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Abstract

This research proposes the analysis and subsequent characterization of Android
malware families, by means of low dimensional visualizations using dimensio-
nal reduction techniques. The well-known Malgenome dataset, coming from the
Android Malware Genome Project, has been thoroughly analysed through six
dimensionality reduction techniques: Principal Component Analysis, Maximum
Likelihood Hebbian Learning, Cooperative Maximum Likelihood Hebbian Lear-
ning, Curvilinear Component Analysis, Isomap and Self Organizing Map. Results
obtained enable a clear visual analysis of the structure of this high-dimensionality
dataset, letting us gain deep knowledge about the nature of such Android malwa-
re families. Interesting conclusions are obtained from the real-life dataset under
analysis.

Keywords: Android malware, malware families, dimensionality reduction, artificial
neural networks

1. Introduction

Since the first smartphones came onto the market in the late 1990s, sales on
that sector have increased constantly to the present-day. Among all the availa-
ble operating systems, Google’s Android has been, and increasingly is, the most
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popular mobile platform [1]. The number of Android units sold in Q1 2017 world-
wide raised to 379.98 million out of 432.79 million units, that is a share of 87.79 %.
It is not only the number of devices but also the number of apps; those available
at Google Play (Android’s official store) constantly increase, up to more than 3.4
million that are available nowadays [2]. With regard to the security issue, the
number of malicious Android apps has greatly risen in the last four years; from
the half million of them that were identified in 2013 to the nearly 3.5 million in
2017 [3] . Furthermore, it has been forecast that increase in malware for Android
devices is expected to continue [3, 4]. This operating system is an appealing tar-
get for bad-intentioned apps, mainly because of its open mentality, in contrast to
iOS or some other operating systems.

Smartphone security and privacy still are nowadays major concerns although
great efforts h ave b een d evoted o ver p ast y ears [5]. I n o rder t o a ddress these
issues, it is required to understand the malware and its nature. Otherwise, it
will not be possible to practically develop an effective solution [6]. A ccording to
this idea of gaining deeper knowledge about malware nature, present study is
focused on the analysis of Android malware families. To do so, Malgenome (a
real-life publicly-available) dataset [7] has been analyzed by means of several Di-
mensionality Reduction Techniques (DRTs). From the samples contained in such
dataset, several alarming statistics were found [6], that motivate further research
on Android malware. That is the case of the 36.7 % of the collected samples that
leverage root-level exploits to fully compromise the security of the whole system
or the fact that more than 90 % of the samples turn the compromised phones into
a botnet controlled through network or short messages.

To characterize malware families, present study proposes a comprehensive
comparison of many DRT's, that are able to visualize a high-dimensionality data-
set (further described in section 2), to gain deep knowledge of Android malware
families. Each individual from the Malgenome dataset (a malware app) encodes
the subset of selected features by using a binary representation (details on section
3). These individuals are grouped by families and then visualized trying to iden-
tify patterns that exist across dimensional boundaries in the high dimensional
dataset by changing the spatial coordinates of malware family data. The main
goal is to obtain an intuitive visualization of the malware families to draw con-
clusions about the structure of the dataset and to characterize malware families
subsequently.

Neural networks have been applied to a wide variety of fields in recent deca-
des [8],[9],[10],[11],[12]; additionally, neural DRTs have been previously applied
to massive security datasets, such as those generated by network traffic [13], [14],
SQL code [15], [16], honeynets [17], and HTTP traffic [18]. In present paper, such
methods are applied to a new problem, related to the characterization and kno-
wing of malware families. On the other hand, several different t echniques have
been used to differentiate between legitimate and malicious Android apps, such



as machine learning [19],[20],[21], knowledge discovery [22], and weighted simi-
larity matching of logs [23], among others as well as hybridization approaches
[24]. Although some visualization techniques have been applied to the detection
of malware in general terms [25], few dimensionality-reduction proposals for An-
droid malware detection are available at present time. In [26] Pythagoras tree
fractal is used to visualize the malware data, being all apps scattered, as leaves
in the tree. Authors of [27] proposed graphs for deciding about malware by de-
picting lists of malicious methods, needless permissions and malicious strings. In
[28], visualization obtained from biclustering on permission information is descri-
bed. Behavior-related dendrograms are generated out of malware traces in [29],
comprising nodes related to the package name of the application, the Android
components that has called the API call and the names of functions and methods
invoked by the application. Unlike previous work, Android malware families (ins-
tead of malware apps) are visualized by DRT's in present paper. Up to the authors
knowledge, this is the first time that dimensionality-reduction models are applied
to visualize Android malware.

