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Abstract

Parsing is a core natural language processing problem inwhich, given an input raw sentence, a
model automatically produces a structured output that represents its syntactic structure. The
most common formalisms in this field are constituent and dependency parsing. Although
both formalisms show differences, they also share limitations, in particular the limited speed
of the models to obtain the desired representation, and the lack of a common representation
that allows any end-to-end neural system to obtain those models. Transforming both parsing
tasks into a sequence labeling task solves both of these problems. Several tree linearizations
have been proposed in the last few years, however there is no common suite that facilitates
their use under an integrated framework. In this work, we will develop such a system. On the
one hand, the system will be able to: (i) encode syntactic trees according to the desired syn-
tactic formalism and linearization function, and (ii) decode linearized trees into their original
representation. On the other hand, (iii) we will also train several neural sequence labeling
systems to perform parsing from those labels, and we will compare the results

El análisis sintáctico es una tarea central dentro del procesado del lenguaje natural, en
el que dada una oración se produce una salida que representa su estructura sintáctica. Los
formalismos más populares son el de constituyentes y el de dependencias. Aunque son fun-
damentalmente diferentes, tienen ciertas limitaciones en común, como puede ser la lentitud
de los modelos empleados para su predicción o la falta de una representación común que per-
mita predecirlos con sistemas neuronales de uso general. Transformar ambos formalismos a
una tarea de etiquetado de secuencias permite resolver ambos problemas. Durante los últi-
mos años se han propuesto diferentes maneras de linearizar árboles sintácticos, pero todavía
se carecía de un software unificado que permitiese obtener representaciones para ambos for-
malismos sobre un mismo sistema. En este trabajo se desarrollará dicho sistema. Por un lado,
éste permitirá: (i) linearizar árboles sintácticos en el formalismo y función de linearización
deseadas y (ii) decodificar árboles linearizados de vuelta a su formato original. Por otro lado,
también se entrenarán varios modelos de etiquetado de secuencias, y se compararán los re-
sultados obtenidos.
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Chapter 1

Introduction

Natural Language Processing is one of the main fields in artificial intelligence (AI), con-
cerned with the capability of a machine to process human languages. A core part of

NLP is parsing, concerned with obtaining a syntactic representation of a given a raw sentence.
These syntactic structures usually take the form of a tree, and they are generated from the
application of rules from a given grammatical theory. Two of the most common formalisms
used to obtain these trees are constituent and dependency grammars, each one allowing us
to obtain a different type of representation.

On the one hand, constituent parsing aims to obtain the syntactic structure of a sentence
as a constituent tree [2] where the sentence is formed of smaller parts that fulfill different
syntactic roles (e.g., noun or prepositional phrase). This idea is based on the concept of con-
stituency relationships between words, a derivative from the subject-predicative division from
Greek and Latin and further refined in context free grammars. On the other hand, the aim of
dependency parsing is to generate a parse tree as a set of binary directed relations between
words called dependencies that describe the syntactic roles (e.g., direct object, subject, adver-
bial modifier) that participate in the sentence. Dependency parsing is based on the idea that
words in a sentence are dependent between them. Figure 1.1 shows an example of constituent
tree (a) and dependency tree (b) for the same sentence.

These differences make them useful for different sets of tasks: constituent trees are com-
monly used in tasks like grammar checking [3], where the constituent tree is used for detecting
ill-formed sentences; question answering [4], using the constituent tree for extracting syntac-
tic information about the sentence; or named entity recognition [5], by taking advantage of
the sentence decomposition provided by constituent parse trees. Dependency trees have also
been used in several tasks such asmachine translation [6, 7], where dependency trees are used
to improve the translation results, sentiment analysis [8], or information extraction [9], by us-
ing the sentence’s dependency structure to increase the accuracy of the extraction systems.

The tasks of constituent and dependency parsing have been around for decades, with tech-
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Figure 1.1: Constituent tree (a) and Dependency tree (b) for a given sentence

niques ranging from rule-based and transition-based statistical approaches up to the revolu-
tion that came from artificial neural networks. This change of paradigm allowed the parsing
tasks to increase accuracywithout relying somuch on human-crafted features. This transition
however did not solve other main problems, such as the speed of the models used to obtain
the desired representation. Also, most of the neural approaches to parsing tasks have the
disadvantage that they do not work with out-of-the-box with black-box neural systems and
require ad-hoc parsing algorithms. This work deals with one of the most recent approaches to
neural constituent and dependency parsing, that is, casting them as a sequence labeling task.
This recast has already been proposed in previous work [1, 10] , but it lacked a unified system
including all the available encodings and being developed with scalability and maintainability
in mind, apart from working out of the box with most sequence labeling systems.
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CHAPTER 1. INTRODUCTION

1.1 Natural Language Processing

The study of natural language processing (NLP) began in the 1940s after World War II, when
people became aware of the importance of tasks such as language translation and hoped to
create a machine that allowed them to automate it. But it was not until the late 50’s, with
researchers like Noam Chomsky [11], that grammars began to be studied with the creation of
advanced language models that attempted to allow machines to understand human language.
This line of research continued during the late 20th Century developing more complex tools
and statistical methods of handling human language. In the most recent years the focus of
the natural language processing researchers has been set on neural and machine learning
systems, allowing for the creation of the first neural language models [12].

Among the different parts [13] of NLP tasks, the one that this work relates to is syntactic
analysis. Obtaining the structure of a sentence based only on the tokens that compose it is
a task that relates directly to the way that we, humans, shape our thought and understand
language as a whole. This task can also act as a support task to other tasks by providing a
structure that can be used to further refine their results. The main challenges that natural lan-
guage processing tries to overcome are related to understanding the most ambiguous aspects
of human language or phrase ambiguities. Generating the syntactic structure of a sentence
can help to eventually overcome them.

1.2 Motivation and Challenges

The motivation from this work stems from the need for a reliable and fast way to predict
syntactic structures of input sentences, both for constituent and dependency formalisms. De-
veloping a fast and accurate way to obtain such structure can provide advantages in tasks like
named entity recognition, with the structure from constituent trees providing a good basis
to find entities in a sentence, or sentiment analysis, by the usage of the dependency tree for
shortening the distance between opinion words or propagating sentiment information along
the syntactic tree.

Traditional approaches for parsing can provide good accuracy or speed, but usually not
both. That limitation was overcome by the approach of casting the task into a sequence label-
ing task, but the developed systems lacked scalability or extendability, making it hard to add
new pieces to them or to change the way they work. The creation of a framework that inte-
grates the different existing linearization techniques for parsing, and evaluating its utility to
train neural sequence labeling systems in a black-box fashion, are the two main components
that motivate and justify this work.

The tasks that the development of this system requires can be grouped as follows:

3
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1. Dependency tree encoding and decoding: Given a dependency tree in its standard
format, encode it into a unique sequence of labels that are representative of the tree and
that can be decoded back into the original representation.

2. Constituent tree encoding and decoding: Given a constituent tree in its standard
bracketing format, encode it into a unique sequence of labels that are representative of
the syntactic structure of the sentence and that can be decoded back into the original
tree.

And the main challenges faced in the development of the aforementioned tasks are the fol-
lowing:

1. Scalability: Due to the fact that this line of work is a very recent one it is probable
that new ways to encode the trees are found as years come by, so the implementation
of the encoding and decoding mechanisms must be as scalable as possible. That would
be one of the characteristics of the developed system. Also, the possibility of encoding
parse trees from new grammatical theories is always there, so the system must be open
to refinements without changing the core.

2. Loose dependency from any concrete sequence labeling system: Since sequence
labeling is still an evolving research topic and new systems often appear that outper-
form the existing ones, the linearization framework must not be attached to any se-
quence labeling system, but instead it must generate the data in a way that allows it to
be used by, potentially, any generic system.

3. Usability: The system must present an unified and usable command line interface that
allows for fast encoding and decoding of the selected files. That interface layer must
also not be coupled to the business logic layer in case it needs to be attached to other
types of user interface.

Verifying the system efficacy and efficiency

Apart from developing the tree linearization system, the other goal of this project is to train
sequence labeling models that provide baselines that prove the linearization approach effi-
ciency. To accomplish it, different architectures of sequence labeling models will be trained
and tested on a diverse set of languages. This not only would prove the system efficiency, but
will also make it more attractive, as it can be used for a wider audience.

This work will take advantage of some of the most commonly used sequence taggers. The
performed experiments will use techniques like (i) the inclusion of different word features
into training to help the tagger to improve its predictions, (ii) the inclusion of Multi-language
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BERT [14] language model that will help increase the metrics thanks to the embedded data
they provide, and (iii) the usage of multi-task learning to share the training process of multiple
tasks with a single model.

1.3 Structure

This bachelor’s thesis can be divided into four sections. The first part is a brief presentation
to the preliminary knowledge required to understand the technical aspects introduced in the
following chapters. The second part gives a rundown of how the project was developed and
the tools that we used. The third part focuses on the linearization algorithms for constituent
and dependency parsing. The last part shows the training and testing phases of the parsers
using sequence taggers in a black box fashion. Specifically, the chapters are broken as follows:

• PART 1:

– Chapter 2 - Preliminaries: Introduces the theoretical concepts for both con-
stituent and dependency formalisms from a language theory viewpoint.

• PART 2:

– Chapter 3 - ProjectDevelopment: Breakdown of the development of this project,
with focus on the resources employed, the methodology and the task division.

• PART 3:

– Chapter 4 - Sequence Labeling: This chapter explains what sequence labeling
is and how it has evolved during the years until the present time. In order to
explain modern sequence labeling systems we will include explanations of mod-
ern neural network architectures like long short term memories and bidirectional
neural networks. Also, in this chapter the concept of multi-task learning will be
explained more in detail.

– Chapter 5 - Constituent Parsing: Explanation of the algorithms implemented
to linearize and de-linearize constituent trees (5.3.1, 5.3.2, and 5.3.3); and the heuris-
tics implemented to ensure correctness from predicted outputs (5.5).

– Chapter 6 - Dependency Parsing: Explanation of the algorithms implemented
for linearize and de-linearize dependency trees (6.2.1, 6.2.2, 6.2.3, 6.2.4, and 26); and
the heuristics implemented to ensure correctness from predicted outputs (6.3).

• PART 4:

5



CHAPTER 1. INTRODUCTION

– Chapter 7 - Dependency and Constituent Tree Linearization System: This
chapter takes a look into how the previous algorithms were implemented into
code, with the system architecture and usage. Also, it shows how the sequence
labeling systems were trained.

– Chapter 8 - Results and Performance: In this chapter we show how the dif-
ferent algorithms perform for the designated treebanks and for the two sequence
labeling systems (NCRFpp [15] and MACHAMP [16]).

– Chapter 9 - Conclusions and Future Developments: Final part of the bach-
elor thesis. In this chapter the contents of the whole work are put into contrast
with lessons learned from developing it, and possible future developments are
commented as well.
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Chapter 2

Preliminaries

In order to understand natural language processing, familiarity is required with aspects
from different disciplines, ranging from the fields of linguistics to mathematics applied to

computational theory. This chapter will discuss the necessary concepts required for a solid
understanding of the following chapters. Specifically, it will cover (i) the aspects needed to
understand parsing tasks, (ii) what are parse trees and (iii) previous developments on systems
to obtain them.

2.1 Constituent Grammars

Constituent grammars [17] are a set of grammatical theories based on the concept of con-

stituency relations, defining a sentence as a group of constituents in a hierarchical structure.
This concept is founded on the idea that a sentence is built of smaller structural pieces that
have their own intrinsic meaning and give meaning to the sentence as a whole. This relates
to the idea that groups of words can behave a single units or constituents, what is commonly
referred as the substitution principle (see table 2.1).

Sentence Substituted Sentence

The FBI agent solved the mystery. Nominal Phrase−−−−−−−−→ He solved the mystery.

He solved the mystery. Nominal Phrase−−−−−−−−→ He solved it.

Table 2.1: Example of the substitution principle used in constituent grammars.

Constituent grammars are modeled after context free grammars (CFG), that follow a simi-
lar theoretical principle. Generally, CFGs consist of a set of production rules, that express the
ways in what the symbols of the language can be grouped and ordered, and a lexicon, the set
of words and symbols that make up the language. For example, a noun phrase (NP) could be
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CHAPTER 2. PRELIMINARIES

composed either by a proper noun or a determiner followed by any nominal, and a nominal
could be made up or one or more nouns.

The symbols of CFGs are divided into terminal symbols (when they correspond to tokens
in the lexicon of the language) and non-terminal symbols (when they express abstraction
over them). All CFGs also require to have a starting non-terminal from which we can, by
using the grammar rules, reach any terminal belonging to the lexicon. The representation
of the sequence of rule expansions that we use to go from the root Non-Terminal to the
Terminals is called parse tree. In order to represent constituent parse trees in files we employ
the bracketing (or parenthesized) [18] tree format. This format represents the span of a given
level of a tree surrounding all its children nodes with a pair of parenthesis (see figure 2.1).

S

PUNCT

.

VP

NP

NN

coffee

JJ

black

VBZ

loves

NP

NNP

Cooper

NNP

Agent

(a)
(S (NP (NNP Agent) (NNP Cooper)) (VP (VBZ loves) (NP (JJ black) (NN coffee))) (PUNCT .))

(b)

Figure 2.1: Example of a constituent parse tree for the sentence ”Agent Cooper loves black
coffee.” represented in graphical format (a) and in bracketed format (b).

As we have seen in chapter 1, the computation of the syntactic structure of a sentence is
a core aspect in NLP, so it is very important to design tools that allow us to efficiently parse
this kind of trees.

2.1.1 Statistical Models for Constituent Parsing

Statistical model based systems were one of the first approaches to obtain constituent parse
trees. Even though these systems offered good accuracy in their predictions, they had a big
downside in terms of speed. Generally speaking, the statistical models work by deciding
among all the possible constituent trees the most accurate one, that is, for each possible tree T
for the sentence S they compute the conditional probability of P (T/S). To build the possible
trees these systems used rule-based approaches, dynamic programming approaches or beam-

search algorithms. These statistical models were refined as time passed, adding increased
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CHAPTER 2. PRELIMINARIES

heuristics to get the probability of an element being a pre-terminal (i.e., a PoS tag), a terminal
or a non terminal [19] or by refining the grammar via split-merge techniques [20].

2.1.2 Transition-based Systems for Constituent Parsing

Later works tried to obtain faster models by taking inspiration from transition-based parsing
techniques used in dependency parsing (as wewill see in section 2.2). This change of paradigm
allowed to do constituent parsing in linear times [21]. The transformations between gram-
mars relied on transforming the constituent tree into a binary tree via the introduction of
intermediate nodes.

In this kind of algorithms the binary constituent tree is parsed via a bottom-up shift-reduce

parsing trying to generate the tree from the leaves back to the root by using a stack to store
symbols and a set of transitions to manipulate said stack and build the output tree.. The
workflow of these systems consisted in the application of rules to obtain the start symbol of
the grammar from the leaves. Shift-Reduce algorithms were developed and improved in the
recent years by using different classifiers (support vector machines, decision trees or memory
learning) [22]; by developing systems that can avoid the step of transforming the constituent
tree into a binary tree and still use shift-reduce algorithms [23] or by the inclusion of neural
structures in the statistical computation like recurrent neural networks [24].

