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We analyze the characteristic polynomial associated to an ellipsoid and another quadric 
in the context of the contact detection problem. We obtain a necessary and sufficient 
condition for an efficient method to detect contact. This condition, named smallness 
condition, is a feature on the size and the shape of the quadrics and can be checked 
directly from their parameters. Under this hypothesis, contact can be noticed by means 
of the expressions in a discriminant system of the characteristic polynomial. Furthermore, 
relative positions can be classified through the sign of the coefficients of this polynomial. 
As an application of these results, a method to detect contact between a small ellipsoid 
and a combination of quadrics is given.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The contact detection problem between objects is recurrent in CAD/CAM. Many disciplines such as computer graphics, 
computer animation, robotics, industrial manufacturing or surgical simulation, among many others, require the detection of 
collisions between objects in many of their developments. Different surfaces have been used to model the great variety of 
shapes of the objects under consideration. Furthermore, depending on the chosen surfaces, appropriate methods based on 
their features are developed. For example, methods applied to polyhedra (see, for example, Feng and Tan (2020)) differ from 
others developed for differentiable surfaces (see Baraff (1990); Ezair and Elber (2019) and references therein).

During last two decades, there has been an increasing use of quadric surfaces for modeling objects within the context 
of collision detection. This family of surfaces, together with conic curves, has been extensively studied, especially using 
techniques from Projective Geometry (see, for example, Woods (1922) for a classical reference where polarity is used to 
study the relative position of a pair of conics). When considering a pair of quadrics, much information about them is 
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obtained using their associated pencil. Moreover, the characteristic polynomial obtained from the pencil provides important 
information linking the two surfaces. The work of Wang et al. (2001) was seminal in introducing this polynomial associated 
to the pencil of two ellipsoids to detect contact between them. These methods have been extended to other quadric surfaces 
Brozos-Vázquez et al. (2018, 2019) and exploited for practical uses, such as the detection of position for Unmanned Aerial 
Vehicles Castro et al. (2019); Dapena et al. (2017). The analysis of the intersection of quadrics was initiated much earlier 
(see Levin (1979)) and continues to be an active research field (see González-Vega and Trocado (2021); Jia et al. (2020); 
Pazouki et al. (2012); Tu et al. (2009); Wang et al. (2003, 2004); Wilf and Manor (1993) and references therein).

Quadric surfaces allow to approximate very accurately a large variety of shapes. This is one of the main reasons for their 
use in contact detection problems. Also, since quadric surfaces are described by means of a quadratic polynomial, they are 
easier to handle than many other curved surfaces. In this paper we consider two quadrics, one of which is an ellipsoid. This 
particular surface is the only closed quadric surface. This feature makes it the most appropriate selection for modeling an 
object just by one surface. Moreover, the three degrees of freedom provided by its three axes allow to approximate many 
different objects. This justifies that an important part of the literature in this field involves ellipsoids (see, for instance, 
Jia et al. (2011); Pazouki et al. (2012); Wang et al. (2004, 2001) or Caravantes et al. (2022); Jia et al. (2020) for more 
recent progress on the treatment of ellipsoids). However, the ellipsoid has positive curvature and the shape of other objects 
requires the use of other quadric surfaces, for example, hyperboloids with negative curvature. In this paper we address the 
problem of contact detection between a small ellipsoid and another quadric surface.

Generally, we consider an ellipsoid E and another quadric surface Q. While previous works as Brozos-Vázquez et al. 
(2018, 2019); Caravantes et al. (2022); Jia et al. (2020); Wang et al. (2001) treated particular quadrics, here we consider 
a wider class of surfaces. Along this work, the possible quadric surface Q is going to be one of the following: ellipsoid, 
hyperbolic or elliptic paraboloid, hyperboloid of one or two sheets, elliptic, parabolic or hyperbolic cylinder, or two planes. 
We shall make clear that we avoid the use of two coincidental planes as the quadric Q, since from a geometric viewpoint 
they are equivalent to one plane. Let E and Q be their associated matrices. The characteristic polynomial of the pencil λE + Q
is the fourth degree polynomial given by

P(λ) = det(λE + Q ). (1)

Notice that, since E is non-degenerate, the roots of P are the characteristic roots of the matrix −Q E−1, so we will refer to 
them as the characteristic roots of P.

The characteristic roots of P permitted to detect the relative position between two ellipsoids, an ellipsoid and a 
paraboloid, or an ellipsoid and a hyperboloid of one sheet in Wang et al. (2001); Brozos-Vázquez et al. (2018, 2019) in 
some instances. In particular, it was shown that if there exist two complex conjugate (non-real) roots of P then the quadric 
surfaces are in non-tangent contact. The converse is not true in general, as two quadrics may intersect non-tangentially and 
P have four real roots (counted with multiplicity).

Since the existence of non-real roots can be easily detected by the discriminant of the polynomial P, it would be 
desirable to understand under which circumstances contact between quadrics can be noticed by a direct computation of the 
discriminant. This is the first aim of this work and with that purpose we introduce the following concept that relates the 
size and shape of the two quadric surfaces.

Definition 1. Smallness condition. We say that the ellipsoid E is small with respect to the quadric surface Q if the inter-
section of the two quadric surfaces cannot be two curves at any relative position.

We consider that a curve is a 1-dimensional connected set when working with the usual topology. Note that in Algebraic 
Geometry these curves are generically named the branches of the 1-dimensional algebraic set defined by the intersection 
of the quadric surfaces. The number of connected components of the intersection of two quadric surfaces ranges from 0
to 2 (see Degtyarev et al. (2012)), so the smallness condition rules out the possibility of two connected components in 
the intersection which are curves, but allows two isolated tangent points. We will see in Section 3 (Lemma 8) that the 
possibility of one isolated tangent point and a curve is also eliminated by the smallness condition. A similar definition was 
first given in Brozos-Vázquez et al. (2019) to solve the particular problem of an ellipsoid and an elliptic paraboloid, although 
the condition was slightly more restrictive, since two tangent points were not allowed as a possible intersection set.

The smallness condition given in Definition 1 is going to be analyzed in detail in Section 2. Intersecting planes or cones 
do not satisfy Definition 1 for any ellipsoid, whereas for other quadric surfaces it depends on some relations between the 
length axes and the curvature of the two surfaces. In Theorem 5 we show how to check that E and Q satisfy the smallness 
condition by means of the parameters in the quadric equations. This characterization in terms of the parameters makes the 
condition more tractable computationally and allows a purely algorithmic checking.

Typically, for an ellipsoid and another quadric, there are two real roots whose sign do not change when moving the 
ellipsoid with respect to the other quadric. Therefore, the information of the relative position is encoded in the other two 
roots. For example, for an ellipsoid and another ellipsoid, a hyperboloid of two sheets or an elliptic paraboloid there are 
always two negative roots (see Table 4 below). We respond to the first objective of this work showing that the smallness 
condition in Definition 1 is a precise hypothesis that implies the equivalence between transversal contact (i.e., non-tangent 
2
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contact) of the two quadric surfaces and the presence of non-real characteristic roots. We will use the term a pair of complex 
conjugate (non-real) roots to refer to one complex and non real-root and its conjugate.

Theorem 2. Let E be a small ellipsoid with respect to the quadric surface Q. Then E and Q are in transversal contact if and only if the 
characteristic polynomial P(λ) has a pair of complex conjugate (non-real) roots.

The proof of Theorem 2 is given in Section 3. The approach differs substantially to those followed in previous works 
as Brozos-Vázquez et al. (2018, 2019), since it is based on the analysis of the possible intersections between quadrics. 
Moreover, the new approach relies on a combination of algebraic tools and methods from differential geometry.