The rest of this paper is organized as follows: the applied neural methods
are described in section 2, the setup of experiments for the Android Malware
Genome dataset is described in section 3, together with the results obtained and
the conclusions of the study that are stated in section 4.

2. Dimensionality Reduction Techniques

This work proposes the application of several DRTs for the visualization of
Android malware data. Visualization techniques are considered a viable approach
to information seeking, as humans are able to recognize different features and to
detect anomalies by means of visual inspection [30]. The underlying operational
assumption of the proposed approach is mainly grounded in the ability to render
the high-dimensional traffic data in a consistent yet low-dimensional representa-
tion [17], [18], [25]. In most cases, security visualization tools have to deal with
massive datasets with a high dimensionality, to obtain a low-dimensional space
for presentation [13], [15], [17], [18], [31], [32].

This problem of identifying patterns that exist across dimensional boundaries
in high dimensional datasets can be solved by changing the spatial coordinates
of data. Projection methods project high-dimensional data points onto a lower
dimensional space in order to identify interesting” directions in terms of any spe-
cificindex or projection. Having i dentified th e mo st interesting projections, the
data are then projected onto a lower dimensional subspace plotted in two or three
dimensions, which makes it possible to examine the structure with the naked eye
(30].



2.1.  Principal Component Analysis

Principal Component Analysis (PCA) is a well-known statistical model, intro-
duced in [33], that describes the variation in a set of multivariate data in terms
of a set of uncorrelated variables each, of which is a linear combination of the
original variables. From a geometrical point of view, this goal mainly consists of
a rotation of the axes of the original coordinate system to a new set of orthogonal
axes that are ordered in terms of the amount of variance of the original data they
account for.

PCA can be performed by means of neural models such as those described in
[34] or [35]. It should be noted that even if we are able to characterize the data
with a few variables, it does not follow that an interpretation will ensue.

2.2.  Mazimum Likelihood Hebbian Learningl

Maximum Likelihood Hebbian Learning [30] which is based on Exploration
Projection Pursuit (EPP). The statistical method of EPP [30], [36], [37] was desig-
ned for solving the complex problem of identifying structure in high dimensional
data by projecting it onto a lower dimensional subspace in which its structu-
re is searched for by eye. To that end, an “index” must be defined to measure
the varying degrees of interest associated with each projection. Subsequently, the
data is transformed by maximizing the index and the associated interest. From
a statistical point of view the most interesting directions are those that are as
non-Gaussian as possible.

2.3. Cooperative Maximum Likelthood Hebbian Learning

The Cooperative MLHL (CMLHL) model [38] extends the MLHL model, by
adding lateral connections between neurons in the output layer of the model.
Considering an N-dimensional input vector (x), and an M-dimensional output
vector (y), with Wij being the weight (linking input neuron j to output neuron
i), then CMLHL can be expressed as defined in equations 1-4.

1. Feed-forward step:

N
yi= Y Wi, Vi (1)
j=1
2. Lateral activation passing:
yilt+1) = [yi(t) + 7(b— Ay)]" (2)
3. Feedback step:
M
e =1Tj; — Z Wijy;,¥3 (3)
i=1
4. Weight change
AWy =n - yi - sign(e;)|e; [’ (4)



Where: 7 is the learning rate, 7 is the “strength” of the lateral connections, b
the bias parameter, p a parameter related to the energy function and A a sym-
metric matrix used to modify the response to the data. The effect of this matrix
is based on the relation between the distances separating the output neurons.

