638* 50.287 -6.304 0.94 7.2 0.94
Sunflower [N=10] 77.37** 1.58 0.69 -108.61* 198.96** 0.011* 0.95 15.7 0.91

Winter-spring crops [N=459] 96.337*** -2.734 0.75 14.657 79.952*** 1.002 0.75 13.3 1.07
Spring-summer crops [N=601] 98.762*** 1.56 0.67 -36.585** 139.268*** -7.2* 0.67 17.6 1.07
Perennial crops [N=303] 139.314*** -29.320*** 0.81 100.603*** 37.054 -6.44*** 0.81 12.1 0.92

Table 3.3: Simulation error assessment. Simulated yield RMSE and Coefficient of Variation (CV). ‘%Total yield variation’ corresponds to the fraction of total observed variation that was captured by theassimilation of CC into modelling simulations.
Trial Year Yield.RMSE (Mg/ha) CV (Simulated yield) CV (Observed yield) % Total yield variation

A 2019/20 0.013 14.0% 16.0% 87.4%B 2019/20 0.837 9.7% 18.1% 53.9%C 2017/18 0.662 6.7% 13.0% 52.0%D 2015/16 0.782 17.2% 31.0% 55.3%Mean - 0.504 10.2% 15.7% 64.4%
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APPENDIX - Chapter 3

Table A.3.1. Experimental data sets used for parameterization of the AquaCrop model. Bulk density (BD) mean values were used, incombination with clay and sand contents, to estimate hydraulic parameters for each soil type (Schaap et al., 2001). The standard deviationsare indicated between brackets. The hydraulic conductivity values used for the soil paramterization were the mean values reported in thistable (KSAT mean, expressed in mm day−1). One single soil horizon was considered (140 cm depth). The initial curve number was set at avalue of 78 (i.e. hydrologic group D). More information regarding the water balance approach that is followed by AquaCrop found in Tenreiroet al. (2020). Mean sowing rate was set at 200 kg/ha for all trials.
Data Field 1 - Trial A (2019/20) Field 2 - Trial B (2019/20) Field 2 - Trial C (2017/18) Field 2 - Trial D (2015/16)Parameter Units A1 A2 A3 B1 B2 C1 C2 C3 D1 D2 A1 A2 B1 B2 C1 C2 A1 A2 B1 B2 C1 C2 A1 A2 B1 B2 C1 C2ECa dS m−1 0.45 0.55 0.45 0.20 0.20 0.20 0.20 0.20 0.35 0.40 - - - - - - - - - - - - - - - - - -Clay % 50 38 50 44 44 44Sand % 15 22 15 22 22 22Texture USDA class Clay Clay-loam Clay Clay Clay ClayBD g cm−3 1.76 1.68 1.78 1.88 1.78 1.80 1.81 1.78 1.81 1.82 - - -BDmean g cm−3 1.77 (0.05) 1.81 (0.04) 1.77 (0.05) 1.66 (0.05) 1.66 (0.05) 1.66 (0.05)KSAT range mm day−1 4.8-50 6.2-65 4.8-50 5.5-60 5.5-60 5.5-60KSAT mean mm day−1 35 32 32 32

θPWP % 26 22 26 18 18 18
θFC % 39 35 39 35 35 35
θSAT % 41 40 41 40 40 40
Sowing date date 13-Dec 18-Nov 24-Nov 10-NovCrop emergence DAS 9 8 10 10Plant density plants m2 150 150 250 250 300 300 150 300 300 300 360 360 300 300 300 300 360 360 360 360 300 300 300 300 300 300 300 300CCMAX % 75 77 80 75 66 84 82 70 84 85 87 86 86 86 83 84 86 84 85 81 78 81 75 74 72 72 68 71Rootgrowth cm day−1 0.7 0.8 0.7 0.8 0.8 0.8Vegetative stage days 120 105 135 105Anthesis duration days 10 14 18 16Reproductive stage days 58 84 80 85Senescence duration days 20 35 38 40Harvest date date 9-Jun 13-Jun 27-Jun 19-Jun
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Table A.3.2. Yield simulation outcomes at each observation point [N=28]. Manual samplingyield data are provided for Trial A [N=10]. Standard deviations are indicated betweenbrackets.
Field Season Trial Point Observed yield (Mg ha−1) Simulated yield (Mg ha−1) Manual sampled yield (Mg ha−1)
1 2019/20 A A1 2.75 (0.30) 3.02 2.121 2019/20 A A2 3.06 (0.23) 2.50 2.731 2019/20 A A3 2.86 (0.26) 2.70 2.301 2019/20 A B1 3.36 (0.15) 3.40 3.581 2019/20 A B2 2.66 (0.01) 2.90 2.671 2019/20 A C1 4.01 (0.13) 3.95 3.831 2019/20 A C2 2.75 (0.22) 3.30 2.441 2019/20 A C3 2.66 (0.06) 3.30 2.751 2019/20 A D1 2.83 (0.01) 3.49 2.841 2019/20 A D2 2.31 (0.18) 3.73 2.562 2019/20 B A1 5.78 (0.20) 6.35 -2 2019/20 B A2 5.77 (0.16) 6.03 -2 2019/20 B B1 4.83 (0.05) 5.59 -2 2019/20 B B2 4.82 (0.03) 5.71 -2 2019/20 B C1 3.41 (0.38) 4.79 -2 2019/20 B C2 4.56 (0.61) 5.30 -2 2017/18 C A1 6.88 (0.13) 7.12 -2 2017/18 C A2 6.79 (0.09) 7.05 -2 2017/18 C B1 6.66 (0.40) 7.08 -2 2017/18 C B2 6.17 (0.08) 6.77 -2 2017/18 C C1 4.91 (0.13) 6.04 -2 2017/18 C C2 5.48 (0.20) 6.31 -2 2015/16 D A1 4.89 (0.13) 5.05 -2 2015/16 D A2 4.74 (0.11) 5.01 -2 2015/16 D B1 4.01 (0.35) 4.92 -2 2015/16 D B2 4.72 (0.23) 4.91 -2 2015/16 D C1 2.70 (0.28) 3.44 -2 2015/16 D C2 2.07 (0.09) 3.54 -
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Chapter 4

Simulating water lateral inflow and its
contribution to spatial variations of rainfed
wheat yields

This chapter has been published as:
Tenreiro, T. R., Jeřábek, J., Gómez, J. A., Zumr, D., Martínez, G., García-Vila, M., Fereres, E.(2022). Simulating water lateral inflow and its contribution to spatial variations of rainfedwheat yields, European Journal of Agronomy, 137, 126515.

Abstract

Spatial variations of crop yields are commonly observed in typical rainfed systems worldwide. It isaccepted that such variations are likely to be associated, among other factors, with water spatialvariations due to lateral water flows occurring in fields with undulating topography. However, some ofthe main processes governing water spatial distribution such as lateral flow are not entirely consideredby the most commonly adopted crop simulation models. This brings uncertainty to the process ofyield simulation at field-scale, especially under water-limitted conditions. Although it is expected thatlateral water movement determines spatial variations of crop yields, it is still unclear what is the netcontribution of lateral water inflows (LIF) to spatial variations of rainfed yields in fields of undulatingtopography. In this sense, by combining field experimentation, simulation models (HYDRUS-1D andAquaCrop), and the use of artificial neural networks, we assessed the occurrence and magnitude of LIF,and their impact on wheat yields in Córdoba, Spain, over a 30-year period. Seasonal precipitationvaried over 30 years from 212.8 to 759.5 mm, and cumulative LIF ranged from 30 to 125 mm. The ratio ofseasonal cumulative LIF divided by seasonal precipitation varied from 10.7 to 38.9% over the 30 years.The net contribution of LIF to spatial variations of rainfed potential yields showed to be relevant buthighly irregular among years. Despite the inter-annual variability, typical of Mediterranean conditions,the occurrence of LIF caused simulated wheat yields to vary +16% from up to downslope areas of thefield. The net yield responses to LIF, in downslope areas were on average 383 kg grain yield (GY) ha−1,and the LIF marginal water productivity reached 24.6 (±13.2) kg GY ha−1 mm−1 in years of maximumresponsiveness. Decision makers are encouraged to take water spatial variations into account whenadjusting management to different potential yielding zones within the same field. However, this processis expected to benefit from further advances in in-season weather forecasting that should be coupledwith a methodological approach such as the one presented here.
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4.1 Introduction

Modern agriculture aims to optimize the efficiency and profitability of farmingsystems while sustaining the increase in food production needed for a growingpopulation (Connor & Mínguez, 2012; Fischer & Connor, 2018; Kirkegaard &Hunt, 2010). In most typical rainfed systems worldwide, where spatial variationsof crop yields are commonly observed (Bramley, 2009; Maestrini & Basso, 2018;Sadler & Russell, 1997; Sadras & Bongiovanni, 2004; Sida et al., 2021), thereis an opportunity for increasing productivity of resource use by determiningthe management options to exploit the site-specific conditions within fields(Cassman, 1999; McBratney et al., 2005). Site-specific variations of crop yieldscaused by differences in water availability due to lateral inflow from up todownslope areas have been identified (Ciha, 1984; Batchelor et al., 2002;Halvorson & Doll, 1991; Rockström & Valentin, 1997; Schmitter et al., 2015).However, the contribution of lateral inflow to spatial variations of yields hasnot been systematically explored.
The intra-plot heterogeneity associated with lateral water flows hasimplications in input allocation, allowing for spatial variations in cropmanagement in the context of precision agriculture (Ahuja et al., 2019; Nielsenet al., 1973; Sadler & Russell, 1997; Verhagen et al., 1995; Wallor et al., 2018;Ward et al., 2018). Precision agriculture would surely benefit from advancesin the spatial simulation of water variations over fields. However, to modelaccurately rainfed yields in fields of undulating topography, we need simulationtools capable of forecasting spatial variations in water availability within a fieldfor assessing their impact on crop performance.
Over the last decades, there has been great expansion in modellingagricultural processes at the point scale (Jones et al., 2017; Spiertz, H., 2014),but insufficient efforts have been devoted to scale up water-related processes,which vary spatially, from point to field level (Ahuja et al., 2019; Wallor etal., 2018). Tenreiro et al. (2020) have recently reviewed some of the mostwidely adopted crop and hydrologic models and the main opportunities tosimulate spatial water variations at crop field level, and concluded that the
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most promising strategies for scaling up are related to the incorporation ofboth surface and subsurface lateral flows when simulating crop performance.The incorporation of surface and subsurface lateral flows within simulationmodelling requires innovative approaches and datasets, which should bespatially distributed and related to the geomorphological properties withimplications for plant available water (Nielsen & Wendroth, 2003; Wallor etal., 2018). However, data collection requires field experimentation conductedat “real scales”, which are relatively expensive and difficult to replicate overlong periods of time. Therefore, the combination of both experimentation andmodelling is a valid strategy for making progress (Jones et al., 2017; Kamilariset al.,2017; Toreti et al., 2018; Wolfert et al., 2017).
Considering the typical inter-annual variation of the processes governingcrop-water spatial relations (de Wit & van Keulen, 1987), the present studyinvestigated the following question: “what is the net contribution of lateral

water inflows to spatial variations of rainfed wheat yields in fields of undulating
topography? Figure 4.1 illustrates graphically the relevance of our researchquestion. To address our research question, we developed a novel methodologyto explore the linkage between lateral inflows (including both surface andsubsurface flows) and yield variations in specific zones within a field. Bycombining field experimentation, simulation models and the use of artificialintelligence, we assessed the occurrence and magnitude of lateral inflows, andtheir impact on wheat yields in Córdoba, Spain, over a 30-year period.
4.2 Materials & Methods

4.2.1 Experimental sites

The experimental sites consisted of two nearby hydrologically independentfields, located in Córdoba, southern Spain (37.8◦ N, 4.8◦ W, mean altitude 170m amsl.) of 42 and 36 ha, respectively. Two catchment areas within the selectedfields, 9.5 and 6.2 ha respectively, were delineated from a flow direction rasterobtained with the SAGA - Wang Liu algorithm (Wang and Liu, 2006), froma Digital Elevation Model (DEM) with 5 m spatial resolution collected with
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LiDAR (CNIG, 2019). The soils are formed on Miocene marls and have beenclassified as Typic Haploxerert (Soil Survey Staff, 1999), or Vertisol according tothe FAO classification, characterized by clay texture with a shrinking-swellingnature, high bulk density (1.65-1.88 g cm−3) and of 1.2-1.6 m depth. Thecatchments have mean slopes of 2-6%, respectively N-S and W-E oriented,and with elevation varying from 140 to 195 m. Due to crop rotations, wheatwas monitored in catchment one in 2019/2020 (Figure 4.2-A and 4.2-C), and incatchment two in 2020/21 (Figure 4.2-B and 4.2-D).
4.2.2 Sampling scheme and experimental design

Geomorphological properties and sampling points

The spatial variation of soil geomorphological properties was characterized incatchment one by using an electromagnetic induction sensor (DUALEM-21S) tomeasure soil apparent electrical conductivity (ECa, dS m−1) within the top 0-50and 0-90 cm soil layers, four days after a rainfall event of approximately 10 mm(McCutcheon et al., 2006) and before sowing. Soil samples (%Clay, %Sand, pH)were collected at 35 cm depth following a multistage sampling scheme that wasbased on two different ECa-based clusters. In catchment two, soil propertieswere averaged for the entire field using farm records (Table 4.1).
Topographic attributes were computed with SAGA GIS (version 2.3.2) fromthe DEM raster. Soil moisture sampling zones were delineated according toboth elevation and the flow accumulation index (FAI). The flow accumulationindex (FAI) is expressed as the absolute number of upslope cells flowing to eachassigned cell of the DEM raster (Tarboton et al., 1991; Jenson & Domingue.,1988). Since it is dependent on field scale and input data spatial resolution, anormalization of the index (NFAI) was computed as follows:

NFAI = 1 − FAIMAX − FAI
FAIMAX

(4.1)
The NFAI was estimated with SAGA-GIS (Conrad et al., 2015) and it wasrepresented as a raster with the same spatial resolution of the input DEM.
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Three sampling zones (N=3) were distributed along two converging flowpathways in 2019/20 (with 2-3 replicate samples of soil moisture per zone,Figure 4.2-A and -C), and along the same flow channel in 2020/21 (withthree replicates per zone, Figure 4.2-B and -D). In catchment one (2019/20),the sampling points (2-3 per zone) were positioned according to the peakof the mean ECa histogram, which was done to select sites of maximumrepresentativeness of soil properties within each zone. In catchment two(2020/21), where soil properties were averaged, the sampling points weresimply positioned within each zone according to the flow direction and spacedin 1 m intervals.
Rainfall and meteorological data

Rainfall was monitored upslope with an autonomous rain gauge system(ECRN-100, ZENTRA Cloud ZL6, 16 cm collector diameter), with 10 min timeresolution. The rain gauge was installed in an intermediate site, located600-900 m from each catchment, at a spot above the highest point of eachcatchment (Appendix-A1). In 2019/20, manual pluviometers (TFA 47.1008, 12 cmcollector diameter) were positioned at each observation point (N=7) to capturerainfall coefficient of variation. The coefficient of variation was computed inrelation to the autonomous rain gauge measurements for two separate rainfallevents before crop emergence in 2019/20.
Weather data (Figure 4.3) were obtained from a meteorological stationnearby, located less than 5 km away from each field (Appendix-A1). Theseincluded global radiation, wind speed, air temperature and relative humidity,which were daily averaged over half hourly measurements, and used to computedaily mean ETo values according to FAO Penman-Monteith (Allen et al., 1998).

