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e ADGM: annual differential gross margin (€ ha=' year™);

e ADR: annual differential revenue (€ ha=' year™);

o ANN: artificital neural network;

e (C(C: canopy cover, expressed in %;

e (P: capacitance probe;

o CUM.ETy: season cumulative evapotranspiration of reference (E Tg), expressed in mm;
o CUM.LIF: season cumulative lateral inflow (LIF), expressed in mm;
e CUM.P: season cumulative precipitation, expressed in mm;

e DEM: digital elevation model (raster);

e DGM: differential gross margin (€ ha™' year™);

o FAl: flow accumulation index (the absolute number of upslope cells flowing to each assigned cell
of the DEM raster);

e GY: grain yield, expressed in Mg (dry mass) ha™'

e [/F: lateral inflow, expressed in mm;

o LIF.MWP = LIF marginal water productivity (expressed in kg GY ha=" mm~");
e Ksar: saturated hydraulic conductivity, expressed in mm day™';
e NDV/I: normalized difference vegetation index;

o NFAI: normalized flow accumulation index;

e NP: neutron probe;

o NYRyr: net yield response to LIF, expressed in Mg GY ha™');
e P: daily precipitation, expressed in mm day™';

o PAWp: plant available water at sowing date, expressed in mm;

e PF.LIF: post-flowering LIF (the fraction of CUM.LIF taking place at post-flowering stages),
expressed in %;

e Relative.T: mean relative crop transpiration (estimated as the season average of daily crop
actual transpiration divided by potential transpiration), expressed in %;

o SWC: soil water content, expressed in mm;

o VAR: variable application rate;

e Ya: actual yield (Mg ha™);

e YG: yield gap (Mg ha™'), ie, the difference between the water-limited yield and the actual yield;

o Yw: water-limited yield (Mg ha™");



Chapter 1

Introcduction

1.1 The spatial dilemma within rainfed crop systems modelling

Rainfed agriculture plays a decisive role in world food production, accounting
for more than 75% of global cropped area, and being responsible for more
than 60% of total cereals’ production (Cassman et al,, 2003; Connor & Minguez,
2012). Sustaining food production by rainfed crops in the years ahead will
require productivity gains in resource use (Fischer & Connor, 2018). Specific
challenges consist of estimating the magnitude and thus the value of yield
gaps, identifying limiting factors, and implementing profitable and sustainable

strategies (Fischer, 2015; Rattalino-Edreira et al,, 2018; Silva, 2017).

Recently, yield gaps in rainfed farming have been assessed with the use
of crop simulation models considering the most representative biophysical
conditions and, to a lesser extent, crop management practices observed in
farmers’ fields (Spiertz, 2014). However, the considerable spatial variability that
exists in soil hydraulic properties within a field, and the accurate modelling of
crop heterogeneity requires assessing the spatial variations of water as they
affect crop behaviour (Nielsen et al,, 1973; Miller et al.,, 1988).

Extraordinary advances in computer engineering and programming
languages have been accomplished, particularly over the last three decades.
These have facilitated crop modelling, which have led to the adoption of such
tools for many applications in agronomy (Passioura, 1996; Jones et al, 2017).

However, recent advances have not yet succeeded in scaling up mechanisms



from point to field level in crop models. While significant progress has been
achieved in the engineering aspects of spatial variation, such as increasing
spatial resolution of data systems, variable rate technologies, and automation,
much less effort has been dedicated to the simulation of within field crop

responses to spatial variations.

In this thesis, field level (or field scale’) is defined as the entire crop plot,
and thus the terms ‘intra-plot’ and ‘within-field" are used as synonyms. While
‘point scale’ focuses on the dominant characteristics to represent an area of
interest, field scale’ considers the entire field/plot area and the inherent spatial

variation of growing conditions.

Most studies on rainfed yield gaps ignore intra-plot variability (Fischer et
al, 2014; Guilpart et al,, 2017; Lobell et al, 2009; Schils et al, 2018). This
is partially due to data availability constraints (Beza et al, 2017) and to
the limitations of crop models to simulate processes such as spatial water
distribution (Tenreiro et al, 2020). Essentially, if crop models are to be
used in assisting crop management, they may greatly benefit from spatial
water modelling approaches capable of accurately representing and simulating

within-fleld variation of water-related processes.

1.2 New data assimilation methods

New data assimilation methods can improve the assessment of crop attributes,
which reveal new opportunities for modelling spatial variations. Examples are
the opportunities of very-high-resolution remote sensing, thanks to the advent
of unmanned aerial vehicles and other airborne platforms, novel computer vision
techniques, machine learning methods, spectral analysis, and object-based
classification algorithms (Bendig et al,, 2015; Berni et al, 2009; Chianucci et
al, 2016; Gao et al, 2020; Tenreiro et al, 2021; Vina et al, 2011; Waldner et
al., 2019).

For the simulation of water processes at crop field level, several
methodologies for data assimilation, geospatial simulation, visualization and

validation of models have been proposed (e.g, geospatial interpolation of



point based simulations, zonal statistics applied to mapped simulation results,
integration of modelling with remote sensing, and other new data assimilation
methods). However, most of these cases have been focused at regional scales
and do not address within-fleld spatial variation (Droogers & Bastiaanssen,
2000; Grassint et al, 2015; Han et al, 2019; Jia et al, 2011; Lobell & Azzari,
2017; Lobell et al, 2015; Lorite et al, 2013; Sadler & Russell,1997; Shu et
al, 2018; Zwart & Bastiaanssen, 2007). Other promising cases reveal some
advances in the spatial simulation of water and vegetation (Moiling et al., 2005;
Booker et al, 2015; Wallor et al, 2018), but still neglecting spatial behaviour
of yield determining factors, such as variations of the harvest index caused by

differences in available soil water (Figure 1.1).

In terms of spatial variations in water distribution, and their effects on
crop growth and development, most of the geostatistical methods applied to
point-based (or partially distributed) models smooth considerably the actual
spatial heterogeneity. This occurs because lateral water movement and
cause-effect relations between neighbouring areas are ignored in the water
balance calculation schemes. In addition, relying solely on geostatistics to
deal with spatial heterogeneity does not resolve the existing knowledge gaps
regarding the driving mechanisms of spatial variations. This issue was raised
by Nielsen & Wendroth (2003), who suggested that statistical methods should
not replace research inventiveness in the assessment of spatial and temporal

variations.

1.3 Crop-water modelling approaches and opportunities to

simulate spatial water variations at crop field level

The present doctoral thesis reviewed some of the most widely adopted crop
(e.g, WOFOST, DSSAT, APSIM, DAISY, STICS, AquaCrop and MONICA) and
hydrologic models (HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE and SWIM),
from the standpoint of identifying opportunities for simulating spatial water
variations at crop field level through the incorporation of both surface and

subsurface lateral flows as they affect crop performance (Tenreiro et al, 2020;



2022).

The incorporation of lateral flows within the water balance allows a
better simulation of the mechanisms that determine yield variations over
space. However, this requires innovative experimental approaches which should
account for spatially distributed processes and which should be related to the

geomorphological properties with implications for plant available water.

Data collection and field experimentation must be conducted at “real scales’,
which is relatively costly and difficult to replicate over long periods of time
(Sadras et al, 2020). Therefore, it is accepted that the combination of
both experimentation and simulation modelling is a valid strategy for making
progress (Kirkegaard & Hunt, 2010). By combining field experimentation,
simulation models, and the use of new data assimilation methods (i.e,, remote
sensing or artificial neural networks), it should be possible to investigate the

relevance of lateral flows.

1.4 Opportunities for site-specific crop management

Progress in the simulation of crop response to spatial variations can deliver
new opportunities for better crop production through site-specific management
(Basso & Antle, 2020). Site-specific management, linked to the concept of
precision agriculture, is defined as the agricultural crop management that is
conducted at a lower spatial scale than the whole field (Mulla & Schepers,
1997). This implies that intra-plot variations are considered, and that crops are
managed accordingly, considering the site-specific conditions that vary within

a single field.

In fields of undulating topography, where rainfed crops experience different
degrees of water stress due to spatial water variations caused by lateral flows,
ylelds vary spatially within the same field (Halvorson & Doll, 1991; Tenreiro et
al,, 2022).

The pattern of crop water use can be greatly affected by management

(Passioura, 2002), as over fertilization may result in exceedingly vigorous cereal



crops that are prone to consume an excessive amount of water in the vegetative
stage before yield-defining critical stages (Figure 1.1). This may increase
water-stress during grain formation reducing the harvest index, especially
under rainfed conditions when crop yields are water-limited (van Herwaarden
et al, 1998; Figure 1.1).

Water shortages during grain formation results in yield losses (Figure 1.1)
because the crop initiates senescence prematurely in zones with the least
available water. Therefore, the spatial variations in soil water supply can
justify a variable fertilization rate over space. From both an economic and
an environmental perspective (Lowenberg-DeBoer & Erickson, 2019; Robertson
et al,, 2008), different nutrient requirements and application rates represent an
opportunity for better farm management with productivity gains in resource use

and net margins (Fischer & Connor, 2018; Nielsen & Halvorson, 1991; Sadras,
2002; Whelan & McBratney, 2000).

1.5 Thesis research framework

The present thesis focused on the “spatial dilemma” regarding crop simulation
under spatial heterogeneous conditions. This thesis builds upon the main
hypotheses that point-based crop modelling is a limited representation of the
fleld, that the spatial interpolation of point simulations ignores the existing
hydrological interactions and feedback between adjacent areas within the
fleld, and that up-scaling such processes is a promising step to integrate crop

simulation and decision-making in site-specific management.

Main objective To study the spatial crop-water variations in rainfed
wheat systems in Mediterranean conditions, and to evaluate the potential of
hydrologic and crop simulation modelling to predict within-field yield variation

and its implications for site-specific management.

Within this context, the following subsequent research objectives were

addressed:



First objective

1. To investigate opportunities to simulate spatial water variations at
crop field level by reviewing the main crop-water modelling approaches and

identifying opportunities to simulate spatial water variations at crop field level.
This specific objective will be covered in chapter two.
Second objective

2. To explore new data assimilation methods within crop modelling research.
Combining new data assimilation methods with crop simulation modelling for

determining crop yield variability at field level.
This specific objective will be covered in chapter three.
Third objective
3. To evaluate the agronomic relevance of spatial water variations by:

3.1) assessing experimentally the magnitude and frequency of water lateral

flows occurring in crop fields of undulating topography;

3.2) simulating water lateral inflow over multiple years and its contribution

to spatial variations of rainfed wheat yields.

3.3) determining the net contribution of lateral water inflows to spatial

variations of rainfed wheat yields in fields of undulating topographuy.
This specific objective will be covered in chapter four.
Fourth objective

4. To analyse the economic relevance of site-specific management as
a strategy to deal with spatial water variations by investigating the main
opportunities for variable application rate of nitrogen under spatial water

variations in rainfed wheat systems from an economic perspective.

This specific objective will be covered in chapter five.
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Figure 1.1: Schematic representation of grain yield of wheat, biomass at harvest, and harvest index,

in relation to the proportion of available water used by flowering time. The scale of the y-axis is
arbitrary because it varies according to each crop parameter. Figure adapted from Passioura (2002).






Chapter 2

Water modelling approaches and
opportunities to simulate spatial water

variations at crop field level

This chapter has been published as:

Tenreiro, T. R., Garcla-Vila, M., Gomez, J. A, Jimenez-Berni, J. A, & Fereres, E. (2020). Water
modelling approaches and opportunities to simulate spatial water variations at crop field
level. Agricultural Water Management, 240, 106254.

Abstract

Considerable spatial variability in soil hydraulic properties exists within a field, even in those considered
homogeneous. Spatial variability of water as a major driver of crop heterogeneity gains particular
relevance within the context of precision agriculture, but modelling has devoted insufficient efforts to
scale up from point to field the associated ‘cause-effect’ relations of water spatial variations. Seven
crop simulation models (WOFOST, DSSAT, AP- SIM, DAISY, STICS, AquaCrop and MONICA) and five
hydrologic models (HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE and SWIM) were selected and their
water modelling approaches were systematically reviewed for comparison. Crop models rely mainly
on 'discrete’ and empirical approaches for modelling soil water movement while hydrologic models
emphasize more ‘continuous’ and mechanistic ones. Combining both types of models may not be the
best way forward as none of the models consider all of the processes which are relevant for the simulation
of spatial variations. Hydrologic models pay more attention to spatially variable water processes than
crop simulation models, although their focus is on scales higher than the field which is the relevant
scale for assessing the influence of such variations on crop behaviour. Opportunities for progress in
the spatial simulation of water processes at field level will probably come from two different directions.
One implying a stronger synergism between both model families by using continuous-type approaches
to simulate some mechanisms in existing crop models, and the other through the integration of lateral
flows in the simulation of discrete water movement approaches.
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2.1 Introduction

An inherent action of biological sciences is the conceptual representation of
systems through hierarchical levels (De Wit, 1982; Loomis et al, 1979). In
agronomy related studies, it implies different levels of complexity determined
by the nature of the issue addressed (Ahuja et al,, 2019). Over the last 60 years,
crop scientists have dedicated particular attention to modelling in an attempt
to mathematically represent the functioning of agricultural systems at different
levels of complexity, and to simulate their response to multiple factors in an

‘easy-fast’ and ‘low-cost” way (Carberry, 2003; Fischer & Connor, 2018; Jin et
al, 2018; Jones et al,, 2017a; Lobell et al, 2009).

Conceptually, models can be divided into ‘functional-empirical’ or
‘mechanistic’ and distinguished according to their spatial scale, being classified
as ‘point-based’ or ‘distributed’ (ASCE, 1982; Passioura, 1996; Thomas and
Smith, 2003). While ‘engineering-oriented’ models tend to be classified
as functional-empirical, 'science-oriented’” models are mostly considered
mechanistic (or process-based). While point-based scales ignore spatial
variability by averaging or using ‘dominant’ characteristics to model an area
of interest, distributed scales consider the spatial distribution of resources
and the consequent crop response. Functional-empirical models have shown
potential to support benchmarking, decision and policy making at different
temporal-spatial scales (Boote et al, 1996; Garcla-Vila et al, 2009; Mateos et
al,, 2002; Passioura, 1973). Mechanistic models have been mostly used to assist
plant breeding for specific environments (Fischer and Connor, 2018; Struik,
2016; Yin & Struik, 2007), the identification of global yield- gaps (Byerlee et al,,
2014; Boogaard et al, 2013; Grassini et al, 2015); (http://www.yieldgap.org/),
and for agro-ecological resource management (Boote et al,, 1996; Booker et al,,
2015; Fischer et al, 2002; Thorp et al., 2008).

The extraordinary advances in computer engineering and programming
languages, particularly over the last three decades, have intensified the
modelling processes contributing to an increased adoption of such tools for

many applications (Jones et al, 2017a; Passioura, 1996; Seidel et al, 2018;
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Thorp et al,, 2012). The use of models in large cooperative efforts (such as The
Agricultural Model Intercomparison and Improvement Project; www.agmip.org)
has intensified recently, too, partially in response to new needs (Asseng et
al, 2014). However, recent advances have not yet succeeded to scale up
mechanisms from point to field level in crop models (Ahuja et al, 2019; Fischer
and Connor, 2018). Such limitation may be leading to an impasse in modelling,
compromising the adoption of these tools, mostly in the context of precision
agriculture (Jones et al, 2017/b). In fact, while significant advances have been
made in the engineering aspects of precision agriculture, such as increasing
spatial resolution, variable rate technologies and automation, much less effort
has been devoted to understand the crop mechanisms in response to spatial

variations (Cassman, 1999; McBratney et al,, 2005; Monzon et al.,, 2018).

As considerable spatial variability in soil hydraulic properties exists within a
fleld, even in those considered homogeneous (Nielsen et al, 1973), the accurate
modelling of crop heterogeneity requires assessing the spatial variability of
water as it affects crop behaviour (Ritchie, 1981; Sadras et al, 2016; Verhagen
and Bouma, 1997). This aspect is considered a serious limitation in current

crop models but it has received limited attention (Ahuja et al, 2014; Jones et
al, 2017b).

In the modelling of water, two families’ of models can be distinquished:
crop models and hydrology based models. Both families have been widely
used worldwide and different arguments are employed to promote the adoption
of each one depending on the specifications of each case-study (Ahuja et al,
2014; Devia et al, 2015; Jones et al, 2017b). While crop models are centered
on the growth and development as affected by the environment, hydrological
modelling emphasizes mostly systems’ water dynamics at different scales. In
this sense, and in regard to water-related processes, crop models tend to be
more empirically-based while hydrologic models are more mechanistic. In
relation to spatial scales, while crop models are limited to point-based scales,
some hydrological models distribute partially water processes. However,
practically all distributed models have in fact ‘discrete characteristics’ (e.q.

input parameters, boundary conditions) and follow non-linear relations for
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multi-dimensional representations that lead to important trade-offs between
accuracy and data requirements that must be considered (Passioura, 1996). Just
as distributed models rely partially on discrete characteristics, the distinction
between mechanistic and empirical models is not clear-cut in this case, as there
is a continuum between the two approaches as well, with mechanistic models

having always some empirical components.

Essentially, if crop models are to be used to improve water management in
precision agriculture, they may greatly benefit from spatial water modelling
approaches capable of accurately represent and simulate within-field variation
of water-related processes. It is important to reflect if this will be more
likely achieved by distributing water processes in crop models (i.e. identifying

conceptual gaps in the water balance structure) or by coupling both families.

Contemporary reviews on crop modelling (Ahuja et al, 2019; Boote et al,
2013; Bouman et al, 1996; de Wit et al, 2018; Holzworth et al, 2015; Jin
et al, 2018; Jones et al, 2017a,b; Whisler et al, 1986) have tended to cover
most main variables governing crop growth and development (at point-based
scales), models structure and software details, but do not dwell on the modelling
approaches with sufficient detail to be able to identify the main conceptual
gaps that constrain the use of models for spatial variable applications. Also,
most reviews focus on one or only a few models without reaching out to other
different types of models (Boote et al, 1996; de Wit et al, 2018; Holzworth et
al, 2015; van Ittersum et al, 2003). Rarely, a single variable, such as water,

has been the subject of specific analyses in crop modelling reviews.

In our case, we have focused solely on water because it is a major
determinant of spatial heterogeneity in the field (Nielsen et al, 1973, 1987/;
Ritchie, 1981; Ahuja et al, 1984; Sadler and Russell, 1997; Wallor et al., 2018).
In an effort to assist in the scaling up of crop simulation models, we have carried
out a systematic review of the approaches taken to simulate water in a number

of selected crop and hydrologic models.
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2.2 Methodology

2.21 Review approach

Since most of the selected models are based on similar fundamentals, this
review followed a 'process-based’ structure to avoid repetitive comparisons

among models. The analysis was carried out in three consecutive steps:
1) selection of models based on a literature search of recent reviews;

2) identification and description of plant-soil-water processes addressed by

the selected models;

3) compilation of results and a comparative analysis.

2.2.2 Model selection and soil-plant water processes description

The first step consisted of conducting a web search of the last ten
years of published reviews on modelling that were either crop-based or
hydrologic-based. Priority was given to ‘multiple-species’ and ‘comprehensive’
models since we focused on models complying with the following two criteria:
(1) related literature is accessible and clear regarding fundamentals, equations
and assumptions; and (2) the calibration and parameterization for multiple field

crops is possible.

A total of 42 articles were found, out of which 34 were rejected because they
were focused on topics different than a crop model/s review. Eight documents
were selected: one technical report (Kirby et al, 2013) and seven scientific
papers (Donatelli et al, 201/; Holzworth et al,, 2015; Jin et al, 2018; Jones
et al, 2017a,b; Rauff and Bello, 2015; Shaw et al, 2013). The following seven
‘crop-based’ models were selected: WOFOST, DSSAT, APSIM, DAISY, STICS,
AquaCrop and MONICA. An equivalent approach was followed to select the
hydrology-based models. The initial search yielded a total of 99 results out of
which 90 were also rejected for a similar reason as to the crop models. The final
nine documents selected (Devia et al, 2015; Dwarakish and Ganasri, 2015; Gao
and Li, 2014; Golden et al, 2014; Hallouin et al, 2018; Kauffeldt et al,, 2016;
Salvadore et al, 2015; Song et al, 2015; Sood and Smakhtin, 2015) referred to
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12 models from which a final sample of five models was chosen based on the
intended scale of analysis (i.e. small catchment plot or crop field level) and the

potential to be coupled with ‘crop-based’” models in regard to water processes.
The models are: HYDRUS-1D, HYDRUS-2D, SWAP, MIKE-SHE and SWIM.

Once models were selected, we proceeded with the identification of all
processes where water moves along the soil-plant-atmosphere system, called
here soil-plant water processes. Subsequently, a description of the modelling
approaches followed by the selected models was obtained from the literature
going back to the initial publication of each model. Soil-plant water processes
were structured following the fate of water in a hypothetical hydrological unit:
(1) pre-infiltration, (2) infiltration, (3) surface-water flow, (4) evaporation, (5)
root water uptake and transpiration, (6) internal drainage, (7) capillary rise, (8)

subsurface lateral flows, and (9) solute transport.

Following a basic description of all models, every water process was
described in detail as simulated in each of the models. The fundamentals
of the modelling approaches were described based on a literature search that
was not limited by any time-frame. All results were synthesized in a table
for a comparison among models (Appendix - Table 1). The tabled results are
fully integrated with the text, following the same nomenclature and acronyms.
Considering our sample (N = 12 models), a descriptive statistical analysis
was conducted to explore differences among models in regard to the degree
of spatial components and an association plot was produced to justify our

discussion.

2.3 Modelling soil-plant water processes

2.3.1  The pre-infiltration phase

The pre-infiltration phase involves all water processes taking place above
the soil surface (i.e. precipitation, irrigation, surface run-on, canopy or
mulch interception, and gravitational flow through plant surfaces, commonly

called stem-flow). This phase determines the amount of water supplied from
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precipitation (P), including outflows from the snowpack (DAISY, MONICA,
HYDRUS-1D/2D, SWAP, MIKE-SHE) and irrigation (/) after subtracting the
evaporated fractions of intercepted water by canopy and other surfaces (e.g.
mulches). Some models operating at catchment scale (i.e. MIKE-SHE), consider

superficial inflow (S/F) from run-on as a supply form, too (DHI, 2017b).

Precipitation is taken as an input (Beaudoin et al,, 2009; Hansen et al,, 1990;
Jones et al, 2003; Keating et al, 2003; Nendel et al, 2011; Raes et al,, 2009a;
Simunek et al,, 2008; van Dam et al,, 1997; van Van Diepen et al.,, 1989; Verburg
et al,, 1996), which can be represented at point- or field-scale, depending on the

spatial variability of rainfall and the availability of spatially distributed data
(Basso et al, 2001; Thorp et al, 2008; Zhou & Zhao, 2019).

Irrigation, when considered (DSSAT, APSIM, DAISY, STICS, AquaCrop,
MONICA, HYDRUS, SWAP, SWIM), must be previously set up within a
management module that can be activated when necessary (Boote et al,
1996; Carcla-Vila and Fereres, 2012; Hussein et al, 2011). Irrigation water
supply is taken as a net inflow, either assuming no losses (DSSAT, APSIM,
DAISY, AquaCrop, MONICA, HYDRUS, SWAP, SWIM) or by subtracting the
corresponding application losses (STICS). Four irrigation methods may be
considered: (1) Surface; (2) Sprinkler; (3) Drip; and (4) Subsurface drip.
Irrigation applications may be simulated in three different ways: (1) a calendar
defined by the user; (2) a planned irrigation schedule applying constant or
variable rates once a threshold of soil water content is reached; (3) a planned
schedule based on multiple-criteria (e.g. crop phenological stage, soil water

content, water availability constraints).

The method influences whether irrigation is applied above canopy (ie.
sprinkler pivot) or below (i.e. furrow or drip irrigation). Irrigation applied above
canopy implies the simulation of pre-infiltration processes such as canopy
or mulch interception and evaporation from plant surfaces (STICS, HYDRUS,
SWAP). Some models allow users to define the fraction of soil surface wetted

by irrigation (AquaCrop).

The fraction of water intercepted by the canopy may be simulated by an
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analogy of the ‘Beer-Lambert law’ (B-L) (Murphy & Knoerr, 1975). Some
models (APSIM) use the B-L approach to simulate ‘rainfall attenuation’ te.
interception of rainfall or irrigation water applied over the canopy. The fraction
of intercepted water by the canopy (or mulch) may be assumed as part of
a direct evaporation ‘pool’ (Murphy & Knoerr, 1975) or recovered into the
‘infiltration pool” (iL.e. the amount reaching the soil surface) in form of stem
flow down to the soil surface. For the recovered fraction, Brisson et al. (2003)
proposed the simulation of stemflow (SF) as a function of LA/, light extinction
coefficient (k) and an empirical crop coefficient (SFuax) that depends on the
architecture and wettability of plant surfaces (Wang et al, 2015) and the total

water supply, t.e. irrigation (/) and/or precipitation (P) according to:

SF = SFyax[1 — e P 4+ 1) (2.1)

Alternatively, the method proposed by Braden. (1985) and von

Hoyningen-Huene.  (1981) can also be used to estimate the fraction of
intercepted water (e.g. HYDRUS, SWAP):

bAL Cpoot 1
oAl

where LAl is leaf area index, a is an empirical coefficient (assumed as 0.25

INT = alAll1 — (1 + (2.2)

by default), b is the soil cover fraction (assumed as 0.33 of LA/), and AbCpool

is the 'above canopy pool.

Other models (DAISY, STICS) represent the effects of mulch residues on
the modelling of water interception dynamics (Brisson et al, 2003; Hansen et
al, 2012). Such advancements have focused on the development of empirical
equations that estimate the quantity of soil cover with time (e.g. STICS).
According to the calibration of Scopel et al. (1998), the effect can be represented
by a negative logarithmic relation that determines the decomposition rate of

the mulch type with time.

Some models (DAISY, MONICA, HYDRUS-1D/2D, SWAP, MIKE-SHE)
integrate snow accumulation and melting processes within the pre-infiltration

phase. As described by Abrahamsen and Hansen (2000), these processes can
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be determined as a function of precipitation, air temperature, global radiation,
ground heat flux, albedo and depth of the snowpack. Water losses from the
snowpack, occur in the form of evaporation, sublimation and percolation (when
the retention capacity is exceeded), and evaporation tends to have priority over

sublimation.

In this sense, the INFpool (expressed in units of length per time, as mm
day™" or cm day~' in case of daily time-steps) can be calculated as the sum
of non-intercepted water from rainfall (P), irrigation (/), and when considered,
also superficial inflow from run-on (S/F) and stemflow (SF). All contribute
eventually as an input to a snow pack module (SPM), if considered, from which
the melted fractions recover, counting as an input on the estimation of infiltration
in the subsequent time-step. Non-recovered fractions through SF are likely
to be lost through direct evaporation. The INFpool is therefore the amount of

available water at soil surface to be infiltrated.

2.3.2 Infiltration

Effective infiltration (INFeff) is the fraction of INF pool that infiltrates into the
soil at a given time step. The remaining fraction is considered a surface water
surplus, that may originate water ponding (leading to accumulation, evaporation
or infiltration in following time-steps) and surface runoff depending on the

surface conditions and topographic characteristics of the area (Allen, 1991).

The simplest approach to estimate INFeff applies a simple capacity model
(CAP) in which maximum infiltration capacity is defined as the difference
between the soil saturation water content (6SAT) and actual water content
(0), expressed as a fraction of a volume. In this case, the infiltration capacity

is defined as the maximum amount of INFpool that infiltrates in a given soil
under specific conditions (WOFOST and MONICA; Appendix).

An alternative and widely adopted approach (DSSAT, APSIM, STICS,
AquaCrop; Appendix) is the USDA curve number method (CN-method). As
discussed in detail by Allen (1991), this 'infiltration-loss based method’,

calculates INFeff as a function of the potential maximum retention (S). S
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(expressed in mm) is defined according to the curve number (CN), which is an
empirical parameter, determined from tabled empirical values, according to land

cover and soil hydrological group (Cronshey, 1986; Rallison, 1980; Woodward
et al,, 2003):

100
S = 254z, — 1) (2.3)

The soil hydrologic group classification is based on probability distribution
curves of measured infiltration rates related to soil antecedent conditions (Allen,
1991; Cronshey, 1986). Therefore, CN is not a constant but varies from event
to event. The robustness of this method is related to the vast quantity of
fleld measurements that support it. However, it reveals some weakness when
surface runoff (SRn) is a small fraction of the INFpool (ie. arid or semi-arid
conditions), a situation where a wider range of CN is observed (Allen, 1991).

According to the CN-method, INFeff can be calculated as:

(INFpool — xS)?
INFpool+ (1 —x)S

where the subtracted fraction corresponds to SRn and corresponds to the

INFeff =INFpool —| ] (2.4)

‘initial abstraction” which is the initial fraction of S that can infiltrate before
starting surface runoff (Allen, 1991). More mechanistic approaches compute
infiltration according to the formulations of Richards (1931) and Richardson
(1922) for transient flow conditions (DAISY, HYDRUS-1D/2D, SWAP, MIKE-SHE,
SWIM; Appendix). INFeff can be defined by unsaturated soil water movement,

which is estimated through numerical solutions of the Richards equation

(Buchan, 2003):

_99_ 0. 5%
INFeff = == = —|K(6) 5~ — K(6)] (2.5)

where 6 is the volumetric water content of the soil top layer (expressed
as a fraction of a volume), t is time, z is the vertical coordinate (expressed in
units of length), positive when water flows downwards, K is the unsaturated
hydraulic conductivity as a function of 6, and  is capillary pressure head

relative to atmospheric pressure (unit of length). While the space z and time t
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are independent variables, s and O are dependent variables.

The methods used to solve Richards' equation are an important issue in
hydrological research (van Dam, 2000; van Dam et al, 1997). Many alternative
mathematical solutions have been proposed (e.g. geometric means, arithmetic
means, iterative methods), but the parabolic form of this equation in combination
with the strong non-linearity of the soil hydraulic functions (i.e. functions
relating water content, soil pressure head and hydraulic conductivity) makes
it @ non-consensus and difficult task. Accordingto van Genuchten (1980) and
Mualem (1976), the soil hydraulic functions can be represented as:

Osar — Opwp 26)

n—1

9(/7) = QIDW/D +
(1 + [ah|)s

9 - 93 9 - 93 n n—
TV =1 = () [T (27)
Osar — Opwp Osar — Opwp
where 6 is the volumetric soil water content as a function of the soil pressure

K(6) = Ksar

head (h), Opwp is the volumetric soil water content at permanent wilting point,
Osar is the volumetric soil water content at saturation point, @ and n are
empirical shape factors (respectively, expressed in units of length and unitless),
Ksar is the saturated hydraulic conductivity (expressed in units of length per
time), and h is expressed in units of length. When INFpool increases at a
higher rate than the maximum infiltration capacity (ie. K(6)=Ksar), water
accumulates at soil surface (DAISY, HYDRUS-1D/2D, SWAP, MIKE-SHE). The
ponded infiltration can be modeled through a solution of Darcy's equation
(DAISY) or according to the Green-Ampt approach (HYDRUS-1D/2D, SWAP,
MIKE-SHE, Appendix), which is based on Darcy's equation for continuous
saturated conditions and considers the wetting front as the reference elevation,
where gravitational head is zero (Green & Ampt, 1911). The decreasing
hydraulic gradient caused by the wetting front drives the drop in infiltration

rate over time, which can be mathematically represented as:

Ly + Hy + Hr
Lf
where K represents the hydraulic conductivity, Ly is the thickness of the soil

INFeff = K{

) (2.8)
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being considered (i.e. the depth of the wetting front), Hy is the pressure head
at soil surface and Hr is the pressure head at the wetting front (Hy and Hr,
both assumed to be constant). Despite being originally developed for flat land

conditions, the Green-Ampt approach has also been applied to sloping surfaces
(Chen & Young, 2000).

The INFeff estimation approaches that are based on the hydraulic
conductivity of the top soil layer assume that after infiltrating into the soil, water
is stored in successive layers downward according to a physical constraint that

is imposed by the drainage ability of the soil (APSIM, STICS, AquaCrop).

2.3.3 Surface-water flow

Surface-water flow can be classified as a loss flow (i.e. when represented as
SRn), a re-distribution flow (L.e. when represented as a lateral flow affecting
the water balance of neighbouring hydrological units) or as a channel flow
(Le, for furrow irrigation simulation applications, as described by van Dam
(2000a) and van Dam et al. (1997). However, in most of the selected models
(Le., all except MIKE-SHE), surface water flow is only represented as SRn and
therefore considered as an outflow of the system. It is therefore relevant to

discuss SRn in some detail below.

According to Ponce & Hawkins (1996), SRn can be distinguished into
different forms (Appendix): Hortonian overland flow (HRTf), saturation
overland flow (SATT), throughflow (THRf), the direct channel interception
flow (DCIf) and surface phenomena flow (SURf). Hortonian overland flow
is the water flow occurring when rainfall or irrigation (or the combination of
both by analogy with INF pool) exceeds soil infiltration capacity (i.e. typically
the case of a rainfall storm). Saturation flow occurs when the profile gets
saturated. While Hortonian flow is a 'pre-infiltration’ process, saturation flow
is a ‘post-infiltration” one. Throughflow is the horizontal water flow beneath the
land surface, usually when the soil is saturated. The direct channel interception
flow is a type of runoff that refers to the spatial redistribution of rainfall directly
intercepted by channels. This is an important type of flow in high dense and

humid channel areas where channel interception may be the main source of
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surface-water flow, as reported by Hawkins (19/73), who assessed watersheds
characterized by frequent storm precipitation events, hilly landscapes and large
areas of stream channels, where direct interception occurs in great extents.
Under flat conditions, typical rice landscapes in the Philippines or channelled
plots in the Netherlands can be taken as an example of these areas, too. Surface
phenomena flow is all the flow driven by crust development, hydrophobic
layers and frozen ground that do not allow vertical flow to occur. While some
models simulate SRn (mostly in forms of HRTf, SATf, T HRf) trough empirical
approaches based on the CN-method (DSSAT, APSIM, STICS, AquaCrop), others
derive SRn from Richards' based approaches (DAISY, HYDRUS-1D/2D, SWAP,
SWIM). ‘Overland flow models’ such as MIKE-SHE dedicate particular attention
to the simulation of SRn by dividing it into HRTf, SATf, SURf, THRf
estimated through a 'diffusive wave' approach which considers a Manning's
type roughness coefficient, and through the St. Venant equations (Saint-Venant,
1871), as explained in detail by DHI (2017a,b).