2.4. ISOMAP Algorithm

ISOMAP nonlinear DRT [39] attempts to preserve pairwise geodesic (or cur-
vilinear) distance between data points. Geodesic distance is the distance between
two points measured over the manifold. ISOMAP defines the geodesic distance as
the sum of edge weights along the shortest path between two nodes. The doubly-
centered geodesic distance matrix K in ISOMAP is of the form given by equation

[l .
K = §HD2H (5)
Where D? = ij means the element wise square of the geodesic distance matrix
D = [Dij], and H is the centring matrix, given by equation [6]
1
H=1,— NeNeﬁ (6)
In which ey = [1...1]T € RN
The top N eigenvectors of the geodesic distance matrix represent the coordi-
nates in the new n—dimensional Euclidean space.

2.5.  Curvilinear Component Analysis Algorithm

Curvilinear Component Analysis (CCA) [40], [41] is a non-linear projection
method that preserves distance relationships in both input and output spaces.
CCA is a useful method for redundant and non-linear data structure represen-
tation and can be used in dimensionality reduction. CCA is useful with highly
non-linear data, where PCA or any other linear method fails to give suitable
information.

CCA brings some improvements to other methods like Sammon’s Mapping
[42], although when unfolding a nonlinear structure, Sammon’s Mapping cannot
reproduce all distances. One way to get round this problem consists in favoring
local topology: CCA tries to reproduce short distances firstly, long distances being
secondary. Formally, this reasoning led to the following error function (without
normalization) defined in equation [7]

N
Ecca = Z (di; — di ;)*F(d7;) (7)
ij=1
In comparison with Esummon, Foca has an additional weighting function F' de-
pending on dfj and on parameter A .The F' factor is a decreasing function of its
argument, so it is used to favour local topology preservation. For example, F'
could be a step function of (A -d).



2.6. Self Organizing Maps

Among the great variety of tools for multidimensional data visualization, se-
veral of the most widely used are those belonging to the family of the topology
preserving maps [43],[44],[45],[46],[47],[48]. Probably the best known among these
algorithms is the Self-Organizing Map (SOM) [43], [45], [49], [50]. It is based on a
type of unsupervised learning called competitive learning; an adaptive process in
which the units in a neural network gradually become sensitive to different input
categories or sets of samples in a specific domain of the input space. The main
feature of the SOM algorithm is its topology preservation. When not only the
winning unit, but also its neighbors on the lattice are allowed to learn, neighbo-
ring units gradually specialize to represent similar inputs, and the representations
become ordered on the map lattice.

An input vector (z) is presented to the network and the node of the network
in which the weights (W;) are closest (in terms of Euclidean distance) to z, is
chosen:

¢ = argmin(|| z — W []) (8)

The weights of the winning node and the nodes close to it are then updated to
move closer to the input vector. There is also a learning rate parameter that
usually decreases as the training process progresses. The weight update rule for
inputs is defined as follows:

Where,W; is the weight vector associated with neuron ¢, x is the input vector,
and h is the neighborhood function.

3. Experiments & Results

As previously mentioned, several different D RT's (see S ection 2 ) h ave been
applied to analyze Android malware. Present section introduces the analyzed
dataset as well as the main obtained results.

3.1.  Malgenome Dataset

The Malgenome dataset [6], coming from the Android Malware Genome Pro-
ject [7], has been analysed in present study. It is the first 1 arge c ollection of
Android malware (1,260 samples) that was split in malware families (49 different
ones). It covered the majority of existing Android malware, collected from the
beginning of the project in August 2010.

Data related to many different apps from a variety of Android app repositories
were accumulated over more than one year. Additionally, malware apps were
thoroughly characterized based on their detailed behavior breakdown, including
the installation, activation, and payloads.