Soil water content and lateral inflow calculations

Soil water content (SWC), expressed in mm, was monitored with multisensorcapacitance probes (SENTEK-D&D 90 cm, Sentek Technologies Ltd., Australia),installed at each observation point (N=7 in 2019/20 and N=9 in 2020/21).Probes were respectively installed at day after sowing (DAS) 20 and 5 in
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2019/20 and 2020/21. Each probe integrates nine sensors, distributed at every10 cm, from 5 to 85 cm depth. The sensors provide near real-time data on soiltemperature and SWC (30 min time resolution), which were accessed throughthe software IrriMAX Live (www.irrimaxlive.com/).
An error assessment was conducted for each probe, based on discrete SWCmeasurements (N=20 date × depth(z) per observation point) made with aneutron probe in 2019/20 (NP, Campbell Pacific Nuclear Scientific, Model 503).A relative error assessment of the capacitance probes (CP) was conducted bytaking the NP measurements as control. The NP access tubes were installed 40cm apart from the CP. One tube per observation point was considered sufficientto meet the requirements for precision and statistical power (Evett et al., 2009).NP measurements were taken at five different dates, and at 15, 30, 60 and 90cm depth, and those values were correlated with the capacitance probe sensorslocated at 15 cm depth, the average of 25-35 cm, the average of 55-65 cm, andthe last sensor located at 85 cm depth, respectively. The NP was calibratedwith gravimetric measurements of SWC, obtained in the same soil type in a farmnearby (Appendix-A1). The NP calibration linear functions varied from depthto depth (Appendix-Table A) and were characterised by R2 values of 0.96-0.98for deep soil layers (30-90 cm) and 0.81-0.85 for the surface depth (0-30 cm).Multiple calibration functions were tested in the IrriMAX Live software in orderto minimize error fluctuations per probe and depth. The ‘Sentek D&D crackingclays’ calibration function, available in IrriMAX Live software, was chosen asthe most suitable option for our soil type (Paltineanu & Starr, 1997; RoTimi Ojoet al., 2015). IrriMAX Live values (i.e., from CP measurements) were correctedwith the NP measurements as follows:

SWCc = z=90cm∑
z=0cm (SWCrz · Ωz) (4.2)

where SWCc represents the corrected SWC (expressed in mm), for the entireprofile and SWCrz represents the SWC value (in mm) provided by the IrriMAXcalibration function from raw input data, measured with the CP at depth z . Ωz isthe correction factor (unitless) estimated for each probe×depth(z) combination
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and it was computed as the mean ratio between the SWC measurements withthe NP and the capacitance probes for depth z . The same calibration was usedin 2020/21. Daily values of SWC were computed for each observation point asthe simple average of all SWCc values registered within the same day.
Lateral inflows (LIF) were calculated in daily time-steps for each observationpoint, from daily values of SWCc . Daily variations of SWCc were computed asthe difference between SWCc in day n and day n−1. Observed lateral inflowswere assumed to be the absolute difference between the daily SWCc variationand the daily rainfall registered by the rain gauge, which was computed asfollows:
SWCc(n) − SWCc(n−1) > P(n−1) ⇒ LIFn = SWCc(n) − SWCc(n−1) − P(n−1) (4.3)

Every day SWCc varied by an amount greater than the registeredprecipitation (P), a lateral inflow was assumed to take place of a magnitudeequivalent to the difference between the increase in SWC and the rainfallamount. For the calculation of LIF, deep percolation and evapotranspiration(ET) were not considered for the following reasons. In our soil type, deeppercolation approaches zero (Giraldez & Sposito, 1985). In the case of ET, thecrop water extraction following a rainfall event is quite limited, as interceptedwater evaporates first from wet canopies as shown by Tolk et al. (1995).Therefore, considering their very small magnitudes in our case, we did notattempt to measure or estimate either deep percolation or ET, as it wouldhave added uncertainty to our LIF calculations. Our approach determinesthe minimum LIF quantity that actually takes place under field conditions.Therefore, if under our approach LIF is relevant for determining crop yield,then it must play an even more important role in actual yield variations withina field.
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Crop data and field observations

The wheat cultivars KIKO-NICK-R1 and Avispa-R1 were sown in catchmentone (2019/20 season) and two (2020/21 season), respectively. Seeding rateswere 180 (±20) kg ha−1. Catchment one was fertilized with two applicationsof calcium ammonium nitrate plus sulphur (62 + 50 kg N ha−1) and catchmenttwo was fertilized with ammonium sulfate plus urea (160 kg N ha−1), anddiammonium phosphate (60 kg P ha−1). Crop nutrient status was controlledthrough foliar analysis conducted at flowering, with no critical deficienciesobserved.
Ground measurements of canopy cover (CC) were conducted in both trials,every 10-20 days, during the monitoring period. CC was measured at eachobservation point using a digital camera (Canon EOS 550D + EFS 18-135mm CMOS APS-C 18.7 MP) at 1.5 m height and an image processing package(Patrignani & Ochsner, 2015). CC curves were used to parameterize crop growthrelated factors in the simulations with both the HYDRUS and the AquaCropmodels (Table 4.2). Crop stages duration were obtained from field observationsof phenological development and adjusted according to the CC curves obtainedfrom satellite NDVI, as described in detail by Tenreiro et al. (2021). Bothseeding rates and site-specific plant density values were registered and usedfor modelling parameterization as well. Rooting depth trend was inferred ineach observation point using the SWC information (Table 4.2). Maximum rootingdepth was considered to be equal to average soil depth (1.4 m).
Grain yield was harvested by combine, using the ’New Holland’ Precision

Land Manager (PLM) software which took as an input the shapefiles generatedby the combine harvester monitor (Fendt PLI C 5275). Yield values werecomputed with R-studio (Lovelace et al., 2019), under a spatial resolution of100 m2 with the equation of Reitz & Kutzbach (1996). The accuracy of the yielddata from the combine monitor was assessed by comparing manual samplestaken at each observation point in catchment one (sampled areas of 0.9 m2)against the combined harvest data. More information regarding the yieldspatial assessment is provided in Tenreiro et al. (2021). Yield observations
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were obtained from yield maps of catchment two (2015-2020 harvests). Zonalmeans and standard deviations were estimated and values were plotted againstsimulated yield values.
4.2.3 Modelling approach

To simulate water lateral flow and its contribution to spatial variations ofcrop yield, a multi-stage modelling approach was designed (Figure 4.4). Themodelling approach was based on field experimental data (step-0, Figure4.4) and it was divided in four subsequent steps (steps 1-4, Figure 4.4).Field experimental data were collected according to a spatial analysisbased on GIS data aimed at identifying observation points according tostandard hydrological connectivity rules (i.e., field channel networks and flowaccumulation index), topographic attributes (i.e., elevation, slope orientation)and other geomorphological properties (step-0, Figure 4.4). The first stepconsisted on lateral inflow calculations from field observation data, in dailytime-steps and for each observation point (step-1, Figure 4.4). Then, ahydrologic routine simulated the lateral outflows (with HYDRUS-1D, Šimůneket al., 2018), generated upslope in form of surface run-off, and then theoccurrence of lateral water inflows (LIF) was predicted at each sampling point(step-2, Figure 4.4). For each sampling point, daily calendars of LIF weredetermined according to a hydrological analysis that combined field measureddata with both HYDRUS simulations and a machine learning (empiricallybased) approach (step-2, Figure 4.4). An Artificial Neural Network (ANN) wasused to simulate LIF over a period of 30 years (1990-2020). Maier & Dandy(2000) reviewed in detail the main applications of ANN models for the predictionand forecasting of hydrological variables. The ANN model architecture wasdelineated according to a trial-and-error procedure (step-2, Figure 4.4). Then,the outputs of the hydrology-based modelling routine (step-2, Figure 4.4) wereused as inputs to the crop-based modelling stage (step-3, Figure 4.4). Thecrop routine incorporated the calendars of daily LIF values as additional watersupply (step-3 and -4, Figure 4.4). The forecasted LIF over a 30-year period,were then introduced as additional water supply through the irrigation module
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in wheat yield simulations with the AquaCrop model (Steduto et al., 2009).Both the HYDRUS and the AquaCrop modelling routines functioned at onedimensional space. Every simulation run was performed at one-dimension,but we followed a ‘feedforward scheme’, which allowed us to simulate andincorporate LIF throughout consecutive modelling steps.
Simulating the hydrology with HYDRUS

The HYDRUS-1D model (Šimůnek et al., 2018) was used to simulate waterinfiltration and estimate surface run-off and the spatial variation of soilhydraulic properties. The HYDRUS-1D is a physically-based model that solvesRichards’ equation for transient water transport in variably saturated porousmedia, and incorporates processes such as soil evaporation, crop transpiration,root growth, and plant water uptake (Šimůnek et al., 2018, Tenreiro et al., 2020).The standard ’van Genuchten-Mualem model’ was used to represent the soilhydraulic characteristics (Mualem, 1976; van Genuchten 1980).
The soil profile was modelled in one dimension at each of the measuredpoints in both experimental years. Two soil layers were considered: surfaceand sub-surface. The surface layer was set at the first 10 cm of the modelledprofile, while the sub-surface layer was set down to 140 cm depth. Themeteorological conditions governing evaporative demand were set as the upperboundary condition. A ‘free drainage’ condition was considered at the bottomboundary of the soil profile because well drainage conditions with lack of soilreduction symptoms were observed at the BC horizon below 140 cm depth,during a pit excavation conducted prior to this study, and no indications of awater table were found. A steady state of SWC based on the measured datawas used to set initial conditions (i.e., 0.20 cm3 cm−3 in the season 2019/20and 0.27 cm3 cm−3 in the season 2020/21, following an average 60 day longwarm-up period to minimize the interference of soil-water altered conditionsdue to probes installation).
The potential transpiration was estimated through the soil cover partitioningmethod as described in Tenreiro et al. (2020). The same canopy cover curves
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used in simulations with the AquaCrop model were used for this purpose.Root growth rates were assumed to be linearly constant (Table 4.2). Therooting depth distribution function was based on the model of Hoffman & vanGenuchten (1983) and the water stress function of Feddes (1978), adapted forwheat and described in Wesseling et al. (1991), was considered. Since theinverse optimization procedure is sensitive to the rooting depth distribution,this was adjusted by means of SWC (Zumr et al., 2006).
HYDRUS-1D parameterization was optimized using the measured soil watercontent and the best fitted saturated hydraulic conductivity (KSAT ) valuesestimated for each soil layer at each observation point. The parameters wereoptimized by the Marquardt-Levenberg Optimization Algorithm (Šimunek et al.,2012). The initial estimation of parameters was based on field measurementsof soil texture and bulk density (Table 4.1) using the Rosetta neural networkpredictor (Schaap et al., 2001). Initial KSAT ranged according to van Genuchtens’

α and n shape parameters, which were estimated through the Rosettapredictions (more information is provided in Table A.1 in Tenreiro et al. (2021)).The minimum and maximum values of saturated and residual water contentwere estimated from the measured SWC data. Parameter intervals used forthe optimization are given in Table 4.3. Due to spatial variability in measuredSWC, these ranges were further adjusted for each sampling point separately.Several initial estimations were used to better explore the parameter spatialdimension and to avoid falling in local minimum values (Šimůnek et al. 2018).The objective function minimum was found typically after 7–20 iterations of the
Marquardt-Levenberg Optimization Algorithm. However, due to the numericalinstabilities during several optimization runs, multiple non-converging modelruns needed to be performed for each sampling point (i.e., typically 5 to 50runs). A daily calendar of surface run-off was estimated for each samplingpoint and experimental year.
Forecasting lateral inflows

Daily calendars of lateral inflows (LIFn, expressed in mm day−1) at eachsampling point were computed as a function of the run-off generated at that
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same point, as well as the run-off flowing from neighbouring and upslopepoints within the same field. The daily values of simulated run-off withHYDRUS were used as input features into a static multi-layer (feedforward)ANN model (de Vos & Rientjes, 2005). Different performance criteria were usedto determine network inputs and model architecture (Maier & Dandy, 2000).Input features (N=6) were selected according to a principal component analysis(PCA) associating different potential predictors (N=12) with LIF observations ateach sampling point (Table 4). Model architecture was delineated according toa trial-and-error procedure (Roadknight et al., 1997; Senthil-Kumar et al., 2005;Shukla et al., 1996). The ANN prediction accuracy and its computation-trainingspeed were assessed with R-studio (Günther & Fritsch, 2010).
The ANN processes multiple algebraic operations over several input featureswhich are defined by a single column vector (−→X ). Each of the inputs isattenuated by a weight factor (w) that is linked to a transfer function (i.e.,a logistic transformation of the data). The calculation scheme of an ANN using

i input features (computed in daily time steps n) and k hidden layers can besimplified as following:
CUM.LIFn = k∑ xn1...

xni

 ·

(α11 · w11) . . . (α1i · w1i)...(αj1 · wj1) . . . (αji · wji)
 + ε (4.4)

where α corresponds to the transfer function operator and the subscript
j delineates the number of nodes in each layer (de Vos & Rientjes, 2005).The bias coefficient (ε) corresponds to the overall error of the network, i.e.,the sum of each node residuals, and the dependent variable is expressed indaily cumulative terms (CUM.LIFn) to reduce the effects caused by temporaldeviations between observations and predictions of LIF. The relation betweendaily (n) cumulative LIF (CUM.LIFn) and daily LIF (LIFn), at each point-site,computed from the beginning of simulation until day n = i is expressed asfollowing:
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CUM.LIFn = n=i∑
0 LIFn (4.5)

Daily LIFn was therefore estimated as the absolute difference between
CUM.LIFn at day n and CUM.LIFn−1 at day n − 1:

LIFn = CUM.LIFn − CUM.LIFn−1 (4.6)
Catchment one data (2019/20) were used to train the ANN model whilecatchment two data (2020/21) were used for testing. For each trial, ANN-LIFpredictions were plotted against the observations of LIF and the Willmott indexof agreement (d), the R2 and the RMSE were used as statistical indicators ofANN performance. The best-performing ANN was used to forecast CUM.LIFntime-series over a period of 30 years, from which the LIFn values were derivedfor each zone. CUM.LIFn values were smoothed by a ’monotonically increasingfunction’ to preserve a strictly increasing pattern over season.
The best performing ANN was applied to forecast daily LIF in catchmenttwo over the same period of 30 years. The model HYDRUS-1D was usedto simulate run-off at each sampling point and for each growing season[1990-2020]. Catchment two properties (Table 4.1) and mean values for crop data(Table 4.2) were used as input features to the best performing ANN. Weatherrecords (i.e., global radiation, wind speed, air temperature, relative humidityand rainfall) for Cordoba [1990-2020] were obtained from the same weatherstation (Appendix-A1).

The crop model stage with AquaCrop

The AquaCrop v6.1 model (Steduto et al., 2009; 2012) was used to simulate netyield responses to lateral inflows (NYRLIF ). NYRLIF was assumed to be theabsolute difference in terms of simulated (water-limited) yield, between thesetwo different scenarios:
1) yield simulation without lateral water inflow, following the standard
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assumption in AquaCrop where water inflow takes only place due to verticalinfiltration (Y1);
2) yield simulation including lateral inflow as an additional water supply,which was set in the model through the irrigation module and computed as theLIF forecasted by the ANN (Y2).
NYRLIF was calculated as following:

NYRLIF = Y2 − Y1 (4.7)
where all terms are expressed in Mg ha−1. Yield response to lateral inflowwas also estimated in relative terms (NYRLIF−rel) as following:

NYRLIF−rel = NYRLIF
YMean

(4.8)
where YMean represents the mean yield estimated in scenario 1.
A sequence of 30 years LIF [1990-2020] and its impact on grain yieldwas simulated to derive probability distribution functions of both NYRLIF and

NYRLIF−rel. From the obtained series of NYRLIF , the LIF marginal waterproductivity (LIF .MWP) was computed as following:
LIF .MWP = NYRLIF × 1000

CUM.LIF (4.9)
where for each marginal unit of water supplied as LIF (expressed in mm), thecrop was assumed to respond with additional grain yield (Passioura & Angus,2010). LIF .MWP was expressed in kg grain ha−1 mm−1.

The AquaCrop model was parameterized with field data (catchment twovalues, Table 4.1) and crop data (mean values, Table 4.2). Long-term simulationswere conducted for catchment two because it showed lower standard deviationsfor zonal means (Table 4.1 and 4.2). The hydraulic conductivity values used inAquaCrop simulations (KSAT mean, expressed in mm day−1) were the meanvalues reported in Table A.1 in Tenreiro et al. (2021). Two soil horizons werealso considered (surface above 30 cm depth and sub-surface from 30 to 140 cmdepth). The initial curve number was set at a value of 84 (i.e., hydrologic group
101



D). More information regarding the water balance approach that is followed byAquaCrop found in Tenreiro et al. (2020). Simulated canopy growth and grainyield were validated through field observations (Section 4.2.2).
4.2.4 Statistical analysis

Differences among sampling zones were tested for significance, the nullhypothesis was checked for the mean differences of both observed SWC andLIF with the non-parametric Tukey’s HSD (honestly significant difference) testbecause these variables were not normally distributed. Non-normality waschecked with the Shapiro-Wilk test (Acutis et al., 2012). Within field spatialvariations (among the three sampling zones) were assessed with standardcoefficients of variation. The residuals of the ANN features were checked to berandomly distributed (Supplementary material). HYDRUS simulations of SWCwere tested with the Nash–Sutcliffe model efficiency coefficient, the R2 and theRMSE (Moriasi et al., 2007; Nash & Sutcliffe, 1970; Yang et al., 2014). AquaCropsimulations of grain yield were tested with the Willmott d index, the R2 and theRMSE (Willmott, 1981). Spearman’s correlation analysis was used to explorerelationships among several crop variables and both NYRLIF and LIF .MWP .
4.3 Results

4.3.1 Experimental data

CPs overestimated SWC in comparison with the NP measurements. Themean correction factor (Ωz) varied with both probe location and sensor depth(Appendix-A2). The amplitude of error variation was greatest at the surfacelayers (0-30 cm) but it tended to stabilize for deeper layers (Appendix-A2).
The soil water content (SWCc) varied spatially in both experimentalcatchments/years (Table 4.5 and Figure 4.5). According to the HSD-testconducted at a 5% level of significance, the annual mean SWC values variedsignificantly among sampling zones (Table 4.5). Our sampling scheme did alsocapture significant differences among zones in LIF values (Table 4.5), both in
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daily (LIFn) and cumulative terms (CUM.LIFn). However, as observed for SWC,zone B showed a ‘transient profile’, where both the SWC and LIF values werenot ‘systematically and significantly’ different from the adjacent sampling zones.For an accurate distinction among zones within our experimental sets, onlyzones A and C were consistently different in terms of SWC (and LIF) variations(Figure 4.2 and Table 4.5).
The magnitude of both SWC and LIF values also varied among catchmentsand/or years (Table 4.5 and Figure 4.5). Catchment one showed lower meanvalues than catchment two (Table 4.5), partly explained by the differences ininitial SWC (Figure 4.5). There might be also differences in soil propertiesamong sampling zones influencing SWC measurements in catchment two,because clay and sand content, and bulk density were averaged for all zones(Table 4.1). These differences can also be attributed to the performance of theCP readings according to the calibration functions used. The mean coefficient ofvariation of daily rainfall, measured for two events in 2019/20, was 9.5%, whichwas lower than the LIF coefficient of variation (13%) estimated from probes dataamong zones in the same season.

4.3.2 HYDRUS run-off simulation and ANN-LIF forecasting

The HYDRUS-1D simulations of SWC showed a mean Nash–Sutcliffe modelefficiency of 0.61 (± 0.14) and 0.92 (± 0.04) for each of the experimental years,respectively (Figure 4.6). In addition, the model has also increased the R2 (whilereducing the RMSE), from the first to the second year (Figure 4.6). A highervariation of performance indicators was also observed in catchment one thanin two. The run-off coefficients (cumulative simulated run-off divided by thecumulative precipitation over the same period) varied from 4 to 13% in 2019/20year and from 7 to 24% in 2020/21.
The best-performing ANN had six input features, four hidden layers withthree to four nodes per layer (Figure 4.7-A and -B). The best-performing featureswere x1, x3, x5, x6, x10, x11 (Table 4.4). According to the PCA euclidean scores,these features were the most correlated with LIF, significantly contributing to
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the first and second components, which explained together 52.2% of LIF variance(Appendix-A3). The network was solved in 9962 steps (Figure 4.7-D). The bestperforming ANN had a R2 of 0.97 and 0.78, respectively for the training andthe testing set, and the RMSE of predicted CUM.LIF values were 10.1 and14.8 mm, respectively (Figure 4.7-C). Observed CUM.LIF were scatter-plottedagainst simulated values and no biased error trend was observed for any of thesubsets, as the residuals did not vary with the level of predicted LIF. Despiteshowing a solid forecasting capacity, the ANN exhibits a general trend tooverpredict LIF in comparison to measured values (Figure 4.7-C).
Daily LIF calendars were predicted with the ANN (Figure 4.7) over a 30-yearperiod (Figure 4.8). While seasonal precipitation varied over 30 years from 212.8to 759.5 mm, cumulative LIF ranged from 30 to 125 mm (Figure 4.8). The ratioof seasonal cumulative LIF divided by seasonal precipitation varied from 10.7to 38.9% over the 30 years.