2.2 Dependency Grammars

Dependency grammars are a group of grammatical theories based on the idea of dependency
relations. This idea can be traced back to first grammatical theories, but modern work dates
back to research from the last century [25] refining the mathematical aspects of this grammar.
This kind of grammars emphasize word semantics, assuming that the whole sentence is a
derivation from the dependency relations between them. This is motivated by the concept
of grammatical function, i.e., that a word depends on another if it complements or modifies
the meaning or structure of the latter. The dependency structure of a sentence in a defined
dependency grammar can be represented as an edge-labeled tree T = (V,E) where V will
correspond to the indexes of the words of the sentence and E will correspond to the set of
edges that capture the dependent relationships between elements in V shaped as a 3-tuple
(h, t, d), where h indicates the index of the head of the relation, d indicates the index of
the dependant of the relation and t indicates the dependency type among them. The task of
building this tree from the sentence W = [w1, ..., wn] is what we call dependency parsing.

The standard format for representing dependency trees in files is the X Conference on
Computational Natural Language Learning (CoNLL-X) [26] format. For this work we will

9
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employ the revised version CoNLL-U1 employed by the Universal Dependencies treebanks.
This format represents the dependency trees as a set of lines of fields containing the anno-
tations of each word/token from the input sentence. The nomenclature employed in these
fields follows the Universal Dependencies nomenclature2 standards. In the figure 2.2 we can
see the dependency parse tree for a given sentence and its CoNLL-U representation.

Agent Cooper loves black coffee .

compound nsubj

root

amod

dobj

punct

Column ID WORD LEMMA UPOS XPOS FEAT HEAD DEPREL DEPS MISC

w1 1 Agent Agent NOUN NNP _ 2 compound 2:compound _

w2 2 Cooper Cooper NOUN NNP _ 3 nsubj 3:nsubj _

w3 3 loves love VERB VBZ _ 0 root 0:root _

w4 4 black black ADJ JJ _ 5 amod 5:amod _

w5 5 coffee coffee NOUN NN _ 3 dobj 3:dobj _

w6 6 . . PUNCT . _ 3 punct 3:punct _

Figure 2.2: Example a Dependency Tree for the sentence ”Agent Cooper loves black coffee.”
in graphical format (a) and in CoNLL-U format (b).

Projectivity An important notion we can derive from the order of words in the input and
the dependency relations among them is projectivity. An arc from the head to a dependent is
said to be projective if there is a path from the head to every word that lies between the head
and the dependent in the sentence. A dependency tree is said to be projective if all the arcs
in it are projective, that is, we can draw all its arcs without any crossings. As non-projective
trees often appear in practice, the capability of deal with them is a desirable property for
dependency parsers.

A related property is k-planarity. Formally, we say that a dependency graph G = (V,E)

is k-planar for each k ≥ 1 if we can make partitions of E into E1, ..., Ek planes such that
the edges in each partition don’t cross, that is, they are projective. If k = 1, the dependency
tree is projective, otherwise, it is not. Even though theoretically we could have any number
of planes, in practice most of the trees are solved by a 2-planar system. An example from a
1-planar dependency tree and a 2-planar one is shown in figure 2.3.

1 https://universaldependencies.org/format.html
2 https://universaldependencies.org/u/pos/index.html
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w1 w2 w3 w4 w5 w6

d1

d2

root

d3

d4

d5

(a)

w1 w2 w3 w4 w5 w6

d1

d2

root

d3

d4

d5

(b)

Figure 2.3: Projective dependency tree (a) and non-projective dependency tree (b). Depen-
dency tree (b) edges are separated in two planes indicated by red and blue colored edges.

2.2.1 Transition-based Systems for Dependency Parsing

One of the main paradigms traditionally employed for dependency parsing systems are the
transition-based parsers. This kind of systems are built using a stack to navigate through the
sentence, a buffer, that contains the input tokens, and an oracle, that predicts the action that
the parser will take at each step. Transition-based systems have been applied to dependency
parsing since long time ago [27]. The main advantage of these systems is their speed (they
can run in O(n)), making them very useful for tasks where the speed factor is a critical one.
Through the years, they also have been adapted in order to improve performance. Such im-
provements have come from exploiting language-dependent hand-crafted features [28] (e.g.
morphological information) and for transition-based systems that included neural networks
[29, 30]. However, a recurrent problem of this type of parsers is that they are better at local
(shorter) dependencies than at longer ones. This problem arises in part due to the greedy
nature of this kind of systems, that may lead to false early predictions, contributing to error
propagation, and messing up the final tree.

2.2.2 Graph-based methods for Dependency Parsing

The other main paradigm employed for dependency parsing are graph-based methods [31].
These systems take the whole dependency tree into consideration in order to make the head
assignment decisions. This allows graph-based systems to out-perform transition-based sys-
tems for sentences where the head and the dependant are far away, but under-performs in
sentences where they are close. This kind of parsers work by searching through the entire
space of possible trees for a given sentence for a tree that maximizes some arbitrary score.
The critical task of graph-based algorithms is defining that scoring function, which will de-
fine what (sub)trees are considered for computation. Traditionally, the scoring was done by
a feature-based algorithm. The problem of this kind of approach is that it needed too many
hand-crafted features that made the training process excessively long. This was overcome
by the usage of neural networks [32]. In spite of this change, the theoretical limitations of
graph-based parsers remain, e.g. their computational complexity is O(n2).
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Chapter 3

Project Development

This chapter will discuss the planning details related to the development of the constituent and
dependencies linearization. We will talk about the methodology used and how the planning
of time and resources was done. Finally, we will do a short rundown of the tools and resources
used during the development and evaluation stages.

3.1 Resources

The resources employed in this project can be differentiated between the human resources
that participate on it, the tools employed during the development and the data employed for
training the models and verifying that the system reaches the desired levels of performance.

3.1.1 Human Resources

The people involved in this project will be split into supervisors and developers, where the
assigned project directors will act as supervisors and I will myself be the developer. The
supervisors were involved during the whole project development, participating with weekly
control sessions where they validated the correct development of the system and ensured that
time constraints were respected. They also were available any time on demand for problem
solving or to provide resources.

3.1.2 Tools

1. High level programming language: Python 3.8. Python is a high-level language
commonly used in this kind of projects due to the high amount of libraries available
related with the fields of natural language processing and machine learning.

2. Libraries: The project required of libraries that could read input/output data from the
sets of data employed and also required libraries that coud represent them in an efficient
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CHAPTER 3. PROJECT DEVELOPMENT

way. In order to read dependency trees the library CONLLu was employed. For reading
constituent trees, the libraries NLTK and Stanza were considered, but due to Stanza
being faster in preliminary tests, it was the chosen one.

3. Support tools:

• Code Development: Visual Studio Code. Chosen due to the great amount of ex-
tensions related with Python development available.

• Version Control: git, and specifically, Git Hub desktop application.

• Package Management: Conda. Chosen because it allows to create virtual envi-
ronments and allowed for a good compatibility with the CUDA libraries needed
for the sequence labeling tools used in this project.

4. Sequence labeling systems: To demonstrate the system’s viability, the frameworks
used to train the parsing models were: (i) NCRF++, a state-of-the-art neural sequence
labeling tool, and (ii) MACHAMP, a multi-purpose neural system based on multi-task
learning that can be used with large languagemodels embeddings in an straightforward
way.

5. Evaluation tools: The testing scripts used for this project are EVAL-B with COLLINS
parameters and EVAL-SPMRL, for constituent parsing, and Conll-Eval for dependen-
cies. These tools are the most used when evaluating other constituent and dependency
parsing systems, therefore using them makes our system more easy to compare with
other works.

3.1.3 Data Sets

These are the treebanks that we will use to train, evaluate, and test the models. The data banks
are the following:

1. Penn Treebank [18]: Corpus from theWall Street Journal annotated and represented as
bracketed constituent trees. Licensed under PTB.

2. SPMRL [33]: Collection of multilingual annotated constituent treebanks. The license
was provided by the project coordinators from the SPMRL shared task to the LyS re-
search group. This collection included the following languages: Basque, French, Ger-
man, Hebrew, Hungarian, Korean, Swedish and Polish.

3. Universal Dependencies Treebanks [34]: Collection of dependency treebanks for dif-
ferent languages, in CoNLL-U format. Most of treebanks are freely available and have
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been adopted as the standard collection for the evaluation of dependency parsing mod-
els. The languages selected for this work are the ones that are also included in SPMRL,
for comparison purposes.

In order to train the sequence labeling systems that are going to be used we follow the
standard split in supervised automatic learning to divide our data into three groups:

1. Training set: Used to train the neural system and adjust its weights.

2. Development set: Used by the neural system to verify the quality of the predictions
during training.

3. Test set: Used afterwards to test and evaluate the system on a set of samples that emu-
late a real environment.

3.2 Evaluation Methods

Theevaluationmetrics employed to prove that the developed system reaches the desired levels
of performance are different depending on the formalism being evaluated. Such metrics are
the following:

1. Dependency trees: The most employed metric for dependency tree evaluation is the
attachment score. Thismetric computes the number of well assigned dependency edges.
We can distinguish two variations of attachment score:

(a) Unlabelled Attachment Score (UAS): Percentage of dependency edges where
the head is well assigned.

(b) Labelled Attachment Score (LAS): Percentage of dependency edges where the
head and the relationship type are well assigned.

2. Constituent trees: For constituent parsing evaluation we will employ the F-Score

value. This metric is computed as the harmonic mean of the precision and the recall
of the decoded constituent trees, where precision is the number of correctly predicted
constituent relative to the total number of predicted constituent and recall is the num-
ber of correctly predicted constituent relative to the number of gold constituent. We
consider that a constituent in the predicted tree is correct if it matches the constituent
in the same position of the gold tree. F-Score is computed as follows:

F − Score =
2× P ×R

P +R
(3.1)
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3.3 Project Planning and Methodology

The development methodology employed for this project, due to its nature, was based on
an incremental model. This development methodology provided the advantage of an easy
way to debug and test each component of the system and share on-going results with the
interested parties. The core of the incremental methodology is the division of the project into
a set of clearly defined iterations or cycles, with each one having their own analysis, design,
implementation and testing phase.

3.3.1 Tasks Definition

The first block of the project consists in a single start-up task where the working environ-
ment is created and the remote access tools are set up. This task also includes time for the
familiarization with the tools and libraries that will be used in the project.

1. Start up - Set the working environment and become familiar with the state-of-the-art
developments in the constituent parsing and dependency parsing areas.

The next block of the project consists in developing the tree linearization system. These
tasks are developed in a fully incremental fashion. The number of iterations and what they
accomplish are closely related to the encodings discussed in sections 5.3 and 6.2. These tasks
are:

2. Constituent trees - naive absolute encoding: Develop the encoding and decoding
functions for transforming constituent trees into labels using the naive absolute encod-
ing as discussed in section 5.3.1. Create all the classes for representing the constituent
trees and input/output subsystems. Create the heuristic functions to ensure tree cor-
rectness.

3. Constituent trees - naive relative encoding: Develop the encoding and decoding
functions for the naive relative encodings, as discussed in section 5.3.2.

4. Constituent trees - dynamic encoding: Develop the encoding and decoding func-
tions for the dynamic encoding, as discussed in section 5.3.3.

5. Dependency trees - naive absolute encoding. Develop the encoding and decoding
functions for dependency trees following the absolute naive encoding, as discussed in
section 6.2.1. Create all the classes for representing dependency trees and input/output
subsystems. Create the heuristic functions to ensure tree correctness.

6. Dependency trees - naive relative encoding: Develop the encoding and decoding
functions for naive relative encodings, as discussed in section 6.2.2.
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7. Dependency trees - part-of-speech based encoding: Develop the encoding and de-
coding functions for part-of-speech based encodings, as discussed in section 6.2.3.

8. Dependency trees - bracketing encoding: Develop the encoding and decoding func-
tions for the bracketing-based encodings, as discussed in section 6.2.4. Develop the
planar-separation algorithms, as discussed in section 26.

Once the linearization system is developed the next block of the work consist in training
standalone sequence labeling systems, to provide metrics that demonstrate the system’s accu-
racy and efficiency. To do so, for each sequence labeling system we considered the following
steps:

• For each encoding, we linearize the selected constituent and dependency treebanks. In
total, 9 languages were trained for 3 different constituent encodings and 9 dependency
encodings. The treebanks and languages employed are discussed in-depth in section
3.1.3.

• Training the selected sequence labeling systems for each one of the encodings and for
each treebank.

• Decoding the predicted test files from the corresponding treebank.

• Applying the evaluation tools to obtain accuracy metrics from that prediction.

The tasks added to the project to deal with the sequence labeling systems training are the
following ones:

9. NCRF++ Training - Train the NCRF++ sequence labeling tool, and evaluate results.

10. Machamp BERT Embeddings Training - Train the MACHAMP tool with Multi-
Lingual Bert [14] language model embeddings added to the training; and evaluate re-
sults.

11. Machamp BERT-MTL Training - Train the MACHAMP tool with Multi-Lingual Bert
[14] language model embeddings added to the training, as well as in multi-task learning
setup, using features extracted from the treebanks; and evaluate results.

The final block of the project consists in only one task related to writing the bachelor’s
thesis.

12. Results and Evaluation - Final task of the project. Evaluate the whole development
and write the thesis.
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CHAPTER 3. PROJECT DEVELOPMENT

The time span to complete all the defined tasks of this project ranged from February to
September. That makes 7 months to complete the project. The first 4 months were dedicated
to the development of the linearization system, and the last 3 months were employed to train
the sequence labeling tools, and to write the bachelor thesis. To do that management and
keep track of deviations, a Gantt diagram was used. This diagram is shown in figure 3.1.

Figure 3.1: Gantt Diagram of the project.
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Chapter 4

Sequence Labeling

Sequence Labeling is a structured prediction task whose goal is to map an input sequence of
tokensW = [w1, ..., wn], that in NLP usually correspond to the words of a sentence, to a

unique sequence of output labels L = [l1, ..., ln], where for each input token there is one and
only one assigned label. In natural language, the context of a sentence is very important to
understand its meaning, as the intent of a word wi can change depending on its left (or right)
context. Good sequence labeling systems should therefore be able to model context. Also,
sequence labeling is an interesting and popular paradigm because it is easy to understand
and implement, while usually offering a good speed-accuracy trade-off. However, not all NLP
tasks can be cast under this paradigm, and sometimes casting some tasks in this way is not
trivial, as it is the case of parsing that we will discuss in the upcoming chapters.

In this chapter, we will explore how sequence labeling relates to NLP, and how sequence
labeling models have evolved through the years until the neural architectures that we will be
using in this work.