2.3.4 Evaporation

Evaporation (E) modelling has three different components: direct evaporation
of water intercepted by the crop canopy (Ec), from the soil surface (Es), and

from mulches (Em).

E=Ec+Es+Em (2.9)

However not all models calculate the three E components separately
(DSSAT, MONICA), because, depending on the calculation procedure,
evaporative demand may include all components together. The estimation
of evaporation is conceptually divided into two steps for most of the
selected models (WOFOST, APSIM, AquaCrop, DAISY, HYDRUS, SWAP): 1)
the calculation of evaporative demand (ED,), i.e. mass transfer based on latent
heat; and 2) a "partitioning’ according to the corresponding evaporative surface

area (i.e. fraction of crop canopy, fraction of uncovered soil, fraction of mulch).

The main formulations used to calculate the evaporative demand (ED,) are
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based on the energy balance balance (Penman, 1948, 1956), which evolved as
the PM equation (Allen et al, 1998; Monteith, 1976; Monteith and Unsworth,
1990; Eq. (2.10); WOFOST, DSSAT, APSIM, DAISY, STICS, AquaCrop, MONICA,
HYDRUS-1D/2D, SWAP). Other approaches used in the selected models are
the Priestley-Taylor (PT) (Priestley & Taylor, 1972; Eq. (2.11); DSSAT, APSIM,
STICS, MONICA), and Hargreaves (HCG) (Hargreaves and Samani, 1982; Eq.
(2.12); DAISY, HYDRUS-1D/2D) equations. The formulations of the equations

are:

0.408A(Rn — G) + (Z5% ()5(es — ea)

ED, — [+273) 210
A+ o(1+ 0.340,) (210)
A(Rn — G)
ED, — 2T 211
A apr (2.17)
ED. = CyRa~/(Twiax — Twvm)(Twean + 17.8) (2.12)

where A (s the he slope of the saturation vapor pressure function versus
temperature (kPa °C™"), Rn is the daily net radiation at the soil surface (Le.
incoming minus reflected radiation expressed in M) m=? day™"), G is the soil
heat flux (M) m=2 day™"), @ is the psychrometric constant that is calculated
according to the altitude (set by default as 66 Pa K1), T represents the
mean temperature of the air (measured at 2 m height and expressed in °C),
U, represents the wind speed (also measured at 2 m height and expressed in
m s~ '), es represents the saturation vapor pressure, ea the air vapor pressure
(the difference of both equals vapour pressure deficit - VPPD), both expressed
in kPa, apr is an empirically derived factor that depends on the season and
location in relation to large water bodies (Castellvi et al,, 2001) and varies from
1.26 (Priestley and Taylor, 1972) in minimal advection conditions, to maximum
reported values that vary from 1.74 to 3.12 (Eaton et al, 2001; Jensen et al,
1990; Viswanadham et al, 1991), (i is a constant parameter, assumed as 0.0023
according to Hargreaves and Samant (1982), Ra is the extraterrestrial solar
radiation (M]J m—?2 C/_T), and Tyax and Tyyn are respectively maximum and

minimum air temperatures (both expressed in °C).

Once EDe is estimated (expressed in units of length per time, as mm
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day™'), some models follow a Beer-Lambert type approach (INT-BL) using
LAl and the extinction coefficient (k) to calculate an evaporation coefficient
(Ke) to estimate Es (WOFOST, DSSAT, APSIM, DAISY, STICS, MONICA,
HYDRUS-1D/2D, SWAP, SWIM), while others follow a soil-cover based method
(SC-M), whether using soil cover (SC) instead (AquaCrop, HYDRUS-1D/2D,
SWAP, MIKE-SHE, SWIM). Some models deliver the option to follow both

approaches. The two approaches are expressed as follows:

Es =) (EDeiKex e ) (2.13)

Es =) [EDeiKe(1—SG)] (2.14)

where the subscript i corresponds to the model time-step (e.g. hourly, daily),
and Ke is the evaporation coefficient for wet surfaces set by default as 1.10
according to Allen et al. (1998). Alternative approaches derive both daily crop
(Ec;) and soil water evaporation (Es;) directly from an adaptation of the original
Penman’s equation (PE) (Penman, 1963) as function of the fraction of uncovered
soil (DSSAT):

E=FEc+Es =RjJ(488x107) — (GS4.37 x 107)(T; +29)  (2.15)

where T; is the daily air temperature (°C), Rs; is daily solar radiation (M]
m~2) and GS; is a ground surface correction factor defined according to the light

extinction coefficient (k) and daily values of leaf area index (LA;) as following:

GS; = (0.1e " £10.2(1 — e K] (2.16)

Similar approaches can be followed to estimate Em (STICS). However, in
the case of inert mulching, the extinction coefficient decreases in time due to

the decomposition of those residues as well as soil cover fraction (Scopel et al,,
1998).

In addition to the previous methods, some models (MIKE-SHE, SWIM,

DAISY, STICS) estimate E through soil vegetation atmosphere transfer schemes
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(SVAT, Appendix). The SVAT approach (Brisson et al, 2003; Hansen et
al, 2012; van der Keur et al, 2001; Verburg et al, 1996; Verburg, 1996)
is based on the aerodynamic transfer of water vapor and integrates the
effect of the aerodynamic resistance to water vapour transport (ry), the
soil-vegetation-atmosphere pathways components resistance (r.), the saturated
vapour pressure at canopy temperature (es(r()), the vapour pressure in the
overlying air boundary (eses), the air density, the ratio of the molecular mass
of water vapour to that of dry air (p¢) and the canopy pressure (ps) as follows:
£ &(QS(TC) — Cref
Ps  TatTc

where the calculation of £ accounts for the different evaporation pathways.

) (2.17)

These approaches are also called networks of resistances (Campbell, 1985;
Koster and Suarez, 1994). Some models divide soil evaporation in two
consecutive stages (APSIM, STICS, AquaCrop, SWAP, MIKE-SHE, SWIM),
others integrate it into a single formulation (e.g. WOFOST, DSSAT, DAISY,
MONICA, HYDRUS, SWAP). Models integrating one single formulation apply
directly to EDe a 'Beer-Lambert’ type integrated approach (INT-BL) whether
using LA/ (see equation 2.13) or a soil-cover based method (SC-M) if using SC

(see equation 2.14).

The "two-stage method’ (2-stage-M) proposed by Ritchie (1972) and based
on Philip and De Vries (1957), considers that evaporation occurs in two
consecutive stages: the first limited by the energy available, and the second,
limited by water availability. While in the first stage, the evaporative rate is
a function of the potential evaporative demand (EDe), in the second stage, a
falling response takes place since the surface soil water content decreases with
time and Es depends on the flow of water to the soil surface which decreases

exponentially with time.

The "2-stage-M' approach may be integrated into a single formulation
considering a reduction factor that equals 1 for the first stage, and decreases

to 0 during the second stage (AquaCrop):
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Es=(1— SO)K.K.ED. (2.18)

When the second stage starts, K, is calculated through an exponential
relation that depends on a decline factor (f¢) related to the relative soil water
content (W,¢) (AquaCrop):

eka Wre[ _ ']

K, = (2.19)

el —1
where W, is a relative weighting factor, estimated according to Raes et
al. (2017). For a given soil type, the second stage evaporation can also be

empirically related to the square root of an independent variable, such as time

(APSIM):

Esstage—i1 = V't (2.20)

where n represents a parameter related to the soil type and t is time; Others

use an empirical parameter (A) as following (STICS):

Esstage—t = \/[2AY_ED) + A + A (221)

where parameter (A) depends on the aerodynamic resistance, the latent heat
of vaporization, the water vapour pressure, air temperature, and a diffusion
coefficient that is related to the bulk density of the evaporative soil layer and
the surface temperature (Brisson and Perrier, 1991); The second stage Es rate
can still be modeled as a function of soil water flow (g). This tends to be
the case of approaches operating at smaller time-steps (SWAP, MIKE-SHE). In
this sense, Es gets boundary limited by the maximum upward flow, modelled
through a numerical solution of Richards' equation that is simplified in the

following form (van Dam and Feddes, 2000):

(hatm - /71) —

Esstage—// < =K /2[ ] (222)

Z1
where Kjp represents the average hydraulic conductivity in the top soil
evaporative layer (expressed in units of length per time), z; corresponds to

the thickness of the top soil evaporative layer (expressed in units of length),
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hatm — h1 is the pressure gradient between atmospheric and top layer pressure

(expressed in units of length).

2.3.5 Transpiration and root water uptake

Crop transpiration (7) is determined by the atmospheric-evaporative demand
(EDt) and limited by root water uptake. Atmospheric conditions govern EDt
while root water uptake is a function of both soil water availability and
resource capture dynamics (Passioura, 1983). In general, models estimate
first potential transpiration demand and then actual T rates according to
canopy and root water uptake related factors, as well as to soil water status.
Despite the atmospheric demand for transpiration (EDt) being conceptually
the same as the evaporative demand (E De), some models have the possibility
to treat them separately as two different calculation procedures depending on
different approaches and methods (DSSAT, APSIM, DAISY, STICS, AquaCrop,
MONICA, HYDRUS-1D/2D). For this reason, we represent atmospheric demand
for transpiration as EDt and evaporative demand for evaporation as EDe

(Appendix).

Similarly to EDe, EDt is estimated by the selected models according to
one of the following approaches: Penman-Monteith (WOFOST, DSSAT, APSIM,
DAISY, STICS, AquaCrop, MONICA, HYDRUS-1D/2D, SWAP), Priestley-Taylor
(DSSAT, APSIM, STICS and MONICA as well), Hargreaves (DAISY,
HYDRUS-1D/2D) or a SVAT scheme (MIKE-SHE, SWIM, DAISY and STICS
as well). In order to estimate potential crop transpiration (7 c), some models
multiply EDt by a crop specific coefficient (Kc) (MONICA), while others use
a transpiration coefficient that is equivalent to the crop basal coefficient (K'cp)
(AquaCrop). While Kc includes both soil evaporation and crop transpiration,
the K¢y is a specific parameter representing the transpiration fraction and a
residual diffusive evaporation component supplied beneath vegetation (Allen et
al, 1998, 2005; Raes et al, 2017). Tc is then adjusted to the transpiration
surface through a 'Beer-Lambert type' integrated approach (INT-BL) using
LAl (MONICA) or through a green canopy soil cover based method (SC-M)

(AquaCrop), both equivalent to the evaporation approaches and respectively
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expressed as:

T. = EDKc(1 — e ktAh) (2.23)

Ie=ED:KcpSC (2.24)

where SC is the green canopy soil cover adjusted for micro-advective effects.
According to van Dam et al. (1997), an alternative Tc approach depending
on the ratio between the daily amount of intercepted precipitation and the
evaporation rate of water intercepted by the canopy (5) is used (SWAP). This
approach assumes that 7 c is reduced by the water evaporation from the wet
canopy (Ec), since part of the latent heat flux is ‘consumed’ on leaf evaporation
processes. The canopy transpiration through the leaf stomata gets maximum

when S gets equal to zero (i.e. when Ec equals zero).

Actual transpiration (7 a) can be reduced in multiple stress situations: soil
saturation, low soil moisture, salinity, and excessive temperatures inducing
stomata closure (Hsiao, 1973). This can be modeled through the use of stress

coefficients (K's), which are calculated as (AquaCrop):

Ks=1— S (2.25)
eS,»(,,fshape — 1

Ks=1- [ C_,fs/mpe —1 ] (226)

Ks = 20 5x (2.27)

Sn + (SX - Sn)e_r“_srel)
where S,¢ is the relative stress level and fspqpe is the curve shape factor,
S, and S, are respectively the relative stress level at the lower and upper
threshold and r is a rate factor (Raes et al,, 2009b). AquaCrop is the only of the
selected models which appears to use both transpiration coefficients equivalent
to crop basal coefficients (Kcb) and multiple stress coefficients (K's). For this

specific case, Ta is estimated as:

28



Tq = EDiKcpSCKs <5, (2.28)
where Ks varies from 0 to 1 according to three main different approaches.

The actual crop transpiration (7a) is limited by an extraction sink term
(Ta<Si), which, in the case of multi-layer models, is computed separately for
each individual soil layer. According to Ritchie (1972, 1981) and Feddes et al.
(1978), Si can be calculated as a linear function (LIN) of soil moisture content

(6) or pressure head (h) and the maximum extraction rate (Spax):

S; = a(h)Smax(z) (2.29)

where Syax depends on the vertical rooting depth and a(h) is a coefficient
that depends linearly on h in three different phases: 1) h is considered to
increase linearly from O to 1, between a h-minimum threshold (i.e. saturation
conditions) and an intermediate h-threshold; 2) h equals 1 for an intermediate
interval of h (i.e. optimal soil moisture content pressure head for plant uptake);
and 3) h decreases linearly from 1 to 0 (ie. at permanent wilting point). The
coefficient a can also be represented as a function of soil water content (Raes
et al, 2017; van Genuchten, 1980). This approach can be employed in both
'discrete’ or ‘continuous’ representation schemes of the vadose zone. 'Discrete’
schemes determine Syax(z) as the product of Ta and a root density term
(Droot), Which can be computed separately for each individual layer (APSIM,
STICS, AquaCrop, MONICA) or for the whole root zone (DSSAT, WOFOST),

abbreviated as following:

S/\/IAX = TaDroot (230)

where D,q,; represents the fraction of total root density in each layer, when
computed individually for multiple layers, or the rooted fraction of a single
layer depth, when computed for the whole root zone. On the other hand, some
‘continuous’ schemes (DAISY, SWAP, SWIM) define Syax through an integral

equation (from root depth to soil surface) that can be simplified as:
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TaJlloot

Smax = ] (2.31)
ID/oot ’OOtaZ

where 77,,0¢ s the root length density (expressed in mm mm*3), defined as

function of both space and time (van Dam et al, 1997). Space can be represented
N one (7Tro0t(z, t)) or two dimensions (7T00t(X, Z, t)) as respectively described by

van Dam et al. (1997) and Simunek & Hopmans (2009).

An alternative approach (APSIM) describes Si through an exponential
relation (EXP):

S, =1 — e =S, Ay (2.32)

where k is a diffusivity constant (expressed in cm? day™'), [ is the root length
density (equivalent to 7,,,¢ but here expressed in cm of root per cm? of soil), t is
time and tc is the beginning time of water extraction (Passioura, 1983; Tinker,
1976). According to DHI (2017b), an alternative to this relation is to simplify

the root depth as a linear function of time while assuming root length density
as constant (MIKE-SHE).

According to van Genuchten (1987), an osmotic pressure term (hg) can be
included in the calculation of a (Equation 2.29) that becomes a nonlinear
function (HYDRUS-1D/2D, SWIM), also time dependent a(h,hg.zt) (Stimunek
et al, 2018a; van Genuchten, 1987). For the specific case of HYDRUS-2D,
a horizontal coordinate is also incorporated into the a(hhg.x,z,t) extraction
function (Simunek & Hopmans, 2009), and Si is calculated as:

S, = la(h, hg, x, z, t)—— L —IT, (2.33)

QR LiL,
where L, is the width of the root zone (QR), L, is the depth of QR, and L;
is the soil surface associated with the transpiration process, all expressed in

units of length (Stmunek & Hopmans, 2009).

Apart from the three general modelling approaches described for Si
calculation, some models (HYDRUS-1D/2D) also include a module for

compensatory mechanisms (Appendix) regulating root water extraction
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(Stmunek & Hopmans, 2009). This enables the simulation of physiological
responses at the root level under spatially distributed stress conditions (Bouten,
1995; Hsiao, 1973; Li et al, 2001). In these cases, a root adaptability factor,
defined as the threshold value above which reduced root water (or nutrient)
uptake in water (or nutrient) stressed parts of the root zone, is fully compensated

by increased uptake in other root zones that are less stressed.

2.3.6 Redistribution and drainage

Modelling drainage processes has been a central issue in hydrology for
centuries (Skaggs & Chescheir, 1999). For point-based models, drainage is
represented as a vertical flow (Chescheir, 2003), generally simulated in two
main ways (Appendix): with a 'tipping-bucket’ approach (TBA), or based on

Darcy's or Richards' equations.

The TBA, as described by Emerman (1995), implicitly considers that
macropore water flow is the only mechanism of water transport between each
‘tipping bucket’ (ie. soil layer). Each 'bucket’ is boundary defined by a
lower and an upper limit; the Bpyp (when empty) and the B¢ (when full).
If water content exceeds Or¢, water excess flows vertically downwards to the
next layer for a given time-step. The TBA models (WOFOST, DSSAT, APSIM,
STICS, AquaCrop, MONICA) are simple and fully discrete in time (constant
conditions are assumed for a certain time interval). A notable limitation of the
TBA approach is the fact that the chosen time step is critical for an accurate
prediction of the observation (Emerman, 1995). The minimum effective time
step is the minimum period over which an appropriate fraction of the soil water
excess (wWhen 6>6r¢) drains down to the next unit. The fundamental equation

describing internal drainage (D) under T BA is:

D = a(0 — 0 ¢) (2.34)

where « is the drainage coefficient and 6>6r¢ (Emerman, 1995; Ritchie,
1984).

Modelling approaches based on Darcy's and Richards' equations allow
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a continuous representation of soil water movement, for saturated and
unsaturated conditions. While Darcy’s is used for steady-state flow modelling
(Buchan & Cameron, 2003), Richards’ is used for transient flows (Buchan, 2003;
Richards, 1931; Simunek and van Genuchten, 2008). The model formulations are
dependent on the spatial-scale, as the flow term (g) can be defined as a one,
two or three dimensional vector (Buchan, 2003), leading to different calibration

requirements and computation times.

Soil water movement also depends on the wetting/drying history of the soil,
a phenomenon called hysteresis (Hillel, 1980). In general, hysteresis retards
water movement, while preferential flow enhances water movement. In all
crop models described here, hysteresis is ignored since only one curve is used
to describe the h(8) relationship (WOFOST, DSSAT, APSIM, DAISY, STICS,
AquaCrop, MONICA). This is mostly due to the time and cost associated with the
the inclusion of hysteresis in the calibration of this relationship. However, this
might lead to considerable uncertainties regarding the simulation of infiltration
and lateral flow rates, mostly at larger time-steps (van Dam, 2000b). However,
soil water hysteresis effects can be simulated using the Scott's scaling method
(SCOTS), which requires only the calibration of the main drying and wetting
water retention curves to calculate the scanning curves (Scott, 1983). The

scanning curves are derived by linear scaling of the main curves as follows

(HYDRUS-1D/2D, SWAP):

;AT - Qres . Qact - 9/’@5 (2 35)
QSAT — 9/‘@5 de - 9/‘@5
where Osar* is the adapted Osa7, B4ct is the actual water content, 6,,4 is the

water content of the main drying curve at the actual soil water pressure head,

and 6,5 is the residual water content of the wetting scanning curve (Kroes et
al, 2017b).

2.3.7 Capillary rise

Quantification of capillary rise (CR) is of great importance for the accurate
simulation of the water balance, particularly in areas with shallow groundwater

tables (Kroes et al, 2017a). However, not all selected models conceptually
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consider CR on the calculations of the water balance. Those following a
'tipping-bucket approach” TBA and considering CR, either take it as an input
(STICS, MONICA), or simulate it (DSSAT, AquaCrop) according to relations (soil
texture specific) between water table depth, soil hydraulic properties and actual
soil water content (or pressure head) of the unsaturated receiving layers (Raes
et al, 2017). For the first case (STICS, MONICA), CR is defined by a Neumann
type lower boundary condition (i.e, flux is a function of time, as CR depends on
a defined calendar). For the second case (DSSAT, AquaCrop), both a Dirichlet
type (i.e, CR as a function of soil water content) and a Cauchy type condition
(e, CR flux as a function of groundwater level) are considered (Raes et al,
2017; Ritchie, 1998). However, none of these cases (DSSAT, STICS, AquaCrop,
MONICA), simulate the feedback between the vadose zone and the water table

(Le., the water table depth is not updated).

Models using Richards’ equation (DAISY, HYDRUS-1D/2D, SWAP,
MIKE-SHE, SWIM), have different approaches to simulate CR flow while
updating water table depth (Hansen et al, 2012; Simunek et al, 1999; van
Dam, 2000a; van Dam and Feddes, 2000; Verburg, 1996). In the selected models
there are four different types (Appendix): 1) models that do not-consider CR (X))
(WOFOST, APSIM); 2) models with predefined CR (D — CR) (STICS, MONICA);
3) models simulating CR but without updating water table depth (SnU — CR)

(DSSAT, AquaCrop), and 4) models simulating CR and updating water table
depth (SU — CR) (DAISY, HYDRUS-1D/2D, SWAP, MIKE-SHE, SWIM).

2.3.8 Subsurface lateral flow

Among the models, subsurface (water) lateral flow (SSLF) is simulated only
by Richards’ equation based models. However, most of these models (DAISY,
HYDRUS-1D, SWAP, MIKE-SHE, SWIM) limit SSLF simulations to lateral
drainage processes, such as lateral out flows between the simulated plot and
nelghbouring drainage canals (Stmunek et al, 2018b; Simunek et al, 1998;
van Dam, 2000a; van Dam et al, 1997; Verburg, 1996). For these cases
(Appendix), lateral flow to drains (ggrqin) is represented by the Hooghoudt

equation (Ritzema, 1994) which can be simplified as follows:
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where ¢y, (cm) represents mean groundwater level, ¢4,qin s the drain level

(cm), and Ygrqin s the resistance to drainage (cm C|aLJ_1); Gdrain (CM c|_1) is
the drain discharge rate, K2, (cm d™') is the horizontal saturated hydraulic
conductivity, d (cm) is the equivalent depth, which is a reduced value of the
timpermeable layer depth below the drain level, Ah; (cm) is the total hydraulic
head difference between the drain level and the phreatic level at midpoint, and
[ (cm) is the drain spacing. This approach is not considered fully distributed
since Ggrain s assumed as a system water loss but not as a re-distributive
process. An alternative approach is used in HYDRUS-2D, which considers
SSLF within the water balance calculation by adding a horizontal term to the
Richards’ equation as follows:

a6 0 ay d dh

3= a—Z[K(@)g — K(0)] + a_x[K(h)a] (2.37)

where the hypothetical horizontal gradient of both hydraulic conductivity
and pressure head is added to the 1-D vertical formulation. For this case,
a 'Galerkin finite-element method’ is used to convert the differential equation
into a discrete type problem (Mohsen, 1982; Simunek et al, 1999). A similar
approach is proposed by van Dam et al. (1997) for introducing 'Neumann-type'
conditions in the SWAP model to define the lower boundary in the calculations

of capillary rise (CR) through Richards’ equation.

2.3.9 Solute transport

Within the scope of this review, and considering the existing relations between
solute concentration and root water uptake (e.g. salinity, co-limitation as
discussed by Cossant & Sadras (2003)), we included a general description of
solute transport processes. We limited our analysis to identify whether salts

and nutrient transport processes are addressed by the selected models.

In AquaCrop, particular attention is given to the salt balance and

consequently, to crop yield response to salinity (Raes et al., 2009a,b). According
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to Raes et al. (2012), incoming and outgoing salt fluxes can be simulated with

downward (iLe. vertical leaching) and upward water movement (iLe. flow of

saline water through capillary rise from a shallow water table). Conceptually,

the salinity concentration for a given layer (ox) can be updated at each time

step, every time water moves in (A8;,) or moves out (AB,,). For these cases,

the salt balance of a given layer is determined for a particular time step as:
aUk (Ukek) + (UinAQin) - (UoutAQout)

_ 2.38
ot Qk + Aem — AQout ( )

where oy is the specific layer salt content (expressed in g) and 6 is the

actual water content (expressed in mm) of layer k. Other models, based on
Richards’ equation (e.g. HYDRUS, SWAP, SWIM), use differential equations
based on the convective-dispersive transport (C-D) theory, which can be

simplified as:

dceg 0 dc, 0q.

o = 5905]— 3, (2.39)
where cg (mg L7") is the solute concentration (ie. salts and nutrients in
3

tnorganic form) in soil solution, O is the soil volumetric water content (cm
cm™3), g is the water flux (cm day™") and D is the dispersion coefficient which,

according to Kersebaum (1989), can be estimated as:

D= Dyt + DV(%) (2.40)

where Dy is the solute diffusion coefficient (which can be assumed as 2.14 cm
day~" for the case of nitrate), T represents the tortuosity and D, is the standard
dispersion factor (assumed as 25 cm for the case of nitrate). According to van
Cenuchten (1985), solute adsorption effects can be incorporated by considering
the adsorbed concentrations as a linear function of solute concentrations. This
has great importance for nutrient transport modelling as following:
%(90- + pS) = %(D% — qC) — twiBci — LsipS; (2.41)

where ¢; is the solute concentration (g cm™)

, S; is the adsorbed

concentration (mg mg~' or %), O is the volumetric water content (%), g the
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volumetric flux (cm day™'), D is the dispersion coefficient (cm? day™'), p the
porous medium bulk density (g cm™3), z is distance (cm), and ¢ is time (day);
the subscript i delineates the i" chain member. The coefficients w; and s;
correspond to rate constants for the first-order decay in the liquid and solid
phases of the soil respectively. Units can be adjusted to multiple temporal

scales.

2.4  Crop and hydrologic models: what sets them apart?

The diversity found in the employed methods to simulate the role of water
varied among models and among the different processes, which is partly related
to the historical development of the models, as shown in the chronological
map of modelling approaches presented in Figure 2.1. Note that while
hydrologic models have their foundations mostly on research that started
in the XIX Century, crop models are sustained by more recent approaches,
whose fundamentals evolved from the 1950-60's (Jin et al, 2018; Jones et
al, 2017a). After the publication of Darcy's equation and Beer-Lambert law
(Figure 2.1), we note that hydrologists devoted most of their subsequent efforts
to the development of modelling approaches of soil-water movement (e.g.
infiltration, capillary forces, drainage processes). However, crop plants were
still excluded from the hydrologic system at the time, with modelling prioritizing
the representation of soil-water processes without focusing on related plant

processes such as transpiration and root water uptake.

This paradigm changed substantially in the 1960's, when the pioneering
works of some agronomists and physicists working on photosynthesis (de Wit,
1965; Duncan et al, 1967), broadened perspectives and brought biological
variables into the water modelling context (Bouman et al,, 1996; Jones et al,
2017a). In fact, the study of photosynthesis was at the root of the development
of the first crop models, leading to an uniform approach where most crop
models today are radiation driven. This common approach has oriented
modelling towards the simulation of optimal conditions, not paying sufficient
attention to the responses to environmental stress, thus limiting their use in

crop management research (Loomis et al, 1979). The uncertainty regarding
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future climate scenarios (Hansen and Jones, 2000; Rosenzweig et al,, 2014) and
the growing demand for decision support tools within the context of precision
agriculture (McBratney et al, 2005; Cassman, 1999) will very likely require
additional efforts to improve crop modelling under water-limited conditions, i.e.
to integrate more water-driven mechanisms in crop models or, as discussed by

Passioura (1996), to transform source-limited approaches into sink-limited.

Regarding the diversity of employed methods among models, there is a
higher diversity in the simulation approaches of pre-infiltration processes
(Figure 2.2). The number of components considered in the calculation of the
infiltration pool varies substantially among models (Figure 2.2). The main
issues are related to the incorporation (or exclusion) of snow pack modules
and calculation methods related to canopy interception and surface inflow (or
outflow) from run-on (or runoff) processes (Figure 2.2 and Appendix). Such
discrepancies might be the result of a longer scientific heritage, since it appears
that more time has been dedicated to the study of infiltration-related processes
than to other water balance processes (Figure 2.1), promoting the observed
diversification of methodologies and modelling approaches. Another case of
methodological discrepancy among models is related to evaporation from soil,
where several different methods are used: one or two stages, with the second
stage limited either by time or by soil water flow, which can be modeled in

several different forms (Section 2.3.4 and Appendix).

The highest degree of concordance among models is related to the
calculation of evaporative demand (Figure 2.2). From the five methods identified
(Le. PE, PM, PT, HG and SVAT schemes; Appendix), the large majority of models
have adopted PM equation (Section 2.3.4), with the exception of MIKE-SHE and
SWIM (Appendix). Similarly, in most cases reviewed (Figure 2.2), the root water
uptake is based on a linear model relating relative uptake to soil water content

between the upper and the lower limit (Section 2.3.5).

While evaporative demand is more or less uniformly treated, this is not the
case for the partitioning of £ T into evaporation and transpiration. Most models
follow a Beer-Lambert type equation depending on the canopy extinction

coefficient and leaf area index (Section 2.3.4 and 2.35), but for some of the
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hydrologic models (HYDRUS-1D, HYDRUS-2D, SWAP, SWIM) an option is
offered to use the soil cover method instead. In general, in the case of most crop
models, there is a clear agreement on the use of Beer-Lambert formulation, but

for hydrologic models both options seem to be equally adopted (Appendix).

While there is substantial agreement in the fundamental approaches of the
reviewed models, there are also major differences among the two model families.
The main differences found between crop and hydrologic models are related
to temporal and spatial resolution of processes in the soil-plant-atmosphere
continuum, and to the degree of mechanistic or empirical-based approaches
used (Appendix), implying considerable differences in terms of complexity as
well.  While the crop models (with the exception of DAISY) follow a TBA,
hydrologic models are based on numerical solutions of Richards’ equation
(Section 2.3.6). Such a divergence implies structural differences between both
families not only in terms of spatial resolution but also in terms of temporal

scales.

The TBA limits models to a point-based scale where drainage is assumed
to be a steady flow (Section 2.3.6), only vertical and discrete in time (resulting
in longer time-steps, e.g. daily). The degree of empiricism involved in TBA
based models (i.e. most crop models) is also higher (e.g. CN-method, drainage
coefficients, capillary rise defined by Neumann type conditions). On the other
hand, hydrologic models, based on numerical solutions of Richards, are capable
of simulating the water balance at shorter time-steps (e.g. hourly) and of
integrating some multi-dimensionality in the simulation of water flows by

distributing partially water over the horizontal space.

2.5 Opportunities to simulate spatial water variation

The ability to simulate continuity and multi-dimensionality does not necessarily
timply the simulation of a full distribution of water over space, as none of the
hydrologic models (and none of the crop models) simulates all spatial processes
that we have identified (Figure 2.3). All spatial processes are covered by at

least one model (Figure 2.2), but none of these models covers all of them
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simultaneously (Figure 2.3). Some models consider subsurface lateral flows
but still ignore surface inflow from run-on (Figure 2.3). Additionally, as more
generally discussed (Passioura, 1996; Nielsen & Alemi, 1989), the apparent
continuity associated with hydrologic models can also be a point of discussion
as these models follow 'discrete characteristics’ too (e.g. input parameters,
boundary conditions, reduced dimensions through the Galerkin finite-element
method, Scott's scaling method for simulating hysteresis), becoming eventually

more stochastic rather than deterministic.

Regarding the simulation of water processes spatially at crop field level,
some methodologies for geospatial simulation, visualization and validation of
models (e.g. geospatial interpolation of point based simulations, zonal statistics
applied to mapped simulation results, integration of modelling with remote
sensing) have been proposed (Basso et al, 2001; Booker et al, 2015; Campos
et al, 2019; Casa et al, 2015; Droogers and Bastiaanssen, 2000; Er-Raki et al,,
2007; Grassini et al, 2015; Han et al, 2019; Jégo et al, 2012; Jia et al, 2011;
Lobell et al, 2015; Lorite et al, 2013; McBratney et al, 2005; Moiling et al,
2005; Silvestro et al,, 2017; Shu et al,, 2018; Ward et al,, 2018). However, while
most of these cases have been developed at regional scales, not addressing
within-fleld spatial variation (Droogers and Bastiaanssen, 2000; Grassint et
al, 2015; Han et al, 2019; Jia et al, 2011; Lobell and Azzari, 201/; Lobell
et al, 2015; Lorite et al, 2013; Sadler and Russell, 1997; Shu et al, 2018;
/wart and Bastiaanssen, 2007), others, that reveal some promising advances
in respect to the spatial simulation of water and vegetation, do still neglect
spatial compensations of yield determining factors such as variations of the
harvest index or root growth (Moiling et al., 2005; Booker et al,, 2015; Ward et
al, 2018). In addition, we acknowledge that the assimilation of remote sensing
to quantify spatial variations is also problematic as ample variation can be
observed when using reflectance signals to derive canopy structure parameters
with implications on crop transpiration and photosynthetic activity (e.g. LA/
S(), as done by as done by Campos et al. (2019), Casa et al. (2015), Er-Raki et
al. (2007), Silvestro et al. (2017), requiring in-situ and crop specific calibration

that is not straight forward (Gao et al,, 2020).
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We emphasize that in terms of water spatial distribution and its effects on
crop growth and development, geostatistical methods applied to point-based
(or partially distributed) water balances might smooth considerably the actual
spatial heterogeneity, because lateral water movement and ‘cause-effect’
relations between neighbouring cells are still partly ignored (Fig. —2.3).
This awareness is in line with the observations reported by Wallor et al.
(2018). In addition to this, relying solely on geostatistics to deal with spatial
heterogeneity does not resolve the existing knowledge gaps in regard to the
driving mechanisms (McBratney et al., 2005). This was also raised by Nielsen
and Wendroth (2003), who suggested that statistical methods should not replace

research inventiveness in the assessment of spatial and temporal variations.

