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Abstract: Traditional potato growth models evidence certain limitations, such as the cost of obtaining
the input data required to run the models, the lack of spatial information in some instances, or the
actual quality of input data. In order to address these issues, we develop a model to predict potato
yield using satellite remote sensing. In an effort to offer a good predictive model that improves the state
of the art on potato precision agriculture, we use images from the twin Sentinel 2 satellites (European
Space Agency—Copernicus Programme) over three growing seasons, applying different machine
learning models. First, we fitted nine machine learning algorithms with various pre-processing
scenarios using variables from July, August and September based on the red, red-edge and infra-red
bands of the spectrum. Second, we selected the best performing models and evaluated them against
independent test data. Finally, we repeated the previous two steps using only variables corresponding
to July and August. Our results showed that the feature selection step proved vital during data
pre-processing in order to reduce multicollinearity among predictors. The Regression Quantile Lasso
model (11.67% Root Mean Square Error, RMSE; R2 = 0.88 and 9.18% Mean Absolute Error, MAE)
and Leap Backwards model (10.94% RMSE, R2 = 0.89 and 8.95% MAE) performed better when
predictors with a correlation coefficient > 0.5 were removed from the dataset. In contrast, the Support
Vector Machine Radial (svmRadial) performed better with no feature selection method (11.7% RMSE,
R2 = 0.93 and 8.64% MAE). In addition, we used a random forest model to predict potato yields in
Castilla y León (Spain) 1–2 months prior to harvest, and obtained satisfactory results (11.16% RMSE,
R2 = 0.89 and 8.71% MAE). These results demonstrate the suitability of our models to predict potato
yields in the region studied.
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1. Introduction

The world population has been increasing exponentially since the mid-1920s, and stood at
7.7 billion people in October 2018 (www.worldometers.info), a figure which is projected to increase
by a further three billion over the next five decades [1]. Global food demand will rise accordingly,
and competition is expected for the fertile land and water resources required to produce more
agricultural food products [2]. Rijsberman and Molden [3] point to the need to increase total food
production by about 40%, while reducing the water resources used in agriculture by 10–20%. Yet these
premises must face up to the prospect of certain anticipated climate change effects which may
negatively impact crop production as well as other indispensable resources for agriculture, such as
water availability [4]. Land, fossil energy and nutrients are other important resources that ensure food
production, although their current consumption exceeds their global regeneration rate [5,6]. Precision
Agriculture (PA) has emerged in an effort to meet major global challenges such as food security [7],
the depletion of natural resources [8], and anthropogenic climate change [9]. The primary goal of PA is
to optimize returns while reducing the potential impact of farming on the environment [10].
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The use of new technologies, such as satellite data, Geographic Information Systems (GIS) or
Global Positioning Systems (GPS), can improve crop yield production and its quality [1], helping to
secure food supply for the future as well as reducing the negative impacts resulting from agricultural
practices [11]. More specifically, satellite remote sensing data has many applications in agriculture: soil
property detection [12], crop type classification [13], crop yield forecast [14], crop health monitoring [15],
soil moisture retrieval [16] or weather data assessment [17]. Remote sensing offers vast amounts of
information which can be considered big data [18], and can help to improve crop modelling and
decision-making. Big data has been described by Wolfert et al. [19] as “massive volumes of data
with a wide variety that can be captured, analysed and used for decision-making”, with said authors
expecting big data to have a major impact on the agricultural sector. In order to improve the use of
this data, given its size and variety, machine learning has emerged as an appropriate tool to identify
rules and patterns in datasets [20], in addition to autonomously solving non-linear problems [21].
Many studies have demonstrated the usefulness of machine learning approaches to predict yield for
various types of crops, enabling policymakers and farmers alike to take appropriate measures for
marketing and storage [22–24]. However, tuber and root crops have thus far received little attention in
model testing and model improvement [25].