4.1 NLP tasks traditionally cast as sequence labeling

We briefly introduce here some core NLP tasks that have been traditionally cast as sequence
labeling:

1. Shallow Parsing [35]: This task consists in extracting the different meaningful parts of
a sentence in the form of chunks by indicating the words that mark the start of the
chunk and the words that mark the end. The beginning and end of chunks are usually
marked by IOB-based (Inside-Outside-Beginning) labels (e.g. in But1 it2 could3 be4
much5 worse6, the label for could3 is B-VP, indicating that it begins a verbal phrase
and be4 label is I-VP because it is inside the verbal phrase). Because those labels are
dependent of the context, these tasks can take advantage of casting them as a sequence
labeling problem.
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2. Part-of-speech tagging (PoS tagging) [36]: This task consists in assigning to an input
sentence a sequence of labels that correspond to the grammatical properties of each
word (noun, pronoun, verb…). Sequence labeling provides an advantage for this task
due to be able to predict the tag for a wordwi based on the rest of the sentence. This can
provide an advantage when predicting the part-of-speech tags for polysemous words
i.e. in the sentence ”The kid went out to run” the word ”run” acts like a verb but in the
sentence ”It was a great run”, the word ”run” acts like a noun. POS tagging tasks usually
act as a pre-processing step for more complex natural language processing problems,
including syntactic parsing.

3. Named entity recognition (NER) [37]: This is a task where for a given input sentence,
the model must find and classify named entity chunks (person, organization, location,
etc) inside a text and assign the corresponding label to them. The performance of this
task greatly benefits from context (i.e. in the sentence ”Paris1 Hilton2 visited3 the4
Paris5 museum5.” Paris1 is a person and Paris5 is a location) and in consequence greatly
benefits from casting it as a sequence labeling task. The output from this task can be
useful for problems where we want to identify proper nouns in a sentence or can act as
a pre-processing step for more advanced tasks (i.e. text mining).

4.2 Architectures for sequence labeling systems

The architectures of sequence labeling models have evolved in the last years from statistical
models to transformer-based models. The limitations that forced this evolution of the task
were usually related to aspects such as limited performance, the training process requiring
many hand-crafted features, and the impossibility to model long contexts.

4.2.1 Probabilistic models

A traditional and popular approach to build sequence labeling models are machine learn-
ing statistical models, specifically hidden Markov models and conditional random fields. The
computation of probabilities for these models rely on hand-crafted features obtained from
rule-based models, where the rules are designed based on language characteristics [38], or
feature-based models [39], where the rules are designed based on vectors which encode word-
level or sentence-level features. These first approaches to sequence labeling were mathemat-
ical and statistical models founded on the notion of conditional probabilities (see definition
4.2.1).

Definition 4.2.1. Conditional probability is defined as the likelihood of an eventA occurring
based on the occurrence of a previous eventB. This is written as P (A/B) and it reads as ”The
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probability of A happening taken that B has happened”.

Hidden Markov Models

Hidden Markov models (HMMs) are mathematical models developed at the start of the twen-
tieth century based on the concept of Markov chains. These models compute the probabilities
of sequences of random variable states, where each one can take on values from some pre-
defined set. The main assumption of Markov chains are that in order to predict a state si the
only state that matters is the state si−1, not caring about states si−2, si−3, … si−n. For any
given Markov chain, the only data taken into account for the computation of probabilities is
observable data, for example, words in the input sentence. Hidden Markov models are a more
advanced model of the Markov chains where the computation of probabilities can take into
account non-observable data. This makes it possible to take into account ”hidden” events into
the computation, refining the probabilistic computation even more. In the field of Natural
Language Processing, these ”hidden” fields are usually the word features (for example, the
number of a noun or the person of a verb) or word tags (for example, part-of-speech tags).

The main drawbacks of HMMs are (i) the need for hard hand-crafted input data and (ii)
the limitations that the model topology cause to how the predictions are computed:

1. The Transition Matrix A = [a11, a12, ..., a1n, ..., amn] is a static structure, this means,
the transition from one token to another is independent of their position in the input
sequence.

2. The transitions in a HMM only take into account the previous element, meaning that
any token in the input sequence at a distance d > 1 will not be taken into account for
the probability computation.

Conditional Random Fields

Conditional random fields models seek to avoid these limitations by changing the topology
from a chain, where the arrows affect directly the element that comes after, to a non directed
graph, where the set of observed states S = [s1, ...sn] and the set of hidden observationsO =

[o1, o2, ..., ot] can be linked in any possible way. Another big change from hidden Markov
models, that makes conditional random fields models more powerful tools, is the change from
being aGenerative Model (i.e. model that attempts to guess how a prediction is generated) into
a Discriminative Model (i.e. model that searches for the correct prediction in a search space),
meaning that we can compute P(X|Y) directly without the application of the Bayes rule.
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4.2.2 Artificial Neural Network Models

A challenge to overcome in sequence labeling statistical models is the dependency on hand-
crafted features to better model context in sentences. This kind of models also need a huge
lexicon during training to obtain good accuracy metrics. For these reasons recent sequence
labeling tools have changed the core of the system to neural architectures. This kind of sys-
tems do not rely on hand-crafted features, and can better model long contexts, making them
a very powerful tool.

Multi-layer Perceptron models

The first artificial neural network approaches to sequence labeling tasks came with the usage
of amulti-layer perceptron [40]model. Perceptrons allow to predict outputs based on an input
using weights computed through several hidden layers. These models were developed in the
middle of the 20th century and are still the basis for many more advanced neural network
systems. This kind of models are formed by three components:

1. Input layer: Receives the input signal to be processed.

2. Output Layer: Performs the prediction task.

3. Hidden Layer(s): Intermediate layers in charge of learning the latent representations
from the input.

The weights of the network connections between these layers are initialized randomly
and are updated during training via error backpropagation [41], an algorithm that allows a
network with any number of hidden layers to adjust the weights based on a loss defined in
the output layer. More specifically, multi-layer perceptrons treat sequence labeling tasks as a
set of independent predictions, where for each input wordwi in a sequenceW = [w1, ..., wn],
we predict an output label li based on the window of surrounding n tokens (this can be left,
but also right context if wished). The main limitation of this kind of models comes from the
fact that the context that the predictions use is of a limited size n: modeling long context
becomes sparse, contributing to inaccurate predictions.

Recurrent Neural Network models

Recurrent neural networks (RNNs) [42] are a type of neural networks that differentiate them-
selves from traditional neural networks by adjusting the hidden layers recursively, allowing
the system to extract large context from sequential data. RNNs use a recurrent architecture
where for processing a given input wi, the hidden state hi will be computed using the pre-
vious hidden state hi−1. This approach to recursion allows the system to overcome one of
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CHAPTER 4. SEQUENCE LABELING

the main shortcomings of traditional neural networks and be able to ‘remember’ the previous
context for a given token in the sequence.

Even if RNNs provide a very elegant way of dealing with sequential data, their architec-
ture makes them only effective in practice between data points that are spatially close in the
sequence. This makes recurrent neural networks only perform well with shorter sequences
of input data and not being able to keep a good representation of context for large ones. This
problem is caused by the way in which this kind of architectures implement backpropaga-
tion, resulting in that any error caused by an input element decreases its effect (or vanishes)
over the system as time passes. In order to avoid it, most of sequence labeling systems imple-
ment a more advanced version of recurrent neural networks called long short-term memories
(LSTMs) [43]. LSTMs handle the problem of vanishing weights by the inclusion of a more
advanced gate-based architecture to the network. This architecture is based on the usage of
a cell state (indicated in (d) in figure 4.1) that contains the flow of information in the memory
and modifies the next hidden state of the network. This cell state can be modified by the usage
of different gates that allow information to be forgotten, added or updated.

c_{t-1}

h_{t-1}

h_{t}

c_{t}

sig
sig sigtan

tan

x_t

(a)
(b)

(c)

(d)

Figure 4.1: Diagram of a LSTM cell where (a) is the Forget Gate, (b) is the Input Gate, (c) is
the Output Gate and (d) is the Cell State inspired by https://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

An easy improvement that can help better model context in RNNs is to include right con-
text from the sentence. This can be done by running two RNNs in opposite directions. In this
way, Bidirectional Recurrent Neural Networks, can capture information both from left-to-right
and right-to-left. In this case, the output is a concatenation of the outputs from both RNNs
in different directions. We show the formal definition for the particular case of bidirectional
LSTMs (BiLSTMs) in definition 4.2.2.

Definition 4.2.2. Let LSTM(w) be an abstraction of a Long Short-Term Memory RNN and
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let w = [w1, ..., w|w|] be the sequence of tokens that the system has as input, then, the output
for each wi in as oi = BiLSTM(w, i) = LSTM l(w[1:i])◦LSTM r(w[|w|:i]). This reasoning
can also be applied to stacked bidirectional recurrent neural networks, where the output oi
of the nth BiLSTM layer is fed as input to the (n+ 1)th layer.

4.2.3 Transformer-based Sequence Labeling Systems

Transformer architectures [44] have become a standard architecture for many natural lan-
guage processing tasks, while being the basis of most well-known language models like BERT

[14] or GPT [45]. Transformers introduce the concept of self-attention mechanism, that allows
a token from the input sentence to attend to any other token without regarding or penalizing
the distance between them. Also, this allows for parallelization at the token level, instead of
at the layer level (such as for RNNs). The inner workings of this are based on a multi-layer
encoder and a multi-layer decoder modules. The encoder will transform each item in the in-
put sequence and codify its information into a vector (called context) that will be passed onto
the decoder. The decoder will translate these vectors into the output sequence. Both encoder
and decoder are usually built using RNNs.

4.3 Architecture of a Sequence Labeling System

In this section we will introduce a generic architecture for a sequence labeling system based
on some of the aforementioned neural models. Specifically, we will discuss a BiLSTM based
sequence labeling model with a softmax output layer. A sample diagram of this architecture
can be seen in figure 4.2.

Token representation layer

This module will deal with the transformation of the sequence of raw input data into a se-
quence of vectors representing each word. These representations are built using embeddings,
a low-dimensional vector representation of features of words from a sentence. This embed-
dings can come from pre-trained systems and their inclusion during training of other models
can provide increments in the accuracy of its predictions. Some examples of these represen-
tations are (i) pre-trained word embeddings that extract the information at the word level
(i.e. word2vec [46]; GloVe [47]), (ii) character-level word embeddings, vector representations
computed using neural models (i.e. LSTMs[48], GRUs[49] or CNNs[50]) using the characters
of the input word, and (iii) feature embeddings (e.g. POS tags, NER tags…) that are initialized
randomly and are updated during training by the system itself. One of the main drawbacks
of word embeddings, both pre-trained and at character-level, is that they are static represen-
tations of the words, meaning, they don’t take into account the context where the word is.
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Figure 4.2: Sample architecture of a sequence labeling system. In the token representation
layer we have pre-trained word embeddings (red), character-level word embeddings (blue)
and feature embeddings (green). This is forwarded to the encoding layer built on 2 stacked
bidirectional long short term memories (yellow and pink) and its output is sent to a softmax
layer (green) to get a predicted label.

To overcome this, research switched to contextualised word-embeddings or, language mod-
eling embeddings. Language models have the advantage over traditional word embeddings
because they are trained using more advanced architectures (e.g. Transformers) and thus al-
lowing them to better model context. Some well known examples are ELMo [51] or BERT
[14].

Encoder

The second module of this type of sequence labeling systems is the encoder. The inputs to
this module are the word representations computed in the token representation layer, which
may include the character-level word embeddings, pre-trained word embeddings or feature
specific embeddings. This model can contain multiple layers, that can be stacked to build a
even deeper feature extractor. The most common neural models used as encoders are stacked
CNNs or LSTMs.

Decoder

The last component of a typical neural sequence labeling model is the inference or decoder
module. This module takes the contextualized vectors corresponding to each word from the
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sentence and obtained from the encoder and assigns one and only one label. Essentially,
the module is responsible from transforming the hidden representation into the sequence of
output labels. This can be done in different ways, e.g.,: (i) with a multi layer perceptron that
uses a softmax function to output a probability distribution over the output vocabulary space
and select the most likely label, or (ii) using conditional random fields. CRFs were already
explained in section 4.2.1, and the softmax function is a mathematical function that converts
a given hidden representation (hi) into a vector of probabilities p = [p1, p2, ..., pm], where
each probability pi indicates the probability of each possible output label from a set L|m| to
be the correct output for a given hi. The decision of what type of decoder to use depends
on different factors. While CRFs [52, 53] are better to model interdependence across labels,
they become slow when the output label space is large. On the contrary, straightforward
decoders that simply rely on a feed-forward network with softmaxes are very fast [54], but
might obtain worse performance.

4.4 Adding Multitask Learning to Sequence Labeling Systems

A way to improve generalization for any automatic learning system, and in this situation for
sequence labeling systems, comes with the addition of multi-task learning [55]. The main
premise is that solving many tasks together provides a better understanding that leads to
models with better generalization abilities. This potential improvement comes from the idea
that; (i) learning different talks might help to extract potential hidden patterns that would
remain unexploited if learned tasks are trained separately, and (ii) possible biases that would
appear in a single learning system and that would lead the model to over-fit do not occur
thanks to information obtained from other tasks. To implement this idea, multitask learning
(MTL) systems can take different approaches depending on how the parameters are shared
across tasks:

1. Hard parameter sharing: The hidden layers are shared between all tasks, that is,
different tasks share the same representation and parameters. The output layer is a task-
specific layer that is updated differently for each task. Figure 4.3 shows the architecture
of a hard-parameter sharing multi task learning system. This is the approach employed
for the multi-task learning in this work.

2. Soft Parameter Sharing: Each task has its own hidden layer and output layer, but the
parameters among those layers are regularized among them by penalizing the distance
between different the different models parameters.

As we can see, MTL fits naturally in situations where we need to obtain predictions for
multiple tasks with a single model. In relation to the field of natural language processing the
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Figure 4.3: Architecture of a Multi Task Learning System with Hard Parameter Sharing

potential of this kind of systems is that as several tasks are trained in parallel, several language
features (i.e. POS tags, lemmas, NER…) can also be learned. An additional advantage that
multi-task learning provides to sequence labeling systems, and that we will exploit in this
work, is to reduce the label space into different sub-spaces when possible, i.e. when a label
can be decomposed. For example, for a label with 3 atomic components, li = A+B + C , we
can decompose the task of learning the label into 3 different tasks where the system has to
learn each field A, B and C separately. The output label space from performing this system
as a single-task learning problem potentially is |A|x|B|x|C|, while treating it as a multi-task
learning problem we can get a output label space of only |A|+|B|+|C|.
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Chapter 5

Constituent Parsing as a Sequence
Labeling task

Constituent grammars are a set of grammatical theories based on the idea that a sentence is
made of several smaller parts organized in a hierarchical structure called constituents. Obtain-
ing such tree is a task called constituent parsing. In this chapter we will discuss how to cast the
problem of constituent parsing into a sequence labeling task by showing how a constituent
tree can be encoded into a sequence of labels. We will also show how those labels can be
decoded back into a constituent tree and all the heuristics used to ensure the tree correctness.