In order to distribute spatially water processes in crop models, further
steps might be foreseen in two different directions. One implying a stronger
synergism between both model families, that might result in the addition
of spatial and continuous mechanisms to crop models, other through the
integration of lateral flows in current TBA based discrete approaches. The
specific processes and approaches that hold the most promise for advances
are related to the incorporation of surface inflow and subsurface lateral flows
(Figure 2.3), by using differential equations (Section 2.3.3 and 2.3.8) or through
novel water spatial partitioning relations that must be developed for TBA based

discrete approaches.

The future will surely be determined by the existing trade-offs between
models complexity and adoption.  The excessive simulation time and
the calculation complexity associated with mechanistic structures that was
sometimes seen in the past as a constraint to adoption (Loomis et al, 1979;
Nielsen and Alemi, 1989; Passioura, 1996), is very likely to be overcome by
today's enormous computational capacity of alternative operational systems
(Thorp et al, 2012). However, larger calibration and parameterization
requirements associated to mechanistic approaches that depend on complex
numerical and analytical solutions of nonlinear equations may not meet the
small ‘appetite for data’ that we aim for in an attractive tool. Therefore, both

ways imply important trade-offs between accuracy and data requirements that
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must be considered. In any case, we conclude that further steps are in need
of experimental datasets for the calibration and validation of new upscaling
efforts (as also raised by Sadler and Russell (1997)). Spatially distributed data
related to subsurface soil texture and plant available water will be essential to
achieve a better performance of modelling (Wallor et al, 2018). In this sense,
crop modelers are strongly encouraged to come up with innovative databases,

suitable for upscaling and spatially calibrating modelling tools at field level.

The success of precision agriculture and spatial management will surely
benefit from new advances in the spatial modelling of water as we identify
scope for conceptual improvements. Further (coordinated) research efforts are
definitely needed, empowering linkages between researchers, farmers, sensing
manufacturers and consultants is highly recommended in order to promote field
experiments at real scales’ capable of capturing satisfactory levels of spatial

variation.
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Figure 2.1: Chronological evolution of modelling approaches and theoretical fundamentals; in blue: methodological approaches related to infiltration
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crop growth simulation models; in dark-pink: hydrology based models. PE means Penman equation, 2-stage-M corresponds to the 2 stage method
proposed by Ritchie. (1972), PT means Priestley and Taylor, HG represents the Hargreaves equation and PM is Penman-Monteith. FSPM means
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modelling approaches of evaporation and transpiration is represented in black color. All horizontal arrows refer to the time-scale below, except in the case
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APPENDIX - Chapter 2

Table 1: Synthesis of models. Codes: INFpool = Infiltration pool, INFeff = effective infiltration, INFponding = ponding infiltration, SRn = Forms of surface runoff

(2: Horton and saturation flow; 3a: previous plus throughflow; 3b: previous plus surface flow; All: all escribed forms of SRn, P = precipitation, | = irrigation, SPM =
snowpack module, SF = stemflow, INT = intercepted pool, SIF = surface inflow (from run on), CAP = capacity model, CN = curve number, G&GA = Green and Ampt,, PE
= Penman equation, PM = Penman-Monteith, PT = Priestly and Taylor, HG = Hargreaves, SVAT = Soil vegetation atmosphere transfer scheme, CU = compensatory
uptake, SSLF = subsurface lateral flow, PF = preferential flow, INT-BL = Integrated through Beer-Lambert equation, SC-M = Soil cover method, LIN = Linear, EXP =
Exponential, NLD = Non-linear differential equations, £D, (or £D;) = Evaporation demand to estimate evaporation (or transpiration), TBA = Tipping bucket approach,
D-CR = predefined CR, SnU-CR = simulated CR without updating water table, SU-CR = simulated CR and updated water table.

Model WOFOST DSSAT APSIM DAISY STICS AquaCrop MONICA HYDRUS-1D HYDRUS-2D SWAP MIKE-SHE SWIM
INFpool P Pl Pl PLSPM PLSF Pl PLSPM  PLINT,SPM PLINTSPM  PLINT.SPM  PLINT,SPM,SIF PLSPM
INFeff CAP CN CN Richards CN CN CAP Richards Richards Richards Richards Richards
INFponding X X X Darcy X X X G&A G&A G&A G&A X
SRn 2 2 2 3a 3a 2 2 2 2 2 All 3b
ED. PE,PM PEPT  PMPT PMHG PM,PT PM PM,PT PMHG PMHG PM SVAT SVAT
ED, PM PMPT  PMPT  PMHG, SVAT PMPTSVAT PM PM,PT PMHG PMHG PM SVAT SVAT
2-stage X X v X v v X X X v X v
Partitioning  INT-BL ~ INT-BL  INT-BL INT-BL INT-BL SC-M INT-BL  INT-BLSC-M INT-BL,SC-M INT-BL,SC-M SC-M INT-BL,SC-M
K, X v v X v v X X X X X X

S; LIN LIN LINEXP LIN LIN LIN LIN LIN,NLD LINNLD LIN LIN NLD
CuU X X X X X X X v v X X X
Drainage TBA TBA TBA Richards TBA TBA TBA Richards Richards Richards Richards Richards
CR X SnU-CR X SU-CR D-CR SnU-CR D-CR SU-CR SU-CR SU-CR SU-CR SU-CR
Hysteresis X X X X X X X v v v X X
SSLF X X X ouTt X X X ouTt OUT,IN ouTt X X
PF X X X v X X X v v v v X

Main sources: (1) Boogaard et al. (2014); (2) Hoogenboom et al. (2017); (3) Verburg (1996), Keating et al. (2003); (4) Hansen et al. (1990), Abrahamsen and Hansen
(2000), Hansen et al. (2012); (5) Brisson et al. (2003); (6) Steduto et al. (2009), Raes et al. (2009a, 2017); (7) Nendel et al. (2011); (8) Simunek et al. (1998), Simunek et al.
(2018a); (9) Simunek et al. (1999); (10) van Dam et al. (1997), van Dam (2000c), Kroes et al. (2017c¢); (11) Abbott et al. (1986), DHI (2017b); (12) Verburg et al. (1996).



SUPPLEMENTARY MATERIAL - Chapter 2

General description of selected models: The following sections are dedicated
to introducing each model regarding historical context, basic structure, and

functioning, including some relevant calibration and simulation case-studies.

1. The WOrld FOod STudies (WOFOST)

The 'WOrld FOod STudies’ (WOFOST) is a crop simulation model initially developed by the Centre for
World Studies (Wageningen University & Research) in cooperation with the Centre for Agrobiological
Research (CABO) both located in Wageningen, The Netherlands (Boogaard et al,, 2014; de Wit et al,
2018; van Ittersum et al, 2003; van Van Diepen et al, 1989). WOFOST is a radiation-driven model which
shares many of the fundamentals and algorithms with the earlier SUCROS model (Laar et al, 1997). The
model estimates crop yield at three main production levels (Boogaard et al., 2014; van Van Diepen et

al,, 1989): 1) Potential crop yield; 2) Water-limited crop yield, assuming optimal nutrient supply; and

3) Nutrient-limited crop yield. In this review, we focused on the water-limited production level (YW)
since WOFOST only simulates and delivers the water balance components when crops grow under
water-limited conditions (Boogaard et al, 2014; van Van Diepen et al, 1989). WOFOST computes the
water balance through different approaches. Starting with the original single layer ‘tipping bucket’
approach (van Van Diepen et al,, 1989), a more advanced soil water balance is also currently available
coupled with the Soil Water Atmosphere Plant (SWAP) model, by applying a numerical solution to the
Richard's equation at a variable time basis in a multi-layer representation (Boogaard et al, 2014; de Wit
et al, 2018; Eitzinger et al., 2004). However, here we will consider only the original description of the
water processes in WOFOST for comparative purposes. Many calibration and simulation case-studies
are found in literature (Boogaard et al, 2013; de Koning et al, 1995; Dobermann et al, 2000; Eitzinger
et al, 2004; Haberle and van Diepen, oct1999; Kassie et al, 2014; Roetter, 1993; Supit, 1997; Todorovic
et al, 2009; Wang et al,, 2011; Wolf and van Diepen, 1994).
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2. The decision support system for agrotechnology transfer (DSSAT)

The decision support system for agrotechnology transfer (DSSAT) is an integrated system of computer
software coupling independent models for simulating cropping systems. DSSAT has evolved from
previously available models such as CERES and CROPGRO (Jones et al,, 2017a). This modelling effort
started in the 1980's, when different groups produced models in isolation, leading to the divergence

of the modelling community and approaches (Jones et al, 2003). Since that time, efforts were applied

to create the present DSSAT (Jones et al, 2017a). Currently, the DSSAT is continuously tested

and improved, partly inspired by the modelling structure of APSIM which resulted in the revision

of the CROPGRO models (Jones et al, 2001). The present version of DSSAT (i.e. CERES-based) is
radiation-driven and simulates the effects of management practices on cropping system production, both
short and long term, delivering predictions for more than 20 crop species (Ahmad et al, 2012; Amiri et
al,, 2013; Bastos et al, 2002; Boote et al, 2018, 2002; Boote and Scholberg, 2006; Cammarano et al,
2012; Eitzinger et al, 2004; Giraldo et al, 1988; Griffin, 1993; Hartkamp et al, 2002; Hoogenboom et al,
1994; Yiwen Jiang et al, 2016; Jones et al,, 2003; Keating et al,, 1992; Liu et al,, 2011; Malik et al, 2018;
Matthews and Hunt, 1994; Modala et al, 2015; Pedreira et al, 2011; Robertson et al,, 2002; Saseendran
et al, 2010; Singh et al, 2017; Singh and Virmani, 1996; Stastnd et al, 2010; Travasso and Magrin, 1998;
White et al, 1995; Woli et al,, 2017).
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3. The Agricultural Production Systems Simulator (APSIM)

The Agricultural Production Systems Simulator (APSIM) has been developed by the Agricultural
Production Systems Research Unit (APSRU), a collaborative group from CSIRO and Queensland State
Government agencies in Australia (Keating et al, 2003). APSIM was designed for a wide range of
applications, from on-farm decision support for Australian farmers (http://www.yieldprophet.com.au/),
to support risk assessment for government policy, also making it a guide to scientific research and
education (Keating et al, 2003). The model is radiation-driven and follows two major modelling
conceptual approaches for simulating the soil water balance. It follows a 'tipping bucket’ approach
(the SOILWAT module) or it applies a solution of the Richards' equation for one-dimension,

when coupled with the soil and water integrated model (SWIM) (Connolly et al, 2002; Stewart

et al,, 2006). As for WOFOST, here, we focused only on the SOILWAT module of APSIM. The

model has been calibrated for several crop species (Ahmed et al, 2016; Delve et al, 2009; Hearn,
1994; Keating et al, 1999; Manschadi et al, 2000; Mohanty et al, 2012; Robertson et al, 2002;
Robertson and Lilley, 2016; Snow et al,, 1999; Zheng et al,, 2014). Additional documentation found at:

https://www.apsim.info/documentation/model-documentation/soil-modules-documentation/soilwat/

4. The open soil-crop-atmosphere system model (DAISY)

The open soil-crop-atmosphere system model (DAISY) has been developed by the University of
Copenhagen back in the 1990's and is focused on the simulation of soil organic matter dynamics,
water-nitrogen balance and crop productivity (Hansen et al, 1991, 1990). The model is centered on the
functioning of a crop-carbon module that simulates plant growth as a function of canopy photosynthesis
and plant respiration, as affected by weather variables (i.e. global radiation, air temperature), plant
state variables (i.e. LAl), and water and N stress coefficients (Abrahamsen and Hansen, 2000). The
photosynthesis follows the structure of SUCROS model (Van Keulen et al, 1982). DAISY is particularly
interesting for carbon and nutrient-balance studies with users such as policy makers interested in
nitrogen leaching, carbon fixation and soil quality, as well as advisers focused on yield prediction and
fertilization planning. The model has been used in multiple case-studies (Hansen et al,, 1991; Jensen et
al, 1994; Manevski et al, 2016; Rotter et al, 2012).
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5. Simulateur multidisciplinaire pour les cultures standard (STICS)

‘Simulateur multidisciplinaire pour les cultures standard’ (STICS) is a model developed by a consortium
back in 1996 (Brisson et al, 2003). STICS simulates daily crop growth and soil, water and nitrogen
balances relying on radiation-driven relationships (Beaudoin et al, 2009; Brisson et al, 2003; Whisler
et al, 1986). The model reveals high adaptability to several crop species by using generic parameters
relevant for most crops, while keeping options concerning both physiological and management
parameters that can be adjusted for each crop (Brisson et al, 2003). STICS has promoted a rich
communication environment between users and developers leading to a constant improvement of the
model (Hunink et al,, 2011). Despite being initially developed for two main crops (wheat and maize),
many simulation studies for multiple species may be found in the literature (Brisson et al, 2002; Garcia
de Cortazar Atauri, 2006; Jégo et al, 2012; Rotter et al, 2012; Salo et al, 2016). STICS is able to
simulate dormancy periods, bud breaking mechanisms, symbiotic N fixation, and detailed effects of
mulching, which makes it possible to be used in simulations of perennial crops (Garcia de Cortazar
Atauri, 2006).

6. The FAO crop model to simulate yield response to water (AquaCrop)

AquaCrop is a water-driven model for simulating productivity of major annual crops (Steduto et al.,
2009). The model simulates biomass production by assuming a linear relation between biomass and
transpiration through a water productivity (WP) conservative parameter (Steduto et al,, 2012, 2009;
Tanner and Sinclair, 1983). The WP value is normalized for reference evapotranspiration and CO2
concentration (Steduto et al,, 2007). Contrary to other models, AquaCrop uses canopy cover (CC)

instead of LAl to characterize crop growth. Despite its relatively simplicity, Aquacrop is rooted in

the fundamental processes involved in crop productivity with special emphasis on the responses to
water deficits both from a physiological and an agronomic perspective (Dirk Raes et al, 2009). The
model simulates yield responses to salinity and has been applied to the simulations of irrigated
cropping systems (Garcia-Vila et al, 2009; Garcia-Vila and Fereres, 2012) and for decision support at
the irrigation district level (Lorite et al, 2007). AquaCrop has been widely calibrated and validated
during its lifetime (Araya et al, 2016, 2010a b, 2010b a; Cosi¢ et al, 2017; Espadafor et al, 2017;
Garcta-Vila et al, 2009; Geerts et al,, 2009, 2008; Heng et al,, 2009; Hsiao et al,, 2009; Linker et al., 2016;
Maniruzzaman et al,, 2015; Montoya et al, 2016; Paredes et al, 2015; Rinaldi et al,, 2011; Stricevic et al.,
2011; Todorovic et al, 2009; Wellens et al, 2013; Zeleke et al, 2011).
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/. The MOdel for Nltrogen and CArbon dynamics (MONICA)

MONICA is the acronym for "MOdel of Nltrogen and CArbon dynamics in Agro-ecosystems” and has
been developed by the Institute of Landscape Systems Analysis from the Leibniz Centre for Agricultural
Landscape Research (ZALF). It was first released in 2011 and since then it has been updated to the
V2.0 version published in 2016 (Berg, 2018; Nendel, 2014; Nendel et al, 2011). MONICA describes
mechanistically the transport and bio-chemical cycling of carbon, nitrogen and water in agro-ecosystems
at daily time steps (Berg, 2018). The model simulates crop growth with a radiation-driven approach as
in the SUCROS model (Van Keulen et al, 1982). The model emerged from improvements on the carbon
cycle of the HERMES model (Kersebaum, 2007, 1995). HERMES simulation of nitrogen mineralization
from the soil organic pool, was replaced by an approach similar to that of DAISY, which also takes into
account the dynamics of soil microbial biomass (Ahuja et al, 2014; ISMC, 2017; Wallor et al, 2018).
MONICA has also been used to develop decision support systems (http://www.landcare2020.de), used on
both tropical and temperate conditions (Wenkel et al,, 2013). The model has been calibrated for several
crop species used in several case-studies (Nendel et al, 2013, 2011; Rotter et al, 2012; Salo et al,, 2016;
Specka et al, 2015).

8. The HYDRUS-1D package

The HYDRUS-1D is a software package developed by the International Groundwater Modelling
Center and the University of California at Riverside. The model aims primarily to generate a finite
element solution capable to simulate one-dimensional movement of water (i.e. lumped scale), heat,
and multiple solutes in variably saturated media (Simunek et al, 1998). The HYDRUS packages use
a Microsoft Windows based graphical user interface for input data management and discretization of
nodes, parameterization, execution and output visualization. Recent applications of the HYDRUS-1D
include evaluations of irrigation schemes, studies of root water uptake, groundwater recharge and
nutrient transport (Lt et al., 2017; Simdnek et al, 2016; Slama et al, 2019; Tafteh and Sepaskhah, 2012;
Wang et al,, 2014; Zhou and Zhao, 2019). The model estimates crop water uptake based on potential
evapotranspiration as an input or through radiation-driven crop growth, such as the one in SUCROS
or WOFOST used in parallel (Lt et al,, 2017). Crop-simulation with HYDRUS-1D has been done for
multiple crop species (Hou et al, 2017; Li et al, 2017; Tafteh and Sepaskhah, 2012; Zhou and Zhao,
2019).
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9. The HYDRUS-2D package

HYDRUS-2D emerged from HYDRUS-1D. It is also a Microsoft Windows based Modelling environment
for analyzing water flow and solute transport in variably saturated porous media, but in this case

for two-dimensions. The software package includes a 2D finite element approach for simulating

the movement of water, heat, and multiple solutes. The model includes a parameter optimization
algorithm for inverse estimation of soil hydraulic and/or solute transport parameters. The model

is supported by an interactive graphics-based interface for data-prepossessing, generation of a
multidimensional structured grid, and graphic presentation of the results. Regarding crop growth and
water uptake, a similar approach as in HYDRUS-1D is followed. Several applications in regard to
irrigation management, simulation of flow to drainage systems, movement of salts and agro-chemicals,
and seasonal simulation of water flow can (Deb Sanjit K. et al,, 2016; Karandish and Simdnek, 2016;
Styal et al, 2012; Skaggs et al, 2004). The software package has been upgraded and it is now fully
integrated with the HYDRUS-2D/3D version which is the current extension developed for both 2D and
3D applications (Simtinek et al, 2018). The new version has a new graphical environment and it is

commercially distributed (i.e. not for free) by the International Groundwater Modelling Center (IGWMC).

10. The Soil Water Atmosphere and Plant model (SWAP)

SWAP was designed in Wageningen to simulate flow and transport processes at field scale level (Van
Dam et al, 1997). The model simulates transport of water, solutes and heat in unsaturated/saturated
soils, and it addresses both research and practical questions in the field of agriculture, water
management and environmental analyses (Kroes and Supit, 2011; van Dam, 2000). The crop growth
module is based on that of WOFOST (Kroes and Supit, 2011; van Dam, 2000), but the model can also
be coupled with other crop models for estimation of crop related parameters (Dokoohaki et al., 2016).
The soil moisture, heat and solute modules exchange status information each time step. Crop growth is
affected by actual soil moisture and salinity on a daily basis but hydrological processes (i.e. infiltration,
runoff, etc) are simulated at time-steps less than one minute. The model accounts for macro-porous
flow and water repellency situations. Main applications are related to surface water management and
drainage studies (Ben-Asher et al, 2006; Yao Jiang et al, 2016; Kroes and Supit, 2011; Sarwar et al,
2000; Smets et al, 1997; van Schaik et al, 2010).
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11. The integrated catchment model - 'Systéme Hydrologique Européen’
(MIKE-SHE)

MIKE-SHE emerged from the 'Systeme Hydrologique Européen (SHE)' (Abbott et al,, 1980) as the
result of an European consortium formed by the Institute of Hydrology (UK), the engineering company
SOGREAH (FR) and the Danish Hydraulic Institute (DHI). Its tailor-based approach allows the user

to adjust the complexity of the modelling approaches, according to the conditions of the intended
case-study (DHI, 2017a a, 2017b b). Within the current review and for simplification purposes,
MIKE-SHE is described according to the approaches set by default (i.e. demo model). Information on
other options may be found in the latest version of the manual (DHI, 2017a a, 2017b b). MIKE SHE

has been developed for integrated catchment hydrology applications, such as the conjunctive use and
management of surface and groundwater, irrigation and drought management, wetland management and
restoration, environmental river flows modelling, floodplain management, groundwater-induced flooding
simulation, nutrient transportation and management and integrated mine water management (Butts and
Graham, 2005). The model has been used at the crop field scale, too (Hashemi et al, 2018; Singh et al,
1999).

12. Soil Water Infiltration and Movement model (SWIM)

SWIM is a software package developed in Australia within the CSIRO Division of Soils (Verburg et al,
1996b a). The model has been used to simulate runoff, infiltration, redistribution flow and transport of
nutrients, plant uptake and transpiration, soil evaporation, and vertical drainage (Ross, 1990; Verburg et
al, 1996a b, 1996b a). The model does not compute evapotranspiration which must be taken as an input
parameter, or from a radiation-driven crop model, such as APSIM that must be run in parallel. This has
been done for some crop species under different growing conditions (Stewart et al,, 2000; Verburg et al,
1996a).
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13. Synthesis of models

Table: Synthesis of models. Codes: Synthesis of models. Codes: (NL) = The Netherlands, (USA) = United
States of America, (AUS) = Australia, (DK) = Denmark, (FR) = France, (DE) = Germany, WUR = Wageningen
University and Research, CABO = Centre for Agrobiological Research, CSIRO = Commonwealth Scientific and
Industrial Research Organisation, DHI — Danish Hydraulic Institute for Water and Environment, USAID = US
Agency for International Development, USDA = US Department of Agriculture, DA-DBSE = Department of
Agriculture and Department of Basic Sciences and Environment from the University of Copenhagen, INRA =
French National Institute for Agricultural Research, FAO (UN) = Food and Agriculture Organization of United
Nations, ZALF = Institute of Leibniz Centre for Agricultural Landscape Research, IGWMC = International
Groundwater Modelling Center, UCR = University of California Riverside. The 'time-scale’ indicates the extent
of each simulation time-step (i.e. hourly or less than one-hour when models simulate water processes in a scale
of minutes). The 'spatial-scale’ is characterized as 'point-based’ for cases where all water flows occur vertically
or as ‘'semi-distributed’ for models that partially distribute water over the horizontal space.

ID  Model Type Released Research institution Country Spatial-scale Time-scale
1 WOFOST Crop 1980's WUR/CABO NL Point-based daily
2 DSSAT Crop 1980's USAID/USA USA Point-based daily
3 APSIM Crop 1990's CSIRO AUS Point-based daily
4 DAISY Crop 1990's DA-DBSE DK Semi-Distributed daily
5 STICS Crop 1990's INRA FR Point-based daily
6 AquaCrop Crop 2000's FAO UN Point-based daily
7 MONICA Crop 2010's ZALF DE Point-based daily
8  HYDRUS-1D  Hydrology 1980's IGWMC/UCR USA Semi-Distributed <hour
9  HYDRUS-2D Hydrology 1990's IGWMC/UCR USA Semi-Distributed <hour
10 SWAP Hydrology  1990's WUR NL Semi-Distributed <hour
11 MIKE-SHE Hydrology  1990's DHI DK Semi-Distributed <hour
12 SWIM Hydrology  1990's CSIRO AUS Point-based <hour

Original sources: 1) van Van Diepen et al. (1989); 2) Jones et al. (2003); 3) Keating et al. (2003); 4) Hansen et
al. (1990); 5) Brisson et al. (2003); 6) Steduto et al. (2009); 7) Nendel et al. (2011); 8) Simunek et al. (1998); 9)
Simunek et al. (1999); 10) van Dam et al. (1997); 11) Abbott et al. (1986); 12) Verburg et al. (1990).
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Chapter 3

Using NDVI for the assessment of canopy
cover in agricultural crops within modelling

research

This chapter has been published as:

Tenreiro, T. R, Garcta-Vila, M, Gémez, J. A, Jiménez-Berni, J. A, & Fereres, E. (2021). Using
NDVI for the assessment of canopy cover in agricultural crops within modelling research.
Computers and Electronics in Agriculture, 182, 106038.

Abstract

The fraction of green canopy cover (CC) is an important feature commonly used to characterize crop
growth and for calibration of crop and hydrological models. It is well accepted that there is a relation
between CC and NDVI through linear or quadratic models, however a straight-forward empirical
approach, to derive CC from NDVI observations, is still lacking. In this study, we conducted a
meta-analysis of the NDVI-CC relationships with data collected from 19 different studies (N=1397).
Generic models are proposed here for 13 different agricultural crops, and the associated degree of
uncertainty, together with the magnitude of error were quantified for each model (RMSE around 6-18%
of CC). We observed that correlations are adequate for the majority of crops as R? values were above 75%
for most cases, and coefficient estimates were significant for most of the linear and quadratic models.
Extrapolation to conditions different than those found in the studies may require local validation, as
obtained regressions are affected by non-sampling errors or sources of systematic error that need
further investigation. In a case study with wheat, we tested the use of NDVI as a proxy to estimate CC
and to calibrate the AquaCrop model. Simulation outcomes were validated with field data collected from
three growing seasons and confirmed that the NDVI-CC relationship was useful for modelling research.
We highlight that the overall applicability of these relationships to modelling is promising as the RMSE
are in line with acceptable levels published in several sensitivity analyses.
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3.1 Introduction

The fraction of green canopy cover (CC) is defined as the fraction of projected
ground area covered by photosynthetically active vegetation (Wittich and
Hansing, 1995). This key vegetation feature is used to quantify crop canopy
growth, radiation interception, and evapotranspiration partitioning in both crop
and hydrological modelling applications (Allen and Pereira, 2009; Bouman,
1995; Dorigo et al, 2007; Gémez et al, 2009; Steduto et al,, 2009; Steven et al,,
1986; Tenreiro et al.,, 2020).

Proximal and remote sensing have both been used to characterize CC
through the use of the ‘Normalized Difference Vegetation Index (NDVI)
(Jasinski, 1990; Hatfield et al, 2008; Plant, 2001; Trout et al, 2008). In
addition to the NDVI, other indices have been developed to characterize
the vegetation through remote sensing observations. Examples are the Soil
Adjusted Vegetation Index (SAVI), the Atmospherically Resistant Vegetation
Index (ARVI), the Global Environment Monitoring Index (GEMI), the Enhanced
Vegetation Index (EVI), the Green Chlorophyll Index (Clgreen), the Red-edge
Chlorophyll Index (Clged—edge), the Weighted Difference Vegetation Index
(WDVI) (Basso et al., 2004; Baret & Guyot, 1991; Gitelson, 2013; Huete, 1988;
Jiang et al,, 2008; Rondeaux et al, 1996; Vina et al, 2011; Wiegand et al, 1991).
Theoretically, many advantages can be attributed to some of these indices in
comparison with the NDVI, which is commonly known for its limitations in
dealing with soil background and atmospheric effects (Purevdorj et al, 1998;
Rondeaux et al, 1996; Vina at el,, 2011). However, NDVI is still one of the most
widely adopted vegetation indices due to its simplicity of use and interpretation,
thus its popularity in the literature, and the fact that it is readily available from
most satellite and other remote sensing providers (Pettorelli et al, 2005, Van
Leeuwen et al, 2006; Scheftic et al, 2014; Maestrint & Basso, 2018; Meng et
al, 2013; Weiss et al, 20071).

Cao et al. (2020) have found in their review generally good agreement on the
relation between CC and NDVI through linear or quadratic models, although

they reported considerable variability among and within different vegetation
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types. It has been well accepted that, aside from other factors, correlations
between NDVI and CC vary among crop species (Gitelson, 20106), but it is
unclear which are the standard correlations to be considered for different
groups of crop types, how tight is the association between the two variables,

and thus the degree of uncertainty in predicting CC from NDVI.

The identification of standard models, ite.  correlations with similar
regression coefficients and NDVI saturation thresholds (Gutman and Ignatoy,
1997), associated with similar light extinction coefficients (Campbell and
Norman, 1998), would enable us to propose generic algorithms that would
not require re-parameterization for some crop types, allowing the extension of
existing NDVI-CC correlations into modelling applications for many other crop
species (Gitelson, 2013).

One increasingly important application for the spatial analysis of cropping
systems, is the estimation of CC via remote sensing to calibrate simulation
models (Campos et al, 2019; Casa et al, 2015; Er-Raki et al, 2007; Jin et
al, 2018a; Mohamed Sallah et al, 2019; Silvestro et al, 2017). In order
to explore how correlations between NDVI and CC relate to specific crop
species and groups of crop types, we conducted a meta-analysis in which we
compiled information that correlated remote and proximal sensing NDVI with
fleld observations of CC for different crop species and types. With this analysis,
we also aimed to contribute to the improvement and standardization of CC
model calibration with NDVI, by suggesting generic and robust correlations to
be used for different agricultural crops, as an interesting alternative to in situ

measurements of CC that can be costly and time consuming.

A meta-analysis has generally multiple applications in applied research.
Within this particular study we highlight its value for exploring heterogeneity
among crop species and types regarding NDVI-CC correlations, to identify

general patterns in existing data and opportunities for future research (Krupnik
et al, 2019; Stewart, 2010).
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3.2 Materials & Methods

3.2.1 Meta-analysis

The meta-analysis was developed from a systematic review of all calibration
studies published with the following keyword combinations on the title:
‘vegetation index + canopy cover’, “vegetation indices + canopy cover’, “NDVI
+ canopy cover”’, “NDVI 4 ground cover’, “NDVI + coverage’, “vegetation indices
+ cover’, “NDVI + cover’, and ‘remote sensing + groundcover”. A total of 22
published articles (Calera et al,, 2001; Carlson et al,, 1994; Carlson and Ripley,
1997: de la Casa et al, 2018, 2014: Derrien et al, 1992; Er-Raki et al,, 2007;
Gitelson, 2013; Gitelson et al, 2002; Goodwin et al,, 2018; Gutman and Ignatoy,
1998; Imukova et al, 2015; Jasinski, 1990; Jiang et al,, 20006; Jiménez-Mufoz et
al, 2009; Johnson and Trout, 2012; Lukina et al,, 1999; Prabhakara et al., 2015;
Purevdorj et al,, 1998; Todd and Hoffer, 1998; Trout et al, 2008; Verger et al,
2009) were selected according to the abstract, from which five were rejected
due to lack of data on measured CC (Carlson and Ripley, 1997; Derrien et al,

1992; Gutman and Ignatov, 1998; Jasinski, 1990; Todd and Hoffer, 1998).

Additionally, we included in the analysis two unpublished databases
collected by us as follows: 1) Data collected in 2012-15 (N= 33) for multiple
annual crops in the region of Cérdoba, Spain; 2) Data collected in 2019-20
(N=16) in a commercial wheat plot, located in the region of Cérdoba, Spain.

Following is a brief description of both databases.

The first unpublished database contains 33 observation units: winter wheat
(N=0), sunflower (N=Db), cotton (N=Db), maize (N=5), basil (N=3), common bean
(N=2), garlic (N=1), watermelon (N=1), asparagus (N=1), sorghum (N=1),
onton (N=1), chickpea (N=1), and rosemary (N=1). CC data were collected
in spring-summer cloud free days (i.e, April-July) at plot level (2-5 ha), in
visually homogeneous zones and excluding field border stripes with the same
width of the satellite spatial resolution (30 m). The zonal average of satellite
NDVI (Landsat-7) was estimated from 25-55 pixels, varying from case to case
according to the area of observation. CC was measured with the GreenCrop

Tracker software at different growth stages, at a height of 1 m above the canopy,
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perpendicularly to the ground to minimize the significance of angular effects,
with a digital camera (Nikon Coolpix S7000 16 MP) between 10:00-15:00 local
time (Cihlar et al, 1987).

The second unpublished database has 16 observation units and was
collected in a commercial wheat field at four different dates, from crop
emergence to anthesis. The field was divided in four observation zones,
according to a clustering analysis of historical NDVI patterns and field
geomorphological properties. Each zone was approximately 2 ha, excluding
border stripes with the same width of each satellite pixel (10 m). Border stripes
were excluded to guarantee that all satellite pixels considered within each
zone were entirely located within the same zone. At each zone, the average
of approximately 200 pixels of NDVI was plotted against the average of 10
observation points of CC, following a random sampling scheme. CC ground
measurements were taken with a digital camera (Canon EOS 550D + EFS
18-135 mm CMOS APS-C 187 MP) at 1.8 m height (at 10:00-12:00 local
time) using an image processing package (Patrignani & Ochsner, 2015). Al
observations were conducted under clear sky conditions (0-2% cloud cover) and

satellite data were atmospherically corrected using the Sen2Cor processor and
Planet-DEM (Le., Sentinel-2 Level-2A products).

Fijt Image-J software (https://imagej.net/) was used to extract the data
from each document. The final database (N=1397) combined information on
NDVI, measured CC, crop species, location of the study, NDVI source (ie,
satellite or in-situ measured with a digital camera or a spectroradiometer)
and coefficient of determination (R?). Both published and unpublished sources
of data were considered together because it is accepted that the inclusion of
unpublished data minimizes the effects of publication bias in meta-analysis,
while it maximizes the total sample size, thus enabling the extrapolation of

results to a larger extent of case-studies (Krupnik et al,, 2019).