Based on Theorem 2, we can detect contact exclusively using discriminants associated to the characteristic polynomial, 
without the need of computing explicitly the roots of (1). This provides an efficient way of detecting contact as will be 
shown in Section 3 (see Corollary 10). The detection of contact and relative positions between an ellipsoid and a plane is 
considered separately in Section 5.1 (see Theorem 14).

Additionally to the detection of contact through the nature of the characteristic roots, the information encoded in the 
characteristic polynomial allows to detect the relative position between the two quadrics. Section 4 is devoted to this task 
in the present context and previous results in Brozos-Vázquez et al. (2018, 2019); Wang et al. (2001) are extended. In 
Theorem 13, the relative position of the small ellipsoid E with respect to the quadric surface Q is characterized in terms 
of the sign of the characteristic roots or, alternatively, in terms of the sign of the coefficients of P(λ). Thus, this provides a 
computationally efficient method to approach the problem of identifying relative positions.

The second main goal of this work is to provide an efficient method to detect contact between a small ellipsoid and a 
combination of quadrics. The idea of composing geometric objects was considered, for example, in Choi et al. (2014) for 
specific quadrics. We are considering here a more general context addressed in Section 5, where an algorithm is proposed 
for an efficient detection of the relative position between them. Thus, this proposal allows to model a great variety of real-
world situations where two objects interact: a small ellipsoid models one of them and the other one is modeled by pieces 
of quadrics separated by a plane or other quadrics. A simple example is included to illustrate the method for particular 
quadric surfaces.

2. The smallness condition

Along this section we analyze in detail the smallness condition given in Definition 1. First, we must emphasize that the 
smallness condition is a condition in a pair of surfaces and it depends on the relation between the two of them. Also, it is 
intrinsic to the geometry of the two surfaces, so it does not depend on a particular position, but on the possibility that the 
two surfaces intersect in two curves when they are placed appropriately. As a consequence, since rigid motions do not alter 
the geometry of the surfaces, this smallness condition is invariant under rigid transformations of space.

Notice that if the quadric Q is a pair of intersecting planes or a cone, then one can place E close enough to the 
intersecting ray or the vertex, respectively, to see that the smallness condition is not satisfied. Therefore, intersecting planes 
and cones are excluded from the analysis.

One of the main interests of Theorem 2 is that we get a simple way to detect contact between the quadric surfaces. This 
provides an efficient algorithm with a simple implementation. Since the smallness condition is a necessary hypothesis, for 
practical purposes it would also be convenient to express it in a way that can be checked computationally. We will make 
this condition more tangible by inequalities in terms of the parameters of the quadrics.

Depending on the quadric Q that we consider, the smallness condition in Definition 1 results in different kind of re-
strictions. Some are related with the distance between particular points in Q and affects directly to the axes of E , whereas 
others depend on the curvature and impose conditions on the relations between the axes of E . In order to specify them we 
consider a general ellipsoid E in standard form

x2

α2
+ y2

β2
+ z2

γ 2
= 1, with α ≥ β ≥ γ , (2)

and another quadric surface Q.

2.1. Direct restrictions on the axes (size)

We assume E is small with respect to the quadric Q. If Q is an ellipsoid, a hyperboloid of one or two sheets, an elliptic 
or a hyperbolic cylinder, or two parallel planes, then a first relation between the parameters of E and Q is obtained by a 
direct study of distances between points of the surfaces. If the quadric Q is an ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1, with a ≥ b ≥ c,

it is immediate that if the ellipsoid E is small in comparison with Q then the largest axis of E must be smaller than or 
equal to the smallest axis of Q. Hence, we conclude that c ≥ α. If the quadric Q is a hyperboloid of one sheet
3
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Fig. 1. The ellipsoid is not small with respect to the hyperboloid. There is a condition on the principal curvatures of the quadric surfaces for the smallness 
condition to be satisfied.

x2

a2
+ y2

b2
− z2

c2
= 1, with a ≥ b,

then the major axis of E must be smaller than or equal to the smaller axis of Q. Hence, we conclude that b ≥ α. Also, if 
the quadric Q is a hyperboloid of two sheets

x2

a2
+ y2

b2
− z2

c2
= −1, with a ≥ b,

then the major axis of E must be smaller than or equal to the distance between vertices in Q. Hence we conclude that 
c ≥ α.

The cases where Q is a cylinder can be projected orthogonally to a plane which is perpendicular to the axis. If Q is an 
elliptic cylinder x2

a2 + y2

b2 = 1 with a ≥ b, it is clear that a necessary condition is b ≥ α. Whereas if Q is a hyperbolic cylinder 
x2

a2 − y2

b2 = 1 then a ≥ α.

Finally, for parallel planes with equation x2

a2 − 1 = 0, we observe that 2a is the minimum distance between two points 
that lie on different planes. Hence, the only restriction to avoid the possibility of two curves in the intersection is that a ≥ α.

2.2. Restrictions on the relations between axes (shape)

The previous conditions between the ellipsoid E and the quadric Q, however, are not sufficient for the smallness condi-
tion to be satisfied. See, for example, Fig. 1. The curvature of the two quadric surfaces also plays a role in the verification of 
the smallness condition. Recall that the normal curvature κ S (p, �v) of a surface S at a point p in a fixed direction �v is given 
by the curvature at p of the curve obtained by the normal section in the direction of �v , this is, obtained by intersecting 
the surface with the normal plane at p which contains �v . Also, the maximum and minimum normal curvatures (κ S

max(p)

and κ S
min(p)) at a point p are the principal curvatures of the surface at p. We denote by κ S

max and κ S
min , respectively, the 

maximum and minimum principal curvature of the surface S . The other conditions that the surfaces E and Q must satisfy 
for E to be small in comparison with Q can be stated in terms of the principal curvatures of the surfaces.

Lemma 3. If an ellipsoid E is small with respect to another quadric Q then

κQ
max ≤ κE

min.

Proof. In order to compare the principal curvatures of the two surfaces, we are going to place the quadrics in the more 
favorable position. Then we reduce the problem in one dimension by considering sections by a suitable plane. Note that if 
the smallness condition is not satisfied, then there is an appropriate position between the quadrics so that the intersection 
has two curves. Hence an intentionally chosen normal section by a plane gives two conics that intersect in four different 
points. The conic obtained from the small ellipsoid is an small ellipse (i.e. an ellipse that cannot intersect the other conic in 
more than two points). Consequently, the result follows directly from the following:

Claim. If the smallness condition is satisfied, then the curvature at any point of the small ellipse is greater than or equal to the curvature 
at any point of the other conic.

The next objective is to prove this claim. The problem trivializes if one conic is a ray, so we study the situations given 
by pairs of conics of the form ellipse-ellipse, ellipse-parabola or ellipse-hyperbola and analyze them separately as follows.
Ellipse-ellipse: in order to simplify the calculation and compare curvatures we place the small ellipse E so that it is tangent 
to the other ellipse in one vertex (see Fig. 2(i)). Now the corresponding equations are

E : (x − a + β)2

2
+ y2

2
= 1 and C1 : x2

2
+ y2

2
= 1, (3)
β α a b

4
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Fig. 2. The small ellipse E is placed to be tangent to the conic C at the point of minimum curvature of E and maximum curvature of C .

where α ≥ β > 0 and a ≥ b > 0. The diameter of E is smaller than or equal to any axis of C1 for the smallness condition 
to be satisfied. Hence α ≤ b and we work with the inequalities in the parameters of the conics given by a ≥ b ≥ α ≥ β > 0. 
Note that this placement of the pair of conics is obtained as a section from an appropriate placement of the pair of quadric 
surfaces. If β = a, then α = β = a = b and we have two circles of the same radius that can coincide in all points, which is 
an admissible situation. Henceforth we assume β < a and there is only one possible solution to the system of equations (3)
for the smallness condition to be satisfied. Note that if they intersect in three points, then a slight variation of the position 
makes them intersect at four different points. Using y2 = b2

(
1 − x2

a2

)
we substitute in the equation of E to obtain

x = a or x = a
(
a2α2 − 2aα2β + b2β2

)
a2α2 − b2β2

.