Collected malware was split in families, that were obtained by “carefully exa-
mining the related security announcements, threat reports, and blog contents
from existing mobile antivirus companies and active researchers as exhausti-
vely as possible and diligently requesting malware samples from them or acti-
vely crawling from existing official and alternative Android Markets” [6]. The
defined families are: ADRD, AnserverBot, Asroot, BaseBridge, BeanBot, Bg-
Serv, CoinPirate, Crusewin, DogWars, DroidCoupon, DroidDeluxe, DroidDream,
DroidDreamLight, DroidKungFul, DroidKungFu?2, DroidKungFu3, DroidKung-
Fu4, DroidKungFuSapp, DoidKungFuUpdate, Endofday, FakeNetflix, FakePla-
yer, GamblerSMS, Geinimi, GGTracker, GingerMaster, GoldDream, Gone60,
GPSSMSSpy, HippoSMS, Jifake, jSMSHider, Kmin, Lovetrap, NickyBot, Nickyspy,
Pjapps, Plankton, RogueLemon, RogueSPPush, SMSReplicator, SndApps, Spit-
mo, TapSnake, Walkinwat, YZHC, zHash, Zitmo, and Zsone. Samples of 14 of
the malware families were obtained from the official Android market, while sam-
ples of 44 of the families came from unofficial markets. As some families are
present in both markets (official and unofficial), the final dataset to be analysed
consists of 49 samples (one for each family) and each sample is described by 26
different features derived from a study of each one of the apps. The features are
divided into six categories, as can be seen in Table 4.1.

Tabla 1: Features describing each one of the malware families in the Malgenome dataset.
Category #1: Installation Category #3: Privilege escalation

1 Repackaging 14 exploid

2 Update 15 RATC/zimperlich

3 Drive-by download 16 ginger break

4 Standalone 17 asroot

Category #2: Activation 18 encrypted

5 BOOT Category #4: Remote control
6 SMS 19 NET

7 NET 20 SMS

8 CALL Category #5: Financial charges
9 USB 21 phone call

10 PKG 22 SMS

11 BATT 23 block SMS

12 SYS Category #86: Personal information stealing
13 MAIN 24 SMS

25 phone number
26 user account

The features describing each family take the values of 0 (if that feature is not
present in that family) or 1 (if the feature is present).

3.2.  Results
For comparison purposes, some different projection models have been applied,
whose results are shown below.



PCA Projection
Fig. 1 shows the principal component projection (components 1 and 2), obtained
by applying PCA to the previously described data.

4 T T T
OGEEEREOL
oBaseBridge
e oGoldDream B
oBgServ
abe cAnserverBat

. Pjapps

oSpimo oCoinPirate . X 1apps
P niSMSHider 7

oHIppOSMS
oZsone
oCruseRficTageT oEndolday
. oRoguelemon —
aYZHC
olLovetrap SADRD oDreidCoupon
ORogueSPPush oy
0 oMickyBot 7
0SMSReplicator NickySPEKe oGingeMaster
~GPSSMSSpy cDogWars ]
oDroidKungFu4
oZiimo oDroidDreamLight
-1 oyDoidKungFul pdate 7
e Plapdr oPlankton DroidDream
oGamblerSMS
s oBonedd  Tooenake | o DroidKungFulapp
oSndapps COrOdDsiE),
(FakeNeHlix

Ar cAsroot b

L I I 1 I ! 1 L I

-3 -2 -1 1] 1 2 3 4 5 6 T

Figura 1: PCA projection of Malgenome families.

In Fig 1 it can be seen that most of the malware families are grouped in a

main group (left side of the figure) while just a few families can be identified away
from this cluster (groups 1 and 2). Group 1 gathers two families (BaseBridge and
AnserverBot), that are the only two families in the dataset that combine repac-
kaging and update installation. Group 2 gathers four families (DroidKungFul,
DroidKungFu2, DroidKungFu3 and DroidKungFuSapp) that are the only ones in
the dataset presenting the encrypted privilege escalation.
Additionally, this first projection let us identify that some families are projec-
ted at the very same place. By getting back to the data we have realized that
these families take the very same values for all the features. This is the case of
Walkinwat and FakePlayer on the one hand and for DroidKungFul, DroidKung-
Fu2, DroidKungFu8 and DroidKungFuSapp on the other hand. It means that, by
taking into account the features in the analysed dataset, it will not be possible
to distinguish Walkinwat from FakePlayer malware or any of the 4 mentioned
variants of Droid KungFu malware.