All data were grouped according to crop species, crop type (ie., cereals,
grain legumes, grasslands, horticultural, industrial crops, and forage legumes),
growing season (i.e, winter-spring, spring-summer, perennial crops) and NDV/

source. Crop species with less than 10 observations entered the general
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correlations but were excluded from the regression analyses of specific crop
species due to excessive data skewness (ie, asymmetry of the cumulative
probability distribution). Crop types were defined according to taxonomic
criteria (e.g. cereals, legumes), agronomic use (e.g. grain, forage) and canopy
structure. Regarding canopy structure, crop species were clustered according
to the mean values of the leaf angle distribution parameter (extracted from
Table 15.1 in Campbell & Norman. (1998)). Regression analysis was used to

estimate model coefficients, expressed linearly as following:

CC(%) = a-NDVI+b (3.1)

where a represents the inverse of the difference between the NDVI value
of an area of bare soil and the NDVI value of a pure vegetation pixel, and
b corresponds to the negative fraction of the same bare soil NDVI divided
by the difference of the previous two (Qt et al, 2000). Alternative models were
also tested, including quadratic models through polynomial regression analysis
(Gao et al, 2020), as well as logarithmic and exponential models, respectively

expressed as:

CC%)=a-NDVIF+b-NDVI+c (3.2)
CC(%) = a- log(NDVI)+ b (3.3)
CC(%) = a-e" NPV (3.4)

Least Squares Fitting (LSF) and statistical hypothesis testing were
respectively used to estimate the regression coefficients and their significance
level (stats package in R; Team, 2002). For each group correlation, the null
hypothesis was tested with the non-parametric Mann—Whitney U test since
samples were not normally distributed. Non-normality was checked with the
Shapiro-Wilk test (Acutis et al, 2012). The NDVI saturation threshold was
estimated by solving the best fitted regression with CC equal to 100% (Gutman

& Ignatov, 1997). The performance of each model was evaluated by comparing
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simulated sets of CC against measured CC. Root mean square error (RMSE)
and R? were used as statistical indicators of performance for model evaluation.
The RMSE quantifies the weighted variations in error (residual) between the
predicted and observed values of CC, while the R? indicates the percentage of

variance that is explained by each model.

3.2.2 A case study — testing NDVI-CC correlations in simulations with the

AquaCrop model

The applicability of our results was tested using four independent sets of
experimental data. The NDVI-CC model obtained for wheat was used to assess
site-specific time-series of NDVI, used to estimate CC values, and to calibrate
CC curves at multiple locations in simulations of the AquaCrop model (Steduto
et al, 2009). The site-specific time-series of NDVI were defined through
interpolation of discrete values, obtained from Sentinel-2A imagery, at dates
with clear sky conditions and for each selected observation point (N=28). Three
different seasons of satellite data (ie. 2015/16, 2017/18 and 2019/20) were
used to assess four different ‘field x year' dataset combinations in two wheat
flelds grown in 2019/20 (i.e. trial A and B), one in 2017/18 (trial C), and one
in 2015/16 (trial D). While trials B, C and D correspond to the same field at
different seasons, trial A was located in a different field nearby (Appendix -
Table A3.1).

The two experimental fields are located in Cordoba, southern Spain (37.8°
N, 4.8° W, mean altitude 170 m). Field one (trial A) and field two (trials B, C
and D) are 42 and 36 ha, respectively. The soils are of clay texture with high
bulk density (1.65-1.88 g cm®) and of 1.2-1.6 m depth. The spatial variation
of soil properties was characterized in field one by using an electromagnetic
induction sensor (DUALEM-21S) to measure soil ECa (dS/m) at 35 and 85
cm depth. Soil samples (%Clay, %Sand, pH) were collected at 35 cm depth
following a multistage sampling scheme that was based on two different clusters
of superficial ECa. In field two, soil properties were averaged for the entire field

according to on-farm records.
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The wheat cultivars KIKO-NICK-R1, Anthoris-R1, KIKO-NICK-R1 and
Amilcar were sown in trial A, B, C and D, respectively. Seeding rates were 200
(£20) kg/ha. Trial A was fertilized with two applications of Calcium Ammonium
Nitrate plus Sulphur (230 + 180 kg/ha). Trials B, C and D were respectively
fertilized with 165, 180 and 190 kg N/ha (Ubesol + Urea), and 60 kg P/ha

(Diammonium phosphate).

Cround measurements of CC were conducted in trial A, every 15-20 days,
from sowing to harvest. CC was measured using a digital camera (Canon
EOS 550D + EFS 18-135 mm CMOS APS-C 18.7 MP) at 1.8 m height and
an image processing package (Patrignani and Ochsner, 2015). VYield was
spatially assessed and it was determined with the 'New Holland" Precision
Land Manager (PLM) software, taking as an input the shapefiles generated by
the combine harvester monitor (Fendt PLI C 5275). Yield values were calculated
with a spatial resolution of 100 m?, following the equation of Reitz & Kutzbach
(1996). An evaluation of the estimated yield data from the combine monitor
was performed by comparison with manual samples taken at each point in trial

A (sampled areas of 0.9 m?). Spatial yield data was computed with R-studio
(Lovelace et al, 2019).

The AquaCrop model was parameterized with data collected at 28 different
observation points, 10 corresponding to trial A and six to each of the remaining
trials (Appendix - Table A3.1). Soil parameterization was divided into two
different soil types for trial A, while only one soil type was considered for
the other trials (Appendix - Table A3.1). Soil hydraulic parameters were
estimated with the "USDA-rosetta program’ (Schaap et al, 2001). Daily weather
data were obtained from a weather station nearby. Crop parameterization
included sowing and harvesting dates, mean emergence date, seeding rate,
site-specific plant density, root growth rate and crop stages duration (Appendix
- Table A3.1). Crop stages duration were obtained from field observations of
phenological development and adjusted according to the CC curves obtained
from satellite NDVI, i.e. the vegetative stage duration and the beginning date
of crop senescence, both expressed in calendar terms (Figure 3.1). Both the

fitted maximum canopy cover (CCpax) and the corresponding date, when crop
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reaches maximum CC, were estimated by solving the first derivative of the fitted
CC curve. More information regarding the parametrization procedures of the
AquaCrop model may be found in Steduto et al. (2012). Our methodological

approach is synthesized in Figure 3.1.

Simulated yield values were plotted against point-based observations,
estimated from the corresponding yield maps. RMSE of simulated yield was
calculated for each field and the coefficient of variation (CV) of simulated yields
of different sites was assessed and compared with the CV of observed yields.
The CC values, estimated from NDVI, were compared with the fitted curve
values used in the model parameterization. Ground measures of CC, taken in
fleld A, were used for validation of CC values estimated from NDVI. The Willmott
index of agreement (d), the Pearson correlation coefficient (r) and the RMSE

(expressed in % of CC) were estimated and used for this evaluation.

3.3 Results & Discussion

3.3.1 General results of the meta-analysis

The meta-analysis yielded a total of 139/ data points (Table 3.1 and Figure
3.2). Within a total of 26 different crop species recorded, 13 had more than 10
observations (N>10) and followed a log-concave cumulative probability function
of NDVI (Figure 3.3). For these 13 crop species, the NDVI values followed a
bimodal distribution and the obtained correlations had a normal distribution of

residuals according to the corresponding histogram for each regression.

Within the total universe of data points collected (N=1397), 34 were
classified as ‘unknown’ crop species due to lack of information regarding the
species in the publications. These points (2.5% of total sample size) were used
for the general correlations but discarded for the specific groups regressions.
A general standard model (N=1397) was established. The best fitted model
follows a linear structure (Table 3.2), in which the effects of soil background and

crop traits are highly simplified (Gao et al,, 2020; Gutman and Ignatov, 1997).

In this meta-analysis we found that the satellite NDVI (N=524) tends
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to overestimate CC for low levels of NDVI (Figure 3.3-C and Table 3.2) in
comparison to in-situ proximal sensing (N=873). This is justified by the
noise effect that disturbs the reflected signals of low vegetated surfaces
(Todd & Hoffer, 1998). This effect is more relevant when using satellite data
because the spatial resolution of the sensors is commonly larger than the
scale of individual vegetation objects, which enhances the noise effect of soil
background. The lower R? of the satellite generic model may also be explained
by a larger number of crop species being considered (Table 3.1). However,
when considering only species with more than 10 observations, no differences
regarding the species composition of these two groups (i.e. satellite and in-situ)

were observed (results not shown).

The cumulative probabilities of NDVI for each crop type followed logarithmic
shapes. All best fitted models were either linear or quadratic (Table 3.2). By
contrast, the R? values of logarithmic and exponential models were considerably
lower than those for linear and quadratic regressions, and RMSE (of logarithmic

and exponential models) were on average 10-25% higher (results not shown).

For most crop types, within a NDVI range of 0.25-0.75, the regressions did
not differ considerably from each other (Figure 3.3). Below and above those
limits, soil background noise and NDVI saturation effects make it difficult to
estimate CC accurately (Carlson and Ripley, 1997; Prabhakara et al, 2015;
Xue & Su, 2017). However, despite the general linear trend, an exceptional
behaviour is observed for the case of grain legumes (i.e, soybean) because
the best fitted correlation was quadratic (Table 3.2). For this specific case
the quadratic model was a better alternative to the linear one (de la Casa et
al, 2018; Gitelson et al, 2013). By contrast, in cereals and other field crops
(L.e, horticultural and industrial crops), the linear model seems to be adequate
(Table 3.2). However, we must highlight that, independently on the best fitted
model, most models have considerable RMSE (Table 3.2), suggesting that for

applications that require high accuracy, local calibration must be conducted.

According to the proportion of total data variation, the obtained R? values
indicate a fair fitness of observed data in the models proposed (Figure 3.4

and Table 3.2). The correlations were satisfactory as R’ values were above
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/0-75% for most cases and coefficient estimates were significant for most models
(Table 3.2), but sources of systematic error need to be identified to increase the
accuracy of NDVI-CC correlations. The observed trend of RMSE increasing (and
R? decreasing) with sampling size reveals the limitations to extrapolate these
models to different environments than those in calibration studies (Figure 3.5). A
similar effect is observed when increasing the number of databases considered
in each model, which might be associated to non-sampling errors or sources
of systematic error among studies (Poate & Daplyn, 1993). The uncertainty of
each individual observation was not captured in our analysis because it was
not possible to identify a common and objective indicator of uncertainty, which
would be independent on sampling size and directly comparable among all
observations considered. Nevertheless, we acknowledge that the variability of
the random disturbance of observations did not differ greatly across groups
of input data as the residuals plotted against fitted values were randomly
distributed within comparable ranges, and the 'Cook’s distance’, which was
plotted for each group of input data, did not show influential outliers (results

not shown).

Saturation effects of NDVI were only observed for grasslands, broccoli,
lettuce and sunflower (Table 3.2), which is likely due to a stronger asymptotic
behavior of CC, caused by more horizontal leaf angle distribution (Table 3.1) and
higher canopy expansion rate, both typical of these crops (Campbell & Norman,
1998; Johnson & Trout, 2012). The slight saturation effect that is observed
in these crops might also be associated with lower variability of the red
reflectance. At advanced phenological stages, the NDVI can become insensitive
to the variation in red reflectance, when NIR reflectance surpasses largely
the reflectance of red wavelength (Gitelson, 2016). For these crops, the NDVI
saturated above 0.9, which is equivalent to a Leaf Area Index (LAIl) between
three and four, depending on the crop species (Bouman et al, 1992). Under
optimal conditions, the LAl of upright canopy crops (e.g. cereals) can easily
reach a value of six, with substantial mutual shading. Therefore, saturation
effects are likely to be observed in the NDVI-LAI relations, but the same may

not apply to CC where these relations appear to be mostly linear (Table 3.2
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and Figure 3.4). There are slight saturation effects in the NDVI-CC of some
cases due to a higher leaf angle distribution parameter (Table 3.1 and 3.2).
Our results suggest that it may be more interesting to correlate NDVI with CC
than with LAIl, because, in relative terms, the exploitable range between both

variables is larger in the case of CC,

Despite the overall satisfactory goodness-of-fit, the coefficients of
determination varied among crop types and species, as well as the RMSE
(Figure 3.5). Different models can be proposed for several crops species and
groups of crop types, but under levels of uncertainty that range from 6% to 18%
(Table 3.2 and Figure 3.4). However, we recognize that the highest accuracy
does not necessarily imply the best option. Existing trade-offs between
temporal and spatial resolution of input data must also be considered (Lobell,
2013). While remote sensing NDVI overestimates CC, mostly in situations of
lower CC (Figure 3.3-C), the higher temporal resolution of NDVI satellite data
and the lower cost associated to its access and use are offsetting reasons to

support its use.

3.3.2 Applications of NDVI-CC correlations

The capacity to model agronomic mechanisms causing spatial variation in yield,
with practical implications for site-specific management remains a challenge
that is far from being resolved (Lamb et al, 1997; Leroux et al, 2017, 2018).
However, with the widespread advances in yield monitoring, the suitable
equilibrium between temporal and spatial resolution of freely available remote
sensing NDVI data, and using Table 3.2 regressions, it may be possible to
estimate CC with a fine-resolution for various crop types, and use it for

management applications in precision agriculture.

We believe that the use of NDVI-CC generic correlations will contribute
to the standardization of the main approaches taken in the assimilation of
CC into crop modelling applications (e.g. Jin et al, 2020). For these specific
cases, the use of present regressions will have different implications in the

various applications of crop simulation models. CC values used to update crop
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simulation models will introduce inevitably uncertainty, however, even with the
observed RMSE levels, the use of input canopy data is likely to result in better
yleld predictions than without any data assimilation of this kind (Doraiswamy
et al, 2003; Huang et al, 2015). The average error observed will propagate
in different ways towards the estimates, not only depending on what is being
simulated but also on the range of variation for both CC and final estimates
(Guo et al, 2019; Jin et al,, 2018b). However, we believe that for many practical
applications at field level, the observed RMSE are acceptable, as the temporal
integration of high frequency canopy data, interpolated under similar levels
of input error, have resulted in tolerable RMSE yield estimates for decision
making (Dente et al,, 2008; Waldner et al., 2019).

In crop simulation models that integrate multiple processes (e.g. Steduto
et al, 2009), CC dependent parameters have a low first order effect on yield
because simulated yield is mostly regulated by second order effects and
interactions among multiple parameters through different simulated processes
(Silvestro et al, 2017). Therefore, the assimilation of Table 3.2 regressions
does not imply an error propagation towards the final estimates in the same
order of magnitude due to model plasticity (i.e. the aptitude of a model to
vary the sensitivity to input parameters under variable application conditions).
Silvestro et al. (2017) conducted a global sensitivity analysis of wheat yield
simulated with the model AquaCrop, and for a variation of CC-dependent
parameters within a range of £33%, the final estimates showed an acceptable
sensitivity index (i.e. 0.1-0.7 ton/ha). Considering the R? and RMSE values of
Table 3.2 models, we hypothesize that the final yield estimates will have less
uncertainty than that reported by Silvestro et al. (2017). This is mostly valid for
the simulation of potential yield because, under crop stress conditions, larger

uncertainty in the final estimates is expected for the same level of input error
(Guo et al, 2019; Vanuytrecht et al,, 2014).

Additional potential is seen in the use of the NDVI-CC correlations herein
for assessment of spatial variations, where absolute values are less critical
than spatial-temporal relative variations, such as site-specific emergence

dates derived from zonal CC, spatial variation of vegetative growth rates, the
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estimation of different dates of CC peak in different management zones, the
relative variation of starting dates for crop senescence within the same field.
These are also examples of CC dependent parameters that have minimal first

order effects on the final yield estimates (Vanuytrecht et al,, 2014).

The proposed models may be considered adequate for many applications,
but there is an effect of irreqular sampling sizes that must be considered (Figure
3.5), as well as sources of systematic error that affect extrapolation of Table 3.2
models. Our analysis shows that CC may be estimated from NDVI albeit at
different levels of accuracy, depending on the crop. The NDVI-CC relations for
some crop species are supported by enough data availability, while in other
crop types more data is needed (e.g.,, industrial and horticultural crops). Even
though more attention has been devoted to cereals than other crop types (Table
3.1), there is insufficient data for important cereals such as rice, oat or sorghum.
The same applies to several other horticultural and field crops such as potato,

onion and sugar beet.

3.3.3 Application to the simulation of wheat yields

The spatial-temporal assimilation of CC data into the AquaCrop model was
performed in a case study with wheat, eight to 10 satellite images per season
were used to obtain NDVI at each observation site (Supplementary material).
Daily values of CC were estimated with the wheat NDVI-CC model developed
here. The ground measurements of CC (N=12), collected at each observation
site in trial A (N=10), indicated a suitable goodness-of-fit as the estimated CC
curves showed a mean RMSE of 1203 % (£ 2.9) which is line with the RMSE
values of the meta-analysis results (Table 3.2). Both the Pearson correlation
coefficient (r) and the Willmott's index of agreement (d) were bar-plotted,
separately for each observation site (Figure 3.6-A). These two correlation

indices indicated a good level of model performance, with mean values of 0.92
and 0.93 (£ 0.03).

The AquaCrop model, calibrated with CC curves that were adjusted with the

results of our meta-analysis (Figure 3.6-C and -D), was capable to simulate
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accurately crop yield (Figure 3.6-B). Our modelling captured a fair fraction of
the overall variation of observations (Table 3.3), both in terms of space and time

(Le. two different fields at the same year vs. the same field at multiple years).

The RMSE of our yield estimates (Table 3.3) was within the acceptable
sensitivity index range reported by Silvestro et al. (2017). In relative terms,
we observed that our modelling approach was capable to explain most of the
total observed variation. Our simulated yields showed, for each ‘field x year’
combination, CV values ranging from 52 to 8/% of the observed CV (Table 3.3).
The combine harvest data was also well correlated with the manual sampling
records (RMSE = 0327 Mg/ha, Appendix - Table A3.2). This indicates that
the error magnitude of simulated yields using the NDVI-CC relationship may
be acceptable in many practical applications. As measured, both the simulated
yteld and the combine harvest data RMSE's were within comparable ranges
(0.327-0.504 Mg/ha), which indicates that assimilating NDVI-CC into simulation
modelling results in a similar level of uncertainty with yield mapping from

combine harvest data, used in precision agriculture.

It must be highlighted that AquaCrop simulated yields correspond to
water-limited yields. It is known that these can deviate from reality due
to the model point-based structure (Tenreiro el al, 2020). We believe that
the inclusion of spatial variations in water availability is likely to close the
gap between simulated and observed yield CV. In this case-study, the use of
the NDVI-CC empirical model, to calibrate a crop simulation model, provided
simulation results that were very much in line with measured observations,
suggesting that our meta-analysis results will contribute to new advances in

modelling research applications.

3.3.4 Closing remarks

We evaluated the robustness of several NDVI-CC relations as proposed by
Dorigo et al. (2007), who recommended to test the predictive capacity
of statistical relationships, within this context, over independent data sets,

including other crops and observations at both different locations and
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phenological stages. Our analysis provides substantial empirical evidence to
support the use of linear and quadratic models to estimate CC from NDVI
(Carlson and Ripley, 1997; Qt et al,, 2000). It also contributes new findings
to recently published ones (e.g, Gao et al, 2020). Gao et al. (2020)
addressed the NDVI-CC correlation from a mechanistic perspective, focusing
on theoretical considerations of linear and quadratic models, and on reviewing
relative vegetation abundance algorithms and correction methods of NDVI
estimations. Our study approaches these models empirically by compiling
multiple experimental data and proposes generic and 'easy-to-use’ correlations,
which are computationally undemanding (Dorigo et al, 2007), and enable

canopy data assimilation into modelling applications for many crop species.

While our study has only considered the relationships between NDVI and
CC, we recognize that the use of other vegetation indices may be a viable
alternative, more precise in some cases. However, the NDVI was the only
index that is common across all the studies used in this analysis and the
use of alternative indices would require access to the raw reflectance data,
which would not be possible for many studies. The recent advances in
very-high-resolution (VHR) remote sensing thanks to the advent of unmanned
aerial vehicles (UAVs) and other airborne platforms, combined with novel
computer vision techniques (e.g. machine learning image recognition, spectral
analysis, object-based classification), can improve the study of canopy attributes
such as CC (Chianucci et al, 2016). However, the broader adoption of these
technologies may be limited in countries where the use of UAVs is banned
or strictly requlated. Moreover, the area throughput of airborne platforms
ts still very limited, particularly when compared with satellite imagery. In
addition, estimating CC from historical satellite data through computationally
undemanding models, such as the ones presented here, extends the time

window of many of the applications discussed here.
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3.4 Conclusion

Several practical advantages of using NDVI for the assessment of CC were
identified and discussed. Our results were also experimentally tested, providing
a quantitative evidence that our models can be used in multiple applications
within modelling research. We concluded that, despite the overall uncertainty
of the models presented, our results can be adopted with fair confidence
in modelling applications, mostly in cases where the relative variations of
predictions are prioritized over the absolute accuracy level. Examples of these
are the spatial assessment of the vegetative state of a crop as well as the
use of simulation models to deal with relative variations within the context of
precision agriculture. We believe that the empirical models presented here
will contribute to the use of NDVI for determining CC, thus improving crop
growth estimates in experimental and modelling approaches that will assist in

decision-making in agricultural systems.
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Figure 3.2: NDVI plotted against CC for all datasets. The dots are colored according to the data source. Grey vertical lines represent the residuals (error)
for each observation and points are sized according to the corresponding error level, the bigger the point the larger the error.
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TABLES - Chapter 3

Table 3.1: Sampling groups characterization: N [data sources], N [data points] and N [crop species]
refer respectively to the number of data sources, data points and crop species included in each
sampling group. The canopy structure was expressed by the leaf angle distribution parameter (),
obtained from Campbell & Norman. (1998).

Model N [data sources] N [data points] N [Crop species] Canopy structure (x)
General 18 1397 26 -
Satellite 9 524 22 -
In-situ 9 873 10 -
Cereals 10 551 0 0.9-1.65
Grain legumes 3 312 3 <0.85
Grassland 2 291 a. 0.7-25
Horticultural crops 4 65 10 15-19
Industrial crops 3 93 3 2-3
Legumes forage 3 51 2 ~25
Winter-spring crops 8 459 §) -
Spring-summer crops 10 601 18 -
Perennial crops 5 303 2 -

Crop types species (N>10): 1) Cereals (Barley, Maize, Triticale, Rye, Wheat), 2) Grain legumes (Soybean), 3)
Crassland (a. non-specified), 4) Horticultural crops (Broccoli, Lettuce), 5) Industrial crops (Canola, Sunflower), 6)
Legumes forage (Alfalfa, Clover). The table values also consider crop species with less than 10 observations.
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Table 3.2: Model coefficient estimates of each group for linear and quadratic regressions. The best
fitted regressions are highlighted in bold, which were selected as those maximizing R? while keeping
a minimal amount of significant coefficients. Root mean square error (RMSE) was estimated for the
best fitted regression of each group. Significance codes: ™ 0.1% " 1% "™ 5%.

Linear Quadratic NDVI
Model RMSE saturation
a b R* a b c R? threshold

General [N=1397] 105.427*** -6.501*** 071 4257 100719 -5.439* 071 159 1.01
Satellite [N=524] 97.088"**  4.106" 0.62 -44549" 146.135™  -6.606 063 182 0.97
In-situ [N=873] 112.023*** -13.813*** 0.81 27.786™ 81.174 -6.705" 081 123 1.01
Cereals [N=551] 95.241"**  -4.118* 0.72 27916 63.478"* 3445 072 137 1.09
Grain legumes [N=312] 97.268™ 11.079™ 069 -113.005"** 225360*** -17.147*** 0.74 159 0.99
Grassland [N=291] 141.287*** -30.004*** 0.80 107.530"* 32505 -5.786 082 121 0.92
Horticultural crops [N=65] 109.663*** -13.552*** 0.85 29.041 91.741* -8.496 084 119 1.04
Industrial crops [N=93] 104.355"**  -6.822" 0.83 0659 103.659™  -6.694 083 124 1.02
Legumes forage [N=>51] 113.290*** -15.240*** 0.93 77.263" 35.651* -1.626 095 74 1.02
Barley [N=72] 03.243** -158 0.82 -84.847***  193.324*** -27.172*** 0.87 80 113
Maize [N=143] 113.956"** -22.268"** 0.78 55121 49.001 -5.697 078 121 1.07
Soybean [N=309] 97.003** 11290 069 -113.388"** 225.74***  -17.189*** 0.74 16.1 0.99
Triticale [N=27] 66.410"**  26.722*** 0.98 -20.198" 87.413" 22.736™ 098 26 1.10
Rye [N=10] 48.520"*  39.733*** 0.94 -7.791 59.550 36.128" 093 195 1.24
Wheat [N=298] 97.368"**  -4.492* 0.71 36.124* 56.9* 494 072 142 1.07
Alfalfa [N=12] 115.79***  -20.07 0.75 -145.82 304.17 -79.42 073 62 1.04
Broccoli [N=11] 132.291*** -19.550** 0.96 124.463" 12.387 2216 096 6.2 0.90
Canola [N=78] 112.335"** -13.869"** 0.89 41.193 70.062" -6.601 089 102 1.01
Clover [N=39] 114.154*** -14.786*** 0.95 81.896" 31.767* -1.270 096 7.4 1.01
Lettuce [N=43] 126.706*** -19.464"** 0.94 81.638" 50.287 -6.304 094 72 0.94
Sunflower [N=10] 77.37 158 069 -108.61" 198.96**  0.011* 0.95 157 0.91
Winter-spring crops [N=459]  96.337***  -2.734 0.75 14.657 79.952* 1.002 075 133 1.07
Spring-summer crops [N=601] 98.762" 1.56 067 -36.585"* 139.268"* -7.2* 0.67 176 1.07
Perennial crops [N=303] 139.314*** -29.320*** 0.81 100.603** 37.054 -6.44 081 121 0.92

Table 3.3: Simulation error assessment. Simulated yield RMSE and Coefficient of Variation (CV). %
Total yield variation’ corresponds to the fraction of total observed variation that was captured by the
assimilation of CC into modelling simulations.

Trial Year  Yield RMSE (Mg/ha) CV (Simulated yield) CV (Observed yield) % Total yield variation

A 2019/20 0.013 14.0% 16.0% 87.4%
B 2019/20 0.837 9.7% 18.1% 53.9%
C 2017/18 0.662 6.7% 13.0% 52.0%
D 2015/16 0782 17.2% 31.0% 55.3%
Mean - 0504 10.2% 15.7% 64.4%
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APPENDIX - Chapter 3

Table A.3.1. Experimental data sets used for parameterization of the AquaCrop model. Bulk density (BD) mean values were used, in
combination with clay and sand contents, to estimate hydraulic parameters for each soil type (Schaap et al, 2001). The standard deviations
are indicated between brackets. The hydraulic conductivity values used for the soil paramterization were the mean values reported in this
table (Ksar mean, expressed in mm day~'). One single soil horizon was considered (140 cm depth). The initial curve number was set at a
value of 78 (i.e. hydrologic group D). More information regarding the water balance approach that is followed by AquaCrop found in Tenreiro

et al. (2020). Mean sowing rate was set at 200 kg/ha for all trials.

a8

Data Field 1 - Trial A (2019/20) ‘ Field 2 - Trial B (2019/20) ‘ Field 2 - Trial C (2017/18) ‘ Field 2 - Trial D (2015/16)
Parameter Units Al A2 A3 BT B2 C1 C2 (C3 DT D2|AT A2 BT B2 C1 C2|A1T A2 BT B2 C1 C2|A1 A2 B1 B2 C1 (2
ECa dSm! 045 055 045 020 020 020 020 020 035 040| - - - - - - - - - - - - - - - - - -
Clay % 50 38 50 44 44 44
Sand % 15 22 15 22 22 22
Texture USDA class Clay Clay-loam Clay Clay Clay Clay
BD gcm™ 176 168 178 188 178 180 181 178 181 182 - - -
BDean gcm™ 177 (0.05) 1.81 (0.04) 1.77 (0.05) 1.66 (0.05) 1.66 (0.05) 1.66 (0.05)
Ksar range mm day™ 4.8-50 6.2-65 4.8-50 55-60 55-60 55-60
Ksar mean mm day™ 35 32 32 32
Opwp % 26 22 26 18 18 18
Orc % 39 35 39 35 35 35
Osar % 41 40 41 40 40 40
Sowing date date 13-Dec 18-Nov 24-Nov 10-Nov
Crop emergence DAS 9 8 10 10
Plant density plants m*> | 150 150 250 250 300 300 150 300 300 300|360 360 300 300 300 300|360 360 360 360 300 300|300 300 300 300 300 300
CCuiax % 75 77 80 /5 66 84 8 70 84 8 |8 86 8 8 83 84 |8 84 8 8 /8 8 | /5 74 72 72 068 71
Rootgowth cm day™! 0.7 ‘ 0.8 ‘ 0.7 0.8 08 0.8
Vegetative stage days 120 105 135 105
Anthesis duration days 10 14 18 16
Reproductive stage days 58 84 80 85
Senescence duration days 20 35 38 40
Harvest date date 9-Jun 13-Jun 27-Jun 19-Jun




Table A.3.2. Yield simulation outcomes at each observation point [N=28]. Manual sampling

yield data are provided for Trial A [N=10] Standard deviations are indicated between

brackets.

Field

Season

Trial

Point

Observed yield (Mg ha™")

Simulated yield (Mg ha™")

Manual sampled yield (Mg ha™")

NN NN NDNDNNNNNNNNNNNN 2 2 2

2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2019/20
2017118
201718
201718
2017/18
201718
2017/18
2015/16
2015/16
2015/16
2015/16
2015/16
2015/16

OUTUTUTTTOOO00O00O000TTIIIT > > > > > > >

Al
A2
A3
B1
32
C1
Cc2
3
D1
D2
Al
A2
B1
132
C1
Cc2
Al
A2
B1
B2
1
C2
Al
A2
B1
B2
1
C2

2.75 (0.30)
3.06 (0.23)
2.86 (0.26)
3.36 (0.15)
2.66 (0.01)
401 (0.13)
2.75 (0.22)
2.66 (0.06)
2.83 (0.01)
231 (0.18)
5.78 (0.20)
5.77 (0.16)
4.83 (0.05)
482 (0.03)
341 (0.38)
456 (0.61)
6.88 (0.13)
6.79 (0.09)
6.66 (0.40)
6.17 (0.08)
491 (0.13)
5.48 (0.20)
489 (0.13)
474 (0.11)
401 (0.35)
472 (0.23)
2.70 (0.28)
2,07 (0.09)

3.02
250
270
340
290
3.95
3.30
3.30
349
373
6.35
6.03
559
571
479
5.30
712
7.05
7.08
6.77
06.04
6.31
5.05
5.01
4.92
491
3.44
3.54

212
273
2.30
358
2.67
3.83
2.44
2.75
2.84
2.56
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Chapter 4

Simulating water lateral inflow and its
contribution to spatial variations of rainfed

wheat yields

This chapter has been published as:

Tenreiro, T. R,, Jerdbek, J., Gomez, J. A, Zumr, D, Martinez, G., Garcla-Vila, M., Fereres, E.
(2022). Simulating water lateral inflow and its contribution to spatial variations of rainfed
wheat yields, European Journal of Agronomy, 137, 126515.

Abstract

Spatial variations of crop yields are commonly observed in typical rainfed systems worldwide. It is
accepted that such variations are likely to be associated, among other factors, with water spatial
variations due to lateral water flows occurring in fields with undulating topography. However, some of
the main processes governing water spatial distribution such as lateral flow are not entirely considered
by the most commonly adopted crop simulation models. This brings uncertainty to the process of
yield simulation at field-scale, especially under water-limitted conditions. Although it is expected that
lateral water movement determines spatial variations of crop yields, it is still unclear what is the net
contribution of lateral water inflows (LIF) to spatial variations of rainfed yields in fields of undulating
topography. In this sense, by combining field experimentation, simulation models (HYDRUS-1D and
AquaCrop), and the use of artificial neural networks, we assessed the occurrence and magnitude of LIF,
and their impact on wheat yields in Cdérdoba, Spain, over a 30-year period. Seasonal precipitation
varied over 30 years from 212.8 to 759.5 mm, and cumulative LIF ranged from 30 to 125 mm. The ratio of
seasonal cumulative LIF divided by seasonal precipitation varied from 10.7 to 38.9% over the 30 years.
The net contribution of LIF to spatial variations of rainfed potential yields showed to be relevant but
highly irregular among years. Despite the inter-annual variability, typical of Mediterranean conditions,
the occurrence of LIF caused simulated wheat yields to vary +16% from up to downslope areas of the
field. The net yield responses to LIF, in downslope areas were on average 383 kg grain yield (GY) ha=',
and the LIF marginal water productivity reached 24.6 (£13.2) kg GY ha=" mm~" in years of maximum
responsiveness. Decision makers are encouraged to take water spatial variations into account when
adjusting management to different potential yielding zones within the same field. However, this process
is expected to benefit from further advances in in-season weather forecasting that should be coupled
with a methodological approach such as the one presented here.
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41 Introduction

Modern agriculture aims to optimize the efficiency and profitability of farming
systems while sustaining the increase in food production needed for a growing
population (Connor & Minguez, 2012; Fischer & Connor, 2018; Kirkegaard &
Hunt, 2010). In most typical rainfed systems worldwide, where spatial variations
of crop yields are commonly observed (Bramley, 2009; Maestrini & Basso, 2018;
Sadler & Russell, 1997; Sadras & Bongiovanni, 2004; Sida et al, 2021), there
is an opportunity for increasing productivity of resource use by determining
the management options to exploit the site-specific conditions within fields
(Cassman, 1999; McBratney et al,, 2005). Site-specific variations of crop yields
caused by differences in water availability due to lateral inflow from up to
downslope areas have been identified (Ciha, 1984; Batchelor et al, 2002
Halvorson & Doll, 1991; Rockstrom & Valentin, 1997; Schmitter et al, 2015).
However, the contribution of lateral inflow to spatial variations of yields has

not been systematically explored.