The potato (Solanum tuberosum L.) is the third most important food crop after rice and wheat
and is consumed by over a billion people [26]. The growing demand for potato, coupled with the
decreasing availability of fertile land for expansion, implies the need for better crop protection and
management practices in order to improve crop yields [27]. Traditionally, crop growth models have
been used to identify the effects of management options such as planting dates, population density,
irrigation timing and frequency, as well as fertiliser applications in different environmental conditions
on crop growth and yield [28,29]. In this context, crop models may prove useful for improving yield
predictions for the potato processing industry [29]. These classical potato models are mainly based
on the response to nitrogen fertilizer [30], temperature, and daylight [31] or the incidence of solar
radiation [32] and are often used to estimate yields during the growing season. There is a wide range
of potato crop growth models in the literature such as SUBSTOR-Potato, LINTUL-Potato, SOLANUM,
APSIMPotato, SPUDSIM, POMOD, SIMPOTATO or Potato Calculator [33–35]. However, most of these
models have not been comprehensively tested to real field data and some have never even been used
in a real application [36]. Their main limitations are the cost of obtaining the necessary input data
required to run the models, the lack of spatial information in some instances, and the quality of the
input data [37]. In remote sensing, multispectral satellite imagery can describe crop development for
crop yield forecasting, across time and space, in a cost-effective manner [38]. Thus, satellites offer
several options for reducing crop forecasting errors, particularly in data-sparse regions where input
information is not available [39]. However, these models usually need to be calibrated to the regional
conditions of the study area. Previous potato yield models based on remote sensing have mainly used
vegetation indices, relying on the red or infrared bands of the spectrum, with accuracies ranging from
0.47 to 0.84 in terms of R2 [40,41]. However, the use of other vegetation indices based on spectral bands
such as the red-edge (~700–780 µm) may improve the understanding of crop status [42]. For instance,
some authors have related this spectral region to the chlorophyll content [43] or the canopy nitrogen
status [44]. The current availability of free high spatial and temporal resolution satellite imagery
(e.g., Sentinel 2 satellites) offers a major opportunity for crop monitoring and yield forecasting [45].
Thus, the increasing volume of data may help to develop better machine learning models for predicting
potato yields. These data can be used by governments and supra-national bodies (such as the European
Union) to rationalise policy adjustments [39].

In this study, we aim to improve current crop modelling techniques for predicting potato yield
using high resolution Sentinel 2 imagery (European Space Agency—ESA), from a machine learning
perspective. The study area is located within the Castilla y Leon region (Spain), which is the largest
potato producer in the country [46]. Potatoes are a strategic crop in this region, with a total of
5200 potato producers and 20,658 ha cultivated [47].
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2. Materials and Methods

2.1. Study Area

In this study, a total of 33 different sites were studied over three years in the province of Segovia,
Spain (Figure 1). We selected these sites because they offer sub-field information on yield production
and similar agricultural practices. In terms of management, agricultural practices were similar in
all the areas under study; potato tubers of three different cultivars of medium-late maturity were
sown following a ridge distribution with each plant spaced 0.33 m along the ridge. The distance
between ridges was 0.75 m and the furrow depth was around 0.15 to 0.20 m. In the study area, potato
crops are usually sown between mid-March and the end of April, and the harvest period generally
spans from mid-September to late October. Sprinkler irrigation was used to supply water to the
crop. According to the Koppen classification, the study area has a Mediterranean “cool dry-summer”
climate (classified as Csb) [48], characterized by rainy winters and dry summers. Annual average
precipitation across years is 430 mm, with July and August being the driest months during the year.
Mean temperature is 11.9 ◦C, with January being the coldest month, and July and August the hottest
months (https://es.climate-data.org).

Figure 1. Location of the study fields (pink colour) in the municipality of Cuellar (in red colour),
Castilla y León (Spain).

2.2. Materials

Crop yield information corresponds to the total commercial weight obtained in each studied
field-area during 2016, 2017 and 2018, and was provided by the potato producer (Table S1). Field
geo-location was obtained using the “Sistema de Información Geográfica de parcelas agrícolas”
(SIGPAC) from the regional government of Castilla y Leon [49], which delimits agricultural fields
in digital format. These were then subsetted into smaller areas in accordance with the crop yield
information provided, using ArcMap 10.4 software [50]. We were thus able to derive the following
ratio: fresh matter (FM) yield in ton/ha. Potatoes presenting green parts, with a size below 28 mm
(in diameter), deformed structures or physical damage were not harvested and were not taken into
account as crop yield. Field evaluations reported that approximately 3–5% of the total production

https://es.climate-data.org
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presented some kind of defect, such that those potatoes were not harvested. Henceforth, the term crop
yield refers only to “commercial yield” (good quality potatoes that have passed the visual evaluation
filter during harvest). For a total of 33 samples across three years, the minimum yield sample was
17.547 ton/ha, the maximum was 85.678 ton/ha, and the mean potato yield was 57.950 ton/ha, with a
standard deviation of 16,747.