MLHL Projection



Fig. 2 shows the MLHL projection of the analyzed data (two main components).
MLHL projection shows the structure of the data in a way that a kind of ordering
can be seen in the dataset. However, as it is more clearly shown in the CMLHL
projection (Fig. 3), MLHL is not further described.
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Figura 2: MLHL projection of Malgenome families.

The parameter values of the MLHL model for the projections shown in Fig.
2 are: Number of output dimensions: 3. Number of iterations: 100, learning rate:
0. 2872, p: 0.4852.

CMLHL Projection
When applying CMLHL to the analysed dataset, the projection (two main com-
ponents) shown in Fig. 3 has been obtained. As expected, CMLHL obtained a
sparser projection than MLHL and PCA, revealing the structure of the dataset
in a clearer way.

The parameter values of the CMLHL model for the projections shown in Fig.
3 are; Number of output dimensions: 3. Number of iterations: 100, learning rate:
0.0406, p: 1.92, 7: 0.44056.
In Fig 3 it is easy to visually identify at least two main groups of data, labelled as
1 and 2. It has been checked that families in each one of these groups are similar
in a certain way; group 1 gathers all the families with dangerous SMS activity,
s “SMS activation” and “SMS financial charges” are present in all t he families
in this group. On the other hand, none of the families in this group present any
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Figura 3: CMLHL projection of Malgenome families.

of the following features: USB or “PKG activation”, and “user-account personal
information stealing”. This group is also characterized by the almost complete
absence of privilege escalation, as only one of those features (RATC/Zimperlich)
is present in only one of the families (BaseBridge). Regarding group 2, none of
the families in Group 2 present the feature “phone-call financial charges”.

From a deeper analysis of such groups, some subgroups can be distinguished and
are identified in Fig. 4. Additionally, the families located in each one of these

groups are listed in Table 2.
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Figura 4: CMLHL projection of Malgenome families with identified subgroups.

Tabla 2: Families allocation to subgroups defined in CMLHL projection.

Group | Subgroup | Families
1.1 BaseBridge, BeanBot
1 1.2 Zsone
1.3 GGTracker, GPSSMSSpy, HippoSMS, RogueSPPush, Spitmo
1.4 BgServ, Geinimi, GoldDream, Lovetrap, Pjapps
2.1 Jifake, Zitmo
2.2 DroidKungFuUpdate
93 Asroot, DogWars, DroidDeluze, DroidDream, DroidKungFul,
' DroidKungFu2, DroidKungFu8, DroidKungFuSapp, FakeNetflix
ADRD, AnserverBot, DroidCoupon, DroidDreamLight, Endofday,
2.4 FakePlayer,jSMSHider, SMSReplicator, SndApps, TapSnake,
9 Walkinwat, zHash
2.5 DroidKungFu4, GamblerSMS, GingerMaster, Gone60, Plankton
2.6 CoinPirate, NickyBot, RogueLemon
2.7 Crusewin, Kmin, YZHC
2.8 Nickyspy

All the variants of DroidKungFu malware are located in the bottom-left side
of the projection (groups 2.2, 2.3, and 2.5). Jifake and Zitmo are gathered in the
same subgroup (2.1) as they are the only two families in group 2 presenting the
drive-by download installation feature

ISOMAP Projection
In Fig. 5 it is shown the projections obtained by ISOMAP algorithm where each
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sample is labelled with the name of the family it belongs.
The parameter values of the ISOMAP model for the projection shown in Fig. 5
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Figura 5: ISOMAP projection of Malgenome families.

are: number of neighbours: 10.

ISOMAP clearly visualize the internal dataset structure, with a main division
into 2 groups (1 and 2 in Fig. 5). For a deeper analysis, these two main groups
are split in different subgroups as shown in Fig. 6.

From groups in Fig 5, it can be highlighted that group 1 contains Malgenome
families that present “standalone” but not “repackaging” installation features
(see Table 3). However, in case of group 2, none of its samples present “standa-
lone installation” feature and all of them present the “repackaging installation”
feature.