The intra-plot heterogeneity associated with lateral water flows has
implications in input allocation, allowing for spatial variations in crop
management in the context of precision agriculture (Ahuja et al,, 2019; Nielsen
et al, 1973; Sadler & Russell, 1997; Verhagen et al, 1995; Wallor et al,, 2018;
Ward et al, 2018). Precision agriculture would surely benefit from advances
in the spatial simulation of water variations over fields. However, to model
accurately rainfed yields in fields of undulating topography, we need simulation
tools capable of forecasting spatial variations in water availability within a field

for assessing their impact on crop performance.

Over the last decades, there has been great expansion in modelling
agricultural processes at the point scale (Jones et al, 2017; Spiertz, H., 2014),
but insufficient efforts have been devoted to scale up water-related processes,
which vary spatially, from point to field level (Ahuja et al, 2019; Wallor et
al, 2018). Tenreiro et al. (2020) have recently reviewed some of the most
widely adopted crop and hydrologic models and the main opportunities to

simulate spatial water variations at crop field level, and concluded that the
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most promising strategies for scaling up are related to the incorporation of
both surface and subsurface lateral flows when simulating crop performance.
The incorporation of surface and subsurface lateral flows within simulation
modelling requires innovative approaches and datasets, which should be
spatially distributed and related to the geomorphological properties with
implications for plant available water (Nielsen & Wendroth, 2003; Wallor et
al, 2018). However, data collection requires field experimentation conducted
at ‘real scales’, which are relatively expensive and difficult to replicate over
long periods of time. Therefore, the combination of both experimentation and

modelling is a valid strategy for making progress (Jones et al, 2017; Kamilaris
et al,2017; Toreti et al, 2018; Wolfert et al,, 2017).

Considering the typical inter-annual variation of the processes governing
crop-water spatial relations (de Wit & van Keulen, 1987), the present study
investigated the following question: ‘what is the net contribution of lateral
water inflows to spatial variations of rainfed wheat yields in fields of undulating
topography? Figure 4.1 illustrates graphically the relevance of our research
question. To address our research question, we developed a novel methodology
to explore the linkage between lateral inflows (including both surface and
subsurface flows) and yield variations in specific zones within a field. By
combining field experimentation, simulation models and the use of artificial
intelligence, we assessed the occurrence and magnitude of lateral inflows, and

their impact on wheat yields in Cérdoba, Spain, over a 30-year period.

4.2 Materials & Methods

4.2.1 Experimental sites

The experimental sites consisted of two nearby hydrologically independent
flelds, located in Coérdoba, southern Spain (37.8° N, 4.8° W, mean altitude 170
m amsl.) of 42 and 306 ha, respectively. Two catchment areas within the selected
flelds, 9.5 and 6.2 ha respectively, were delineated from a flow direction raster
obtained with the SACA - Wang Liu algorithm (Wang and Liu, 20006), from

a Digital Elevation Model (DEM) with 5 m spatial resolution collected with
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LiDAR (CNIG, 2019). The soils are formed on Miocene marls and have been
classified as Typic Haploxerert (Soil Survey Staff, 1999), or Vertisol according to
the FAO classification, characterized by clay texture with a shrinking-swelling
nature, high bulk density (1.65-1.88 g cm™) and of 1.2-1.6 m depth. The
catchments have mean slopes of 2-6%, respectively N-S and W-E oriented,
and with elevation varying from 140 to 195 m. Due to crop rotations, wheat
was monitored in catchment one in 2019/2020 (Figure 4.2-A and 4.2-C), and in
catchment two in 2020/21 (Figure 4.2-B and 4.2-D).

4.2.2 Sampling scheme and experimental design
Geomorphological properties and sampling points

The spatial variation of soil geomorphological properties was characterized in
catchment one by using an electromagnetic induction sensor (DUALEM-215) to
measure soil apparent electrical conductivity (ECa, dS m~") within the top 0-50
and 0-90 cm soil layers, four days after a rainfall event of approximately 10 mm
(McCutcheon et al,, 2006) and before sowing. Soil samples (%Clay, %Sand, pH)
were collected at 35 cm depth following a multistage sampling scheme that was
based on two different ECa-based clusters. In catchment two, soil properties

were averaged for the entire field using farm records (Table 4.1).

Topographic attributes were computed with SACA GIS (version 2.3.2) from
the DEM raster. Soil moisture sampling zones were delineated according to
both elevation and the flow accumulation index (FAIl). The flow accumulation
index (FAI) is expressed as the absolute number of upslope cells flowing to each
assigned cell of the DEM raster (Tarboton et al, 1991; Jenson & Domingue.,
1988). Since it is dependent on field scale and input data spatial resolution, a
normalization of the index (NFAI) was computed as follows:

FAlyax — FAI

NFAlI =1 — 41
FAIvax (41

The NFAI was estimated with SAGA-GIS (Conrad et al, 2015) and it was

represented as a raster with the same spatial resolution of the input DEM.
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Three sampling zones (N=3) were distributed along two converging flow
pathways in 2019/20 (with 2-3 replicate samples of soil moisture per zone,
Figure 42-A and -C), and along the same flow channel in 2020/21 (with
three replicates per zone, Figure 4.2-B and -D). In catchment one (2019/20),
the sampling points (2-3 per zone) were positioned according to the peak
of the mean ECa histogram, which was done to select sites of maximum
representativeness of soil properties within each zone. In catchment two
(2020/21), where soil properties were averaged, the sampling points were
simply positioned within each zone according to the flow direction and spaced

in T m intervals.

Rainfall and meteorological data

Rainfall was monitored upslope with an autonomous rain gauge system
(ECRN-100, ZENTRA Cloud ZL6, 16 cm collector diameter), with 10 min time
resolution. The rain gauge was installed in an intermediate site, located
600-900 m from each catchment, at a spot above the highest point of each
catchment (Appendix-A1). In 2019/20, manual pluviometers (TFA 47.1008, 12 cm
collector diameter) were positioned at each observation point (N=/) to capture
rainfall coefficient of variation. The coefficient of variation was computed in
relation to the autonomous rain gauge measurements for two separate rainfall

events before crop emergence in 2019/20.

Weather data (Figure 4.3) were obtained from a meteorological station
nearby, located less than 5 km away from each field (Appendix-A1). These
included global radiation, wind speed, air temperature and relative humidity,
which were daily averaged over half hourly measurements, and used to compute

daily mean ETo values according to FAO Penman-Monteith (Allen et al,, 1998).

Soil water content and lateral inflow calculations

Soil water content (SWC), expressed in mm, was monitored with multisensor
capacitance probes (SENTEK-D&D 90 cm, Sentek Technologies Ltd., Australia),
installed at each observation point (N=7 in 2019/20 and N=9 in 2020/21).

Probes were respectively installed at day after sowing (DAS) 20 and 5 in
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2019/20 and 2020/21. Each probe integrates nine sensors, distributed at every
10 cm, from 5 to 85 cm depth. The sensors provide near real-time data on soil
temperature and SWC (30 min time resolution), which were accessed through

the software IrritMAX Live (www.irrimaxlive.com/).

An error assessment was conducted for each probe, based on discrete SWC
measurements (N=20 date x depth(z) per observation point) made with a
neutron probe in 2019/20 (NP, Campbell Pacific Nuclear Scientific, Model 503).
A relative error assessment of the capacitance probes (CP) was conducted by
taking the NP measurements as control. The NP access tubes were installed 40
cm apart from the CP. One tube per observation point was considered sufficient
to meet the requirements for precision and statistical power (Evett et al, 2009).
NP measurements were taken at five different dates, and at 15, 30, 60 and 90
cm depth, and those values were correlated with the capacitance probe sensors
located at 15 cm depth, the average of 25-35 cm, the average of 55-65 cm, and
the last sensor located at 85 cm depth, respectively. The NP was calibrated
with gravimetric measurements of SWC, obtained in the same soil type in a farm
nearby (Appendix-A1). The NP calibration linear functions varied from depth
to depth (Appendix-Table A) and were characterised by R’ values of 0.96-0.98
for deep soil layers (30-90 cm) and 0.81-0.85 for the surface depth (0-30 cm).
Multiple calibration functions were tested in the IrriMAX Live software in order
to minimize error fluctuations per probe and depth. The ‘Sentek D&D cracking
clays’ calibration function, available in IrriMAX Live software, was chosen as
the most suitable option for our soil type (Paltineanu & Starr, 1997; RoTimt Ojo
et al, 2015). IrriMAX Live values (i.e., from CP measurements) were corrected

with the NP measurements as follows:

z=90cm
SWC.= ) (SWCr,-Q,) (4.2)

z=0cm
where SW (., represents the corrected SWC (expressed in mm), for the entire
profile and SWCr, represents the SWC value (in mm) provided by the IrriMAX
calibration function from raw input data, measured with the CP at depth z. Q), is

the correction factor (unitless) estimated for each probe x depth(z) combination
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and it was computed as the mean ratio between the SWC measurements with
the NP and the capacitance probes for depth z. The same calibration was used
in 2020/21. Daily values of SWC were computed for each observation point as

the simple average of all SW (. values registered within the same day.

Lateral inflows (LIF) were calculated in daily time-steps for each observation
point, from daily values of SWC.. Daily variations of SW (. were computed as
the difference between SWC, in day n and day n—1. Observed lateral inflows
were assumed to be the absolute difference between the daily SW (. variation
and the daily rainfall registered by the rain gauge, which was computed as

follows:

SWCcny — SWCcn=1) > Pin—1y = LIF, = SWCn) — SWCc(n—1) — Pin—1y (4.3)

Every day SWC. varied by an amount greater than the registered
precipitation (P), a lateral inflow was assumed to take place of a magnitude
equivalent to the difference between the increase in SWC and the rainfall
amount. For the calculation of LIF, deep percolation and evapotranspiration
(ET) were not considered for the following reasons. In our soil type, deep
percolation approaches zero (Giraldez & Sposito, 1985). In the case of ET, the
crop water extraction following a rainfall event is quite limited, as intercepted
water evaporates first from wet canopies as shown by Tolk et al. (1995).
Therefore, considering their very small magnitudes in our case, we did not
attempt to measure or estimate either deep percolation or ET, as it would
have added uncertainty to our LIF calculations. Our approach determines
the minimum LIF quantity that actually takes place under field conditions.
Therefore, if under our approach LIF is relevant for determining crop yield,
then it must play an even more important role in actual yield variations within

a field.
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Crop data and field observations

The wheat cultivars KIKO-NICK-RT and Avispa-R1T were sown in catchment
one (2019/20 season) and two (2020/21 season), respectively. Seeding rates
were 180 (£20) kg ha='. Catchment one was fertilized with two applications
of calcium ammonium nitrate plus sulphur (62 + 50 kg N ha=") and catchment
two was fertilized with ammonium sulfate plus urea (160 kg N ha="), and
diammonium phosphate (60 kg P ha='). Crop nutrient status was controlled
through foliar analysis conducted at flowering, with no critical deficiencies

observed.

Cround measurements of canopy cover (CC) were conducted in both trials,
every 10-20 days, during the monitoring period. CC was measured at each
observation point using a digital camera (Canon EOS 550D + EFS 18-135
mm CMOS APS-C 187 MP) at 1.5 m height and an image processing package
(Patrignant & Ochsner, 2015). CC curves were used to parameterize crop growth
related factors in the simulations with both the HYDRUS and the AquaCrop
models (Table 4.2). Crop stages duration were obtained from field observations
of phenological development and adjusted according to the CC curves obtained
from satellite NDVI, as described in detail by Tenreiro et al. (2021). Both
seeding rates and site-specific plant density values were registered and used
for modelling parameterization as well. Rooting depth trend was inferred in
each observation point using the SWC information (Table 4.2). Maximum rooting

depth was considered to be equal to average soil depth (1.4 m).

Crain yteld was harvested by combine, using the ‘New Holland" Precision
Land Manager (PLM) software which took as an input the shapefiles generated
by the combine harvester monitor (Fendt PLI C 5275). Yield values were
computed with R-studio (Lovelace et al, 2019), under a spatial resolution of
100 m? with the equation of Reitz & Kutzbach (1996). The accuracy of the yield
data from the combine monitor was assessed by comparing manual samples
taken at each observation point in catchment one (sampled areas of 0.9 m?)
against the combined harvest data. More information regarding the yield

spatial assessment is provided in Tenreiro et al. (2021). Yield observations
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were obtained from yield maps of catchment two (2015-2020 harvests). Zonal
means and standard deviations were estimated and values were plotted against

simulated yield values.

4.2.3 Modelling approach

To simulate water lateral flow and its contribution to spatial variations of
crop yield, a multi-stage modelling approach was designed (Figure 4.4). The
modelling approach was based on field experimental data (step-0, Figure
44) and it was divided in four subsequent steps (steps 1-4, Figure 4.4).
Field experimental data were collected according to a spatial analysis
based on GIS data aimed at identifying observation points according to
standard hydrological connectivity rules (i.e, fleld channel networks and flow
accumulation index), topographic attributes (i.e, elevation, slope orientation)
and other geomorphological properties (step-0, Figure 4.4). The first step
consisted on lateral inflow calculations from field observation data, in daily
time-steps and for each observation point (step-1, Figure 4.4). Then, a
hydrologic routine simulated the lateral outflows (with HYDRUS-1D, Simtinek
et al, 2018), generated upslope in form of surface run-off, and then the
occurrence of lateral water inflows (LIF) was predicted at each sampling point
(step-2, Figure 4.4). For each sampling point, daily calendars of LIF were
determined according to a hydrological analysis that combined field measured
data with both HYDRUS simulations and a machine learning (empirically
based) approach (step-2, Figure 4.4). An Artificial Neural Network (ANN) was
used to simulate LIF over a period of 30 years (1990-2020). Maier & Dandy
(2000) reviewed in detail the main applications of ANN models for the prediction
and forecasting of hydrological variables. The ANN model architecture was
delineated according to a trial-and-error procedure (step-2, Figure 4.4). Then,
the outputs of the hydrology-based modelling routine (step-2, Figure 4.4) were
used as inputs to the crop-based modelling stage (step-3, Figure 4.4). The
crop routine incorporated the calendars of daily LIF values as additional water
supply (step-3 and -4, Figure 4.4). The forecasted LIF over a 30-year period,

were then introduced as additional water supply through the irrigation module
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in wheat yield simulations with the AquaCrop model (Steduto et al, 2009).
Both the HYDRUS and the AquaCrop modelling routines functioned at one
dimensional space. Every simulation run was performed at one-dimension,
but we followed a ‘feedforward scheme’, which allowed us to simulate and

incorporate LIF throughout consecutive modelling steps.

Simulating the hydrology with HYDRUS

The HYDRUS-1D model (Simének et al, 2018) was used to simulate water
infiltration and estimate surface run-off and the spatial variation of soil
hydraulic properties. The HYDRUS-1D is a physically-based model that solves
Richards’ equation for transient water transport in variably saturated porous
media, and incorporates processes such as soil evaporation, crop transpiration,
root growth, and plant water uptake (Simtinek et al,, 2018, Tenreiro et al,, 2020).
The standard 'van Genuchten-Mualem model’" was used to represent the soil

hydraulic characteristics (Mualem, 1976; van Genuchten 1980).

The soil profile was modelled in one dimension at each of the measured
points in both experimental years. Two soil layers were considered: surface
and sub-surface. The surface layer was set at the first 10 cm of the modelled
profile, while the sub-surface layer was set down to 140 cm depth. The
meteorological conditions governing evaporative demand were set as the upper
boundary condition. A ‘free drainage’ condition was considered at the bottom
boundary of the soil profile because well drainage conditions with lack of soil
reduction symptoms were observed at the BC horizon below 140 cm depth,
during a pit excavation conducted prior to this study, and no indications of a
water table were found. A steady state of SWC based on the measured data
was used to set initial conditions (i.e, 0.20 cm® cm™ in the season 2019/20
and 027 cm® cm™ in the season 2020/21, following an average 60 day long
warm-up period to minimize the interference of soil-water altered conditions

due to probes installation).

The potential transpiration was estimated through the soil cover partitioning

method as described in Tenreiro et al. (2020). The same canopy cover curves
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used in simulations with the AquaCrop model were used for this purpose.
Root growth rates were assumed to be linearly constant (Table 4.2). The
rooting depth distribution function was based on the model of Hoffman & van
Cenuchten (1983) and the water stress function of Feddes (1978), adapted for
wheat and described in Wesseling et al. (1991), was considered. Since the
inverse optimization procedure is sensitive to the rooting depth distribution,

this was adjusted by means of SWC (Zumr et al,, 2000).

HYDRUS-1D parameterization was optimized using the measured soil water
content and the best fitted saturated hydraulic conductivity (Ksar) values
estimated for each soil layer at each observation point. The parameters were
optimized by the Marquardt-Levenberg Optimization Algorithm (Simunek et al.,
2012). The initial estimation of parameters was based on field measurements
of soil texture and bulk density (Table 4.1) using the Rosetta neural network
predictor (Schaap et al, 2001). Initial Ksar ranged according to van Genuchtens'’
a and n shape parameters, which were estimated through the Rosetta
predictions (more information is provided in Table A1 in Tenreiro et al. (2021)).
The minimum and maximum values of saturated and residual water content
were estimated from the measured SWC data. Parameter intervals used for
the optimization are given in Table 4.3. Due to spatial variability in measured
SWC, these ranges were further adjusted for each sampling point separately.
Several initial estimations were used to better explore the parameter spatial
dimension and to avoid falling in local minimum values (Simiinek et al. 2018).
The objective function minimum was found typically after /—20 iterations of the
Marquardt-Levenberg Optimization Algorithm. However, due to the numerical
instabilities during several optimization runs, multiple non-converging model
runs needed to be performed for each sampling point (i.e, typically 5 to 50
runs). A daily calendar of surface run-off was estimated for each sampling

point and experimental year.

Forecasting lateral inflows

Daily calendars of lateral inflows (LI/F,, expressed in mm day~') at each

sampling point were computed as a function of the run-off generated at that
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same point, as well as the run-off flowing from neighbouring and upslope
points within the same field. The daily values of simulated run-off with
HYDRUS were used as input features into a static multi-layer (feedforward)
ANN model (de Vos & Rientjes, 2005). Different performance criteria were used
to determine network inputs and model architecture (Maier & Dandy, 2000).
Input features (N=6) were selected according to a principal component analysis
(PCA) associating different potential predictors (N=12) with LIF observations at
each sampling point (Table 4). Model architecture was delineated according to
a trial-and-error procedure (Roadknight et al,, 1997; Senthil-Kumar et al., 2005;
Shukla et al, 1996). The ANN prediction accuracy and its computation-training

speed were assessed with R-studio (Gunther & Fritsch, 2010).

The ANN processes multiple algebraic operations over several input features
which are defined by a single column vector (7()). Fach of the inputs is
attenuated by a weight factor (w) that is linked to a transfer function (ie,
a logistic transformation of the data). The calculation scheme of an ANN using
i input features (computed in daily time steps n) and k hidden layers can be

simplified as following:

e [ Xm (a1 - win) .o (o - way)
CUM.LIF, =Y | & |- : t+e (4.4)

Xni (O(ﬂ : Wj1) ce (iji : Wji)
where a corresponds to the transfer function operator and the subscript
J delineates the number of nodes in each layer (de Vos & Rientjes, 2005).
The bias coefficient (€) corresponds to the overall error of the network, ie,
the sum of each node residuals, and the dependent variable is expressed in
daily cumulative terms (CUM.LIF,) to reduce the effects caused by temporal
deviations between observations and predictions of LIF. The relation between
daily (n) cumulative LIF (CUM.LIF,) and daily LIF (L/F,), at each point-site,
computed from the beginning of simulation until day n = i is expressed as

following:
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n=i

CUM.LIF, =% LIF, (4.5)
0

Daily L/F, was therefore estimated as the absolute difference between
CUM.LIF, at day n and CUM.LIF,_1 at day n —1:

LIF, = CUM.LIF, — CUM.LIF,_; (4.6)

Catchment one data (2019/20) were used to train the ANN model while
catchment two data (2020/21) were used for testing. For each trial, ANN-LIF
predictions were plotted against the observations of LIF and the Willmott index
of agreement (d), the R? and the RMSE were used as statistical indicators of
ANN performance. The best-performing ANN was used to forecast CUM.LIF,
time-series over a period of 30 years, from which the L/F, values were derived
for each zone. CUM.LIF, values were smoothed by a ‘'monotonically increasing

function’ to preserve a strictly increasing pattern over season.

The best performing ANN was applied to forecast daily LIF in catchment
two over the same period of 30 years. The model HYDRUS-1D was used
to simulate run-off at each sampling point and for each growing season
[1990-2020]. Catchment two properties (Table 4.1) and mean values for crop data
(Table 4.2) were used as input features to the best performing ANN. Weather
records (i.e, global radiation, wind speed, air temperature, relative humidity
and rainfall) for Cordoba [1990-2020] were obtained from the same weather

station (Appendix-A1).

The crop model stage with AquaCrop

The AquaCrop v6.T model (Steduto et al, 2009; 2012) was used to simulate net
yleld responses to lateral inflows (NYRr). NYRyr was assumed to be the
absolute difference in terms of simulated (water-limited) yield, between these

two different scenarios:

1) yleld simulation without lateral water inflow, following the standard
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assumption in AquaCrop where water inflow takes only place due to vertical

infiltration (Y7);

2) yield simulation including lateral inflow as an additional water supply,

which was set in the model through the irrigation module and computed as the
LIF forecasted by the ANN (Y3).

NY Ry ;r was calculated as following:

NYRyr = Yo — Y, (4.7)

where all terms are expressed in Mg ha~'. Yield response to lateral inflow

was also estimated in relative terms (NY Ry r—re1) as following:

NY R ir

Y/\/Iean
where Yreqn represents the mean yield estimated in scenario 1.

NYRF—rel = (4.8)

A sequence of 30 years LIF [1990-2020] and its impact on grain yield
was simulated to derive probability distribution functions of both NY R and
NYRyjr—rer. From the obtained series of NYRyr, the LIF marginal water
productivity (LIF.MW P) was computed as following:

/\/YRU,E x 1000

LIF.MWP = 49
CUM.LIF (49

where for each marginal unit of water supplied as LIF (expressed in mm), the

crop was assumed to respond with additional grain yield (Passioura & Angus,

2010). LIF. MW P was expressed in kg grain ha™! mm~",

The AquaCrop model was parameterized with field data (catchment two
values, Table 4.1) and crop data (mean values, Table 4.2). Long-term simulations
were conducted for catchment two because it showed lower standard deviations
for zonal means (Table 4.1 and 4.2). The hydraulic conductivity values used in
AquaCrop simulations (Ksar mean, expressed in mm day™') were the mean
values reported in Table AT in Tenreiro et al. (2021). Two soil horizons were
also considered (surface above 30 cm depth and sub-surface from 30 to 140 cm

depth). The initial curve number was set at a value of 84 (i.e,, hydrologic group
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D). More information regarding the water balance approach that is followed by
AquaCrop found in Tenreiro et al. (2020). Simulated canopy growth and grain

yleld were validated through field observations (Section 4.2.2).

4.2.4 Statistical analysis

Differences among sampling zones were tested for significance, the null
hypothesis was checked for the mean differences of both observed SWC and
LIF with the non-parametric Tukey's HSD (honestly significant difference) test
because these variables were not normally distributed. Non-normality was
checked with the Shapiro-Wilk test (Acutis et al, 2012). Within field spatial
variations (among the three sampling zones) were assessed with standard
coefficients of variation. The residuals of the ANN features were checked to be
randomly distributed (Supplementary material). HYDRUS simulations of SWC
were tested with the Nash-Sutcliffe model efficiency coefficient, the R? and the
RMSE (Moriasi et al,, 2007; Nash & Sutcliffe, 1970; Yang et al,, 2014). AquaCrop
simulations of grain yield were tested with the Willmott d index, the R? and the
RMSE (Willmott, 1981). Spearman’s correlation analysis was used to explore

relationships among several crop variables and both NYRy,;r and LIF. MW P.

4.3 Results

4.3.1 Experimental data

CPs overestimated SWC in comparison with the NP measurements. The
mean correction factor ((),) varied with both probe location and sensor depth
(Appendix-A2). The amplitude of error variation was greatest at the surface

layers (0-30 cm) but it tended to stabilize for deeper layers (Appendix-A2).

The soil water content (SWC,) varied spatially in both experimental
catchments/years (Table 45 and Figure 45). According to the HSD-test
conducted at a 5% level of significance, the annual mean SWC values varied
significantly among sampling zones (Table 4.5). Our sampling scheme did also

capture significant differences among zones in LIF values (Table 4.5), both in
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daily (L/F,) and cumulative terms (CUM.LIF,). However, as observed for SWC,
zone B showed a ‘transient profile’, where both the SWC and LIF values were
not ‘systematically and significantly’ different from the adjacent sampling zones.
For an accurate distinction among zones within our experimental sets, only

zones A and C were consistently different in terms of SWC (and LIF) variations
(Figure 4.2 and Table 4.5).

The magnitude of both SWC and LIF values also varied among catchments
and/or years (Table 45 and Figure 4.5). Catchment one showed lower mean
values than catchment two (Table 4.5), partly explained by the differences in
initial SWC (Figure 4.5). There might be also differences in soil properties
among sampling zones influencing SWC measurements in catchment two,
because clay and sand content, and bulk density were averaged for all zones
(Table 4.1). These differences can also be attributed to the performance of the
CP readings according to the calibration functions used. The mean coefficient of
variation of daily rainfall, measured for two events in 2019/20, was 9.5%, which
was lower than the LIF coefficient of variation (13%) estimated from probes data

among zones in the same season.

4.3.2 HYDRUS run-off simulation and ANN-LIF forecasting

The HYDRUS-1D simulations of SWC showed a mean Nash—Sutcliffe model
efficiency of 0.61 (£ 0.14) and 0.92 (& 0.04) for each of the experimental years,
respectively (Figure 4.6). In addition, the model has also increased the R? (while
reducing the RMSE), from the first to the second year (Figure 4.6). A higher
variation of performance indicators was also observed in catchment one than
in two. The run-off coefficients (cumulative simulated run-off divided by the

cumulative precipitation over the same period) varied from 4 to 13% in 2019/20
year and from 7 to 24% in 2020/21.

The best-performing ANN had six input features, four hidden layers with
three to four nodes per layer (Figure 4.7-A and -B). The best-performing features
were x1, x3, x5, x6, x10, x11 (Table 4.4). According to the PCA euclidean scores,

these features were the most correlated with LIF, significantly contributing to
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the first and second components, which explained together 52.2% of LIF variance
(Appendix-A3). The network was solved in 9962 steps (Figure 4.7-D). The best
performing ANN had a R? of 097 and 0.78, respectively for the training and
the testing set, and the RMSE of predicted CUM.LIF values were 10.1 and
14.8 mm, respectively (Figure 4.7-C). Observed CUM.LIF were scatter-plotted
against simulated values and no biased error trend was observed for any of the
subsets, as the residuals did not vary with the level of predicted LIF. Despite
showing a solid forecasting capacity, the ANN exhibits a general trend to

overpredict LIF in comparison to measured values (Figure 4.7-C).

Daily LIF calendars were predicted with the ANN (Figure 4.7) over a 30-year
period (Figure 4.8). While seasonal precipitation varied over 30 years from 212.8
to /59.5 mm, cumulative LIF ranged from 30 to 125 mm (Figure 4.8). The ratio
of seasonal cumulative LIF divided by seasonal precipitation varied from 10.7

to 38.9% over the 30 years.

4.3.3 Yield simulations with AquaCrop

The AquaCrop simulation outcomes in terms of yield response to LIF were
highly variable from year to year. Simulated plotted against observed yields
[2015-20] showed RMSE, R? and Willmott d index respectively equal to 0.374
(Mg GY ha™"), 035, 0.76 (Appendix-A4). Differences among zones were only
experimentally tested for the two systematically distinct zones (e, A and C
according to Table 45). In this sense, the cumulative probability of NY R
for zone C can be also interpreted as the absolute difference between the two
curves shown in Figure 4.9-A. Since cumulative LIF in zone A was negligible
(Appendix-Ab), the NYR;;r was only estimated for the water-receiving zone
C (Figure 4.9-B). In this case, NYRyr corresponds to Y, minus Y;, in zone
C, or Y2 in zone C minus Y, in zone A (Figure 49-A). Figure 4.9 shows the
cumulative probability distribution curves for simulated yield responses in the
two significantly distinct zones (A and C). Results are shown both in absolute
and relative terms (Figure 4.9-B and -D). Mean values of simulated NY Ry and

NY Ry jr—ret were 383 kg ha™! (Figure 4.9-C) and 16.2%, respectively. Absolute
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values are expressed in terms of grain yield (GY) in dry mass (DM).

Following crop yield simulations over a period of 30 years, the simulated
seasonal NYRyr varied from -0.14 to 2.08 Mg ha=", corresponding to a relative
net contribution of LIF to grain yield (NYRF—re) that ranged from -3% up to
+168%. NY Ry r was larger than 800 kg GY ha~! in five out of 30 years (Le,
1992/93, 1999/00, 2003/04, 2004/05, 2008/09). By contrast, in other five years
(L.e, 1990/91, 1996/97, 2001/02, 200//08 and 2019/20), LIF caused yield losses
due to water excess (Figure 4.9-C and Appendix-Table B). For the remaining
years, the NYRyr ranged from none to 670 kg GY ha™" (e.g,, 2014/15 as shown
in Figure 4.9-C), being below 265 kg GY ha~' for at least 50% of the years
(Figure 4.9-B).

According to the Spearman’s correlation matrix, shown in Appendix (Figure
A7), NY Ry r was negatively correlated with CUM.P and simulated yields. The
lower the yields simulated in higher zones (i.e., zone A), the higher was NY Ry ¢
at lower zones (i.e,, zone C), which is caused by marginal water productivity
gains (Appendix-A7 and -Table B). According to our simulations, the occurrence
of LIF over fields in our conditions has resulted in a mean LIF. MWP of 24.6
(£13.2) kg ha=!" mm~" in years of maximum responsiveness (Appendix-Table B).
LIF.MW P were also significantly and negatively affected by CUM.LIF, which
indicates that lower CUM.LIF also increases LIF. MW P (Appendix-A7).

4.4  Discussion

441 SWC measurements and lateral inflow calculations

The accuracy of the SWC measured with the CPs indicate that there is a
clear ‘trade-off’ between the precision of SWC measurements and the time
frequency/autonomy of the data collection system (Appendix-A2). The amplitude
of error variation was the greatest at surface layers (0-30 cm) but it appeared to
stabilize for deeper layers, which is likely to be explained by a better relation
between the moisture in the sensing volume and the average zonal moisture

(Chanzy et al,, 1998) . Lighter hysteresis effects at deeper soil layers may
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also contribute to the error stabilization with depth (Evett et al, 2009). The
SWC correction method that we followed assumes that a ‘linearity condition’
is fulfilled, as described in Campbell (1990) and Chanzy et al. (1998). Similar
behaviour was observed by Mwale et al. (2005), who analysed this issue more
in detail. However, although Mwale et al. (2005) reported a 20% average error
between capacitance and NPs (with a mean R? value of 0.7), their measurements
were conducted in lighter soils and under semi-controlled conditions. Our
results show a systematic overestimation of CP measured SWC (Appendix-A2),
which highlights that CP should not be used to monitor SWC in absolute terms

without previous calibration.

Although there is uncertainty on SW (. measurements, the observed pattern
of inferred LIF among zones is in line with both mean zonal elevation and NFAI
values (Table 4.1 and 4.5). The higher is the NFA/ (and the lower the elevation),
the larger is CUM.LIF inferred from field observations of SWC (Table 4.1 and
Figure 45). It is accepted that a fraction of these differences could be associated
with rainfall spatial variation within field as one single pluviometer was used
for monitoring rainfall input. However, the fact that the rainfall coefficient
of variation (9.5%) was lower than the relative variation of LIF among zones
(13%) indicates that our modelling scheme is appropriate to assess our research

question.

Neither ET nor deep percolation were directly considered for LIF
calculations as done by others (Klaij & Vachaud, 1992; Rockstrom & Valentin,
1997). We recognize that our approach may lead to an underestimation of LIF
values because these flows play an additive role when computing LIF from a
standard water balance approach. However, it was assumed that the inclusion
of such flows would add uncertainty to our analysis because they were not
measured. We consider that plant water uptake tends to be very low in rainy
days due to transpiration suppression by evaporation of canopy intercepted
water (Tolk et al, 1995). In addition, deep percolation approaches zero in our
soil conditions (Giraldez & Sposito, 1985), which contrasts with the case of the
sandy soils assessed by Klaij & Vachaud. (1992). We decided to calculate

LIF by relating measured SWC daily variations with daily measurements of
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rainfall according to a conditional term (i.e, LIF was only considered when
daily SWC varied by an amount greater than the registered rainfall) because
this method selects only days when LIF took certainly place. In this sense, we
focused only on measured values avoiding uncertainty on calendarization of LIF
due to the inclusion of non-measured flows. Our results must be interpreted
as the minimum LIF quantity that actually took place under our experimental
conditions, suggesting that if LIF is relevant for determining crop yield under

our approach, then it must play an important role in yield variations within a
fleld.