We downloaded 44 Sentinel-2 L1C images in an effort to cover the periods between tuberization
and senescence (Table S2). The Sentinel satellites are twin-polar orbiting satellites that provide a revisit
time of five days. They carry a Multi-Spectral Instrument which has 13 spectral bands: four bands at 10
m, six bands at 20 m, and three bands at 60 m spatial resolution [45]. Field observations were carried
out to determine the beginning of tuberization, which occurred typically during July in the study
area, while senescence occurs in September under normal circumstances. It was therefore deemed
appropriate to select the study time between early July and late September for 2016, 2017 and 2018.
The downloaded 44 Sentinel-2 images within this time range were atmospherically corrected using the
SEN2COR algorithm from Top of Atmosphere (TOA) to Bottom of Atmosphere (BOA) reflectance [51].
Image bands were resampled using the nearest neighbour technique with the “Resample” function
of the Raster package [52] in R software [53] in order to have 10 m pixel resolution in each band.
Cloud cover was then automatically removed using the cloud mask layer provided for each Sentinel 2
image for all the available bands. In addition to the information of each image band, we computed
seven vegetation indices to assess crop status. The Anthocyanin Reflectance Index “ARI2” [54] is
sensitive to anthocyanin in plant foliage, the Carotenoid Reflectance Index “CRI2” [55] evaluates the
carotenoid concentration relative to the chlorophyll content, the Inverted Red-Edge Chlorophyll Index
“IRECI2” [56] estimates the canopy chlorophyll content, the Leaf Chlorophyll Content ”LCC” [57] is a
non-destructive assessment of chlorophyll content expressed at unit leaf area, the Normalized Difference
Vegetation Index “NDVI” [58] is a widely used vegetation index that quantifies green vegetation and
phenology, the Plant Senescence Reflectance Index “PSRI” [59] quantifies plant senescence, and the
Weighted Difference Vegetation Index “WDVI” [60] is a proxy of the Leaf Area Index “LAI” of green
vegetation. The equations of these indices can be seen in Table S3.

2.3. Methods

2.3.1. Data Preparation

We used the R software [53] and ArcMap 10.4 [50] to pre-process the data and to build the models.
We extracted the mean value of each Sentinel 2 band (vegetation indices included) for each field per
year. Given the observed crop evolution on the field, we considered merging the values of the bands
and vegetation indices into three larger groups, thereby giving the average values for July (beginning
of tuberization), August (early senescence under non-normal conditions such as pests) and September
(senescence). Sentinel 2 bands and indices for July, August and September were Band 2, Band 3, Band
4, Band 5, Band 6, Band 7, Band 8, Band 8a, Band 9, Band 11, Band 12, PSRI, CRI2, LCC, IRECI2, NDVI,
WDVI and ARI2 (54 in total). After computing the average per phase, no missing values were present
in the dataset and the dependent variable was crop yield.