4.3.3 Yield simulations with AquaCrop

The AquaCrop simulation outcomes in terms of yield response to LIF werehighly variable from year to year. Simulated plotted against observed yields[2015-20] showed RMSE, R2 and Willmott d index respectively equal to 0.374(Mg GY ha−1), 0.35, 0.76 (Appendix-A4). Differences among zones were onlyexperimentally tested for the two systematically distinct zones (i.e., A and Caccording to Table 4.5). In this sense, the cumulative probability of NYRLIFfor zone C can be also interpreted as the absolute difference between the twocurves shown in Figure 4.9-A. Since cumulative LIF in zone A was negligible(Appendix-A6), the NYRLIF was only estimated for the water-receiving zoneC (Figure 4.9-B). In this case, NYRLIF corresponds to Y2 minus Y1, in zoneC, or Y2 in zone C minus Y2 in zone A (Figure 4.9-A). Figure 4.9 shows thecumulative probability distribution curves for simulated yield responses in thetwo significantly distinct zones (A and C). Results are shown both in absoluteand relative terms (Figure 4.9-B and -D). Mean values of simulated NYRLIF and
NYRLIF−rel were 383 kg ha−1 (Figure 4.9-C) and 16.2%, respectively. Absolute
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values are expressed in terms of grain yield (GY) in dry mass (DM).
Following crop yield simulations over a period of 30 years, the simulatedseasonal NYRLIF varied from -0.14 to 2.08 Mg ha−1, corresponding to a relativenet contribution of LIF to grain yield (NYRLIF−rel) that ranged from -3% up to+168%. NYRLIF was larger than 800 kg GY ha−1 in five out of 30 years (i.e.,1992/93, 1999/00, 2003/04, 2004/05, 2008/09). By contrast, in other five years(i.e., 1990/91, 1996/97, 2001/02, 2007/08 and 2019/20), LIF caused yield lossesdue to water excess (Figure 4.9-C and Appendix-Table B). For the remainingyears, the NYRLIF ranged from none to 670 kg GY ha−1 (e.g., 2014/15 as shownin Figure 4.9-C), being below 265 kg GY ha−1 for at least 50% of the years(Figure 4.9-B).
According to the Spearman’s correlation matrix, shown in Appendix (FigureA7), NYRLIF was negatively correlated with CUM.P and simulated yields. Thelower the yields simulated in higher zones (i.e., zone A), the higher was NYRLIFat lower zones (i.e., zone C), which is caused by marginal water productivitygains (Appendix-A7 and -Table B). According to our simulations, the occurrenceof LIF over fields in our conditions has resulted in a mean LIF .MWP of 24.6(±13.2) kg ha−1 mm−1 in years of maximum responsiveness (Appendix-Table B).

LIF .MWP were also significantly and negatively affected by CUM.LIF , whichindicates that lower CUM.LIF also increases LIF .MWP (Appendix-A7).
4.4 Discussion

4.4.1 SWC measurements and lateral inflow calculations

The accuracy of the SWC measured with the CPs indicate that there is aclear ‘trade-off’ between the precision of SWC measurements and the timefrequency/autonomy of the data collection system (Appendix-A2). The amplitudeof error variation was the greatest at surface layers (0-30 cm) but it appeared tostabilize for deeper layers, which is likely to be explained by a better relationbetween the moisture in the sensing volume and the average zonal moisture(Chanzy et al., 1998) . Lighter hysteresis effects at deeper soil layers may
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also contribute to the error stabilization with depth (Evett et al., 2009). TheSWC correction method that we followed assumes that a ‘linearity condition’is fulfilled, as described in Campbell (1990) and Chanzy et al. (1998). Similarbehaviour was observed by Mwale et al. (2005), who analysed this issue morein detail. However, although Mwale et al. (2005) reported a 20% average errorbetween capacitance and NPs (with a mean R2 value of 0.7), their measurementswere conducted in lighter soils and under semi-controlled conditions. Ourresults show a systematic overestimation of CP measured SWC (Appendix-A2),which highlights that CP should not be used to monitor SWC in absolute termswithout previous calibration.
Although there is uncertainty on SWCc measurements, the observed patternof inferred LIF among zones is in line with both mean zonal elevation and NFAIvalues (Table 4.1 and 4.5). The higher is the NFAI (and the lower the elevation),the larger is CUM.LIF inferred from field observations of SWC (Table 4.1 andFigure 4.5). It is accepted that a fraction of these differences could be associatedwith rainfall spatial variation within field as one single pluviometer was usedfor monitoring rainfall input. However, the fact that the rainfall coefficientof variation (9.5%) was lower than the relative variation of LIF among zones(13%) indicates that our modelling scheme is appropriate to assess our researchquestion.
Neither ET nor deep percolation were directly considered for LIFcalculations as done by others (Klaij & Vachaud, 1992; Rockström & Valentin,1997). We recognize that our approach may lead to an underestimation of LIFvalues because these flows play an additive role when computing LIF from astandard water balance approach. However, it was assumed that the inclusionof such flows would add uncertainty to our analysis because they were notmeasured. We consider that plant water uptake tends to be very low in rainydays due to transpiration suppression by evaporation of canopy interceptedwater (Tolk et al., 1995). In addition, deep percolation approaches zero in oursoil conditions (Giraldez & Sposito, 1985), which contrasts with the case of thesandy soils assessed by Klaij & Vachaud. (1992). We decided to calculateLIF by relating measured SWC daily variations with daily measurements of
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rainfall according to a conditional term (i.e., LIF was only considered whendaily SWC varied by an amount greater than the registered rainfall) becausethis method selects only days when LIF took certainly place. In this sense, wefocused only on measured values avoiding uncertainty on calendarization of LIFdue to the inclusion of non-measured flows. Our results must be interpretedas the minimum LIF quantity that actually took place under our experimentalconditions, suggesting that if LIF is relevant for determining crop yield underour approach, then it must play an important role in yield variations within afield.
4.4.2 HYDRUS simulations and lateral inflow predictions

The HYDRUS-1D simulations showed a solid ‘goodness of variance fit’according to the statistical indicators presented in Figure 4.6. The observed‘Nash–Sutcliffe’ model efficiency coefficients indicate a robust match betweenthe simulated and the observed SWC (Moriasi et al., 2007; Yang et al.,2014). The deviation statistics RMSE indicate also that the simulated resultswere sufficiently accurate, despite the lower R2 values in the training set(i.e., 2019/20 as shown in Figure 4.6). These are likely to be explainedby the R2 insensitiveness to additive and proportional differences betweenthe simulated and measured data SWC (Yang et al., 2014). The observedmean run-off coefficients (i.e., 8.5 and 15.5%, respectively for each experimentalcatchment/year) were in line with other published results obtained for cereals,under conventional systems in our conditions and with similar year precipitationpatterns (Lasanta et al., 2000; Torralba, 2013). Mediterranean environmentsare particularly prone to run-off due to a combination of multiple factors.García-Ruiz. (2010) identified some of these factors from which we highlighthigh rainfall intensity, the presence of steep slopes, frequent land-use changesand cultivation systems.
According to our experimental data, the best-performing ANN was capable ofreproducing LIF patterns with enough accuracy among independent years andsites of observation (Figure 4.7). The forecasted cumulative LIF was increasedin years of relatively high cumulative precipitation distributed through intensive
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events (Figure 4.8). Clear examples were observed in the seasons of 1995/96,1996/97 and 1997/98. Despite the relatively low run-off coefficients anddistributed among few events (Appendix-A5), the cumulative LIF forecastedby the ANN was comprehended within considerable levels (Figure 4.8 andAppendix-A6). Although no significant LIF was captured in high elevation zonesof our fields (Table 4.5 and Appendix-A6), the amount of LIF that was forecastedat receiving areas (i.e., zone C) varied from 10.7 to 38.9% of seasonal cumulativeprecipitation, which is explained by the flow accumulation effect (in line withthe NFAI values, as shown in Table 4.1 and Figure 4.2).
Our best-performing ANN was fed by six different features, which couldshow partial collinearity among them when used in classical regression models.The existing relation between the saturated hydraulic conductivity (x10) andrun-off features (x1 and x5) is a good example of this issue. However, ANN’sare known for dealing with the problem of collinearity in different forms thanclassical regression models (Kempenaar et al., 2016). The outputs of eachlayer are functions of multiple combinations of logistic transformations thatinvolve higher orders of interactions than in the original predictors. The neuralnetworks prevent the problems of multicollinearity and over-parameterizationat the cost of interpretability (De Veux & Ungar, 1994). In addition, no clearsymptoms of overfitting were observed as the ANN “goodness of variance fit”decreases from the training to the testing set and increasing the network sizedid not minimize the training error without also reducing the testing one (Figure4.7-A and -B). Maier & Dandy (2000) defined the ‘optimal network geometry’ asthe smallest network that adequately captures the relationship in the trainingdata, and our best-performing network was chosen based on the same criteria.
The best-performing ANN was trained on 959 observations of SWC, while1377 observations were used for testing. Although it is normally assumedthat there is a tradeoff between the sizes of the training and testing set ofdata, sustained by the idea that “more testing data” imply “less training data”(Maier & Dandy, 2000), it is naturally arguable that this rule of thumb doesnot apply to all cases. In our case, no “random initialization" or bootstrappingmethods were used for data division as both data sets were split by years and
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according to quality components. By quality components, we refer to differencesin the standard deviations associated with the means for geomorphologicalattributes (Table 4.1), crop data (Table 4.2) and in respect to the performanceof run-off simulations (Figure 4.6). Therefore, the fact that our model wastested with a 43% larger data set than the one used for training, should notbe seen as downside of our approach. The objective of a supervised modelis not simply learning on the largest dataset possible but doing it in a waythat maximizes its performance on unknown data. We tried to capture a largerscope of observations for validation by selecting 2020/21 data for testing, whichwas done to explore the ANN potential to be extrapolated over 30 years.Considering the small increase of RMSE and the acceptable decrease of R2(Figure 4.7-C), that were observed from the training to the testing stage, werejected the hypothesis of undertraining (de Vos & Rientjes, 2005) and decidedto use the selected ANN for forecasting multiple year scenarios. In addition, thepredicted cumulative LIF values were smoothed by a ’monotonically increasingfunction’, which resulted in a mean error for individual LIF events lower than theuncertainty level associated with rainfall input (i.e., here quantified as a spatialcoefficient of variation equal to 9.5%). The two experimental catchment/yearsalso presented different initial conditions, indicating that the model performedwell in both situations. While catchment one (2021) showed homogeneousinitial SWC among zones, catchment two (2020) monitoring was initiated underheterogeneous conditions (Figure 4.5). Therefore, no evidence was found tosupport the idea that an alternative modelling approach would deal with alower magnitude of both input and outcome uncertainty.
4.4.3 Contribution of lateral flows to crop yield

The AquaCrop simulations of rainfed wheat yield showed typical fluctuationsunder Mediterranean conditions (Figure 4.9-C and Appendix-Table B). NYRLIFwas larger than 800 kg GY ha−1 in five out of 30 years (Figure 4.9-B and-C). These were characterized by medium-low rainfall during the vegetativestage in combination with considerable LIF events occurring at post-anthesis(Figure 4.8), when the impact on yield of additional water is highest (Abbate
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et al., 2004). A significant negative correlation was found between NYRLIF and
CUM.P (Appendix-A7), indicating that the yield response to LIF increases withwater-deficit in low rainfall years. These results are in line with the sensitivityanalysis conducted by Maina & Siirila-Woodburn (2020), who concluded thatcrop transpiration responds the most to lateral flows in periods of lower watersupply and higher demand. By contrast, in other five years, LIF caused yieldlosses due to water excess (Figure 4.9-C and Appendix-Table B). These weretypically characterized by intense rainfall events at early vegetative stages incombination with an absence of LIF events taking place after flowering (Figure4.8 and Appendix-Table B). In these cases, the early intense rainfall eventshave generated run-off upslope (Appendix-A5), and consequently high LIF atthe receiving zones, promoting soil water saturation which have impacted cropgrowth negatively. According to our simulations for these five years showingyield losses (i.e., 1990/91, 1996/97, 2001/02, 2007/08 and 2019/20), soil watersaturation periods causing stomatal closure, and associated with high LIF, wereon average 48% (±27) longer in zone C than in zone A (Supplementary material).For the remaining years, a relatively moderate and highly variable contributionof LIF to crop yield variations was observed (Figure 4.9-A and -C). We highlightthat NYRLIF was highly positive (or negative) for about one third of the years,being relatively moderate for the remaining two thirds of the simulation period.

In general, the simulated yields were well correlated with field observations,showing a RMSE of 374 kg GY ha−1 (Appendix-A4). Our yield correlationsare acceptable because the RMSE of simulations is included within the errorrange of yield observations associated with the process of yield mapping (i.e.,172-809 kg GY ha−1). In addition, it must be considered that not all theerror in our deviation statistics is contained within the simulated variablebecause observations are not error free (Appendix-Figure A4). The observedyields were also subjected to errors through the process of combine yieldmonitoring/mapping. The relatively low R2 and the modest Willmott indexof agreement (d) that characterize our yield correlations (Appendix-A4) shouldnot be seen as a drawback of our simulation results because these are dueto the short range of yield observations used, which affects the proportional
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differences between simulated and measured yields (Yang et al., 2014) .
In terms of marginal water productivity (Passioura & Angus, 2010) andaccording to our simulations, it is considered that for each marginal unitof water supplied as LIF (expressed in mm), the crop responded with 24.6kg ha−1 of additional grain yield in years of maximum responsiveness (i.e.,1992/93, 1999/00, 2003/04, 2004/05, 2008/09). Our results are slightly abovethe benchmark of 20 kg ha−1 mm−1 that was originally proposed by French &Schultz. (1984). However, several other studies on water productivity for winterwheat grown at specific geographic regions have presented similar values(Passioura & Angus, 2010; Rattalino Edreira et al., 2018; Sadras & Angus,2006; Silva et al., 2020). It was observed that NYRLIF is more relevant inyears of moderate-strong water stress due to lower rainfall (Figure 4.9-C andAppendix-A7). LIF .MWP is also negatively correlated with the simulated yield(Appendix-A7), indicating that LIF .MWP increases in years characterized bylower potential yields. In these cases, we may expect relatively higher marginalwater productivity rates because the net yield response is computed over a‘water stressed baseline situation’ (Abbate et al., 2004; Kirkegaard et al., 2007).
In mean terms, there was no significant correlation between CUM.LIF and

NYRLIF (Appendix-A7). It must be highlighted that a lack of correlation between
NYRLIF and CUM.LIF (over 30 years) does not mean an absence of yieldresponse to lateral inflow. CUM.LIF represents the total amount of additionalwater supplied through LIF over the entire season, but such water input mayimpact positively or negatively crop yield, depending on several other factorswhich vary seasonally (e.g., rainfall amount and distribution, LIF timing, soilwater status, crop developmental stage). One example is the effect of CUM.Pover the CUM.LIF ×NYRLIF relation. CUM.LIF and NYRLIF are significantlycorrelated when controlling for specific CUM.P levels. For years of low
CUM.P (within the 25th lowest percentile), NYRLIF increased significantlywith CUM.LIF (data not shown) although no significant correlation is foundwhen CUM.P levels are not controlled (Appendix-A7). The same applies toplant available water at sowing date (PAW0), which is highly correlated withyield for low CUM.P years (data not shown) but this relationship has no
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significance over a 30-year period (Appendix-A7). The cumulative precipitationwas the most significant variable governing NYRLIF , not only because it isstrongly correlated with CUM.LIF and LIF .MWP but also because it affectsthe yield response to PAW0 and CUM.LIF .
4.4.4 Agronomic implications