5.1 Constituent Parsing as Sequence Labeling

Transforming a constituent tree into a sequence of one label per word allows us to use all ad-
vantages of sequence labeling systems [1] such as the speed or the black-box capabilities. This
process however faces the challenge to encode a tree structure into a sequential list structure.
The goal of the developed system is to implement different ways to encode a constituent tree
as a sequence of labels in an unified system.

In order to explain the linearization process that transforms the constituent tree Tc cor-
responding to a sentence W = [w1, w2, ..., w|W |], we first must define a set of labels L and
a function Fc|W | : V|W | −→ T|W | that allows us to encode Tc as an unique sequence of la-
bels in L|W |. Once the function is defined we need to develop its inverse function Fc−1

|w| that
allows us to restore the predicted labels back into the constituent tree shape. The different
implementations for that function will be explored in sections 5.3.1, 5.3.2 and 5.3.3. Once
the encoding and decoding functions are implemented, the generated labels can be fed to a
black-box sequence labeling system that will learn to predict a function Γ|w|,θ that generates
the sequence of labels L|w| that represent an encoded constituent tree for a given sentence w.
This process is formally defined in definition 5.1.1.
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Definition 5.1.1. Given the following elements:

1. V : A given lexicon of tokens.

2. W = [w1, w2, ..., w|W | : An input sequence of words represented as such that every
wi ∈ V

3. Tc|W |: The set of constituent trees with |W | leaf nodes.

4. L: The set of possible labels that allows us to encode each tree in Tc|W | as an unique
sequence of labels L|W |.

5. L|W |: The set of sequence of labels that allows to encode any tree T|w|.

6. Fc|w| : T|w| −→ L|w|: The encoding function that allows us to map the constituent trees
with their label sequence representation.

Therefore, the core of constituent parsing as sequence labeling task is predicting the function
that maps every input token from a sentence into a label, defined as:

Γ|w|,θ : V|w| −→ L|w|

where θ is the set of parameters to be learned during training.

Note that the encoding function Fc|w| should guarantee completeness and injectivity,
problems that will be discussed in section 5.5. Another challenge that we must take into
account for the correct constituent linearization is the encoding of unary chains, that will be
discussed in section 14.

5.2 Encoding the Constituent Tree

For all the different encodings implemented, the labels will have a similar pattern: for every
word wi located at position i in the sentence, we will assign a 2-tuple label li = (nci, lci)

where:

1. nci is the encoded number of common ancestors between the words wi and wi+1. The
value of nci will be dependent of the encoding algorithm used.

2. lci is the tag 1 of the lowest common ancestor node between wi and wi+1.
1 We will use ’tag’ to refer to the label of the nodes to avoid confusion with the labels that represent the

linearized tree.
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In order to encode constituent trees the first step that our system needs to perform is to
compute the path from the root to the leaves. Comparing the path for wordswi andwi+1 will
allow us to get the encoded number of common ancestors, nci, and also the lowest common
ancestor lci. This approach was inspired by other [56] algorithms used to encode constituent
trees as labels, but those algorithms were focused on binary trees while this one can encode
any constituent tree. Also, it appends to the node tags their index in the path in order to
be able to differentiate them during the following steps of the encoding process as shown in
algorithm 1.

Algorithm 1: Given a constituent tree Tc, it returns a list p of paths from the root
to the leaves
Input: Tc: The constituent tree to get the path to leaves
Output: P : Set of paths from the root to the leaves in tree Tc

1 Function PathR(node, pathcurrent, listpaths, idx):
2 if node is leaf then
3 pathcurrent∪ [node.tag];
4 listpaths ∪ pathcurrent

5 else
6 pathtemp ← pathcurrent;
7 pathtemp∪ [node.tag + idx];
8 foreach child in node.children do
9 PathR(child, pathtemp, listpaths, idx);

10 idx← (idx+ 1);

11 return listpaths;
12 return PathR(Tc, [], [], 0);

Once we have the array of paths computed, we can start the comparison between them to
craft the labels. To accomplish this, an algorithmwill compare two consecutive paths element
by element until a different one is found. When a different element between the paths is
found, we create the label and add it to the labels list. One of the problems to overcome when
implementing this algorithmwas to deal with the last word of the sentence,wn, because there
is no wn+1 and to overcome it we added an empty node (ε) to the end of the constituent tree.
The critical path of the encoding process is the way in which the number of commons field
(nci) is represented in the label, and that will be explained further below for each one of the
different encodings. In algorithm 2 we show the common part of the encoding function and
in figure 5.1 we show a visual example of how the values of nci and lci are computed.
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Algorithm 2: Encoding function for a constituent tree Tc
Input: Tc: The constituent tree to encode.
Output: L|w|: Sequence of labels that represent the tree Tc.

1 Tc.children← Tc.children ∪[ε];
2 paths←PathToLeaves(Tc);
3 L|w| ← [];
4 for i← 1; i < |paths| − 1; i← i+ 1 do
5 patha ← paths[i]; pathb ←− paths[i+ 1];
6 ni ← 0;
7 ci ← ””;
8 forall a, b ∈ patha, pathb do
9 if a ̸= b then
10 ni ←ComputeNi;
11 L|w| ← L|w|∪ [Label(ni, ci)];
12 ni ← ni + 1;
13 ci ← a;

14 return L|w|;

Handling Unary Branches

A problem we had to deal with when implementing the encoding algorithm is the loss of
information when the trees present unary branches, as we cannot encode them correctly. We
call unary branches to those nodes of a tree that have only one child. We can differentiate
two kinds of unary branches:

1. Intermediate unary branches: Branches where the parent and the child are both non
terminal nodes, i.e., the unary branch occurs in the middle of the tree (see figure 5.2 (a),
A −→ B).

2. Leaf unary branches: Branches where the child is a pre-terminal node. In the con-
stituent trees the leaf unary branches will end in the part-of-speech tags from the sen-
tence (see figure 5.2 (b), C −→ p5).

To deal with the intermediate unary branches the systemwill follow a collapsing approach,
similar to other tree linearization systems. This will convert all middle nodes joined by an
unary branch into a single node with a tag composed of the joined nodes with a token sep-
arator sep among them (see figure 5.2 (b) for a collapsed tree). The leaf unary branches are
a little bit more complex to deal with. The following two approaches to deal with them have
been considered in the past [1]:

1. Use an extra function to enrich the part-of-speech tagswith the collapsed unary branches
needed for the decoding. This approach requires of the creation of another function
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(a) Encoding word Agent. Stops at node S because the next two are different.
-START-

S

-EOS-

-EOS-

PUNCT

.

.VP

NP

NN

coffee

JJ

black

VBZ

loves

NP

NNP

Cooper

NNP

Agent

word nci lci

Agent 2 NP

Cooper 1 S

loves - -

black - -

coffee - -

. - -

(b) Encoding word Cooper. Stops at node S because the next two are different.
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(c) Encoding word loves. Stops at node VP because the next two are different.

Figure 5.1: Step by step linearization of the first 3 nodes from a constituent tree. The red
arrow represents the path to leaves of wi and the blue arrow represents the path to leaves of
wi+1. They are compared in order to obtain the values of nci and lci

Φ|w| : V
|w| −→ C |w| that maps every word wi to a collapsed unary label uci ∈ C |w| if

it exists or ∅ otherwise. The addition of that function has the disadvantage that will
make the system require two steps of sequence labeling.
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Figure 5.2: Constituent tree with intermediate unary branches and leaf unary branches (a)
and its collapsed form (b).

2. Use an extended label encoding function Fc′|w| : T|w| −→ L|w| where the label li ∈ L

will be now represented as a tuple of three elements, i.e., li = (nci, lci, uci), where uci
is the collapsed leaf unary chain. This is the approach that we follow in this work.

5.3 Encodings

The most critical step in the process of linearization of constituent trees is the way in which
we encode the value of nci. Specifically, the way in which this field is encoded greatly affects
the sparsity of the labels obtained, which could eventually harm the performance that we
obtain when training models to predict sequences of labels.

5.3.1 Naive Absolute Encoding

The first and most simple encoding function is Fcabs|W | : Tc|w| −→ L|W |, a function that will
encode nci directly as the number of common ancestors between the word wi and wi+1. An
example for the encoding of a sample tree with this encoding is shown in figure 5.3.

5.3.2 Naive Relative Encoding

One of the main problems of the naive absolute encoding is that as the trees grow in depth so
does the number of different possible labels, which complicates training an effective sequence
labeling system. A proposed solution [1] to this problem is to create a different encoding
function Fcrel|w| : T|w| −→ L|w| that encodes nci as the difference with respect to the number
of common ancestors encoded in nci−1. This allows the set of labels to become much smaller
(see Table 5.2). In order to implement the decoding function for this encoding we will apply
a preprocessing step to the labels that will turn the field nci into absolute scale, so we can
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Figure 5.3: Example of a constituent tree (a) and its label representation in naive absolute
encoding (b). In the column li, field nci indicates the number of common ancestors encoded
in naive absolute encoding, field lci indicates the lowest common ancestor and field uci is the
leaf unary chain.

apply the same decoding function that we use for the previous encoding. For a sample tree,
the resulting labels in a relative scale is shown in 5.4.
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Figure 5.4: Example of a constituent tree (a) and its label representation in naive relative
encoding (b). In the column lci, field nci indicates the number of common ancestors encoded
in naive relative encoding, field lci indicates the lowest common ancestor and field uci is the
leaf unary chain.

5.3.3 Dynamic Encoding

While the absolute scale encoding outperforms (see Table 5.1) the relative scale encoding
for shallow trees (max depth smaller than 10 levels), the accuracy of the labels predicted
decreases for deeper trees, where the relative scale outperforms it. The last encoding for nci
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implemented aims to solve this problem by mixing the relative and absolute encodings [57]
and is based on using a different encoding function scale depending on the number of levels
that it descends or ascends into the tree. The hybrid encoding is better for encoding large
constituent trees, showing the lowest label sparsity of the three encodings as shown in table
5.2.

Depth 2-4 5-7 8-10 11-13 14-16 17-19 20-22 23-25 26-27

Absolute encoding 95.84 94.32 93.25 93.04 92.06 91.99 86.55 85.51 82.11

Relative encoding 94.90 94.18 93.39 93.22 92.96 92.23 91.76 93.31 88.46

Table 5.1: F-Score from predicted labels for the test set of the Penn Treebank, in relation with
the tree depth measured for the absolute scale encoding and the relative scale encoding

Encoding Test Set Dev Set Train Set

Naive absolute encoding 854 690 2244

Naive relative encoding 665 548 1761

Dynamic encoding 552 473 1506

Total tree count 2416 1700 39832

Table 5.2: Label sparsity (number of distinct labels obtained) for each encoding for the English
Penn Treebank of constituent Trees.

Formally, the encoding function F dyn
|w| : Tc|w| −→ L|w| of this algorithm is defined as a

conditional function using both F rel
|w| and F abs

|w| . The decision of what encoding function to
use depends on the value of the number of common ancestors nci of the node that we are
encoding being inside or outside of a range defined by some threshold values. The threshold
values were computed empirically for this work and are nci = 3 for the upper threshold thup
and nci = −2 for the lower threshold thlw . The encoding function is defined as follows:

F dyn
|w|

F abs
|w| if thlw < nci < thup

F rel
|w| otherwise

5.4 Decoding the Labels

To explain how to decode a sequence of labels, we assume that a well-formed output is given,
and describe the measures to fix corrupted outputs (e.g., like those that a sequence labeller
could produce at inference time) in section 5.5. The general decoding process consists in
parsing the sequence of labels li = (nci, lci, uci) from L|W | one at a time while generating
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the tree from root to leaves. The number of levels to descend in each step is determined by
the field nci of the label, and, once reached that level, we set the node tag to lci. After that, to
obtain the tree Tc, we have to append: (i) the leaf unary chain uci, (ii) the part-of-speech tag
pi, and (iii) the word wi. The critical part of the decoding process comes with how the nci is
represented, as it is different depending of the encoding employed. A pseudocode from this
process is shown in algorithm 3.

5.5 Ensuring Correctness

Until now we considered a perfect sequence labeling system that allowed us to decode gram-
matically correct constituent trees. However, in practical scenarios, where a model will be
trained to predict linearized outputs, this will be not the case. In this context, the main errors
that can happen during the decoding step can be classified into the following groups:

1. Conflicting tag predictions: Two labels from the decoded sequence propose different
tags for the same non-terminal node in the constituent tree (this can happen when a
non-terminal node has more than two children, see figure 5.5).

2. Unexpected length prediction: A label from the decoded sequence puts a non-terminal
node in a deeper level than it was expected, potentially resulting in empty non-terminal
nodes during the decoding phase (see figure 5.6).
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Figure 5.5: Example of a conflicting tags error while decoding a constituent tree. The con-
flicting nodes are NP (blue) and VP (red). This is solved by setting both separated by a ’|’
separation character.

In order to solve both of these problems we need to (i) modify the encoding function to
deal with the conflicting tags problem and (ii) implement a post-processing function to clean
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Algorithm 3: Decoding function for a given sequence of labels L .
Input: L|W |: The labels to decode.
Input: W |W |: The set of words from the sentence that generated the labels L|W |.
Input: P |W |: The set of part-of-speech tags of sentence W |W |.
Output: Tc: The decoded constituent tree of sentence W |W |.

1 Tc ← ε ;
2 ncold ← 0;
3 lcold ← ””;
4 lvlold ← None;
5 foreach li, wi, pi ∈ L|W |,W |W |, P |W | do
6 lvl← Tc;
7 nci ← DecodeNc(li)/* Get the nci field in absolute scale */
8 ;
9 lci ←DecodeLc(li)/* Get the lci field as a list of nodes to

deal with collapsed intermediate unary chains */
10 ;
11 for i← 0; i < nc; i← i+ 1 do
12 if (GetNumberChildren(lvl)== 0) or (i ≥ ncold) then
13 lvl.children = lvl.children + ε;
14 lvl = GetRightmostChild(lvl);
15 /* Set the last common tag and insert the corresponding

unary chain if needed */
16 foreach lci ∈ li.lc do
17 if lvl.tag == ε.tag then
18 lvl.tag←lci;
19 lvl← GetRightmostChild(lvl)

20 /* Add the pos tag and word tree in the corresponding
level */

21 if li.nc ≥ncold then
22 lvlappend ← lvl

23 else
24 lvlappend ← lvlold

25 tp ←− ε;
26 tp.tag = pi; tp.children = [wi];
27 foreach n ∈ uci do
28 ttemp ← ε;
29 ttemp.tag← n; ttemp.children←tp;
30 tp ← tn;
31 lvlappend.children←lvlappend.children +tp;
32 return Tc;
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VBP
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PRP
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VBP
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NP
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DT

The

(a)

wi li = (nci, lci, uci)

The (2, NP, )
owls (1, S, )
are (2, VP, )
not (3, NP, )

what (3, SBAR, WHNP)
they (4, S, NP)
seem (1, S, VP)

. (1, S, )
(b)

Figure 5.6: Example of a unexpected length problem while decoding a constituent tree. The
ill-predicted label is of word ’not’ having the field nc a 3 instead of a 2, causing it to leave a
’-’ node in the tree.

the tree of the conflicts and the null nodes. Themodification of the encoding function consists
in changing the step of replacing the tag from the nodewith the lci field of the label and add all
the predictions with a separating character between them ; the post-processing function will
consist in a depth-first traversal of the tree that (i) replaces all conflicting node tags according
to a strategy (e.g., taking the first predicted tag, taking the last one, or a voting approach that
takes the most repeated one) and (ii) if it finds an empty non-terminal node, appends all its
children to the parent of that node and removes it.