As shown in Fig. 6, group 1 is divided in 2 subgroups (Gla and G1b), where
Gla gathers families that do not present the “BOOT activation” feature as oppo-
sed to G1b, where its samples present this “BOOT activation” feature. Similarly,
G2 is clearly divided into 2 subgroups (G2a and G2b), with analogous charac-
teristics to samples in Gla and G2a respectively (“BOOT activation” for G2a
and the opposite for G2b). Finally, G2a presents samples with dangerous activity
of “NET remote control” (group G2a.l), and samples without such dangerous
feature (group G2a.2).

Table 3 shows the Malgenome families contained in each one of the identified
groups, and the features characterizing all the families in that group.

12



Figura 6: ISOMAP projections of Malgenome families with identified subgroups.

Tabla 3: Families allocation to subgroups defined in ISOMAP projection.

Group | Subgroup | Families and features
RogueSPPush, GPSSMSSpy, Asroot, FakeNetflix, Walkinwat, FakePlayer,
Gla Plankton, SMSReplicator, Lovetrap, DroidDeluxe, Spitmo, Zitmo, Spitmo,
RogueLemon, Gone60, GGTracker, Kmin
a1 Present features: 4 (standalone installation) and 5 (BOOT activation)
Not-present feature: 1(repackaging installation)
NickyBot, Nickyspy, zHash, SndApps, YZHC, TapSnake, Crusewin, GamblerSMS
Present features: 4 (standalone installation)
G1b Not-present feature:1(repackaging installation) and 5 (BOOT activation)
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Group

Subgroup

Families and features

G2

G2a

G2a.1

Zsone, Jifake, DogWars, HippoSMS, DoidKungFuUpdate

Present features: 1 (repackaging installation) and 5 (BOOT activation)
Not-present feature: 4 (standalone installation) and 19 (NET remote
control)

G2a.2

jSMSHider, BeanBot, AnserverBot, DroidDream

Present features: 1 (repackaging installation), 5 (BOOT activation) and
19 (NET remote control)

Not-present feature: 4 (standalone installation)

G2b

DroidKungFu4, BaseBridge, BgServ, Endofday, DroipDreamLight, Pjapps,
DroidCoupon, CoinPirate, Geinimi, ADRD, GingerMaster, DroidKungFuSapp,
DroidKungFu3, DroidKungFu2, DroidKungFul

Present features: 1 (repackaging installation) and 19 (NET remote
control)

Not-present feature: 4 (standalone installation), and 5 (BOOT activation)

CCA Projection
Fig. 7 presents the projection obtained by CCA of Malgenome families, where it
can be seen that a clear internal structure of the dataset can not be identified,
and malware families can not be clearly gathered in groups, as it happened in
previous results.
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Figura 7: CCA projection of Malgenome families.

Different c ombinations of values were t ested for t he parameters of t he CCA
model. The best projection obtained is the one shown in Fig. 7, that was generated
with 1,000 epochs, alpha=0.5 and lambda=1.5152.

SOM results

Finally, SOM has been also applied to the Malgenome dataset and the obtained
U-matrix is shown in Fig. @ Each one of the neurons in the map has been labelled
with the names of the malware families to which the neuron responds. From this
figure, and according to the inter-neuron distances, neurons in the map could be
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easily split in two main groups (G1 and G2). At the same time, G1 could be
divided in two subgroups (Gla and G1b), and Gla could also be divided into
three subgroups as neuron distances are high between them (blue color means
high distance in Fig. . In the case of G2, authors believe that it can not be
divided into subgroups, as neuron distances within G2 are quite small, so it can
not be said that families in this group (G2) are very different.

0.866

0.546

Figura 8: SOM U-matrix for Malgenome families with identified groups.