The first solution corresponds to the tangent point (a, 0) and the second one gives

y2 = −4aα2b2β(a − β)
(
b2β − aα2

)
(bβ − aα)2(aα + bβ)2

. (4)

For the smallness condition to be satisfied, there can not be more solutions for y in (4) than y = 0. This implies that 
y2 ≤ 0 in (4). Note that if y = 0, then b2β − aα2 = 0 and the expression for x reduces to x = a. Now, if y2 < 0, since β < a, 
all factors in (4) have to be positive, so we conclude that b2β − aα2 < 0. In conclusion, we have that the desired relation 
between the parameters is b2β − aα2 ≥ 0.

An ellipse given by C1 can be parameterized as c1(t) = (a cos t, b sint) with t ∈ [0, 2π ]. Since the curvature along the 
curve is given by κ1(t) = ab√

a2 sin2 t+b2 cos2 t
3 (see, for example, do Carmo (1976)), we have that the maximum curvature is 

attained at one vertex and its value is a
b2 . Analogously, we see that the minimum curvature of the small ellipse E is β

α2 . 
Thus, the relation b2β − aα2 ≥ 0 can be written equivalently in terms of the maximum and minimum curvatures of the 
ellipses as

a

b2
≤ β

α2
.

Ellipse-hyperbola: we place the ellipse E , as in the previous case, tangent to the hyperbola at the vertex point (see Fig. 2(ii)). 
The corresponding equations are

E : (x − a − β)2

β2
+ y2

α2
= 1 and C2 : x2

a2
− y2

b2
= 1, (5)

where α ≥ β . An analogous argument to that given for two ellipses now shows the relation between the maximum curvature 
of the hyperbola, which is attained at the vertex point and values a

b2 , and the minimum curvature of the ellipse:

a

b2
≤ β

α2
.

Ellipse-parabola: we place the small ellipse E tangent at the vertex point of the parabola C3 (see Fig. 2(iii)) so that the 
equations of the conics are

E : x2

α2
+ (y − β)2

β2
= 1 and C3 : x2

a2
− y = 0.

The smallness condition is satisfied if and only if the system of equations has only the solution (0, 0). We repeat the process 
above analyzing these two equations. As a result we obtain that the maximum curvature of the parabola, realized at the 
vertex point with value 2

a2 , is less than or equal to the minimum curvature of the ellipse:

2
2

≤ β

2
.

a α

5
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Table 1
Smallness condition in terms of the parameters of the ellipsoid E and the other 
quadric surface Q in standard form.

Type of the quadric Q Equation of Q Conditions

Ellipsoid x2

a2 + y2

b2 + z2

c2 = 1, (a ≥ b ≥ c) c ≥ α
a
c2 ≤ γ

α2

Hyperboloid of one sheet x2

a2 + y2

b2 − z2

c2 = 1, (a ≥ b) b ≥ α
a
c2 ≤ γ

α2

Hyperboloid of two sheets x2

a2 + y2

b2 − z2

c2 = −1, (a ≥ b) c ≥ α
c

b2 ≤ γ

α2

Elliptic paraboloid x2

a2 + y2

b2 − z = 0, (a ≥ b) 2
b2 ≤ γ

α2

Hyperbolic paraboloid x2

a2 − y2

b2 − z = 0, (a ≥ b) 2
b2 ≤ γ

α2

Elliptic cylinder x2

a2 + y2

b2 = 1, (a ≥ b) b ≥ α
a

b2 ≤ γ

α2

Hyperbolic cylinder x2

a2 − y2

b2 = 1 a ≥ α
a

b2 ≤ γ

α2

Parabolic cylinder x2

a2 − z = 0 2
a2 ≤ γ

α2

Pair of parallel planes x2

a2 − 1 = 0 a ≥ α

Hence the claim follows. �
2.3. Smallness condition for E and Q in standard form

Based on the previous analysis and the curvature conditions given in Lemma 3, we can now characterize the smallness 
condition in terms of relations between the parameters of the quadric surfaces.

Lemma 4. Let E be an ellipsoid given by equation (2) and let Q be another quadric in standard form. Then the conditions given in 
Table 1 are necessary and sufficient for E to be small with respect to Q.

Proof. In the case of the ellipsoid, the hyperboloids and the elliptic and hyperbolic cylinders, when doing sections by 
normal planes, one can obtain ellipses and hyperbolas. Thus, considering any section, the diameter of the ellipse given by 
E has to be smaller than the axes of the ellipse and the transverse axis of the hyperbola of Q. These give rise to the first 
condition in each of these cases in Table 1. For all the quadric surfaces but parallel planes there is a condition in terms of 
the principal curvatures that was given in Lemma 3.

If the smallness condition is not satisfied, then there is a position where the two surfaces intersect in two curves. Moving 
the surface adequately if necessary, a case by case analysis of the pair of surfaces shows that the condition on the axes of 
the quadrics (see Subsection 2.1) or the condition on the curvature (see Subsection 2.2) is not satisfied. �
2.4. Smallness condition for E and Q in general form

The results given in this paper are intended to be used in practical real-life contexts, where one does not generally have 
quadric surfaces in standard form. Since the smallness condition is a necessary hypothesis, it is convenient to have a way 
to check it, without necessarily changing coordinates and reducing equations to standard form. As the smallness condition 
is invariant under rigid transformations, the associated invariants to quadric surfaces are enough to determine whether the 
smallness condition holds for a given pair of quadrics. In this subsection we recall which are the needed invariants and 
provide the precise relations between them to check the smallness condition.

The general equation of a quadric in Euclidean coordinates x1, x2, x3 given by

3∑
i, j=1

aijxi x j +
3∑

i=1

2bixi + c = 0, where aij = a ji, (6)

can be written as X T Q X = 0 with X T = (x1, x2, x3, 1) and Q the quadric’s matrix:

Q =
(

aij b j

b c

)
with i, j = 1,2,3.
i

6
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Table 2
Conditions on the invariants to check that an ellipsoid E is small with respect to a quadric surface Q.

General ellipsoid E with reduced equation x2

α′2 + y2

β ′2 + z2

γ ′2 = δ′2

E V : 1
α′2 , 1

β ′2 , 1
γ ′2 ,α′ ≥ β ′ ≥ γ ′ and δ′2 = −α′2β ′2γ ′2 det(E)