2.3.2. Model Building

In machine learning, there is no single algorithm or solution that fits all data. As a result, it is quite
common to work iteratively in order to find the best algorithms, hyper-parameters and solutions for
machine learning problems [61]. In this context, we fitted the following machine learning algorithms
for regression problems (Generalised Linear Model “glm” [62], Linear Regression with Backwards
Selection “LeapBack” [63], Quantile Regression with LASSO penalty “rqlasso” [64], Support Vector
Machine Linear “svmLinear” [65], Support Vector Machine Radial “svmRadial” [66], Random Forest
“rf” [67], Multivariate adaptive regression splines “MARS” [68], k-Nearest Neighbours “kknn” [69]
and Model Averaged Neural Network "avNNet" [70]) using the CARET package [71], and ran them
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with four different pre-processing options (1: Scale, Center and Principal Component Analysis;
2: Scale and Center; 3: Center; 4: None). Additionally, we used the algorithms Cubist “cubist” and
ensemble Cubist “cubist_committee” from the Cubist package [72] without any pre-processing. In all,
we built 38 models, named as follows: Algorithm name_number (corresponding to the pre-process method,
as described before). In order to reduce collinearity, we removed predictor variables which presented an
absolute correlation coefficient > 0.75 [73,74] using the “FindCorrelation” function of the caret package.
The k-fold cross-validation resampling technique was used to evaluate each model (k = 10) due to the
limited samples in our dataset [75]. RMSE and MAE were used to measure model accuracies and both
metrics were converted to percent RMSE (% RMSE) and percent MAE (% MAE) by dividing the RMSE
or MAE by the mean of the observed yield (57.950 ton/ha) across years [76]. We only selected models
with RMSE < 9 ton.FM/ha (<15% RMSE) and R2 > 0.80 [17,41,77]. The most adequate algorithms and
pre-processing steps were thus identified.

Second, we ran the best performing models using different feature selection scenarios to address
collinearity among predictors. These were fitted using a k-fold cross-validation technique over
80 % of the dataset. In order to provide an unbiased evaluation of the final models, the holdout
dataset was set at 20%. We thus ensured that data samples used over the training-testing phase were
independent from the holdout set of the evaluation phase. This process was repeated ten times using
arbitrarily chosen seeds (ensuring repeatable results) to average the evaluation results. We explored
the influence of collinearity among variable predictors in terms of correlation coefficients: 0.5 (Scenario
A), 0.75 (Scenario B), 0.90 (Scenario C) and without any prior feature selection process (Scenario D).
Finally, we addressed the statistical significance of each variable in the final models.

2.3.3. Crop Yield Prediction One Month Prior to Harvest

We simulated yield prediction one month prior to harvest time (end of August) removing
September predictors from the original dataset. The same step-wise method as in Section 2.3.2 was
followed, and only the best performing model was selected. Even though the optimal timing for crop
yield forecasting would be two months prior to harvest [39], the same authors acknowledge that only
one month before provides more realistic results given that uncertainty tends to decline towards the
end of the season.

3. Results

We compared 38 models with different pre-process options to evaluate the performance of ten
machine learning algorithms. The k-fold cross-validation technique was used to evaluate the algorithms’
predictive performance. In general, most of the proposed models obtained RMSE values <12 ton/ha,
which is less than 20% error compared to mean yield. MAE scores presented values between 6.5 and
9.5 ton/ha, representing error values <16 % of the yield average. The rqlasso_2, LeapBack_2-3 and
svmRadial_3 algorithms proved to be the best approaches for modelling our potato yields (Table 1).
Hyper-parameter tuning was performed by means of cross-validation. The minimum RMSE value
was used to select the optimal hyper-parameters so that each model was automatically optimized to
provide maximum model accuracy.

We selected the models which met the proposed criteria (RMSE < 9 ton/ha and R2 > 0.80): rqlasso_2,
LeapBack_3, LeapBack_2 and svmRadial_3. These were run again, this time using 80 % of the original
dataset to train and test the models by k-fold cross-validation (k = 10), and the remaining 20% to
independently evaluate them. Table 2 summarizes these four model performances for different feature
selection scenarios. Given the ability of the rqlasso and LeapBack algorithms to carry out feature
selection by their own methods, we also explored a no-feature-selection scenario in which the original
dataset was included (scenario D).
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Table 1. The twenty models selected based on performance, statistical analysis indices of RMSE, R2,
and MAE, and the optimum tuning values that yield the smallest RMSE score.

No Model RMSE R2 MAE Best Tuning Par.