5.6 Chapter conclusion

In this chapter we discussed how to perform the linearization of constituent trees in order to
perform constituent parsing as a sequence labeling task, and its advantages against previous
ways of dealing with this problem. Three encoding techniques were presented, with the last
one being a combination of the first two. Finally, we also showed how to decode a sequence
of labels back to a constituent tree, and correct corrupted outputs if required (for instance,
because such sequence of labels have been predicted by a trained model).
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Chapter 6

Dependency Parsing as a Sequence
Labeling Task

Dependency grammars are a set of grammatical theories based on the idea that sentences are
formed by a sequence of tokens related by syntactic dependency relations. The task of obtain-
ing such relations in the shape of a tree is called dependency parsing. Traditional methods of
performing this task relied on: (i) transition-based systems where the task of parsing is done
in linear time, but they require ad-hoc parsing algorithms and auxiliary structures, and (ii)
on graph-based systems that explore the search space of all possible dependency trees and
use statistical methods to discern the correct one, causing the problem to only be solvable
in at best O(n2). This chapter will discuss an alternative to those methods by casting the de-
pendency parsing task into a sequence labeling one. To accomplish so, we will show how to
encode the dependency trees into a set of labels by means of several encodings. This chapter
will also explore how to decode those labels back into the corresponding dependency tree and
all heuristics needed to ensure correctness.

6.1 Dependency Parsing as Sequence Labeling

In order to explain the linearization process that transforms the constituent tree Td|W | cor-
responding to a sentence W = [w1, w2, ..., wn], we first must define a set of labels Ld and
a function Fd|W | : Td|W | −→ Ld|W | that allows us to encode Td|W | as a unique sequence
of labels Ld|W | in Ld. Once the function is defined we need to develop its inverse function
Fd−1

|W | that allows us to restore the predicted labels back into the dependency tree shape. The
different implementations for that function will be explored in sections 6.2.1, 6.2.2, 6.2.3 and
6.2.4. Once the encoding and decoding functions are implemented, the generated labels can
be fed to a black-box sequence labeling system that will learn to predict a functionΦ|W |,θ that
generates the sequence of labels L|W | that represent an encoded constituent tree for a given
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sentence W . This process is formally defined in definition 6.1.1.

Definition 6.1.1. Given the following elements:

1. V : A given lexicon of tokens.

2. W = [w1, w2, ..., wn] : An input sequence of words where every wi ∈ V .

3. Td|W |: The set of possible dependency trees with |W | nodes.

4. Ld: The set of labels that allows us to encode each tree in Td|W | as a unique sequence
of labels in Ld|W |.

5. Fd|W | : Td|W | −→ Ld|W |: The encoding function that allows us to translate the depen-
dency trees into a unique sequence of labels.

Therefore, the core of the dependency parsing as sequence labeling task is predicting the
function that maps every input token from a sentence into a label, defined as:

Φ|W |,θ : V|W | −→ Ld|W |

where θ is the set of parameters that the sequence labeling tool has to learn during training.

6.1.1 Encoding the Dependency Tree

For every word wi located at the position i in the input sentence W , we will assign a 2-tuple
label ldi = (xi, ti) where each one of the fields represents the following:

1. ti: Representation of the type of relation between the head and the dependent for word
wi, as defined in the context of the dependency relation ri = (hi, di, ti) where hi rep-
resents the head of the relation, di represents the dependant of the relation and t rep-
resents the syntactic relation (e.g. subject, or direct object) that exists among them.

2. xi: Encoding-specific value that defines how the head-dependant relations will be en-
coded for each word.

A overview of the encoding process for a given dependency tree Td can be seen in algo-
rithm 4, where we leave the xi field assignation to be performed by the different encodings
implemented.

6.1.2 Decoding the Labels

Thegeneral decoding process that we use to rebuild a dependency tree back from the sequence
of output labels can be seen in algorithm 5. As the head position was encoded in the xi field
of the label and it was an encoding-specific task, this algorithms leaves the implementation
of the function DecodeHi to each of the specific encodings.
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Algorithm 4: Encode a Dependency Tree Td|W | into a Sequence of Labels Ld|W |

Input: Dependency Tree Td|W |
Output: Set of encoded labels Ld|W |

1 R← Td|W |.edges;
2 Ld|W | ←[];
3 foreach ri ∈ R do
4 hi, di, ti ← ri;
5 if di! = 0 then
6 /* When creating the labels, the field xi is left to be

filled later */
7 Ld|W | ← Ld|W |∪[Label(−, ti)];

8 /* Encoding-specific segment */
9 Ld|W | ← EncodeXi(Ld|W |,R);

10 return Ld|W |;

Algorithm 5: Algorithm to decode Dependency Trees
Input: W : Sequence of words forming a sentence.
Input: P : Sequence of part-of-speech tags corresponding to sentence W .
Input: Ld|W |: Sequence of labels ldi = (xi, ti)
Output: Td|W |: Decoded dependency tree for sentence W .

1 R←[ ]; V ←[ ];
2 i← 0;
3 foreach ldi ∈ Ld|W | do
4 xi, ti ← ldi;
5 R← R ∪ (0, i, ti);
6 V ← V ∪ i

7 /* Encoding-specific segment */
8 R← DecodeHi(R) ;
9 Td|W |.edges←R;Td|W |.nodes←V

10 return Td|W |

6.2 Encodings

The following sections will study different approaches to encode the xi field of the label. The
decision of what encoding to use will have an impact on the performance and accuracy of the
final system, as it will affect the sparsity and learnability of the generated labels.
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6.2.1 Naive Absolute Encoding

The first of the proposed encodings consists in setting directly the hi component of the rela-
tionship on the xi field of the label. The resulting labels from this encoding for a sample tree
is shown in figure 6.1. The main disadvantages of this encoding are (i) the high label sparsity
that it produces when encoding the dependency trees of long sentences and (ii) the relation
between the fields xi and ti of the label ldi = (xi, ti) is nearly non-existent.

The owls are not what they seem .
i 1 2 3 4 5 6 7 8

POS DT NNS VBP RB WP PRP VBP PUNCT
ti det nsubj root advmod obj nsubj ccomp punct
xi 2 3 0 3 7 7 3 3

det nsubj

root

advmod

obj

nsubj

ccomp

punct

Figure 6.1: Encoding of a given dependency tree with the xi’s encoded according to the naive
absolute encoding.

Encoding This encoding can be derived trivially from the CoNLL-U format to represent
a dependency tree. This encoding is expressed as the function FdABS

|W | and simply encodes
the head position hi of the edge ri = (hi, di, ti) directly into the field xi of the label, setting
xi = 0 for the root of the tree (see algorithm 6).

Algorithm 6: Encoding function for the xi’s components with the naive absolute
encoding
Input: R: Sequence of dependency relations ri = (hi, di, ti) representing a

dependency tree
Input: Ld|W |: Sequence of labels ldi = (xi, ti) without the xi field
Output: Ld: Sequence of labels ldi = (xi, ti) with the xi field

1 foreach ri, ldi ∈ R,Ld do
2 xi, ti ← li;
3 hi, di, ti ← ri;
4 xi ← hi;
5 return Ld
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Decoding The hi decoding process is very straightforward, due to the labels xi field encod-
ing directly the head of the dependency relationship. This process is explained in algorithm
7.

Algorithm 7: Decoding function for the hi’s components in naive absolute encod-
ing
Input: Ld|W |: Sequence of labels ldi = (xi, ti)
Input: P : Sequence of part-of-speech tags
Input: R: Sequence of dependency relations ri = (hi, di, ti) without the hi field
Output: R: Sequence of dependency relations ri = (hi, di, ti) with the hi field

1 foreach ldi, ri ∈ Ld|W |, R do
2 xi, ti ← ldi;
3 hi, di, ti ← ri;
4 hi ← xi;
5 return R

6.2.2 Naive Relative Encoding

We now propose a more advanced way to encode a dependency [58] tree into labels with
lower label sparsity than the naive absolute encoding. The resulting labels from this encoding
for a sample tree is shown in figure 6.2. The main advantage from this encoding comes from
the decreased label sparsity with respect to the absolute encoding. This is illustrated in ta-
ble 6.1, where we compare the different labels obtained for both encodings for the universal
dependencies EnglishEWT treebank.

The owls are not what they seem .
i 1 2 3 4 5 6 7 8

POS DT NNS VBZ RB WP PRP VBP PUNCT
ti det nsubj root advmod obj nsubj ccomp punct
xi +1 +1 -3 -1 +2 +1 -4 -5

det nsubj

root

advmod

obj

nsubj

ccomp

punct

Figure 6.2: Encoding of a given dependency tree with the xi’s encoded according to the naive
relative encoding.
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Encoding Test Set Dev Set Train Set

Total Trees 2077 2001 12543

FdABS
|W | Unique Labels 1521 1447 2701

FdREL
|W | Unique Labels 743 745 1386

Table 6.1: Label sparsity for the naive absolute encoding and the naive relative encoding for
the sum of all the trees in the universal dependencies EnglishEWT treebank.

Encoding This approach encodes the distance between the dependent and the head. It is
represented as the function FdREL

|w| , and encodes the head of any dependency edge ri =

(hi, di, ti) in the xi field of the label as hi − di (see algorithm 6).

Algorithm 8: Encoding function for the xi’s components in naive relative encoding

Input: R: Set of dependency relations ri = (hi, di, ti) representing a Dependency
Tree

Input: Ld|W |: Set of labels ldi = (xi, ti) without the xi field
Output: Ld|W |: Set of labels ldi = (xi, ti) with the xi field

1 foreach ri, ldi ∈ R,Ld|W | do
2 xi, ti ← ldi;
3 hi, di, ti ← ri;
4 xi ← hi − di;
5 return Ld|W |

Decoding The decoding process for this encoding is shown in algorithm 9, where the value
of hi is decoded as an addition between the label field xi and the i position.

Algorithm 9: Decoding function for the hi’s fields in naive relative encoding
Input: Ld|W |: Sequence of labels ldi = (xi, ti)
Input: P : Sequence of part-of-speech tags
Input: R: Sequence of dependency relations ri = (hi, di, ti) without the hi field
Output: R: Sequence of dependency relations ri = (hi, di, ti) with the hi field

1 foreach ldi, ri ∈ Ld|W |, R do
2 xi, ti ← ldi;
3 hi, di, ti ← ri;
4 hi ← xi + di;
5 return R
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6.2.3 PoS Based Encoding

This encoding attempts to solve the lack of correlation between the fields xi and ti of the label
by encoding xi using information extracted from the part-of-speech tags of the sentence. This
algorithm, even if accurate and fast, presents the drawback of needing labeled input. This
supposes a problem for low-resource languages [59] or languages where the part-of-speech
tagger is not accurate. An example of this encoding for a given sentence is shown in the figure
6.3, whose details will be explained below.

The owls are not what they seem .
i 1 2 3 4 5 6 7 8

POS DT NNS VBP RB WP PRP VBP PUNCT
ti det nsubj root advmod obj nsubj ccomp punct
pi NNS VBP ROOT VBP VBP VBP VBP VBP
oi +1 +1 0 -1 +1 +1 -1 -2

det nsubj

root

advmod

obj

nsubj

ccomp

punct

Figure 6.3: Encoding of a given dependency tree with the xi’s encoded according to the part-
of-speech based encoding.

Encoding For this encoding, we define a function FdPOS
|W | where for each node from the

input tree the algorithm generates a label l = (xi, ti) where xi is a tuple (pi, oi) such that:

• pi encodes the part-of-speech tag for the head of the word wi or ”ROOT” if wi is the
root of the sentence.

• oi encodes two things: (i) the direction to the head, meaning that is to the left if oi < 0,
or to the right if oi > 0, and (ii) the number of POS tags with the value pi that occur in
the sentence in that direction until the desired one.

The pseudocode for this encoding is shown in algorithm 10.

Decoding The decoding process will consist in traversing the sequence of part-of-speech
tags and the sequence of labels according to the xi field of the labels. A pseudocode of the
implementation of this idea is shown in Algorithm 11.
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Algorithm 10: Encoding function for the xi’s components in part-of-speech encod-
ing
Input: R: Sequence of dependency relations ri = (hi, di, ti) representing a

dependency tree
Input: P : Sequence of part-of-speech tags from the input sentence
Input: Ld|W |: Sequence of labels li = (xi, ti) without the xi field
Output: Ld|W |: Sequence of labels li = (xi, ti) with the xi field

1 foreach ri, ldi ∈ R,Ld|W | do
2 xi, ti ← ldi;
3 hi, di, ti ← ri;
4 oi ← P [hi]; pi ← 0;
5 if oi == ROOT or pi == 0 then
6 xi ← (pi, oi); continue;
7 if di < hi then
8 s← 1;
9 else
10 s← −1;
11 for i← di; i < (hi + s); i← i+ s do
12 if oi == P [i] then
13 pi ← pi + s;

14 xi ← (pi, oi);
15 return Ld|W |

6.2.4 Bracketing Based Encoding

The last implemented encoding is based on the works of [10, 60, 61], where the task of parsing
dependency trees is approached from the viewpoint of dependency bracketing (see figure 6.4).
This allows us to encode the dependency edges as a set of brackets that indicate outgoing or
incoming arcs from neighbor tokens. As opposed to the other encodings the bracket based
encoding is unable to encode non-projective trees as we will show later.

Encoding For this encoding we will define a function FdBRK
|W | that for each node of the

input tree will generate labels shaped as li = (xi, ti) where the value of xi is encoded as a
string formed from the set of charactersB = <, \, /, > and defined by the regular expression
(<)?((\)*|(/)*)(>)? where the presence of each character means:

1. < : wi−1 has an incoming arrow from the right.

2. \: wi has an outgoing arrow towards the left. This character can appear as many times
as outgoing arrows wi has.
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Algorithm 11: Decoding function for the hi’s field in part-of-speech encoding
Input: Ld|W |: Sequence of labels ldi = (xi, ti
Input: P : Sequence of part-of-speech tags
Input: R: Sequence of dependency relations ri = (hi, di, ti) without the hi field
Output: R: Sequence of dependency relations ri = (hi, di, ti) with the hi

1 foreach ldi, ri ∈ Ld|W |, R do
2 xi, ti ← Ld;
3 pi, oi ← xi;
4 hi, di, ti ← ri;
5 if oi == 0 or pi == ROOT then
6 hi = 0;
7 continue;
8 if oi > 0 then
9 s← 1; f ← |P |;

10 else
11 s = −1; f = 0;
12 c← oi;
13 for i← di; i← f ; i← i+ s do
14 if pi == P [i] then
15 c← c− s;
16 if c == 0 then
17 break;

18 hi ← i;
19 return R

The owls are not what they seem .
i 1 2 3 4 5 6 7 8

POS DT NNS VBP RB WP PRP VBP PUNCT
ti det nsubj root advmod obj nsubj ccomp punct
xi <\ <\ ///> < <\\> >

det nsubj

root

advmod

obj

nsubj

ccomp

punct

Figure 6.4: Encoding of a given dependency tree with the xi’s encoded according to
bracketing-based encodings.