Quadric Q Invariants Reduced equation Conditions

Ellipsoid E V : 1
a′2 , 1

b′2 , 1
c′2 , a′ ≥ b′ ≥ c′ x2

a′2 + y2

b′2 + z2

c′2 = d′2 d′c′ ≥ δ′α′

d′2 = −a′2b′2c′2 det(Q ) a′
d′c′2 ≤ γ ′

δ′α′2

Hyperboloid of 
one sheet

E V : 1
a′2 , 1

b′2 , − 1
c′2 ,a′ ≥ b′ x2

a′2 + y2

b′2 − z2

c′2 = d′2 b′d′ ≥ δ′α′

d′2 = a′2b′2c′2 det(Q ) a′
d′c′2 ≤ γ ′

δ′α′2

Hyperboloid of 
two sheets

E V : 1
a′2 , 1

b′2 , − 1
c′2 ,a′ ≥ b′ x2

a′2 + y2

b′2 − z2

c′2 = −d′2 c′d′ ≥ δ′α′

d′2 = −a′2b′2c′2 det(Q ) c′
d′b′2 ≤ γ ′

δ′α′2

Elliptic paraboloid E V : 1
a′2 , 1

b′2 , 0,a′ ≥ b′ x2

a′2 + y2

b′2 − Lz = 0 2
Lb′2 ≤ γ ′

δ′α′2

L2 = − 4 det(Q )
J

Hyperbolic 
paraboloid

E V : 1
a′2 , − 1

b′2 , 0,a′ ≥ b′ x2

a′2 − y2

b′2 − Lz = 0 2
Lb′2 ≤ γ ′

δ′α′2

L2 = − 4 det(Q )
J

Elliptic cylinder E V : 1
a′2 , 1

b′2 , 0,a′ ≥ b′ x2

a′2 + y2

b′2 = M2 Mb′ ≥ δ′α′

M2 = − K
J

a′
Mb′2 ≤ γ ′

δ′α′2

Hyperbolic cylinder E V : 1
a′2 , − 1

b′2 , 0,a′ ≥ b′ x2

a′2 − y2

b′2 = M2 Mb′ ≥ δ′α′

M2 = − K
J

a′
Mb′2 ≤ γ ′

δ′α′2

Parabolic cylinder E V : 1
a′2 , 0, 0 x2

a′2 − d′z = 0 2
d′a′2 ≤ γ ′

δ′α′2

d′2 = 4Ka′2

Parallel planes E V : 1
a′2 , 0, 0 x2

a′2 − d′2 = 0 a′d′ ≥ α′δ′
d′2 = −a′2 J ′

Associated to this equation, we have the following invariants:

• The determinant of Q : det(Q ).
• The eigenvalues of Q 00 = (aij), that are labeled as (E V ) : μ1, μ2 and μ3. Observe that, as a consequence, the trace of 

Q 00, tr(Q 00) = μ1 + μ2 + μ3, and the determinant of Q 00, det(Q 00) = μ1μ2μ3, are also invariant.

• J = det

(
a11 a12
a12 a22

)
+ det

(
a11 a13
a13 a33

)
+ det

(
a22 a23
a23 a33

)
.

• If Q̃ i j is the adjoint matrix of aij in Q : K = det Q̃ 11 + det Q̃ 22 + det Q̃ 33.

• J ′ = det

(
a11 b1
b1 c

)
+ det

(
a22 b2
b2 c

)
+ det

(
a33 b3
b3 c

)
.

Theorem 5. Let E be an ellipsoid and Q another quadric. Then the relations given in Table 2 are necessary and sufficient for E to be 
small with respect to Q.

Proof. Due to the invariance under rigid transformations of the smallness conditions and the invariants associated to the 
quadric surfaces, the result follows from Lemma 4. �

Note that, from the relations given in Table 2, it is immediate to verify whether the smallness condition holds for a given 
pair of quadrics.

Example 6. We are going to illustrate the use of Table 2 by considering an ellipsoid and another quadric. The computation 
of eigenvalues to obtain the invariants is a subtle point, especially when one of them is close to zero and they are used 
to determine the type of quadric. However, this example shows that the smallness condition is more robust than this 
determination of the quadric and, even if one does not choose the quadric very accurately, the smallness condition can be 
checked. Consider the quadric with matrix:

Q =

⎛
⎜⎜⎝

−0.426777 −0.800103 0.176777 −6.57593
−0.800103 0.5 0.331414 −1.16043
0.176777 0.331414 −0.0732233 1.64145
−6.57593 −1.16043 1.64145 −42.4962

⎞
⎟⎟⎠
7
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Fig. 3. An ellipsoid and another quadric in general form (i) are moved to see that they do not satisfy the smallness condition (ii).

A direct calculation using machine precision shows that the eigenvalues of Q 00 are E V : 1.7484959871992433 × 10−7,
0.9999999062901268, −1.0000003811397258. Since the first eigenvalue is not exactly 0 but is very close, one may con-
sider the conditions in Table 2 for the hyperbolic paraboloid or for the hyperboloid of one sheet (note that det(Q ) =
1.0000019781303608 > 0). We consider the ellipsoid with matrix

E =

⎛
⎜⎜⎝

1.82853 0.58657 0.000852152 13.6556
0.58657 1.09505 −0.242965 8.48796

0.000852152 −0.242965 1.83023 3.48535
13.6556 8.48796 3.48535 131.077

⎞
⎟⎟⎠

to check the smallness condition between E and Q (see Fig. 3(i)). We illustrate the use of Table 2 assuming first that Q is 
a hyperbolic paraboloid and next a hyperboloid of one sheet as follows:

• Q as a hyperbolic paraboloid: we compute

b = 0.9999998094301916, L = 2.00000169069926,

Maximum curvature: 2
Lb2 = 0.9999995357904882 .

• Q as a hyperboloid of one sheet: we compute

1
a2 = 1.7484959871992433 × 10−7, − 1

c2 = −1.0000003811397258,

d = 2391.4871252673324, Maximum curvature: a
dc2 = 0.9999995357904464 .

In both cases, using Table 2 with different types of quadrics, the estimated maximum principal curvature for Q is similar. 
Now, we compute invariants for the ellipsoid:

α = 1.1716212752992812, β = 0.7391034270329864, γ = 0.6750083318272421,

δ = 1.181065224418655, Minimum curvature: γ

δα2 = 0.41635209331503953 .

We check that the minimum curvature of the ellipsoid is lower than the maximum curvature of the other quadric. Hence we 
conclude that this pair of quadrics does not satisfy the smallness condition, as is illustrated in Fig. 3(ii) after an appropriate 
rigid motion of the surfaces.

3. Contact detection between the quadric surfaces

In this section we assume E is an small ellipsoid with respect to a quadric Q. We deal with results aimed to detect 
contact between the two quadric surfaces. First we give the proof of Theorem 2 and, secondly, we provide more efficient 
methods based on the use of a system of discriminants for the characteristic polynomial.
8
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Fig. 4. Intersection curves including one tangent point.

3.1. Proof of Theorem 2

We prove the main result by studying the possible intersections between two quadric surfaces. In order to do that, we 
begin by analyzing intersections which are a curve with a tangent point (see Fig. 4).

Lemma 7. If E and Q intersect in a curve C and there is a point p ∈ C where the surfaces are tangent, then there is one normal 
curvature that coincides for the two surfaces at p.

Proof. Let C be the intersection curve for E and Q. Analyzing the possibilities of intersection curves between the quadric 
surfaces (see, for example, Tu et al. (2009); Wilf and Manor (1993)) we see that C is a differentiable curve except, perhaps, 
at the tangent point p (for example, if the intersection curve is a cuspidal quartic then there is a singularity at the cusp at 
p). We work in a neighborhood of p and parameterize an arc of C as α : (a, b] →R3 so that α(b) = p, α is continuous in 
(a, b] and smooth in (a, b).

Since α is smooth in (a, b), we choose a regular parameterization and compute α′(t) for all t ∈ (a, b). We normalize α′(t)
to assign a unit vector �v(t) = α′(t)/‖α′(t)‖ to each point α(t) for t ∈ (a, b). Now, we define �v(b) := limt→b �v(t) to extend 
the unit tangent vector to α(b).

Let κE (t) and κQ(t) be the normal curvatures at α(t) in the direction of �v(t) in E and Q, respectively, for t ∈ (a, b]. 
These two functions κE and κQ vary smoothly along α. Now, note that the normal curvatures κE (t) and κQ(t) can be 
obtained from the curvature of α(t) by projecting on the normal vector to each of the surfaces for t ∈ (a, b). Observing 
that the normal vector of E and Q varies smoothly along α(t) for t ∈ (a, b] and that the normal vector of the two surfaces 
coincides in α(b), by continuity of the normal vector, of �v , of κE and of κQ , we conclude that the normal curvature of the 
two surfaces in the direction of �v at p is the same. �
Lemma 8. Let E be small with respect to Q. If they intersect in a curve C and are tangent at a point p, then C is a circle, p belongs to 
C and the quadric surfaces are tangent along C.