4.4.2 HYDRUS simulations and lateral inflow predictions

The HYDRUS-1D simulations showed a solid ‘goodness of variance fit'
according to the statistical indicators presented in Figure 4.6. The observed
‘Nash-Sutcliffe’ model efficiency coefficients indicate a robust match between
the simulated and the observed SWC (Moriast et al, 2007; Yang et al,
2014). The deviation statistics RMSE indicate also that the simulated results
were sufficiently accurate, despite the lower R’ values in the training set
(e, 2019/20 as shown in Figure 4.6). These are likely to be explained
by the R? insensitiveness to additive and proportional differences between
the simulated and measured data SWC (Yang et al, 2014). The observed
mean run-off coefficients (e, 85 and 15.5%, respectively for each experimental
catchment/year) were in line with other published results obtained for cereals,
under conventional systems in our conditions and with similar year precipitation
patterns (Lasanta et al, 2000; Torralba, 2013). Mediterranean environments
are particularly prone to run-off due to a combination of multiple factors.
Garcla-Ruiz. (2010) identified some of these factors from which we highlight
high rainfall intensity, the presence of steep slopes, frequent land-use changes

and cultivation systems.

According to our experimental data, the best-performing ANN was capable of
reproducing LIF patterns with enough accuracy among independent years and
sites of observation (Figure 4.7). The forecasted cumulative LIF was increased

in years of relatively high cumulative precipitation distributed through intensive

107



events (Figure 4.8). Clear examples were observed in the seasons of 1995/96,
1996/97 and 1997/98. Despite the relatively low run-off coefficients and
distributed among few events (Appendix-Ab), the cumulative LIF forecasted
by the ANN was comprehended within considerable levels (Figure 4.8 and
Appendix-Ab). Although no significant LIF was captured in high elevation zones
of our fields (Table 4.5 and Appendix-Ab), the amount of LIF that was forecasted
at receilving areas (i.e., zone C) varied from 10.7 to 38.9% of seasonal cumulative
precipitation, which is explained by the flow accumulation effect (in line with

the NFAl values, as shown in Table 4.1 and Figure 4.2).

Our best-performing ANN was fed by six different features, which could
show partial collinearity among them when used in classical regression models.
The existing relation between the saturated hydraulic conductivity (x10) and
run-off features (x1 and x5) is a good example of this issue. However, ANN's
are known for dealing with the problem of collinearity in different forms than
classical regression models (Kempenaar et al, 2016). The outputs of each
layer are functions of multiple combinations of logistic transformations that
involve higher orders of interactions than in the original predictors. The neural
networks prevent the problems of multicollinearity and over-parameterization
at the cost of interpretability (De Veux & Ungar, 1994). In addition, no clear
symptoms of overfitting were observed as the ANN “goodness of variance fit’
decreases from the training to the testing set and increasing the network size
did not minimize the training error without also reducing the testing one (Figure
4.7-A and -B). Maier & Dandy (2000) defined the ‘optimal network geometry’ as
the smallest network that adequately captures the relationship in the training

data, and our best-performing network was chosen based on the same criteria.

The best-performing ANN was trained on 959 observations of SWC, while
1377 observations were used for testing. Although it is normally assumed
that there is a tradeoff between the sizes of the training and testing set of
data, sustained by the idea that “more testing data” imply “less training data”
(Maier & Dandy, 2000), it is naturally arguable that this rule of thumb does
not apply to all cases. In our case, no “random initialization” or bootstrapping

methods were used for data division as both data sets were split by years and
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according to quality components. By quality components, we refer to differences
in the standard deviations associated with the means for geomorphological
attributes (Table 4.1), crop data (Table 4.2) and in respect to the performance
of run-off simulations (Figure 4.6). Therefore, the fact that our model was
tested with a 43% larger data set than the one used for training, should not
be seen as downside of our approach. The objective of a supervised model
is not simply learning on the largest dataset possible but doing it in a way
that maximizes its performance on unknown data. We tried to capture a larger
scope of observations for validation by selecting 2020/21 data for testing, which
was done to explore the ANN potential to be extrapolated over 30 years.
Considering the small increase of RMSE and the acceptable decrease of R’
(Figure 4.7-C), that were observed from the training to the testing stage, we
rejected the hypothesis of undertraining (de Vos & Rientjes, 2005) and decided
to use the selected ANN for forecasting multiple year scenarios. In addition, the
predicted cumulative LIF values were smoothed by a 'monotonically increasing
function’, which resulted in a mean error for individual LIF events lower than the
uncertainty level associated with rainfall input (i.e, here quantified as a spatial
coefficient of variation equal to 9.5%). The two experimental catchment/years
also presented different initial conditions, indicating that the model performed
well in both situations. While catchment one (2021) showed homogeneous
initial SWC among zones, catchment two (2020) monitoring was initiated under
heterogeneous conditions (Figure 4.5). Therefore, no evidence was found to
support the idea that an alternative modelling approach would deal with a

lower magnitude of both input and outcome uncertainty.

4.4.3 Contribution of lateral flows to crop yield

The AquaCrop simulations of rainfed wheat yield showed typical fluctuations
under Mediterranean conditions (Figure 4.9-C and Appendix-Table B). NYRyr
was larger than 800 kg GY ha~' in five out of 30 years (Figure 4.9-B and
-C). These were characterized by medium-low rainfall during the vegetative
stage in combination with considerable LIF events occurring at post-anthesis

(Figure 4.8), when the impact on yield of additional water is highest (Abbate
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et al, 2004). A significant negative correlation was found between NYR;;r and
CUM.P (Appendix-A7), indicating that the yield response to LIF increases with
water-deficit in low rainfall years. These results are in line with the sensitivity
analysis conducted by Maina & Siirila-Woodburn (2020), who concluded that
crop transpiration responds the most to lateral flows in periods of lower water
supply and higher demand. By contrast, in other five years, LIF caused yield
losses due to water excess (Figure 4.9-C and Appendix-Table B). These were
typically characterized by intense rainfall events at early vegetative stages in
combination with an absence of LIF events taking place after flowering (Figure
48 and Appendix-Table B). In these cases, the early intense rainfall events
have generated run-off upslope (Appendix-A5), and consequently high LIF at
the receiving zones, promoting soil water saturation which have impacted crop
growth negatively. According to our simulations for these five years showing
yleld losses (i.e, 1990/91, 1996/97, 2001/02, 2007/08 and 2019/20), soil water
saturation periods causing stomatal closure, and associated with high LIF, were
on average 48% (£27) longer in zone C than in zone A (Supplementary material).
For the remaining years, a relatively moderate and highly variable contribution
of LIF to crop yield variations was observed (Figure 4.9-A and -C). We highlight
that NY R ;r was highly positive (or negative) for about one third of the years,

being relatively moderate for the remaining two thirds of the simulation period.

In general, the simulated yields were well correlated with field observations,
showing a RMSE of 374 kg GY ha™' (Appendix-A4). Our yield correlations
are acceptable because the RMSE of simulations is included within the error
range of yield observations associated with the process of yield mapping (i.e,
172-809 kg GY ha~'). In addition, it must be considered that not all the
error in our deviation statistics is contained within the simulated variable
because observations are not error free (Appendix-Figure A4). The observed
yltelds were also subjected to errors through the process of combine yield
monitoring/mapping. The relatively low R? and the modest Willmott index
of agreement (d) that characterize our yield correlations (Appendix-A4) should
not be seen as a drawback of our simulation results because these are due

to the short range of yield observations used, which affects the proportional
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differences between simulated and measured yields (Yang et al, 2014) .

In terms of marginal water productivity (Passioura & Angus, 2010) and
according to our simulations, it is considered that for each marginal unit
of water supplied as LIF (expressed in mm), the crop responded with 24.6
kg ha=! of additional grain yield in years of maximum responsiveness (i.e,
1992/93, 1999/00, 2003/04, 2004/05, 2008/09). Our results are slightly above
the benchmark of 20 kg ha=" mm~" that was originally proposed by French &
Schultz. (1984). However, several other studies on water productivity for winter
wheat grown at specific geographic regions have presented similar values
(Passioura & Angus, 2010; Rattalino Edreira et al, 2018; Sadras & Angus,
2006; Silva et al, 2020). It was observed that NYR;;r is more relevant in
years of moderate-strong water stress due to lower rainfall (Figure 4.9-C and
Appendix-A7). LIF. MW P is also negatively correlated with the simulated yield
(Appendix-A7), indicating that LIF.MW P increases in years characterized by
lower potential yields. In these cases, we may expect relatively higher marginal
water productivity rates because the net yield response is computed over a

‘water stressed baseline situation’ (Abbate et al., 2004; Kirkegaard et al., 2007).

In mean terms, there was no significant correlation between CUM.LIF and
NY Ry e (Appendix-A7). It must be highlighted that a lack of correlation between
NYRyr and CUM.LIF (over 30 years) does not mean an absence of yield
response to lateral inflow. CUM.LIF represents the total amount of additional
water supplied through LIF over the entire season, but such water input may
impact positively or negatively crop yield, depending on several other factors
which vary seasonally (e.g, rainfall amount and distribution, LIF timing, soil
water status, crop developmental stage). One example is the effect of CUM.P
over the CUM.LIF x NY Ry r relation. CUM.LIF and NY Ry r are significantly
correlated when controlling for specific CUM.P levels. For years of low
CUM.P (within the 25 lowest percentile), NYR;r increased significantly
with CUM.LIF (data not shown) although no significant correlation is found
when CUM.P levels are not controlled (Appendix-A7). The same applies to
plant available water at sowing date (PAWy), which is highly correlated with

yteld for low CUM.P years (data not shown) but this relationship has no
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significance over a 30-year period (Appendix-A7). The cumulative precipitation
was the most significant variable governing NY Ry, not only because it is
strongly correlated with CUM.LIF and LIF. MW P but also because it affects
the yield response to PAWy and CUM.LIF.

4.4.4 Agronomic implications

The use of artificial intelligence methods for agronomic research requires
assumptions on key aspects and processes that vary largely across fields and
among different years (Smith, 2020; Wolfert et al., 2017). Our ANN-forecasting
showed a general trend for over predicting LIF (Figure 4.7-C). This could bias
the yield simulations under scenario number two. The observed over-predicting
trend can be associated with confounding effects of our algorithm or by the
presence of unobserved causes of some input variables, which are seen as
major constraints to draw ‘causal inference’ from data when using artificial
intelligence methods such as ANN (Pearl, 2019). One limitation of our approach
is that it strongly depends on the fitness of the training set. In our case, the
training set included some input variables that are highly year dependent (e.q.,
cumulative rainfall - x11), limiting model extrapolation due to inter-annual
variability of rainfall, highly typical of Mediterranean conditions. However,
we consider that the data-generating distribution of predicted LIF patterns is
acceptable for the purpose of the present study (Appendix-Ab) and the simulated
yltelds were in line with field observations (Appendix-A4). To evaluate our
network performance, we took advantage of the experimental training/testing
datasets where both the predicted and the observed LIF outcomes were
available. Both the RMSE and the R? of our ANN model are seen as adequate
given the scale of analysis and the fact that each set was obtained from
independent years and sites. Alternatively, the data requirements for an
entirely causal approach are vast and generally difficult or costly to satisfy

in practice, particularly under the scale of our analysis.

This is the first modelling study to our knowledge, conducted at commercial
flelds’ scale and built over experimental data, delivering LIF patterns and

their simulated impact on wheat yields over 30 years. Despite of the overall
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uncertainty associated with our analysis, which is associated with both scale
and methodological constraints, the net contribution of lateral inflows to spatial
variations of rainfed potential yields showed to be relevant but highly variable
among years. Despite the inter-annual variability, typical of Mediterranean
conditions, the mean NY Ry jr_;e; over 30 years was 16%. This value is in line
with the coefficients of variation obtained from yield maps in the same sites
(Tenreiro et al, 2021). Other studies reported similar levels of yield variance
(Batchelor et al, 2002; Florin et al, 2009). Batchelor et al. (2002) assessed
(intra-plot) spatial yield variations in soybean, caused by differences in water
availability, and reported mean values of 15.6% variance. Florin et al. (2009)
observed spatial yield variations in wheat of 10-25%, depending on the field
scale. We recognize that spatial variations of yields are naturally determined
by many other factors apart from water spatial variations due to run-off and/or
LIF. Examples are spatial differences in soil fertility, in soil organic matter
content and/or in soil depth (Franz et al, 2020; Kravchenko & Bullock, 2000;
Monzon et al, 2018). However, the present study supports with evidence that
water spatial variations may play a central role within this context because
the main yield limiting factors were controlled in both the experiments and the

simulations taken.

The simulated NYRyr varied from year to year, depending on the
combination of both year specific-meteorological conditions and crop related
factors (Figure 4.8 and 4.9-C). These were mostly explained by CUM.P and
simulated yields (Appendix-A7). We highlight that under present conditions,
the estimated mean NYRyr (e, 383 kg GY ha™'), forecasted over the last
30 years, should not be taken as a stable benchmark for decision making.
The estimation of variable application rates as a direct function of our mean
results would likely imply worse management decisions than those supported
by real time observations. Rainfed winter-cereals, such as winter wheat, are
known for being highly plastic crops in the expression of yields (Sadras et
al, 2009; Fischer et al, 2019). This aspect partially explains the relatively
moderate and highly variable contribution of LIF to crop yield variations over

multiple years (Figure 4.9). Therefore, we suggest that mechanistic agronomy
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and continuous field visiting are necessary to deal with temporal asymmetries

of spatial variations in rainfed precision agriculture.

Although farmers and agronomists are not encouraged to adjust management
to (within fleld) spatial variation of potential yields, by directly using the present
results as a reference, the integration of our methodology with in-seasonal
weather data will definitely contribute to solve the trade-offs determining
the adoption of precision agriculture in local conditions. Further research
is needed, focusing on future changes, such as atmospheric CO, trends with
impact on plants water productivity rates (Allen et al, 2011; Hsiao, 1993;
Passioura & Angus, 2010; Steduto et al, 2007) and technical or commercial
modifications (Balafoutis et al,, 2017; Hochman et al,, 2009; Kirkegaard & Hunt,
2010; McBratney et al, 2005) that might impact the existing trade-offs involved
in the adoption of precision agriculture at multiple scales (i.e, field, cropping
system, farm level). Agronomic implications and opportunities for precision
management will naturally depend on the proportional relations between water
supplying and receiving zones, which need to be assessed at both field and farm

level.

4.5 Conclusion

Water lateral inflows (LIF) contribute to yield variations in rainfed wheat
production systems such as the one studied here. Both the forecasted LIF
patterns and the crop modelling approach indicated a considerable inter-annual
variation of the principal mechanisms involved in this relation. The ratio of
seasonal cumulative LIF divided by seasonal precipitation varied from 10.7 to
38.9% over the 30 years. The net yield responses to LIF were on average 383
kg GY ha=" and, in years of maximum responsiveness, the LIF marginal water
productivity reached 246 (£13.2) kg GY ha~! mm~". Such years of maximum
responsiveness were associated with low rainfall during the vegetative stages of
the crop in combination with LIF occurring at post-flowering stages. Decision
makers are encouraged to take water spatial variations into account when

adjusting management to different potential yielding zones within the same
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fleld. However, while some limitations for extrapolating results were identified,
this process is also expected to benefit from further advances in in-season
weather forecasting that should be coupled with a methodological approach

such as the one presented here.

FIGURES - Chapter 4

Figure 4.1: Visual symptoms of early crop senescence apparently caused by spatial water variations
in Cdérdoba, Spain. The higher elevation zones show yellowing patterns due to lower water
availability, which limits crop yield (Sadras et al, 2016). Photo credits: T. R. Tenreiro.
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Figure 4.2: Maps of the experimental catchments: the elevation maps with contour lines of catchment
one and two, respectively (A and B); the Normalized Flow Accumulation Index (NFAI) rasterized with
5m spatial resolution for catchment one and two, respectively (C and D). Sampling zones (A, B, C) and
sampling points (A1, A2, A3, B1, B2, B3, C1, C2, C3) are represented by solid black lines and purple
circles, respectively.
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Figure 4.4: Sketch of the methodological design: Two field experiments were conducted, each
sampling point was defined according to a spatial analysis (step 0). A daily calendar of lateral
water inflow (LIF) was calculated based on field observations (step 1) and simulations of LIF were
conducted for 30 years through a hydrologic modelling approach (step 2). LIF predictions were
assimilated into the crop modelling stage (step 3) and the net yield responses were simulated

(step 4). Dashed lines delineate different methodological stages, rounded parallelograms indicate
experimental sites and data, solid line rectangles indicate different sub-steps, solid line circles
represent simulation tools, losenge and arrows indicate conditional steps. More information on the
simulation settings of HYDRUS-1D and AquaCrop is respectively provided by Simtinek et al. (2018)
and Steduto et al. (2009). Additional details related to the use of artificial neural networks (ANN) for
hydrological modelling are provided by Maier & Dandy (2000).

118



oLl

A) B) C)

Zone A Zone B Zone C
400 "E1400] =0
I i
.g. |||| [ I .g. = 'JI_.H §. Il H I|I ‘mun.y. ‘\..ﬂw,ﬂnmunh o
Q il Qo O i |
= 300/ = 300/ = 300/
%) n n
§e] o "l i O i
() (] |!|\‘ ‘I K ()] Wl
2 200 ) S 200 AL | 2 200 o
Q ||||mu|‘,.“ " (] (] it
8 g | S 8 il
@) @) @)
100" 100- 100-
0 50 100 150 0 50 100 150 0 50 100 150
Day after sowing Day after sowing Day after sowing
D) E) F)
one one one
Z A Z B Z C
20 201 20
= = =
E, 15 E 15 E, 15
LL LL LL
— — —
8 10 8 10 8 10
c e e
2 5 2 5 2 5
0 0 0
S I R B 1 S
O. M_AL i O_ A O_
0 50 100 150 0 50 100 150 0 50 100 150
Day after sowing Day after sowing Day after sowing

Year — 2020 — 2021

Figure 4.5: Corrected soil water content (SW () for each sampling zone (A-C), error bars are shown for daily SWC, values. Daily lateral inflows (LIF)

per sampling zone (inferred from probes data). Values are expressed in mm.



2019/20
1.00 O

0.50;

0.1
0.25_ l l
0 00 n.a. n.a.

2020/21

2 (11111118

A2 A3 B1 B2 B3 C1 C2 C3
Point

M Nash.Sutcliffe
R.sq
. RMSE

Nash.Sutcliffe & R.sq

Figure 4.6: HYDRUS-1D simulations performance according to the means of measured soil water
content and the best fitted soil parameters. “n.a." indicates non-applicable situations, which
correspond to the sampling point A3 and C3 that were not considered in catchment one (Figure 4.2).
Both the Nash-Sutcliffe and the R? coefficients are indicated by the left axis, while the RMSE is
indicated by the right axis. Mean R? values ranged from 0.65 (+ 0.13) in 2019/20 to 0.93 (+ 0.03) in
2020/21 and RMSE (cm?® cm™3) from 0.04 (= 0.01) to 0.03 (& 0.01), by the same order.
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Figure 4.7: The feedforward Artificial Neural Network (ANN) used for forecasting lateral inflow (LIF)
over 30 years: A) schematic representation of the R? assessment based on trial-and-error procedure
that was taken for model architecture delineation; B) three-dimensional representation of the R?
values obtained for each combination of model structure (the best performing ANN corresponded to
an ANN composed by six different features and four hidden layers); C) ANN statistical evaluation,
observed LIF plotted against predicted LIF (values are expressed in mm and represent cumulative
LIF), blue dots correspond to the training set (2019/20) and red triangles to the testing set (2020/21).
Both the training and the testing set fitted into a linear regression, respectively expressed as y =
1.432x + 0.528 and y = 1.122x + 2.919, and subsequently with a R? of 0.97 and 0.78, and a RMSE of
10.1 and 14.8 mm; D) the schematic representation of the best performing ANN, solved in 9962 steps:
green circles represent input features, grey squares indicate the hidden layers' coefficients, each node
is represented by a grey circle, the blue small circles represent the transfer functions and the blue

squares indicate the linked weight factors. Selected features (i.e., x1, x3, x5, x06, x10, x11) are shown
in Table 4.4.
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Figure 4.8: Cumulative lateral inflow (CUM.LIF) and cumulative precipitation (CUM.P), respectively
represented by solid and dashed lines (expressed in mm). Facet-plots show the two forms of water
supply to zone C in catchment two (shown in Figure 4.2). Values were computed in daily time-steps
over a period of 30 crop seasons, from sowing to harvesting date. CUM.P values were computed from
daily weather records for Cordoba [1990-2020], obtained from the same weather station introduced

in Section 4.2.2. CUM.LIF values were forecasted by the ANN model shown in Figure 4.7. Vertical
black bars represent daily LIF events (daily LIF magnitudes are multiplied by a factor of 4.5 for better
visualization).
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Figure 4.9: Main AquaCrop simulation outcomes: A) cumulative probability distribution curves for
simulated Y5 yields (Mg ha™") in the two significantly distinct zones (i.e, A and C in catchment two);
B) cumulative probability of NYRyr, expressed in Mg ha="; C) time-series of NYR;/r expressed in
Mg ha~" over 30 years; D) cumulative probability of NY R jr—rei, expressed in %. Values correspond
to zone C in catchment two for the period of 1990-2021. Dashed lines represent the median values, in
plots B and D (ie, 0265 Mg ha~—! and 6.3%, respectively), and the mean NYR;r in plot C (ie, 0.383

Mg ha=1).

123



TABLES - Chapter 4

Table 4.1: Main geomorphological attributes within each sampling zone (mean values and standard
deviations). The standard deviations are presented in parentheses. Codes: ECa = soil apparent
electrical conductivity, %Clay = percentage of clay content, %Sand = percentage of sand content,
NFAI = “Normalized flow accumulation index” (Tarboton et al, 1991; Jenson & Domingue., 1988). The
amount of chosen sampling points was supported by Chanzy et al. (1998). %Clay, %Sand and bulk
density were averaged for the three zones in catchment-2 according to farm records.

Parameter Units Catchment-1 Catchment-2
Zone A B C A B C
Sampling points [N] 2 3 2 3 3 3

Elevation m (amsl) 187 (2.4) 184 (5.1) 168 (2.3) 147 (0.5) 41 (0.3) 139 (0.3)

ECa dS m~' 031 (0.08) 028 (0.09) 048 (0.06) - -
%Clay % 5(34) 2 (3.3) 0(34) ( 8)

%Sand % 8 (26) 2 (29) 5 (28) 2 (32)

Bulk density g cm™ 1. 78 (0.06) 1. 81 (0.04) 1. 74 (0.05) 1, 66 (0.05)

NFAI 01 009 (0.021) 0.12 (0.082) 072 (0.218) 0.07 (0.005) 0.42 (0.002) 0.98 (0.011)

Table 4.2: Crop data used for the parameterization of the HYDRUS and the AquaCrop models. CCyax
is maximum green canopy cover (Steduto et al,, 2009), used for parameterization of the soil cover
partitioning method, as described in Tenreiro et al. (2020). Mean sowing rate was 180 kg ha™" for

all trials. The standard deviations are presented in parentheses.

Data Catchment-1 Catchment-2 Mean
Parameter Zone A B C A B C -
[units]
Sowing date date 13-Dec 18-Nov 1-Dec
Crop emergence DAS 10 8 9
Plant density plants m™2 200 (21.8) 280 (19.2) 225 (163) 250 (18.2) 225 (16.44) 225 (10.4) 236 (27.4)
CCuiax % 80 (3.5) 82 (4.6) 84 (2.1) 90 (1.7) 95 (0.6) 92 (0.5) 87 (5.9)
Root growth cm day™ 0.7 (0.1) 0.9 (0.1 0.8 (0.1)
Vegetative stage days 120 120 120
Anthesis stage days 10 14 12
Reproductive stage days 58 76 67
Senescence duration days 20 40 30
Crop maturity date 8-Jun 1-Jun 4-Jun
Harvest date date 10-Jun 8-Jun 9-Jun
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Table 4.3: The parameter intervals used for model optimization. Values were adjusted during the
optimization process for each individual point (Figure 4.2).

Parameter units Min  Max
residual vol. water content (6,) cm® cm™3 0 0.2
saturated vol. water content (6s) cm® cm™3 0.3 05
van Genuchten’s parameter () cm™! 0.0001 0.1
van Genuchten’s parameter (n) - 1.2 15
saturated hydraulic conductivity (Ksar) mm day™ 2 100

Table 4.4: Artificial neural network (ANN) potential predictors assessed through principal component
analysis (PCA) and trial-and-error procedure (Roadknight et al, 1997). Main PCA outcomes are
shown in Appendix-A3. More information regarding the PCA is provided in Supplementary material.

id  Input feature Estimation procedure/description Contribution to LIF
x1  Cumulative surface run-off Simulated with HYDRUS-1D through multiple High
[mm] at location (x, y) iterations optimized by means of the measured soil
water content
x2  Day after run-off at location = Computed with R-studio as a function of x1 Low
(x,y) calendarization
x3  NFAI[0;1] at location (x, y) Estimated with SAGA-GIS (2.3.2) and computed with High
R-studio (Lovelace et al,, 2019)
x4 Slope [%] at site i Estimated with SAGA-GIS (2.3.2) and computed with Medium
R-studio (Lovelace et al, 2019)
x5 Cumulative surface run-off The daily median of x1 values, simulated with High
at upslope contributing HYDRUS-1D for upslope hydrologically contributing
points [mm] points
x6  Canopy cover [%] According to Tenreiro et al. (2021) High
x/  Surface saturated hydraulic ~ Optimized Ksar at location (x, y) with HYDRUS-1D for  Medium
conductivity [mm day~'] surface layer (0-10 cm depth)
x8  Day after run-off Computed with R-studio as a function of x5 Medium
calendarization
x9  Day after precipitation Computed with R-studio as a function of x11 Low
event calendarization
x10  Saturated hydraulic The average between surface and sub-surface Ksar High
conductivity (mean) [mm (optimized with HYDRUS-1D)
day ]
x11  Cumulative daily Field measured with a rain gauge (section 2.2.2) High
precipitation [mm]
x12  Boolean 'satunsat’ Boolean parameter set to define days of saturated vs.  Medium

parameter

unsaturated conditions in the vadose zone
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Table 4.5: Mean soil water content (SWC), mean daily lateral inflow (L/F,) and mean cumulative
LIF (CUM.LIF,) over season, for the two years of field data. All values are expressed in mm. The
standard deviations are presented in parentheses. Mean values followed by a common letter are not
significantly different according to the HSD-test conducted at the 5% level of significance (p — value

< 0.05).
Zone Catchment-1 (2019/20) Catchment-2 (2020/21)
SWC [mm] A 209.36 (39.6)c 289.19 (65.1)b
B 23736 (34.4)b 31652 (612)a
C 269.37 (63.1)a 310.87 (60.4)a
LIF, [mm] A 0.08 (0.46)b 013 (0.8)b
B 0.31 (1.52)ab 0.23 (1.6)b
C 0.42 (2.09)a 0.71 (2.7)a
CUM.LIF, [mm] A 6.98 (3.9)b 11.24 (11.2)c
B 17.88 (15.7)a 23.94 (17.4)b
C 19.76 (16.9)a 60.28 (42.1)a
APPENDIX - Chapter 4
S~ EMNigueron Cordoba
D ',"\lidlllj?‘-ll
loa Frailca .[D] Z
[E]
A |200 km | [C]. .[B]
; Al° i
A: Catchment one D: Weather station
B: Ca?chment two E: NP calibration site Z.2e8
C: Rain gauge (ECRN) A L

Figure A1. Map of the study locations: catchment one (A), catchment two (B), rain gauge
ECRN-100 ZENTRA system (C), weather station (D), neutron probe calibration site (E). Further
information on the neutron probe calibration site is provided by Soriano et al. (2018).
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Table A. The parameters of the neutron probe (NP) calibration functions (y = a[Z5] — b). y is
volumetric SWC, expressed in %, x is probe measured value (unitless) and 'std’ is the standard

correction value. More information on the neutron probe calibration site is provided by Soriano
et al. (2018).

Depth a b std R’

0-15 ecm 25416 0264 7830 0.82
15-30 cm 21974 7381 7830 098
30-90 cm 27.210 16.897 7434 0.96

A) B)
0-20 cm 20-40 cm
6 1.25; 6 1.25;
8 1.00; 8 1.00-
5 0.75; 5 0.75/ 1‘\}_}
E 0.50- E 0.50-
G 0.25- G 0.25-
= A B & - A B S
Sampling zone Sampling zone
C) D)
40-70 cm 70-100 cm
6 1.25; 8 1.25;
S 1.00; 8 1.00;
§0751 B—_ _ 4 & 0.75; 1//*_,4
& 0.501 § 0.501
S 0.25; _ _ _ 3 0.25- _ | :
A B C A B C
Sampling zone Sampling zone

Figure A2. The mean correction factor (€),) plotted for each probe location and sensor depth
in 2019/20, at the 95% confidence level. (O, was computed as the mean ratio between the SWC
measurements with the NP and the capacitance probes for depth z (Equation 4.2).
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Figure A3. The principal component analysis (PCA) plot. Vectors are colored according to the
contribution degree to LIF. PCA scores are equal to the module of each vector, indicating the
weight associated with the combination of the two principal components (i.e, Dim 1 and Dim2,
respectively explaining 34 and 18.2% of LIF variance). Variables are defined in Table 4.4.
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Figure A4. Simulated vs. observed yields (obtained from historical yield maps). Units
are expressed in Mg GY ha~'. Circles and triangles represent yields in zone A and C,
respectively. Simulated yields correspond to the Y5 scenario. RMSE, R? and Willmott d
index are respectively equal to 0.374 (Mg GY ha™"), 0.35, 0.76. The horizontal bars indicate the
error associated with the process of yield mapping (i.e, 172-809 kg GY ha™").
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Figure A5. Cumulative precipitation (CUM.P) and HYDRUS run-off simulations over 30 years
[1990-2020]. CUM.P is expressed in mm. Blue bars represent daily surface run-off values,
expressed in mm day™'
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Figure A6. Cumulative probability distribution curves of CUM.LIF and CUM.P over 30 years.
Curves shown for zone A (A) and zone C (B), representing both cumulative precipitation and
cumulative LIF, values expressed in mm day™'
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Figure A7. Spearman’s correlation pairs-plot. Codes: PAW; = initial plant available water
(at sowing date); CUM.P = season cumulative precipitation; CUM.LIF = season cumulative
lateral inflow (LIF); CUM.ETo = season cumulative evapotranspiration (ETo); PF.LIF =
post-flowering LIF, corresponding to the fraction of CUM.LIF taking place at post-flowering
stages; 'Relative.l’ = mean relative crop transpiration (the simple average of the relative
crop transpiration between zone A and C, expressed in %); Mean YP = mean yield potential
(the simple average of simulated yield between zone A and C, expressed in Mg GY ha™');
LIF. MWP = LIF marginal water productivity (expressed in kg GY ha™" mm™"); NYR.LIF
= Net yield response to LIF (expressed in Mg GY ha™'); PAW, CUM.P, CUM.LIF and
CUM.ETO are expressed in mm. 'Relative.]” is estimated at the season average of daily
crop actual transpiration divided by daily potential transpiration. Simulation files are provided
in Supplementary materials. Season is defined from sowing to harvesting date. Input values
are synthesized in Appendix-Table B. Significant correlations at the 5% level of significance are
highlighted with the symbol "« Significance codes: " x %" 0.1%, "sx" 1%, 'x' 5%.
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Table B. AquaCrop simulation outcomes. Codes: PAW;, = Initial plant available water (at sowing date); CUM.E To = Season cumulative £ To
(from sowing to harvesting date); CUM.P = Season cumulative precipitation; CUM.LIF = Season cumulative lateral inflow (LIF); Post-flowering
LIF = The fraction of season LIF taking place at post-flowering stages (expressed in %); Relative T [Zone A] = Mean relative crop transpiration
in zone A (or in the absence of LIF); Relative T [Zone C] = Mean relative crop transpiration in zone C (including LIF); Yield.1 [Zone A] =
Yield in scenario 1 (in the absence of LIF); Yield.2 [Zone C] = Yield in scenario 2 (including LIF); NYR.LIF = Net yield response to LIF;
Net yield response to LIF in relative terms; LIF. MW P = LIF marginal water productivity (expressed in kg GY ha=' mm~").
Relative T is estimated as the season average of daily crop actual transpiration divided by potential transpiration. Simulation files are provided
in Supplementary materials.