46



CHAPTER 6. DEPENDENCY PARSING AS A SEQUENCE LABELING TASK

3. / : wi−1 has an outgoing arrow towards the right. This character can appear as many
times as outgoing arrows wi−1 has.

4. > : wi has an incoming arrow from the left.

This process can be understood as encoding the dependency arcs according to their direction
as follows:

1. Left Dependency: for a given dependency relationship rright = (wi, wj , ti) such that
wi < wj , FdBRK

|W | will encode in label li+1 a ’>’ character and will encode in label lj a
’/’ character (see figure 6.6, blue).

2. Right Dependency: for a given dependency relationship rleft = (wj , wi, ti) such that
wi < wj , FdBRK

|W | will encode in the label li+1 a ’<’ character and will encode in the
label lj a ’\’ character (see figure 6.6, red).

I am the one who knocks
xi <\ / <\ <\> />

nsubj

root

det nsubj

ccomp

dep

Figure 6.5

Figure 6.6: Example of a Right Dependency (blue) and a Left Dependency (red).

Note that in order to reduce the label sparsity in projective trees we encode the characters ’<’
and ’/’ in wi+1 instead of wi. This allows to reduce the number of labels, because we avoid
having the characters ’/’ and ’\’ in the same xi field. The general encoding process is shown
in algorithm 12.

Decoding For the decoding algorithm, we will also need create beforehand an empty tree
that we will fill using the labels and two stacks as auxiliary structures. Each stack will store
the dependencies in one direction, meaning we will have a stack that will deal with the de-
pendencies from left to right and another one will store the dependencies from right to left.
This stacks will fill the fields of the empty dependency tree.

Bracketing Based Encoding for 2-Planar Trees

This encoding as shown in figure 6.7 has the disadvantage of being unable to encode non-
projective dependency trees. If we recall from chapter 2, we say that a non-projective tree is
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Algorithm 12: Encoding function for the xi’s components in bracket based encod-
ing
Input: R: Sequence of dependency relations ri = (hi, di, ti) representing a

dependency tree
Input: P : Sequence of part-of-speech tags from the input sentence
Input: Ld|W |: sequence of labels ldi = (xi, ti) without the xi field
Output: Ld|W |: sequence of labels li = (xi, ti) with the xi field

1 b =[ ];
2 foreach ri ∈R do
3 hi, di, ti ← ri;
4 if hi == 0 or di == 0 then
5 continue;

6 if di < hi then
7 b[di + 1]← b[di + 1] + ”<”;
8 b[hi]← b[hi] + ”\”;

9 else
10 b[di]← b[di] + ”>”;
11 b[hi + 1]← b[hi + 1] + ”/”;

12 foreach li, ri ← L,R do
13 xi, ti ← li;
14 hi, di, ti ← ri;
15 xi ← b[di]

16 return Ld|W |

k-planar if its dependency edges can be separated in k projective planes (that is, sets of arcs
where there are no crossing edges.) It has been proven by previous research [26, 62, 63] that
most non-projective dependency trees can be separated in only 2 planes.

Encoding To adapt the bracketing algorithm to encode 2-planar trees we will (i) separate
the input sentence into two planes, (ii) encode the first plane using the bracketing encoding
and the default set of characters B = <, \, /, > and (iii) encode the second plane with also
the bracketing encoding but with a different set of characters B∗ = < ∗, \∗, /∗, > ∗.

Decoding The decoding process will have to change by using 4 stacks instead of 2. Each
pair of stacks will store the dependencies for each plane, and, in that stack pair, each stack
will store the dependencies in each direction. Therefore for the decoding process we need:

1. Stackrp1: Stores the dependencies from left to right for dependencies associated with
Plane 1, that is, having the characters from B.
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Algorithm 13: Decoding function for the hi’s field in brackets based encoding
Input: Ld|W |: Sequence of labels ldi = (xi, ti
Input: P : Sequence of part-of-speech tags
Input: R: Sequence of dependency relations ri = (hi, di, ti) without the hi field
Output: R: Sequence of dependency relations ri = (hi, di, ti) with the hi

1 Stackl =[ ];
2 Stackr =[ ];
3 foreach ldi, ri ∈ Ld|W |, R do
4 xi, ti ← ldi;
5 hi, di, ti ← ri;
6 foreach c ∈ xi do
7 switch c do
8 case ”<” do
9 Stackl.push(di − 1);

10 case ”\” do
11 if Stackl.pop() != None then
12 j ← Stackl.pop();
13 else
14 j ← 0

15 hj , dj , tj ← R[j];
16 hj ← di;
17 case ”/” do
18 Stackr .push(di − 1);
19 case ”>” do
20 if Stackr .pop() != None then
21 j ← Stackr .pop();
22 else
23 j ← 0

24 j ← Stackr .pop();
25 hi ← j;

26 return R

2. Stacklp1: Stores the dependencies from right to left for dependencies associated with
Plane 1, that is, having the characters from B.

3. Stackrp2: Stores the dependencies from left to right for dependencies associated with
Plane 2, that is, having the characters from B∗.

4. Stacklp2: Stores the dependencies from right to left for dependencies associated with
Plane 2, that is, having the characters from B∗.
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A hearing is scheduled on the issue today .
(,det) (<\, nsubj) (<\/, root) (/>/, vg) (>/, nmod) (/, det) (<\>, pc) (>, adv) (>, punct)

det nsubj

root

vg

nmod

det

pc

adv

punct

(a)

A hearing is scheduled on the issue today .
(,det) (<\, nsubj) (<\/, root) (/>/, vg) (>/, nmod) (/, det) (<\>, pc) (>, adv) (>, punct)

det nsubj

root

vg

nmod

det

pc

adv

punct

(b)

Figure 6.7: 2-planar tree encoded with bracket based encoding (a) and resulting tree from
decoding those labels (b).

Planar Separation In order to implement this encoding we will need to first separate the
dependency tree into the two non-crossing planes. For this task, we will consider two dif-
ferent planar-separation algorithms [64]. Due to the scarcity of crossing dependencies in the
treebanks [65], both approaches deal with the planar separation by parsing the dependency
tree and only setting the dependency relations to a new plane when needed, therefore reduc-
ing the number of unique output labels that the encoding produces.

Greedy planar separation The first planar separation strategy implemented is the greedy

planar separation. For a given tree Td|W | = (N,R) in order to split the relationship set R
into two partitions without crossing dependencies R1 and R2, we will traverse the set of
nodes N from left to right and we will check the relationships that each node participates in.
Those relationships will be assigned to R1 by default, to R2 if the relationship crosses any
relationship already in R1 or will be removed if it crosses relationships in both R1 and R2

and therefore not being able to encode all 2-planar trees. An example of greedy algorithm
doing a bad assignment is shown in figure 6.8 (b), where the tree is divisible in two planes but
the greedy nature of the algorithm cannot separate it.
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Propagation planar separation The propagation planar algorithm aims to solve the prob-
lem with the inner workings of the greedy algorithm by propagating the plane assignment
along the tree. To do that propagation of changes we use the crossings graph, which is a spe-
cial graphGc = (V,E)where the edgesE indicate the set of relationships in the dependency
tree Td that cross among them, that is, that cannot be assigned to the same plane. The goal
of this algorithm is to do a left to right pass through the dependencies in Td and every time
an edge is assigned to each plane, all its neighbours in the crossing graph mark that plane as
forbidden, meaning they can’t be assigned to it. An example of a planar separation performed
by this algorithm is shown in figure 6.8 (c).

w1 w2 w3 w4 w5 w6
- ///> /> /> > >

root

d1

d2 d3

d4

d5

(a) Dependency tree with bracketing based encoding. There 2 are crossing edges and therefore the
decoded tree will go wrong.

w1 w2 w3 w4 w5 w6
- ///> /*> >* > -

root

d1

d2 d3

d4

d5

(b) Dependency tree with 2-planar bracketing based encoding using greedy planar separation. There
is 1 crossing edge and therefore the decoded tree be wrong.

w1 w2 w3 w4 w5 w6
- /*//> /*> />* >* >

root

d1

d2 d3

d4

d5

(c) Dependency tree with 2-planar bracketing based encoding using propagation-based planar separa-
tion. There are no crossing edges and therefore the decoded tree be correct.

Figure 6.8: Planar separation for bracketing encoding using different strategies.
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6.3 Ensuring Correctness

Until now, we considered that the labels used in the decoding process are predicted with a
100 percent accuracy, something that is rarely the case. In real life, the normal thing is that
some of the labels are wrongly predicted. The problems that these wrongly predicted labels
can cause for a decoded dependency tree can be divided in three groups:

1. Node has the head outside the tree bounds: One or more nodes from the decoded
tree have the head outside the bounds of the sentence, that is, the relationship ri =

(hi, di, ti) associated with the word wi has value hi > |W | or hi < 1.

2. Loops inside the tree: One or more nodes in the decoded tree have circular depen-
dencies. This collides frontally with one of the restrictions of the tree structure, which
is that they must present no cycles.

3. One element of the sentence must be the root: The decoded tree has no root ele-
ment, meaning, no ri = (hi, di, ti) ∈ R has hi = 0.

4. Only one element of the sentencemust be the root: Some data sets enforce unique-
ness of root in the sentences, therefore the decoded set of relations R must have only
one relation ri such that hi = 0.

To solve this problem, the proposed solution is the usage of a post-processing function that
solves all the issues. That function will deal with the problem by (i) ensuring the uniqueness
of the root by selecting as true root the first token that has a relation with hi = 0 and ti =

′

ROOT ′, or the first one that has hi = 0 or the first token in the sentence (figure 6.9, image
(a)) and (ii) will break any loop in the resulting tree by setting the hi field in the relationship
edge that causes the loop to the index of the current root of the sentence (figure 6.9, image
(b)), and (iii) fix any relationship where the field hi is out of the bounds of the sentence by
setting its value to the index of the root of the sentence (figure 6.9, image (c)).

6.4 Chapter Conclusion

In this chapter we have seen the different strategies to cast the dependency parsing problem
into a sequence labeling problem. A total of four different ways to encode a dependency tree
into an unique sequence of labels were explained, from encodings based on word positions
to more abstract bracketing-based encodings. All the implemented algorithms can encode
a CoNLL-U treebank into labels and decode it back, resulting in a very powerful tool for
training sequence labeling systems for parsing. Finally, we explained the heuristics used to
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The Arcana is the means by which all is revealed
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(a) Decoded dependency tree with loops (red), out of bounds heads (blue) and multiple root nodes
(green)

The Arcana is the means by which all is revealed
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(b) Decoded dependency tree with loops (red) and out of bounds heads (blue)

The Arcana is the means by which all is revealed
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(c) Valid dependency tree. Root is unique and has no loops or out of bound heads.

Figure 6.9: Post-process of a dependency tree decoded from a bad prediction

ensure that the resulting dependency tree is correct, under the assumption that a trained
parser could produce corrupted outputs.
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Chapter 7

Software Details

Once the constituent and dependency linearization system has been developed and the se-
quence labeling systems models have been trained, we can now obtain the parse trees

for given sentences. Generally, this process is illustrated in figure 7.1 and consists in (i) in-
putting the sentence to a sequence labeling system with a trained model that can predict our
system labels, (ii) sending the labels obtained to our system in decoding mode and (iii) obtain-
ing the decoded parse tree. This chapter will deal with the software details of the developed
system and how the final product is used. We will take a look at the final system structure
and the input and output formats available. Finally, we will show some execution examples
from command line that can be executable.

7.1 Models

This section will focus on the different inner representations of the labels inside the system
and how they are translated into plain text files. We will also explain how the different word
features employed during the training of the sequence labeling system are extracted from the
treebanks and how are included in the output files.

Constituent Tree Labels

Each of the constituent tree labels is a 3-tuple li = (lci, nci, uci) that encodes the lowest
common ancestor, the number of common ancestors and the unary chain needed to decode
as shown in section 5.1. The main challenges found during the translation of the information
of this tuples to a string are the following ones:

1. Storing how the field nci was encoded: When encoding a tree using the dynamic

encoding we encode the value of the number of common ancestors both using relative
scale and absolute scale. When labels are classes this can be stored as a field, but when
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Figure 7.1: Diagram explaining the process of obtaining the parse tree for a given sentence.

writing it to a file this information has to be stored somewhere. In order to store this
information in the files in this work we opted for including a ”*” character into the
nc field whenever the number was obtained employing a relative scale (see 6* in label:
”6*_NP+QP_S+VP”).

2. StoringUnaryChains: The unary chains from a tree are the structures that are formed
when a node has only one child. These structures can be of any length, so the fields
need to be stored separated in the labels too. The intermediate unary chains in labels
can be found in the lc field from collapsing the nodes before the encoding of the tree
(see NP+QP in label ”6*_NP+QP_S+VP”) or in the uc field where we store the leaf unary
chains (see S+VP in label ”6*_NP+QP_S+VP”). Collapsed nodes from unary chains com-
bine the labels of the nodes that forms him with a separator between the labels. This
separator at first was a ”+” character, but some languages employ the ”+” character in
their part-of-speech tags, so this field was made customizable.

Dependency Tree Labels

Each of the dependency tree labels is a tuple li = (ti, xi) that stores the deprel field from the
CONLL file into the ti field of the label and encodes the position on the head in the xi field.
The encoding of the head varies a lot depending on the encoding, with only a few of them
resulting in problems:

1. Part-of-speech encoded labels: When encoding part-of-speech labels, the field xi is
separated into two sub-fields xi = (oi, pi) that represent the part-of-speech tag of the
head and the number of ocurrences of that tag that appear in the sentence between the
word and the head. To write the two fields to the output labels we employed a separator
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string (e.g. ”–”, see ”-1–NP in label -1–VERB_nsubj). When reading the strings the part-
of-speech encoding algorithm deals with the separation of those two fields.

2. 2-planar bracketing based encoding: When encoding non projective dependency trees
using any of the 2-planar bracketing algorithmswe employ a second set of bracket char-
acters to encode the arcs from the second plane and avoid crossings. To differentiate
these characters from the normal ones, we append the ”*” char to the bracket.

7.1.1 Output Labels

The output file of the system will be the files employed to train the sequence labeling system.
These files will represent a sentence as a sequence of lines of columns representing: (i) the
word in the sentence (column 1 in figure 7.2), (ii) the extracted features that will be employed
during the sequence labeling system training (columns 2, 3 and 4 in figure 7.2), (iii) the encoded
constituent or dependency label (column 5 in figure 7.2). The features are extracted from the
gold tree during the encoding step and the process is different depending on the formalism:

1. Constituent tree features: The part-of-speech tags feature is extracted from the pre-
terminal nodes and it is available both in the SPMRL and the Penn Treebank. Word
specific features (such as number, gender, verb tense…) are only available in the SPMRL
treebanks encoded in the leaf nodes (the words) surrounded by ”##” characters and
separated by ”|” character (see 7.3 (a)). After their extraction, these features are removed
from the ”word” column when writing the word into the output file.