Proof. We begin by proving that p belongs to C . We argue by contradiction, so we assume first that p does not belong to 
the curve C . Then the intersection of the quadrics has one connected component which is the curve and another connected 
component which is the tangent point. A straightforward analysis of the morphology of the possible intersections between 
two quadrics shows that this tangent point is an isolated tangent point. Therefore, slightly translating E in the appropriate 
direction transforms the isolated tangent point in a differentiable curve. Thus, after the translation there are two connected 
components which are curves, so the smallness condition is not satisfied. Hence, we conclude that p belongs to C .

Now, if p belongs to C , then Lemma 7 applies and we have that the normal curvature κ(p) of the two surfaces at p in 
the direction of the curve coincides. If κE

min , κE
max and κQ

min , κQ
max are the principal curvatures of the surfaces, in virtue of 

Lemma 3, the following relation is satisfied:

κQ
min ≤ κQ

max ≤ κE
min ≤ κE

max.

Since κQ
min ≤ κ(p) ≤ κQ

max and κE
min ≤ κ(p) ≤ κE

max , we conclude that κQ
max = κ(p) = κE

min . Hence the normal curvature in 
the tangent direction of C at p is principal and, moreover, is the maximum principal curvature for Q and the minimum 
principal curvature for E . Therefore, the point p has to be a vertex of E with minimum principal curvature and a vertex 
of Q with maximum principal curvature. Note that, because E and Q are tangent at p, the two surfaces share the same 
tangent plane at p. Now, we consider a section of E and Q by a plane through p which is orthogonal to the tangent plane at 
p and that intersects C at least in another point q different from p (this is possible, since C is closed). This plane intersects 
E and Q in two conics: cE (which is an ellipse) and cQ (possibly with two connected components). The point p is a vertex 
for the two conic curves and the curvature of cE at p is greater than or equal to the curvature of cQ at p. Hence cQ is 
necessarily an ellipse or has two connected components. More specifically, Q is an ellipsoid, a hyperboloid of one sheet or 
an elliptic cylinder.
9
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Fig. 5. (i) Two ellipsoids sharing a tangent circle do not satisfy the smallness condition. (ii) A circular hyperboloid of one sheet and a circular cylinder 
provide admissible examples.

If Q is an ellipsoid, since E is an small ellipsoid which shares a vertex with Q where they are tangent, the only 
possibility is that the two ellipsoids are tangent along the greater ellipse of E . But, because this ellipse is common to the 
two ellipsoids and the maximum normal curvature of Q is smaller than the minimum normal curvature of E (see Lemma 3), 
the curvature at all points of the ellipse must be the same, so it is a circle. Moreover, since the curvature of this circle is 
the minimum normal curvature for E , this quadric has to be an sphere. As a consequence of the smallness condition, since 
the two ellipsoids share a tangent circle, the only possibility in this case is that the two ellipsoids are coincidental spheres.

Similar arguments are used if Q is an hyperboloid or an elliptic cylinder to conclude that the tangent curve C is a circle, 
but in this case we get admissible cases as in Fig. 5. �
Proof of Theorem 2. We consider an ellipsoid E and another quadric surface Q in the affine space. For convenience, the 
quadric surfaces can be thought at the real projective space RP 3 and the affine space is a realization of it where we choose 
a plane at infinity. Since one of the quadric surfaces is an ellipsoid, the plane at infinity does not intersect the quadric 
surface and, therefore, the intersection of the two quadrics does not have points at the plane at infinity. Hence, when we 
consider the possible intersection curves in RP 3, only homotopically null curves are admissible, which give rise to close 
curves in affine space. Since, moreover, we consider an ellipsoid which is small in comparison with the other quadric, we 
can also eliminate some other cases. Neither a curve and an isolated tangent point nor a curve with a tangent point is 
compatible with this hypothesis, as shown in Lemma 8. A direct application of the smallness condition also rules out the 
possibility of two curves as the intersection set.

From a topological point of view and attending to the classification of intersections between quadrics given in Tu et al. 
(2009), we have the following possibilities for the intersection set of E and Q, related with their respective Segre types and 
the roots of the characteristic polynomial:

(1) ∅: no contact between the quadrics. The possible Segre types are [1111]4, [(11)11]3, [(111)1]2 and [(11)(11)]2. Thus, the 
eigenvalues are real.

(2) Isolated tangent points. There are two possibilities, both of which can be realized:
(a) 1 isolated tangent point: cases 7, 22, 25 and 33 in Tu et al. (2009). The Segre types are [211]3 , [(21)1]3, [2(11)]2

and [(211)]1, which correspond to real eigenvalues.
(b) 2 isolated tangent points: cases 15 and 30 in Tu et al. (2009), with corresponding Segre types [(11)11]3 and [2(11)]2. 

As in the previous case, all eigenvalues are real.
(3) One curve. Depending on the existence of tangency, we consider two cases:

(a) 1 connected component with no tangent points: cases 3, 13 and 17 in Tu et al. (2009), with corresponding Segre types 
[1111]2 or [(11)11]1. Hence, there is a pair of complex conjugate (non real) roots.

(b) 1 connected component with all points of tangency: case 19 in Tu et al. (2009). The Segre type is [(111)1]2, so there is 
a triple root and a single root.

We include the previous classification in Table 3. As a conclusion, under the hypotheses of Theorem 2, the transversal 
contact is identified by non-real roots. Hence, the characterization of Theorem 2 follows. �
Remark 9. We shall emphasize that the smallness condition given in Definition 1 is a necessary hypothesis in Theorem 2. 
Indeed, if the intersection has two connected components which are two curves, then the associated Segre types are [1111]4
and [(11)11]3, with four real roots. Also, in the two cases where the intersection is a curve and an isolated tangent point the 
associated Segree types are [211]3 and [2(11)]2, again with real roots. Hence, the smallness condition cannot be relaxed in 
Theorem 2. However, non-real roots for the characteristic polynomial always imply transversal contact, even if the smallness 
condition fails. Moreover, this is a general fact for any pair of quadrics. A direct analysis of the type of intersection between 
two quadrics (see Tu et al. (2009)) for Segre types with non-real roots shows the following:

If the characteristic polynomial associated to any two quadrics has non-real roots, then they are in transversal contact.
10
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Table 3
Relations between the type of contact and the characteristic roots: Segre 
type, real nature of the roots and sub-discriminants.

Type of contact Segre type Roots 	3,4

No contact [1111]4 [(11)11]3 R 	4 > 0 or 
	4 = 0 ∧ 	3 ≥ 0[(111)1]2 [(11)(11)]2

1 isolated tangent 
point

[211]3 [(21)1]3 R 	4 = 0 ∧ 	3 ≥ 0
[2(11)]2 [(211)]1

2 isolated tangent 
points

[(11)11]3 [2(11)]2 R 	4 = 0 ∧ 	3 ≥ 0

Curve with no 
tangent points

[1111]2 [(11)11]1 C 	4 < 0 or 
	4 = 0 ∧ 	3 < 0

Curve of tangency [(111)1]2 [(11)11]3 R 	4 = 0 ∧ 	3 ≥ 0

3.2. Contact detection using a discrimination system of P(λ)

From a Complete Discrimination System one can determine the number and multiplicities of the real roots. We consider 
a general characteristic polynomial (1), which has degree four:

P(λ) = c4λ
4 + c3λ

3 + c2λ
2 + c1λ + c0, (7)

where c0, . . . , c4 are coefficients determined by the parameters of the quadrics. In the case at hand, where we can detect 
transversal contact between quadrics just by checking two Segre types, we only need two terms of the discrimination 
system. We define (see Emiris and Tsigaridas (2008); Yang (1999)):

	3 = 16c2
4c0c2 − 18c2

4c2
1 − 4c4c3

2 + 14c4c1c3c2 − 6c4c0c2
3 + c2

2c2
3 − 3c1c3

3,

	4 = 256c3
0c3

4 − 192c2
0c1c3c2

4 − 128c2
0c2

2c2
4 + 144c2

0c2c2
3c4 − 27c2

0c4
3

+144c0c2
1c2c2

4 − 6c0c2
1c2

3c4 − 4c3
1c3

3 − 80c0c1c2
2c3c4 + 18c0c1c2c3

3

+16c0c4
2c4 − 4c0c3

2c2
3 − 27c4

1c2
4 + 18c3

1c2c3c4 − 4c2
1c3

2c4 + c2
1c2

2c2
3.