1 rqlasso_2 7.374 0.84 6.562 lambda = 0.0001

2 LeapBack_3 8.239 0.89 6.489 nvmax = 2

3 LeapBack_2 8.278 0.84 6.617 nvmax = 2

4 svmRadial_3 8.949 0.85 7.263 Sigma = 0.0574157 and C = 1

5 rqlasso_1 9.019 0.78 7.740 lambda = 0.1

6 rqlasso_4 9.046 0.85 7.409 lambda = 0.1

7 LeapBack_4 9.050 0.85 7.402 nvmax = 2

8 rqlasso_3 9.086 0.81 7.416 lambda = 0.1

9 cubist_Ensemble 9.168 0.38 6.550 -

10 glm_1 9.228 0.77 7.786 -

11 rf_3 9.234 0.84 7.386 Mtry = 6

12 svmLinear_4 9.577 0.76 7.967 C = 1

13 svmLinear_2 9.618 0.73 7.539 C = 1

14 rf_2 9.643 0.80 7.366 Mtry = 6

15 glm_3 9.753 0.82 7.922 -

16 svmLinear_3 9.761 0.87 7.423 C = 1

17 rf_1 9.787 0.80 8.201 Mtry = 6

18 mars_1 9.813 0.77 7.824 nprune = 2 and degree = 1

19 kknn_4 9.933 0.75 8.658 kmax = 9, distance = 2 and
kernel = optimal

20 svmRadial_2 9.937 0.71 7.605 Sigma = 0.0873 and C = 1

Table 2. Model performance for each of the proposed scenarios (A, B, C and D) based on RMSE (ton/ha),
R2, and MAE (ton/ha). Average * is the mean score value for all the models with the exception of
LeapBack_3, given that model results are identical to LeapBack_2.

Feature Selection Corr. < 0.5 Corr. < 0.75 Corr. < 0.90 No Feature Selection

Scenario
A B C D

RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE

rqlasso_2 6.768 0.88 5.320 7.093 0.90 5.653 8.456 0.89 6.326 7.844 0.86 5.730

svmRadial_3 9.125 0.72 6.804 7.710 0.83 5.769 7.370 0.89 5.242 6.781 0.93 5.015

LeapBack_2 6.341 0.89 5.192 6.866 0.89 5.512 10.455 0.75 8.502 8.319 0.81 6.981

LeapBack_3 6.341 0.89 5.192 6.866 0.89 5.512 10.455 0.75 8.502 8.319 0.81 6.981

Average * 7.411 0.83 5.772 7.223 0.87 5.645 8.760 0.84 6.690 7.648 0.87 5.909

Table 2 shows the performance obtained by each model following a different feature selection
process in terms of the correlation coefficient. LeapBack_2 and LeapBack_3 presented similar values,
indicating that the pre-process action of “Scale and Center” or just “Center” over predictors made
no difference for this algorithm (henceforth, we will only refer to LeapBack_2, although the same
comments could be applied to LeapBack_3). The average RMSE across models indicated that the best
feature selection was scenario B, which involved using ten variables out of 56 (Figure 2 and Table
S4). Table S5 shows variable importance for the rqlasso_2 model (the caret package does not support
variable importance for the svm or Leapbackwards algorithms). The second and third best scenarios
were A with six predictors and D with 56 predictors, respectively. The worst performing scenario was
C with 18 predictors.
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Figure 2. Performance of rqlasso_2, LeapBack_2, LeapBack_3 and svmRadial_3 models in terms of
RSME, MAE and R2 for scenario B.

Under scenario B, the best model performance in terms of RMSE was obtained by LeapBack_2
model (nvmax = 3) with values of RMSE = 6.866 ton/ha (11.84 % RMSE), R2 = 0.89 and MAE = 5.512 ton/ha
(9.51% MAE), closely followed by the rqlasso_2 model (lambda = 0.1) with RMSE = 7.093 ton/ha
(12.24% RMSE), R2 = 0.90 and MAE = 5.653 ton/ha (9.75% MAE). The most relevant variables in the
LeapBack_2 model were band 8 (July), LCC index (July) and the wdvi index (August). As regards
the rqlasso_2 model, these were band 8 (July), band 6 (September) and the LCC index in September,
July and August (decreasing order of importance). Even though svmRadial_3 presented worse results
than the aforementioned models, its performance greatly improved as the predictor number increased.
In scenario D, the best results across scenarios and models were obtained by svmRadial_3 with
RMSE = 6.781 ton/ha (11.7% RMSE), R2 = 0.93 and MAE = 5.012 ton/ha (8.64% MAE). The optimal
tuning parameters were sigma = 0.01085 and C = 1. To jointly represent predicted yield versus actual
yield (Figure 3), we took the overall of individual predictions per model in their best scenario and in
terms of R2 (Table 2).