2. Dependency tree features: The features from the dependency trees are extracted
directly from the columns of the CoNLL-U files. The main feature extracted from this
are the part-of-speech tags and the lemma features. In the feats column treebanks can
include language-specific features that are also taken into consideration (see 7.3 (b))

7.2 Software System

This section will deal with the system architecture and the details involved in its development.
We will show a class diagram of the system and provide an user manual with some command
line examples.

7.2.1 Software Architecture

The architecture of this system can be divided into three clearly defined layers:
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-BOS- -BOS- -BOS- -BOS- -BOS-

I PRP first sing _nsubj

am VBP first sing <\_root

the DT _ _ /_det

one CD _ _ <\_nsubj

who WP _ _ <\>_ccomp

knocks VBZ third sing />_dep

-EOS- -EOS- -EOS- -EOS- -EOS-

Figure 7.2: Sample of an output file representing a linearized dependency tree from the sen-
tence ”I am the one who knocks” with bracket encoding. The columns represent: (i) word, (ii)
part-of-speech feature, (iii) person, (iv) number and (v) label.

(S
(NP

(NNP ##lem=PRAGUE|cpos=N|n=s|s=p##PRAGUE)
(NC##lem=correspondance|cpos=N|g=f|n=s|s=##correspondance)

)
)

(a)

wi lemma UPOS CPOS feats head deprel dep misc

two two NUM CD NumType=Card 7 nummod 7:nummod _

(b)

Figure 7.3: SPMRL French bracketed constituent tree with features (indicated in red color)
between ## characters and separated by ”|” character (a) and sample of a CoNLL-U file from
EnglishEWT with additional features in ’feats’ field (b)

1. User-Interaction Layer: Deals with the interaction with the user. Currently the in-
teraction is done through command line.

2. Input-Output Layer: Deals with the input and the output of trees and labels. Trans-
lates the different input files into the system objects and deals with writing the label
objects into files.

3. Encoding Layer: Deals with the linearization and de-linearization of trees and decod-
ing of labels for both formalisms. This layer also includes the post-processing module
for ensuring the correctness of the decoded trees.
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This code structure decision comes after the need to keep the system as loosely coupled
and extensible as possible to ease future developments (i.e. including new encodings or adding
new post-processing algorithms). Also, keeping the user interaction layer separated from
the encoding layer is useful if the project decides to implement any new interface (i.e. a
web interface or interaction with other programs). The layered architecture greatly fits this
system, thanks to how the requests flow across each layer. These layers are indicated in the
class diagram of figure 7.4.

Figure 7.4: Class diagram for the constituent and dependency linearization system. In the
diagram the different layers and sub-modules that were taken into consideration when devel-
oping the system are remarked.

7.2.2 User interaction and usage

The user interaction with this system will be through command line interface, where the
parameters taken as input are the following:

1. Formalism: Positional argument that indicates the formalism that we want to use;
currently the system supports dependency and constituent formalisms. The allowed
values for this field are CONST for constituent trees and DEPS for dependency trees.

2. Operation: Positional argument that indicates the operation that the system must do;
can be ENC for encoding or DEC for decoding.

3. Encoding: Positional argument that indicates the type of encoding used to linearize
or de-linearize the given tree; the encodings are the ones mentioned in sections 5.1
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(ABS for naive absolute, REL for naive relative and DYN for dynamic) and 6.1 (ABS
for naive absolute, REL for naive relative, POS for part-of-speech encoding, BRK for
bracket encoding and BRK_2P for bracket encoding with 2-planar separation).

4. Input file: Positional argument that indicates the path of the bracketed tree file or
CoNLL-U file to encode or the labels file to decode.

5. Output file: Positional argument that indicates the path of the decoded or encoded file
resulting from the operation indicated.

6. Separator: Character or string used to separate the different fields of a label. Indicated
by the --sep flag. The default separator character is _.

7. Joiner: Character or string used to join the different labels that form a unary chain
in the constituent formalism. Indicated by the --joiner flag. The default joiner
character is +.

8. Displacement: Flag that if present will use a character displacement for the depen-
dency bracket based encodings. The default option is to use displacement. The flag is
--disp.

9. Planar algorithm: Argument indicating the type of planar separation algorithm em-
ployed for separating the nodes in a 2-planar bracket based encoding. The algorithms
are the ones defined at 26. Indicated by the flag --planar. The allowed values for
this parameter will be GREED or PROPAGATE and the default option is GREED.

10. Single root: Flag that if present will post-process a decoded dependency tree in order
to ensure uniqueness of the root. This was added due to non Universal Dependencies
treebanks allowing multiple roots. The flag is --sroot.

11. Root Search: Field that indicates themethod of root selection used by the post-processing
function in dependency trees (if the root has to be unique) whenevermore than one root
is found. The root selection can be done by searching for nodes where the head is zero
or nodes where the dependency relation is ’root’. Indicated by the --rsearch flag.
The different options for this field are strat_gethead (root will be the first node
found having a dependency relation with head set as 0) or strat_getrel (the root
will be the first node found having a dependency relation with the relation type set as
’root’). The default option is strat_gethead.

12. Conflict: Field that indicates the conflict resolution strategy to apply during the de-
coding of constituent trees when two or more different tags are predicted for a given
node of the tree. Indicated by the --conflict flag. The different values that this
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parameter can take are strat_first (take the first predicted tag), strat_max
(take the most repeated tag and, if tied, take the first one) or strat_last (take the
last predicted tag). The default option is strat_max.

13. Allow nulls: Flag such that, if present, the system will not apply the post-process step
when decoding constituent trees to remove null nodes. The flag is --nulls.

14. Part-of-speech tags: Flag such that, if present, the system will predict the part-of-
speech tags for the sentence using the Stanza tagger. The flag is --postags.

15. Language: Field that indicates the language (as indicated from the stanza available
models language code) that we want to use for the part-of-speech tags prediction. If
the part-of-speech tags flag is missing, this field will be ignored. If this parameter is not
present and the part-of-speech tags is, the default language will be English. The flag for
this field is --lang.

16. Time: Flag such that, if present, will the system will output the encoding/decoding
time, the number of trees processed per second and the number of labels processed per
second. The flag is --time.

17. Features: Field that indicates the features to extract during the encoding process of
the constituent or dependency tree. The features will be outputted to the labels file as
a column with the desired value if the feature exists or a ’_’ if it does not. The flag is
--feats.

Example of execution

For the constituent formalism command line example of usage we will (i) encode (and dis-
play the run time for) the constituent trees file test_c.trees with dynamic encoding
using [_] as the separator character, [+] as the unary chain joiner and with ’pos tags’
feature extracted into test_c.labels; (ii) decode (and display the run time for) the
test_c.labels file back into a constituent trees file test_c_decode.trees us-
ing the ’take first predicted tag’ as conflict resolution strategy, allowing null nodes in the
decoded tree and predicting the part-of-speech tags for English language.

1. $python main.py CONST ENC DYN test_c.trees test_c.labels
--sep [_] --joiner [+] --feats pos_tags --time

2. $python main.py CONST DEC DYN test_c.labels test_c_decode.trees
--sep [_] --joiner [+] --conflict strat_first --nulls
--postags --language en --time
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For the dependency formalism command line example we will (i) encode (and display the
run time for) the dependency CoNLL-U file test_d.conlluwith 2-planar bracketing en-
coding with displacement using propagation algorithm and with ’pos tags’ feature extracted
into test_d.labels using [_] as a separator character; (ii) decode (and display the run
time for) thetest_d.labelsfile back into the dependency tree filetest_d_dec.conllu
using the ’take head’ strategy for discerning the correct root, forcing the decoded trees to have
a single root and predicting the part-of-speech tags for French language.

1. $python main.py DEPS ENC BRK_2P test_d.conllu test_d.labels
--planar PROPAGATE --disp --sep [_] --feats pos_tags
--time

2. $python main.py DEPS DEC BRK_2P test_d.labels test_d_dec.conllu
--disp --rsearch strat_gethead --rsingle --postags --language
fr --time

7.3 Training of Sequence Labeling Systems

In order to train a black-box sequence labeling system for predicting the labels of the lin-
earized trees, we used the train, dev and test splits [66] already given in the treebanks that
we use in this work. More particularly, to train the sequence labeling models we rely on
two freely available software systems that are widely used by the community: NCRF++ and
MACHAMP, which we proceed to describe below.

NCRF++

NCRF++ [54] is a toolkit for neural sequence labeling built over PyTorch 1 using recurrent
networks. This tool allows for customizing the architecture of the sequence labeling system,
and, for this work, we follow this particular configuration (see also chapter 4 for a review of
further details about how this type of architecture works):

1. Token Input Layer (Char Seq Layer): Uses a character-level BiLSTM with randomly
initialized word embeddings, part-of-speech embeddings and feature-specific embed-
dings.

2. Encoding Layer (Word Seq Layer): Built using 2 stacked BiLTSTMs.

3. Decoding Layer (Inference Layer): This layer uses a softmax function to determine the
output.

1 https://pytorch.org/
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Figure 7.5: Architecture of the NCRF++ sequence labeling toolkit extracted from https:
//github.com/jiesutd/NCRFpp

For the specific hyper-parameters for this network, we rely on existing configuration used
on previous similar works [67].

MACHAMP

MACHAMP [16] is a multi-purpose toolkit for natural language processing tasks, that focuses
on providing a black box framework for multi-task learning, based on AllenNLP [68]. This
toolkit offers the possibility to train simultaneously different types of tasks, ranging from text
classification to text generation, and includes sequence labeling too. More in detail, we here
consider MACHAMP for two reasons. First, we will exploit the multi-task learning capabili-
ties to decompose the output label space of the syntactic tasks that we introduced in previous
chapters. Secondly, we will exploit the capabilities of adding deep-contextualized word em-
beddings using language models, such as BERT [14]. All tasks evaluated (whether we run
single task or multi task experiments) here are sequence labeling tasks, and as in NCRFpp,
we simply use a softmax layer to map contextualized vectors to output labels. The hyper-
parameters for this experiment are the ones already given in MACHAMP, and obtained by
fine tuning the GLUE [69] data sets and the EnglishEWT [70].
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Chapter 8

Experimental Results

In this chapter we will discuss how the experiments to test the developed system were per-
formed. We will see what datasets were chosen and why, how the training of the different
sequence labeling systems was performed and the different tools and metrics employed in
order to evaluate the results. Finally, we will show the baseline resulting from those experi-
ments and draw conclusions from them.

8.1 Experiments Setup

In this section we will explain the datasets employed in the experiments and the testing tools
to score the predicted outputs.

8.1.1 Datasets

The experiments for constituent treebanks are done on the Penn Treebank for the English
language, and the SPMRL treebanks, which contains treebanks for French, Basque, German,
Hebrew, Hungarian, Korean, Polish and Swedish languages. For each of these treebanks we
will extract all the part-of-speech tags and in the case of SPMRL we will also extract all avail-
able word features and use them in the training in order to get the best results as possible. As
some treebanks have 25+ different language features they will not be listed here, but some of
them are gender, lemma, number, person, tense, degree, or mood.

For the dependency formalism, the treebanks come from the Universal Dependency col-
lection, and for a homogeneous comparison, we run our experiments on the same set of lan-
guages. For some of these languages, UD has more than one available treebank. When that
is the case, we choose the biggest ones. The selected treebanks are EnglishEWT , FrenchGSD ,
GermanGSD , HebrewIAHLTWIKI , HungarianSZEGED , KoreanGSD , PolishPDB and SwedishLINES .
The information extracted from these treebanks that will be used during training of the se-
quence labeling systems will be the universal part-of-speech tags, the language-specific part-
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of-speech tags and the different universal features 1 available in the treebanks. Same as with
the constituent treebanks, for some languages there are more than 25 features in the treebank,
so they wont be listed here.

8.1.2 Evaluation Methods

In order to compute the system’s speed the metric employed will be the number of processed
sentences per time unit. This metric is represented as s/t and will be computed as the number
of parse trees processed each second. To evaluate how well the predicted models perform
we will employ the F-Score metric for the constituent parsing module and LAS-F1 for the
dependency parsing module.

Dependency Evaluation To evaluate the performance of the system with dependency
trees we will employ the universal dependencies CoNLL-U evaluation tool. That tool will
take the gold dependency trees file and the predicted dependency trees file and will compare
them. The tool outputs both the labeled attachment score (LAS) and the unlabeled attach-
ment score (UAS). As the LAS score provides more accurate information about the system
performance, when discussing the results we will employ that metric.

Constituent Evaluation When evaluating the constituent trees we will employ the EVAL-
B tool. Given a gold constituent tree file and a predicted constituent tree file, this tool com-
putes the precision, recall and f-score. In order to compute those scores the evaluation tool
will first transform the gold trees into standard gold trees [71], to do so it will apply a pre-
processing step where (i) unknown words and additional labels will be removed, (ii) con-
stituent trees that ended up empty from the previous step will be removed, and (iii) a list of
constituent equivalences will be applied (e.g. VB = VERB). In order to define the parameters
for the pre-processing step we will employ the specific parameters file for each treebank, this
being COLLINS.prm for the Penn treebank and SPMRL.prm for the SPMRL treebanks.

8.2 Experimental Results

In this section we will discuss the baselines obtained for both constituent and dependency
parsing formalisms. We will provide results proving that the developed systems provide good
enough predictions comparing the different encodings implemented. In order to obtain those
metrics the decoded files will be the test files available in the selected datasets. We will use
gold word features and part-of-speech tags for the NCRF++ experiments. For MACHAMP
experiments we will use (i) multilingual BERT embeddings and (ii) features as learned by the

1 https://universaldependencies.org/u/feat/index.html
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multi task learning capabilities that the tool offers. We will also provide metrics showing
the speed of the sequence labeling system predictions. We will only compute speeds for the
NCRF++ tool, because the MACHAMP experiments have to deal with the bottle-neck caused
by the usage of language model embeddings.

8.2.1 Constituent parsing experiments

Table 8.1 shows the baselines of this work for the SPMRL and PTB datasets on constituent
parsing. The metrics shown on that table are the results of computing the F-Score between
the decoded trees of the .test treebank of the different languages and the gold .test file. We
performed experiments using labels generated using naive absolute, naive relative and dy-

namic encoding represented with FcABS
|W | , FcREL

|W | and FcDYN
|W | respectively. The heuristics

employed when decoding predicted constituent trees are Null Removal andMost voted conflict

resolution. In the table we show the comparison of the results of those encodings for each one
of the tested sequence labeling systems. In order to provide some baselines for the decoding
speed of this system, table 8.2 shows the number of decoded sentences per second with the
NCRF++ tool.