Using the determination of roots in terms of these two expressions, we obtain the following consequence of Theorem 2.

Corollary 10. Let E be a small ellipsoid with respect to the quadric surface Q. Then E and Q are in transversal contact if and only if 
one of the following holds:

(1) 	4 < 0,
(2) 	4 = 0 and 	3 < 0.

Proof. In the proof of Theorem 2 we saw that the possible Segre types for the transversal contact are [1111]2 or [(11)11]1. 
Following Yang (1999), the Segre type [1111]2 is determined by 	4 < 0 and [(11)11]1 by 	4 = 0 and 	3 < 0 (see Ta-
ble 3). �

The possibility (1) in Corollary 10 is more likely to appear in real world applications than the possibility (2), since the 
later appears only with a double real root and the set of this configuration has zero measure in the total space. However 
it has to be taken into account for the implementation of a collision detection algorithm. The following example illustrates 
this phenomenon.

Example 11. We consider the ellipsoid 2x2 +2y2 +3z2 −1 = 0 and the elliptic paraboloid x2 + y2 +8z = 0. The characteristic 
polynomial is P(λ) = −(1 + 2λ)2(16 + 3λ2), so there is a real double root − 1

2 and complex conjugate roots ± 4i√
3

. We 
compute the needed expressions of the discrimination system:

	4 = 0 and 	3 = −400,

as in the possibility (2) of Corollary 10. Thus, we conclude that the two quadrics are in transversal contact, as shown in 
Fig. 6. Notice that, in virtue of Remark 9, we do not need to check that the smallness condition is satisfied.
11
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Fig. 6. Contact is detected in terms of discriminants of the characteristic polynomial.

Fig. 7. The sign of the characteristic roots allows to distinguish interior and exterior cases.

4. Relative positions of a small ellipsoid and another quadric

When working with two objects in real world applications, sometimes it is important not only to detect contact, but also 
to know the relative position between them. Especially if the detection of contact involves solid objects whose border is 
modeled with surfaces, during a simulation it is a necessary task to detect when the smaller body is in the interior of the 
other. Thus, as a first step, Theorem 2 allows to detect transversal contact between the surfaces, but if there is no contact, it 
would be desirable to know the relative position between the quadrics, this is, in which region of the space determined by 
the quadric Q is placed the small ellipsoid E . This problem was already solved in Brozos-Vázquez et al. (2019) for a small 
ellipsoid and an elliptic paraboloid.

We are considering quadrics Q which divide the projective space into two connected regions. Thus, considering the 
matrix Q associated to the quadric Q and working in homogeneous coordinates X = (x, y, z, 1) as before, we distinguish 
regions R− and R+ given by

R− = {(x, y, z) ∈R3/X T Q X ≤ 0} and R+ = {(x, y, z) ∈R3/X T Q X ≥ 0}. (8)

Since we are working in affine space, these regions are not always connected, as it occurs with the hyperboloid of two 
sheets, where R− has two connected components (see Fig. 7). Moreover, in some cases, depending on the quadric Q, we 
intuitively identify R− with the interior region and R+ with the exterior one (for example, if we consider an ellipsoid). 
However this terminology is not so convenient for other quadrics, as the hyperbolic paraboloid. Therefore we will refer to 
these regions as R− and R+ . Also, note that we do not use strict inequalities in the definition of the two regions. Hence we 
allow tangent contact and still say that E belongs to R− or R+ . We emphasize that the intersection of R− and R+ is not 
empty, indeed, the two regions intersect in the points of the quadric surface.

The purpose of this section is to identify the relative position of a small ellipsoid E with respect to another quadric Q. 
This relative position is considered from a topological viewpoint, so we are interested in detecting the region of the space 
divided by Q in which E is located. From Corollary 10 we know how to detect contact in terms of the discriminants of 
the characteristic polynomial P(λ). Thus, in what follows, we assume there is no contact, or just a tangent contact, so that 
either all points of E are located in R− or all of them belong to R+ . Our objective is to know in which of them are they 
in terms of the sign of the characteristic roots. Since the possible quadric surfaces Q have different features, we show in 
the next lemma how to deal with the hyperboloid of two sheets as a sample case. For other quadrics we proceed in an 
analogous way and we omit details in the interest of brevity (see Theorem 13 below).

Lemma 12. Let E be a small ellipsoid and H a hyperboloid of two sheets. Then

• E is placed in R− if and only if P(λ) has four negative real roots.
• E is placed in R+ if and only if P(λ) has two negative and two positive real roots.

Proof. First note that, if E is not completely within R− or R+ , then it is in transversal contact with Q and, by Theorem 2, 
there are non-real characteristic roots. Hence, let E be a small ellipsoid which is not in transversal contact with a hyper-
boloid of two sheets H. Since the relative position is invariant under rigid moves, as are the roots of the characteristic 
polynomial (see Wang et al. (2001)), we can locate H so that it is in standard form as in Table 1 and its associated ma-
trix is diagonal: H = diag{ 1

a2 , 1
b2 , − 1

c2 , 1}. Notice also that by applying a rigid transformation the quadric still satisfies the
smallness condition.
12
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We are going to place the center of the ellipsoid at two particular points and then argue using continuity to extend the 
result. Since both the relative position and the roots of the characteristic polynomial are invariant under scalings (see Wang 
et al. (2001) for details), we firstly place the ellipsoid in R+ so that the center is at (0, 0, 0) (see Fig. 7(ii)) and secondly 
place it in R− so that it is tangent to the vertex of H (see Fig. 7(iii)). Now, appropriate scalings let us transform E into 
a sphere S of radius 1. Note that the necessary scalings of the space that transform the ellipsoid into such a sphere also 
transform H, but it is still of the given generic form. The equation of the sphere S with center (xc, yc, zc) is

(x − xc)
2 + (y − yc)

2 + (z − zc)
2 = 1, (9)

so the associated matrix is

S =

⎛
⎜⎜⎝

1 0 0 −xc

0 1 0 −yc

0 0 1 −zc

−xc −yc −zc −1 + x2
c + y2

c + z2
c

⎞
⎟⎟⎠ . (10)

A direct calculation shows that the characteristic polynomial P(λ) is given by

P(λ) = −λ4 +
(

x2
c −1
a2 + y2

c −1
b2 + 1−z2

c
c2 + 1

)
λ3

+
(

c2
(
a2+b2−1

)+a2+b2−a2b2−(
a2+b2

)
z2

c +(
c2−a2

)
y2

c +(
c2−b2

)
x2

c

a2b2c2

)
λ2

− a2+b2−c2+x2
c +y2

c +z2
c −1

a2b2c2 λ − 1
a2b2c2 .

(11)

Firstly, we consider the center of the sphere to be (xc, yc, zc) = (0, 0, 0), so S is placed in R+ , and we see that 
a2b2c2P(λ) = −(λ − 1) 

(
a2λ + 1

) (
b2λ + 1

) (
c2λ − 1

)
. Hence, there are 2 positive and 2 negative roots in this particular 

position.
Secondly, we consider the center of the sphere to be (xc, yc, zc) = (0, 0, c + 1), so S is placed in R− , and we check that 

a2b2c2P(λ) = − 
(
a2λ + 1

) (
b2λ + 1

)
(cλ + 1)2. Hence, there are 4 negative characteristic roots in this particular position.