The use of artificial intelligence methods for agronomic research requiresassumptions on key aspects and processes that vary largely across fields andamong different years (Smith, 2020; Wolfert et al., 2017). Our ANN-forecastingshowed a general trend for over predicting LIF (Figure 4.7-C). This could biasthe yield simulations under scenario number two. The observed over-predictingtrend can be associated with confounding effects of our algorithm or by thepresence of unobserved causes of some input variables, which are seen asmajor constraints to draw ’causal inference’ from data when using artificialintelligence methods such as ANN (Pearl, 2019). One limitation of our approachis that it strongly depends on the fitness of the training set. In our case, thetraining set included some input variables that are highly year dependent (e.g.,cumulative rainfall - x11), limiting model extrapolation due to inter-annualvariability of rainfall, highly typical of Mediterranean conditions. However,we consider that the data-generating distribution of predicted LIF patterns isacceptable for the purpose of the present study (Appendix-A6) and the simulatedyields were in line with field observations (Appendix-A4). To evaluate ournetwork performance, we took advantage of the experimental training/testingdatasets where both the predicted and the observed LIF outcomes wereavailable. Both the RMSE and the R2 of our ANN model are seen as adequategiven the scale of analysis and the fact that each set was obtained fromindependent years and sites. Alternatively, the data requirements for anentirely causal approach are vast and generally difficult or costly to satisfyin practice, particularly under the scale of our analysis.
This is the first modelling study to our knowledge, conducted at commercialfields’ scale and built over experimental data, delivering LIF patterns andtheir simulated impact on wheat yields over 30 years. Despite of the overall
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uncertainty associated with our analysis, which is associated with both scaleand methodological constraints, the net contribution of lateral inflows to spatialvariations of rainfed potential yields showed to be relevant but highly variableamong years. Despite the inter-annual variability, typical of Mediterraneanconditions, the mean NYRLIF−rel over 30 years was 16%. This value is in linewith the coefficients of variation obtained from yield maps in the same sites(Tenreiro et al., 2021). Other studies reported similar levels of yield variance(Batchelor et al., 2002; Florin et al., 2009). Batchelor et al. (2002) assessed(intra-plot) spatial yield variations in soybean, caused by differences in wateravailability, and reported mean values of 15.6% variance. Florin et al. (2009)observed spatial yield variations in wheat of 10-25%, depending on the fieldscale. We recognize that spatial variations of yields are naturally determinedby many other factors apart from water spatial variations due to run-off and/orLIF. Examples are spatial differences in soil fertility, in soil organic mattercontent and/or in soil depth (Franz et al., 2020; Kravchenko & Bullock, 2000;Monzon et al., 2018). However, the present study supports with evidence thatwater spatial variations may play a central role within this context becausethe main yield limiting factors were controlled in both the experiments and thesimulations taken.
The simulated NYRLIF varied from year to year, depending on thecombination of both year specific-meteorological conditions and crop relatedfactors (Figure 4.8 and 4.9-C). These were mostly explained by CUM.P andsimulated yields (Appendix-A7). We highlight that under present conditions,the estimated mean NYRLIF (i.e., 383 kg GY ha−1), forecasted over the last30 years, should not be taken as a stable benchmark for decision making.The estimation of variable application rates as a direct function of our meanresults would likely imply worse management decisions than those supportedby real time observations. Rainfed winter-cereals, such as winter wheat, areknown for being highly plastic crops in the expression of yields (Sadras etal., 2009; Fischer et al., 2019). This aspect partially explains the relativelymoderate and highly variable contribution of LIF to crop yield variations overmultiple years (Figure 4.9). Therefore, we suggest that mechanistic agronomy
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and continuous field visiting are necessary to deal with temporal asymmetriesof spatial variations in rainfed precision agriculture.
Although farmers and agronomists are not encouraged to adjust managementto (within field) spatial variation of potential yields, by directly using the presentresults as a reference, the integration of our methodology with in-seasonalweather data will definitely contribute to solve the trade-offs determiningthe adoption of precision agriculture in local conditions. Further researchis needed, focusing on future changes, such as atmospheric CO2 trends withimpact on plants water productivity rates (Allen et al., 2011; Hsiao, 1993;Passioura & Angus, 2010; Steduto et al., 2007) and technical or commercialmodifications (Balafoutis et al., 2017; Hochman et al., 2009; Kirkegaard & Hunt,2010; McBratney et al., 2005) that might impact the existing trade-offs involvedin the adoption of precision agriculture at multiple scales (i.e., field, croppingsystem, farm level). Agronomic implications and opportunities for precisionmanagement will naturally depend on the proportional relations between watersupplying and receiving zones, which need to be assessed at both field and farmlevel.

4.5 Conclusion

Water lateral inflows (LIF) contribute to yield variations in rainfed wheatproduction systems such as the one studied here. Both the forecasted LIFpatterns and the crop modelling approach indicated a considerable inter-annualvariation of the principal mechanisms involved in this relation. The ratio ofseasonal cumulative LIF divided by seasonal precipitation varied from 10.7 to38.9% over the 30 years. The net yield responses to LIF were on average 383kg GY ha−1 and, in years of maximum responsiveness, the LIF marginal waterproductivity reached 24.6 (±13.2) kg GY ha−1 mm−1. Such years of maximumresponsiveness were associated with low rainfall during the vegetative stages ofthe crop in combination with LIF occurring at post-flowering stages. Decisionmakers are encouraged to take water spatial variations into account whenadjusting management to different potential yielding zones within the same
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field. However, while some limitations for extrapolating results were identified,this process is also expected to benefit from further advances in in-seasonweather forecasting that should be coupled with a methodological approachsuch as the one presented here.
FIGURES - Chapter 4

Figure 4.1: Visual symptoms of early crop senescence apparently caused by spatial water variationsin Córdoba, Spain. The higher elevation zones show yellowing patterns due to lower wateravailability, which limits crop yield (Sadras et al., 2016). Photo credits: T. R. Tenreiro.
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Figure 4.2: Maps of the experimental catchments: the elevation maps with contour lines of catchmentone and two, respectively (A and B); the Normalized Flow Accumulation Index (NFAI) rasterized with5m spatial resolution for catchment one and two, respectively (C and D). Sampling zones (A, B, C) andsampling points (A1, A2, A3, B1, B2, B3, C1, C2, C3) are represented by solid black lines and purplecircles, respectively.
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Figure 4.3: Daily mean values for (A) rainfall (dashed lines represent cumulative rainfall computed from the 1st of October, values shown by rightvertical axis), (B) temperature and (C) reference evapotranspiration (ETo), respectively expressed in mm, degree Celsius and mm. Lines represent seasontime-series expressed in terms of days after sowing (DAS). Grey areas represent the monitoring time window of each observation year (i.e., from DAS 20to 157 in 2019/20 and from DAS 5 to 158 in 2020/21). Daily mean temperature values are represented by the heavy solid lines. Maximum and minimumtemperature values are respectively represented by a solid and a dashed skinny line. Each season values are shown in different colors (2019/20 in greenand 2020/21 in brown).
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Figure 4.4: Sketch of the methodological design: Two field experiments were conducted, eachsampling point was defined according to a spatial analysis (step 0). A daily calendar of lateralwater inflow (LIF) was calculated based on field observations (step 1) and simulations of LIF wereconducted for 30 years through a hydrologic modelling approach (step 2). LIF predictions wereassimilated into the crop modelling stage (step 3) and the net yield responses were simulated(step 4). Dashed lines delineate different methodological stages, rounded parallelograms indicateexperimental sites and data, solid line rectangles indicate different sub-steps, solid line circlesrepresent simulation tools, losenge and arrows indicate conditional steps. More information on thesimulation settings of HYDRUS-1D and AquaCrop is respectively provided by Šimůnek et al. (2018)and Steduto et al. (2009). Additional details related to the use of artificial neural networks (ANN) forhydrological modelling are provided by Maier & Dandy (2000).
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Figure 4.5: Corrected soil water content (SWCc) for each sampling zone (A-C), error bars are shown for daily SWCc values. Daily lateral inflows (LIF)per sampling zone (inferred from probes data). Values are expressed in mm.
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Figure 4.6: HYDRUS-1D simulations performance according to the means of measured soil watercontent and the best fitted soil parameters. “n.a.” indicates non-applicable situations, whichcorrespond to the sampling point A3 and C3 that were not considered in catchment one (Figure 4.2).Both the Nash-Sutcliffe and the R2 coefficients are indicated by the left axis, while the RMSE isindicated by the right axis. Mean R2 values ranged from 0.65 (± 0.13) in 2019/20 to 0.93 (± 0.03) in2020/21 and RMSE (cm3 cm−3) from 0.04 (± 0.01) to 0.03 (± 0.01), by the same order.

120



Figure 4.7: The feedforward Artificial Neural Network (ANN) used for forecasting lateral inflow (LIF)over 30 years: A) schematic representation of the R2 assessment based on trial-and-error procedurethat was taken for model architecture delineation; B) three-dimensional representation of the R2values obtained for each combination of model structure (the best performing ANN corresponded toan ANN composed by six different features and four hidden layers); C) ANN statistical evaluation,observed LIF plotted against predicted LIF (values are expressed in mm and represent cumulativeLIF), blue dots correspond to the training set (2019/20) and red triangles to the testing set (2020/21).Both the training and the testing set fitted into a linear regression, respectively expressed as y =1.432x + 0.528 and y = 1.122x + 2.919, and subsequently with a R2 of 0.97 and 0.78, and a RMSE of10.1 and 14.8 mm; D) the schematic representation of the best performing ANN, solved in 9962 steps:green circles represent input features, grey squares indicate the hidden layers’ coefficients, each nodeis represented by a grey circle, the blue small circles represent the transfer functions and the bluesquares indicate the linked weight factors. Selected features (i.e., x1, x3, x5, x6, x10, x11) are shownin Table 4.4.
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Figure 4.8: Cumulative lateral inflow (CUM.LIF ) and cumulative precipitation (CUM.P), respectivelyrepresented by solid and dashed lines (expressed in mm). Facet-plots show the two forms of watersupply to zone C in catchment two (shown in Figure 4.2). Values were computed in daily time-stepsover a period of 30 crop seasons, from sowing to harvesting date. CUM.P values were computed fromdaily weather records for Cordoba [1990-2020], obtained from the same weather station introducedin Section 4.2.2. CUM.LIF values were forecasted by the ANN model shown in Figure 4.7. Verticalblack bars represent daily LIF events (daily LIF magnitudes are multiplied by a factor of 4.5 for bettervisualization).
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Figure 4.9: Main AquaCrop simulation outcomes: A) cumulative probability distribution curves forsimulated Y2 yields (Mg ha−1) in the two significantly distinct zones (i.e., A and C in catchment two);B) cumulative probability of NYRLIF , expressed in Mg ha−1; C) time-series of NYRLIF expressed inMg ha−1 over 30 years; D) cumulative probability of NYRLIF−rel, expressed in %. Values correspondto zone C in catchment two for the period of 1990-2021. Dashed lines represent the median values, inplots B and D (i.e., 0.265 Mg ha−1 and 6.3%, respectively), and the mean NYRLIF in plot C (i.e., 0.383Mg ha−1).
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TABLES - Chapter 4

Table 4.1: Main geomorphological attributes within each sampling zone (mean values and standarddeviations). The standard deviations are presented in parentheses. Codes: ECa = soil apparentelectrical conductivity, %Clay = percentage of clay content, %Sand = percentage of sand content,NFAI = “Normalized flow accumulation index” (Tarboton et al., 1991; Jenson & Domingue., 1988). Theamount of chosen sampling points was supported by Chanzy et al. (1998). %Clay, %Sand and bulkdensity were averaged for the three zones in catchment-2 according to farm records.
Parameter Units Catchment-1 Catchment-2

Zone A B C A B CSampling points [N] 2 3 2 3 3 3
Elevation m (amsl.) 187 (2.4) 184 (5.1) 168 (2.3) 147 (0.5) 141 (0.3) 139 (0.3)ECa dS m−1 0.31 (0.08) 0.28 (0.09) 0.48 (0.06) - - -%Clay % 45 (3.4) 42 (3.3) 50 (3.4) 44 (2.8)%Sand % 18 (2.6) 22 (2.9) 15 (2.8) 22 (3.2)Bulk density g cm−3 1.78 (0.06) 1.81 (0.04) 1.74 (0.05) 1.66 (0.05)NFAI [0;1] 0.09 (0.021) 0.12 (0.082) 0.72 (0.218) 0.07 (0.005) 0.42 (0.002) 0.98 (0.011)

Table 4.2: Crop data used for the parameterization of the HYDRUS and the AquaCrop models. CCMAXis maximum green canopy cover (Steduto et al., 2009), used for parameterization of the soil coverpartitioning method, as described in Tenreiro et al. (2020). Mean sowing rate was 180 kg ha−1 forall trials. The standard deviations are presented in parentheses.
Data Catchment-1 Catchment-2 MeanParameter Zone A B C A B C -[units]
Sowing date date 13-Dec 18-Nov 1-DecCrop emergence DAS 10 8 9Plant density plants m−2 200 (21.8) 280 (19.2) 225 (16.3) 250 (18.2) 225 (16.44) 225 (10.4) 236 (27.4)CCMAX % 80 (3.5) 82 (4.6) 84 (2.1) 90 (1.7) 95 (0.6) 92 (0.5) 87 (5.9)Root growth cm day−1 0.7 (0.1) 0.9 (0.1) 0.8 (0.1)Vegetative stage days 120 120 120Anthesis stage days 10 14 12Reproductive stage days 58 76 67Senescence duration days 20 40 30Crop maturity date 8-Jun 1-Jun 4-JunHarvest date date 10-Jun 8-Jun 9-Jun
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Table 4.3: The parameter intervals used for model optimization. Values were adjusted during theoptimization process for each individual point (Figure 4.2).
Parameter units Min Max

residual vol. water content (θr) cm3 cm−3 0 0.2saturated vol. water content (θs) cm3 cm−3 0.3 0.5van Genuchten’s parameter (α) cm−1 0.0001 0.1van Genuchten’s parameter (n) - 1.2 1.5saturated hydraulic conductivity (KSAT ) mm day−1 2 100

Table 4.4: Artificial neural network (ANN) potential predictors assessed through principal componentanalysis (PCA) and trial-and-error procedure (Roadknight et al., 1997). Main PCA outcomes areshown in Appendix-A3. More information regarding the PCA is provided in Supplementary material.
id Input feature Estimation procedure/description Contribution to LIF

x1 Cumulative surface run-off[mm] at location (x, y) Simulated with HYDRUS-1D through multipleiterations optimized by means of the measured soilwater content
High

x2 Day after run-off at location(x, y) Computed with R-studio as a function of x1calendarization Low
x3 NFAI [0;1] at location (x, y) Estimated with SAGA-GIS (2.3.2) and computed withR-studio (Lovelace et al., 2019) High
x4 Slope [%] at site i Estimated with SAGA-GIS (2.3.2) and computed withR-studio (Lovelace et al., 2019) Medium
x5 Cumulative surface run-offat upslope contributingpoints [mm]

The daily median of x1 values, simulated withHYDRUS-1D for upslope hydrologically contributingpoints
High

x6 Canopy cover [%] According to Tenreiro et al. (2021) Highx7 Surface saturated hydraulicconductivity [mm day−1] Optimized KSAT at location (x, y) with HYDRUS-1D forsurface layer (0-10 cm depth) Medium
x8 Day after run-off Computed with R-studio as a function of x5calendarization Medium
x9 Day after precipitationevent Computed with R-studio as a function of x11calendarization Low
x10 Saturated hydraulicconductivity (mean) [mmday−1]

The average between surface and sub-surface KSAT(optimized with HYDRUS-1D) High
x11 Cumulative dailyprecipitation [mm] Field measured with a rain gauge (section 2.2.2) High
x12 Boolean ‘satunsat′parameter Boolean parameter set to define days of saturated vs.unsaturated conditions in the vadose zone Medium
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Table 4.5: Mean soil water content (SWC), mean daily lateral inflow (LIFn) and mean cumulativeLIF (CUM.LIFn) over season, for the two years of field data. All values are expressed in mm. Thestandard deviations are presented in parentheses. Mean values followed by a common letter are notsignificantly different according to the HSD-test conducted at the 5% level of significance (p − value
< 0.05).

Zone Catchment-1 (2019/20) Catchment-2 (2020/21)

SWC [mm] A 209.36 (39.6)c 289.19 (65.1)bB 237.36 (34.4)b 316.52 (61.2)aC 269.37 (63.1)a 310.87 (60.4)a
LIFn [mm] A 0.08 (0.46)b 0.13 (0.8)bB 0.31 (1.52)ab 0.23 (1.6)bC 0.42 (2.09)a 0.71 (2.7)a
CUM.LIFn [mm] A 6.98 (3.9)b 11.24 (11.2)cB 17.88 (15.7)a 23.94 (17.4)bC 19.76 (16.9)a 60.28 (42.1)a

APPENDIX - Chapter 4

Figure A1. Map of the study locations: catchment one (A), catchment two (B), rain gaugeECRN-100 ZENTRA system (C), weather station (D), neutron probe calibration site (E). Furtherinformation on the neutron probe calibration site is provided by Soriano et al. (2018).
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Table A. The parameters of the neutron probe (NP) calibration functions (y = a[ xstd ] − b). y isvolumetric SWC, expressed in %, x is probe measured value (unitless) and ’std’ is the standardcorrection value. More information on the neutron probe calibration site is provided by Sorianoet al. (2018).
Depth a b std R2
0-15 cm 25.416 0.264 7830 0.8215-30 cm 21.974 7.381 7830 0.9830-90 cm 27.210 16.897 7434 0.96

Figure A2. The mean correction factor (Ωz) plotted for each probe location and sensor depthin 2019/20, at the 95% confidence level. Ωz was computed as the mean ratio between the SWCmeasurements with the NP and the capacitance probes for depth z (Equation 4.2).
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Figure A3. The principal component analysis (PCA) plot. Vectors are colored according to thecontribution degree to LIF. PCA scores are equal to the module of each vector, indicating theweight associated with the combination of the two principal components (i.e., Dim 1 and Dim2,respectively explaining 34 and 18.2% of LIF variance). Variables are defined in Table 4.4.

Figure A4. Simulated vs. observed yields (obtained from historical yield maps). Unitsare expressed in Mg GY ha−1. Circles and triangles represent yields in zone A and C,respectively. Simulated yields correspond to the Y2 scenario. RMSE, R2 and Willmott dindex are respectively equal to 0.374 (Mg GY ha−1), 0.35, 0.76. The horizontal bars indicate theerror associated with the process of yield mapping (i.e., 172-809 kg GY ha−1).
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Figure A5. Cumulative precipitation (CUM.P) and HYDRUS run-off simulations over 30 years[1990-2020]. CUM.P is expressed in mm. Blue bars represent daily surface run-off values,expressed in mm day−1.