We used the svmRadial_3 model to generate the predicted yield maps of the studied potato fields
across 2016, 2017 and 2018 on a pixel basis (Figure 4). According to Table 2, this model obtained the
highest performance in terms of R2 (0.93). These maps showed a variation in yields across fields as
represented by the eight classes. In general, the predicted yield per pixel ranged from 43 to 80 Ton/ha,
with mean values around 59 Ton/ha. It can be observed that the low-yield class (0 Ton/ha) was
mainly distributed across some field boundaries given the influence of other crop types or roads in the
pixel reflectance.

Finally, we made a pre-harvest prediction of potato yield using only feature variables corresponding
to July and August. The best trade-off in terms of RMSE and R2 was obtained by the random forest
algorithm with different pre-processing: rf_3 (RMSE = 8.751 ton/ha, R2 = 0.84 and MAE = 7.399 ton/ha),
rf_4 (RMSE = 8.765 ton/ha, R2 = 0.83 and MAE = 7.046 ton/ha) and rf_2 (RMSE = 8.916 ton/ha, R2 = 0.84
and MAE = 6.717 ton/ha). The latter models were fitted with 80 % of the original dataset using k-fold
cross-validation (k = 10), and then evaluated against the remaining 20 % holdout dataset. In this case,
the pre-processing options applied displayed minimal influence across these three model results, such
that we selected rf_3 due to its having shown the lowest RMSE score during the selection process.
In addition, the number of variables selected in each scenario proved to be critical (Figure 5). In
general, predicted results were less close to actual yields compared to those involving September
data (Table 2). Nevertheless, rf_3 offered promising results in scenario B with RMSE = 6.470 ton/ha
(11.16% RMSE), MAE = 5.052 ton/ha (8.71% MAE) and R2 = 0.89. Scenarios A and C provided quite
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similar scores, whereas scenario D was the worst performing one. Therefore, the best choice to predict
potato yield prior to harvest was the random forest with “center” pre-processing (rf_3) and the “mtry”
hyper-parameter = 5.

Figure 3. Comparison between predicted and actual yields using (a) rqlasso_2 (scenario B),
(b) LeapBack_2 (scenario B), and (c) svmRadial_3 (scenario D) with the July, August and September
predictors. Graph values are the overall amount of individual predictions over ten iterations per model.
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Figure 4. Maps of predicted potato yield for svmRadial_3 under scenario D across the study period:
(A,B) 2016, (C,D) 2017, (E,F) 2018.

In order to graphically display the fitness of our methodology using only variables from July and
August, we represented the actual and modelled yields.

Figure 6 reveals the overall amount of individual predictions modelled by rf_3 after each iteration
under the best scenario (Figure 5, scenario B). Table S5 shows the variable importance of each variable
involved in the model.
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Figure 5. Random forest model (rf_3) with “center” pre-processing across four feature selection
scenarios, with July and August predictors.

Figure 6. Comparison between predicted and actual yields using the random forest model (rf_3) with
July and August predictor variables under scenario B.

4. Discussion

Crop yield prediction is of major importance in global and local markets as it enables early
decision-making, improves agricultural commodity practices and allows market prices to be
modelled [78,79]. In this work, we first evaluated ten different machine learning algorithms with
different pre-processing options to compare model performances in potato crops. These results highlight
the advantages of pre-processing methods such as “scale” and “center” when the ranges of values
or magnitudes differ greatly across predictors [80]. At this initial stage, we used the cross-validation
resampling method due to the limited number of observations [81]. In general, linear regression
algorithms (rqlasso, LeapBack) obtained better results than non-linear ones (svmRadial or random
forest). This may explain the use of linear models for crop yield prediction in previous works [41],
although crop yield differs spatially and temporally with non-linear behaviour [82]. Nevertheless,
non-linear models such as svmRadial also obtained satisfactory results in terms of R2 (0.85) and RMSE
(8.949 ton/ha). We agree with other authors [83,84] that crop yield prediction requires testing both
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linear and non-linear approaches, since model predictive ability depends upon sample number and
data quality.