Now, since P(0) = − 1
a2b2c2 = 0, we have that 0 is not a characteristic root. Given that the characteristic roots are real 

and vary continuously as we move the ellipsoid E and 0 is not a root, the sign of the roots cannot change while we move 
E within R+ or R− . Thus, because R+ is connected, we conclude that there are 2 positive and 2 negative roots if E ∈ R+ . 
Since R− has two connected components, we pass to the projective space (or simply repeat the previous calculation for 
(xc, yc, zc) = (0, 0, −c − 1)), to conclude that there are 4 negative roots if E ∈ R− . �

Recall the form of the characteristic polynomial associated to the pair of quadrics E and Q given in expression (7). The 
signs of the roots are related to these coefficients, so that one can distinguish the relative position just by checking the sign 
of the coefficients, without even computing the characteristic roots. This is shown in the following result.

Theorem 13. Let E be a small ellipsoid with respect to another quadric Q. The relative position of the two quadrics for the non-contact 
(possibly tangent) cases is detected by the sign of the characteristic roots or, alternatively, the sign of the coefficients of P(λ), as shown 
in Table 4. 

Proof. The relation of the sign of the characteristic roots with the relative positions follows from Lemma 12 if Q is a 
hyperboloid of two sheets. The argumentation in this lemma goes through if we change the hyperboloid of two sheets by 
any other non degenerate quadric Q, simply by adapting the points we choose and the particular calculations. We do not 
include details in the interest of brevity. If the quadric Q is degenerate instead, then 0 is a characteristic root. In this case, 
one can reduce the dimension appropriately and a similar argument applies to obtain the remaining characterizations in 
Table 4.

In expression (7), we have that c4 = det(E) and c0 = det(Q). Hence, some relations for the sign of the coefficients of P
are known a priori. Thus c4 < 0 and, depending on the quadric Q, c0 > 0 or c0 < 0 in the non-degenerate case, whereas 
c0 = 0 for cylinders and c1 = c0 = 0 for parallel planes. Since the sign of the roots determines the relative position of the 
two quadrics, a direct application of the Descartes’ rule of signs (see, for example, Curtiss (1918)) provides the relations in 
the signs given in Table 4. �
5. Applications to detect contact between an ellipsoid and a combination of quadrics

The results given in Theorem 2, Corollary 10 and Theorem 13 provide a simple way of detecting contact and, moreover, 
the relative positions between an ellipsoid and another quadric. From these mathematical results efficient algorithms can 
be derived to be applied in real world applications. The simplicity of the analysis of the discriminant or the coefficients of 
13
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Table 4
Relative positions in terms of the sign of the roots and the sign of the coefficients of the char-
acteristic polynomial.

Quadric Q Relative position Sign of roots Coefficients of P

Ellipsoid
Hyperboloid of two 

sheets
Elliptic paraboloid

X T Q X ≤ 0 − − −− c4, c0 < 0
No sign changes
ci ≤ 0 for i = 1,2,3

X T Q X ≥ 0 − − ++ c4, c0 < 0
2 sign changes
ci > 0 for some i = 1,2,3

Hyperboloid of one 
sheet

Hyperbolic 
paraboloid

X T Q X ≤ 0 − − −+ c4 < 0, c0 > 0
No sign changes
ci > 0 ⇒ c j ≥ 0∀ j > i

X T Q X ≥ 0 − + ++ c4 < 0, c0 > 0
3 sign changes
ci ≤ 0, c j > 0 for some i < j

Elliptic cylinder
Parabolic cylinder

X T Q X ≤ 0 − − −0 c4 < 0, c0 = 0
No sign changes
ci ≤ 0∀i = 1,2,3

X T Q X ≥ 0 −0 + + c4 < 0, c0 = 0
1 sign change
ci > 0 for some i = 1,2,3

Hyperbolic cylinder

X T Q X ≤ 0 − − 0+ c4 < 0, c0 = 0
1 sign change
ci < 0 ⇒ c j ≤ 0∀ j > i

X T Q X ≥ 0 0 + ++ c4 < 0, c0 = 0
No sign changes
(−1)i ci ≤ 0∀i = 1,2,3

Two parallel planes

X T Q X ≤ 0 − − 00 ci < 0 for i = 2,3,4
c0 = c1 = 0

X T Q X ≥ 0 00 + + (−1)i ci ≤ 0 for i = 2,3,4
c0 = c1 = 0

the characteristic polynomial suits applications in many different contexts, so we are not going to specify a particular one 
here, but describe a general procedure of how to use the previous results. Here we consider static positions for the surfaces, 
however further analysis from the results in the previous sections can be carried out following the line of other works as 
Etayo et al. (2006); Jia et al. (2011, 2016) that deal with continuous collision detection.

5.1. Using a plane to separate quadrics

In virtue of Theorem 2, where a way of detecting contact is given for a variety of surfaces, one can combine different 
quadrics to create a model of an object. The combination of these quadrics can be done directly and one can even use 
one quadric to divide the space and differentiate two different zones where contact has to be checked with two different 
surfaces. Thus the detection of contact with an small ellipsoid is going to be carried out pairwise.

However, a simpler model can be done if we use a plane to separate zones. Since the intersection of a plane with a 
quadric surface is generically a conic curve, because of its manageability, it is a convenient way of creating a model of an 
object. Thus, one can divide space with a plane, check in which zone is the small ellipsoid and then detect contact with the 
corresponding quadric.

Notice that a plane can be represented by a matrix, in a similar way as a quadric, with no terms of order 2. Hence, 
it makes sense to consider the characteristic polynomial (1) for an ellipsoid and a plane. The following result extends 
Theorem 2 to the simpler case of an ellipsoid (with no restrictions in size or shape) and a plane. Moreover, it also extends 
Theorem 13 if we take into account that if P denotes the matrix of the plane, then R− = {(x, y, z) ∈ R3/X T P X ≤ 0} and 
R+ = {(x, y, z) ∈R3/X T P X ≥ 0} as in (8).

Theorem 14. Let E be an ellipsoid and P a plane. Then E and P are in transversal contact if and only if the characteristic polynomial 
P(λ) has two non-real roots.

Furthermore, there is a double root which is zero and, if there is no transversal contact, the other two roots are positive if E ⊂ R+
whereas they are negative if E ⊂ R− .

Proof. We begin with a general ellipsoid E and an arbitrary plane P . Since both the characteristic roots and the relative 
positions are invariant by rigid motion that preserve orientation, we can place the plane to be the xy-plane. Moreover, 
by appropriate scalings, the ellipsoid can be transformed into a sphere and a new translation place it on the z-axis. Thus, 
14
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without lost of generality, we consider a sphere S of radius r with center at (0, 0, zc) and the plane P0 with equation z = 0. 
Their associated matrices are, respectively:

S =

⎛
⎜⎜⎜⎝

1
r2 0 0 0
0 1

r2 0 0
0 0 1

r2 − zc
r2

0 0 − zc
r2

z2
c

r2 − 1

⎞
⎟⎟⎟⎠ and P0 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1

2
0 0 1

2 0

⎞
⎟⎟⎠ .

Now, it is straightforward to check that

P(λ) = −λ2
(
r2 + 4λ(λ − zc)

)
4r6

, (12)

so the characteristic roots are 
{

0,0, 1
2

(
zc ±

√
z2

c − r2
)}

. Since transversal contact occurs if and only if |zc| < r, this is 
equivalent to the presence of two non-real roots.

Moreover, since 
√

z2
c − r2 < zc , we have that 1

2

(
zc ±

√
z2

c − r2
)

> 0 if zc > r (so E ⊂ R+ = {(x, y, z) ∈ R3/z ≥ 0}) and 
1
2

(
zc ±

√
z2

c − r2
)

< 0 if zc < −r (so E ⊂ R− = {(x, y, z) ∈R3/z ≤ 0}). �
As a consequence of Theorem 14, we can use the discriminant and the Descartes’ rule of signs to detect the relative 

position between an ellipsoid and a plane as follows.