Figure A6. Cumulative probability distribution curves of CUM.LIF and CUM.P over 30 years.Curves shown for zone A (A) and zone C (B), representing both cumulative precipitation andcumulative LIF, values expressed in mm day−1.
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Figure A7. Spearman’s correlation pairs-plot. Codes: PAW0 = initial plant available water(at sowing date); CUM.P = season cumulative precipitation; CUM.LIF = season cumulativelateral inflow (LIF); CUM.ETo = season cumulative evapotranspiration (ETo); PF.LIF =post-flowering LIF, corresponding to the fraction of CUM.LIF taking place at post-floweringstages; ’Relative.T’ = mean relative crop transpiration (the simple average of the relativecrop transpiration between zone A and C, expressed in %); Mean YP = mean yield potential(the simple average of simulated yield between zone A and C, expressed in Mg GY ha−1);
LIF .MWP = LIF marginal water productivity (expressed in kg GY ha−1 mm−1); NYR.LIF= Net yield response to LIF (expressed in Mg GY ha−1); PAW0, CUM.P , CUM.LIF and
CUM.ET0 are expressed in mm. ’Relative.T’ is estimated at the season average of dailycrop actual transpiration divided by daily potential transpiration. Simulation files are providedin Supplementary materials. Season is defined from sowing to harvesting date. Input valuesare synthesized in Appendix-Table B. Significant correlations at the 5% level of significance arehighlighted with the symbol ’∗’. Significance codes: ’∗ ∗ ∗’ 0.1%, ’∗∗’ 1%, ’∗’ 5%.
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Table B. AquaCrop simulation outcomes. Codes: PAW0 = Initial plant available water (at sowing date); CUM.ETo = Season cumulative ETo(from sowing to harvesting date); CUM.P = Season cumulative precipitation; CUM.LIF = Season cumulative lateral inflow (LIF); Post-floweringLIF = The fraction of season LIF taking place at post-flowering stages (expressed in %); Relative T [Zone A] = Mean relative crop transpirationin zone A (or in the absence of LIF); Relative T [Zone C] = Mean relative crop transpiration in zone C (including LIF); Yield.1 [Zone A] =Yield in scenario 1 (in the absence of LIF); Yield.2 [Zone C] = Yield in scenario 2 (including LIF); NYR.LIF = Net yield response to LIF;
NYR.LIFrel = Net yield response to LIF in relative terms; LIF .MWP = LIF marginal water productivity (expressed in kg GY ha−1 mm−1).Relative T is estimated as the season average of daily crop actual transpiration divided by potential transpiration. Simulation files are providedin Supplementary materials.
Season PAW0 CUM.ETo CUM.P CUM.LIF Post-flowering LIF Relative T [Zone A] Relative T [Zone C] Yield.1 [Zone A] Yield.2 [Zone C] NYR.LIF NYR.LIFrel LIF .MWP[-] [mm] [mm] [mm] [mm] [%] [%] [%] [Mg GY ha−1] [Mg GY ha−1] [Mg GY ha−1] [%] [kg GY ha−1 mm−1]
1990/91 157.5 434.4 419.1 46 0 84.2 83.4 3.68 3.58 -0.10 -3 -1991/92 145.5 351.8 361.4 118 62 93.4 98.2 4.25 4.49 0.24 6 2.031992/93 135.4 356.8 224.3 48 25 87.0 90.0 1.24 3.32 2.08 168 43.331993/94 157.3 370.8 212.8 34 26 82.6 83.8 3.54 3.66 0.12 3 3.531994/95 151.2 391.8 223.8 37 32 78.3 83.4 3.77 3.87 0.10 3 2.701995/96 139.7 391.3 747.0 120 56 87.0 88.4 4.14 4.28 0.14 3 1.171996/97 162.4 387.5 759.5 122 0 72.5 70.4 3.36 3.34 -0.02 -1 -1997/98 165.0 354.8 689.6 125 3 83.0 83.1 4.15 4.18 0.03 1 0.241998/99 117.9 389.6 301.6 34 41 88.6 90.1 2.56 2.87 0.31 12 9.121999/00 118.2 452.1 326.2 47 57 89.5 92.9 3.56 4.45 0.89 25 18.942000/01 124.0 350.7 523.9 115 48 85.7 89.6 4.22 4.51 0.29 7 2.522001/02 116.4 392.0 398.2 66 23 87.1 87.0 4.44 4.43 -0.01 0 -2002/03 160.1 401.3 376.2 108 56 77.7 78.1 3.68 3.76 0.08 2 0.742003/04 121.6 352.1 310.0 120 0 91.1 97.4 3.83 4.81 0.98 26 8.172004/05 120.6 439.8 325.5 45 11 85.5 89.0 1.99 3.38 1.39 70 30.892005/06 154.3 394.9 286.4 44 20 91.6 95.2 4.37 4.58 0.21 5 4.772006/07 134.6 389.8 407.8 44 16 98.4 99.4 4.93 5.00 0.07 1 1.592007/08 133.1 424.9 359.8 85 40 94.9 93.2 4.89 4.75 -0.14 -3 -2008/09 122.0 406.1 257.7 48 8 86.1 88.3 1.83 2.86 1.03 56 21.462009/10 145.9 397.1 215.8 36 19 82.1 88.0 3.86 4.28 0.42 11 11.672010/11 157.9 425.6 300.0 46 30 87.4 90.9 4.24 4.69 0.45 11 9.782011/12 182.3 446.6 266.9 39 23 88.9 92.1 4.01 4.44 0.43 11 11.032012/13 170.4 397.8 273.8 38 21 89.6 92.9 4.46 4.83 0.37 8 9.742013/14 172.5 453.6 299.8 44 18 83.5 87.0 3.89 4.38 0.49 13 11.142014/15 159.8 445.7 228.6 41 10 90.2 92.3 2.28 2.95 0.67 29 16.342015/16 173.2 396.7 228.9 30 10 85.8 88.1 4.10 4.51 0.41 10 13.672016/17 168.3 421.4 375.4 104 20 89.8 91.2 4.27 4.61 0.34 8 3.272017/18 176.9 416.0 297.1 46 0 84.0 85.6 4.97 5.10 0.13 3 2.832018/19 186.9 458.4 412.3 46 0 83.7 85.8 5.08 5.31 0.23 5 5.002019/20 161.8 453.2 535.2 112 0 88.6 86.5 5.35 5.21 -0.14 -3 -
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Chapter 5

Opportunities for variable application rate
of nitrogen under spatial water variations
in rainfed wheat systems – an economic
analysis

This chapter has been under review as:
Tenreiro, T. R., Avillez, F., Gómez, J. A., Penteado, M., Coelho, J. C., Fereres, E. (2022).Opportunities for variable application rate of nitrogen under spatial water variations inrainfed wheat systems – an economic analysis. Precision Agriculture.

Abstract

In fields of undulating topography, where rainfed crops experience different degrees of water stresscaused by spatial water variations, yields vary spatially within the same field, thus offering opportunitiesfor variable application rates (VAR) of nitrogen fertilizer. This study assessed the spatial variations ofyield gaps in rainfed wheat caused by lateral flows from high to low points, grown in Córdoba, Spain, oversix consecutive seasons (2016-2021). The economic implications associated with multiple scenarios ofVAR adoption were explored through a case study and recommendations were proposed. Both farm size(i.e., annual sown area) and topographic structure impacted the dynamics of investment returns. Undercurrent policy-prices conditions, VAR adoption would have an economic advantage in farms similar tothat of the case study with an annual sown area greater than 567 ha year−1. Nevertheless, currenttrends on energy prices, transportation costs and impacts on both cereal prices and fertilizers costsenhance the viability of VAR adoption for a wider population of farm types. The profitability of adoptingVAR improves under such scenarios and, in the absence of additional policy support, the minimum areafor adoption of VAR decreases to a range of 68-177 ha year−1. The combination of price increases withthe introduction of an additional subsidy on crop area could substantially lower the adoption thresholddown to 46 ha year−1, turning VAR technology economically viable for a much wider population offarmers.
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5.1 Introduction

Rainfed agriculture plays a determinant role in food production worldwide asit accounts for more than 75% of global cropped area, being responsible formore than 60% of the global cereals’ production (Cassman et al., 2003; Connor& Mínguez, 2012). Sustaining food production by rainfed crops in the yearsahead will require productivity gains in resource use (Fischer & Connor, 2018).Specific challenges include estimating the magnitude and thus the value of yieldgaps, identifying limiting factors, and implementing profitable and sustainablestrategies. Closing yield gaps in rainfed farming, while improving resourceuse efficiency, is also expected to minimize the expansion of arable land andemissions while cutting on other undesirable externalities (Cassman et al., 2003;Snyder et al., 2009). Over the last decades, new technologies have been evolvingwithin the context of rainfed farming (e.g., precision agriculture), aiming toincrease the productivity of resources while offering substantial environmentalbenefits (Griffin & Shockley, 2018).
Spatial variations in rainfed crop yields are commonly observed worldwide(Florin et al., 2009; Griffin et al., 2020), which reveal, theoretically, opportunitiesfor optimizing resource use (e.g., fertilizer) through precision agriculture (PA).A central concept of PA is the spatially variable application rate (VAR) offertilizer according to the intra-plot variations of yield levels (Basso et al.,2013; Bullock & Lowenberg-DeBoer, 2007; Robertson et al., 2008; Pedersen etal., 2021). In fields of undulating topography, where rainfed crops experiencedifferent degrees of water stress due to spatial water variations caused bylateral flows, yields vary spatially within the same field (Halvorson & Doll,1991; Tenreiro et al., 2022). These variations may imply different nutrientrequirements and application rates over fields (Nielsen & Halvorson, 1991;Sadras, 2002). However, although the theoretical reasons for adopting VARtechnology in rainfed systems are well accepted, its adoption has not beenwidespread (Basso et al., 2013; Lowenberg-DeBoer & Erickson, 2019; Robertsonet al., 2012).
Considerable attention has been devoted to VAR adoption constraints
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(Robertson et al., 2008; Schimmelpfennig et al., 2016; Welsh et al., 2003).Sceptics argue that there is a lack of evidence of relative advantage on VARadoption. The principal issues are related to technical obstacles, complexity onthe use of equipment and software, problems with data availability and access,operational incompatibility and ambiguity regarding financial benefits (Pathaket al., 2019; Robertson et al., 2007). Nevertheless, current trends on energyprices, transportation costs and impacts on both cereal prices and fertilizerscosts (Chowdhury et al., 2021; Deloitte, 2021; EUC, 2021; Glauber & Laborde,2022; Khalfaoui et al., 2021; FAO, 2021; USDA, 2021) may alter the trade-offsinvolved in the adoption of VAR in rainfed systems. Generally, there are otheradvantages attributed to the increase of fertilizer use efficiency that go beyondeconomic reasons which should not be ignored. Adequate use of fertilizer isnot only needed to sustain yields and to increase the efficiency of water andenergy use, but it also contributes to minimize the overall emissions over thesupply chain (Snyder et al., 2009).
Understanding and capitalizing on yield variability is one of the mainobjectives of PA and the yield gap (YG) is an important concept to be used in thiscontext as it provides a benchmark to explore yield variations (Cassman, 1999).YG is defined as the difference between the potential (Yp), or water-limitedyield (Yw) in the case of rainfed cropping systems, and the actual yield (Ya)achieved by farmers (Loomis & Connor, 1992; Fischer, 2015). However, moststudies on YG analysis ignore intra-plot variability (Fischer et al., 2014; Lobellet al., 2009; Schils et al., 2018), which is partially due to data availabilityconstraints (Beza et al., 2017) and to the limitations of crop models to simulateprocesses such as spatial water distribution (Tenreiro et al., 2020).
In fields of undulating topography where water flows from higher to lowerelevation zones, the assessment of spatial variations of Yw may be combinedwith yield mapping from combine harvesting to understand how YG varieswithin a field. Assuming that Ya is achieved under current managementpractices (i.e.., uniform nutrient application), the magnitude of YG and itsvariation over space (i.e., how site-specific Ya relates to Yw and how it variesfrom upslope to downslope zones) could be taken as an indication of the relative
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advantage of VAR adoption. The larger the differences in YG among differentzones, the greater would be the opportunity for adopting VAR (Robertson et al.,2008).
This study builds upon a methodological framework that assessed bothYw and Ya spatial variations in rainfed wheat fields (Tenreiro et al., 2022)which explored how YG varied within fields and from year to year. Intra-plotyield variation was modelled, and management units were determinedaccording to the YG variation. Some economic implications associated withmultiple scenarios of VAR adoption were explored through a case study andrecommendations were proposed (Tenreiro et al., 2022). The present studyperforms a novel economic analysis on VAR adoption to benefit from thespatial water variations in rainfed wheat systems. The hypothesis that spatialvariations in soil water supply may justify a variable fertilization rate over spaceis tested, focusing on the following objectives:
1. The identification of economic trade-offs between scale of cropping andopportunities for VAR adoption;
2. The assessment of return on investments at farm scale in differentscenarios, where the spatial water variations over fields determine yieldvariability and scope for adopting VAR.

5.2 Materials & Methods

5.2.1 Experimental conditions and on-farm data collection

The experimental farm is located in Córdoba province, southern Spain (37.8º N,4.8º W, mean altitude 165 m amsl., mean precipitation 605 mm year-1, rangeof slope steepness 2-6%), and it has a total arable area of 320 ha (Figure5.1-A). At farm level, crop rotations include autumn and spring sown crops (e.g.,winter wheat, rapeseed, sunflower, chickpea), with winter wheat being grown1-2 times every four seasons. This study is limited to wheat (Triticum durumL.), which is a major crop within the farming system with a relative area shareof 0.25-0.3 year−1. The soils are predominantly of clay texture (40-50% clay
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and 15-22% sand) with high bulk density (1.65-1.88 g cm3) and moderate depth(1.2-1.6 m). More details on soil properties and other geophysical conditionsare provided in Tenreiro et al. (2022).
Depending on the year conditions and operational aspects at farm level,sowing dates vary from middle November to late December (Table 5.1). Wheatis sown under direct seeding at an average rate of 200 (±20) kg/ha. Thecurrent management system is spatially uniform, following a fertilization planthat consists of two applications per season (one pre-sowing and the othernear the end of the vegetative stage). Mean N-P-K application rates to wheatare 165-60-0 units per ha year−1. Crop nutrient status is controlled everyseason through foliar analysis conducted at flowering. More information oncrop management is provided in Table 5.1.

5.2.2 Lateral inflow (LIF) zones mapping

Spatial water variations caused by lateral flows imply yield variations.Different potential yielding zones, within the same field, were delineatedaccording to lateral inflow (LIF) levels. For zone delineation, we used theTOPMODEL Topographic Index (TMTI) as described in detail by Beven et al.(2021) and expressed as following:
TMT I(x,y) = ln( a

tanβ ) (5.1)
where a represents the flow accumulation, defined as the upslopecontributing area to that point (x, y), and β represents the field slope anglein the same point. While the hydraulic gradient ’tanβ’ is defined with respectto the plan distance, the flow accumulation rate is defined with respect to theplan unit area. a is expressed in m2 and β in degrees.
We scaled up to the farm level the results of Tenreiro et al. (2022), whofollowed an experimental design that consisted of choosing three differentsampling zones per field, where the TMTI values ranged from 0 to 6 with medianvalues varying from 1-2 in ‘no-LIF zones’ up to 4-6 in ‘LIF zones’ (Appendix A1).The Yw simulation results in Tenreiro et al. (2022) are assumed to be dependent
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on the scale of the experimental fields. To avoid an extrapolation of results todifferent scales from those in experimental conditions, all points with a TMTIfalling out of the distribution range in experimental conditions (Appendix A1)were rejected (i.e., points with TMTI > 6 were discarded). For the same reason,only those fields with a predominance of clay texture were selected (Figure5.1). According to Tenreiro et al. (2022), only two zones were significantlydifferent in terms of soil water content variations due to LIF (i.e., zones A andC, Appendix A1). Therefore, in the present study, only two different zones wereconsidered:
1. ‘LIF zones’ (i.e., downslope zones with significant amount of water suppliedthrough lateral flow taking place from upslope areas of the same field);
2. ‘No-LIF zones’ (i.e., upslope zones where no significant amount of water issupplied through lateral flow);
According to the standard deviation of each significantly different zone(Appendix A1), a TMTI cutting threshold value equal to 5 was considered andeach location was classified as following:
1. IF TMTI(x,y) < 5 [point classified as ‘no-LIF zone’];
2. ELSE [point classified as ‘LIF zone’];
Using the previous criteria, a subset plot of 92 ha was selected (Figure 5.1-Dand -E), from which 76 ha were classified as ‘no-LIF zones’ while the remaining16 ha were considered to be ‘LIF zones’. Therefore, the selected farm area hasan overall share of ‘LIF zones’ equal to 17.4% (Figure 1-E).

5.2.3 Intra-plot spatial assessment of Yield Gaps

YG were spatially assessed at intra-plot level with a resolution of 100 m2according to the following equation:
YG(x,y) = Yw(x,y) − Ya(x,y) (5.2)
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where YG, Yw and Ya represent the yield gap, the water-limited yield andthe actual yield, respectively. The subscripts (x, y) indicate the correspondingcell coordinates. Yields are expressed in terms of Mg DM (grain) ha−1.
Two zones were considered according to lateral inflow (LIF) water supply(i.e., LIF and no-LIF zones) and Yw was assumed to be constant within eachzone. Yw values (2016-2021 period) were obtained from Tenreiro et al. (2022)and Ya was determined with the ‘New Holland’ Precision Land Manager (PLM)software, taking as an input the shapefiles generated by the combine harvestermonitor (Fendt PLI C 5275). To obtain LIF zones’ Yw, lateral inflow wassimulated as an additional water supply to the effective rainfall using theAquaCrop simulation model (Steduto et al., 2009) as described in Tenreiro etal. (2022). No-LIF zones’ Yw were simulated, assuming that water inflow takesplace only due to vertical infiltration (Tenreiro et al. 2021).