The parameter values of the SOM model for the mapping shown in Fig. 8 are;

map size: [7, 5], lattice: hexagonal, neighbourhood function: Gaussian. On the
other hand, some metrics about the obtained mapping are: quantization error
= 1.1, and topographic error = 0.0. In general terms, it can be said that the
“repackaging installation” and “standalone installation” features are the only
ones that let distributing samples in groups G1 and G2. In the case of subgroups
Gla and Glb, it is the presence of the “SMS financial charges” feature what
characterize malware families in each one of them.
Table @ shows the Malgenome families contained in each one of the identified
groups by the SOM network, and the features characterizing all the families in
that group. General information (present and not-present features) of a group
(i.e. group 1) is applicable to all malware families contained in its subgroups (i.e.
subgroups Glal, G1b, etc.).
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Tabla 4: Families allocation to subgroups defined in SOM u-matrix.
G1
Present feature: 1 (repackaging installation)
Not-present feature: 4 (standalone installation)
Gla
Present feature: 22 (SMS financial charges)
DroidKungFul, DroidKungFu2, DroidKungFu3, DroidKungFuSapp
Present features: 11 (BATT activation), 14 (exploid privilege escalation),
Glal 18 (encrypted privilege escalation)
Not-present feature: 2 (update installation), 24 (SMS personal information
stealing)
DroidCoupon, DroidDreamLight, GingerMaster, ADRD
Not-present feature: 11 (BATT activation), 14 (exploid privilege escalation),
18 ( encrypted privilege escalation), 2 (update insatalltion), 24 (SMS
personal information stealing)
AnserverBot, BAseBridge
Present features: 11 (BATT activation), 2 (update installation), 24 (SMS personal
Gla3 information stealing)
Not-present feature: 14 (exploid privilege escalation), 18 (encrypted privilege
escalation)
Others samples DogWars, DroidkungFuUpdate, DroidDream, DroidKungFu4, Jifake
G1b
Not present features: 22 (SMS financial charges)
BeanBot, BgServ, CoinPirate, Endofday, Geinimi, GoldDream, HippoSMS, jSMSHider, Pjapps, Zsone
G2
Present features: 4 (standalone installation)
Not-present feature: 1 (repackaging installation)
Asroot, Crusewin, DroidDeluxe, FakeNetflix, FakePlayer, GamblerSMS, GGTracker, Gone60, GPSSMSSpy,
Kmin, Lovetrap, NickyBot, Nickyspy, Plankton, RogueLemon, RogueSPPush, SMSReplicator, SndApps,
Spitmo, TapSnake, Walkinwat, YZHC, zHash, Zitmo

Gla2

4. Conclusions

From the results shown in section 3, it can be concluded that dimensionality

reduction techniques are an interesting proposal to visually analyse the structure
of a high-dimensionality dataset in general terms. More specifically, w hen stud-
ying Android malware families, this kind of techniques let us gain deep knowledge
about the nature of such app families. Thanks to the obtained projections, simi-
larities and differences of the studied families are identified.
From the extensive set of applied DRTs, PCA, MLHL and CCA failed in ge-
nerating an informative visualization of samples by reducing the dimensionality
of them to 2D. On the other hand and generally speaking, it can be said that
the DRTs that group malware families, are able to do that in a way consistent
with the seminal characterization of Malgenome dataset [7]. More precisely, it is
worth mentioning that installation features (repackaging and standalone) have
been identified by ISOMAP and SOM as t he most important ones for a general
characterization of Android malware families (see section 3 for further details).
It is an important result as repackaging is one of the most common techniques
applied to hide malware (86 % of the malware apps in the original dataset were
repackaged versions of different legitimate apps including paid apps, popular ga-
me apps, powerful utility apps, etc. [6]).
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In a complementary way, CMLHL identified some activation (SMS, USB, and
PKG) and financial charges (SMS, and phone call) as the most important ones
for such a task. Knowledge generated by the application of DRT's could be applied
to improve the detection rate of Android Malware at different stages (markets,
devices, etc.) thanks to the characterization of the different families.

As a final conclusion, it can be said that the identification and characterization
of Android malware is still and open challenge that requires great efforts to be
devoted in coming years.

5. Future work

As future work it is planned to apply new DTRs models and compare them
with other supervised algorithms such as decision threes in order to gain deep
knowledge of the dataset. It will also be analysed other datasets related to cyberse-
curity applying the same approach followed in this research in order to generalize
to other datasets the proposed method.
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