NYR.LIF e =

Season PAW, CUM.ETo CUM.P CUM.LIF Post-flowering LIF Relative T [Zone A] Relative T [Zone C] Yield.1 [Zone A] Yield.2 [Zone C] NYR.LIF  NYR.LIF LIF.MWP
-] [mm] [mm] [mm] [mm] [%) %) [%] [Mg GY ha™"] [Mg GY ha™']  [Mg GY ha™"] %) [kg GY ha™" mm~"]

1990/91 1575 434.4 4191 46 0 84.2 83.4 3.68 358 -0.10 -3 -
1991/92 1455 351.8 361.4 118 62 93.4 98.2 425 4.49 0.24 6 203
1992/93 1354 356.8 2243 48 25 87.0 90.0 1.24 332 2.08 168 4333
1993/94 1573 370.8 212.8 34 26 82.6 83.8 354 3.66 012 3 353
1994/95 151.2 391.8 2238 37 32 783 83.4 377 3.87 0.10 3 270
1995/96 139.7 3913 747.0 120 56 87.0 88.4 414 4.28 0.14 3 1.17
1996/97  162.4 3875 759.5 122 0 725 70.4 3.36 334 -0.02 -1 -
1997/98  165.0 354.8 689.6 125 3 83.0 83.1 415 418 0.03 1 0.24
1998/99 1179 389.6 301.6 34 M 88.6 90.1 256 2.87 0.31 12 912
1999/00 118.2 452.1 326.2 47 57 89.5 929 3.56 4.45 0.89 25 18.94
2000/01  124.0 350.7 5239 115 48 85.7 89.6 422 451 0.29 7 252
2001/02  116.4 392.0 398.2 66 23 87.1 87.0 4.44 443 -0.01 0 -
2002/03  160.1 401.3 376.2 108 56 777 781 3.68 376 0.08 2 0.74
2003/04 121.6 3521 310.0 120 0 911 97.4 383 4.81 0.98 26 8.17
2004/05 1206 439.8 3255 45 11 855 89.0 1.99 3.38 1.39 70 30.89
2005/06  154.3 3949 286.4 44 20 91.6 95.2 437 458 0.21 5 477
2006/07  134.6 389.8 407.8 44 16 98.4 99.4 493 5.00 0.07 1 1.59
2007/08 1331 424.9 359.8 85 40 94.9 93.2 4.89 475 -0.14 -3 -
2008/09 122.0 406.1 2577 48 8 806.1 88.3 1.83 2.86 1.03 56 21.46
2009/10 1459 3971 215.8 36 19 82.1 88.0 3.86 4.28 0.42 " 11.07
2010/11 1579 425.6 300.0 46 30 87.4 90.9 424 4.69 0.45 1 9.78
201112 1823 446.6 266.9 39 23 88.9 921 401 4.44 0.43 I 11.03
2012113 1704 397.8 273.8 38 21 89.6 929 4.46 4.83 0.37 38 9.74
2013/14 1725 453.6 299.8 44 18 835 87.0 3.89 4.38 0.49 13 11.14
2014/15 1598 4457 228.6 4 10 90.2 923 2.28 295 0.67 29 16.34
2015/16  173.2 396.7 2289 30 10 85.8 88.1 410 451 0.41 10 13.67
2016/17 1683 4214 3754 104 20 89.8 91.2 4.27 4.61 0.34 8 3.27
2017/18 1769 416.0 2971 46 0 84.0 85.6 4.97 510 013 3 2.83
2018/19  186.9 458.4 4123 46 0 83.7 85.8 5.08 5.31 023 5 5.00
2019/20 161.8 4532 535.2 112 0 88.6 86.5 535 5.21 -0.14 -3 -



Chapter 5

Opportunities for variable application rate
of nitrogen under spatial water variations
in rainfed wheat systems — an economic

analysis

This chapter has been under review as:

Tenreiro, T. R, Avillez, F., Gomez, J. A, Penteado, M., Coelho, J. C, Fereres, E. (2022).
Opportunities for variable application rate of nitrogen under spatial water variations in
rainfed wheat systems — an economic analysis. Precision Agriculture.

Abstract

In fields of undulating topography, where rainfed crops experience different degrees of water stress
caused by spatial water variations, yields vary spatially within the same field, thus offering opportunities
for variable application rates (VAR) of nitrogen fertilizer. This study assessed the spatial variations of
yleld gaps in rainfed wheat caused by lateral flows from high to low points, grown in Cérdoba, Spain, over
six consecutive seasons (2016-2021). The economic implications associated with multiple scenarios of
VAR adoption were explored through a case study and recommendations were proposed. Both farm size
(ie, annual sown area) and topographic structure impacted the dynamics of investment returns. Under
current policy-prices conditions, VAR adoption would have an economic advantage in farms similar to
that of the case study with an annual sown area greater than 567 ha year—'. Nevertheless, current
trends on energy prices, transportation costs and impacts on both cereal prices and fertilizers costs
enhance the viability of VAR adoption for a wider population of farm types. The profitability of adopting
VAR improves under such scenarios and, in the absence of additional policy support, the minimum area
for adoption of VAR decreases to a range of 68-177 ha year~'. The combination of price increases with
the introduction of an additional subsidy on crop area could substantially lower the adoption threshold
down to 46 ha year™', turning VAR technology economically viable for a much wider population of
farmers.

132



5.1 Introduction

Rainfed agriculture plays a determinant role in food production worldwide as
it accounts for more than 75% of global cropped area, being responsible for
more than 60% of the global cereals’ production (Cassman et al, 2003; Connor
& Minguez, 2012). Sustaining food production by rainfed crops in the years
ahead will require productivity gains in resource use (Fischer & Connor, 2018).
Specific challenges include estimating the magnitude and thus the value of yield
gaps, identifying limiting factors, and implementing profitable and sustainable
strategies. Closing yield gaps in rainfed farming, while improving resource
use efficiency, is also expected to minimize the expansion of arable land and
emissions while cutting on other undesirable externalities (Cassman et al., 2003;
Snyder et al,, 2009). Over the last decades, new technologies have been evolving
within the context of rainfed farming (e.g, precision agriculture), aiming to

increase the productivity of resources while offering substantial environmental
benefits (Griffin & Shockley, 2018).

Spatial variations in rainfed crop yields are commonly observed worldwide
(Florin et al,, 2009; Griffin et al., 2020), which reveal, theoretically, opportunities
for optimizing resource use (e.g, fertilizer) through precision agriculture (PA).
A central concept of PA is the spatially variable application rate (VAR) of
fertilizer according to the intra-plot variations of yield levels (Basso et al,
2013; Bullock & Lowenberg-DeBoer, 2007; Robertson et al,, 2008; Pedersen et
al, 2021). In fields of undulating topography, where rainfed crops experience
different degrees of water stress due to spatial water variations caused by
lateral flows, yields vary spatially within the same field (Halvorson & Doll,
1991; Tenreiro et al, 2022). These variations may imply different nutrient
requirements and application rates over fields (Nielsen & Halvorson, 1991;
Sadras, 2002). However, although the theoretical reasons for adopting VAR
technology in rainfed systems are well accepted, its adoption has not been

widespread (Basso et al,, 2013; Lowenberg-DeBoer & Erickson, 2019; Robertson
et al, 2012).

Considerable attention has been devoted to VAR adoption constraints
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(Robertson et al, 2008; Schimmelpfennig et al, 2016, Welsh et al, 2003).
Sceptics argue that there is a lack of evidence of relative advantage on VAR
adoption. The principal issues are related to technical obstacles, complexity on
the use of equipment and software, problems with data availability and access,
operational incompatibility and ambiqguity regarding financial benefits (Pathak
et al, 2019; Robertson et al, 2007). Nevertheless, current trends on energy
prices, transportation costs and impacts on both cereal prices and fertilizers
costs (Chowdhury et al, 2021; Deloitte, 2021; EUC, 2021; Glauber & Laborde,
2022; Khalfaoui et al, 2021; FAO, 2021; USDA, 2021) may alter the trade-offs
involved in the adoption of VAR in rainfed systems. Cenerally, there are other
advantages attributed to the increase of fertilizer use efficiency that go beyond
economic reasons which should not be ignored. Adequate use of fertilizer is
not only needed to sustain yields and to increase the efficiency of water and
energy use, but it also contributes to minimize the overall emissions over the

supply chain (Snyder et al, 2009).

Understanding and capitalizing on yield variability is one of the main
objectives of PA and the yield gap (YG) is an important concept to be used in this
context as it provides a benchmark to explore yield variations (Cassman, 1999).
YG is defined as the difference between the potential (Yp), or water-limited
yield (Yw) in the case of rainfed cropping systems, and the actual yield (Ya)
achieved by farmers (Loomis & Connor, 1992; Fischer, 2015). However, most
studies on YG analysis ignore intra-plot variability (Fischer et al, 2014; Lobell
et al, 2009; Schils et al, 2018), which is partially due to data availability
constraints (Beza et al,, 2017) and to the limitations of crop models to simulate

processes such as spatial water distribution (Tenreiro et al.,, 2020).

In fields of undulating topography where water flows from higher to lower
elevation zones, the assessment of spatial variations of Yw may be combined
with yield mapping from combine harvesting to understand how YG varies
within a field. Assuming that Ya is achieved under current management
practices (i.e., uniform nutrient application), the magnitude of YG and its
variation over space (i.e., how site-specific Ya relates to Yw and how it varies

from upslope to downslope zones) could be taken as an indication of the relative
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advantage of VAR adoption. The larger the differences in YG among different
zones, the greater would be the opportunity for adopting VAR (Robertson et al,
2008).

This study builds upon a methodological framework that assessed both
Yw and Ya spatial variations in rainfed wheat fields (Tenreiro et al, 2022)
which explored how YCG varied within fields and from year to year. Intra-plot
yteld variation was modelled, and management units were determined
according to the YG variation. Some economic implications associated with
multiple scenarios of VAR adoption were explored through a case study and
recommendations were proposed (Tenreiro et al, 2022). The present study
performs a novel economic analysis on VAR adoption to benefit from the
spatial water variations in rainfed wheat systems. The hypothesis that spatial
variations in soil water supply may justify a variable fertilization rate over space

is tested, focusing on the following objectives:

1. The identification of economic trade-offs between scale of cropping and

opportunities for VAR adoption;

2. The assessment of return on investments at farm scale in different
scenarios, where the spatial water variations over fields determine yield

variability and scope for adopting VAR

5.2 Materials & Methods

5.2.1 Experimental conditions and on-farm data collection

The experimental farm is located in Cérdoba province, southern Spain (37.8° N,
4.8° W, mean altitude 165 m amsl, mean precipitation 605 mm year-1, range
of slope steepness 2-6%), and it has a total arable area of 320 ha (Figure
5.1-A). At farm level, crop rotations include autumn and spring sown crops (e.g.,
winter wheat, rapeseed, sunflower, chickpea), with winter wheat being grown
1-2 times every four seasons. This study is limited to wheat (/riticum durum
L.), which is a major crop within the farming system with a relative area share

of 0.25-03 year~!. The soils are predominantly of clay texture (40-50% clay
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and 15-22% sand) with high bulk density (1.65-1.88 g cm®) and moderate depth
(1.2-1.6 m). More details on soil properties and other geophysical conditions

are provided in Tenreiro et al. (2022).

Depending on the year conditions and operational aspects at farm level,
sowing dates vary from middle November to late December (Table 5.1). Wheat
is sown under direct seeding at an average rate of 200 (+£20) kg/ha. The
current management system is spatially uniform, following a fertilization plan
that consists of two applications per season (one pre-sowing and the other
near the end of the vegetative stage). Mean N-P-K application rates to wheat

are 165-60-0 units per ha year—".

Crop nutrient status is controlled every
season through foliar analysis conducted at flowering. More information on

crop management is provided in Table 5.1.

5.2.2 Lateral inflow (LIF) zones mapping

Spatial water variations caused by lateral flows imply yield variations.
Different potential yielding zones, within the same field, were delineated
according to lateral inflow (LIF) levels. For zone delineation, we used the
TOPMODEL Topographic Index (TMTI) as described in detail by Beven et al.

(2021) and expressed as following:

a )
tanp

where a represents the flow accumulation, defined as the upslope

TMT .y = In (5.1)

contributing area to that point (x, y), and B represents the field slope angle
in the same point. While the hydraulic gradient 'tanf’ is defined with respect
to the plan distance, the flow accumulation rate is defined with respect to the

plan unit area. a is expressed in m? and f3 in degrees.

We scaled up to the farm level the results of Tenreiro et al. (2022), who
followed an experimental design that consisted of choosing three different
sampling zones per field, where the TMTI values ranged from 0 to 6 with median
values varying from 1-2 in ‘no-LIF zones” up to 4-6 in ‘LIF zones' (Appendix AT).

The Yw simulation results in Tenreiro et al. (2022) are assumed to be dependent
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on the scale of the experimental fields. To avoid an extrapolation of results to
different scales from those in experimental conditions, all points with a TMTI
falling out of the distribution range in experimental conditions (Appendix AT)
were rejected (i.e, points with TMTI > 6 were discarded). For the same reason,
only those fields with a predominance of clay texture were selected (Figure
5.1). According to Tenreiro et al. (2022), only two zones were significantly
different in terms of soil water content variations due to LIF (i.e, zones A and
C, Appendix A1). Therefore, in the present study, only two different zones were

considered:

1. 'LIF zones' (i.e,, downslope zones with significant amount of water supplied

through lateral flow taking place from upslope areas of the same field);

2. 'No-LIF zones’ (i.e., upslope zones where no significant amount of water is

supplied through lateral flow);

According to the standard deviation of each significantly different zone
(Appendix A1), a TMTI cutting threshold value equal to 5 was considered and

each location was classified as following:
1. IF TMTl ) < 5 [point classified as ‘no-LIF zone’];

2. ELSE [point classified as ‘LIF zone');

Using the previous criteria, a subset plot of 92 ha was selected (Figure 5.1-D
and -E), from which 76 ha were classified as 'no-LIF zones’ while the remaining
16 ha were considered to be ‘LIF zones' Therefore, the selected farm area has
an overall share of 'LIF zones' equal to 17.4% (Figure 1-E).

5.2.3 Intra-plot spatial assessment of Yield Gaps

YG were spatially assessed at intra-plot level with a resolution of 100 m?

according to the following equation:

VGpxy) = YWiy) = Yy (5.2)
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where YG, Yw and Ya represent the yield gap, the water-limited yield and
the actual yield, respectively. The subscripts (x, y) indicate the corresponding

cell coordinates. Yields are expressed in terms of Mg DM (grain) ha=".

Two zones were considered according to lateral inflow (LIF) water supply
(Le, LIF and no-LIF zones) and Yw was assumed to be constant within each
zone. Yw values (2016-2021 period) were obtained from Tenreiro et al. (2022)
and Ya was determined with the ‘New Holland" Precision Land Manager (PLM)
software, taking as an input the shapefiles generated by the combine harvester
monitor (Fendt PLI C 5275). To obtain LIF zones’ Yw, lateral inflow was
simulated as an additional water supply to the effective rainfall using the
AquaCrop simulation model (Steduto et al, 2009) as described in Tenreiro et
al. (2022). No-LIF zones” Yw were simulated, assuming that water inflow takes

place only due to vertical infiltration (Tenreiro et al. 2021).

5.2.4 Quantifying the relative advantage of VAR adoption

Our assessment focused on the relation between intra- and inter-season
economic benefits of VAR adoption, and on the total investment costs in
relation with the amortization of equipment. We did not explore the concept of
relative advantage (Robertson et al,, 2012) in terms of income risk reduction or

environmental benefits, as done by Swinton & Ahmad (1996).

In our perspective, exploring the relative advantage of VAR adoption must
dedicate attention to the scope for improvement, not only regarding the target
scenario but also the current management system (i.e, the baseline scenario).
Our baseline scenario is characterized by uniform nutrient application rate thus
its agronomic performance is captured by the determination of Ya. Our target
scenario implies VAR adoption and it is benchmarked by the simulated Yw
level. Therefore, the relative advantage is estimated as the difference between
the target and the baseline scenario. This was expressed as the differential
gross margin (DGM), which is the difference between the gross margin obtained
with VAR and without it (Pedersen et al, 2021). Since the gross margin equals

revenue minus expenditure, it was computed as a function of grain yield. Grain
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yleld determines both the output revenue and the input costs (through fertilizer
requirements). The yield difference between the target (Yw) and the baseline

scenario (Ya) is defined as the YC.

The relative advantage was measured as the average DGM. The average
DCM (€ ha—") was estimated by averaging the annual ADGM values (€ ha™'

year—'), expressed as:

.
DGM = Z ADCMf (5.3)

where T is the number of seasons (N=6 years) of our dataset (i.e., 2016-2021),
and the subscript t indicates the specific season. ADGM; is the difference
between the annual differential revenue (ADR;) and the annual differential

costs (AD(;), expressed as:

ADGM; = ADRy — ADC (5.4)

where both ADR; and ADC; are expressed in € ha~! year~'. Since the DGM
represents the differential gross margin, it applies to the differential area, which
is defined by the LIF area share. Therefore, both ADR; and ADC; are defined
per ha of LIF zones. The ADR; was computed as a function of Y, expressed

as following:

ADR; = Y Gz - 1000 - (Pricewnear + LPP) + DPA (5.5)

where Y Gz, represents the YG difference among zones (i.e, between LIF and
no-LIF zones) for a specific year (t), and the Pricewpnear corresponds to the
grain price (€ kg=' DM grain). LPP represents a linked production payment
in some scenarios (i.e, a subsidy linked to yield and expressed in € kg=' DM
grain), and DPA represents a direct payment on annual wheat grown area (€
year—'). DPA does not consider current direct payments, but it explores the
introduction of an additional payment on area over current subsidy levels in
one scenario. The larger is Y Gz, the higher is the expected ADR;. The Y Gz

was computed as follows:
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cum.d=1 cum.d=1
Y Gz = \/ ([ / ECDF(YGur)] — | ECDF(YGrno-ur)l|  (56)

um.d=0 cum.d=0

where ECDF (Y Gyr) is the 'empirical cumulative distribution function’ of YG
in ‘LIF zones' and ECDF (Y Gno—1/F) is the ‘empirical cumulative distribution
function” of YG in ‘No-LIF zones. Cum.d delineates the cumulative density,
varying from 0 to 1. The ‘empirical cumulative distribution function’ is the
distribution function of a sample measure. In our case, this applies to the yield
gap distribution over field. It expresses the fraction of yield gap observations
that are less than or equal to a specified value. For ECDF computation, we

used the function ‘stat_ecdf’ from the ‘ggplot2’ library in R-studio (Wickham,
2007).

The ADC; was estimated by the following equation:

ADC, = (YGz, - 1000 - Neran - Pricen) + ACyar (5.7)

where Ngran is the nitrogen content in grain (expressed in terms of % DM),
the Priceyn is the price of N (expressed in € per kg N) and the ACyar is the
annual cost (Table 5.2) associated with VAR use (e.g., technology renting plus
external consultancy costs). Ngranv was set equal to 2.8% of DM (Quemada
et al, 2016). Pricen was estimated according to the 2020/21 fertilizer price
index for Diammonium Phosphate (DAP), Calcium Ammonium Nitrate (CAN)
and Urea (EUC, 2021), and considering the mean N content of fertilizer which
was estimated as the simple average of N content in DAP, Urea and CAN. The

baseline Pricey was set equal to 1.10 € kg=' N.

5.2.5 Economic modelling and analysis of future scenarios

The capital recovery of VAR adoption was modelled according to 10 future
scenarios (Table 5.2) which considered different prices and payments (ie,
application of extra subsidies). The Net Present Value (NPV) was estimated
over a period of 10 years which was assumed to be the total amortization period
of VAR equipment (Drabik & Peerlings, 2016; Tozer, 2009). NPV was estimated
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as following:

N
DGM; - LIFareasHARE
NPV = —Ilyar + Z z (5.8)
i—1 (T+v)

where [lyar is the initial investment (iLe, the acquisition cost), y is the
discount rate, i is the year of the cash-flow and N represents the total
amortization period (10 years). The acquisition costs (Appendix — Table A1)
were based on information compiled from different sources (AAEA, 2000; Batte
& Ehsani, 20006; Finco et al, 2021; Griffin, 2000; Tozer, 2009), including the
acquisition costs of the GPS guiding system, the precision application system
RTK, the GPS receiver, the base station, the replicators and the N application
controller (Appendix - Table A1). The overall total gain (OTG) was estimated by
solving the NPV series over a period of 10 years (N=10), which was a function
of both the discount rate used and the price/payment scenario adopted (Table
5.2). The Internal Rate of Return (IRR) and the return on investment payback

time (ROI;) were respectively estimated by solving the following equations:

N
DGM; - LIF areasHarE
o , 5.9
VAR Z (1+ IRR)! 9
ROl = Ilvag (5.10)

(DGM : L/FAF@GSHARE ) Wheata/‘ea)
where Wheat,req is the annual wheat sown area (ha). The relation between
ROIl; and Wheat,req Was obtained through regression analysis, considering the

price/payment scenarios (Table 5.2).

The ten different scenarios analysed the impact of price support policies,
extra direct payments on crop area and different market prices (Table 5.2).
The ratios considered for increased prices scenarios were defined according
to the observed connectedness between fertilizer and grain market prices. By
averaging the values reported by Chowdhury et al. (2021) and Khalfaoui et
al. (2021), we assumed a ratio among product prices of 0.46, meaning that
a 100% increase in fertilizer prices would increase wheat prices by 46%. The

comparison of capital recovery among different scenarios was made by adopting
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the current situation as the baseline scenario. For each scenario, three different
sub-scenarios were considered by setting the discount rate at 2.5%, 5% and 7.5%

(Table 5.2). The following 10 scenarios were considered:

1. Baseline scenario (5-1): overall ‘LIF-zones' share within the cropping

system equal to 17.4%, according to our farm conditions, current CAP direct

payments and product prices.

2. Enhanced LIF area share scenario (5-2): overall ‘LIF-zones’ share within

the cropping system increased by 35% in relation to the baseline scenario,

current CAP direct payments and product prices.

3. Moderate increased prices scenario (S-3): baseline scenario plus product
prices increased by 30% and 66%, respectively for wheat grain and N fertilizer

price.

4. Drastically increased prices scenario (5-4): baseline scenario plus

product prices increased by 100% and 219%, respectively for wheat grain and

N fertilizer price.

5. Price support scenario (S-5): baseline scenario plus introduction of a

direct payment linked to production (LPP) equal to 0.02 € kg™

0. Price support plus drastically increased prices scenario (S-6): scenario
LIFO.DPP.PO plus product prices increased by 100-219% (i.e., wheat grain and
N fertilizer price).

/. Additional direct payment on cropped area scenario (S-7): baseline

scenario plus introduction of an additional payment on cropped area equal
to 46 € ha~'.

8. Additional direct payment on crop area plus drastically increased prices

scenario (S-8): baseline scenario plus introduction of an additional payment

on crop area equal to 46 € ha~' plus product prices increased by 100-219%

(Le, wheat grain and N fertilizer price).

9. Support VAR investment (S-9): baseline scenario plus the introduction of

a support on investment corresponding to 50% of initial investment covered by

a subsidy.

10.  Support VAR investment plus drastically increased prices scenario
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(S-10): baseline scenario plus the introduction of a 50% subsidy of initial

investment covered by a subsidy, plus product prices increased by 100-219%

(wheat grain and N fertilizer prices).

Currently, there is no specific support for cereals in Spain, where the present
study was conducted, but we followed the example of what was allocated as
crop-specific aid per ha in the cases of oilseeds and legume-crops during the
year 2020 (FEGA, 2021). According to existing crop-specific aids, a mean aid
of 40-55 € ha~' was assumed. This interval supposes that for our mean yield
levels an additional aid of 0.02 € kg~ could be applied as LPP, equivalent to

a support of 46 € ha=! as DPA.

The relation between return time on investment (RO/;, expressed in years)
and the annual wheat area (expressed in ha) was modelled. Regression
analysis was used to estimate model coefficients, several alternative models
were tested, including linear, quadratic, logarithmic, exponential and power
models. Least Squares Fitting (LSF) and statistical hypothesis testing were
respectively used to estimate the regression coefficients and their significance
level (stats package in R; Team, 2000). Root mean square error (RMSE)
and R’ were used as statistical indicators of performance for the best-model
selection. For each scenario, the minimum area for adoption, corresponding
to the threshold below which the return on investment takes longer than the
amortization of VAR equipment, was also estimated. The null hypothesis was

tested with the non-parametric Tukey's range test (HSD-test).

5.3 Results

5.3.1 YG analysis

Figure 5.2 shows seasonal water supply over the six seasons considered.
Seasonal precipitation (P) from sowing to harvest varied from 228 to 535 mm

and seasonal LIF (only considered in ‘LIF zones') ranged from 30 to 112 mm.

Figure 5.3 shows simulated Yw values (2016-2021), also reported in Table 5.1,

which were obtained from Tenreiro et al. (2022). Measured Ya values ranged
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from 0.3 to 6.4 Mg DM ha~" over space and time. The intervals of intra-plot
variation for each season are shown in Figure 5.3. Ya showed a mean coefficient
of variation of 14.7% (£3.1%) among the six seasons considered. The probability
distribution curves of YG among zones and within each season are also shown
in Figure 5.3. Median YG was 1.7 Mg DM ha~! with a standard deviation of
0.135 Mg DM ha~". YG values ranged from 0 to 4.8 Mg DM ha~" in different
parts of the 92 ha field. In relative terms, the average YG was 30.5% of Yw. The
YC's were larger in LIF zones in four out of six seasons (Figure 5.3). The yield
maps are shown in Appendix (Figure A2). The YG results are synthesized in
Table 5.3.

5.3.2 The economics of VAR adoption

The capital recovery of VAR adoption was expressed as a function of both
the scale of adoption (i.e, annual wheat sown area) and the financial discount
rate. This relation was directly affected by the differential gross margin (DGM),

which was computed as the average of Table 5.4 values.

On average, DGM ranged from 121 to 1475 € ha~'!, depending on the
scenario considered. Under current conditions (see S-1 and S-2 in Table 5.4),
three out of six seasons (i.e, 2017/18, 2018/19, 2019/20) presented a negative
ADGM;, indicating risk of economic inefficiencies associated with VAR adoption
for 50% of the years investigated. DGM was negative when ADR; was lower
than ADC;. For each year specific conditions, there was a great variation of
ADGM,, which ranged from -42.3 (baseline scenario) to 405.2 € ha~' (scenario
S-8, ie, a policy support through an additional direct payment of +46€ ha™'

on crop area plus high wheat grain and N fertilizer prices; Table 5.2).

The economics of VAR adoption varied considerably, not only among different
years but also for the different scenarios (Table 5.4). The ADGM; and ADR,
showed stronger sensitiveness to the differences among years and economic
scenarios than ADC;, which presented a lower range of variation (Table 5.4).
LIF coefficients (i.e, season LIF divided by season precipitation) varied from 11

to 2/% according to Figure 5.2 values. Those years with higher LIF coefficients
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(e.g., 2016/17 and 2020/21) showed higher ADR; and ADGM,. The opportunity
cost showed a trend to decrease with the increase of LIF coefficient but
regressions were not capable to explain more than 30% of overall variation

(results not shown).

5.3.3 Economic trade-offs for viability of VAR

Model coefficients were obtained through regression analysis (Table 5.5). From
the set of models tested, power models were selected as the best fitted
ones. Power models maximized R’ values and minimized the RMSE. While
the R? values of linear, quadratic, logarithmic and exponential models were
respectively <0.1, 0.1-0.2, 0.2-0.4 and 0.7-0.8, the RMSE (expressed in years)
were larger than 10 for the first three model types and approximated 0.5 for
the exponential models. Power models (a - x~!) were the best fitted models
with R? above 0.98 and RMSE lower than 0.1. Model coefficients varied from
scenario to scenario but the statistics of model performance did not change
among scenarios. Model coefficient a and the minimum area for adoption of
VAR are shown in Table 55 for each of the 10 scenarios. The minimum area
for adoption corresponds to the cutting threshold value below which the return

on investment takes longer than the amortization of VAR equipment.

There was a negative relation between the return time on investment (RO,
expressed in years) and the annual wheat sown area (expressed in ha) which
was best fitted by a power model. Figure 5.4 shows the power models that
were fitted for each economic scenario. The 10-year overall total gain (OTG)
changed significantly from case to case, and according to the different discount
rates (Figure 5.5). The lower the discount rate, the larger the profitability of
VAR investment for addressing the spatial variations of yield gaps due to water
redistribution by lateral inflow. Over a 10-year period and under the baseline
scenario, at a discount rate of 25%, the OTC is expected to vary from -100.9
thousand € (for a total of 50 ha of wheat sown every year) to 310.3 thousand
€ (in the case of 2000 ha of wheat sown annually). Under the most profitable
scenario (5-8), for a median farmer with 100 ha wheat sown per year, the

10-year OTG is forecasted as 125.3, 1342 and 144.6 thousand € respectively
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with a discount rate of 7.5%, 5% and 25% (Figure 55 and Supplementary

material).

In our case (annual sown area equal to 92 ha, with an overall share of ‘LIF
zones' equal to 17.4%), the internal rate of return (IRR) was negative for almost
all cases considered (Table 55 and Figure 5.5), indicating a lack of relative
advantage (i.e,, additional profitability) for all the scenarios and discount rates
considered. Over the ten different scenarios explored, and assuming a median
case of 92 ha sown, we observed that the capital return could increase up to 5%
in the case of scenario S-8 (Table 5.5 and Appendix - Table A2), but this would

depend on a drastic price increase or on changes in agricultural policies.

5.4 Discussion

5.41 Crop yields and yield gaps

Actual wheat yields (Ya) varied within the range of other studies (Padilla et al,
2012; Schils et al, 2018) and exhibited significant differences among zones in
two out of six seasons (Table 5.3). This is associated with yield maps fitting
into variograms with irreqular spatial structure as both CV and differences
among means did not show consistency from year to year. This highlights that
temporal instability is an important issue for site-specific management because
the agronomic implications of asymmetric spatial variations differ greatly with

the cropxyear setting, as also discussed by Tenreiro et al. (2020b).

Coefficients of variation were consistently higher in ‘no-LIF zones’, which
is in line with the results of Tenreiro et al. (2022), who highlighted that the
contribution of LIF to yield spatial variations tends to be stronger in years of
relatively low water supply. This indicates that the degree of variation tends
to increase with the level of water stress. Observed CVs of Ya were similar to
those reported by others (Batchelor et al,, 2002; Florin et al, 2009; Whelan &
McBratney, 2000).

YG's CV were notably larger than Ya's CV, which is attributed to a larger

variation sources affecting the process of YG mapping. According to Table
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5.3, YG's were statistically (and systematically) different among zones. This
indicates that the YG appears to be a more precise benchmark (instead of
using solely Ya or Yw) for precision management decision-making, because it
captures a higher degree of spatial variation and it delivers the magnitude of

the expected response under a VAR for each year-specific conditions.

5.4.2 The economics of VAR adoption

The results presented here are conditioned by the specific topographic
conditions of the chosen farm. Under different geomorphological conditions (e.g.,
increased LIF area share), the returns on investment are expected to change.
The larger the relative share of LIF zones within the farming system, the lower

the minimum area required for VAR adoption (see S-2 in Table 5.5).

Under current conditions (S1), we computed a relative advantage associated
with VAR adoption but only for an annual wheat sown area larger than 567 ha
year~' (Table 5.5). This is considerably larger than typical European (arable)
farm sizes, which range from 4 to 62 ha (Andersen, 2017). For cases with less
sown area, the investment costs could still be recovered but it would not be
due to the relative additional gain. This means that a farm with a lower annual
sown area and currently profitable with uniform N applications, could pay for
the VAR investment, but the overall profitability of the farm would decrease if
VAR is adopted.

All the alternative scenarios considered accelerated capital recovery (Table
54 and Figure 5.4). However, wheat and N prices were the most determinant
factors for VAR viability (Table 55 and Figure 5.4). The slope of the 10-year
OTG increased notably with both wheat and N prices increasing (Figure 5.5).
However, this is determined by the N-grain prices’ relation adopted. The most
promising scenario, which showed the largest gain on capital recovery (see S-8
in Table 5.4 and Figure 5.5), was the inclusion of an additional direct payment
on crop area (4+46 € ha~") plus a drastic evolution of both input and output

prices.

An additional direct payment on area could also deliver advantages for
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a wider range of farmers as the minimum annual wheat area for adoption
decreases more than 75% under scenarios S-7 and S-8 (Table 5.5). For the same
available budget considered, the introduction of an additional direct payment
on area would imply a more robust advantage for VAR adoption than payments
linked to production (Table 5.4 and 5.5). Payments linked to grain yield would
be mostly diluted over the Ya level, which relates to the current management
system, and not over the differential YG closing effort that is attributed to VAR
adoption. Since current mean YG's are approximately 30% of mean Yw's (Table
5.3), the major part of a subsidy support linked to production would not apply to
the differential gross revenue, caused by the technological shift, but rather to the
actual yield level that is already achieved under the current management (i.e.,
uniform nutrient application). In this sense, a much wider fraction of financial
inflow would be directly attributed to the technological shift in the case of an
additional payment on area (Table 5.4). This indicates that the direct payment

1

of 46 € ha~" year~' scenario could be a better option in terms of policy support

on tnhvestment.

We did not investigate the opportunity of lower initial investment costs
associated with lower VAR acquisition costs of equipment, but this was partly
explored through the scenarios S-9 and S-10. These scenarios explored the
impacts of a policy support on investment through a support-payment equal to
50% of the initial acquisition costs (Table 5.2). This strategy impacts the return
on investment by decreasing RO/, (Figure 5.4-E), but achieving significant
impacts on OTG requires further prices’ changes (Figure 55-E). In the absence
of further price changes, this option does not guarantee incentives for farmers’

adoption and this could be a constraint from a strategic point of view.

Our results showed that the profitability of VAR investment would respond
more to changes in market prices than to policy supports (Table 5.4 and 5.5). In
the absence of additional policy supports, the minimum area for adoption of VAR
decreases substantially under both price evolution scenarios (i.e., respectively
069% and 88% according to Table 5.5). The evolution of prices that we assumed
is likely to turn VAR into a viable technology for a much wider population of

farmers, as the minimum area for adoption, according to the considered range
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of prices’ increase, is expected to decrease from 56/ ha to an interval of 67 to
177 ha year™'. This clearly indicates that, given current trends on both wheat
and N prices observed in early 2022 (Glauber & Laborde, 2022; Vos et al,, 2022),

more farmers would be inclined to adopt VAR in local rainfed systems.

The mean OTG values shown in Table 55 were estimated as the simple
average of OTG obtained for the following series of sown areas: 50, 100, 250,
500, 1000 and 2000 ha. According to the HSD-test results shown in Table
55, we observed that scenarios S-1, S-2, S-5 and S-9 did not significantly
differ from each other, which indicates that different market prices are the most

determinant condition to improve VAR economic viability.