5.2.4 Quantifying the relative advantage of VAR adoption

Our assessment focused on the relation between intra- and inter-seasoneconomic benefits of VAR adoption, and on the total investment costs inrelation with the amortization of equipment. We did not explore the concept ofrelative advantage (Robertson et al., 2012) in terms of income risk reduction orenvironmental benefits, as done by Swinton & Ahmad (1996).
In our perspective, exploring the relative advantage of VAR adoption mustdedicate attention to the scope for improvement, not only regarding the targetscenario but also the current management system (i.e., the baseline scenario).Our baseline scenario is characterized by uniform nutrient application rate thusits agronomic performance is captured by the determination of Ya. Our targetscenario implies VAR adoption and it is benchmarked by the simulated Ywlevel. Therefore, the relative advantage is estimated as the difference betweenthe target and the baseline scenario. This was expressed as the differentialgross margin (DGM), which is the difference between the gross margin obtainedwith VAR and without it (Pedersen et al., 2021). Since the gross margin equalsrevenue minus expenditure, it was computed as a function of grain yield. Grain
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yield determines both the output revenue and the input costs (through fertilizerrequirements). The yield difference between the target (Yw) and the baselinescenario (Ya) is defined as the YG.
The relative advantage was measured as the average DGM. The averageDGM (=C ha−1) was estimated by averaging the annual ADGM values (=C ha−1year−1), expressed as:

DGM = T∑
t=1

ADGMt

T (5.3)
where T is the number of seasons (N=6 years) of our dataset (i.e., 2016-2021),and the subscript t indicates the specific season. ADGMt is the differencebetween the annual differential revenue (ADRt) and the annual differentialcosts (ADCt), expressed as:

ADGMt = ADRt − ADCt (5.4)
where both ADRt and ADCt are expressed in =C ha−1 year−1. Since the DGMrepresents the differential gross margin, it applies to the differential area, whichis defined by the LIF area share. Therefore, both ADRt and ADCt are definedper ha of LIF zones. The ADRt was computed as a function of YG, expressedas following:

ADRt = YGzt · 1000 · (PriceWHEAT + LPP) + DPA (5.5)
where YGzt represents the YG difference among zones (i.e., between LIF andno-LIF zones) for a specific year (t), and the PriceWHEAT corresponds to thegrain price (=C kg−1 DM grain). LPP represents a linked production paymentin some scenarios (i.e., a subsidy linked to yield and expressed in =C kg−1 DMgrain), and DPA represents a direct payment on annual wheat grown area (=Cyear−1). DPA does not consider current direct payments, but it explores theintroduction of an additional payment on area over current subsidy levels inone scenario. The larger is YGzt , the higher is the expected ADRt . The YGztwas computed as follows:
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YGzt = √([∫ cum.d=1
cum.d=0 ECDF (YGLIF )] − [∫ cum.d=1

cum.d=0 ECDF (YGNo−LIF )])2 (5.6)
where ECDF (YGLIF ) is the ‘empirical cumulative distribution function’ of YGin ‘LIF zones’ and ECDF (YGNo−LIF ) is the ‘empirical cumulative distributionfunction’ of YG in ‘No-LIF zones’. Cum.d delineates the cumulative density,varying from 0 to 1. The ’empirical cumulative distribution function’ is thedistribution function of a sample measure. In our case, this applies to the yieldgap distribution over field. It expresses the fraction of yield gap observationsthat are less than or equal to a specified value. For ECDF computation, weused the function ‘stat_ecdf’ from the ‘ggplot2’ library in R-studio (Wickham,2007).
The ADCt was estimated by the following equation:

ADCt = (YGzt · 1000 · NGRAIN · PriceN) + ACVAR (5.7)
where NGRAIN is the nitrogen content in grain (expressed in terms of % DM),the PriceN is the price of N (expressed in =C per kg N) and the ACVAR is theannual cost (Table 5.2) associated with VAR use (e.g., technology renting plusexternal consultancy costs). NGRAIN was set equal to 2.8% of DM (Quemadaet al., 2016). PriceN was estimated according to the 2020/21 fertilizer priceindex for Diammonium Phosphate (DAP), Calcium Ammonium Nitrate (CAN)and Urea (EUC, 2021), and considering the mean N content of fertilizer whichwas estimated as the simple average of N content in DAP, Urea and CAN. Thebaseline PriceN was set equal to 1.10 =C kg−1 N.

5.2.5 Economic modelling and analysis of future scenarios

The capital recovery of VAR adoption was modelled according to 10 futurescenarios (Table 5.2) which considered different prices and payments (i.e.,application of extra subsidies). The Net Present Value (NPV) was estimatedover a period of 10 years which was assumed to be the total amortization periodof VAR equipment (Drabik & Peerlings, 2016; Tozer, 2009). NPV was estimated
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as following:
NPV = −IIVAR + N∑

i=1
DGMi · LIFAreaSHARE(1 + γ)i (5.8)

where IIVAR is the initial investment (i.e., the acquisition cost), γ is thediscount rate, i is the year of the cash-flow and N represents the totalamortization period (10 years). The acquisition costs (Appendix – Table A1)were based on information compiled from different sources (AAEA, 2000; Batte& Ehsani, 2006; Finco et al., 2021; Griffin, 2006; Tozer, 2009), including theacquisition costs of the GPS guiding system, the precision application systemRTK, the GPS receiver, the base station, the replicators and the N applicationcontroller (Appendix - Table A1). The overall total gain (OTG) was estimated bysolving the NPV series over a period of 10 years (N=10), which was a functionof both the discount rate used and the price/payment scenario adopted (Table5.2). The Internal Rate of Return (IRR) and the return on investment paybacktime (ROIt) were respectively estimated by solving the following equations:
IIVAR = N∑

i=1
DGMi · LIFAreaSHARE(1 + IRR )i (5.9)

ROIt = IIVAR(DGM · LIFAreaSHARE · Wheatarea) (5.10)
where Wheatarea is the annual wheat sown area (ha). The relation between

ROIt andWheatarea was obtained through regression analysis, considering theprice/payment scenarios (Table 5.2).
The ten different scenarios analysed the impact of price support policies,extra direct payments on crop area and different market prices (Table 5.2).The ratios considered for increased prices scenarios were defined accordingto the observed connectedness between fertilizer and grain market prices. Byaveraging the values reported by Chowdhury et al. (2021) and Khalfaoui etal. (2021), we assumed a ratio among product prices of 0.46, meaning thata 100% increase in fertilizer prices would increase wheat prices by 46%. Thecomparison of capital recovery among different scenarios was made by adopting
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the current situation as the baseline scenario. For each scenario, three differentsub-scenarios were considered by setting the discount rate at 2.5%, 5% and 7.5%(Table 5.2). The following 10 scenarios were considered:1. Baseline scenario (S-1): overall ‘LIF-zones’ share within the croppingsystem equal to 17.4%, according to our farm conditions, current CAP directpayments and product prices.2. Enhanced LIF area share scenario (S-2): overall ‘LIF-zones’ share withinthe cropping system increased by 35% in relation to the baseline scenario,current CAP direct payments and product prices.3. Moderate increased prices scenario (S-3): baseline scenario plus productprices increased by 30% and 66%, respectively for wheat grain and N fertilizerprice.4. Drastically increased prices scenario (S-4): baseline scenario plusproduct prices increased by 100% and 219%, respectively for wheat grain andN fertilizer price.5. Price support scenario (S-5): baseline scenario plus introduction of adirect payment linked to production (LPP) equal to 0.02 =C kg−1.6. Price support plus drastically increased prices scenario (S-6): scenarioLIF0.DPP.P0 plus product prices increased by 100-219% (i.e., wheat grain andN fertilizer price).7. Additional direct payment on cropped area scenario (S-7): baselinescenario plus introduction of an additional payment on cropped area equalto 46 =C ha−1.8. Additional direct payment on crop area plus drastically increased pricesscenario (S-8): baseline scenario plus introduction of an additional paymenton crop area equal to 46 =C ha−1 plus product prices increased by 100-219%(i.e., wheat grain and N fertilizer price).9. Support VAR investment (S-9): baseline scenario plus the introduction ofa support on investment corresponding to 50% of initial investment covered bya subsidy.10. Support VAR investment plus drastically increased prices scenario
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(S-10): baseline scenario plus the introduction of a 50% subsidy of initialinvestment covered by a subsidy, plus product prices increased by 100-219%(wheat grain and N fertilizer prices).
Currently, there is no specific support for cereals in Spain, where the presentstudy was conducted, but we followed the example of what was allocated ascrop-specific aid per ha in the cases of oilseeds and legume-crops during theyear 2020 (FEGA, 2021). According to existing crop-specific aids, a mean aidof 40-55 =C ha−1 was assumed. This interval supposes that for our mean yieldlevels an additional aid of 0.02 =C kg−1 could be applied as LPP, equivalent toa support of 46 =C ha−1 as DPA.
The relation between return time on investment (ROIt , expressed in years)and the annual wheat area (expressed in ha) was modelled. Regressionanalysis was used to estimate model coefficients, several alternative modelswere tested, including linear, quadratic, logarithmic, exponential and powermodels. Least Squares Fitting (LSF) and statistical hypothesis testing wererespectively used to estimate the regression coefficients and their significancelevel (stats package in R; Team, 2000). Root mean square error (RMSE)and R2 were used as statistical indicators of performance for the best-modelselection. For each scenario, the minimum area for adoption, correspondingto the threshold below which the return on investment takes longer than theamortization of VAR equipment, was also estimated. The null hypothesis wastested with the non-parametric Tukey’s range test (HSD-test).

5.3 Results

5.3.1 YG analysis

Figure 5.2 shows seasonal water supply over the six seasons considered.Seasonal precipitation (P) from sowing to harvest varied from 228 to 535 mmand seasonal LIF (only considered in ‘LIF zones’) ranged from 30 to 112 mm.
Figure 5.3 shows simulated Yw values (2016-2021), also reported in Table 5.1,which were obtained from Tenreiro et al. (2022). Measured Ya values ranged
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from 0.3 to 6.4 Mg DM ha−1 over space and time. The intervals of intra-plotvariation for each season are shown in Figure 5.3. Ya showed a mean coefficientof variation of 14.7% (±3.1%) among the six seasons considered. The probabilitydistribution curves of YG among zones and within each season are also shownin Figure 5.3. Median YG was 1.7 Mg DM ha−1 with a standard deviation of0.135 Mg DM ha−1. YG values ranged from 0 to 4.8 Mg DM ha−1 in differentparts of the 92 ha field. In relative terms, the average YG was 30.5% of Yw. TheYG’s were larger in LIF zones in four out of six seasons (Figure 5.3). The yieldmaps are shown in Appendix (Figure A2). The YG results are synthesized inTable 5.3.
5.3.2 The economics of VAR adoption

The capital recovery of VAR adoption was expressed as a function of boththe scale of adoption (i.e., annual wheat sown area) and the financial discountrate. This relation was directly affected by the differential gross margin (DGM),which was computed as the average of Table 5.4 values.
On average, DGM ranged from 12.1 to 147.5 =C ha−1, depending on thescenario considered. Under current conditions (see S-1 and S-2 in Table 5.4),three out of six seasons (i.e., 2017/18, 2018/19, 2019/20) presented a negative

ADGMt , indicating risk of economic inefficiencies associated with VAR adoptionfor 50% of the years investigated. DGM was negative when ADRt was lowerthan ADCt . For each year specific conditions, there was a great variation of
ADGMt , which ranged from -42.3 (baseline scenario) to 405.2 =C ha−1 (scenarioS-8, i.e., a policy support through an additional direct payment of +46=C ha−1on crop area plus high wheat grain and N fertilizer prices; Table 5.2).

The economics of VAR adoption varied considerably, not only among differentyears but also for the different scenarios (Table 5.4). The ADGMt and ADRtshowed stronger sensitiveness to the differences among years and economicscenarios than ADCt , which presented a lower range of variation (Table 5.4).LIF coefficients (i.e., season LIF divided by season precipitation) varied from 11to 27% according to Figure 5.2 values. Those years with higher LIF coefficients
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(e.g., 2016/17 and 2020/21) showed higher ADRt and ADGMt . The opportunitycost showed a trend to decrease with the increase of LIF coefficient butregressions were not capable to explain more than 30% of overall variation(results not shown).
5.3.3 Economic trade-offs for viability of VAR

Model coefficients were obtained through regression analysis (Table 5.5). Fromthe set of models tested, power models were selected as the best fittedones. Power models maximized R2 values and minimized the RMSE. Whilethe R2 values of linear, quadratic, logarithmic and exponential models wererespectively <0.1, 0.1-0.2, 0.2-0.4 and 0.7-0.8, the RMSE (expressed in years)were larger than 10 for the first three model types and approximated 0.5 forthe exponential models. Power models (a · x−1) were the best fitted modelswith R2 above 0.98 and RMSE lower than 0.1. Model coefficients varied fromscenario to scenario but the statistics of model performance did not changeamong scenarios. Model coefficient a and the minimum area for adoption ofVAR are shown in Table 5.5 for each of the 10 scenarios. The minimum areafor adoption corresponds to the cutting threshold value below which the returnon investment takes longer than the amortization of VAR equipment.
There was a negative relation between the return time on investment (ROIt ,expressed in years) and the annual wheat sown area (expressed in ha) whichwas best fitted by a power model. Figure 5.4 shows the power models thatwere fitted for each economic scenario. The 10-year overall total gain (OTG)changed significantly from case to case, and according to the different discountrates (Figure 5.5). The lower the discount rate, the larger the profitability ofVAR investment for addressing the spatial variations of yield gaps due to waterredistribution by lateral inflow. Over a 10-year period and under the baselinescenario, at a discount rate of 2.5%, the OTG is expected to vary from -100.9thousand =C (for a total of 50 ha of wheat sown every year) to 310.3 thousand=C (in the case of 2000 ha of wheat sown annually). Under the most profitablescenario (S-8), for a median farmer with 100 ha wheat sown per year, the10-year OTG is forecasted as 125.3, 134.2 and 144.6 thousand =C respectively
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with a discount rate of 7.5%, 5% and 2.5% (Figure 5.5 and Supplementarymaterial).
In our case (annual sown area equal to 92 ha, with an overall share of ‘LIFzones’ equal to 17.4%), the internal rate of return (IRR) was negative for almostall cases considered (Table 5.5 and Figure 5.5), indicating a lack of relativeadvantage (i.e., additional profitability) for all the scenarios and discount ratesconsidered. Over the ten different scenarios explored, and assuming a mediancase of 92 ha sown, we observed that the capital return could increase up to 5%in the case of scenario S-8 (Table 5.5 and Appendix - Table A2), but this woulddepend on a drastic price increase or on changes in agricultural policies.

5.4 Discussion

5.4.1 Crop yields and yield gaps

Actual wheat yields (Ya) varied within the range of other studies (Padilla et al.,2012; Schils et al., 2018) and exhibited significant differences among zones intwo out of six seasons (Table 5.3). This is associated with yield maps fittinginto variograms with irregular spatial structure as both CV and differencesamong means did not show consistency from year to year. This highlights thattemporal instability is an important issue for site-specific management becausethe agronomic implications of asymmetric spatial variations differ greatly withthe crop×year setting, as also discussed by Tenreiro et al. (2020b).
Coefficients of variation were consistently higher in ‘no-LIF zones’, whichis in line with the results of Tenreiro et al. (2022), who highlighted that thecontribution of LIF to yield spatial variations tends to be stronger in years ofrelatively low water supply. This indicates that the degree of variation tendsto increase with the level of water stress. Observed CVs of Ya were similar tothose reported by others (Batchelor et al., 2002; Florin et al., 2009; Whelan &McBratney, 2000).
YG’s CV were notably larger than Ya’s CV, which is attributed to a largervariation sources affecting the process of YG mapping. According to Table
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5.3, YG’s were statistically (and systematically) different among zones. Thisindicates that the YG appears to be a more precise benchmark (instead ofusing solely Ya or Yw) for precision management decision-making, because itcaptures a higher degree of spatial variation and it delivers the magnitude ofthe expected response under a VAR for each year-specific conditions.
5.4.2 The economics of VAR adoption

The results presented here are conditioned by the specific topographicconditions of the chosen farm. Under different geomorphological conditions (e.g.,increased LIF area share), the returns on investment are expected to change.The larger the relative share of LIF zones within the farming system, the lowerthe minimum area required for VAR adoption (see S-2 in Table 5.5).
Under current conditions (S1), we computed a relative advantage associatedwith VAR adoption but only for an annual wheat sown area larger than 567 hayear−1 (Table 5.5). This is considerably larger than typical European (arable)farm sizes, which range from 4 to 62 ha (Andersen, 2017). For cases with lesssown area, the investment costs could still be recovered but it would not bedue to the relative additional gain. This means that a farm with a lower annualsown area and currently profitable with uniform N applications, could pay forthe VAR investment, but the overall profitability of the farm would decrease ifVAR is adopted.
All the alternative scenarios considered accelerated capital recovery (Table5.4 and Figure 5.4). However, wheat and N prices were the most determinantfactors for VAR viability (Table 5.5 and Figure 5.4). The slope of the 10-yearOTG increased notably with both wheat and N prices increasing (Figure 5.5).However, this is determined by the N-grain prices’ relation adopted. The mostpromising scenario, which showed the largest gain on capital recovery (see S-8in Table 5.4 and Figure 5.5), was the inclusion of an additional direct paymenton crop area (+46 =C ha−1) plus a drastic evolution of both input and outputprices.
An additional direct payment on area could also deliver advantages for
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a wider range of farmers as the minimum annual wheat area for adoptiondecreases more than 75% under scenarios S-7 and S-8 (Table 5.5). For the sameavailable budget considered, the introduction of an additional direct paymenton area would imply a more robust advantage for VAR adoption than paymentslinked to production (Table 5.4 and 5.5). Payments linked to grain yield wouldbe mostly diluted over the Ya level, which relates to the current managementsystem, and not over the differential YG closing effort that is attributed to VARadoption. Since current mean YG’s are approximately 30% of mean Yw’s (Table5.3), the major part of a subsidy support linked to production would not apply tothe differential gross revenue, caused by the technological shift, but rather to theactual yield level that is already achieved under the current management (i.e.,uniform nutrient application). In this sense, a much wider fraction of financialinflow would be directly attributed to the technological shift in the case of anadditional payment on area (Table 5.4). This indicates that the direct paymentof 46 =C ha−1 year−1 scenario could be a better option in terms of policy supporton investment.
We did not investigate the opportunity of lower initial investment costsassociated with lower VAR acquisition costs of equipment, but this was partlyexplored through the scenarios S-9 and S-10. These scenarios explored theimpacts of a policy support on investment through a support-payment equal to50% of the initial acquisition costs (Table 5.2). This strategy impacts the returnon investment by decreasing ROIt (Figure 5.4-E), but achieving significantimpacts on OTG requires further prices’ changes (Figure 5.5-E). In the absenceof further price changes, this option does not guarantee incentives for farmers’adoption and this could be a constraint from a strategic point of view.
Our results showed that the profitability of VAR investment would respondmore to changes in market prices than to policy supports (Table 5.4 and 5.5). Inthe absence of additional policy supports, the minimum area for adoption of VARdecreases substantially under both price evolution scenarios (i.e., respectively69% and 88% according to Table 5.5). The evolution of prices that we assumedis likely to turn VAR into a viable technology for a much wider population offarmers, as the minimum area for adoption, according to the considered range
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of prices’ increase, is expected to decrease from 567 ha to an interval of 67 to177 ha year−1. This clearly indicates that, given current trends on both wheatand N prices observed in early 2022 (Glauber & Laborde, 2022; Vos et al., 2022),more farmers would be inclined to adopt VAR in local rainfed systems.
The mean OTG values shown in Table 5.5 were estimated as the simpleaverage of OTG obtained for the following series of sown areas: 50, 100, 250,500, 1000 and 2000 ha. According to the HSD-test results shown in Table5.5, we observed that scenarios S-1, S-2, S-5 and S-9 did not significantlydiffer from each other, which indicates that different market prices are the mostdeterminant condition to improve VAR economic viability.
The obtained ADGMt fluctuated in a wider range than the values reportedby Robertson et al. (2007, 2012). Our results ranged from -42.3 to 405.2 =Cha−1 year−1 (Table 5.4). Nevertheless, our results are expressed in =C ha−1 ofLIF area. Since our conditions are characterized by a mean LIF area shareof 17.4%, the ADGMt values must be extrapolated to the total crop area for adirect comparison with the results of Robertson et al. (2007, 2009). In terms oftotal crop area, the obtained ADGMt ranged from 7.2 to 70.5 =C ha−1 which ismore in agreement with the literature. The average DGM was equal to 12.2 =Cha−1 year−1 for the baseline-scenario (S-1) and, considering all the scenariosexplored, the average DGM was 61.1 =C ha−1 year−1, which very much in linewith the range of values reported by Robertson et al. (2007, 2009).
Seasons characterized by a negative ADGMt showed lower annual revenuesthan costs. Annual costs are often characterized by larger fixed costs thanvariable costs, because the variable costs are insensitive to farm size andstructure (Pedersen et al., 2021). When the annual revenue did not overcome the90 =C ha−1 year−1 threshold (Appendix – Table A1), the net margin was negative.This was observed in three out of six years, indicating a risk of economic lossescaused by VAR adoption in half of the years investigated. However, since bothYa and YG were significantly different among zones for those same years, thiscould still justify the adoption of VAR from both an agronomic and environmentalperspective (Mulla & Schepers, 1997; Pathak et al., 2019; Plant, 2001).
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We highlight that from a financial point of view, the viability of VAR isstrongly dependent on the annual sown area, which depends on how farmersvalue the return on capital. Under current price conditions (S-1 and S-2), wehighlight that a convincing IRR was only obtained for annual sown areas above500 ha year−1 (Appendix - Table A2). The IRR can be profitable for sown areasbetween 125 and 500 ha year−1, but it would depend on changes over productprices (see S-4, S-7 and S.10 in Appendix - Table A2).
5.4.3 Methodological considerations and practical issues