Second, we selected the best performing models (rqlasso_2, LeapBack_2-3 and svmRadial_3)
and compared their scores against various scenarios. It was found that removing all the predictors
whose correlation coefficient was > 0.50 improved the model performance for rqlasso and LeapBack
in terms of RMSE. In contrast, svmRadial in scenarios C and D outperformed its results in scenarios
A and B, demonstrating its improvement when more predictors are included in this model. All of
these models were evaluated against a hold-out dataset, which was not included in the train-test
phase in order to avoid overfitting in the model [85,86]. Since the rqlasso and LeapBack algorithms
can inherently perform feature selection methods identifying the best model that contains a given
number of predictors [87], we also evaluated the models without any kind of feature selection (Table 2,
Scenario D). These results showed very good performance for svmRadial_3 in terms of R2 = 0.93,
MAE = 5.012 ton/ha (8.64% MAE) and RMSE = 6.781 ton/ha (11.70% RMSE). The rqlasso_2 and
LeapBack_2 models performed more poorly as the number of predictors increased. Based on the
results presented, we suggest the use of correlation coefficients to remove collinearity among variables
when using rqlasso and LeapBack. Although these models have inherent methods to automatically
reduce variables, they performed worse when the number of predictors was larger and no prior
feature selection was applied. These algorithms tend to select a useful set of predictors depending on
the penalty term they use, but not necessarily the most important variables to explain our data [88].
In contrast, svmRadial_3 performed better when the number of predictors was larger (scenario D),
which concurs with the results obtained by Joachims [89]. Although in this case, this model may
not be suitable for potato yield estimation/prediction since the multi-collinearity is not addressed
properly. According to Joachims [89], support vector machine models use overfitting protection that
can be tuned through the regularisation parameter C. This is a penalty parameter of the error term
that determines the trade-off between smooth decision boundary and classifying the training points
correctly. Although some works describe the benefits of applying feature selection procedures to
improve predictive performance [90,91], we did not observe it for svmRadial_3. This may be explained
by the sample size of the dataset, as suggested by Jain and Zongker [92], or by the inner regularization
parameters that support-vector machine algorithms have [89]. Typically, prediction errors around
10-15 % RMSE are found in crop yield prediction literature [76,93,94]. Focusing more specifically on
potato crop modelling, Hartz and Moore [95] tested a multiple linear model based on temperature
and insolation in the laboratory with an accuracy of R2 = 0.93. Bala and Islam [40] used vegetation
indices derived from TERRA satellite imagery to predict potato yield, and obtained the following
correlation coefficients (R2): 0.84 (NDVI), 0.72 (LAI) and 0.80 (fPAR—the fraction of photosynthetically
active radiation). More recent approaches, such as Al-Gaadi et al. [41], predicted potato yield using
Sentinel 2 and Landsat 8 satellites, and obtained R2 values between 0.39 and 0.65. Some of our fitted
models outperform previous approaches based on satellite imagery for predicting potato yield, such as
svmRadial_3 (R2 = 0.93 and RMSE = 6.781 ton/ha).