Corollary 15. Let E be an ellipsoid and P a plane. Let P(λ) = c4λ
4 + c3λ

3 + c2λ
2 be the characteristic polynomial. Then

(1) E and P are in transversal contact if and only if c2
3 < 4c1c2 .

(2) If they are not in transversal contact, then
• E ⊂ R+ if and only if c3 > 0.
• E ⊂ R− if and only if c3 < 0.

Proof. From Theorem 14 we have that 0 is a double root, so we always have 	4 = 0. Moreover, transversal contact corre-
sponds to non-real roots so, from the characterization of roots given by a Complete Discrimination System (see, for example, 
Yang (1999)), it is characterized by 	3 < 0, which reduces to 0 < 4c1c2 − c2

3.
Now, from Theorem 14, we also have that the non-zero roots are positive if E ⊂ R+ and negative if E ⊂ R− . It follows 

from (12) that c4 < 0 and c2 < 0 so, by the Descartes’ rule of signs, two roots are positive if and only if c3 > 0, whereas two 
roots are negative if and only if c3 < 0. �
Remark 16. Assuming we have a general plane ax + by + cz − d = 0 and an ellipsoid E with center at (xc, yc, zc) so that 
they are not in transversal contact, the sign of axc + byc + czc − d determines if E belongs to R+ or R− . This is equivalent 
to check the sign of c3 in Assertion (2) of Corollary 15, since c3 = axc+byc+czc−d

α2β2γ 2 for E with parameters as in (2).

5.2. Towards applications to real world models

From the results in the previous section, we propose a simple algorithm to detect contact between an small ellipsoid 
E and an object which is modeled by a combination of quadrics. Using planes to divide space in several zones, quadrics 
can be combined in a simple way (see Fig. 8). First, Theorem 14 or Corollary 15 are used to detect in which zone is the 
ellipsoid. Afterwards, depending on the zone, one can use Theorem 2 or Corollary 10 to detect contact.

We use a simple model to describe the algorithm in more detail. In the most simple case there is one separating plane 
P dividing space into two zones (see the illustration of an example in Fig. 8): Zone 1 (R+) and Zone 2 (R−). In Zone 1 
there is a piece of the quadric surface S1 and in Zone 2 there is a piece of the quadric surface S2. In order to apply the 
results, the ellipsoid E shall be small with respect to both of them (this can be checked using Table 2). We work with the 
characteristic polynomials associated to E and P (P0(λ)), to E and S1 (P1(λ)) and to E and S2 (P2(λ)). The algorithm to 
detect contact is divided into two steps and described as follows:

(1) First step. Using Corollary 15 we detect if the ellipsoid E lies in Zone 1, Zone 2 or intersects the separating plane (Zone 
0).
Data: matrices associated to E and P .
Computations: characteristic polynomial P0(λ). Discriminant 	3 of P0(λ). Coefficient c3 of P0(λ).

(2) Second step. Depending on the zone the ellipsoid E is placed, we detect contact with Surface 1, with Surface 2 or with 
both of them.
15
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Fig. 8. Simple model with a combination of two quadrics separated by a plane.

Algorithm 1: Algorithm to detect the zone for the small ellipsoid.

if 	3 < 0 then
zone = Zone 0

else
if c3 > 0 then

zone = Zone 1
else

zone = Zone 2
end

end

Algorithm 2: Algorithm to detect contact depending on the zone.

if zone=Zone 1 then
if 	1

4 < 0 ∨ (	1
4 = 0 ∧ 	1

3 < 0) then
contact between E and S1

else
no contact

end
else if zone=Zone 2 then

if 	2
4 < 0 ∨ (	2

4 = 0 ∧ 	2
3 < 0) then

contact between E and S2

else
no contact

end
else

if 	1
4 < 0 ∨ (	1

4 = 0 ∧ 	1
3 < 0) ∨ 	2

4 < 0 ∨ (	2
4 = 0 ∧ 	2

3 < 0) then
contact

else
no contact

end
end

Data: matrices associated to E , S1 and S2.
Computations: characteristic polynomials P1(λ) and P2(λ). Discriminants 	i

4 and 	i
3 of Pi(λ), i = 1, 2.

Note that P1(λ) and P2(λ) (together with the associated discriminants 	i
4 and 	i

3) shall be computed only if needed, 
depending on the zone the ellipsoid is placed.

Example 17. In order to illustrate theoretical results with an specific simple example we consider a bee and a tree as in 
Fig. 8. The bee is modeled by an ellipsoid E : (x − 3)2 + (y − 3)2 + 3(z − 5.5)2 = 0.1, whereas the tree is modeled by an 
ellipsoid S1 : x2 + y2 + 3(z − 8.36291)2 = 20 and a hyperboloid of one sheet S2 : x2 + y2 − 0.25(z − 3)2 = 1 separated by the 
plane z = 6.

Smallness condition. We check that the ellipsoid E is small with respect to S1 and S2 using directly Table 2. For E we 
have α = β = 1, γ = 1√

3
and δ = 1√

10
. For S1 we have a1 = b1 = 1, c1 = 1√

3
and d1 = √

20; and a2 = b2 = 1, c2 = 2 and 
d2 = 1. Now, we check that

E − S1 : d1c1 = 2.58199 ≥ 0.316228 = δα, a1
d1c2

1
= 0.67082 ≤ 1.82574 = γ

δα2 ,

E − S2 : d2c2 = 1 ≥ 0.316228 = δα, a2
2 = 0.25 ≤ 1.82574 = γ

δα2 .

d2c2
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Detecting the zone. First we consider the plane to detect in which zone is the ellipsoid E located. We apply Algorithm 1. 
The characteristic polynomial is given by P0(λ) = λ2

(−0.3λ2 − 1.5λ − 0.25
)
, so 	3 = 0.121875 > 0. Since the third degree 

coefficient is c3 = −1.5 < 0, we conclude that E lies in Zone 2.
Detecting contact. Once we know the ellipsoid E lies in Zone 2, we detect contact with the surface S2. We apply Algo-

rithm 2. The characteristic polynomial associated to E and S2 is given by

P2(λ) = −0.3λ4 + 45.7375λ3 + 34.125λ2 − 11.6625λ + 0.25,

so 	2
4 = 6.90965 × 108 > 0. We conclude that there is no contact with the surface.

We can further detect that the ellipsoid E is out of the hyperboloid by checking that the coefficients of P2(λ) satisfy: 
c3 > 0, c2 > 0 and c1 < 0, according to Table 4.

The described algorithms set the theoretical framework for a method to detect contact between a small ellipsoid and a 
model which is build upon a combination of quadrics. Future research should be oriented to study their application in more 
sophisticated CAD models, where methodologies such as constructive solid geometry based on quadrics (see Trettner and 
Kobbelt (2021)) or other methods to detect contact between quadrics (see, for example, Choi et al. (2014)) can also be used.

6. Conclusions

We have focused on the detection of transversal contact and on determining the relative position between two types of 
bounding volumes: an ellipsoid and all those surrounding objects that can be modeled by a combination of quadric surfaces.

An optimal hypothesis is introduced (see Definition 1) so that contact is detected by the existence of two non-real roots 
of the characteristic polynomial (Theorem 2). Moreover, that condition can be checked in terms of the parameters of the 
quadrics involved and contact can be detected by evaluating only two expressions of the discrimination system (Theorem 5
and Corollary 10). Additionally, relative positions can be obtained from the sign of the coefficients of the characteristic 
polynomial (Theorem 13).

We establish a broad theoretical framework that give rise to simple algorithms to detect collisions. Due to their efficiency 
and computational applicability, they can be used in a continuous time-varying positional contexts.
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