VAR may increase farmers’ profit by reducing costs or increasing the value ofproduction, because fertilizer rates can be both increased or decreased amongdifferentiated zones. Under rainfed conditions, inter-annual climatic variationleads to considerable asymmetries in crop yield patterns and financial returnson VAR. Some years show advantages on increasing N rates downslope, somebenefit from decreasing applications, and others from applying N uniformly. Weassume that, independently on the year type, our analysis succeeded well inmodelling the expected marginal returns on VAR because the YGzt magnitudewas computed as a module. This is valid for both years of reduced or increasedN rates in LIF zones. In both situations, the differential application rates arecaptured by the present methodology.
Our analysis assumes that N application rates approach the crop net Nrequirements, considering that most N inputs are recovered in the harvestedgrain. Considering that mean Ya range from 3.1 to 4.5 Mg DM ha−1 (Table5.3), crop net N-requirements would be 88-126 kg N ha−1. In our study-caseconditions, we took N use efficiency into consideration as 25-40% more N isapplied on average (Table 5.2). However, we consider that this is in line with the‘characteristic operating space’ for N use efficiency that is found in literatureaddressing European commercial (cereal) farms (Panel, 2015; Quemada et al.,2020; Silva et al., 2021).
This is an ‘ex-post analysis’ which may be a disadvantage for guidingdecisions under new seasons’ conditions (Bullock & Lowenberg-DeBoer., 2007).
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Our study dealt with historical data (i.e., pre-collected information) andobtained from six consecutive seasons which may not be sufficient to capturethe entire variability of rainfed systems. In reality, farmers face much greateruncertainty because decisions need to be taken according to specific yearconditions which are highly variable. In addition, it is difficult to follow ourapproach as ‘on-season’ YG assessment because it requires post-harvest yieldinformation.
Therefore, the following practical question arises: how could farmers manageN applications under VAR, when their decisions must be taken without fullaccess to the same kind of information as here presented?
It has been shown by Tenreiro et al. (2022) that the net yield response to LIFvaries substantially from year to year. This turns decisions on VAR adoptionchallenging because farmers face possible asymmetries in crop responsespatterns to differential N rates. However, some important guidelines canbe proposed from our results. Under our study conditions, the maximumdifferential YG was 0.83 Mg DM ha−1 (Figure 5.3-B), corresponding to amaximum differential N rate of ±23.2 kg N ha−1 (i.e., considering crop Nrequirements equal to grain uptake and assuming a N concentration equalto 2.8% DM−1 grain, Quemada et al., 2016). This represents a variation ofapproximately ±16% N ha−1 among zones. In addition, we suggested that thecost of opportunity for VAR adoption tends to decrease with the LIF coefficient(i.e., LIF divided by season precipitation). The larger is the fraction of LIFcontribution to total season water supply, the greater could be the economicadvantages of VAR adoption. Our results have practical implications for nutrientmanagement in areas of undulating topography. In this sense, the followingrecommendations are offered:
1. Use VAR for basal fertilization, applying up to +8% more N in ‘LIF zones’in comparison to ‘No-LIF zones’.
2. Adjust that pattern on top-dressing applications, conducted at dates priorto flowering and according to the following criteria:
1. If the LIF coefficient falls within the top 25% percentile near flowering (i.e.,
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if LIF coefficient is larger than 25%, according to Tenreiro et al. (2022)findings), up to +8% more N could be applied in ‘LIF zones’ in comparisonto ‘No-LIF zones’.
2. If the LIF coefficient falls within the bottom 25% percentile at floweringdate (i.e., if LIF coefficient is smaller than 15%, according to Tenreiro et al.(2022) findings), the application pattern could be inversed by lowering Nrates to a minimum of -8% less N in ‘LIF zones’, in comparison to ‘No-LIFzones’.
3. For seasons with a LIF coefficient ranging from 15% to 25% at flowering, aplausible recommendation would be to not vary the N rate for top-dressingapplications.
Our results are largely conditioned by the yield simulations of Tenreiro etal. (2022) and must not be directly extrapolated to other cases without furthercautious considerations. For many farms, either small sized or presenting lowyield variations among zones, none to minor economic advantages associatedwith VAR are expected for N management. It is therefore essential to farmersand advisers to take into consideration the scale effects here addressed beforepromoting a technological shift of this kind.

5.5 Conclusion

This study demonstrated how the relative (economic) advantages of VARadoption in rainfed wheat systems of undulating topography would changegreatly from year to year and from farm to farm. Both farm size (i.e., annualsown area) and topographic structure (influencing the redistribution of waterfrom high to low parts of the fields) impacted the dynamics of investmentreturns. Considerable effects of scale were observed and the minimum areafor adoption varied widely among different economic scenarios. Our studysuggests that there are economic opportunities for N management throughVAR as a strategy for bridging yield gaps at intra-plot level, which are caused
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by lateral inflows from high to low parts of a field. In the case considered here,VAR adoption shows, for the current policy-prices scenario, that VAR adoptionwould have an economic advantage in farms with an annual sown area greaterthan 567 ha year−1, which is considerably larger than typical European cerealfarm sizes. The profitability of adopting VAR is expected to respond largelyto future market prices, and, in the absence of additional policy supports, theminimum area for adoption of VAR could decrease to a range of 68-177 hayear−1, depending on the price increases scenario. The effects of policy supporton VAR adoption were also investigated with additional payments on crop areabeing the most promising from both public and private interest perspectives.The combination of further price increases and an additional payment on croparea could lower the adoption threshold down to 46 ha year−1, turning VARtechnology economically viable for a much wider population of farmers. Overthe total amortization period, the (mean) differential gross margin of this casestudy that is attributed to VAR adoption was 12.2 =C ha−1 year−1. Nevertheless,considerable inter-annual variation is expected and farmers might experiencenet financial losses in some specific years.
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FIGURES - Chapter 5

Figure 5.1: Experimental fields. A) Total farm area (320 ha); B) Digital Elevation Model (DEM), values expressed in m amsl.; C) Soil types according toUSDA classification system; D) TOPMODEL Topographic Index (TMTI) as described in detail by Beven et al. (2021), values are unitless; E) Yw zones map(i.e., ‘LIF’ and ‘no-LIF’ zones). According to Tenreiro et al. (2022), ‘LIF zones’ are characterized by significant water supplied through lateral inflow, while‘no-LIF zones’ are characterized by null or insignificant lateral inflow.

154



Figure 5.2: Water supply: seasonal precipitation (P) and lateral inflow (LIF) for the experimental dataset. Values are expressed in mm. More informationis provided in Tenreiro et al. (2022).
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Figure 5.3: Yield variations (values expressed in Mg DM ha−1): A) Cumulative probability distributionof actual yields (Ya) for each season (2015/16 to 2020/21) and within each zone (i.e., solid linescorrespond to ‘no-LIF zones’ while dashed lines relate to ‘LIF-zones’); B) Cumulative probabilitydistribution of yield gaps (YG) for each season and within each zone. Vertical lines indicate Yw levelsobtained from Tenreiro et al. (2022) simulations.
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Figure 5.4: The negative relation between return time on investment (ROIt, expressed in years) and the annual wheat area (expressed in ha). The annualwheat area is subjected to the farm conditions supporting our analysis (i.e., an average LIF area share of 17.4%). Scenario S-2 represents the effect of a35% increase in LIF area share within the cropping system. More information regarding the remaining scenarios considered is provided in Table 5.2.
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Figure 5.5: The 10-year overall total gain (OTG) under multiple scenarios (units expressed in thousand =C). The OTG was estimated by solving the NPVseries over a period of 10 years, which was a function of both the discount rate used and the price/payment scenarios adopted (Table 5.2).
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TABLES - Chapter 5

Table 5.1: Crop management information: Fertilizers DAP and CAN correspond to diammonium phosphate (18-46-0) and calcium ammonium nitrate(24-0-0 + 8% Ca), respectively. Urea (46% N) was top-dressing applied. Yw values were obtained from Tenreiro et al. (2022). Sowing and harvest datesindicate day plus month and mean N applied is expressed in kg N ha−1. Water-limited yield (Yw) values are expressed in Mg DM (grain) ha−1. Meanplant density was 230 plants ha−1. ‘LIF’: downslope zones with significant amount of water supplied through lateral flow coming from upslope areas of thesame field; ‘No-LIF’: upslope zones where no significant amount of water is supplied through lateral flow. More information on LIF and No-LIF zones isprovided in Tenreiro et al. (2022), see also section 5.2.2.
Season Cultivar Area Sowing date Harvest date Previous crop Fertilization Mean N applied YwLIF YwNo−LIF[ha] [kg N ha−1] [Mg DM ha−1] [Mg DM ha−1]
2015/16 Amilcar 39.5 10.11 23.06 Chickpea DAP + Urea 172 4.5 4.12015/16 Don Ricardo 43.0 9.11 20.06 Sunflower DAP + Urea 188 4.5 4.12016/17 Athoris 20.0 16.11 21.06 Onions DAP + Urea 170 4.6 4.32017/18 Kiko-Nick 50.3 24.11 21.06 Sunflower DAP + Urea 182 5.1 4.92018/19 Antalis 39.9 17.11 16.06 Sunflower DAP + Urea 152 5.3 5.12019/20 Kiko-Nick 50.2 13.12 10.06 Rapeseed CAN + DAP 110 5.2 5.32020/21 Avispa-R1 40.3 18.11 8.06 Rapeseed DAP + Urea 160 5.8 5.1
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Table 5.2: The ten different scenarios considered to analyse the impact of price support policies, extra direct payments, and different market prices onVAR economic relevance. For each scenario, three different sub-scenarios were considered by setting the discount rate (γ) at 2.5%, 5% and 7.5%. LPP andDPA mean linked to production payment and direct payment on crop area, respectively. ACVAR means annual cost of VAR use and IIVAR is the initialacquisition cost of VAR technology (Appendix – Table A1). LPP was based on a total available budget equal to 46=C ha−1 (as considered in S-7 and S-8scenarios) divided by the average yield.
Scenario [S-1] [S-2] [S-3] [S-4] [S-5] [S-6] [S-7] [S-8] [S-9] [S-10]
LIFAreaSHARE (%) 17.4 17.4 (+35%) 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4
PriceWHEAT (=C kg−1 DM grain) 0.322 0.322 0.416 0.640 0.322 0.640 0.322 0.640 0.322 0.640LPP (=C kg−1) 0 0 0 0 +0.02 +0.02 0 0 0 0DPA (=C ha−1) 0 0 0 0 0 0 46 46 0 0PriceN (=C kg−1 N) 1.093 1.093 1.812 3.490 1.093 3.490 1.093 3.490 1.093 3.490
ACVAR (=C/ha) 90 90 90 90 90 90 90 90 90 90
IIVAR (=C) 11,900 11,900 11,900 11,900 11,900 11,900 11,900 11,900 5,950 5,950
γ (%) [2.5 - 7] [2.5 - 7] [2.5 - 7] [2.5 - 7] [2.5 - 7] [2.5 - 7] [2.5 - 7] [2.5 - 7] [2.5 - 7] [2.5 - 7]160



Table 5.3: Mean yield values, yield gaps, and coefficients of variation. The standard deviations are presented in parentheses. Means followed by acommon letter are not significantly different, according to the HSD-test conducted at the 5% level of significance (p-value < 0.05).
Season Ya (Mg DM ha−1) CV% (Ya) YG (Mg DM ha−1) CV% (YG)- LIF No-LIF LIF No-LIF LIF No-LIF LIF No-LIF
2015/16 3.72 (0.4) a 3.66 (0.6) a 12.4 15.8 0.79 (0.4) a 0.49 (0.5) b 57.3 102.92016/17 3.13 (0.5) a 3.23 (0.5) a 15.0 15.5 1.48 (0.4) a 1.04 (0.5) b 31.7 47.62017/18 3.45 (0.5) a 3.51 (0.4) a 14.3 12.5 1.65 (0.5) a 1.45 (0.4) b 29.9 30.22018/19 4.52 (0.4) a 4.14 (0.6) b 8.3 17.1 0.78 (0.3) b 0.95 (0.7) a 47.6 75.62019/20 3.34 (0.3) a 3.29 (0.3) b 10.8 11.1 1.87 (0.3) b 2.05 (0.3) a 19.3 17.82020/21 3.52 (0.5) a 3.60 (0.6) a 14.6 16.9 2.27 (0.5) a 1.44 (0.6) b 22.7 41.8

161



Table 5.4: The economics of VAR adoption, under spatial water variations in rainfed wheat systemsaccording to our experimental conditions. ADGMt is the annual differential gross margin in year t ,
ADRt is the annual differential revenue in year t , and ADCt is the annual differential cost in year
t . DGM , ADR , ADC are, respectively, the average differential gross margin, the average differentialrevenue and the average differential costs. Economic scenarios are described in Table 5.2. Values areexpressed in =C ha−1 of LIF area.