Pre-harvest results emphasized the need to build several machine learning models with different
pre-processing and feature selection methods to optimize model results. The rf_3 performed very
well under scenario B: R2 = 0.89, RMSE = 6.470 ton/ha (11.16 % RMSE) and MAE = 5.052 ton/ha
(8.71% MAE). Nevertheless, some extreme events or abnormal crop conditions in September such as
diseases, pest outbreaks or water stress, can influence modelled yields causing yield overestimation, as
already stated by other authors [76]. To the best of our knowledge, no one has yet attempted to make
pre-harvest predictions in potato crops using satellite data. In addition, there is a demand for crop
modelling tools which are able to offer a better knowledge of crop productivity. These techniques can
help to alleviate extreme weather-related events that trigger food insecurity since such events may
reduce food supply and the incomes of households working in the agricultural sector, particularly in
food insecure regions [96].
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Table S5 shows the variable importance for the rqlasso_2 (July, August and September variables)
and rf_3 models (July and August variables) under scenario B. The most important variables were
Band8_July, Band6_Sept, LCC_Sept, LCC_July and LCC_Aug for rqlasso_2; while Band5_Aug and
LCC_Aug were the most informative for rf_3. In both models, the LCC index proved to be key given
its capacity to retrieve an approximation of the chlorophyll content at leaf level. As a result, it provides
information about photosynthetic capacity and plant functioning [97]. Band5_Aug and Band6_Sept
also had high scores given these spectral bands’ sensitivity to chlorophyll in the red-edge, which shows
them to be convenient proxies for operationally estimating biophysical parameters from Sentinel-2 [98].
Band8_July achieved the highest score of influence in rqlasso_2. Near-infrared leaf reflectance is not
affected by changes in chlorophyll content, with very low leaf absorption and transmittance reaching
maximum values [99]. Nevertheless, near-infrared reflectance values can detect significant differences
between healthy and diseased potato plants [100]. We did not find any clear evidence to attest which
month was more informative, either in the rqlasso_2 or in the rf_3.

This study confirms the feasibility of our machine learning models based on Sentinel 2 imagery
and how it outperforms previous efforts in potato yield prediction. We have developed a step-wise
methodology to find and build the best performing models for our study region over a three-year
period. The proposed Sentinel 2 bands and indices can be used effectively to model potato crops for
predicting yields in the study area, and the method can be extended to other sites in Castilla y Leon
that have a similar phenological cycle for the potato. The use of this methodology in other parts of the
world would require a deep understanding of tuberization and senescence dates in order to adequately
build and fit the proposed models.

5. Conclusions

This study has shown the possibility of predicting potato yields using Sentinel 2 imagery and
machine learning techniques for three different growing years. The use of Sentinel 2 imagery provides
high spatial and temporal resolutions when compared to previous approaches, and our fitted machine
learning models have proved their usefulness for modelling potato yield. In general, pre-processing
techniques, such as “centering” and “scaling”, improved the model results, while the impact of feature
selection methods differed depending on the algorithms. Regression quantile lasso (rqLasso: 11.67%
RMSE, R2 = 0.88 and 9.18% MAE) and Leap Backwards (LeapBack: 10.94% RMSE, R2 = 0.89 and 8.95%
MAE) performed better when highly correlated predictors (correlation coefficient > 0.5) were removed
from the dataset. In contrast, the support vector machine radial obtained higher scores when feature
selection methods were not applied at all (svmRadial: R2 = 0.93, 8.64% MAE and 11.7% RMSE). In
addition, we developed a model to predict potato yield prior to harvest using the rf_3 model (R2 = 0.84,
13.55% RMSE and 10.31% MAE). The latter method evidences greater uncertainty, given the possible
occurrence of certain extreme events or abnormal crop conditions in September such as diseases, pest
outbreaks or water stress that cannot be included in the model and would overestimate crop yields.

The study results improve the current state of the art for potato yield modelling using satellite
imagery at very high spatial and temporal resolution. More robust results may be obtained by using
a larger number of samples in the original dataset. In addition, cloud cover remains an obstacle in
passive remote sensing, and entails the loss of information for some areas and days. Future attempts
should aim to increase the number of samples, widen the geographical area and extend the number of
years studied so that models have better generalization capacity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/15/1745/s1.
Table S1: list of survey fields with total yield (ton), area (ha), yield per area (ton.FM/ha), harvesting and sowing
dates; Table S2: list of satellite images downloaded for July, August, and September from 2016 to 2018; Table S3:
formulations used to obtain vegetation indices: Anthocyanin Reflectance Index, Carotenoid Reflectance Index,
Inverted Red-Edge Chlorophyll Index, Leaf Chlorophyll Content, Normalized Difference Vegetation Index, Plant
Senescence Reflectance Index and Weighted Difference Vegetation Index; Table S4: selected predictor variables
included in each scenario; Table S5: variable importance for the rqlasso_2 (July, August and September variables)
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and rf_3 models (July and August variables) under scenario B. All measures of importance are scaled to have a
maximum value of 100, such that the highest scores represent the most important variables in the model.
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