Tool Encoding EN EU FR DE HE HU KO PL SV

NCRF++ FcABS
|w| 80.21 77.27 88.91 88.21 87.05 92.41 87.18 93.28 71.82

FcREL
|w| 87.21 82.39 90.00 88.47 88.10 91.42 86.30 93.49 73.56

FcDYN
|w| 89.91 84.85 90.67 89.69 90.49 91.98 87.24 94.69 77.53

MachampBERT FcABS
|w| 92.11 78.16 90.80 89.61 87.92 93.57 88.14 95.05 76.81

FcREL
|w| 92.23 80.38 90.04 88.86 88.65 93.23 87.21 94.79 79.27

FcDYN
|w| 93.35 80.93 90.38 89.99 88.92 93.47 87.60 95.55 80.95

MachampBERT
MTL FcABS

|w| 92.87 75.23 89.00 87.12 87.36 91.61 85.68 93.40 74.45

FcREL
|w| 92.51 78.25 87.10 88.45 88.39 90.63 85.03 92.86 75.95

FcDYN
|w| 93.09 79.15 87.36 88.66 88.63 91.29 85.58 94.47 79.49

Table 8.1: F-Score (higher is better) for constituent parsing on the test sets of the EnglishPTB ,
BasqueSPMRL, FrenchSPMRL, GermanSPMRL, HebrewSPMRL, HungarianSPMRL,
KoreanSPMRL, PolishSPMRL, SwedishSPMRL treebanks.
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Encoding EN EU FR DE HE HU KO PL SV

FcABS
|w| 132.37 256.74 160.30 196.20 152.42 163.12 358.12 392.66 190.12

FcREL
|w| 195.89 285.39 170.06 203.45 164.22 220.23 369.12 433.12 255.31

FcDYN
|w| 189.76 245.53 158.12 182.44 142.13 152.14 319.81 380.31 182.27

Table 8.2: Speed measured in sentences per second (higher is better) using the NCRF++
tool for the test sets of the EnglishPTB , BasqueSPMRL, FrenchSPMRL, GermanSPMRL,
HebrewSPMRL, HungarianSPMRL, KoreanSPMRL, PolishSPMRL, SwedishSPMRL tree-
banks., using a i5-1155G7 CPU.

Penn Treebank Comparison

In addition to showing our baselines for the multiple languages tested, in table 8.3 we will
compare the baseline obtained from this work to previous parsers. We show the speed com-
parison on the PTB, where the bracketing F-score also shows that sequence labeling parsers
are competitive with respect to other parsers.

Model Sents (CPU) F-Score

Collins 1999 [72] 3.5 88.2

Sagae and Lavie 2006 [73] 2.2 87.9

Petrov and Klein 2007 [74] 6.2 90.1

Zhu et al 2013 [75] 101 89.9

Vinyals et al 2015 [76] 120 88.3

Gomez and Vilares 2018 [1] 126 90.7

Our baseline: FcABS
|w| 132 80.21

Our Baseline: FcREL
|w| 195 87.21

Our Baseline: FcDYN
|w| 189 89.91

Table 8.3: Comparison of the metrics for constituent parsing for the test set from the Penn
Treebank. The speeds are reported by authors running on their own hardware[1].

Results analysis

From the experimental results we can deduce that, for most languages, the best encoding for
constituent parsing as sequence labeling is the dynamic encoding. That encoding ranks higher
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in almost all tested treebanks, with the exception of BASQUESPMRL, HUNGARIANSPMRL

and KOREANSPMRL. For those languages the absolute encoding was the best-performing
one, which makes us think that the difference in performance could be caused by the fixed
values of thresholds used in the dynamic encoding. As different languages usually have differ-
ent constituent tree topology (i.e. some languages can have deeper or shallower constituent
trees on average), more experiments could be performed for those languages changing the
threshold values and see if they perform better. We can also see that, as expected, the in-
clusion of Multilingual BERT embeddings provided a increase in the F-Score metrics of most
decoded treebanks, with some of them such ENGLISHPTB gaining up to 4 points. Not so
good were the experiments with Multilingual BERT and multi task learning capabilities, mak-
ing most experiments rank lower than only with the BERT embeddings. Particularly, SPMRL
treebanks presented losses even when compared with the NCRF++ experiments. This could
be caused by the inclusion of all available features into the training of the system instead of
taking a curated subset, but this would need more experiments to be proven true. In terms of
the speed with which the NCRF++ tool predicted our labels, we can see that the faster encod-
ing is the naive relative one, but we can’t infer any reason for this being the case. However,
we can make the remark that the differences between the speed metrics of the different tested
treebanks are happening due to languages having longer or shorter sentences. This could be
proven by performing the experiments in different hardware, but this falls outside the scope
of this work.

8.2.2 Dependency parsing experiments

Table 8.4 shows the baselines of this work for the Universal Dependencies datasets in depen-
dency parsing. The metrics shown on that table are the labeled attachment score computed
between the decoded dependency trees from the test files and the gold test files. We per-
formed the experiments using the labels generated with naive absolute, naive relative, part-
of-speech based and bracketing based encodings, represented by FdABS

|W | , FdREL
|W | , FdPOS

|W | and
FdBRK

|W | respectively. For the part-of-speech based encoding we also performed test using
(i) the 2-planar encoding with the two different planar separation algorithms, represented by
FdBRK−2PG

|W | and FdBRK−2PP
|W | for greed separation and propagation separation respectively

and (ii) using the displacement modification for the three algorithm variations, represented
by FdBRKd

|W | , FdBRKd−2PG
|W | and FdBRKd−2PP

|W | . For these experiments, the heuristics em-
ployed when decoding the predicted labels back into dependency trees are loop removal, hang
from root out of bounds dependencies and take first node as default root. In order to provide
some baselines for the decoding speed of this system, table 8.5 shows the number of decoded
sentences per second with the NCRF++ tool.
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Tool Encoding EN EU FR DE HE HU KO PL SV

NCRFpp FdABS
|W | 79.09 71.99 74.94 79.88 76.98 40.76 71.69 82.25 70.27

FdREL
|W | 84.27 77.31 80.72 80.40 82.40 69.02 76.92 87.47 79.80

FdPOS
|W | 80.13 73.04 78.23 76.24 80.23 62.21 72.23 85.12 76.17

FdBRK
|W | 84.12 72.04 76.11 77.67 83.16 68.17 74.23 86.24 79.09

FdBRK−2PG
|W | 83.11 72.31 74.11 77.86 83.19 67.22 74.11 86.41 79.01

FdBRK−2PP
|W | 82.12 72.04 74.89 77.68 83.34 67.82 74.22 86.32 79.18

FdBRKd
|W | 84.02 72.49 76.85 78.29 84.02 67.94 74.63 86.78 79.82

FdBRKd−2PG
|W | 84.47 72.36 75.70 78.23 84.49 69.55 74.45 86.92 80.13

FdBRKd−2PP
|W | 84.12 72.38 75.86 78.89 84.40 69.06 73.89 86.85 80.18

MachampBERT FdABS
|W | 83.53 87.82 84.53 95.21 66.70 35.82 69.99 97.14 66.24

FdREL
|W | 85.92 88.90 85.92 97.53 82.68 62.23 72.95 98.55 78.26

FdPOS
|W | 86.42 87.56 83.42 89.96 83.51 75.68 51.33 92.11 78.69

FdBRK
|W | 88.30 90.22 88.42 95.02 88.47 74.26 80.49 97.11 83.42

FdBRK−2PG
|W | 88.18 90.74 88.30 95.12 88.13 74.23 80.38 97.13 83.54

FdBRK−2PP
|W | 88.07 90.49 88.18 95.07 88.24 73.51 80.87 97.08 83.28

FdBRKd
|W | 88.20 90.86 88.07 96.27 89.17 74.42 77.07 97.58 83.83

FdBRKd−2PG
|W | 88.34 91.07 88.20 97.11 89.03 73.91 77.29 97.56 83.88

FdBRKd−2PP
|W | 88.34 90.58 88.34 97.25 89.06 73.89 76.57 97.88 83.74

MachampBERT
MTL FdABS

|W | 78.93 81.82 73.93 93.63 61.93 20.74 58.83 95.98 51.37

FdREL
|W | 82.92 86.23 82.14 93.48 77.20 51.45 71.52 96.12 71.61

FdPOS
|W | 85.73 86.93 81.92 88.16 74.12 71.82 51.12 92.30 77.71

FdBRK
|W | 84.96 89.15 84.84 94.86 83.71 60.13 75.66 96.01 76.09

FdBRK−2PG
|W | 85.16 89.01 85.05 94.77 83.93 68.88 75.70 95.82 76.62

FdBRK−2PP
|W | 85.12 89.12 84.04 94.13 84.13 68.84 76.05 95.91 76.33

FdBRKd
|W | 86.41 89.96 86.31 95.02 85.03 58.88 76.19 96.13 78.11

FdBRKd−2PG
|W | 86.12 89.12 86.07 95.11 84.87 67.23 76.06 96.02 78.05

FdBRKd−2PP
|W | 86.36 89.66 86.13 95.07 82.05 67.24 76.18 96.11 77.89

Table 8.4: F-Score (higher is better) for the dependency parsing encodings on the test sets of
the UD treebanks used in this work.

68



CHAPTER 8. EXPERIMENTAL RESULTS

ENC ENG FR BQ GER HB HG KR PL SW

ΓABS
|W | 301.65 124.76 243.13 194.33 162.15 213.97 279.50 255.75 231.25

ΓREL
|W | 316.96 168.75 254.37 202.49 174.42 222.63 384.55 266.62 283.03

ΓPOS
|W | 317.89 167.39 253.73 209.30 172.82 225.71 385.89 268.80 286.26

ΓBRK
|W | 316.83 163.85 251.03 204.66 198.73 227.19 346.22 266.81 287.12

ΓBRK−2PG
|W | 319.89 174.93 258.91 215.84 197.89 222.82 389.46 264.66 284.45

ΓBRK−2PP
|W | 318.00 171.18 256.81 212.08 195.93 222.85 398.53 264.06 281.54

ΓBRK−D
|W | 324.44 175.22 252.19 183.19 200.18 224.05 401.73 271.44 287.57

ΓBRKd−2PG
|W | 317.98 147.54 244.27 182.45 202.11 225.84 397.20 263.93 287.13

ΓBRKd−2PP
|W | 322.19 170.38 245.44 170.69 200.94 224.40 395.03 269.65 286.03

Table 8.5: Speed measured in sentences per second (higher is better) for the UD test sets, using
a i5-1155G7 CPU.

Results analysis

From the results obtained we can infer that the bracketing-based encodings are the ones that
perform better, ranking higher in almost all languages. This may be due to this encoding
being independent of any language feature. For the bracketing encoding we can also see that
the default algorithm without planar separation (FdBRK

|W | ) usually performs betters than its
two planar modification, this could be because the reduced label sparsity produced by not in-
cluding the additional set of bracketing charactersB∗. The problemwith this, is that the small
increase in accuracy does not outweigh the innability of decoding non projective trees. An-
other important note that we canmake on the results is the great increase in the LAS score that
produces the inclusion of Multilingual BERT language embeddings, making some treebanks
(e.g. PolishPDB) reach close to perfect scores. Not so good were the experiments where the
multitask learning capabilities were included, making most treebanks perform worse overall.
As in the constituent case, this could be caused by performing the multitask training with
all available features instead of curated ones, but more experiments that fall outside of the
scope of this work would be needed to confirm that hypothesis. In terms of the speed with
which the sequence labeling tools can predict our labels most encoding rank the same, with
the differences between languages being based mostly on differences in sentence lengths.
However, we can make the remark that overall the bracketing based encodings seem to be
slightly faster than the other ones, but again, to prove this we would need to perform more
experiments with different hardware.
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Chapter 9

Conclusion and Future Work

In this final chapter of the thesis, we summarize the contributions of the work and its useful-
ness. We will also talk about future room for improvements, and new lines of research that
could arise from this project.

9.1 Conclusion

Syntactic parsing is a core task in natural language processing that focuses on automatically
inferring the syntactic structure of natural language sentences, which is useful for machines
to understand and generate human languages. Constituent and dependency parsing are two
of the most popular formalisms to represent syntax. Although their theoretical motivations
are different, when it comes to design models that can automatically parse sentences, they
share certain weaknesses such as the need for dedicated systems to parse each formalism or
limited speed.

To solve these problems, researchers have worked on casting such tasks as a sequence
labeling problem, i.e., each input token receives an output label, such that the whole sentence
encodes a linearized syntactic tree that can be de-linearized back if wished. This is interesting
because sequence labeling models are generic, fast, and are already used for a variety of nat-
ural language processing tasks. In the context of parsing, such strategy has been successful
for both formalisms and multilingual setups, but to date there was no unified framework that
could allow the community to work with parsing as sequence labeling using a single system.

Specifically, in this work we have implemented a system that includes 3 different lin-
earizations for constituent parsing (a top-down approach, a relative-scale approach and a
mixed one) and 4 different linearizations for dependency encodings (two simple encodings
based on absolute and relative indexing, a part-of-speech-based offsetting approach, and a
bracketing-based approach as well as its variants). Keeping in mind that new encodings or
syntactic formalisms might be added in the future, we kept a scalable and extensible imple-
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mentation.
To show empirical results and demonstrate that the approach, and more particularly the

system, are practical, we trained different sequence labeling systems using modern neural
models, and ran experiments on multiple languages. In this context, we also defined and
implemented a set of heuristics to ensure correctness for both constituent and dependency
trees generated by a trained model, that eventually could produce corrupted sequences of
labels that cannot be naturally decoded into the desired syntactic tree.

9.2 Future work

The system implemented in this project supports dependency and (continuous) constituent
formalisms, but thanks to its modularity and extendability, additional syntactic or semantic
formalisms can be added in the future. Some encodings for some other formalisms have been
left out of this work, e.g., discontinuous constituent grammars [77], although it is already
known that they perform successfully when cast as sequence labeling too. Also, we plan to
research new encodings for formalisms that remain unexplored, such as head-driven phrase
structure grammars [78] and certain flavours of semantic dependency parsing [79], which are
theoretically feasible, although their practical utility needs to be tested empirically.

Another line of research is to optimize linearizations that already exist. An example of
this could be to transform the constituent encoding to a purely incremental algorithm. In its
current version, given a word wi we need to look to the next one wi+1 to encode the label
for wi. To train a model that learns the linearization function, the standard approach is to
look at models that either use bidirectional LSTMs (that look to the left and right context, and
therefore they are not incremental) or Transformers (which suffer a similar problem). We
could create a purely incremental parser by forcing the model to look either just to the left
of to the right context (e.g. using simply a strict right-to-left LSTM, or using a left-to-right
LSTM and encode wi with respect to wi−1 instead of wi+1). We also would like to explore
how to exploit linearized trees for downstream NLP tasks, such as named-entity recognition.
Specifically, we could embed such labels so they can be concatenated with other input em-
beddings, such as pre-trained word embeddings, or PoS tag embeddings. Last but not least,
thanks to the loosely coupled design of the system, new user interfaces can be implemented.
For instance, it is common that software tools become more used thanks to a web interface
that allows users to try and visualize how the tool works before downloading it. The current
user interaction layer is intended to be used from command line, but it could be adapted easily
to offer a web service that could answer requests from, for instance, a java-script interface.
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