The obtained ADGM,; fluctuated in a wider range than the values reported
by Robertson et al. (2007, 2012). Our results ranged from -42.3 to 405.2 €
ha=" year~' (Table 5.4). Nevertheless, our results are expressed in € ha=' of
LIF area. Since our conditions are characterized by a mean LIF area share
of 17.4%, the ADGM; values must be extrapolated to the total crop area for a
direct comparison with the results of Robertson et al. (2007, 2009). In terms of
total crop area, the obtained ADGM; ranged from 7.2 to 705 € ha~! which is
more in agreement with the literature. The average DGM was equal to 12.2 €
ha=! year~! for the baseline-scenario (S-1) and, considering all the scenarios
explored, the average DGM was 61.1 € ha~! year™', which very much in line

with the range of values reported by Robertson et al. (2007, 2009).

Seasons characterized by a negative ADGM; showed lower annual revenues
than costs. Annual costs are often characterized by larger fixed costs than
variable costs, because the variable costs are insensitive to farm size and
structure (Pedersen et al,, 2021). When the annual revenue did not overcome the
90 € ha=" year~' threshold (Appendix — Table A1), the net margin was negative.
This was observed in three out of six years, indicating a risk of economic losses
caused by VAR adoption in half of the years investigated. However, since both
Ya and YG were significantly different among zones for those same years, this
could still justify the adoption of VAR from both an agronomic and environmental
perspective (Mulla & Schepers, 1997; Pathak et al, 2019; Plant, 2001).

149



We highlight that from a financial point of view, the viability of VAR is
strongly dependent on the annual sown area, which depends on how farmers
value the return on capital. Under current price conditions (S-1 and S-2), we
highlight that a convincing IRR was only obtained for annual sown areas above
500 ha year—! (Appendix - Table A2). The IRR can be profitable for sown areas

between 125 and 500 ha year~', but it would depend on changes over product
prices (see S-4, S-7 and S.10 in Appendix - Table A2).

5.4.3 Methodological considerations and practical issues

VAR may increase farmers’ profit by reducing costs or increasing the value of
production, because fertilizer rates can be both increased or decreased among
differentiated zones. Under rainfed conditions, inter-annual climatic variation
leads to considerable asymmetries in crop yield patterns and financial returns
on VAR. Some years show advantages on increasing N rates downslope, some
benefit from decreasing applications, and others from applying N uniformly. We
assume that, independently on the year type, our analysis succeeded well in
modelling the expected marginal returns on VAR because the Y Gz magnitude
was computed as a module. This is valid for both years of reduced or increased
N rates in LIF zones. In both situations, the differential application rates are

captured by the present methodology.

Our analysis assumes that N application rates approach the crop net N
requirements, considering that most N inputs are recovered in the harvested
grain. Considering that mean Ya range from 3.1 to 45 Mg DM ha~" (Table

5.3), crop net N-requirements would be 88-126 kg N ha~".

In our study-case
conditions, we took N use efficiency into consideration as 25-40% more N is
applied on average (Table 5.2). However, we consider that this is in line with the
‘characteristic operating space’ for N use efficiency that is found in literature

addressing European commercial (cereal) farms (Panel, 2015; Quemada et al,
2020; Silva et al,, 2021).

This is an ‘ex-post analysis’ which may be a disadvantage for guiding

decisions under new seasons’ conditions (Bullock & Lowenberg-DeBoer., 2007).
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Our study dealt with historical data (ie, pre-collected information) and
obtained from six consecutive seasons which may not be sufficient to capture
the entire variability of rainfed systems. In reality, farmers face much greater
uncertainty because decisions need to be taken according to specific year
conditions which are highly variable. In addition, it is difficult to follow our
approach as ‘on-season’ YG assessment because it requires post-harvest yield

information.

Therefore, the following practical question arises: how could farmers manage
N applications under VAR, when their decisions must be taken without full

access to the same kind of information as here presented?

It has been shown by Tenreiro et al. (2022) that the net yield response to LIF
varies substantially from year to year. This turns decisions on VAR adoption
challenging because farmers face possible asymmetries in crop responses
patterns to differential N rates. However, some important guidelines can
be proposed from our results. Under our study conditions, the maximum
differential YG was 083 Mg DM ha~' (Figure 5.3-B), corresponding to a
maximum differential N rate of £232 kg N ha™' (ie, considering crop N
requirements equal to grain uptake and assuming a N concentration equal
to 2.8% DM~" grain, Quemada et al, 2016). This represents a variation of
approximately +16% N ha~! among zones. In addition, we suggested that the
cost of opportunity for VAR adoption tends to decrease with the LIF coefficient
(Le, LIF divided by season precipitation). The larger is the fraction of LIF
contribution to total season water supply, the greater could be the economic
advantages of VAR adoption. Our results have practical implications for nutrient
management in areas of undulating topography. In this sense, the following

recommendations are offered:

1. Use VAR for basal fertilization, applying up to +8% more N in ‘LIF zones'

in comparison to ‘No-LIF zones'

2. Adjust that pattern on top-dressing applications, conducted at dates prior

to flowering and according to the following criteria:

1. If the LIF coefficient falls within the top 25% percentile near flowering (ie.,

151



if LIF coefficient is larger than 25%, according to Tenreiro et al. (2022)
findings), up to +8% more N could be applied in ‘LIF zones’ in comparison

to ‘No-LIF zones'.

2. 1If the LIF coefficient falls within the bottom 25% percentile at flowering
date (i.e, if LIF coefficient is smaller than 15%, according to Tenreiro et al.
(2022) findings), the application pattern could be inversed by lowering N
rates to a minimum of -8% less N in 'LIF zones', in comparison to ‘No-LIF

zones'.

3. For seasons with a LIF coefficient ranging from 15% to 25% at flowering, a
plausible recommendation would be to not vary the N rate for top-dressing

applications.

Our results are largely conditioned by the yield simulations of Tenreiro et
al. (2022) and must not be directly extrapolated to other cases without further
cautious considerations. For many farms, either small sized or presenting low
yleld variations among zones, none to minor economic advantages associated
with VAR are expected for N management. It is therefore essential to farmers
and advisers to take into consideration the scale effects here addressed before

promoting a technological shift of this kind.

5.5 Conclusion

This study demonstrated how the relative (economic) advantages of VAR
adoption in rainfed wheat systems of undulating topography would change
greatly from year to year and from farm to farm. Both farm size (i.e., annual
sown area) and topographic structure (influencing the redistribution of water
from high to low parts of the fields) impacted the dynamics of investment
returns. Considerable effects of scale were observed and the minimum area
for adoption varied widely among different economic scenarios. Our study
suggests that there are economic opportunities for N management through

VAR as a strateqgy for bridging yield gaps at intra-plot level, which are caused
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by lateral inflows from high to low parts of a field. In the case considered here,
VAR adoption shows, for the current policy-prices scenario, that VAR adoption
would have an economic advantage in farms with an annual sown area greater
than 567 ha year—', which is considerably larger than typical European cereal
farm sizes. The profitability of adopting VAR is expected to respond largely
to future market prices, and, in the absence of additional policy supports, the
minimum area for adoption of VAR could decrease to a range of 68-177 ha
year~', depending on the price increases scenario. The effects of policy support
on VAR adoption were also investigated with additional payments on crop area
being the most promising from both public and private interest perspectives.
The combination of further price increases and an additional payment on crop
area could lower the adoption threshold down to 46 ha year~', turning VAR
technology economically viable for a much wider population of farmers. Over
the total amortization period, the (mean) differential gross margin of this case
study that is attributed to VAR adoption was 12.2 € ha~' year~'. Nevertheless,
considerable inter-annual variation is expected and farmers might experience

net financial losses in some specific years.
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Figure 5.1: Experimental fields. A) Total farm area (320 ha); B) Digital Elevation Model (DEM), values expressed in m amsl.; C) Soil types according to
USDA classification system; D) TOPMODEL Topographic Index (TMTI) as described in detail by Beven et al. (2021), values are unitless; E) Yw zones map
(Le, 'LIF" and ‘no-LIF" zones). According to Tenreiro et al. (2022), ‘LIF zones’ are characterized by significant water supplied through lateral inflow, while
‘no-LIF zones' are characterized by null or insignificant lateral inflow.
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Figure 5.2: Water supply: seasonal precipitation (P) and lateral inflow (LIF) for the experimental dataset. Values are expressed in mm. More information
is provided in Tenreiro et al. (2022).



Season 1 -2015/16 Season 2 - 2016/17 Season 3 -2017/18

Yield
Season 1 -2015/16 Season 2 - 2016/17 Season 3 -2017/18

1.00
20751
S 0.50
0251/ .
50004

Season 4 - 2018/19

2 1.001
So7s
£ 0.50
Oo25{ /

0.00£5="

Figure 5.3: Yield variations (values expressed in Mg DM ha="): A) Cumulative probability distribution
of actual yields (Ya) for each season (2015/16 to 2020/21) and within each zone (i.e, solid lines
correspond to 'no-LIF zones” while dashed lines relate to ‘LIF-zones’); B) Cumulative probability
distribution of yield gaps (YG) for each season and within each zone. Vertical lines indicate Yw levels
obtained from Tenreiro et al. (2022) simulations.
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Figure 5.4: The negative relation between return time on investment (ROIt, expressed in years) and the annual wheat area (expressed in ha). The annual
wheat area is subjected to the farm conditions supporting our analysis (i.e, an average LIF area share of 17.4%). Scenario S-2 represents the effect of a
35% increase in LIF area share within the cropping system. More information regarding the remaining scenarios considered is provided in Table 5.2.
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Figure 5.5: The 10-year overall total gain (OTG) under multiple scenarios (units expressed in thousand €). The OTG was estimated by solving the NPV
series over a period of 10 years, which was a function of both the discount rate used and the price/payment scenarios adopted (Table 5.2).
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TABLES - Chapter 5

Table 5.1: Crop management information: Fertilizers DAP and CAN correspond to diammonium phosphate (18-46-0) and calcium ammonium nitrate
(24-0-0 + 8% Ca), respectively. Urea (46% N) was top-dressing applied. Yw values were obtained from Tenreiro et al. (2022). Sowing and harvest dates
indicate day plus month and mean N applied is expressed in kg N ha='. Water-limited yield (Yw) values are expressed in Mg DM (grain) ha='. Mean
plant density was 230 plants ha='. 'LIF": downslope zones with significant amount of water supplied through lateral flow coming from upslope areas of the

same fleld; ‘No-LIF": upslope zones where no significant amount of water is supplied through lateral flow. More information on LIF and No-LIF zones is
provided in Tenreiro et al. (2022), see also section 5.2.2.

Season Cultivar Area Sowing date Harvest date Previous crop Fertilization Mean N applied Yw F YWnNo—1IF
[hal [kg N ha™"] (Mg DM ha~'] [Mg DM ha™"|
2015/16  Amilcar 395 10.11 23.06 Chickpea DAP + Urea 172 45 41
2015/16  Don Ricardo 430 9.11 20.06 Sunflower DAP + Urea 188 45 41
2016/17  Athoris 20.0 16.11 21.06 Onions DAP + Urea 170 4.6 43
2017/18  Kiko-Nick 503 2411 21.06 Sunflower DAP + Urea 182 5.1 49
2018/19  Antalis 399 1711 16.06 Sunflower DAP + Urea 152 53 5.1
2019/20  Kiko-Nick 50.2 1312 10.06 Rapeseed CAN + DAP 110 52 53

2020/21  Avispa-R1 403 18.11 8.06 Rapeseed DAP + Urea 160 5.8 5.1
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Table 5.2: The ten different scenarios considered to analyse the impact of price support policies, extra direct payments, and different market prices on
VAR economic relevance. For each scenario, three different sub-scenarios were considered by setting the discount rate (y) at 25%, 5% and 7.5%. LPP and
DPA mean linked to production payment and direct payment on crop area, respectively. ACy4r means annual cost of VAR use and /ly4r is the initial
acquisition cost of VAR technology (Appendix — Table A1). LPP was based on a total available budget equal to 46€ ha™' (as considered in S-7 and S-8
scenarios) divided by the average yield.

Scenario [S-1] [S-2] [S-3] [S-4] [S-5] [S-6] [S-7] [S-8] [S-9] [S-10]
LIF areastare (%) 174 17.4 (+35%) 174 174 174 17.4 174 174 174 174
Priceynear (€ kg=' DM grain)  0.322 0322 0416 0640 0322 0640 0322 0640 0322 0640
LPP (€ kg™) 0 0 0 0 +0.02  +0.02 0 0 0 0
DPA (€ ha™') 0 0 0 0 0 0 46 46 0 0
PriceN (€ kg=' N) 1.093 1.093 1812 3490 1093 3490 1093 3490 1.093 3490
ACyar (€/ha) 90 90 90 90 90 90 90 90 90 90
Iyar (€) 11,900 11,900 11,900 11,900 11,900 11900 11900 11,900 5950 5950

v (%) 25-7] [25-7] [25-7] [25-7] [25-7) [25-7] [25-7] [25-7] [25-7] [25-7]
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Table 5.3: Mean yield values, yield gaps, and coefficients of variation. The standard deviations are presented in parentheses. Means followed by a
common letter are not significantly different, according to the HSD-test conducted at the 5% level of significance (p-value < 0.05).

Season Ya (Mg DM ha™") CV% (Ya) YG (Mg DM ha™') CV% (YQ)
- LIF No-LIF LIF No-LIF LIF No-LIF LIF No-LIF
2015/16 372 (04) a 366 (06)a 124 158 079 (04)a 049 (05 b 573 1029
2016/17 313 (05)a 323 (05)a 150 155 148 (04)a 104 (05 b 317 476
2017118 345 (05)a 351 (04)a 143 125 16505 a 145(04) b 299 302
2018/19 452 (04)a 414 (06)b 83 171 078 (03)b 095(07)a 476 756
2019/20 334 (03)a 329 (03)b 108 111 187 (03)b 205(03)a 193 178
2020/21 352 (05)a 360 (06)a 146 169 227 (05)a 144 (06)b 227 418



Table 5.4: The economics of VAR adoption, under spatial water variations in rainfed wheat systems
according to our experimental conditions. ADGM; is the annual differential gross margin in year ¢,
ADRy is the annual differential revenue in year t, and ADC; is the annual differential cost in year

t. DGM, ADR, ADC are, respectively, the average differential gross margin, the average differential
revenue and the average differential costs. Economic scenarios are described in Table 5.2. Values are
expressed in € ha~! of LIF area.

Economic scenario

Term Season  S-1 S-2 S-3 S-4 S5 S-6 S-7 S-8 S-9  S-10
ADGM, 2015/16 -04 -04 231 779 5.8 842 456 1239 -04 779
2016/17 387 387 724 1512 476 1601 847 1972 387 1511
201718 -338 -338 -191 153 -299 192 122 613 -338 152
2018/19 -423 -423 -298 -06 -389 238 37 455 -423 -06
2019/20 -391 -391 -257 56 -355 91 6.9 516 -390 55
2020/21 1497 1497 2124 3592 1662 3757 1957 4052 149.7 3589
ADR;,  2015/16 991 991 1288 1982 1053 2044 1451 2442 991 1982
2016/17 1423 1423 1850 2846 1512 2935 1883 3306 1423 2846
201718 621 621 808 1242 660 1281 1081 1702 621 1242
2018/19 528 528 686 1055 561 1088 988 1515 528 1055
2019/20 564 564 733 1128 599 1163 1024 1588 564 1128
2020/21 2650 2650 3445 5300 2816 5466 311.0 5760 2650 5300
ADC,  2015/16 995 995 1057 1202 995 1202 995 1202 995 1203
2016/17 1036 1036 1126 1334 1036 1334 1036 1334 1036 1336
2017/18 959 959 999 1090 959 1090 959 1090 959 109.0
2018/19 950 950 984 1061 950 1061 950 1061 950 106.2
2019/20 954 954 990 1072 954 1072 954 1072 954 1073
2020/21 1153 1153 1321 1708 1153 1708 1153 1708 1153 1711
DGM  laverage] 121 121 389 1014 192 1085 581 1474 121 1013
ADR  Javerage] 1130 1130 1468 2259 1200 2330 1590 2719 1130 2259
ADC  [average] 1008 1008 1080 1245 1008 1245 1008 1245 1008 1246
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Table 5.5: This table shows the best fitted models’ coefficient-a values (i.e, a power model adjusted
to the data), the minimum area for adoption of VAR (expressed in ha per year), the mean return

on investment time (RO, expressed in years) and the mean overall total gain (OT G, expressed in
thousand € per 10-year period). The minimum area for adoption corresponds to the value below
which the return on investment takes longer than the amortization of equipment (ie., 10 years).

OT G means followed by a common letter are not significantly different, according to the HSD-test
conducted at the 5% level of significance. The internal rate of return (/RR) values assume an average
annual sown area equal to 92 ha.

Scenario  Best fitted model (a/x) Minimum area for adoption Mean RO/, Mean OTG IRR
- (coefficient a) [ha] [years] [thousand €/10-years]  [%]
[S-1] 56774 567.74 35.484 25592 e -14%
[S-2] 42055 42055 26.284 69.579 e -11%
[S-3] 17728 177.28 11.079 302.406 d -2%
[S-4] 679.87 67.987 4249 949.423 b -13%
[S-5] 3590.7 359.07 22.441 98.629 e -1%
[S-0] 635.63 63.563 3972 1022.459 b 0%
[S-7] 1186 118.6 7412 501.513 ¢ -9%
[S-8] 467.75 46.775 2923 1425.343 a 5%
[S-9] 2838.7 283.87 17.742 75.634 e -14%
[S-10] 3403 34.03 2126 998.347 b -2%
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Figure A1. Left-plot: probability distribution curves of TOPMODEL topographic index values
(Beven et al, 2021) for each sampling zone. Centre-plot: boxplots of mean TOPMODEL
topographic index for each sampling zone. Right-plot: boxplots of mean lateral inflow (LIF)
within each sampling zone. Values correspond to the experimental measurements taken by
Tenreiro et al. (2022). Boxes indicate the lower and upper quartiles. The solid line within the
box is the median. Whiskers indicate the most extreme data point which is no more than 1.5
times the interquartile range from the box, and the outlier dots are those observations that are
beyond that range.

Table A1. Acquisition costs: information compiled from different sources (AAEA, 2000; Batte
& Ehsani, 2000; Finco et al, 2021; Griffin, 2006; Tozer, 2009). ()VAR annual costs were
estimated by considering the (fixed + variable) costs of a tractor (with an amortization
through 18 years) plus the combine harvesting and yield monitoring renting cost, expressed
in € ha~". VAR technology includes a precision application system RTK, GPS receiver, base
station, replicators and application controller.

Equipment/operation Mode Cost Lifetime Period Units
Tractor 270HP Acquisition 170,000 16,000 h > 10 years €
GPS guiding system Acquisition 4,000 2,000 h > 10 years €
Combine harvester + yield monitor ~ Renting 00 2,000 h Season € ha™!
VAR technology Acquisition 5200 1500 h =~ 10 years €

N application controller (18 m bar) Acquisition 2,700 1500 h = 10 years €
VAR annual costs - 90(") - - € year™!
Fixed initial investment cost - 11,900 - - €/10 years
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Table A2. The internal rate of return (IRR) for different annual sown areas (ha). Values expressed in %.

Area (ha) 50 100 250 500 1000 2000

S-1 -19% -14% -6% 1% 9%  18%
S-2 -19% -14% -6% 1% 9%  18%
S-3 -17%  -10% 2% 15% 36% 78%
S-4 -11%  -1%  23% 57% 122% 249%
S-5 -18% -13% -4% 4% 14%  30%
S-6 -11% 1% 206%  62% 132% 268%
S-7 -15% 8% 8% 29% 6/% 143%
S-8 /% 7%  41% 91% 189% 377%
S-9 -19% -14% -6% 1% 9%  18%
S-10 1% 1% 23% 57% 122%  249%
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Chapter 6

Conclusions

The main conclusions from the research carried out in this PhD thesis are
summarized below. For clarity, they appear according to each of the specific

and general objectives raised in the introduction.
First objective

The review of modelling approaches to simulate lateral water flows and their
impact on yield (covered in Chapter two) revealed two major opportunities to

simulate spatial water variations at crop field level:
1) The addition of spatial and continuous mechanisms to crop models.

2) The integration of lateral flows in current ‘tipping-bucket’ discrete

approaches.

This thesis focused on the incorporation of both surface and subsurface
lateral flows when simulating crop performance with a ‘tipping-bucket’ discrete
approach (the AquaCrop model). In order to incorporate lateral inflows within
AquaCrop simulations, an innovative approach was developed by distributing
spatially the modelling scheme through a spatial segmentation that was defined
by both crop (i.e., the incorporation of remote sensing estimations of canopy
cover, as conducted in Chapter three) and topographic variables (i.e, the zonal

segmentation as done in Chapters four and five).
Second objective

Data assimilation methods were explored to document spatial variations

within a field in Chapter three. Several practical advantages of using remote
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sensing indicators (i.e., NDVI) for the assessment of canopy cover were identified
and evaluated. It was shown that despite the overall uncertainty, they can be
adopted with fair confidence in modelling applications, mostly in cases where
the relative variations of predictions are prioritized over the absolute accuracy
level. This represents substantial advantages for the use of crop simulation

models within the context of precision agriculture.

The empirical models developed in Chapter three assist in the use of NDVI for
determining canopy cover which improved crop growth estimates in subsequent
experimental and modelling steps of this thesis. However, this must be seen as
a complementary step to the impact of spatial variations of the water balance.
Furthermore, the integration of lateral water movement, and the simulation of
the ‘cause-effect’ relations between neighbouring cells/zones, is necessary to
capture spatial compensations of yield determining factors, such as variations

of harvest index or of root growth caused by differences in water availability.
Third objective

This thesis carried out one of the first modelling studies conducted at
commercial flelds’ scale, supported by experimental data and delivering water
lateral inflow patterns and their simulated impact on wheat yields over 30

years, leading to the following conclusions from Chapter 4:

3.1) Progress was made in the modelling process because lateral flows
were experimentally measured in real field conditions, their magnitude and
their temporal frequency were assessed, and these flows were integrated in

the computation scheme of the water balance within the AquaCrop model.

3.2) The water accumulation process, represented in our analysis by the flow
accumulation index, requires large scales to have implications in the water
balance computation and in the yield simulation. According to our artificial
neural network model (Chapter 4), the magnitude of lateral flows is determined
by the rainfall amount, the runoff generated upstream (as well as at the same
point), and the overall accumulation of flow generated upstream, which is
determined by the catchment size. The accumulation of lateral flow governs

its relevance in the modelling process. The LIF was segmented according to
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different magnitude classes, by distinguishing between the zones where these
flows are insignificant (high elevation zones) or important for the performance
simulation (low elevation zones). For intermediate sites of the field (i.e, those
located in medium elevation zones), no significant advances were achieved in
the modelling process. For these cases, the effects of lateral flow over simulated
ytelds remains unknown. The modelling process developed within this thesis
allowed to capture the spatial variation between the upper and lower zones
of a fleld but it did not achieve a complete and continuous distribution of the

water balance throughout the field.

3.3) It was concluded that LIF contributed to yield variations in rainfed
wheat production systems such as the one studied here. Simulated wheat
ylelds varied (within field) an average of 16% due to LIF occurrence, and the
net yield response to LIF in downslope areas averaged 383 kg grain yield (GY)
ha=" over 30 years. LIF impact on yield was mostly dependent on the year

precipitation conditions.
Fourth objective

This thesis demonstrated that there is a relative (economic) advantage
of VAR in rainfed wheat systems of undulating topography. The analysis
contained in Chapter five suggested that there are economic opportunities for
nitrogen management through VAR as a strategy for bridging yield gaps at
intra-plot level, which are caused by lateral inflows from high to low parts
of a fleld. However, this advantage would change greatly from year to year
and from farm to farm. Both farm size and topographic structure (influencing
the redistribution of water from high to low parts of the fields) impacted the

dynamics of investment returns and considerable effects of scale were observed.

The economic viability of such a management system is profoundly affected
by effects of scale, both in terms of the relationships between supplying
(upstream) and the receiving (downstream) areas, and with respect to the

relationships between costs and benefits associated with VAR adoption.

From the results of this thesis, the VAR system must be seen as an unfeasible

strategy for typical local wheat fields and arable farms. In mean terms, the
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areas of local rainfed wheat based systems are considerably lower than the
minimum area required for a complete amortization of VAR technology. Under
current price and policy conditions, the VAR system can represent a competitive
advantage but only for considerably large farms which do not tend to be found

in Europe.

VAR adoption would have an economic advantage in farms with an annual
sown area greater than 567 ha year~!' but this is considerably larger than
typical European cereal farm sizes. However, it was observed that the
profitability of adopting VAR is likely to respond largely to future market
prices as the combination of further price increases and an additional payment
on crop area could turn VAR technology economically viable for a much
wider population of farmers. Under the most promising scenario, the adoption

threshold could lower down to 46 ha year™'.

There is an opportunity associated with the evolution of the price levels
for both grain and nitrogen, however, it is still necessary that the current
price relationships are maintained to promote a relative advantage for farmers.
Considerable inter-annual variation is expected and farmers might experience
net financial losses in some specific years. It is considered that the economic
results here presented are novel because this study focused on the additional
advantage generated by VAR and not simply on the overall returns that could

be unrelated to the technological transition itself.
Main objective

This thesis demonstrated that spatial crop-water variation in rainfed wheat
systems in Mediterranean conditions is a relevant process in determining
spatial differences in yield, and it can be simulated by combining hydrologic
and crop simulation models. Progress in the simulation of crop response to
spatial variations delivers new opportunities for better crop production through

site-specific management.

According to the simulations conducted, lateral inflow plays a considerable
net contribution to yield variation over space, which reveals an agronomic and

environmental opportunity to apply nitrogen with a variable application rate
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(VAR). The agronomic implications and opportunities for VAR adoption depend
on the proportional relations between water supplying and receiving zones
and these must be assessed at both field and farm level. Although being of
difficult amortization within the context of European arable farming, and under
current conditions, there is a growing opportunity associated with the evolution
of prices that will increase the relative advantage of implementing VAR as an

agronomic strategy to deal with crop-water spatial variations.
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Summary

In sloping fields, rainfed crops experience different degrees
of water stress caused by spatial variations in water and,
consequently, yields also vary spatially within a field. This
offers opportunities for precision agriculture through site-specific
management. However, while significant advances have been
accomplished in the engineering aspects of precision agriculture,
such as increasing spatial resolution of data systems and
automation, much less effort has been dedicated to the simulation
of within fleld crop responses to spatial variations. Most studies on
rainfed yield gaps ignore intra-plot variability, but if crop models
are to be used in assisting site-specific management, they may
greatly benefit from spatial water modelling approaches capable
of accurately representing and simulating within-field variation of

water-related processes.

This doctoral thesis represents a novel contribution to the
agronomy of rainfed agricultural systems, evaluating the role
played by water flows in areas of undulating topography in
determining the spatial variations of wheat yield. The thesis has
been carried out in chapters that are associated by following an

integrative approach.
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The thesis first reviewed some of the most widely adopted
crop and hydrologic models and explored new opportunities for
simulating spatial water variations at crop field level through the
incorporation of lateral inflow at lower elevation zones of the
fleld. From this standpoint, the spatial variations of yield gaps
in rainfed wheat, caused by lateral flows from high to low areas,

were assessed in Cdérdoba, Spain.

From an agronomic perspective, water lateral inflows (LIF) due
to surface and subsurface runoff contribute to yield variations
in rainfed wheat production systems such as the one studied
here. The net contribution of these flows to spatial variations of
rainfed potential yields showed to be relevant but highly irregular
among years. Despite the inter-annual variability, typical of
Mediterranean conditions, the occurrence of LIF caused simulated
wheat yields to vary +16% from up to downslope areas of the field.
Average crop yield ranged from 1.3 to 54 Mg grain yield (GY)
ha='. The net yield responses to LIF, in downslope areas were on
average 383 kg grain yield (GY) ha™', and the LIF marginal water

productivity reached 246 (£13.2) kg GY ha™' mm™'

in years of
maximum responsiveness. Such years of maximum responsiveness
were associated with low rainfall during the vegetative stages
of the crop in combination with LIF occurring at post-flowering
stages. However, under field conditions, these differences were

only visible in one of the two experimental years.

The economic implications associated with multiple scenarios of

variable application rate of nitrogen were explored through a case



study and several recommendations were proposed. Both farm
size (Le., annual sown area) and topographic structure impacted
the dynamics of investment returns. Under current policy-prices
conditions, the adoption of variable application rate would have an
economic advantage in farms similar to that of the case study with

an annual sown area greater than 567 ha year'.

Nevertheless,
current trends on energy prices, transportation costs and impacts
on both cereal prices and fertilizers costs enhance the viability
of variable application rate adoption for a wider population of
farm types. The profitability of adopting VAR improves under such
scenarios and, in the absence of additional policy support, the
minimum area for adoption of variable application rate decreases
to a farm size range of 68-177 ha year—". The combination of price
increases with the introduction of an additional subsidy on crop
area could substantially lower the adoption threshold down to 46

ha year™, turning this technology economically viable for a much

wider population of farmers.



Resumen

En campos en pendiente, los cultivos de secano experimentan diferentes
grados de estrés hidrico causados por variaciones espaciales de la humedad
en el suelo, y los rendimientos varlan espacialmente dentro del mismo campo.
Esta variabilidad supone una oportunidad para la agricultura de precisidén a
través del manejo espacialmente variable. Sin embargo, si bien se han logrado
avances significativos en los aspectos de la ingenieri{a de la variacion espacial,
como el aumento de la resolucion espacial de los sistemas de datos y la
automatizacion, se ha avanzado mucho menos en relacion a la simulacion de
las respuestas de los cultivos a las variaciones espaciales de la humedad y los
flujos hidricos. La mayoria de los estudios sobre las brechas de rendimiento
de secano ignoran la variabilidad dentro de la parcela. Sin embargo, el uso
de modelos de simulacion de cultivos como medida de apoyo a los sistemas
de gestidn espacialmente variable, requiere que los enfoques de modelacion
espacial del agua sean capaces de representar y simular con precision la
variacidon dentro del campo de los factores relacionados con el agua disponible

y la respuesta de los cultivos.

Esta tesis doctoral representa una nueva contribucion a la agronomta de los
sistemas agricolas de secano, con énfasis en el papel que juegan los flujos de
agua en zonas de topografla ondulada en la determinacién de las variaciones
espaciales del rendimiento del trigo. La tesis se ha desarrollado en capitulos

que se complementan siguiendo un enfoque integrador.

La presente tesis doctoral revisé algunos de los modelos hidroldgicos
y de cultivo mas ampliamente adoptados y explord nuevas oportunidades
para simular variaciones espaciales del agua a nivel de campo mediante la
incorporacidn del flujo lateral de escorrentia superficial y sub-superficial en las
zonas de menor elevacién del campo. Desde este punto de vista, se evaluaron
las variaciones espaciales de las brechas de rendimiento en trigo de secano,
en Cdrdoba, Espafa, que son causadas por flujos laterales de los puntos altos

a los bajos.

Desde una perspectiva agrondmica, las entradas laterales del agua



contribuyen a las variaciones de rendimiento en los sistemas de produccion
de trigo de secano como el que se ha estudiado en el ambito de esta
tesis. La contribucién neta de estos flujos a las variaciones espaciales de
los rendimientos potenciales de secano se mostro relevante pero altamente
irregular entre diferentes afos. A pesar de la variabilidad interanual, tipica
de las condiciones mediterraneas, la existencia de dichos flujos hizo que
los rendimientos de trigo simulados variaran un +16% desde las dreas mas
elevadas de un campo hacia abajo. El rendimiento medio observado oscild entre
1.3 y 5.4 Mg de rendimiento de grano (GY) ha™'. Las respuestas de rendimiento
neto al flujo lateral, cuenca abajo, fueron en promedio 383 kg de rendimiento
de grano (GY) ha™', y la productividad marginal de agua de LIF alcanzé 24.6
(£132) kg GY ha=" mm~" en afos de maxima capacidad de respuesta. Dichos
afnos de maxima capacidad de respuesta se asociaron con bajas precipitaciones
durante las etapas vegetativas del cultivo en combinacion con flujos laterales en
las etapas posteriores a la floracidon. En condiciones de campo, estas diferencias

solo fueron visibles en uno de los dos anos experimentales.

Las implicaciones econdmicas asociadas con multiples escenarios de tasa de
aplicacion variable de nitrogeno se exploraron a través de un caso de estudio
y se propusieron varias recomendaciones. Tanto el tamano de la finca (el
drea sembrada anual) como la estructura topografica afectaron la dindmica
de los rendimientos de la inversidn. Bajo las condiciones actuales de politica
agricola, y de precios, la adopcién de la tasa de aplicacion variable tendria
una ventaja econdmica en fincas similares a la del caso de estudio con un

drea sembrada anual superior a 567 ha afio™".

Sin embargo, las tendencias
actuales en los precios de la energia, los costes de transporte y los impactos
tanto en los precios de los cereales como en los costes de los fertilizantes
mejoran la viabilidad de la adopcion de esta tecnologla para una poblacion
mas amplia de tipos de fincas. La rentabilidad de la adopcién de aplicacion
variable de nitrégeno mejora bajo dichos escenarios y, en ausencia de apoyos
adicionales, el drea minima para la adopcidn de aplicacidn variable disminuye
hasta un rango de 68-177 ha afio~! de drea de siembra. La combinacién de

aumentos de precios con la introduccién de un subsidio adicional asociado al



area de cultivo podria reducir sustancialmente el umbral de adopcidn hasta 46
ha afio~!, lo que hace que la tecnologia sea econdmicamente viable para una

poblacion mucho mas amplia de agricultores.
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