Economic scenarioTerm Season S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10
ADGMt 2015/16 -0.4 -0.4 23.1 77.9 5.8 84.2 45.6 123.9 -0.4 77.92016/17 38.7 38.7 72.4 151.2 47.6 160.1 84.7 197.2 38.7 151.12017/18 -33.8 -33.8 -19.1 15.3 -29.9 19.2 12.2 61.3 -33.8 15.22018/19 -42.3 -42.3 -29.8 -0.6 -38.9 2.8 3.7 45.5 -42.3 -0.62019/20 -39.1 -39.1 -25.7 5.6 -35.5 9.1 6.9 51.6 -39.0 5.52020/21 149.7 149.7 212.4 359.2 166.2 375.7 195.7 405.2 149.7 358.9
ADRt 2015/16 99.1 99.1 128.8 198.2 105.3 204.4 145.1 244.2 99.1 198.22016/17 142.3 142.3 185.0 284.6 151.2 293.5 188.3 330.6 142.3 284.62017/18 62.1 62.1 80.8 124.2 66.0 128.1 108.1 170.2 62.1 124.22018/19 52.8 52.8 68.6 105.5 56.1 108.8 98.8 151.5 52.8 105.52019/20 56.4 56.4 73.3 112.8 59.9 116.3 102.4 158.8 56.4 112.82020/21 265.0 265.0 344.5 530.0 281.6 546.6 311.0 576.0 265.0 530.0
ADCt 2015/16 99.5 99.5 105.7 120.2 99.5 120.2 99.5 120.2 99.5 120.32016/17 103.6 103.6 112.6 133.4 103.6 133.4 103.6 133.4 103.6 133.62017/18 95.9 95.9 99.9 109.0 95.9 109.0 95.9 109.0 95.9 109.02018/19 95.0 95.0 98.4 106.1 95.0 106.1 95.0 106.1 95.0 106.22019/20 95.4 95.4 99.0 107.2 95.4 107.2 95.4 107.2 95.4 107.32020/21 115.3 115.3 132.1 170.8 115.3 170.8 115.3 170.8 115.3 171.1
DGM [average] 12.1 12.1 38.9 101.4 19.2 108.5 58.1 147.4 12.1 101.3
ADR [average] 113.0 113.0 146.8 225.9 120.0 233.0 159.0 271.9 113.0 225.9
ADC [average] 100.8 100.8 108.0 124.5 100.8 124.5 100.8 124.5 100.8 124.6
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Table 5.5: This table shows the best fitted models’ coefficient-a values (i.e., a power model adjustedto the data), the minimum area for adoption of VAR (expressed in ha per year), the mean returnon investment time (ROIt , expressed in years) and the mean overall total gain (OTG , expressed inthousand =C per 10-year period). The minimum area for adoption corresponds to the value belowwhich the return on investment takes longer than the amortization of equipment (i.e., 10 years).
OTG means followed by a common letter are not significantly different, according to the HSD-testconducted at the 5% level of significance. The internal rate of return (IRR ) values assume an averageannual sown area equal to 92 ha.
Scenario Best fitted model (a/x) Minimum area for adoption Mean ROIt Mean OTG IRR- (coefficient a) [ha] [years] [thousand =C/10-years] [%]

[S-1] 5677.4 567.74 35.484 25.592 e -14%[S-2] 4205.5 420.55 26.284 69.579 e -11%[S-3] 1772.8 177.28 11.079 302.406 d -2%[S-4] 679.87 67.987 4.249 949.423 b -13%[S-5] 3590.7 359.07 22.441 98.629 e -1%[S-6] 635.63 63.563 3.972 1022.459 b 0%[S-7] 1186 118.6 7.412 501.513 c -9%[S-8] 467.75 46.775 2.923 1425.343 a 5%[S-9] 2838.7 283.87 17.742 75.634 e -14%[S-10] 340.3 34.03 2.126 998.347 b -2%
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APPENDIX - Chapter 5

Figure A1. Left-plot: probability distribution curves of TOPMODEL topographic index values(Beven et al., 2021) for each sampling zone. Centre-plot: boxplots of mean TOPMODELtopographic index for each sampling zone. Right-plot: boxplots of mean lateral inflow (LIF)within each sampling zone. Values correspond to the experimental measurements taken byTenreiro et al. (2022). Boxes indicate the lower and upper quartiles. The solid line within thebox is the median. Whiskers indicate the most extreme data point which is no more than 1.5times the interquartile range from the box, and the outlier dots are those observations that arebeyond that range.
Table A1. Acquisition costs: information compiled from different sources (AAEA, 2000; Batte& Ehsani, 2006; Finco et al., 2021; Griffin, 2006; Tozer, 2009). (*)VAR annual costs wereestimated by considering the (fixed + variable) costs of a tractor (with an amortizationthrough 18 years) plus the combine harvesting and yield monitoring renting cost, expressedin =C ha−1. VAR technology includes a precision application system RTK, GPS receiver, basestation, replicators and application controller.Equipment/operation Mode Cost Lifetime Period Units
Tractor 270HP Acquisition 170,000 16,000 h > 10 years =CGPS guiding system Acquisition 4,000 2,000 h > 10 years =CCombine harvester + yield monitor Renting 60 2,000 h Season =C ha−1VAR technology Acquisition 5,200 1,500 h ≈ 10 years =CN application controller (18 m bar) Acquisition 2,700 1,500 h ≈ 10 years =CVAR annual costs - 90(*) - - =C year−1Fixed initial investment cost - 11,900 - - =C/10 years
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Table A2. The internal rate of return (IRR) for different annual sown areas (ha). Values expressed in %.Area (ha) 50 100 250 500 1000 2000
S-1 -19% -14% -6% 1% 9% 18%S-2 -19% -14% -6% 1% 9% 18%S-3 -17% -10% 2% 15% 36% 78%S-4 -11% -1% 23% 57% 122% 249%S-5 -18% -13% -4% 4% 14% 30%S-6 -11% 1% 26% 62% 132% 268%S-7 -15% -8% 8% 29% 67% 143%S-8 -7% 7% 41% 91% 189% 377%S-9 -19% -14% -6% 1% 9% 18%S-10 -11% -1% 23% 57% 122% 249%165



Figure A2. Yield maps: A-F) Water-limited yield potential (Yw). Maps are ordered from season 2015/16 to 2020/21, respectively. Values areexpressed in Mg DM ha−1. Counter lines are represented by solid black lines, indication regions of equal yield level. Colours and scales areplot specific.
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Figure A2. Yield maps: G-L) Actual yield (Ya). Maps are ordered from season 2015/16 to 2020/21, respectively. Values are expressed in MgDM ha−1. Counter lines are represented by solid black lines, indication regions of equal yield level. Colours and scales are plot specific.
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Figure A2. Yield maps: M-R) Yield gaps (YG). Maps are ordered from season 2015/16 to 2020/21, respectively. Values are expressed in MgDM ha−1. Counter lines are represented by solid black lines, indication regions of equal yield level. Colours and scales are plot specific.
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Chapter 6

Conclusions

The main conclusions from the research carried out in this PhD thesis aresummarized below. For clarity, they appear according to each of the specificand general objectives raised in the introduction.
First objective

The review of modelling approaches to simulate lateral water flows and theirimpact on yield (covered in Chapter two) revealed two major opportunities tosimulate spatial water variations at crop field level:
1) The addition of spatial and continuous mechanisms to crop models.
2) The integration of lateral flows in current ‘tipping-bucket’ discreteapproaches.
This thesis focused on the incorporation of both surface and subsurfacelateral flows when simulating crop performance with a ‘tipping-bucket’ discreteapproach (the AquaCrop model). In order to incorporate lateral inflows withinAquaCrop simulations, an innovative approach was developed by distributingspatially the modelling scheme through a spatial segmentation that was definedby both crop (i.e., the incorporation of remote sensing estimations of canopycover, as conducted in Chapter three) and topographic variables (i.e., the zonalsegmentation as done in Chapters four and five).
Second objective

Data assimilation methods were explored to document spatial variationswithin a field in Chapter three. Several practical advantages of using remote
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sensing indicators (i.e., NDVI) for the assessment of canopy cover were identifiedand evaluated. It was shown that despite the overall uncertainty, they can beadopted with fair confidence in modelling applications, mostly in cases wherethe relative variations of predictions are prioritized over the absolute accuracylevel. This represents substantial advantages for the use of crop simulationmodels within the context of precision agriculture.
The empirical models developed in Chapter three assist in the use of NDVI fordetermining canopy cover which improved crop growth estimates in subsequentexperimental and modelling steps of this thesis. However, this must be seen asa complementary step to the impact of spatial variations of the water balance.Furthermore, the integration of lateral water movement, and the simulation ofthe ‘cause-effect’ relations between neighbouring cells/zones, is necessary tocapture spatial compensations of yield determining factors, such as variationsof harvest index or of root growth caused by differences in water availability.
Third objective

This thesis carried out one of the first modelling studies conducted atcommercial fields’ scale, supported by experimental data and delivering waterlateral inflow patterns and their simulated impact on wheat yields over 30years, leading to the following conclusions from Chapter 4:
3.1) Progress was made in the modelling process because lateral flowswere experimentally measured in real field conditions, their magnitude andtheir temporal frequency were assessed, and these flows were integrated inthe computation scheme of the water balance within the AquaCrop model.
3.2) The water accumulation process, represented in our analysis by the flowaccumulation index, requires large scales to have implications in the waterbalance computation and in the yield simulation. According to our artificialneural network model (Chapter 4), the magnitude of lateral flows is determinedby the rainfall amount, the runoff generated upstream (as well as at the samepoint), and the overall accumulation of flow generated upstream, which isdetermined by the catchment size. The accumulation of lateral flow governsits relevance in the modelling process. The LIF was segmented according to
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different magnitude classes, by distinguishing between the zones where theseflows are insignificant (high elevation zones) or important for the performancesimulation (low elevation zones). For intermediate sites of the field (i.e., thoselocated in medium elevation zones), no significant advances were achieved inthe modelling process. For these cases, the effects of lateral flow over simulatedyields remains unknown. The modelling process developed within this thesisallowed to capture the spatial variation between the upper and lower zonesof a field but it did not achieve a complete and continuous distribution of thewater balance throughout the field.
3.3) It was concluded that LIF contributed to yield variations in rainfedwheat production systems such as the one studied here. Simulated wheatyields varied (within field) an average of 16% due to LIF occurrence, and thenet yield response to LIF in downslope areas averaged 383 kg grain yield (GY)ha−1 over 30 years. LIF impact on yield was mostly dependent on the yearprecipitation conditions.
Fourth objective

This thesis demonstrated that there is a relative (economic) advantageof VAR in rainfed wheat systems of undulating topography. The analysiscontained in Chapter five suggested that there are economic opportunities fornitrogen management through VAR as a strategy for bridging yield gaps atintra-plot level, which are caused by lateral inflows from high to low partsof a field. However, this advantage would change greatly from year to yearand from farm to farm. Both farm size and topographic structure (influencingthe redistribution of water from high to low parts of the fields) impacted thedynamics of investment returns and considerable effects of scale were observed.
The economic viability of such a management system is profoundly affectedby effects of scale, both in terms of the relationships between supplying(upstream) and the receiving (downstream) areas, and with respect to therelationships between costs and benefits associated with VAR adoption.
From the results of this thesis, the VAR system must be seen as an unfeasiblestrategy for typical local wheat fields and arable farms. In mean terms, the
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areas of local rainfed wheat based systems are considerably lower than theminimum area required for a complete amortization of VAR technology. Undercurrent price and policy conditions, the VAR system can represent a competitiveadvantage but only for considerably large farms which do not tend to be foundin Europe.
VAR adoption would have an economic advantage in farms with an annualsown area greater than 567 ha year−1 but this is considerably larger thantypical European cereal farm sizes. However, it was observed that theprofitability of adopting VAR is likely to respond largely to future marketprices as the combination of further price increases and an additional paymenton crop area could turn VAR technology economically viable for a muchwider population of farmers. Under the most promising scenario, the adoptionthreshold could lower down to 46 ha year−1.
There is an opportunity associated with the evolution of the price levelsfor both grain and nitrogen, however, it is still necessary that the currentprice relationships are maintained to promote a relative advantage for farmers.Considerable inter-annual variation is expected and farmers might experiencenet financial losses in some specific years. It is considered that the economicresults here presented are novel because this study focused on the additionaladvantage generated by VAR and not simply on the overall returns that couldbe unrelated to the technological transition itself.
Main objective

This thesis demonstrated that spatial crop-water variation in rainfed wheatsystems in Mediterranean conditions is a relevant process in determiningspatial differences in yield, and it can be simulated by combining hydrologicand crop simulation models. Progress in the simulation of crop response tospatial variations delivers new opportunities for better crop production throughsite-specific management.
According to the simulations conducted, lateral inflow plays a considerablenet contribution to yield variation over space, which reveals an agronomic andenvironmental opportunity to apply nitrogen with a variable application rate
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(VAR). The agronomic implications and opportunities for VAR adoption dependon the proportional relations between water supplying and receiving zonesand these must be assessed at both field and farm level. Although being ofdifficult amortization within the context of European arable farming, and undercurrent conditions, there is a growing opportunity associated with the evolutionof prices that will increase the relative advantage of implementing VAR as anagronomic strategy to deal with crop-water spatial variations.
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Summary

In sloping fields, rainfed crops experience different degreesof water stress caused by spatial variations in water and,consequently, yields also vary spatially within a field. Thisoffers opportunities for precision agriculture through site-specificmanagement. However, while significant advances have beenaccomplished in the engineering aspects of precision agriculture,such as increasing spatial resolution of data systems andautomation, much less effort has been dedicated to the simulationof within field crop responses to spatial variations. Most studies onrainfed yield gaps ignore intra-plot variability, but if crop modelsare to be used in assisting site-specific management, they maygreatly benefit from spatial water modelling approaches capableof accurately representing and simulating within-field variation ofwater-related processes.
This doctoral thesis represents a novel contribution to theagronomy of rainfed agricultural systems, evaluating the roleplayed by water flows in areas of undulating topography indetermining the spatial variations of wheat yield. The thesis hasbeen carried out in chapters that are associated by following anintegrative approach.
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The thesis first reviewed some of the most widely adoptedcrop and hydrologic models and explored new opportunities forsimulating spatial water variations at crop field level through theincorporation of lateral inflow at lower elevation zones of thefield. From this standpoint, the spatial variations of yield gapsin rainfed wheat, caused by lateral flows from high to low areas,were assessed in Córdoba, Spain.
From an agronomic perspective, water lateral inflows (LIF) dueto surface and subsurface runoff contribute to yield variationsin rainfed wheat production systems such as the one studiedhere. The net contribution of these flows to spatial variations ofrainfed potential yields showed to be relevant but highly irregularamong years. Despite the inter-annual variability, typical ofMediterranean conditions, the occurrence of LIF caused simulatedwheat yields to vary +16% from up to downslope areas of the field.Average crop yield ranged from 1.3 to 5.4 Mg grain yield (GY)ha−1. The net yield responses to LIF, in downslope areas were onaverage 383 kg grain yield (GY) ha−1, and the LIF marginal waterproductivity reached 24.6 (±13.2) kg GY ha−1 mm−1 in years ofmaximum responsiveness. Such years of maximum responsivenesswere associated with low rainfall during the vegetative stagesof the crop in combination with LIF occurring at post-floweringstages. However, under field conditions, these differences wereonly visible in one of the two experimental years.
The economic implications associated with multiple scenarios ofvariable application rate of nitrogen were explored through a case



study and several recommendations were proposed. Both farmsize (i.e., annual sown area) and topographic structure impactedthe dynamics of investment returns. Under current policy-pricesconditions, the adoption of variable application rate would have aneconomic advantage in farms similar to that of the case study withan annual sown area greater than 567 ha year−1. Nevertheless,current trends on energy prices, transportation costs and impactson both cereal prices and fertilizers costs enhance the viabilityof variable application rate adoption for a wider population offarm types. The profitability of adopting VAR improves under suchscenarios and, in the absence of additional policy support, theminimum area for adoption of variable application rate decreasesto a farm size range of 68-177 ha year−1. The combination of priceincreases with the introduction of an additional subsidy on croparea could substantially lower the adoption threshold down to 46ha year−1, turning this technology economically viable for a muchwider population of farmers.



Resumen

En campos en pendiente, los cultivos de secano experimentan diferentesgrados de estrés hídrico causados por variaciones espaciales de la humedaden el suelo, y los rendimientos varían espacialmente dentro del mismo campo.Esta variabilidad supone una oportunidad para la agricultura de precisión através del manejo espacialmente variable. Sin embargo, si bien se han logradoavances significativos en los aspectos de la ingeniería de la variación espacial,como el aumento de la resolución espacial de los sistemas de datos y laautomatización, se ha avanzado mucho menos en relación a la simulación delas respuestas de los cultivos a las variaciones espaciales de la humedad y losflujos hídricos. La mayoría de los estudios sobre las brechas de rendimientode secano ignoran la variabilidad dentro de la parcela. Sin embargo, el usode modelos de simulación de cultivos como medida de apoyo a los sistemasde gestión espacialmente variable, requiere que los enfoques de modelaciónespacial del agua sean capaces de representar y simular con precisión lavariación dentro del campo de los factores relacionados con el agua disponibley la respuesta de los cultivos.
Esta tesis doctoral representa una nueva contribución a la agronomía de lossistemas agrícolas de secano, con énfasis en el papel que juegan los flujos deagua en zonas de topografía ondulada en la determinación de las variacionesespaciales del rendimiento del trigo. La tesis se ha desarrollado en capítulosque se complementan siguiendo un enfoque integrador.
La presente tesis doctoral revisó algunos de los modelos hidrológicosy de cultivo más ampliamente adoptados y exploró nuevas oportunidadespara simular variaciones espaciales del agua a nivel de campo mediante laincorporación del flujo lateral de escorrentía superficial y sub-superficial en laszonas de menor elevación del campo. Desde este punto de vista, se evaluaronlas variaciones espaciales de las brechas de rendimiento en trigo de secano,en Córdoba, España, que son causadas por flujos laterales de los puntos altosa los bajos.
Desde una perspectiva agronómica, las entradas laterales del agua



contribuyen a las variaciones de rendimiento en los sistemas de producciónde trigo de secano como el que se ha estudiado en el ámbito de estatesis. La contribución neta de estos flujos a las variaciones espaciales delos rendimientos potenciales de secano se mostró relevante pero altamenteirregular entre diferentes años. A pesar de la variabilidad interanual, típicade las condiciones mediterráneas, la existencia de dichos flujos hizo quelos rendimientos de trigo simulados variaran un +16% desde las áreas máselevadas de un campo hacia abajo. El rendimiento medio observado osciló entre1.3 y 5.4 Mg de rendimiento de grano (GY) ha−1. Las respuestas de rendimientoneto al flujo lateral, cuenca abajo, fueron en promedio 383 kg de rendimientode grano (GY) ha−1, y la productividad marginal de agua de LIF alcanzó 24.6(±13.2) kg GY ha−1 mm−1 en años de máxima capacidad de respuesta. Dichosaños de máxima capacidad de respuesta se asociaron con bajas precipitacionesdurante las etapas vegetativas del cultivo en combinación con flujos laterales enlas etapas posteriores a la floración. En condiciones de campo, estas diferenciassolo fueron visibles en uno de los dos años experimentales.
Las implicaciones económicas asociadas con múltiples escenarios de tasa deaplicación variable de nitrógeno se exploraron a través de un caso de estudioy se propusieron varias recomendaciones. Tanto el tamaño de la finca (elárea sembrada anual) como la estructura topográfica afectaron la dinámicade los rendimientos de la inversión. Bajo las condiciones actuales de políticaagrícola, y de precios, la adopción de la tasa de aplicación variable tendríauna ventaja económica en fincas similares a la del caso de estudio con unárea sembrada anual superior a 567 ha año−1. Sin embargo, las tendenciasactuales en los precios de la energía, los costes de transporte y los impactostanto en los precios de los cereales como en los costes de los fertilizantesmejoran la viabilidad de la adopción de esta tecnología para una poblaciónmás amplia de tipos de fincas. La rentabilidad de la adopción de aplicaciónvariable de nitrógeno mejora bajo dichos escenarios y, en ausencia de apoyosadicionales, el área mínima para la adopción de aplicación variable disminuyehasta un rango de 68-177 ha año−1 de área de siembra. La combinación deaumentos de precios con la introducción de un subsidio adicional asociado al



área de cultivo podría reducir sustancialmente el umbral de adopción hasta 46ha año−1, lo que hace que la tecnología sea económicamente viable para unapoblación mucho más amplia de agricultores.
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